
A Generalized Dual Phase-2 Simplex Algorithm1

István Maros

Department of Computing, Imperial College, London

Email: i.maros@ic.ac.uk

Departmental Technical Report 2001/2

ISSN 1469–4174

January 2001

1This research was supported in part by EPSRC grant GR/M41124.

I. Maros Phase-2 of Dual Simplex i

Contents

1 Introduction 1

2 Problem statement 2

2.1 The primal problem . 2

2.2 The dual problem . 3

3 Dual feasibility 4

4 Dual simplex methods 6

4.1 Traditional algorithm . 6

4.2 Dual algorithm with type-1 variables present 7

4.3 Dual algorithm with all types of variables 8

5 Bound swap in dual 10

6 Bound Swapping Dual (BSD) algorithm 14

6.1 Step-by-step description of BSD . 14

6.2 Work per iteration . 16

6.3 Implementation . 16

6.4 Advantages . 17

7 Two examples for the algorithmic step of BSD 18

8 Summary 21

9 Acknowledgements 21

Abstract

Real-life linear programming (LP) problems include all types of variables and con-

straints. Current versions of the primal simplex method are well prepared to handle such

problems efficiently. At the same time, the usefulness of the dual simplex method was

thought to be limited to the standard problem though it could be the ideal algorithm in

many other cases. For instance, most solution methods for Mixed Integer Programming

(MIP) problems require the repeated solution of closely related continuous LP problems.

It is typical that the optimal basis of a node problem is dual feasible for its child problems.

In such a situation the dual simplex algorithm (DSA) is undoubtedly the best solution

method. The LP relaxation of MIP problems contains many bounded variables and,

realistically, other types of variables may also be present. This necessitates such an im-

plementation of the DSA that can handle variables of arbitrary type. The paper presents

an algorithm called BSD for the efficient handling of all types of variables. The distin-

guishing features of this method are: (i) in one iteration it can make progress equivalent to

many traditional dual iterations, (ii) using proper data structures it can be implemented

very efficiently so that an iteration requires hardly more work than the traditional pivot

method, (iii) its effectiveness just increases if more upper bounded variables are present,

(iv) it has inherently better numerical stability because it creates a large flexibility in

finding a pivot element, (v) it excels itself in coping with degeneracy as it can bypass dual

degenerate vertices more easily than the traditional pivot procedures. The power of the

method is demonstrated through examples.

I. Maros Phase-2 of Dual Simplex 1 of 23

1 Introduction

Not long after the publication of Dantzig’s primal simplex algorithm [2] (in 1951) its dual

version, developed by Lemke [6], also appeared (in 1955). It has long been known that

the dual simplex algorithm (DSA) is a better alternative to the primal simplex for solving

certain types of linear programming (LP) problems. Its importance has been recognized

in many areas, in particular in the case of the Branch and Bound (BB) type methods for

Mixed Integer Programming (MIP). BB requires the repeated solution of closely related

continuous LP problems (c.f. Nemhauser and Wolsey [10]). At each branching node two

new subproblems (child problems) are created that differ from the parent problem in

the individual bound of the branching variable. Usually the right-hand-sides of the child

problems also change. The result is that the basis of the parent problem becomes primal

infeasible for the derived problems but it remains (or can easily be made) dual feasible.

This makes the dual simplex method an obvious choice for the required ‘reoptimization’.

In real-life LP problems all sorts of variables can be present. The standard dual

algorithm has been worked out for the case where all variables are nonnegative and a dual

feasible basis is available.

The LP relaxation of a MIP problems can contain many bounded variables. Free and

fixed variables may also be present. The increasing need for solving various types of LP

problems with the dual simplex method necessitates the design and implementation of a

version of the DSA where variables of arbitrary type are allowed and they all, especially

the bounded primal variables, are treated efficiently. The main purpose of this paper is

to present such an algorithm.

The rest of the paper is organized as follows. In section 2 the primal and dual prob-

lems are stated and an overview of the work done in this area is given. Issues of dual

feasibility are discussed in section 3. Section 4 presents increasingly more capable dual

algorithms including one that can handle all types of variables. The background of the

new algorithm is introduced in section 5 while section 6 gives its step-by-step descrip-

tion followed by a detailed analysis of the main features. In section 7 two examples are

I. Maros Phase-2 of Dual Simplex 2 of 23

given that demonstrate the power of the algorithm. It is followed by a brief summary in

section 8.

2 Problem statement

First, we introduce some notations. Matrices will be denoted by boldface capitals, like A,

vectors by boldface lower case Latin of Greek letters, like b or β. Column j of matrix A is

aj while row i of A is ai. Elements of matrices and vectors are denoted by the respective

normal lower case letters. Matrix element at the intersection of row i and column j is

denoted by ai
j.

2.1 The primal problem

We consider the following primal linear programming problem:

minimize cTx,

subject to Ax = b,

l ≤ x ≤ u,

(1)

where A is an m × n matrix, c, x, l, and u are n vectors, and b is an m vector. Any

component of l and u can be −∞ or +∞, respectively. A is assumed to contain a unit

matrix I, that is, A = [I, Ā]. Variables that multiply columns of I transform every

constraint to an equation and are often referred to as logical variables. Variables which

multiply columns of Ā are called structural variables.

After translation it can be achieved that variables (whether logical or structural) fall

into four categories as shown below (for further details, see Orchard-Hays [11]).

Feasibility range Type Reference

xj = 0 0 Fixed variable

0 ≤ xj ≤ uj < +∞ 1 Bounded variable

0 ≤ xj ≤ +∞ 2 Non-negative variable

−∞ ≤ xj ≤ +∞ 3 Free variable

(2)

I. Maros Phase-2 of Dual Simplex 3 of 23

2.2 The dual problem

First, we investigate the primal problem where all variables are bounded.

(P1) minimize cTx,

subject to Ax = b,

0 ≤ x ≤ u

(3)

Since A is of full row rank m independent columns can be selected to form a basis

to (P1). Let B denote the index set of basic and N the index set of nonbasic variables.

Accordingly, we use notation cB, cN and xB, xN to refer to the basic and nonbasic

components of c and x, respectively. The basis matrix itself is denoted by B and the rest

of A is by N. A basic solution is

xB = B−1

(
b−

∑
j∈U

ujaj

)
,

where U is the index set of nonbasic variables at upper bound. The ith basic variable is

denoted by xBi. The dj reduced cost of variable xj is defined as

dj = cj − πTaj = cj − cT
BB−1aj (4)

which is further equal to cj − cT
Bαj if notation αj = B−1aj is used. The dual of (P1) is:

(D1) maximize bTy − uTw,

subject to ATy −w ≤ c,

w ≥ 0

(5)

In case of Zero-One Mixed Integer Programming, some or all of the variables may be

restricted to be 0 or 1 (0/1 variables). It means that in the LP relaxation there are many

variables with upper bound of 1.

Branch and Bound type algorithms require the solution of many closely related LP

problems. Since the optimal basis of the parent problem usually remains dual feasible for

the child problems, the dual algorithm can be used efficiently for ‘reoptimization’ starting

from this basis.

I. Maros Phase-2 of Dual Simplex 4 of 23

In practice, dual algorithms work on the primal problem using the computational tools

of the sparse primal simplex method but perform basis changes according to the rules of

the dual.

An upper bounded version of the DSA was first described by Wagner [12] and later

by Orchard-Hays [11] and Chvátal [1]. One of the computationally most expensive steps

of the algorithm is the creation of the updated pivot row p, i.e., the computation of αp
j

for all nonbasic j (c.f. [9]). None of the quoted descriptions discusses the multiple use of

the updated pivot row which becomes possible in case of the presence of upper bounded

variables. In our BSD (for Bound Swapping Dual) algorithm to be presented in section 5

we concentrate on this issue and show how it may be possible to make—occasionally

many—iterations with one updated pivot row.

The underlying idea comes from the FEWPHI algorithm [7] of the author that can

make several primal iterations with one updated column. Similar ideas for the primal

were also discussed by Wolfe [13] and Greenberg [5]. Fourer in [4] described the dual

in a similar vein. Maros in [8] introduced an earlier version of a bound swapping dual

algorithm designed for the efficient treatment of upper bounded variables. The present

paper further elaborates on those ideas and gives a comprehensive discussion of the dual

with all types of variables.

3 Dual feasibility

If there are only type-2 variables in the problem then w is not present in (5). If B is a

basis then dual feasibility reduces to

BTy = cB

NTy ≤ cN , or dN = cN −NTy ≥ 0,

which is the primal optimality condition for the problem.

The idea of a dual step is based on the relaxation of the p-th dual basic equation from

aT
p y = cp to aT

p y ≤ cp. We say that this constraint is relaxed negatively because aT
p y

I. Maros Phase-2 of Dual Simplex 5 of 23

is decreased. If the change in the p-th equation is parameterized by t ≤ 0 then we have

BTy(t)− tep = BTy, from which the dual solution as a function of t is y(t) = y + tρp, if

ρp denotes the p-th column of B−T . The corresponding dual objective value is:

f(t) = bTy(t) = bTy + tbTρp = bTy + txBp (6)

As t moves away from 0 negatively the rate of change in the dual objective is −xBp which

leads to an improvement over bTy if xBp < 0. This suggests that xBp < 0 (an infeasible

primal basic variable) has to be selected to leave the basis at a feasible level (usually 0).

The entering variable is determined by the dual ratio test to ensure that dual feasibility

(d̄N ≥ 0) is maintained after the basis change. The dual constraint corresponding to the

entering variable replaces the relaxed constraint as the new tight one.

If there are all types of variables present in a problem it remains true that dual

feasibility is equivalent to primal optimality. In this case dual feasibility means that for

nonbasic positions dj of (4) satisfies

type(xj) Status dj

0 xj = 0 Immaterial

1 xj = 0 ≥ 0

1 xj = uj ≤ 0

2 xj = 0 ≥ 0

3 xj = 0 = 0

(7)

Let r denote the original index of the p-th basic variable (xBp ≡ xr). According to the

transformation formulae of the simplex method, if xq, q ∈ N, is the incoming and xBp is

the outgoing variable, the djs are transformed as

d̂j = dj −
dq

αp
q

αp
j , j ∈ N

d̂r = − dq

αp
q
.

(8)

The purpose of the dual step, whence xBp has been selected, is to choose q in such a

way that dual feasibility is preserved. This can be achieved by an appropriately designed

I. Maros Phase-2 of Dual Simplex 6 of 23

dual ratio test. From (7) it is clear that the dj of type-0 variables is not restricted in

sign, therefore such positions do not take part in the ratio test. It is also a requirement

that xBp leave the basis in such a way that d̂r also satisfies (7). Note, the feasibility of

the primal basic variables is not explicitly taken into account. Therefore, after a basis

change their number and magnitude are unknown. Even the incoming variable can enter

the basis at infeasible level. These ideas form the basis of different dual algorithms.

4 Dual simplex methods

In this section we give the algorithmic description of several dual simplex methods that

have been developed for different types of problems. They are increasingly more capable

and will form the basis of the new method.

4.1 Traditional algorithm

Lemke’s original version of the simplex method was developed for the standard LP problem

when only type-2 variables are present, i.e., min cTx, Ax = b, x ≥ 0.

Assume a dual feasible basis B is available i.e., dN ≥ 0, together with xB = B−1b.

For this case the dual algorithm, which we call Dual-1, can be stated in the framework of

the revised simplex method as follows:

Step 1. If the current basic solution is primal feasible, xB ≥ 0, then it is optimal.

Otherwise, select an infeasible basic variable, say xBp < 0. This variable leaves the

basis, row p is the pivot row.

Step 2. Determine the nonbasic components of the updated pivot row: αp
N = eT

p B−1N.

In coordinate form it is αp
j = ρT

p aj, j ∈ N, where ρT
p is the p-th row of B−1, i.e.,

ρT
p = eT

p B−1 with ep being the p-th unit vector in Rm.

Step 3. Based on (7) and (8), determine the index set of eligible pivot positions J =

{j : αp
j < 0, j ∈ N}. If J is empty then stop: the dual problem is unbounded,

consequently, the primal has no feasible solution.

I. Maros Phase-2 of Dual Simplex 7 of 23

Otherwise, perform dual ratio test with dN and αp
N to determine subscript q of the

incoming variable:

θ(d) = − dq

αp
q

= min
j∈J

{
− dj

αp
j

}
.

θ(d) is the minimum dual ratio.

Step 4. Determine the transformed entering column: αq = B−1aq.

Step 5. Update solution.

Let r be the original index of xBp in A, i.e., xBp ≡ xr. Set x̂r = 0 and θ(p) =
xBp

αp
q

(the corresponding primal ‘ratio’).

Update the basic solution x̂Bi = xBi − θ(p)αi
q for 1 ≤ i ≤ m, i 6= p and x̂Bp = θ(p).

In this case the incoming variable enters at feasible level.

Update reduced cost of nonbasic variables: d̂r = θ(d) and d̂j = dj + θ(d)αp
j , j 6= r.

Go to Step 1.

4.2 Dual algorithm with type-1 variables present

If there are type-1 variables in the LP problem then dual feasibility for such variables

means that dj ≥ 0 if xj is nonbasic at zero and dj ≤ 0 if xj is nonbasic at upper bound.

Additionally, an upper bounded basic variable can be infeasible in two ways, either xBi < 0

or xBi > uBi.

Following Chvátal [1, p. 157], the steps of an upper bounded dual algorithm that solves

(3), which we call Dual-2, can be described in the following way (for further assumptions

and notations, see Dual-1).

Step 1. If the corresponding primal solution is feasible, that is, 0 ≤ xB ≤ uB then it is

optimal. Otherwise, there is at least one primal infeasible basic variable (see remark

above). Any such variable can be selected to leave the basis. Let the basic position

of the chosen one be denoted by p.

I. Maros Phase-2 of Dual Simplex 8 of 23

Step 2. Determine the nonbasic components of the updated pivot row: αp
N = ρT

p N.

Identical with Step 2 of Dual-1.

Step 3. The index set of eligible pivot positions is determined by (7) and (8). If xBp < 0

then let J1 = {j : αp
j < 0, xj = 0, j ∈ N} and J2 = {j : αp

j > 0, xj = uj, j ∈ N}.

If xBp > uBp then let J1 = {j : αp
j > 0, xj = 0, j ∈ N} and J2 = {j : αp

j < 0,

xj = uj, j ∈ N}. In both cases, let J = J1 ∪ J2.

If J is empty then stop: the problem is dual unbounded and, hence, primal infeasible.

Otherwise, find q ∈ J such that

θ(d) =

∣∣∣∣ dq

αp
q

∣∣∣∣ = min
j∈J

∣∣∣∣ dj

αp
j

∣∣∣∣ (9)

and let xq be the entering variable.

Step 4. Determine the transformed entering column: αq = B−1aq. Identical with Step 4

of Dual-1.

Step 5. Update solution.

Set θ(p) =
xBp

αp
q

and x̂r = 0 in case xBp < 0 or θ(p) =
xBp − uBp

αp
q

and x̂r = ur in case

xBp > uBp.

Update the basic solution: x̂Bi = xBi − θ(p)αi
q for 1 ≤ i ≤ m, i 6= p and

x̂Bp = xq + θ(p).

Now the incoming variable may enter at infeasible level. For details, see section 5.

Update reduced cost of nonbasic variables: d̂r = − dq

αp
q

and d̂j = dj + d̂rα
p
j , j 6= r.

Go to Step 1.

4.3 Dual algorithm with all types of variables

Nonbasic type-0 variables do not play any role in the dual method since any dj is feasible

for a fixed variable xj. Such variables do not take part in the dual ratio test (are not

I. Maros Phase-2 of Dual Simplex 9 of 23

included in J) and, therefore, they never enter the basis. This is completely in line with

the selection principles of the primal simplex algorithm. If a type-0 variable is basic (e.g.,

the logical variable of an equality constraint) it can be feasible (i.e., equal to zero) or

infeasible (positive of negative). Such an infeasible variable is always a candidate to leave

the basis and thus improve the dual objective as it can be seen from (6). Since the reduced

cost of the outgoing type-0 variable is unrestricted in sign it can always be chosen to point

to the improving direction of the dual objective function.

The way type-1 variables can be handled has already been discussed. In many, but

not all, aspects type-0 variables can be viewed as special cases of type-1 when lj = uj = 0.

The main difference is that once a type-0 variable left the basis it will never be a candidate

to enter again.

Lemke’s original DSM was developed for the case of type-2 variables. Such variables

can be treated in a way described in Dual-1.

Type-3 (free) variables can also be present in an LP problem. If they are nonbasic

dual feasibility requires dj = 0 for them. If they are basic they are always at feasible level

and are not candidates to leave the basis.

It is easy to see that Dual-2 algorithm requires very few changes to take care of all

types of variables. Type-0 variables are of interest only if they are basic at infeasible

level. At the other extreme, type-3 variables are involved in the dual algorithm as long as

they are nonbasic. In this case they need to be included in the ratio test as their dj must

remain zero. They will certainly take part in the (9) dual ratio test if the corresponding

αp
j 6= 0. Since in this case the ratio is zero such a variable will be selected to enter the

basis. This, again, is very similar to the tendency of the primal method which also favors

free variables to become basic if their reduced cost is nonzero.

For the formal statement of the algorithm with all types of variables, which we refer to

as Dual-3, only Step 3 of Dual-2 has to be adjusted. It is important to remember that now

the basis may contain some type-0 variables for which both lower and upper bound are

zero. Therefore, such basic variables can be infeasible positively or negatively the same

way as type-1 variables. If selected, a type-0 variable will leave the basis at zero level but

I. Maros Phase-2 of Dual Simplex 10 of 23

the sign of its dj will become unimportant after the iteration as it is unrestricted.

Step 3. Let J1 be the set of indices of type-3 nonbasic variables for which αp
j 6= 0.

For type-1 and type-2 nonbasic variables:

If xBp < 0 then let J2 be the index set of those xjs for which αp
j < 0 and xj = 0,

or αp
j > 0 and xj = uj. If xBp > uBp then let J2 be the set of those xjs for which

αp
j > 0 and xj = 0, or αp

j < 0 and xj = uj.

Let J = J1 ∪ J2.

If J is empty then stop. The problem is dual unbounded and, hence, primal infea-

sible.

Otherwise, find q ∈ J such that

θ(d) =

∣∣∣∣ dq

αp
q

∣∣∣∣ = min
j∈J

∣∣∣∣ dj

αp
j

∣∣∣∣ (10)

and let xq be the entering variable (θ(d) is the selected dual ratio).

5 Bound swap in dual

While Dual-2 and Dual-3 are perfectly legitimate algorithms for the case when upper

bounded variables are present in a problem further investigations reveal some additional

possibilities that can be computationally very appealing.

At the beginning of an iteration the incoming variable xq is nonbasic at a feasible level.

It becomes basic in position p with a value of xq + θ(p) which will be infeasible if it is a

bounded variable and its displacement is greater than its own individual bound, i.e.,

|θ(p)| > uq. (11)

Though this situation does not change the theoretical convergence properties of the dual

algorithm (no basis is repeated if dual degeneracy is treated properly), computationally

it is usually not advantageous.

I. Maros Phase-2 of Dual Simplex 11 of 23

The introduction of a new infeasible basic variable can be avoided. One possibility is

to set xq to its opposite bound (bound swap). It entails the updating of the basic solution.

However, the corresponding dual variable becomes infeasible now (see (7)). At the same

time, the updated xBp remains infeasible and can be selected again. The ratio test can

be performed at no cost as the updated pivot row remains available. This step can be

repeated recursively until a variable is found that enters the basis at a feasible level or we

can conclude that the dual solution is unbounded. In the former case the dual feasibility

of variables participating in bound change is automatically restored. A careful analysis

shows that this idea leads to a new algorithm that has some remarkable features. One of

them is that its efficiency just increases with the number of upper bounded variables. A

more complete summary of features is given in section 6.4.

As a bounded (type-0 or type-1) basic variable can be infeasible in two different ways,

first we discuss these cases separately then present a unifying framework.

First, we assume that p was selected because xBp < 0. In this case the p-th dual

constraint is released negatively and the change of the objective function is described by

(6). Now the ratios in (10) will be negative. If, after applying this ratio test, (11) holds

for the resulting θ(p) then a bound swap of xq is triggered and the xB basic solution is

updated as x̂B = xB ± uqαq. More specifically, the selected infeasible basic variable gets

updated as x̂Bp = xBp ± uqα
p
q . Here, ‘−’ applies if xq = 0, and ‘+’ if xq = uq before the

iteration. Taking into account the definition of J (see Step 3 of Dual-3) the two cases can

be expressed by the single equation:

x̂Bp = xBp + |αp
q |uq.

Here, x̂Bp < 0 holds because of |xBp/α
p
q | > uq, meaning that the originally selected

infeasible basic variable remains infeasible. It implies that the dual objective function

keeps improving if t moves beyond θ(d), however, the rate of improvement decreases by

|αp
q |uq from −xBp to −xBp−|αp

q |uq. Now, we leave out index q from J , go to the (10) ratio

test, and repeat the above procedure. This can easily be done since the updated p-th row

remains available unchanged. If with the newly defined θ(p) we find |θ(p)| ≤ uq then the

I. Maros Phase-2 of Dual Simplex 12 of 23

Figure 1: The dual objective as the function of releasing a dual basic equation.

Dual
obj.

t

�
�
�
�
�
�
��
�

�
�

��
���

���hhhhhhh
HHH

HHH
HH

t1 t2 t3 t4

corresponding xq is the incoming variable and a basis change is performed. In practice,

the |θ(p)| = uq case can also be handled as a bound swap because it is computationally

more advantageous. If x̂Bp < 0 holds and J becomes empty then the dual is unbounded

and the primal is infeasible.

Figure 1 shows the change of the dual objective as a function of relaxing the p-th dual

constraint. This is a piecewise linear function of t. The first breakpoint corresponds to

the smallest ratio the second to the second smallest, and so on. At the maximum the sign

of the slope of the function changes. It is determined by |θ(p)| < uq, that is, when a basis

change is performed.

Next, we consider the case when p was selected because xBp > uBp. Any constraint

0 ≤ x ≤ u defining an upper bounded variable can be written as x+v = u, x, v ≥ 0, where

v is a slack variable. Therefore, the xBp > uBp condition is equivalent to vBi = uBi−xBi <

0. This latter indicates that if the signs of the entries in row p are changed we have the

same situation as before. Therefore, by relaxing the p-th dual constraint positively to

aT
p y ≥ cp (which is now parameterized by t ≥ 0) the change in the dual objective is

I. Maros Phase-2 of Dual Simplex 13 of 23

∆d obj = −tvBi = t(xBp − uBp), that is, the rate of change is xBp − uBp > 0 as t moves

away from 0 positively. The aT
p y ≥ cp type relaxation means that the corresponding

primal variable must leave the basis at upper bound (see (7)).

Similarly to the first case, (10) is performed with the appropriate J . Note, the ratios

are positive now. A bound swap of xq is triggered if (11) holds and the updated value of

the p-th basic variable becomes x̂Bp = xBp ± uqαpq. Here, ‘+’ applies if xq = 0, and ‘−’

if xq = uq before the iteration, but in this case (see definition of J in Dual-3) the single

updating equation is

x̂Bp = xBp − |αp
q |uq.

Now, x̂Bp > uBp holds because of θ(p) = |(xBp − uBp)/α
p
q | > uq, meaning that the origi-

nally selected infeasible basic variable remains infeasible. It implies that the dual objective

function keeps improving if t is increased beyond θ(d), however, the rate of improvement

decreases again by |αp
q |uq. The rest of the arguments of the first case applies here un-

changed.

The important common feature of the two cases is that the slope of the corresponding

piecewise linear function (the dual objective) decreases at every bound swap by |αpq|uq.

In other words, the initial slope of the dual objective is

s0 =

−xBp, if xBp < 0

xBp − uBp, if xBp > uBp.

This slope changes at the k-th bound swap to

sk = sk−1 − |αp
q |uq (12)

(using the most recently defined q) until a basis change is encountered.

There can be several identical ratios. They represent the same breakpoint (which

is called a multiple breakpoint) on the graph but they contribute to the decrease of the

slope as if they were distinct. The multiplicity of a breakpoint is the number of identical

ratios defining it. If the maximum of f(t) is attained at a multiple breakpoint then dual

degeneracy is generated after the iteration.

I. Maros Phase-2 of Dual Simplex 14 of 23

The change of the dual objective function can easily be traced. First, the absolute

values of the ratios need to be sorted in ascending order, 0 ≤ |t1| ≤ · · · ≤ |tQ|, where

Q = |J |. Let fk denote the value of the dual objective at breakpoint k and f0 = bTy

(the value at the beginning of the iteration). Defining t0 = 0 and following (6), fk can be

computed as:

fk = fk−1 + (tk − tk−1)sk−1, k = 1, . . . , Q.

6 Bound Swapping Dual (BSD) algorithm

Based on the observations of the previous section now we can define the following Bound

Swapping Dual (BSD) algorithm for solving a general LP problem (as defined in (1)) with

all types of variables present (as in (2)).

6.1 Step-by-step description of BSD

Assumptions of BSD: a dual feasible basis B to the problem with dN satisfying (7) and

the primal solution xB = B−1
(
b−

∑
j∈U ujaj

)
are available.

Step 1. If xB is primal feasible, i.e., satisfies (2) then it is optimal. Otherwise, select an

infeasible basic variable and denote its basic position by p (pivot row).

Step 2. Determine the nonbasic components of the updated pivot row: αp
N = eT

p B−1N

as in Step 2 of Dual-1.

Step 3. Determine the breakpoints of f(t) by computing dual ratios for eligible positions

(set J as defined in Step 3 of Dual-3). Store their absolute values in a sorted order:

0 ≤ |t1| ≤ · · · ≤ |tQ|.

If Q = 0 the problem is dual unbounded (primal infeasible), stop.

Otherwise set k = 1, T+ = T− = ∅.

Step 4. Let q denote the subscript of the variable defining tk. If for the corresponding

θ(p) (as defined in Step 5 of Dual-2) |θ(p)| < uq then entering variable xq is found,

I. Maros Phase-2 of Dual Simplex 15 of 23

go to Step 5. (Clearly, if type of xq is 2 or 3 then xq is the incoming variable as the

slope in (12) becomes −∞ because of uq = ∞.)

Otherwise, a bound swap is triggered. In accordance with its direction, set

xq = uq or xq = 0,

T+ := T+ ∪ {q} or T− := T− ∪ {q}.

Compute fk = fk−1 + (tk − tk−1)sk−1 and sk = sk−1 − |αp
q |uq. If sk ≥ 0 and k < Q

increment k and go to the beginning of Step 4.

If k = Q and sk is still positive then dual is unbounded, stop.

Step 5. Update solution:

1. Take care of bound swaps:

x̂B = xB −
∑
j∈T+

ujαj +
∑
j∈T−

ujαj, (13)

where αj = B−1aj and the sum is defined to be 0 if the corresponding index

set is empty.

2. Take care of basis change, if defined (see remark below):

Replace x̂B by F x̂B, F denoting the elementary transformation matrix created

from αq. Let xBp = xq. Update xBp to become xq + θ(p) and transform the

reduced costs as defined in Step 5 of Dual-2.

There is a special case if at the end of Step 4, for k = Q, the slope becomes 0. It

means that as we perform the last possible bound swap the slope of f becomes 0 and the

dual objective cannot be increased any further. In such a case the above algorithm flows

through to Step 5, takes care of bound swaps but will not make any basis change.

Verbally, BSD can be interpreted in the following way: If not the smallest ratio is

selected for pivoting (bound swap in BSD) then the djs of the bypassed small ratios

change sign. It can be compensated by putting the bypassed variables to their opposite

bounds and thus maintaining the dual feasibility of the solution.

I. Maros Phase-2 of Dual Simplex 16 of 23

6.2 Work per iteration

It can easily be seen that the extra work required for BSD is generally small.

1. Ratio test: the same as in Dual-3.

2. The breakpoints of the piecewise linear dual objective function have to be stored

and sorted. This requires extra memory for the storage, and extra work for the

sorting. However, the tk values have to be sorted only up to the point when a basis

change is defined. Therefore, if an appropriate priority queue is set up for these

values the extra work can be reduced sharply.

3. Taking care of bound swap according to (13) would require multiple update (FTRAN)

involving all participating columns. However, the same can be achieved by only one

extra FTRAN because

x̂B = xB −
∑
j∈T+

ujαj +
∑
j∈T−

ujαj

= xB −B−1

∑
j∈T+

ujaj −
∑
j∈T−

ujaj


= xB −B−1ã

with the obvious interpretation of ã.

6.3 Implementation

For any dual simplex algorithm based on the revised simplex method it is important to

access the original sparse matrix A both rowwise and columnwise. Therefore, for fast

access, A should be stored in both ways.

For the efficient implementation of BSD a sophisticated data structure (e.g., a pri-

ority queue) is needed to store and (partially) sort the breakpoints. This part of the

implementation must be done with great care because experience shows rather erratic

behavior of the algorithm regarding the generated and used breakpoints. For example,

it can happen that several thousands of breakpoints are defined in consecutive iterations

I. Maros Phase-2 of Dual Simplex 17 of 23

but in one of them only less then 10 are used while in the next one nearly all. Even the

number of generated breakpoints can change by orders of magnitude up and down from

one iteration to the next. The tendency is that along the simplex tail these numbers go

down to moderate values and often the first one is chosen which corresponds the step of

the traditional dual method.

6.4 Advantages

The introduced BSD algorithm possesses several advantageous features that make it the

algorithm of choice for the BB type solution of (M)IP problems.

1. The more type-1 variables are present the more effective the method is. Namely,

in such cases the chances of generating many breakpoints is high which can lead to

larger steps towards dual optimality.

2. BSD can cope with dual degeneracy more efficiently than the traditional method as

it can bypass zero valued breakpoints and thus make a positive step.

3. It is also effective in avoiding the generation of dual degeneracy. If the first break-

point has multiplicity greater than one the traditional method will create degeneracy.

BSD can bypass this situation and also later breakpoints with multiplicity.

4. BSD has a better numerical behavior due to the increased flexibility in choosing

the pivot element. Namely, if the maximum of f(t) is defined by a small pivot

element and this is not the first breakpoint then we can take the neighboring (second

neighbor, etc.) breakpoint that is defined by an acceptable pivot.

5. In BSD, the incoming variable enters the basis at feasible level.

6. The computational viability of BSD lies in the multiple use of the expensively com-

puted pivot row.

In short, the main advantage of the BSD algorithm that it can make many iterations

with one updated pivot row and these iterations cost hardly more than one traditional

I. Maros Phase-2 of Dual Simplex 18 of 23

iteration. Such situations frequently occur when LP relaxations of MIP problems are

solved.

On the other hand, BSD incorporates the usual dual algorithm and makes steps ac-

cording to it when bound swap cannot be made. Consequently, it can be said that BSD

is an efficient generalization of the traditional dual simplex algorithm.

7 Two examples for the algorithmic step of BSD

The operation of BSD is demonstrated on two examples. We assume the nonbasic variables

are located in the leftmost positions and the nonbasic components of the updated pivot

row have been determined. The types of the variables and the dj values are given. The

status of upper bounded variables is also indicated (LB for ‘at lower bound’ and UB for

‘at upper bound’).

Example-1. The problem has 10 nonbasic variables. Assume a type-2 basic variable

xBp = −11 has been chosen to leave the basis, f0 = 1. Note, the solution is dual degenerate.

j 1 2 3 4 5 6 7 8 9 10

Type(xj) 0 1 1 1 1 1 1 1 1 2

Status LB LB UB UB LB UB UB LB

Upper bound 0 1 1 1 1 1 2 1 5 ∞

αp
j 2 −2 1 3 −4 −1 1 −2 −1 −2

dj −1 2 5 −6 −2 0 0 0 4 10

Ratio −1 −2 0 0 −4 −5

6 ratios have been defined, Q = 6. After sorting the absolute values of the ratios:

k 1 2 3 4 5 6

jk 6 7 2 4 9 10

|tk| 0 0 1 2 4 5

αp
jk

−1 1 −2 3 −1 −2

I. Maros Phase-2 of Dual Simplex 19 of 23

According to the definition of the slope, s0 = −xBp = 11. Now, applying Step 4 of BSD,

we obtain

k jk |tk| αp
jk

ujk
θ(p) sk = sk−1 − |αp

jk
|ujk

xk
Bp fk Remarks

1 6 0 −1 1 (−11)/(−1) = 11 11− | − 1| × 1 = 10 −10 1 BSW ↑ x6

2 7 0 1 2 (−10)/(1) = −10 10− | − 1| × 2 = 8 −8 1 BSW ↓ x7

3 2 1 −2 1 (−8)/(−2) = 4 8− | − 2| × 1 = 6 −6 9 BSW ↑ x2

4 4 2 3 1 (−6)/(3) = −2 6− |3| × 1 = 3 −3 15 BSW ↓ x4

5 9 4 −1 5 (−3)/(−1) = 3 3− | − 1| × 5 = −2 0 21

Here, xk
Bp denotes the value of the selected basic variable after k sections of f(t) have been

passed, fk is the value of the dual objective in breakpoint k, BSW ↑ indicates a bound

swap from lower to upper bound, while BSW ↓ denotes the opposite. In the first four steps

the displacement of the actual incoming variable (θ(p)) was always greater than its own

upper bound (ujk
), therefore they all signalled a bound swap and the algorithm proceeded.

At the fifth breakpoint the opposite happened, therefore x9 (that defined t5) became the

incoming variable with a value of 3 (which is less than u9 = 5). The dual steplength is

4 (= −t5). At the end, we used five breakpoints out of six resulting in a progress of the

dual objective from 1 to 21. We have bypassed two degenerate vertices. Dual-2 would

have stopped at the first breakpoint resulting in a non-improving (degenerate) iteration

and a newly introduced infeasible basic variable x6 = 11 > 1 = u6.

It is worth looking at the situation after the BSD iteration.

j 1 2 3 4 5 6 7 8 9 10

Type(xj) 0 1 1 1 1 1 1 1 1 2

Status UB∗ LB LB∗ UB UB∗ LB∗ UB B∗

d̂j 7 −6 9 6 −18 −4 4 −8 0 2

Here, ‘*’ denotes a changed status in the Status row, B denotes basic. Clearly, the solution

has changed quite substantially, even dual degeneracy has disappeared.

I. Maros Phase-2 of Dual Simplex 20 of 23

Example-2. This problem has 6 nonbasic variables. Now, a type-1 basic variable,

xBp = 14, has been chosen to leave the basis because it is above its upper bound of 2,

f0 = 6. Again, the solution is dual degenerate.

j 1 2 3 4 5 6

Type(xj) 1 1 1 1 1 2

Status LB LB UB UB LB

Upper bound 5 1 1 2 2 ∞

αp
j −2 3 −2 −1 1 3

dj 2 3 0 −2 0 9

Ratio 1 0 2 0 3

5 ratios have been defined, Q = 5. The ratios are positive now. For uniformity, we still

refer to their absolute value. After sorting them:

k 1 2 3 4 5

jk 3 5 2 4 6

|tk| 0 0 1 2 3

αp
jk

−2 1 3 −1 3

Now the slope is defined as s0 = xBp − uBp = 14− 2 = 12. Applying Step 4 of BSD, we

obtain

k jk |tk| αp
jk

ujk
θ(p) sk = sk−1 − |αp

jk
|ujk

fk Remarks

1 3 0 −2 1 12/(−2) = −6 12− | − 2| × 1 = 10 6 BSW ↓ x3

2 5 0 1 2 10/(1) = 10 10− |1| × 2 = 8 6 BSW ↑ x5

3 2 1 3 1 8/3 8− |3| × 1 = 5 14 BSW ↑ x2

4 4 2 −1 2 5/(−1) = −5 5− | − 1| × 2 = 3 19 BSW ↓ x4

5 6 3 2 ∞ 3/(3) = 1 −∞ 22

As expected the BSD iteration has made a major reorganization of the solution. The

following table shows the situation after the BSD iteration has been completed. Dual

degeneracy has, again, disappeared. For notations, see Example-1.

I. Maros Phase-2 of Dual Simplex 21 of 23

j 1 2 3 4 5 6

Type(xj) 1 1 1 1 1 2

Status LB UB∗ LB∗ LB∗ UB∗ B∗

d̂j 8 −6 6 1 −3 0

From the above examples we can conclude that in case of large scale problems with

many upper bounded variables the advantages of the new method have a reasonably high

probability to materialize in full.

8 Summary

We have presented a generalization of the dual phase-2 algorithms that handles all types

of variables efficiently. It is based on the piecewise linear nature of the dual objective

if defined as a function of relaxing one basic dual equation. The distinguishing features

of this method are: (i) in one iteration it can make progress of many traditional dual

iterations, (ii) using proper data structures it can be implemented very efficiently so that

an iteration requires hardly more work than the traditional pivot method, (iii) it has

inherently better numerical stability because it creates a large flexibility in finding a pivot

element, (iv) it is very effective in coping with degeneracy as it can bypass dual degenerate

vertices more easily than the traditional pivot procedures. The power of the method is

demonstrated through examples.

9 Acknowledgements

The work presented in this paper has benefited from fruitful discussions with Tamás

Terlaky for which the author expresses his gratitude. Support and encouragements from

Gautam Mitra are also acknowledged.

I. Maros Phase-2 of Dual Simplex 22 of 23

References

[1] Chvátal, V., Linear Programming, Freeman and Co., 1983.

[2] Dantzig, G.B., “Maximization of a linear function of variables subject to linear in-

equalities”, in Koopmans, T.C. (ed.), Activity analysis of production and allocation,

John Wiley & Sons, New York, 1951, p. 339–347.

[3] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press,

Princeton, N.J., 1963.

[4] Fourer, R., “Notes on the Dual Simplex Method”, Unpublished, March, 1994.

[5] Greenberg, H.J., “Pivot selection tactics”, in Greenberg, H.J. (ed.), Design and Im-

plementation of Optimization Software, Sijthoff and Nordhoff, 1978.

[6] Lemke, C.E., “The Dual Method of Solving the Linear Programming Problem”,

Naval Research Logistics Quarterly, 1, 1954, p. 36–47.

[7] Maros, I., “A general Phase-I method in linear programming”, European Journal of

Operational Research, 23(1986), p. 64–77.

[8] Maros, I., “A Piecewise Linear Dual Procedure in Mixed Integer Programming”,

in F. Giannesi, R. Schaible and S. Komlosi (eds.), New Trends in Mathematical

Programming, Kluwer Academic Publishers, 1998, p. 159–170.

[9] Maros, I., Mitra, G., “Simplex Algorithms”, Chapter 1 in Beasley J. (ed.) Advances

in Linear and Integer Programming, Oxford University Press 1996.

[10] Nemhauser, G.L., Wolsey, L.A., Integer and Combinatorial Optimization, John Wi-

ley, 1988.

[11] Orchard-Hays, W., Advanced Linear-Programming Computing Techniques, McGraw-

Hill, 1968.

I. Maros Phase-2 of Dual Simplex 23 of 23

[12] Wagner, H.M., “The dual simplex algorithm for bounded variables” Naval Research

Logistics Quarterly, Vol. 5, 1958, p. 257–261.

[13] Wolfe, Ph., “The composite simplex algorithm”, SIAM Review, 7 (1), 1965, p. 42–54.

