
Technical Report 2000/7 Dept. of Computing, Imperial College, London

AUTO-REGRESSIVE SPECTRAL LINE ANALYSIS OF PIANO TONES

Thomas von Schroeter

Department of Computing
Imperial College of Science, Technology, and Medicine

180 Queen’s Gate
London SW7 2BZ
ts9@ic.ac.uk

ABSTRACT

Three auto-regressive spectral estimation methods are experimen-
tally tested with a view to musical applications: the Maximum En-
tropy method, Marple’s MODCOVAR algorithm, and an efficient
version of Prony spectral line estimation due to Cybenko. A per-
formance analysis measuring the maximum relative error of their
frequency estimates for a signal consisting of three sinusoids un-
der variations of the model order (up to 20), signal length (60 to
200 samples) and noise level shows that unless the model order is
close to 2/3 of the number of data points (i.e. when it is nearly ill-
conditioned), Marple’s algorithm gives by far the best results. In a
separate experiment, Marple’s algorithm was applied to recorded
piano sounds; some preliminary results are shown which demon-
strate its potential for fast multicomponent analysis.

1. INTRODUCTION

While auto-regressive spectral estimation methods have been pop-
ular in many areas of science for more than 20 years, it appears
that investigations of the spectra of musical instruments have so
far mainly relied on spectrogram methods. In a recent paper, the
accuracy of frequency estimates obtained by the phase vocoder
technique has been demonstrated for signals consisting of a small
number of sinusoids whose frequencies are well separated from
one another [1]. These conditions are certainly met for labora-
tory recordings when a single instrument is playing a single note
[2, 3]. However, as soon as two notes are played together, a num-
ber of difficulties arise in practice: Theresolutionof spectrogram
methods is limited to one sinusoid per filter band; spectral lines
belonging to different notes which happen to lie in the same band
cannot be resolved.Spectral leakagecan compromise the accu-
racy of frequency estimates when components of different tones
fall into neighbouring bands. Leakage can be reduced by increas-
ing the frequency resolution, or reducing the transition bandwidth
of the filters, but at the expense of time resolution. Thepower dis-
tribution among the fundamental and partials of a tone can be a
source of further difficulties. In piano tones, the fundamental can
contain more than90% of the total power content; thus higher par-
tials can easily be swamped by a noisy background. Detection of a
sufficient number of partials would seem a necessary first step for
polyphonic note identification.

In the light of these difficulties, auto-regressive (AR) meth-
ods hold some prospect for improvement for a number of rea-
sons: First and foremost, the spectra of auto-regressive processes
are better able to model sharp spectral features than the spectro-
gram, which gives a more or less uniformly sampled distribution

of the average power across the whole frequency range. With AR
methods, frequencies of isolated components can be determined
much more accurately from short segments of the signal; the res-
olution of nearby components depends mainly on the model order
and only to a lesser extent on the length of the signal segment.
Besides, the order of an AR model, i.e. the number of poles of
the underlying rational approximation to be fitted, can usually be
chosen much smaller than the length of the signal segment to be
analyzed; thus, in contrast to the spectrogram, considerable com-
pression is achieved. Moreover, the trade-off between frequency
and time resolution is far less dramatic with AR methods than with
the spectrogram, and no explicit windowing is required. For a
comprehensive survey of the most common fast spectrum analy-
sis methods see [4, 5]; performance comparisons for some of the
methods over short data segments were reported in [6, 7].

In an attempt to explore the potential of AR methods for mu-
sic analysis, this paper is devoted to an experimental comparison
of three of the auto-regressive methods reported in [4], namely the
Maximum Entropy method(also known as all-pole or autocorre-
lation method), Marple’sMODCOVARalgorithm [5], andProny
spectral line estimationin an efficient implementation due to Cy-
benko [8]. These methods were chosen to cover varying degrees
of modelling freedom and computational complexity. Our perfor-
mance criterion is therelativeaccuracy of frequency estimates un-
der variations of the length of the signal segment, the noise level
and also the order of the AR model, since as yet no reliable esti-
mators of the correct model order seem to be known.

The paper is organized as follows:§2 reviews the algorithms,
§3 contains the performance analysis, and§4 gives some prelimi-
nary results from an application of Marple’s algorithm to recorded
piano signals.

2. REVIEW OF THE ALGORITHMS

All three methods model the signal segmentsn, n = 1..N as the
sum of anautoregressive process,

sn+p = −a0sn − a1sn+1 − . . .− ap−1sn+p−1 , aj ∈ C (1)

and noise. The numberp of parameters, which is also the recursion
depth, is called theorderof the model. The spectral power density
for a signal satisfying (1) in additive white noise of zero mean and
varianceρ is

S(ω) =
ρf−1

s

|a0 + a1z + . . . + ap−1zp−1 + zp|2 , z = eiω (2)
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wherefs denotes the sample rate,ρ the noise variance, andω dig-
ital frequency (see e.g. [5], chapter 6). The ability of (2) to model
sharp spectral features is due to its being a rational function inz
rather than a polynomial, as is the discrete Fourier transform.

The Maximum Entropy method[4, 5] is based on a relation
between the AR parameters and the expectation valuesφm =
〈snsn−m〉 of the autocorrelation sequence which is known as the
Yule-Walker equation:26664

φ0 φ−1 . . . φ−p

φ1 φ0 . . . φ1−p

...
... . . .

...
φp φp−1 . . . φ0

37775
26664

1
ap−1

...
a0

37775 =

26664
ρ
0
...
0

37775 . (3)

In practice, estimates have to be substituted for theφm as the pre-
cise autocorrelation lags are not known. (3) has Toeplitz structure
and can thus be solved with a fast algorithm usingO(p2) multi-
plications. Given the parametersaj , the dominant frequenciesωk

can be determined from the rootszk = |zk| exp(iωk) of the monic
polynomial

P (z) =

p−1X
j=0

ajz
j + zp =

pY
k=1

(z − zk) (4)

which occurs in the numerator of 2. – (3) can be derived as the
normal equation for the least squares problem of minimizing the
squared 2-norm‖f‖2 of theforward prediction errorsequence

fn = a0sn + a1sn+1 + . . . + ap−1sn+p−1 + sn+p (5)

over all choices of the parametersa0, . . . , ap−1. Alternatively, it
can also be derived as the estimate which, givenexact knowledge
of the firstp lags of the autocorrelation sequence, would maximize
the process entropy over all possible choices of the unknown auto-
correlation lags if the driving process is assumed to be Gaussian;
hence the name of the method.

Marple’s MODCOVARalgorithm [5] minimizes, instead of
‖f‖2, the sum‖f‖2 + ‖b‖2 of the forward and backward pre-
diction errors, where thebackward prediction errorsequence is

bn = a0sn + a1sn−1 + . . . + ap−1sn−p+1 + sn−p . (6)

To avoid implicit windowing, the ranges ofn in (5) and (6) are
chosen such that only samples within the segment1..N occur. The
resulting normal equation can be written in the form26664

r00 r01 . . . r0p

r10 r11 . . . r1p

...
... . . .

...
rp0 rp1 . . . rpp

37775
26664

1
ap−1

...
a0

37775 =

26664
ρ
0
...
0

37775 , (7)

where

rij =

N−p−1X
k=0

(sk+isk+j + sk+p−jsk+p−i) .

(Bars denote complex conjugation.) Although (7) does not have as
simple a structure as (3), it can be solved by a fast algorithm due
to Marple [5] usingNp + 6p2 multiplications.

Prony spectrum estimation[4] is a method for fitting a signal
with a complex linear combination of exponentials,

s(t) =
X

k

Akzt
k , Ak, zk ∈ C , (8)

where theAk and the zk are unknown. The model is flexible
enough to apply to both damped and growing oscillations (|zk| 6=
1). The special case of undamped real sinusoids (|zk| = 1; zk and
Ak occurring in complex conjugate pairs) is referred to asProny
spectral line estimation. The connection with auto-regressive mod-
elling is made by observing that any signal modelled by (8) satis-
fies the difference equation (1) with the parametersaj given by (4).
Conversely, given a noisy signals, Prony spectral line estimation
first fits theaj by minimizing the prediction error

‖P (Z)s‖2 =
X

n

|sn+p + ap−1sn+p−1 + . . . + a0sn|2 (9)

over all monic degreep polynomialsP with roots on the unit cir-
cle, where‖x‖ =

√
xHx denotes the 2-norm of a complex se-

quencexn andZ the unit time shift operator defined by(Zs)j =
sj+1. The rootszk of the minimizing polynomial (4) then de-
termine the digital frequenciesωk = arg(zk), and the complex
amplitudesAk can be found by a least squares fit of (8) with the
zk obtained in the first step.

If the signal is real, the complex exponentials in the model,
and hence the roots ofP , occur in complex conjugate pairs. The
redundancy can be eliminated by rewriting the model in real form,

s(t) =
X

k

Ak cos(ωkt + ϕk) , Ak, ωk, ϕk ∈ R , (10)

and observing that any sequence generated from it satisfies the dif-
ference equationR(Ω)s = 0, whereΩ = Z + Z−1 and

R(x) =
Y
k

(x− 2 cos ωk) . (11)

The polynomialR is real, monic, and has its zeros in the real in-
terval [−2, 2]; compared to (8), the model order is halved. Con-
versely, for given signals and model orderp, Cybenko [8] shows
1) that the complex least squares problem (9) is equivalent to min-
imizing ‖R(Ω)s‖ over all real monic polynomialsR of degreep
without extra conditions about the location of its zeros (they are
guaranteed to lie in[−2, 2]), and 2) that the minimizing polyno-
mial Rp is the unique degreep monic orthogonal polynomial with
respect to the inner product

〈P, Q〉 := (P (Ω)s)T Q(Ω)s = sT (P ·Q)(Ω)s . (12)

The task is therefore reduced to constructing this polynomial and
finding its roots. This can be done efficiently by determining the
coefficients in the double recursion

Rj+1(x) = (x− αj+1)Rj(x)− β2
j Rj−1(x) (13)

starting withR−1 ≡ 0 andR0 ≡ 1 up to orderp, and finding the
roots ofRp by computing the eigenvalues of the tridiagonal matrix

Tp =

266666664
α1 β1 0 . . . 0 0 0
β1 α2 β2 . . . 0 0 0
0 β2 α3 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . βp−2 αp−1 βp−1

0 0 0 . . . 0 βp−1 αp

377777775 . (14)

A more efficient version of the recursion is

βj+1Qj+1(x) = (x− αj+1)Qj(x)− βjQj−1(x) , (15)
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where theQj is theorthonormalpolynomial of degreej with pos-
itive leading coefficient, starting withQ−1 ≡ 0 andQ0 ≡ 1/‖s‖.
Using the relation〈xP, Q〉 = 〈P, xQ〉, which is an immediate
consequence of (12), the coefficients can be computed as

αj+1 = 〈xQj , Qj〉 , βj = 〈xQj , Qj−1〉 , β0 = ‖s‖ . (16)

In terms of the vector quantities

qj := Qj(Ω)s , gj := Ωqj − βjqj−1 , hj+1 := βj+1qj+1 ,

the algorithm is as follows:

h0 ← s , β0 ←
√

sT s , q0 ← {0, . . . , 0} (length ass) ;

for j := 0 to p− 1 do{ qj−1 ← qj ,
qj ← hj/βj ,
gj ← Ωqj − βjqj−1 ,

αj+1 ← gT
j qj ,

hj+1 ← gj − αj+1qj ,

βj+1 ←
q

hT
j+1hj+1 }

It requires about4Np multiplications, plusp3 for the eigenvalues
of Tp.

3. ACCURACY OF FREQUENCY MEASUREMENTS

All numerical experiments were carried out inMathematica. The
methods were applied to the following synthesized test signal (a
longer segment of which was used in [8]):

sn = 5.5 cos(1.3n) + 5.5 cos(0.2n) + 1.7 cos(2.5n) , (17)

wheren = 1..200. For the measurements in noise, 100 different
realizations of a Gaussian random sequencewn with zero mean
and variance1 (average noise to signal ratio‖w‖/‖s‖ ≈ 0.18)
were synthesized and separately added to the signal. Further pa-
rameters were the lengthN of the signal segment (N = 50, 100
and200), and the number of real sinusoids modelled; for Prony
line estimation, this number coincides with the model orderp,
while for the other two methods it is equal top/2.

To avoid implicit windowing, and hence bias, in its operation
on finite sequences,Ω = Z + Z−1 was realized by adding the
two opposite time shifts of its argument excluding the extreme
components which would fall on zeros if the sequences were zero-
padded. To be able to carry out the ensuing vector operations, this
has to be matched by a shortening of the other vector quantities.
Thus their dimension drops by 2 in each iteration. Likewise, for
the Maximum Entropy method, theunbiasedautocorrelation esti-
mate

φm = φ−m =
1

N −m

N−m−1X
n=0

snsn+m , 0 ≤ m ≤ p

was used; the Toeplitz solver was adapted from [9], section 2.8.
From the parameters obtained with each of the methods, the

zeroszk (resp.xk) of the resulting polynomials were computed us-
ing Mathematica’s standard routinesNSolve (for the Maximum
Entropy method and Marple’s algorithm) andEigenvalues (for
Cybenko’s method) and converted to digital frequencies according
to ωk = arg(zk) resp.ωk = arccos(xk/2). Among the result-
ing set of positive frequencies, the ones closest to the three true
frequenciesω∗k were selected, and the maximal relative error

max {|ωk − ω∗k| /ω∗k , k = 1, 2, 3} (18)

was computed. (Forp ≤ 3 all measured frequencies were retained,
and the relative error computed with the closest true frequency.)

The results of our simulations are shown in Fig. 1 and suggest
the following conclusions: 1) Marple’s algorithm is consistently
superior, typically by a factor of 2 to 4 in the relative accuracy,
except for model orders close to2N/3. (Forp > 2N/3 the matrix
in (7) is singular.) The next best method is the Maximum Entropy
method, with Prony line estimation finishing a distant third. This
is somewhat surprising given that the Prony line model matches
the test data more closely than the other two methods. It has previ-
ously been suggested that constraining the poles to lie on the unit
circle leads to a statistical bias in the frequency estimates propor-
tional to the noise variance [10]; however this would not explain
the comparatively poor performance in the absence of noise. 2)
Not suprisingly, for clean data the relative accuracy of all estima-
tors improves fairly monotonically with the model order (in fact,
Marple’s algorithm stops at the correct orderp = 6); for noisy data
the accuracy of the Prony and Maximum Entropy methods show
quite drastic fluctuations. 3) Specifically for musical applications,
an upper bound for the relative frequency error (18) of a quarter
tone, or21/24 − 1 ≈ 2.9%, would certainly be a minimum re-
quirement. For segment lengths of at least 100 samples and clean
data, this seems to be clearly satisfied by the Maximum Entropy
method and Marple’s algorithm, while Prony spectral line estima-
tion is ruled out.

4. AUTO-REGRESSIVE SPECTRA OF PIANO SOUNDS

The remaining figures show some preliminary results of an ap-
plication of Marple’s MODCOVAR algorithm to piano sounds.
These were taken from a recording of Bach’s Fugue in C major
from part I of “The Well-Tempered Clavier”, sampled at 5 kHz us-
ing SoundEditon a Macintosh, and then processed as above using
20 poles. Due to a fault in the tape recorder used as input device,
the entire spectrum is shifted to the lower end by about a semitone.

Fig. 2 shows the spectrum of a time slice of 1000 samples
(0.2s) from the first tone of the piece. The note being played is
C4; however, comparison with the fundamentals and partials ofB3

(shown as dots) reveals the frequency shift just mentioned. Nev-
ertheless, the fundamental and 5 partials are clearly visible. Fig.
3 shows a frequency peak spectrum of the first 10 seconds of the
piece with frequencies given in units of semitones aboveA3 =
220 Hz. Fundamentals and up to 5 partials of the longer notes
are visible as stripes; to resolve shorter ones (like the demisemi-
quaversG4 andF4 in the first bar at about frame 100) would prob-
ably require higher sample rates. Only poles lying within a dis-
tance of0.01 from the unit circle in the complex plane are retained
in order to filter out spurious poles. The fact that information about
the relative size of spectral peaks is available at no additional com-
putational cost represents a practical advantage of unconstrained
pole search over the Prony line method.

CPU timings inMathematica(on a PC with 400 MHz Pentium
II processor) for the pole search over the entire signal segment
shown in the figure were about 22 seconds for an uncompiled ver-
sion of Marple’s algorithm, and 7 seconds for a partly compiled
implementation of the Maximum Entropy method.
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Figure 1: Relative error(18) of the frequency measurement (vertical axis) as a function of the number of sinusoids modelled. Dots:
maximum entropy method; circles: Prony method; triangles: Marple’s MODCOVAR algorithm. Top row: clean datasn, bottom row:
noisy datasn + wn with ‖w‖/‖s‖ ≈ 0.18. From left to right: segment lengthN = 60, 100, and200 samples.
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Figure 2:Auto-regressive power spectrumS(ω) in dB of a single
piano tone, obtained from 1000 samples of a recorded signal sam-
pled at 5 kHz using Marple’s algorithm with 20 poles. The dots
indicate the location of the exact multiples ofB3 (246.94 Hz).
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