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Abstract

Often users receive search results which contain a wide range of documents, only some of which are
relevant to their information needs. To address this problem, ever more systems not only locate infor-
mation for users, but also organise that information on their behalf. We look at two main automatic
approaches to information organisation: interactive clustering of search results and pre-categorising doc-
uments to provide hierarchical browsing structures. To be feasible in real world applications, both of
these approaches require accurate yet efficient algorithms. Yet, both suffer from the curse of dimension-
ality — documents are typically represented by hundreds or thousands of words (features) which must
be analysed and processed during clustering or classification. In this paper, we discuss feature reduction
techniques and their application to document clustering and classification, showing that feature reduction
improves efficiency as well as accuracy. We validate these algorithms using human relevance assignments
and categorisation.

1 Introduction

Search Engines are a common gateway to huge document collections, be it the World Wide Web (WWW)
or a collection of abstracts in an electronic book shop. It has been recognised that one limiting factor of
search engine technology is the low precision of the results returned. It is not uncommon to get thousands
or even millions of matches for a query such as “computer games”. Even sophisticated ranking algorithms
cannot know whether the user wants to browse documents on the latest advance in technology in this area
or rather on entertaining products.

There are three basic approaches to this problem: 1) interactively clustering documents to allow users
to preview a large collection more efficiently; 2) organising document collections into a set of categories to
allow users to navigate in a structured way; 3) learning more about the user’s interests and/or task to allow
the system to better identify the relevant documents for this user and/or task.

For the first approach, we believe that cluster analysis of the documents returned by a query system
provides a way to confront a user with different clusters/types of documents. Each cluster would either
contain a high or a very low concentration of documents relevant to the user. This would allow users to quickly
weed out whole clusters of irrelevant documents in accordance with the cluster hypothesis (van Rijsbergen
1979), which is commonly accepted for query results. For example (Hearst and Pedersen 1996) show that the
cluster hypothesis holds for retrieval results using their efficient scatter/gather clustering. Complementary
to this work, we formalise the clustering assessment procedure and argue that low-dimensional documents
representations can avoid the curse of dimensionality (Section 3). This is done using a similarly efficient
algorithm that clusters 1000s of documents within a second CPU time. A visual-navigation search engine



based on this work and related visualisation techniques have been successfully implemented and are described
elsewhere (Sewraz and Riiger 2000; Au, Carey, Sewraz, Guo and Riiger 2000).

As evidenced by the success of Yahoo and many other Internet index sites, browsing hierarchies (the
second approach) are extremely popular methods to navigate the WWW. However, many of these indices are
created manually, a time-consuming and expensive procedure. In Section 4 we will discuss the effectiveness
of an automatic text categorisation algorithm and the effects of dimensionality reduction on its accuracy.

Finally, the system could learn about the user’s interests and attempt to use this information to expand
the query and/or post-process the search results. In addition to technical barriers, this approach requires
users to allow their Web surfing behaviour to be monitored and that information to be shared with a search
engine, which will be a social barrier for many users. As it is not directly related to dimensionality reduction,
this approach will not be further discussed in this paper, but a discussion can be found in (Pretschner and
Gauch 1999).

2 The Curse of Dimensionality and Feature Reduction

The natural features of text documents are words or phrases, and a document collection can contain millions
of different features. Even after applying standard feature reduction techniques, the number of features
remains large: in our clustering experiments with 528,155 US-American newspaper articles, we only kept
nouns based on Brill’s tagger (Brill 1994) with a medium document frequency: the noun had to appear in
least three documents and in no more that 33% of all documents. Additionally, a list of stop-words was used
to eliminate obvious function words of the language. This resulted in a vocabulary of around 280,000 so-
called potentially interesting words. In our system we store a set of around 100 potentially interesting words
per document along with the metadata of the document at index time. A set H of documents returned by a
query may still have a potentially-interesting-words vocabulary of 10,000s of different words. Consequently,
the often-used word histogram representation of documents leads to high-dimensional vectors.

The problem with this kind of representations is that any two randomly picked vectors in a high-
dimensional hypercube tend to have a constant distance from each other, no matter what the measure
is! As an example, let x,y € [0,1]™ be drawn independently from a uniform distribution. The expectation
value of their sum-norm distance is n/3 with a standard deviation (ie, the square root of the variance) of
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For n = 1,800 (corresponding to a joint vocabulary of just 1,800 words for a word histogram representation)
this means a typical distance of |z —y|; = 600 & 10. With increasing n the ratio between standard deviation
and vector size gets ever smaller, as it scales with 1/y/n. This is a generic statistical property of high-
dimensional spaces with any standard distance measure, provided the components of = are independent
random variables, and can be traced down to the law of large numbers.

In post-retrieval document sets this phenomenon is somewhat alleviated through three properties: firstly,
the restriction to a post-retrieval document set limits the vocabulary in a natural way; secondly, the dimen-
sions carry different weights of relevance, usually tf-idf (where tf is the term frequency of a term within one
document and idf is the inverse document frequency); thirdly, not all terms of the vocabulary are uncorre-
lated (the set of documents containing “Hewlett” is probably not much different from the set of documents
containing “Packard”). The second property means that we have to consider only those dimensions with a
high weight — these are predominantly given by terms with a low document frequency; according to Zipf’s
law (Narana and Balasubrahmanyan 1998) this is a constant (and with English documents more than 50%)
proportion of the number of different words. The third property reduces the number of effective, independent
dimensions through inherent co-occurrences in the documents.

Although real document collections have a lower number of effective dimensions than the size of the
vocabulary might indicate and despite the fact that word histogram document representations are by no



means random vectors, each additional dimension tends to not only spread the size of a cluster but also dilute
the distance of two previously well-separated clusters. Hence, it seems prohibitive involving all semantic
features (e.g., the words) of a document collection for document clustering and classification.

3 Clustering

Document clustering has attracted much interest in the recent decades, eg (Salton 1968; Croft 1978; Voorhees
1985; Rasmussen 1992), and much is known about the importance of feature reduction in general, eg (Kr-
ishnaiah and Kanal 1982) and, in particular, clustering (van Rijsbergen 1979), but little has been done so
far to facilitate feature reduction for document clustering of query results.

3.1 Feature Reduction for Query Result Clustering

Let D be a set of documents and H the subset that is matched by a particular query. We suggest ranking
the importance of each such word j with a weight

w; = % - hjlog(|H|/h;),
J

where h; is the number of documents in H containing the word j, and d; is the number of documents in the
whole document collection D containing j. The second factor prefers medium matched-document frequency
h;, while the first factor prefers words that specifically occur in the matched documents. The highest-ranked
words are meant to be related to the query. Indeed, we have “hardware”, “software”, “IBM” etc as the
top-ranked words when querying for “computer”. This seems to be a powerful approach to restrict the
features of the matched documents to the top k ranked words, which we will call the related words. One
important aspect is that the features are computed at query time. Hence, when the query “computer” is
refined to “computer hardware”, a completely new set of features would emerge automatically.

We represent each matched document 4 as a k-dimensional vector v;, where the j-th component v;; is a
function of the number of occurrences ¢;; of the j-th ranked related word in the document i:

vij = log(1 +ti;) - log(| D/ d;)

This is a variation of the tf-idf weight that stresses the term frequency less. We project the vector v; onto
the k-dimensional unit sphere obtaining a normalised vector u; that represents the document i. We deem
the Euclidean distance between u, and u; a sensible semantic distance between two documents a and b in
the document subset H returned by a query with respect to the complete document collection D. Note that
the Euclidean distance is related to the cosine similarity measure owing to the process of normalisation.

3.2 Clustering Algorithm

Post-retrieval document clustering has been well studied in the recent years, eg (Cutting, Karger, Pedersen
and Tukey 1992; Allen, Obry and Littman 1993; Leouski and Croft 1996; Zamir and Etzioni 1998).

We deploy a variant of the Buckshot algorithm (Cutting, Karger, Pedersen and Tukey 1992), a two-phase
process to cluster the document representations u; in an Euclidean k-dim space. Each cluster contains a
certain number of document vectors and is represented by their normalised arithmetic mean, the so-called
centroid vector. In the first phase, hierarchical clustering with complete, single or average linkage operates
on the best-ranked 150 documents (in contrast to the original Buckshot method, which would use a random
document sample). This can be done in a fraction of one second CPU time. Hierarchical clustering has the
advantage that one can either prescribe the number N of clusters or let the number of clusters determine by
demanding a certain minimum similarity within a cluster. Either way, once clusters within the top-ranked
documents are identified, their N centroids can be computed and used as a seed for standard iterative
clustering of the remaining documents. This algorithm consumes an amount of time linear in the number
|D| of documents and in the number N of clusters. In our experience, one cycle of iterative clustering is
not only adequate but also preserves the cluster structure given by the top-ranked documents, which are
thought to be the most important ones. 1,000s of documents can thus be clustered in less than a second on
a standard 500 MHz PC.



3.3 Validation

Any clustering method — even random assignment — leads to a partition of the documents. We propose a
method to assess the quality of the clustering process based on human-expert data. We have used the 1997-
1998 collection of the TREC data (Voorhees and Harman 1999) with 528,155 documents, mainly newspaper
articles, 100 queries and corresponding relevance assessments. We ignored queries that contained fewer than
40 relevant documents and divided the remaining 61 queries randomly into test data (15) and training data
(46). For each of the training queries we would run the query in a standard search engine and partition
the set H of 1000 best-ranked documents into six clusters Hy, ..., Hg according to above scheme. A certain
proportion p, of the documents in H would be relevant according to the human relevance assessments. A
clustering, where the proportions pi, ..., pg of relevant documents in each cluster, respectively, were either
0 or 1 would be ideal. Contrary, a clustering where p; = ... = pg = p«, could not assist a human user at all
to quickly weed out big sets of irrelevant documents (see Figure 1).

D : Document Collection O Irrelevant document
H : Hit Set ® : Relevant document
Hp : Cluster n

Figure 1: The document collection after searching and clustering

We introduce a quality measure g; € [0, 1] for each cluster 7 such that ¢; interpolates linearly between the
cases ¢; = 1 for p; =0, ¢; = 0 for p; = p. and ¢; = 1 for p; = 1 (see Figure 2). The weighted sum of these
individual cluster qualities, weighted by the relative cluster size, gives rise to an overall quality measure

g=> alH|/|H| withq € [0,1].

Averaging over all available training queries gives insight into the typical behaviour of a clustering routine
in the context of a particular search engine.

3.4 Experimental Results and Discussion

The experimental procedure was applied to queries with different dimensions for the document representation
and three linkage methods each (single, average and complete) for the seeding of the iterative-clustering
centres. For each of the combinations, we computed a cluster quality as described above and calculated the
average + standard deviation and the 10% and 90% quantile of these qualities over the 46 training queries,
see Table 1.

Our preliminary results indicate that complete linkage seems to outperform the other two linkage methods,
especially in high dimensions. This table also indicates that low-dimensional representations outperform
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Figure 2: The quality ¢; of an individual cluster ¢

the much more computationally intensive high-dimensional representations. Especially between 9 to 11
dimensions did we find a significant (o« = 0.05) better clustering quality (using complete linkage) over a
wide range of queries in contrast to high-dimensional representations which cost up to a factor of 25 more
computing time. These findings have been confirmed on the test queries. As a byproduct, our studies
confirmed that the average cluster quality is significantly higher than random cluster assignments, which
supports the cluster hypothesis for retrieval results.

The big variation of the cluster qualities given by the large standard deviations indicate that for each
query another number of features might be optimal given a particular document representation.

Similar studies have been carried out by (Schiitze and Silverstein 1997); they found (to their surprise)
that no loss of cluster quality is observed by latent semantic indexing (Dumais, Furnas, Landauer, Deer-
wester and Harshman 1988) or by using the maximum term frequency weights for dimensionality reduction.
However, they did not observe a significant improvement at low-dimensional representations, either. One
possible explanation, in our opinion, is that these representations aim to preserve the distances of the corre-
sponding full document representations. Although latent semantic indexing has found many applications in
information retrieval through implicit concept building based on co-occurrence statistics, it might be through
the explicit effort to preserve document distances that prevents improved clustering performance in lower
dimensions.

4 Classification

Browsing is another method to find information. Several search engines provide subject hierarchies that can
be browsed, but the associated Web pages are manually placed in the categories, e.g., Infoseek’s Ultraseek
(Infoseek 1998) which limits the amount of information available. In contrast, we build a browsing structure
automatically by categorising documents into concepts in a pre-defined ontology, or subject hierarchy. In
one application, all the pages for a given Web site are categorised into concepts in a standard ontology to
produce a site map for that site (Zhu, Gauch, Gerhard, Kral and Pretschner 1999). A site map represents the
information space of a site by either relating a group of Web pages to a particular subject or depicting the
links specified in the Web pages. To generate a subject-based site map, one must describe a subject space,
which typically has a hierarchical structure, and then associate documents with the appropriate subjects.
Other automatic approaches may employ neural networks (Lin 1995) document clustering (Cartia 1998) or
the links among the Web pages (Maarek, Ben-Shaul, Jacovi, Shtalhaim, Ur and Zernik 1997)

Our classification approach uses a pre-existing ontology (in our case, a browsing hierarchy used by a
prominent Web site) as a reference ontology. Each Web page from the local site to be characterised is
automatically classified into the best matching concept in the reference ontology. The documents that have
been manually attached to each concept in the reference ontology are used as training data for categorising
the new documents. We use a vector space approach, calculating the cosine similarity measure to identify
the closest match between a vector representing the Web page and the vectors representing the concepts
in the reference ontology. All the training documents associated with a given concept are concatenated to
form a superdocument. These superdocuments are then indexed using a vector space retrieval engine. Each



dim | complete linkage average linkage single linkage
2 || 0.147 £ 0.17 [0.01, 0.33] || 0.147 £ 0.17 [0.01, 0.33] || 0.148 £+ 0.17 [0.01, 0.33]
4 ]| 0.235 £+ 0.20 [0.03, 0.51] || 0.236 + 0.20 [0.03, 0.51] || 0.236 £ 0.20 [0.03, 0.51]
6 || 0.287 £ 0.21 [0.06, 0.63] || 0.278 4+ 0.21 [0.06, 0.54] || 0.269 £ 0.20 [0.05, 0.52]
7 1| 0.317 £+ 0.22 [0.07, 0.66] || 0.313 £ 0.23 [0.06, 0.68] || 0.287 + 0.21 [0.06, 0.62]
8 || 0.315 + 0.20 [0.06, 0.62] || 0.320 £ 0.22 [0.06, 0.66] || 0.280 + 0.21 [0.05, 0.61]
9 || 0.354 + 0.21 [0.08, 0.67] || 0.330 + 0.22 [0.03, 0.66] || 0.290 + 0.22 [0.04, 0.62]
10 || 0.354 £ 0.20 [0.15, 0.66] || 0.320 £+ 0.21 [0.05, 0.65] || 0.318 & 0.20 [0.08, 0.63]
11 || 0.352 £+ 0.19 [0.11, 0.66] || 0.336 £ 0.19 [0.10, 0.65] || 0.311 £ 0.20 [0.06, 0.63]
12 || 0.307 &+ 0.20 [0.06, 0.61] || 0.298 £ 0.21 [0.03, 0.64] || 0.286 %+ 0.21 [0.05, 0.63]
13 || 0.336 & 0.20 [0.06, 0.60] || 0.325 + 0.20 [0.07, 0.64] || 0.306 + 0.20 [0.07, 0.57]
14 || 0.293 + 0.18 [0.06, 0.57] || 0.310 = 0.20 [0.08, 0.66] || 0.276 + 0.20 [0.05, 0.55]
15 || 0.290 £+ 0.17 [0.06, 0.57] || 0.291 + 0.21 [0.05, 0.65] || 0.301 + 0.19 [0.08, 0.56]
16 || 0.286 + 0.18 [0.07, 0.55] || 0.311 £ 0.20 [0.08, 0.60] || 0.300 %+ 0.19 [0.07, 0.55]
20 || 0.270 £ 0.20 [0.01, 0.56] || 0.249 + 0.20 [0.01, 0.55] || 0.267 £ 0.20 [0.01, 0.54]
24 || 0.296 + 0.20 [0.03, 0.58] || 0.299 + 0.22 [0.04, 0.58] || 0.296 + 0.21 [0.04, 0.58]
28 || 0.266 + 0.19 [0.03, 0.57] || 0.223 £ 0.19 [0.02, 0.53] || 0.277 £ 0.21 [0.02, 0.58]
32 || 0.258 + 0.17 [0.04, 0.54] || 0.217 £ 0.19 [0.01, 0.49] || 0.232 £ 0.17 [0.01, 0.44]
36 || 0.279 £ 0.18 [0.04, 0.55] || 0.239 + 0.18 [0.01, 0.47] || 0.243 £ 0.19 [0.02, 0.53]
64 || 0.276 £ 0.17 [0.05, 0.47] || 0.202 + 0.17 [0.01, 0.42] || 0.209 £ 0.18 [0.02, 0.48]
96 || 0.239 + 0.16 [0.03, 0.48] || 0.219 + 0.18 [0.02, 0.50] || 0.131 £ 0.14 [0.01, 0.32]
128 || 0.264 + 0.18 [0.02, 0.50] || 0.182 + 0.16 [0.02, 0.38] || 0.115 + 0.14 [0.01, 0.33]
256 || 0.276 £+ 0.17 [0.06, 0.49] || 0.172 £ 0.15 [0.02, 0.39] || 0.090 £ 0.11 [0.02, 0.27]

Table 1: Clustering quality statistics for 46 queries each (avg + stddev [10%, 90%] quantile)

Web page to be categorised is then treated as a query and the retrieval engine returns the top matching
superdocuments for that “query” (i.e., the top matching categories for that Web page). Each document is
attached to only the top matching concept in the ontology. The weights of all the document matches to a
particular concept are then accumulated to determine the weight of that concept in the site being studied.

To validate the quality of our categorisation, the next section discusses series of experiments that compare
the performance of the vector space categorisation approach with one of the top classifiers, Naive-Bayes
(Friedman, Geiger and Goldszmidt 1997).

4.1 Validation

We compared the performance of our approach with a Naive-Bayes implementation from Carnegie-Mellon
University (McCallum 1998), which has been found to be among the most effective classifiers (Friedman
and Goldszmidt 1996). In the Naive-Bayes approach (Langley, Iba and Thompson 1992), the conditional
probability of each attribute value given a particular category is determined as well as the probability of
the category appearing. This probabilistic information is typically established through a learning proce-
dure, which takes in a new training instance each time and adjusts the probabilistic information of the
corresponding category.

For the experiments, we selected an ontology containing 1,274 concepts and spidered 10 associated Web
pages for each concept. We evaluated the accuracy of classifiers with a variable numbers of Web pages (one
through eight per concept) in the training set, using the remaining two Web pages per concept as the test
set.

4.2 Experimental Results and Discussion

Table 2 shows the mean distance between the concept chosen by the classifiers and the concept with which
the test document was originally associated. We defined the distance between two concepts as the length
of the path between them. For example, the distance between a parent and its child in the ontology would
be one and the distance between siblings would be two. Since the ontology had a maximum depth of 11,
the maximum possible distance between the assigned and target concepts would be 22. Table 2 also shows



Vector Space Naive Bayes

training pages || mean dist | # of matches || mean dist | # of matches
1 6.07 127.0 7.07 32.0
2 5.69 202.5 6.87 61.0
3 5.11 289.0 6.61 95.5
4 4.69 355.0 6.43 127.0
5 4.42 407.5 6.29 149.0
6 4.27 434.5 6.11 184.0
7 4.32 423.5 6.09 188.0
8 4.39 415.0 5.96 184.0
Average 4.87 331.75 6.43 127.56

Table 2: Mean distance and number of matches per test page for the vector space and Naive-Bayes approaches

the number of exact matches, where the classifier chose the same category with which the Web page was
originally associated. The results in Table 2 are based on classifying two test documents per concept (ie, 2,548
test documents) when variable numbers of pages per concept were used for training. The statistical t-test
analysis shows that the mean distance produced by the vector space approach is significantly smaller than
that for the Naive-Bayes approach (t-statistics = 5.56 > #(14) for p = 0.001). The number of matches for the
vector space is also significantly larger than that for the Naive-Bayes approach (t-statistics = 4.45 > ¢(14)
for p = 0.001).

Examining Table 2 in more detail, we can see the effect of the amount of training data on the classification
accuracy, which shows that, for the Vector Space method, the highest accuracy occurs with six training
pages per concept. Adding more pages per concept degrades it slightly. Figure 3 illustrates the classifiers’
performance in more detail, showing the histogram of distances when the number of training documents was
Six.
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Figure 3: The histogram of distances between assigned concept and the correct concept (number of training
pages - 6) for the vector space approach and the naive-Bayes approach

In addition to varying the number of training pages, we also investigated the effect of using only a
subset of words rather than the complete test documents as the input to the vector space classifier. The
words were weighted using tf-idf (where tf was the frequency of the term in the test document and idf
was the inverse document frequency calculated over all available training documents) and we selected the
top-weighted words. Figure 4 shows the results when we varied the number of words selected. The data show
that the mean distance decreased as the number of selected words increased, but little improvement is seen



beyond 40 words selected. These results confirm the power of dimensionality reduction in two ways. First,
our best result was found with only six training pages, adding more pages (and more words per concept)
did not improve the classification. Similarly, representing pages to be classified by more than the 40 most
important words (features) did not appreciably improve the classification.
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Figure 4: Mean distance as a function of the number of top words in test documents

In summary, the data from the experiments show that the vector space approach was more accurate than
the Naive-Bayes approach, and that a modest number of training documents (approximately six per concept)
are sufficient for good performance. The results also show that a small number of the most important words
for a document convey enough information for classification. Overall, the site map generated by the our
Local Classification Agent seems to be quite accurate for an entirely automatic approach.

5 Conclusions and Further Work

We have presented a method of assessing the quality of a document clustering procedure using human
relevance assessments. We have demonstrated that this measure and the respective measure for the quality
of a document classification procedure show the effects of the curse of dimensionality in accordance to a well-
known statistical effect. We used these data to reduce the number of features used to represent concepts
(for classification) or documents in a collection subset (for clustering), respectively. Not only do the reduced
feature representations reduce computing time but they also show a better discriminatory behaviour. Owing
to the generic nature of the curse of dimensionality it has to be assumed that our feature reduction techniques
are likely to improve the relevance and speed of any document clustering or classification algorithm which
is based on feature vector representations.

Our work focused on finding a typical optimal number of features for clustering and classification purposes,
yet it can be expected that individual document subsets or concepts each require a different number of
features. It is left for further studies to fine-tune the average number of features (generated with the above
methods) using properties of the particular concept or document set without reference to training data or
human assessments.
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