
An Outer Approximation based Branch and Cut

Algorithm for convex 0-1 MINLP problems

Ioannis Akrotirianakis1, Istvan Maros2 and Ber�c Rustem3

Abstract

A branch and cut algorithm is developed for solving 0-1 MINLP problems. The
algorithm integrates Branch and Bound, Outer Approximation and Gomory Cutting
Planes. Only the initial Mixed Integer Linear Programming (MILP) master problem
is considered. At integer solutions Nonlinear Programming (NLP) problems are
solved, using a primal-dual interior point algorithm. The objective and constraints
are linearized at the optimum solution of those NLP problems and the linearizations
are added to all the unsolved nodes of the enumerations tree. Also, Gomory cutting
planes, which are valid throughout the tree, are generated at selected nodes. These
cuts help the algorithm to locate integer solutions quickly and consequently improve
the linear approximation of the objective and constraints, held at the unsolved nodes
of the tree. Numerical results show that the addition of Gomory cuts can reduce
the number of nodes in the enumeration tree.

Key Words: Outer Approximation, Branch and Cut, Gomory Cuts.

June, 2000,

Technical Report 2000-06,

Department of Computing,

Imperial College of Science, Technology and Medicine,

180 Queen's Gate, London SW7 2BZ, U.K.

1. e-mail: ia4@doc.ic.ac.uk

2. e-mail: im@doc.ic.ac.uk

3. e-mail: br@doc.ic.ac.uk

1

1 Introduction

In this paper, we develop an algorithm for solving 0-1 convex MINLP problems. The

general structure of convex 0-1 MINLP problems, considered in this paper, has the form

P

8>>>><
>>>>:

min f(x;)

ST g(x;) � 0

x 2 X; 2 Y;

(1)

where f(x;) and g(x;) = (g1(x;); :::; gm(x;))T are convex functions, X � <n, Y �

f0; 1gp, and x and are the vectors of the continuous and 0-1 variables, respectively. Also,

X is assumed to be a convex compact polyhedron, de�ned as X = fx 2 <n : A1x � a1g

and Y is a �nite discrete set, de�ned as Y = f 2 f0; 1gp : A2 � a2g. If the objective

and the constraint functions are linear then problem P forms a 0-1 Mixed Integer Linear

Programming (MILP) problem.

There is a large number of engineering problems that can be modeled and solved as

MINLP problems. These include the synthesis of processes [7], the design of batch plants

[15], the minimization of waste in paper cutting [24], the optimization of core reload

patterns for nuclear reactors [20], the facility location in a multi attribute space [7], to

mention but a few. An extensive survey of application areas of MINLP can be found in

Grossmann and Kravanja [12].

The methods for solving MINLP problems use mainly two approaches. The �rst ap-

proach �xes all the integer variables at a feasible integer vector. As a result, the MINLP

problem becomes a continuous NLP problem. The optimum solution of the NLP problem

together with the corresponding integer vector provide a feasible solution of the original

MINLP problem. Also, the corresponding objective value provides an upper bound to

the optimal objective value. Outer Approximation [4] and Generalized Benders Decompo-

sition [9] use this approach. The second approach relaxes all the integrality restrictions,

that is the integer variables are allowed to take real values. The resulting problem, usually

called the continuous relaxation of the MINLP problem, has some attractive properties.

The �rst is that the optimum objective value of the continuous relaxation provides a lower

bound to the optimum objective value of the original MINLP problem. If the optimum

solution of the continuous relaxation satis�es all the integrality restrictions, then it is a

feasible solution of the MINLP problem. Similarly, if the continuous relaxation is infeasi-

ble, the MINLP problem is also infeasible. Branch and Bound uses these properties and

a tree search to �nd the optimum solution of problem P.

The basic idea underlying the algorithm presented in this paper is to include cutting

plane methods, an area that is mainly used to solve MILP problems, within an algorithm

designed to solve 0-1 convex MINLP problems. Recently, Balas et al [2] has shown that the

incorporation of classical Gomory mixed integer cuts within a Branch and Cut algorithm

can solve not only faster but also larger MILP problems than simple Branch and Bound.

In the last decade, many Branch and Cut algorithms have been developed enabling the

solution of very large MILP problems previously considered to be unsolvable. J�unger et

al. [13] provide an extensive and recent survey of Branch and Cut algorithms for MILP.

2

Our algorithm uses the LP/NLP based Branch and Bound method developed by Que-

sada and Grossmann as the platform for introducing Gomory mixed integer cuts in the

solution process of a convex MINLP problem. LP/NLP based Branch and Bound is a

combination of Outer Approximation [4], [6] and Branch and Bound [16], [3] methods. Its

advantage over Outer Approximation is that it avoids the explicit solution of all the MILP

master problems. Instead, it solves only the initial MILP master problem by using Branch

and Bound. At integer nodes of the tree, NLP problems are solved, resulting by �xing the

integer variables of the original MINLP problem. New linearizations are generated around

the optimum solution of those NLP problems and then added to all the unsolved nodes,

thereby dynamically updating the linear approximations of the original MINLP problem.

The objective of the proposed algorithm is to reduce both the number of nodes and the

number of NLP problems, required by the LP/NLP based Branch and Bound method, by

incorporating Gomory mixed integer cuts within it.

The assumptions used throughout this paper are the following:

Assumptions:

A1: X is a nonempty compact convex set de�ned by a system of linear inequality con-

straints and the objective f(x;) and constraints g(x;) are convex functions.

A2: f(x;) and g(x;) are once continuously di�erentiable.

A3: The set of feasible directions at the solution of a primal problem (de�ned in section

2.1 below) can be identi�ed with the set of feasible directions for the constraint lin-

earized at the solution (see for example Fletcher [5], page 202), for which a suÆcient

condition is that the gradients of the active constraints are linear independent. This

is known as the constraint quali�cation condition.

The convexity assumption ensures that problem (1) has only one minimum. The

method discussed in this paper need this assumption in order to guarantee convergence

to the minimizer. Although it can be used to solve non convex MINLP problems (i.e., the

objective or at least one of the constraints are non convex functions) there is no guarantee

that it will �nd the global minimum.

The paper is organized as follows. Section 2 briey reviews Outeer Approximation,

Branch and Bound and Gomory mixed integer cuts. In section 3 the motivation of the

proposed algorithm is presented. In section 4 the new algorithm is developed. In section

5 various implementation issues are discussed. Finally, in section 6 numerical results

obtained by solving several MINLP problems are presented.

2 Background

In this section, we discuss Branch and Bound, and Outer Approximation methods. They

constitute two of the most commonly used methods for solving 0-1 convex MINLP prob-

lems. The algorithm developed in this paper uses ideas from both of these algorithms. We

also discuss Cutting Plane methods for 0-1 MILP problems, with particular emphasis on

3

Gomory cutting planes. Our purpose is to make the reader familiar with the basic ideas

and terminology used in section 4 where we present our algorithm for solving 0-1 convex

MINLP problems.

2.1 Outer Approximation

Outer Approximation was initially proposed by Duran and Grossmann [4] for the class

of convex 0-1 MINLP problems where only inequalities are present, the objective and

constraints are assumed to be separable in the continuous and 0-1 variables as well as

linear in the 0-1 variables. Fletcher and Ley�er [6] generalize the method of Duran and

Grossmann [4] to allow nonlinear integer variables at the objective and constraints in a

non-separable way.

The algorithm alternates between NLP and MILP problems. The NLP problems are

formed by �xing the integer variables to an integer vector, say j . The resulting problem

is usually called the primal problem and has the form

NLP (j)

8>>>><
>>>>:

minx f(x; j)

ST g(x; j) � 0

x 2 X

(2)

If (2) is feasible and xj is its optimal solution, then f(xj; j) provides an upper bound

to the solution of the original MINLP problem. Also, xj provides the point at which the

objective and constraints are linearised in order to form the master problem.

If the primal problem (2) is infeasible, the point used to linearise the objective and

constraints is the solution of a feasibility problem. Two straightforward and widely used

feasibility problems are the minimization of the `1 or the `1 sum of the constraint vio-

lations of the infeasible primal problem. That is, if the integer vector j gives rise to an

infeasible primal problem, then the `1 feasibility problem is de�ned by

F`1(j)

(
min
x2X

qX
l=1

gl+(x; j)

and the `1 feasibility problem by

F`1(j)

(
min
x2X

max
l=1;:::;q

gl+(x; j)

where gl+(x; j) = max
n
0; gl(x; j)

o
.

4

At the i-th iteration of the algorithm the MILP master problem has the form

Mi

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

minx; ;� �

ST � < UBDi

f(xj; j) +rf(xj; j)
T

0
B@ x� xj

 � j

1
CA � �

g(xj ; j) +rg(xj ; j)
T

0
B@ x� xj

 � j

1
CA � 0; 8j 2 Ti

g(xk; k) +rg(xk; k)
T

0
B@ x� xk

 � k

1
CA � 0; 8k 2 Si

x 2 X; 2 Y; � 2 <

(3)

where UBDi is the objective value of the best integer solution found so far, the set Ti
contains all the iterations j � i in which the corresponding primal problems NLP (j) are

feasible, whereas the set Si contains the iterations k � i in which feasibility problems need

to be solved. The presence of the constraint � < UBDi in the master problem, ensures

that each integer assignment j, with j 2 Ti, is generated only once. Since there is a

�nite number of integer vectors in the feasible region of the original MINLP problem, the

algorithm terminates after a �nite number of steps [6]. The optimum solution (��i ; x
�

i ;
�

i)

of the relaxed master problem Mi can be found by any standard MILP technique such as

Branch and Bound. The vector �i provides the assignment at which the integer variables

will be �xed at the next iteration, that is i+1 = �i . The algorithm proceeds by solving

primal, feasibility and master problems until an infeasible master problem is encountered.

2.2 Branch and Bound

Branch and bound is a classical algorithm for solving mixed integer linear or nonlinear

programming problems. In this section, we describe the application of Branch and Bound

on 0-1 convex MINLP problems. The basic concept of Branch and Bound is to split the

initial 0-1 MINLP problem P into smaller subproblems, which are then solved in some

speci�ed order. It was initially developed by Land and Doig [16] for linear integer pro-

gramming problems and later was generalized by Dakin [3] to be able to handle nonlinear

integer problems as well.

Before describing how a general iteration of the Branch and Bound algorithm works,

we introduce some basic notions used by the algorithm throughout its execution. The

algorithm maintains a list which keeps all the subproblems that need to be solved. Each

subproblem is based on the initial problem P and has some of its binary variables �xed

at 0 or 1. Hence, the i-th subproblem in the list can be identi�ed by the pair (Ri0; R
i
1),

where the sets Ri0; R
i
1 � f1; 2; :::pg contain the indices of those binary variables which

have been �xed at 0 and 1 respectively. Any 0-1 variable (j), with j =2 Ri0 [R
i
1, is called

5

free binary variable and can take any value in the interval [0; 1]. If the solution of the

continuous relaxation of a subproblem (Ri0; R
i
1) satis�es the integrality restrictions, then

this solution provides an upper bound on the optimum solution of the original problem P .

The algorithm keeps a record of the integer solution that provides the lowest upper bound

found so far. That solution is called incumbent.

At the beginning of a general iteration k, the algorithm removes a subproblem (Ri0; R
i
1)

from the list and solves its continuous relaxation. Four possible cases can be identi�ed.

The �rst case arises when the optimum solution contains integer restricted variables with

fractional values and its optimal objective value is less than the objective value at the

incumbent solution. In this case two new subproblems are generated, by branching on a

violated free binary variable, say (j). The two new subproblems are de�ned by the pairs

(Ri0 [fjg ; R
i
1) and (Ri0; R

i
1 [fjg). Both of these new subproblems are added to the list

of unsolved problems. This is the only case where two new subproblems are added to the

list for one deleted. The remaining three cases do not add new subproblems to the list.

The second case arises when the current subproblem (Ri0; R
i
1) is infeasible. This means

that any further restriction of it will also be infeasible. The third case results when the

optimal objective value of the current subproblem is greater than the objective value at

the incumbent solution. In this case no further restriction of (Ri0; R
i
1) will give a better

integer solution. The fourth and �nal case appears when the optimum solution of the

current subproblem satis�es all the integrality constraints and the objective value is less

than the one at the incumbent solution. In this case the solution of the current subproblem

becomes the new incumbent solution. The Branch and Bound algorithm terminates when

the list of unsolved problems becomes empty. The current incumbent solution becomes

the optimum solution of the original problem P .

This process of branching, solving and fathoming subproblems, based on the original

problem P , can be viewed as an iterative generation of a binary tree. The i-th node of

the binary tree corresponds to a subproblem (Ri0; R
i
1). The root of the binary tree then

corresponds to the pair (;; ;), since none of the integer variables has yet been �xed. The

two new subproblems (Ri0[fjg ; R
i
1) and (Ri0; R

i
1[fjg) which are generated by branching

on the violated free binary variable (j) are called child nodes whereas the subproblem

(Ri0; R
i
1) is called the parent node. Finally, we de�ne the level of a node (R0; R1) in the

binary tree as the number of edges on the path connecting the root of the tree with that

node.

2.3 Gomory Mixed Integer Cuts

Cutting Plane methods provide deterministic procedures for solving Mixed Integer Linear

Programming (MILP) problems. They attempt to solve an MILP problem by solving a

�nite sequence of LP problems. Each of these LP problems is based on the continuous

relaxation of the initial MILP problem and contains a number of additional constraints

called cuts. A cut is a fractional constraint that reduces the feasible region of the LP

relaxation problem without eliminating any feasible solution of the initial 0-1 MILP prob-

lem. Thus the main aim of Cutting Plane algorithms is to approximate the convex hull of

6

an MILP problem, at least in a neighborhood of its optimum solution, by generating and

adding cuts to its continuous relaxation.

The �rst cutting plane method was developed by Gomory [10], [11]. Gomory mixed

integer cuts can be obtained from every row corresponding to a fractional basic variable

in the optimal tableau of an LP relaxation. Let the optimal tableau be

xi = gi0 +
X
j2J1

gij(�xj) +
X
j2J2

gij(� j); i 2 I1

 i = gi0 +
X
j2J1

gij(�xj) +
X
j2J2

gij(� j); i 2 I2 (4)

xk; k � 0; 8k 2 I [J

where I1 and I2 denote the index sets of the basic continuous and 0-1 variables respectively,

J1 and J2 denote the index sets of the non-basic continuous and 0-1 variables respectively,

I = I1 [I2, J = J1 [J2 and I1 \ I2 = J1 \ J2 = ;. Assume that the i-th 0-1 variable i
has a fractional value and de�ne the following partitions of the sets J1 and J2:

J+1 = fj 2 J1 : gij > 0g ; J�1 = J � J+1

and

J+2 = fj 2 J2 : fij < fi0g ; J
�

2 = J � J+2

The Gomory mixed integer cut is de�ned by the inequality

X
j2J+

1

gij
fi0

xj +
X
i2J+

2

fij
fi0
 j +

X
j2J�

1

gij
1� fi0

xj +
X
i2J�

2

1� fij
1� fi0

 j � 1 (5)

which can be written in the following compact form

X
j2J1

max

�
gij
fi0

;
gij

1� fi0

�
xj +

X
j2J2

min

�
fij
fi0

;
1� fij
1� fi0

�
 j � 1 (6)

The derivation of the above inequality can be found for example in [2], [21].

Gomory mixed integer cuts have fallen out of favour for more than thirty years due

to their slow convergence to the integer solution. Recently, however, Balas et al [2] have

shown that Gomory mixed integer cuts can be very useful when they are incorporated

within a Branch and Bound algorithm, since they can improve the bounds at di�erent

nodes of the entire search tree resulting in substantial reductions of its size.

3 Motivation for the algorithm

In this section we initially discuss the advantages and disadvantages of nonlinear Branch

and Bound, Outer Approximation and LP/NLP based Branch and Bound which is a

combination of the �rst two. Next we present our motivation for developing the new

algorithm.

7

Although Branch and Bound is a classical, easy to implement and widely used method,

it has two important disadvantages that may damage its performance in medium or large

convex MINLP problems. The �rst is that an NLP problem has to be solved at every

node of the enumeration tree. Thus, the computational e�ort that the algorithm needs

to spend at every node is high. The second disadvantage, which is related to the �rst,

arises in problems where integer feasible solutions are not available in the early stages of

the algorithm. Due to poor fathoming of unsolved nodes, the enumeration tree becomes

excessively large. As a result the algorithm may need prohibitively long time to solve the

problem or even fail to �nd the optimum solution because there is not enough memory to

accommodate the large number of unsolved nodes.

On the other hand Outer Approximation involves the complete solution of an NLP

primal problem and an MILP master problem at every major iteration. Although it is

generally expected to need more computational e�ort at every iteration than Branch and

Bound, it requires fewer iterations to reach the integer optimum solution. As a result,

Outer Approximation solves less NLP problems than Branch and Bound. In addition

those problems are smaller than the problems solved at every node of the Branch and

Bound tree, since the integer variables have been �xed. However, Outer Approximation

requires the complete solution of an MILP master problem at each iteration which is

usually a heavy computational task.

A major limitation of Outer Approximation is that the size of the master problems

increases very fast as the iterations proceed. This is mainly due to two factors. The �rst is

that at every major iteration of the algorithm a new linear approximation is added to the

current master problem for each nonlinear constraint of the original MINLP problem. The

second is that the master problem of the current iteration inherits all the constraints of

the master problem of the previous iteration. For MINLP problems with many nonlinear

constraints and integer variables, few iterations are enough to create MILP master prob-

lems that have many linear constraints. Taking into account that Outer Approximation

requires the complete solution of the master problems, it can be deduced that it needs to

spend increasingly large amounts of computing time to solve the master problems.

To avoid the heavy computational task of successively solving the master problems,

LP/NLP based Branch and Bound, proposed by Quesada and Grossmann [19] and gener-

alised by Ley�er [17], considers only the �rst MILP master problem of the Outer Approx-

imation method and uses Branch and Bound to solve it. When a node with an integer

feasible solution is encountered the corresponding NLP primal problem is solved. The ob-

jective and constraints of the initial MINLP problem are linearised around the optimum

solution of the primal problem. The new linearizations are then added to all the unsolved

nodes of the Branch and Bound tree including the current one which is not fathomed.

This process can be thought of as a dynamic update of the sets of linear approximations

of the objective and constraints, held at the unsolved nodes of the tree. As a result

the algorithm does not need to solve independently and completely all the MILP master

problems. Instead the solution of the master problems is implicitly done within the Branch

and Bound tree used to solve the �rst MILP master problem through the dynamic update

of the unsolved nodes with new linearizations. An important advantage of this method

is that the total number of nodes that need to be solved is less than that required by

8

Outer Approximation when all the master problems are separately solved to optimality

by Branch and Bound.

However the number of NLP primal problems may be larger than that required by

Outer Approximation. This is because the objective and constraints are linearised at sub-

optimal integer solutions of the master problems as opposed to Outer Approximation where

the master problems are completely solved and therefore the objective and constraints are

linearised at the optimal integer solution of the corresponding master problem. Due to

the increase of the NLP problems, the number of the new linearizations which are dy-

namically added to the tree of LP/NLP based Branch and Bound method increases too.

Consequently, the size of the unsolved nodes may become prohibitively large and damage

the overall performance of the algorithm.

Our main motivation is to improve the LP/NLP based Branch and Bound method

by reducing both the number of NLP problems and the number of nodes needed to be

solved. To achieve this, instead of using the classical Branch and Bound method, we

use the Branch and Cut framework proposed recently by Balas et al. [2] to solve the

initial MILP master problem. In the above framework, Gomory mixed integer cuts are

generated at speci�c nodes of the enumeration tree. These cuts are incorporated into the

constraint set of the current node and tighten it. Those cuts are also valid for the entire

tree and therefore may be used to tighten the constraint sets of other nodes. Since tighter

representations of the feasible region provide better upper bounds, the solution process can

be considerably sped up. The resulting algorithm provides an eÆcient way to incorporate

Gomory cuts in an algorithm designed to solve MINLP problems.

4 Description of the proposed algorithm

In this section we present our approach to the solution of the convex 0-1 MINLP problems

(1). It is an improvement of the LP/NLP based Branch and Bound method proposed by

Quesada and Grossman [19] and generalised by Ley�er [17]. The new feature is the use of

the Gomory mixed integer cuts in order to reduce the number of both the 0-1 MILP and

the NLP subproblems that need to be solved before the optimum solution of the original

0-1 MINLP problem is found.

Initially the algorithm is given a 0-1 vector 0. The 0-1 variables of the original 0-1

MINLP problem (1) are �xed at 0 and the resulting primal problem

NLP (0)

8>>>><
>>>>:

minx f(x; 0)

ST g(x; 0) � 0

x 2 X

(7)

9

is solved, provided that it is feasible. If it is infeasible a feasibility problem

F (0)

8>>>><
>>>>:

minx u

ST g(x; 0) � u

x 2 X;u 2 <

(8)

is solved, where u is the variable that represents the largest violation of the constraints.

Let x0 be the optimum solution of the primal problem NLP (0) or the feasibility problem

F (0), depending on which one is solved.

The initial master problemM0 is obtained by linearising the objective and constraints

of the original 0-1 MINLP problem around the point (x0; 0) yielding the following 0-1

MILP problem

M̂0

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

minx; ;� �

ST � < UBD0

f(x0; 0) +rf(x0; 0)
T

0
B@ x� x0

 � 0

1
CA � �

g(x0; 0) +rg(x0; 0)
T

0
B@ x� x0

 � 0

1
CA � 0;

x 2 X; � 2 <

 2 f0; 1gp

(9)

Problem M̂0 is solved by a Branch and Cut procedure with the additional feature that each

time a node that yields a 0-1 feasible solution, say (~x; ~) with ~ 2 f0; 1gp, is encountered,

a new set of linearizations of the objective and constraints is generated and added to that

node and every other unsolved node of the search tree.

More speci�cally, at the beginning of a general iteration i, the algorithm selects a node,

say (Ri0; R
i
1), from the list � that contains all the unsolved nodes generated so far. The

10

corresponding 0-1 MILP problem has the form

M̂i

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

minx; ;� �

ST � < UBDi

f(xj; j) +rf(xj; j)
T

0
B@ x� xj

 � j

1
CA � �

g(xj ; j) +rg(xj ; j)
T

0
B@ x� xj

 � j

1
CA � 0; 8j 2 T̂i

g(xk; k) +rg(xk; k)
T

0
B@ x� xk

 � k

1
CA � 0; 8k 2 Ŝi

�1x+ �2 � �

x 2 X; � 2 <; l � 0; l 2 Ri0 and l � 1; l 2 Ri1

 2 f0; 1gp

(10)

The set T̂i contains all the indices of those nodes (Rj0; R
j
1) of the Branch and Cut tree

with j � i in which the corresponding NLP (j) is feasible. On the other hand, the set Ŝi
contains all the indices of those nodes (Rk0 ; R

k
1) with k � i in which the problems NLP (k)

are infeasible and the feasibility problems F (k), de�ned by (8), are solved. UBDi is the

value of the objective function of the initial 0-1 MINLP problem at the best integer solution

that has been found so far, that is UBDi = min
n
f(xj; j) : 8j � i; j 2 T̂i

o
. The linear

constraints �1x + �2 � � represent those Gomory mixed integer cuts that have been

generated so far and are tight to or violated by the optimum solution of the parent node

of (Ri0; R
i
1). Their presence in M̂i tightens the outer approximation of the feasible region of

the original 0-1 MINLP problem. Furthermore the constraint set of the 0-1 MILP problem

M̂i is tighter than that of the corresponding 0-1 MILP problem solved by the LP/NLP

based Branch and Bound method [19]. The �xing of the 0-1 variables is performed by

including the constraints

 l � 0; l 2 Ri0 and
l � 1; l 2 Ri1

and not by eliminating those 0-1 variables that have already been �xed. As discussed

in section 2.3, this technique allows the Gomory cuts generated using (6) to be valid

throughout the enumeration tree.

The algorithm solves the LP relaxation of M̂i. Let (x̂; ̂; �̂) be its optimum solution. �̂

provides a lower bound to the optimum solution of the original 0-1 MINLP problem since

M̂i is an outer approximation of it. Depending on the type of the solution of M̂i, three

di�erent cases can be identi�ed.

The �rst case arises when ̂ 2 f0; 1gp. The algorithm solves the corresponding primal

problem NLP (̂), provided that it is feasible. Otherwise it forms and solves the feasibility

problem F (̂). Let �x be the optimum solution of either NLP (̂) or F (̂), depending on

11

which one is eventually solved. The objective and constraints are linearised around the

point (�x; ̂) and the new linearizations are added to the current node and all the unsolved

nodes of the search tree. The current node is not fathomed, since the new linearizations

added to it cut o� the solution (x̂; ̂; �̂). Thus the updated version of M̂i is placed back in

the list of unsolved nodes. Furthermore, if NLP (̂) is feasible and f(�x; ̂) < UBDi then

(�x; ̂) becomes the new incumbent solution and f(�x; ̂) becomes the new upper bound.

The second case arises when M̂i is infeasible. The current node is fathomed, since any

further restriction of it will also be infeasible. Furthermore, every node of the search tree

can also be fathomed if its lower bound is greater than or equal to the current upper bound,

because the constraint � < UBDi becomes infeasible. The use of that constraint, �rst

introduced by Fletcher and Ley�er [6], ensures that no 0-1 assignment is generated more

than once. Recalling that there is only a �nite number of 0-1 assignments the algorithm

is guaranteed to terminate after a �nite number of steps.

The third case arises when there is at least one violated 0-1 variable, i.e., ̂ =2 f0; 1gp.

In this case the algorithm has two options as opposed to only one in the original algorithm

of Quesada and Grossmann [19]. The �rst option is to select a violated 0-1 variable and

branch on it. Two new subproblems are generated and added to the list of unsolved

problems. The second option is to generate a round of Gomory's mixed integer cuts from

the violated 0-1 variables using (6). These cuts are then added to the constraint set of

M̂i and the resulting problem is solved again. These cuts are also stored in the pool for

future use. In the next section we describe the rule that decides how often to branch and

how often to generate Gomory cuts.

Our algorithm di�ers from a classical Branch and Cut mainly in three points. The �rst

is that the search tree it generates is dynamically updated with new constraints resulting

from linearizations of the objective and constraints. The second is that the incumbent

solution (�x; ̂) is constructed by combining the integer solution (x̂; ̂; �̂) found at a node

of the tree and the optimum solution �x of the corresponding primal problem NLP (̂).

Consequently the upper bounds used to fathom unsolved nodes of the tree are the values

of the objective function f(x;) of the original 0-1 MINLP problem at the incumbent

solutions. The third di�erence is that when an integer node is encountered it is not

fathomed but re-solved after adding the new linearizations.

The di�erences mentioned above reect the main aim of the algorithm which is to

solve the original 0-1 MINLP problem by solving a sequence of dynamically updated 0-1

MILP problems interrupted by the solution of NLP problems. Despite these di�erences,

the Gomory mixed integer cuts generated at a node and de�ned by (6) remain valid for

the entire search tree of our algorithm. They can therefore be stored in a pool and used

at every unsolved node of the entire tree.

A formal description of the algorithm is given below

Algorithm: OA-BC

STEP 1. Initialisation: 0 2 f0; 1g
p is given; set i = 1, T̂�1 = Ŝ�1 = ;.

STEP 2. Set up initial master problem:

12

2.1 If NLP (0) is feasible, solve it and set T̂0 = f0g. Otherwise solve F (0) and

set Ŝ0 = f0g. Let x0 be the optimum of NLP (0) or F (0).

2.2 If x0 is the optimum of NLP (0) then set UBD0 = f(x0; 0). Otherwise set

UBD0 =1.

2.3 Linearise objective and constraints about (x0; 0) and form the initial 0-1 MILP

master problem M̂0.

2.4 De�ne M̂0 as the root of the search tree. Let � be the list which contains the

unsolved nodes and set � =
�
(R0

0; R
0
1)
	
= f(;; ;)g.

STEP 3. Node selection: If � = ;, then Stop. Otherwise select a pair (Ri0; R
i
1) and

remove it from the list �

STEP 4. Solve the LP relaxation of the 0-1 MILP problem M̂i and let (x̂; ̂; �̂) be its

optimum solution

STEP 5. If ̂ 2 f0; 1gp then

5.1 Set i = ̂ and solve NLP (i) if it is feasible or F (i) otherwise. Let xi be

the optimum of NLP (i) or F (i).

5.2 Linearise objective and constraints around (xi; i) and set T̂i = T̂i�1 [fig or

Ŝi = Ŝi�1 [fig as appropriate.

5.3 Add the linearizations to M̂i and to all the nodes in �. Place M̂i back in �.

5.4 Update incumbent solution and upper bound:

If NLP (i) is feasible and f(xi; i) < UBDi then

(x�; �) = (xi; i) and UBDi+1 = f(xi; i)

Otherwise UBDi+1 = UBDi.

5.5 Pruning: Delete all nodes from � with � > UBDi+1.

Go to Step 3

STEP 6. If ̂ =2 f0; 1gp then

6.1 Cutting versus Branching Decision: If cutting planes should be generated then

go to Step 6.2. Otherwise go to Step 6.3

6.2 Cut generation: Generate a round of Gomory mixed integer cuts using (6).

Add all those cuts to M̂i and store them in the pool. Go to step 4.

6.3 Branching: Select a violated 0-1 variable in ̂, say ̂(r) 2 (0; 1). Create two

new nodes (Ri+10 ; Ri+11) = (Ri0 [frg ; R
i
1) and (Ri+10 ; Ri+11) = (Ri0; R

i
1 [frg).

Add both nodes to the list �. Go to Step 4.

If UBDi <1 upon the termination of the algorithm, then (x�; �) is the optimal solution

of the original 0-1 MINLP problem. Otherwise the problem is infeasible.

13

Algorithm OA-BC requires an initial 0-1 vector to be given by the user. If such a

vector is not available then the algorithm can start by solving the NLP relaxation of the

initial 0-1 MINLP problem (1). If the solution of the NLP relaxation satis�es all the

integrality constraints then that solution also solves the initial 0-1 MINLP problem and

the algorithm can stop. If the NLP relaxation is infeasible then the initial 0-1 MINLP

problem is also infeasible and the algorithm can stop. Finally if the NLP relaxation is

feasible and has a non-integer optimum solution, then the initial 0-1 MILP master problem

can be formulated by linearising the objective and constraints around that solution. This

technique was initially suggested by Viswanathan and Grossmann [23], and has been used

successfully by many others (e.g., [17], [19]).

5 Implementation issues

This section is devoted to discussing issues of practical importance considered during the

implementation and testing of Algorithm OABC regarding the solution of the NLP and

MILP problems.

5.1 The solution of NLP problems

Algorithm OABC needs to solve NLP problems throughout its execution. These problems

are the primal and the feasibility problems, de�ned by (7) and (8), and are solved by the

primal-dual interior point algorithm developed by Akrotirianakis and Rustem [1]. The

algorithm solves the perturbed optimality conditions of the corresponding NLP problems

using Newton's method. In order to induce convergence, a penalty-barrier merit function

is used. The merit function incorporates the inequality constraints by means of the log-

arithmic barrier function and the equality constraints by means of the quadratic penalty

function. Global convergence of the algorithm is achieved using a linesearch procedure

which ensures the monotonic Al decrease of the merit function. Numerical results demon-

strate the eÆcient performance of the algorithms for a variety of test problems. The

current implementation requires the user to de�ne the objective, the constraints and their

gradients in separate subroutines. These are then used by the interior point algorithms to

�nd the solution of the corresponding NLP problem.

An issue of signi�cant practical importance is the selection of starting points for the

interior point algorithms. If those points are carefully selected their eÆciency is enhanced.

The primal-dual interior point algorithm requires initial values for the continuous variables

x. It also requires initial values for the slack variables v, added to the inequalities of

problems (7) and (8) to convert them to equalities (i.e., g(x;) + v = 0). All of these

values must be positive. In addition, the performance of any primal-dual interior point

algorithm improves dramatically if the initial values are not close to the boundary of the

feasible region.

A separate subroutine has been developed to generate the initial values. For those

14

variables that have simple bounds l(i) � x(i) � u(i) with l(i) > 0 we select

x
(i)
0 =

l(i) + u(i)

2
(11)

as the initial value. However, for those variables that have a negative lower bound i.e.,

l(i) � xi � u(i) with l(i) < 0 we de�ne the transformation X(i) = x(i) � l(i). We then

substitute X(i) for x(i) throughout the NLP model. Thus the simple bounds of the new

variable X(i) are 0 � X(i) � u(i) � l(i) and its initial value is

X
(i)
0 =

u(i) � l(i)

2
(12)

which is always a positive number. For those variables that have no simple bounds (i.e.,

they are free) we take x
(i)
0 = 0 as their initial values.

For the slack variables w an obvious way of de�ning their initial values would be to

compute the values of the constraints at x0 and then set v0 = �g(x0;). There are two

diÆculties with this approach when it is used in an interior point based algorithm. The

�rst is that, if x0 violates one or more inequality constraints (i.e., if gi(x0;) > 0 for

some i 2 f1; 2; :::;mg), then the corresponding slack variable v(i) gets a negative initial

value, i.e., v
(i)
0 = �gi(x0;) < 0. This is not allowed in interior point methods, since the

corresponding logarithmic term cannot be de�ned. The second diÆculty arises when x0 is

feasible (i.e., gi(x0;) � 0 for all i) but it may lie on the boundary of the feasible region

(i.e., gi(x0;) = 0 for some i) or very close to it (i.e., gi(x0;) = � for some i and � > 0

very small). In both of the above cases primal-dual interior point algorithms have a very

poor performance or even fail to converge.

To overcome the above mentioned diÆculties we de�ne the initial values of the slack

variables using the formula

v
(i)
0 = max

n
�gi(x0;); �

o
; for all i = 1; 2; :::; q (13)

where � is a positive constant. In our implementation we used � = 1. Vanderbei and

Shanno [22] proposed and tested (13) in the context of NLP but it has also been used in

deriving starting points for interior point algorithms in linear programming (e.g., [18]).

In the context of MINLP, (13) has the additional advantage of taking into account

the changes of the continuous feasible region caused by di�erent integer vectors. Thus

it guarantees that the initial values of the slack variables are suÆciently positive and

away from the boundary for every integer assignment. The initial values, de�ned by (11),

(12) and (13), provided good starting points for the primal-dual interior point algorithm,

resulting in an eÆcient and robust behaviour of the nonlinear solver.

5.2 The solution of the initial 0-1 MILP master problem

In our implementation we used many of the strategies proposed by Balas et al. [2] regarding

cut generation and management in a Branch and Cut framework for solving 0-1 MILP

problems. In all the tests we tried we used the best bound strategy for selecting the next

15

node to be solved. Hence the list where all the unsolved nodes are stored is always kept

in an increasing order of the objective function value of the problems M̂i. The algorithm

selects the �rst element of the list and solves it. If the algorithm needs to branch on a

0-1 variable, it selects the variable whose fractional value is closer to 0.5. This is a simple

yet very e�ective branching strategy [17]. All the cuts are stored in a common pool. The

maximum size of the pool is 500. When that limit is exceeded, those cuts which are not

active at any node of the tree are deleted to make room for the new ones.

The number of cuts generated at a node of the tree plays an important role in the

eÆciency of the algorithm. Algorithm OABC generates Gomory mixed integer cuts for

all the violated 0-1 variables present at the optimum solution of the current node, when-

ever it decides to generate cuts instead of branching. This decision is based on recent

computational experience of Balas et al. [2], where it is reported that in a �xed period

of computing time the best improvements in the objective function value of a 0-1 MILP

problem are achieved when cuts are generated for all the violated integer variables.

Although the incorporation of cutting planes in the enumeration tree is a crucial factor

for the eÆciency of Branch and Cut algorithms it is not necessary to generate cuts at

every node, since the time required to generate them may be large and damage the overall

performance of the algorithm. Thus the skip factor which de�nes the frequency by which

cutting planes are generated in the tree plays a critical role in the overall performance of

our algorithm. The skip factor used by Balas et al. [2] in their Branch and Cut algorithm

for 0-1 MILP problems, is calculated at the root node of the tree and retains that value

throughout the enumeration tree. It is a function of several parameters and is de�ned by

S = min

�
Smax; d

f

c d log10 p
e

�
(14)

The most important parameter in (14) is d which represents the average distance cut o�

by all the Gomory cuts generated at the root node. Also d is used as an estimate of the

average distance cut o� by all the cuts generated throughout the tree. f represents the

number of violated 0-1 variables at the optimum solution of the root node whereas p is

the total number of 0-1 variables. Smax and c are positive constant parameters. Using

(14) to determine the skip factor, Balas et al. report very good computational results in

their Branch and Cut algorithm for 0-1 MILP problems [2].

Our choice of the skip factor is based on (14) but adapted to the environment of the

dynamically updated tree generated by Algorithm OABC. Its main di�erence from (14)

is that its value does not remain constant throughout the enumeration tree. Every time

a new node with an integer solution is encountered and new linearizations are generated,

its value is calculated again using the formula

s = min

�
Smax; d

t

t+ w

f

c d log10 p
e

�
(15)

where t represents the number of integer nodes that have been met so far and w is a

positive constant parameter. Its new feature is that it generates more cuts at early stages

of the algorithm where the number of linearizations is not adequate to provide a good

approximation of the feasible region of the initial 0-1 MINLP problem. This is due to the

16

introduction of the ratio t=(t + w) 2 (0; 1) which makes our s less than the skip factor S

of Balas et al. However as the number of integer nodes encountered increases and more

linearizations are added to the unsolved nodes, s approaches S and thus cuts are generated

less frequently.

6 Numerical results

The algorithm has been implemented using standard C on a Dual processor Sun UltraSparc-

2, 167 MHz, with 256 megabytes of RAM, running Solaris (release 5:5:1). Several convex

0-1 MINLP problems have been tried. The size and other characteristics of the tests are

depicted in Table 1.

Problem Variables Constraints

name Continuous 0-1 Linear Nonlinear

HW74 7 3 5 3

Synthesis1 3 3 4 2

Synthesis2 5 6 11 3

Synthesis3 8 9 19 4

Yuan 3 4 5 4

OptProLoc 5 25 5 25

Table 1: Characteristics of test problems

Tests HW74, Synthesis1, Synthesis2 and Synthesis3, are process synthesis problems

taken from [14] and [4]. These problems are used to derive the optimal con�guration of a

number of processes used to produce a speci�c product from di�erent raw materials. The

0-1 variables represent the existence/non-existence of those process. The �fth test is taken

from Yuan et al. [25]. Test OptProLoc is a problem arising from the optimal positioning

of a product in a multi-attribute space [8], [4]. The �rst �ve tests have a moderate degree

of complexity, i.e., the number of 0-1 variables and the constraints is not large. However

in the sixth test the number of 0-1 variables is �ve times the number of the continuous

variables. Also the number of nonlinear constraints is again �ve times the number of the

linear ones. Hence that test can be considered as more diÆcult to optimise.

The �rst set of numerical results investigates what e�ect the incorporation of Gomory

cuts has in the LP/NLP based Branch and Bound algorithm [19], [17]. Table 2 shows that

when Gomory cuts are added, using either S or s as skip factors, both fewer nodes and

fewer NLP problems need to be solved. It can also be seen that s becomes more e�ective

than S as the size and complexity of the original 0-1 MINLP problem increases.

17

Problem LP/NLP based BB OABC (S) OABC (s)

name nodes NLP nodes NLP nodes NLP

HW74 7 3 7 3 7 3

Synthesis1 7 3 7 3 7 3

Synthesis2 18 4 14 4 14 4

Synthesis3 35 7 29 5 24 4

Yuan 27 6 24 4 21 3

OptProLoc 167 4 140 4 108 3

Table 2: Computational comparison of skip factors

For the �rst two tests the addition of cuts has no e�ect, because their size is small.

The �rst reduction on the number of nodes occurs in the third example. Both skip factors,

S and s, produce the same reductions in the number of nodes. Larger reductions in both

the number of nodes and the number of NLP problems occur at the last three tests. Those

problems require to spend a very large portion of their time for solving MILP problems.

It is clear therefore that in such tests the addition of Gomory mixed integer cuts can be

very e�ective.

Finally, Table 3 lists the CPU time needed by LP/NLP based Branch and Bound [19]

and Algorithm OABC. For the �rst two problems the addition of Gomory cuts increases

the CPU time. This is justi�ed by the fact that the size of the corresponding enumeration

trees is small. As the size of the problems increases, the addition of Gomory cuts results

in substantial reductions of the overall CPU time.

18

Problem CPU Time

name LP/NLP based BB OABC (S) OABC (s)

HW74 0.03 0.03 0.04

Synthesis1 0.03 0.03 0.05

Synthesis2 0.22 0.19 0.15

Synthesis3 1.07 0.71 0.37

Yuan 0.19 0.11 0.08

OptProLoc 4.93 4.02 3.16

Table 3: Comparison of the CPU time

References

[1] I. Akrotirianakis and B. Rustem. A globally convergent interior point algorithm for

general non-linear programming problems. Technical Report 97-14, Department of

Computing, Imperial College, London, UK, November 1997.

[2] E. Balas, S. Ceria, G. Cornuejols, and N. Natraj. Gomory cuts revisited. Operations

Research Letters, 19:1{9, 1996.

[3] R. J. Dakin. A tree search algorithm for mixed integer programming problems. Com-

puter Journal, 8:250{255, 1965.

[4] M. Duran and I. Grossmann. An outer approximation algorithm for a class of minlp

problems. Computers and Chemical Engineering, 1986.

[5] R. Fletcher. Practical methods of optimization. John Wiley and Sons, UK, 1987.

[6] R. Fletcher and S. Ley�er. Solving mixed integer nonlinear programs by outer ap-

proximation. Mathematical Programming, 1994.

[7] C. Floudas. Nonlinear and Mixed Integer Optimization. Oxford University Press,

1995.

[8] B. Gavish, D. Horsky, and K. Srikanth. An approach to the optimal positioning of a

new product. Management Science, 29(11):1277{1297, 1983.

[9] A. Geofrion. Generalized benders decomposition. Journal of Optimization Theory

and Applications, 10(4), 1972.

[10] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, 64:275{278, 1958.

19

[11] R. E. Gomory. An algorithm for integer solutions to linear programs. In L. Graves R.

and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269{302.

McGraw-Hill, New York, 1963.

[12] I. Grossmann and Z. Kravanja. Mixed integer nonlinear programming: A survey

of algorithms and applications. In A. R. Conn, L. T. Biegler, T. F. Coleman, and

F. N.Santosa, editors, Large Scale Optimization with Applications, Part II: Optimiza-

tion Design and Control. Springer, New York, 1997.

[13] M. J�unger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane

algorithms in combinatorial optimization. In Combinatorial Optimization.

[14] G. Kocis and I. Grossmann. Relaxation strategy for the structural optimization of

process ow sheets. I. and E.C. Res., 26:1869{1880, 1987.

[15] G. Kocis and I. Grossmann. Global optimization of nonconvex minlp problems in

process synthesis. I. and E.C. Res., 27(8):1407, 1988.

[16] A. H. Land and A. G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28:497{520, 1960.

[17] S. Ley�er. Deterministic methods for mixed integer nonlinear programming. PhD

thesis, Department of Mathematics and Computer Science, University of Dundee,

Scotland, UK, 1993.

[18] I. J. Lusting, R. E. Marsten, and D. F. Shanno. Computational experience with

a primal-dual interior point method for linear programming. Linear Algebra and

Applications, 152:191{222, 1991.

[19] I. Quessada and I. E. Grossmann. An lp/nlp based branch and bound algorithm

for convex minlp optimization problems. Computers and Chemical Engineering,

16(10/11):937{947, 1992.

[20] A. J. Quist, R. van Geemert, R. Hoogenboom, J. E. Illes, T. de Klerk, C. Roos,

and T. Terlaky. Optimization of a nuclear reactor core reload pattern using nonlin-

ear optimization and search heuristics. Technical report, Department of Operations

Research, Delft University of Technology, Delft, The Netherlands, 1997.

[21] H. Taha. Integer Programming: Theory, applications and Computations. Academic

Press, 1975.

[22] R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlin-

ear programming. Technical Report SOR-97-21, CEOR, Princeton University, Prince-

ton, NJ, 1997.

[23] C. Viswanathan and I. E. Grossmann. A combined penalty function and outer ap-

proximation method for minlp optimization. Computers and Chemical Engineering,

14:769, 1990.

20

[24] T. Westerlund, J. Isaksoson, and I. Harjunkowski. Solving a production optimization

problem in the paper industry. Technical Report 95-146-A, Department of Chemical

Engineering, Abo Akademi, Abo, Finland, 1995.

[25] X. Yuan, S. Zhang, A. Pibouleau, and S. Domenech. Une methode d' optimasation

non lineare en variables mixtes pour la conception de procedes. Recherch Opera-

tionnelle, 22(4):331{346, 1988.

21

