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Abstract

Despite a huge number of algorithms and articles published on robustness
issues relating to the convex hull of a finite number of points in R?, the question
of computability of the convex hull, important as it is, has never been addressed
in the literature. In this paper, we use the domain-theoretic computable solid
modeling framework to show that the convex hull of a finite number of com-
putable points in R? is indeed computable.

1 Introduction

Despite a huge number of algorithms and articles published on robustness issues
relating to the convex hull of a finite number of points in R?, the question of com-
putability of the convex hull, important as it is, has never been addressed in the
literature [3, 1, 2, 4, 7, 8].

We use the domain-theoretic computable solid modeling framework introduced
in [6] to show that the convex hull of a finite number of computable points in R?
is indeed computable, i.e. there exist two computable sequences of open rational
polyhedra approximating, respectively, the interior and the exterior of the convex
hull. Furthermore, one can compute two rational polyhedra, one in the interior and
one in the exterior of the convex hull which are close to it with respect to either the
Hausdorff metric or the Lebesgue measure with any given degree of accuracy.

2 Solid Modeling

Solid modeling and computational geometry are based on classical topology and
geometry in which the basic predicates and operations, such as membership, subset



inclusion, union and intersection, are not continuous and therefore not computable.
A sound computational framework for solids modeling using domain theory has
been introduced by Edalat and Lieutier in [6]. In this section, we give the formal
definitions of a number of notations in computable solid modeling used in this paper.
(For more details see [6].)

Definition 2.1 The solid domain (SX,C) of a topological space X is the set of
ordered pairs (A, B) of disjoint open subsets of X endowed with the information
order: (Al,Bl) C (AQ,BQ) <— A; C Ay and B; C Bs.

Solid domain is a mathematical model for representing rigid solids. An element
(A, B) of SX is called a partial solid: A and B are intended to capture, respectively,
the interior and the exterior (interior of the complement) of a solid object, possibly,
at some finite stage of computation.

In this paper we are considering the solid domain SR?. In order to endow
SR? with an effective structure, two different countable bases that are recursively
equivalent have been introduced in [6]. To show the computability of the convex
hull algorithm we use the partial rational polyhedra as the solid domain basis.

A rational d-simplez in R? is the convex hull of d 4+ 1 points with rational coor-
dinates that do not lie on the same hyper-plane. An open rational polyhedron is the
interior of a finite union of rational d-simplexes. Starting with an effective enumer-
ation of the rational d-simplexes, one can obtain an effective enumeration (F;);c,, of
the set of open rational polyhedra with P; = () iff i = 0. The relations cl(P;) C P;
is decidable. Rational polyhedra are closed under the binary intersection and the
regularized binary union. These operations are computable as they rely only on
rational arithmetic and comparison of rational numbers.

A partial open rational polyhedron is a pair of disjoint open rational polyhedra.
From the effective enumeration (P;);c,, of open rational polyhedra, one can obtain
an effective enumeration (P;);e,, of the partial open rational polyhedra.

The domain-theoretic notion of computability has the essential weakness of lack-
ing a quantitative measure for the rate of convergence of basis elements to a com-
putable element. This shortcoming has been redressed by enriching the domain-
theoretic notion of computability with an additional requirement which allows a
quantitative degree of approximation.

Definition 2.2 A computable partial solid (A, B) is u-computable if u(A) and p(B)
are both computable real numbers.

Definition 2.3 A computable partial solid (A, B) is Hausdorff computable if there
is a total recursive function f such that:

o A= Uz’ewoa(f(z')) with dg (A, Oa(f(i))) <27 and dy (A, Og(f(i))) <27,

e B = UiEwOﬂ(f(i)) with dH(E, 6ﬂ(f(z’))) < 27 and dH(BC, Og(f(i))) < 277,



3 Partial Convex Hull

Assume that N points in the plane R¢ are given and we want to compute the convex
hull of them. In computable analysis, each real number can be approximated with a
nested effective sequence of rational intervals; therefore each point in R? is approx-
imated with a nested effective sequence of rational d-rectangles. This framework is
also compatible with solid modeling in practice. For example, in CAD, because of
uncertainties of the input data, each point in the plane has a threshold of accuracy
and can therefore be considered as a rational rectangle.

To capture points in the plane, we consider IR?, the domain of all non-empty
compact rectangles [a,b] X [c,d] in the plane, with the whole plane as the bottom
element, partially ordered by reverse inclusion.

Note that the domain IR? can be considered as a sub-domain of SR?. A point p
of the plane can be represented as a partial solid (@, R? \ {p}). Similarly, a compact
rectangle R in IR? is represented by the partial solid (&, R? \ R), and we refer to it
as a partial point.

Given N d-rectangles in R?, N partial points, we define a partial solid in such a
way that whenever the N d-rectangles are actually refined into smaller and smaller
d-rectangles converging into N points, then the sequence of the corresponding partial
solids converges to the convex hull of these N points. In other words, we define a
continuous map f : (IR?)Y — SR? for computing the partial convex hull of N given
d-rectangles.

Here we consider the 2-dimensional case, the whole discussion can be generalized
in a same way to the d-dimensional. We define partial convex hull function as
following;:

f: IR)Y - SR
R ~ (LLE)

where R = (Ry,..., Ry) represents an ordered list of rectangles in the plane R2.
The open sets I and FE stand for the interior and the exterior of the partial convex
hull of R. The exterior of the convex hull of R is the set of points of the plane that
are surely not in the convex hull of the (ordinary) points and the interior is the set
of points that are surely in the convex hull of the set of (ordinary points).

In order to give the formal definition, let C' be the classical convex hull map
taking a set of points to the convex hull of them, considered as a compact subset of
the plane

c: (RN S CR2
(Z1,--zn) = {8 iz | DN, A =1 with A; > 0}

where CR? is the set of all non-empty compact sets with the Hausdorff metric. For
a given ordered list of N d-rectangles R in (IR?)" define

P(R) ={(p1,..-, pn) | pj € Rj for j =1,...,N},



to be the set of all possible N-tuples of points of the d-rectangles. We now put

LE) =] cw).( J cw)r

pEP(R) PEP(R)
Lemma 3.1 The map f is monotone.

_ Proof. Consider two order lists of rectangles R, and Ry in (IR%)Y such that
R C Ry. Let f(R1) = (L, E1) and f(Ry) = (I2, E) we have

f(ﬁl) C f(RQ) p= I1 - I2 and E1 C EQ.

i From the definition, it follows that

R1 C RQ = P(RQ) C P(R1)
= N CM®<S N Cg
pEP(R1) g€ P(R»)
= I CI.
Similarly Fy C FEs. O

An alternative way to compute the interior part of the partial convex hull, using
the idea of the support function, introduced below.
Define H to be the set of all the open half-planes, then

C(X)=(\{H|H € 1,X C H}.

We showed that I = (ﬂpep(ﬁ)C(p))O, now with the above notation we have:

) ¢w = () ({HIHeHC(p)C H}

peP(R) pEP(R)
= ({H|H € #,3p € P(R),C(p) C H}
= ({H|H e #,¥j=1,...,N :3p; € Rj,p; € H}

For each s in S' (S is the unit circle, S?~! the unit sphere in R%), we call H,
to the set of all the half-planes whose equation can be written as s.x < b. For any
half-plane H, there exists a unique s € S! such that H € H,. We have then :

Nper@C®) = (| ({HIH € Hy,¥j=1,...,N : 3p; € Rj,p; € H}.
seS1

Consider the last intersection in the above Formula. Since the intersection of half-
planes sharing the same direction s is itself a half-plane of direction s (in this case
a closed one), therefore the equation of the intersection half-plane can be expressed
as

s.x > M with M = max min s.p;.
J DpjER;



But the the minimum value of s.p; for all p; € R; is reached when p; is one of the
vertices of R;. So in the above Formula one can restrict p; to one of the vertices of
R;. Define P*(R) to be the set of all possible N-tuples of vertices of the rectangles
R; :

P*(R) = {(v1,..., vn) | vj is a vertex of R; for j =1,...,N}.

This proves the following lemma.

Lemma 3.2 We have I = (ﬂvep*(}—z)C(v))". O

Define V : (IR?)NV — R*Y with V/(R) = ('ujl-, vjz,v;?, v?)é-v:l, an N-tuple of 4-tuples,
1,2 ,3 4

considered as a 4N-tuple. Here (v;,v5,v5,v; );vzl are the vertices of the rectangle

R; starting from bottom left corner and going in anti clockwise direction. From the

classical definition of the convex hull it follows that U R

pEP(E)C(p) = C(V(R)), which
proves the following lemma.

Lemma 3.3 We have E = (C(V(R)))C. O
We need the following two lemmas for the proof of the main proposition.

Lemma 3.4 The convez hull map C : (R?)N — CR2, is a continuous function with
respect to the product topology on (R2)N and the Hausdor{f metric on CR?.

Proof. First we show the uniform continuity of C' when all but one of its arguments
are fixed, that is : for any € > 0 there exist a § > 0 such that

d((l‘l,wg,. .. ,IN), (yl,.’L‘Q,. .. ,:EN)) )

implies
di(C(z1,%9,...,2N),C(y1,T2,...,ZN)) < €.

In fact § = ¢ gives the required condition. Let

N N
A = {A1x1+2)\ixi | ZAiZIWithAiZO}

=2 =1
N N

B = {)\1y1 + Z)\Z.’L‘Z | Z i =1 with \; > 0}
=2 =1

Define A, = {z € R?| d(z,a) < r for some a € A} (the definition of B, is similar).
We have

dH(C(iL‘l,IEQ,...,:L‘N),C(yl,.’ljg,...,:EN)) = dH(A,B)
= inf{AC B, and B C A,}.
r

Note that
d((‘Tl?‘(B?a s axN)a (yl;fEZ, R 7$M)) = d(xlayl)'



Now assume that d(z1,y1) < e. For each a = A\jz; + ZZI\LQ A;iz; in A, define b €
B with b= A\y1 + 25\22 Aiz;. Then

N N
d(a, b) = |/\1.’E1 + Z XL — AN1x1 — Z )\ZCCZ|
=2 =2

= Mz -y < he<e.

Thus a € B, which proves A C B.. In the same way, one can show that B C A,
and we get dg (A, B) < €.
Next, note that

dH(C(xl,wg,...,wN),C(yl,yg,...,yN)) < dH(C(:El,IEQ,...,:L‘N),C(yl,xg,...,:EN))+
dg (C(y1,72,...,2N)),C(y1,¥2,73,...,2ZN)) +
oot

dy (C(ylay27 s ayN—la"EN))a C(ylay27 cee ayM)) 3

from which the continuity of C follows from the above uniform continuity. O

Lemma 3.5 The map — N — : CR% x CR? — CR? is continuous at all (A,B) €
CR? x CR? such that AN B is a reqular non-empty closed set. O

Corollary 3.6 The map

C': (IR%)N —
(Rla ey RN) = (ﬂvep*(}_z) C(U))O

18 continuous. O
Proposition 3.7 The partial convex hull function f is Scott continuous.

Proof. From Lemma 3.1, f is monotone. It remains to show that f also
preserves lubs of directed sets. Since (IQ?)" is a basis for continuous domain (IR?)"
it is sufficient to prove that f preserves lubs of increasing chains in (IQ?)". Assume

that (Q;)icw is a given increasing chain with | |;. Q; = R.
By Lemmas 3.2 and 3.3 we have

f®) = (LE)=|( [ CW),(CV(R)*

vEP*(R)
|_| f(@Q;) = (Uiewli,ViewE;) where
1EwW
L = (] CW),E=(CV(@Q))F
veP*(Q;)
Now from Lemma 3.4 and Corollary 3.6 it follows that f(R) = Uicw f Q). 0

6



Corollary 3.8 Letp = (p1,-...,pn) € (IR?)Y be an N-tuple of non-collinear points
in the plane B2, then f(p) = (I, E) is a mazimal partial solid in SR? with I equal
to the interior and E equal to the complement of the convex hull of the points p;.

O

3.1 Computability

In the previous section we proved that f : (IR?)Y — SR? is a continuous function,
It is easy to check that f is computable. Consider (IQ?)" as a countable basis for
(IR?)N and (P;)ic., (partial open rational polygon) as a countable basis for SR?.
They give effective structures for the w-continuous domains (IR?)" and SR?. The
continuous map f is now computable if the set

{<m,n > P, < f(Q,)}

isr.e. Let f(Q,) = (I, E) then I and E are two rational polygons in R?. In Section
3 we saw how to compute I, and F,,. Therefore

P < f(Q,) & Pu < (In,En)
& (Pagm), Pam)) < (Pr, )
& (cl(Pagm)) C Pr) &cl(Pgm)) C 1)

The last relation is recursive and the set {< m,n > |P,, < f(Q,)} is in fact a
recursive set. This implies that f is a computable map.

In order to give a quantitative degree of approximation we will prove the Lebesgue
and Hausdorff computability of f in the next two sections.

Remark If a rectangle R € IR? is Lebesgue (Hausdorff ) computable then its
vertices are computable. If (R,,)ncw in (IR?)V is a Lebesgue (Hausdorff) computable
sequence then the sequence of 4N-tuples, (V(ﬁn)) is computable.

new’

3.2 Lebesgue Computability

In this section we discuss the Lebesgue computability of f : (IR?)V — SR2.

Proposition 3.9 The map f : (IR?)N — SR? takes any N-tuple of p-computable
rectangles to a u-computable partial solid in SRZ.

Proof. Assume that R = (R1,..., Ry) is given and each R; is p-computable.
Let f(R) = (I, E), we have

fR) = | {f(@)Q; < R} = (Viewli, View By).
€W
The partial solid (I, E) is pu-computable iff there exists a total recursive function
p : N — N such that

p() — p(I,i) < 27% and p(E) — p(Byp)) < 27" see [6].

7



First consider the exterior part. Note that u(E) — p(E;) is the area of the region
between the boundaries of E and E; (Figure 1.a). For a polygon C € R? let I(C) be
the length of the perimeter of C.

Figure 1: a , b.

We claim that the area of the region between the boundaries of £ and E; is less
than [(0(F;)) du (R, Q;)- For each edge e of 9(E;), consider the rectangle with one
edge e and perpendicular edge of length dy (R, Q;) on the same side of e which E;
lies. These rectangles cover the region between the boundaries of E and E; (Figure
1.b).

Since (Q;)ic is increasing, therefore Vi € N : [(8(E;)) < [(0(F1)) and in general
we have

u(E) — p(E;) < I(O(E1))du(R, Q).

The same relation is true for the inner part: p(I)— u(Z;) is the area of the region
between the boundaries of I and I; (Figure 2). The area of the region between the
boundaries of I and I; is less than [(8(I;))dy (R, Q;).

For each 7 we have I; C I C E¢ C EY, therefore
Vi € N: [(0(L;)) < I(O(Er)).

Now we construct the function p : N — N as follows. For a given ¢ € N if
1(0(E1))dy (R, Q) < 27* then take p(i) = 1, otherwise check the next approximation
@, and repeat. Note that dy (R, @Q;) is computable. Since (Q,)ic, is increasing, we
have di (R, Q;41) < du(R, Q) which implies

Vj € N: I[(O(E1))du (R, Q;11) < 1(3(E1))du(R,Q;).

8
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Figure 2:

This shows that after m finite stages we reach @,, such that
1(0(E1))du (R, Q) <27".
Then we take p(i) = m. From the above discussion we have

p(I) = p(Iy@) < 27" and p(E) — p(Eyqm) < 27°

O

We can extend the proof of the previous proposition to show that f is u-

computable. The computable function f is y-computable if it takes any u-computable

sequence of N-tuples of rectangles in (IR?)V to a u-computable sequence of partial

solids in SR?. In the following, we show that this is true for a bounded sequence as
input.

Proposition 3.10 Assume that (Rk)k_&, s a p-computable sequence of ordered list
of rectangles in (I[—d,d]?)N. Then (f(Rg))rew is a u-computable sequence of partial
solids in S[—d,d)?.

Proof. For each Ry = (Ry1,..., Rin) take f(Ri) = (Ix, Ex). We have

F(R) = | | (@) = (Vicwks; VicwEri),

€W

where (Q;)icw is an increasing chain of ordered list of rectangles way-below Ry, with
lub Ry. The sequence of partial solids ((I, Ej))rew is p-computable, by Lemma 6.3
in [6], if there exists a total recursive function a : N x N — N such that

pI) = plLagi k) < 27" and p(Br) — p(Eqir) < 27"



We have Ry, € (I[—d,d]?)" for k € w, therefore there exists a rectangle M such that
Uﬁvlejk C M for k € w and

Iy C M and E; C M.
Now as in proof of Proposition 3.9, one can show that

VE o pu(Ey) — p(Bri) < HO(M))dp (R, Q)
VE o p(l) — p(Ik) < UO(M))dy (R, Qki)-

We define a(i, k) to be the first integer j such that I(8(M))dy (Rk,Qy;) <27%. O

3.3 Hausdorff Computability

In this section we discuss the Hausdorff computability of f.

Lemma 3.11 Assume that two ordered list of rectangles R1, Ry € (I[—d,d*)" are
given such that Ry C Ry. Let E| = (C(V(_Rl)_))c and Ey = (C(V(R)))¢ then
dp(E4, E2) and dg (ES, ES) are less than dg(R1, Rg).

Proof. From R; C RQ_ it follows that E» C Ei. Assume that dg(R1, Rs) = e.
In order to show that dy(E1, F9) < ¢, it is enough to prove the following,

Ve € 0(F1)3y € Ey : d(z,y) <e.
Consider z in 0(E1), then z lies on some edge e1; and therefore
z=Mp1i+ (1 —XN)g for0 <A <1,

where p1; and qi; are vertices of the edge e1;. Note that dy(Ry, Rz) is equal to the
maximum distance between the corresponding vertices of the corresponding rectan-
gles, therefore

s @1; € Fo = d(pri,py;) < € and d(qus,q3;) < e

Define
y = Ap1; + (1= A)qu;.

Since FE» is a convex set we have y € Ey. Furthermore

d(z,y) = Ad(pui, p1;) + (1 — N)d(qui, q13) < e
The other relation is proved in a similar way. O

Proposition 3.12 The map f : (I|—d,d*)Y — S[—d,d)? takes any N-tuple of
Hausdorff computable rectangles to a Hausdorff computable partial solid.

10



Proof. Assume that R = (R1,...,Ry) is an N-tuple of Hausdorff computable
rectangles R;. Let f(R) = (I, E), we have

f(R) = U{f(az)laz < R} = (UiEwIz'a UiEwEi)'

€W

The partial solid (I, F) is Hausdorff computable iff there exists a total recursive
function p : N — N such that

dH(T,Tp(i)) < 27%and dH(IC,I;(Z-)) <27t

Denote the vertices of polygon I with v;, (j = 1,...,|V(I)|) and vertices of I;
with v, (7 = 1,...,|V(;)]). Then from convexity of polygons I and I; it follows
that

dH(T, Ti)&dH(Ic, IZC) S m]ii.x min d(Uk, 'Uij)-
J
Now we construct the function p : N — N as follows. For a given integer number
i, consider @, such that dy (R, Q;) < 27" then compute the upper bound of dy (I, I;)
as described in above. If it was less than 27°* take p@) = 4, otherwise check the next

approximation @Q; 11 and repeat. Note that since I; C I;11 C I and they are all
convex polygons, we have

du(I,1;+1) < du(I,I;).
Therefore after m finite stages we reach Q,,, such that
dH(T, Tm) < 2_i,

and we take p(i) = m.
Furthermore from Lemma 3.11 we have

dH(Ec7 ;(z)) < dH(Ra Qp(z)) < 2_ia

which finishes the proof. O

In a similar way to the p-computability case, we can extend the proof of the
previous proposition to show that f is Hausdorff computable. The computable
function f is Hausdorff computable if it takes any Hausdorff computable sequence
of N-tuples of rectangles in (IR?)" to a Hausdorff computable sequence of partial
solids in SR?. In the following, we show that this is true for a bounded sequence as
input.

Proposition 3.13 Assume that (Ri)rco is a Hausdorff computable sequence of or-
dered list of rectangles in (I[—d,d)>)N. Then (f(R))rew is a Hausdorff computable
sequence of partial solids in S[—d,d]?.

11



Proof. For each Ry = (Ry1,---,Rrn) take f(Rg) = (I, Fx). We have

F(R) = | | @) = (Vicwks; VicwEri),

€W

where (Qy;)icw is an increasing chain of ordered list of rectangles way-below Ry
with lub R;. The sequence of partial solids ((I1, Ex))rcw is Hausdorff computable,
by Lemma ?7 in [6], if there exist total recursive functions a,b: N x N — N such
that

di(Tg, Towy) < 27" and d(I5, I ) < 277,
dH(Ek:an(i,k)) < 27% and dH(EliaEg(z’k)) <27t

We have Ry, € (I[—d, d]2)N for k € w, therefore there exists a rectangle M such that
U;-V:lek C M for k € w and

Iy C M and E; C M.

We define a(i, k) to be the first integer j such that du(ITg,Ixj) < 27° and b(4, k) to
be the first integer j such that dy(Ey, Ex;) < 27" O

3.4 Boundary Rectangle

An element of a set of points in the plain is called a boundary point if it is a vertex of
the convex hull of these points. Now consider the question: is the point p a boundary
point ? Using floating point computation we cannot give the correct answer to this
question, but in the computable solid modeling we can answer it with a computable
boolean function. Each point in the computable solid modeling is approximated
with a rectangle. A rectangle R among a finite number of planar rectangles is a
boundary rectangle, if the exterior part of the partial convex hull of any refinement
of these rectangles will always contain a point of R. Based on this observation we
define the following boolean function :

b: (IRY) x (IRH)N-1 {tt,fF}
tt c(R))CE
(R1,(Rg,...,Ry)) +— ff cd(Ry)CI
1 otherwise

where cl(R;) denotes the closure of Ry and (I, E) is the partial convex hull of the
rectangles Ro, ..., Ry. It is clear that b is a well defined map.

Lemma 3.14 The map b is monotone.

Proof. A function with two variables is monotone, if it is monotone for each
variable when the other one is fixed. Therefore the proof has two steps as follows.

12



i) Assume that R = (R, (Ra,...,Rn)) and R = (R}, (Ry,...,Ry)) in (IR?) x
(IR2)N-1 are given such that RC R, i.e. Ry D R,. Let (I,E) = f(Ry, ..., Ry).

b(Rl,(RQ,...,RN)) =tt = Cl(Rl)
= d(R)) C cl(Rl) CE
= b(Ry,(Ry,...,Ry)) =
b(R1,(R2,...,RN)) =ff = Cl(R1) cI
= d(R}) C l(Rl) cI
= b(Ry, (Ry,-.., Ry)) =
Thus b((Rla(RZa"'aRN))) Eb(( Il’(RQa" 1 )))

ii) Assume that R = (R1, (Ra,...,Ry)) and R = (R, ( by, Rly)) in (IR?) x
(IR?)N—1 are given such that R C R. Let (I,E) = f(Rg,...,Ry) and (I',E') =
f(Rh,...,Rly), since R C R wehave ICI' and E C E.

b(Rl, (RQ, A ,RN)) =tt = Cl(Rl) CFE
== Cl(Rl) C E C E'
= b(Ry,(R),...,RYy)) = tt
b(Ri,(R2,...,RN)) = = d(R1)CI
= Cl(Rl) cI
= bR ,(R'z Ry)) =ff
Thus b((R1, (Rg; .-, RN))) Eb((Ry, (Ry,. .., Ry)))- O

Proposition 3.15 The map b is continuous.

Proof. From Lemma 3.14, b is monotone. In following we show that it also
preserves lubs of directed sets. Assume that (Q,)icw is a given increasing chain in
(IQ?) x (IQ?)N~! with lub R = (Ry, (Rz,-..,Rn)). We show b(R) = || b(Q;). One

1€w
side of the equality is clear

Vi:Q; CTR=Vi:b@Q,;) CbR)=| |b(@Q;) CHbR

€W

For the other side, take (I, E) = f(Rs,...,Ry) and (I;, E;) = f(Ri2,--., Rin)-
Assume that b(R) = tt thus cl(R;) C E. Since

NicwRi1 = Ry and Ujey, E; = F,

it follows from the compactness of Ry and R;; that there exists j such that c/(R;1) C
E;. Therefore b(Q]) = tt which implies | |, b(Q;) = tt. A similar proof holds when
b(R) ff. This shows that b(R) C | ], b(Q;). O

Proposition 3.16 The map b is computable.

13



Proof. Let (I, E) = f(Q2,-..,Qn), we have to show that the relations

b(Q1,(Q2,...,Qn)) = tt
b(Qla(QQa---aQN)) = ff

are both r.e. The first reduces to c/(Q1) C E and the second to cl(Q;) C I.
Since both side of the relations are rational polygons, it is in fact decidable by
assumption. O

4 Algorithms for Computing the Partial Convex Hull

In this section we give two algorithms for computing 2-dimensional partial convex
hull of a given set of rectangles.

FEzterior. From Lemma 3.3 we have

E=(C(Vv(@))".

Therefore, in order to compute the exterior part of the rational rectangles @, consider
all the vertices of all rectangles and then simply use one of the existing algorithms
for computing the convex hull. Since we are dealing with rational numbers this
will give us the exact result. Using the fact that the complexity of any convex hull
algorithm is at least O(nlog(n)), for N given rectangles we can compute the exterior
part in O(N log(N)).

Interior. In the section 3 we showed that

I= () ({HIH€Ms,¥j=1,...,N :Iv; € V(Q;),v; € H}.
sest

Define hy = (\{H|H € H,,Vj=1,...,N : Jv; € V(Q,),v; € H}. For a given s it is
easy to compute h;. The equation of h; is s.z—b < 0 where b = max; minpieV(Qi) SD;-
This expression shows that b is a continuous function of s.

Lemma 4.1 Let s; be the direction of the the gt face of I and xj a point in the
interior of the j*" face. Then z; belongs to the boundary of hs;.

Proof. The equation of hy; is sj - x — b(s;) < 0. Assume that z; is not on the
boundary, that is s; - z; —b(sj) = € < 0. Then from the continuity of b as a function
of s, there is a neighborhood of s; in which s-z; — b(s) < €/2 < 0. Define this
neighborhood by A(s;,s) < a.

Since z; is in the interior of the 4t face, there exist two other points y; and z;
on the j face each one lies in one side of z;, moreover : z; = (y; + 2;)/2. For any
s, both s -y; — b(s) and s - z; — b(s) must be non positive (since h, contains Ig).
Note that (y; — z;) is orthogonal to s;. As soon as s is outside the neighborhood
then A(sj,s) > o and |s- (y; — 2;)| > ||y; — #;]| sin(a). From

(s -5 = b(s)) = (s- 2 = b(s))| = |lyj — 2| sin(e)

14



and the fact that

s-y; —b(s) = (s-y; —b(s)) + (s zj — b(s))/2,

we get
sj - 15 —b(s;) < —1/2|ly; — ;|| sin(cv).
Therefore, there is strictly negative constant 3, such that for each s (inside or outside

the neighborhood of s;) s-z; —b(s) is less than 3, this means that the ball centered
in z; of radius 8 is in I and we get the contradiction. O

Since z; in the interior of the 4§ face belongs to the boundary of hs; where hg,
is the half-plane supporting the j** face, therefore I = Njhs;. From Lemma 3.2, T
is the intersection of the 4V polygons and its faces are parts of the faces of these
polygons. Although there are 4" polygons but the total number of the faces is at
most 16N (N — 1)/2 (there are N(N — 1)/2 pairs of @); and (); and each one gives
16 possible faces).

Based on the above argument for computing the interior part of the partial
convex hull of the rectangles @); one can use the following algorithm. For each of
the 16 N(IN — 1)/2 possible lines, supporting the faces, check which ones are the
boundary of one of the h;;. From the definition, a line is boundary if it contains one
vertex of each rectangle all in the same side, and this cost O(NN) operations. Finally,
intersection of the boundary line is the the interior part of the partial convex hull,
and this cost O(Nlog(N)). Therefore we get an algorithm of O(N?). In (R)? the
same algorithm would give a complexity of O(N (1),

We describe in the rest of the section how to compute an approximation of I in
O(N log(N)).

For a given N-tuple of rectangles @, let B = (Q1,...,Qu) be the M-tuple
(M < N) of those rectangles which contribute at least one vertex to the boundary
of the exterior part of the partial convex hull of Q. Define

P*(B) ={(v1,..., vm)|v; is a vertex of Q; € B for j =1,..., M},

and

Lemma 4.2 We have I, C I.

Proof. Note that each v € P*(B) is a sub-tuple of some w € P*(Q) (i.e. each
components of v is a component of w). Therefore

Vw € P*(Q)3v € P*(B) : C(v) C C(w).

Take z € I then Vv € P*(B) : z € C(v). Using the above property we get

Vw € P*(Q) : x € C(w) which implies z € I. O

After computing E, we can define an order for the vertices of the boundary of
E. Consider the left-most vertex as the origin and move in clockwise direction until
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the last vertex. Now for any line between two vertices we can speak of the left and
the right side according to the order of the vertices.

For any two consecutive rectangles @; and Q;,1 in B define L; to be the line
between two vertices of ); and ;41 such that the rectangles @); and Q;11 lie com-
pletely to the left of L;. The right hand side of L; defines the half-plane H;.

Lemma 4.3 We have: I = ni:l,...,M H;.
Proof. One side of the equality is trivial,

VweP'B): (]| HiCCw)= ()| HiCl.
i=1,...,.M i=1,...,M

Now consider = € Ij. There exists ¢ such that x lies to the right of L;. This implies

that z € ) H;. O
i=1,0,M

Based on the above lemma we can compute I, as an approximation of I and in

fact it is enough to compute ﬂizl,___, 1 Hi- For each pair of rectangles in B one can

compute in a constant time the half plane H; (there are at most N of them). Then

I, (intersection of half planes) is computed in O(N log(N)).
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