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Abstract.  New technologies in the form of improved instrumentation have made it 
possible to take detailed measurements over recognition patterns.  This increase in the 
number of features or parameters for each pattern of interest not necessarily generates 
better classification performance.  In fact, in problems where the number of training 
samples is less than the number of parameters, i.e. “small sample size”  problems, not 
all parameters can be estimated and traditional classifiers often used to analyse lower 
dimensional data deteriorate.  The Bayes plug-in classifier has been successfully ap-
plied to discriminate high dimensional data. This classifier is based on similarity 
measures that involve the inverse of the sample group covariance matrices.  However, 
these matrices are singular in “small sample size”  problems.  Thus, several other 
methods of covariance estimation have been proposed where the sample group co-
variance estimate is replaced by covariance matrices of various forms.  In this report, 
some of these approaches are reviewed and a new covariance estimator is proposed.  
The new estimator does not require an optimisation procedure, but an eigenvector-
eigenvalue ordering process to select information from the projected sample group 
covariance matrices whenever possible and the pooled covariance otherwise.  The ef-
fectiveness of the method is shown by some experimental results. 

1   Introduction 

New technologies in the form of improved instrumentation have made it possible to take 

detailed measurements over recognition patterns in a relatively cheap and efficient way.  

This increase in the number of features or parameters for each pattern of interest provides 

a wealth of detailed information, but not necessarily better classification accuracy.  In fact, 

when the dimension of the feature space is larger than the number of training examples 

per class, not all parameters can be estimated and consequently pattern recognition tech-

niques often used to analyse lower dimensional data deteriorate.  This problem, which is 

called a “small sample size”  problem [Fuk90], is indeed quite common nowadays, espe-
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cially in image recognition applications where patterns are usually composed of a huge 

number of pixels. 

Statistical pattern recognition techniques have been successfully applied to discriminate 

high dimensional data.  In particular, the Bayes plug-in classifier is known as one of the 

most often used statistical parametric methods for high dimensional problems.  This clas-

sifier is based on similarity measures that involve the inverse of the true covariance matrix 

of each class.  Since in practical cases these matrices are not known, estimates must be 

computed based on the patterns available in a training set.  The usual choice for estimating 

the true covariance matrices is the maximum likelihood estimator defined by their corre-

sponding sample group covariance matrices. However, in “small sample size”  applications 

the sample group covariance matrices are singular. 

One way to overcome this problem is to assume that all groups have equal covariance 

matrices and to use as their estimates the weighting average of each sample group covari-

ance matrix, given by the pooled covariance matrix calculated from the whole training set.  

This pooled covariance matrix will potentially have a higher rank than the sample group 

covariance matrices (and would be eventually full rank) and the variances of their ele-

ments are smaller than the variances of the corresponding sample group elements.  Yet the 

choice between the sample group covariance matrices and the pooled covariance matrix 

represents a limited set of estimates for the true covariance matrices. 

Thus, in the last 25 years, several other methods of covariance estimation have been 

proposed where the sample group covariance estimate is replaced by covariance matrices 

of various forms.  As far as known, all these covariance estimators have been verified to 

improve the classification accuracy for computer-generated data, small training set recog-

nition problems and moderate number of groups.  In fact, these ideas have showed to be 

true in cases where no more than 20 groups are required, but have not been verified for a 

large number of groups. 

In this way, one of the objectives of this report is to investigate the performance of pro-

posed covariance estimators in image recognition problems that consider small training 

sets, large number of features and large number of groups.  Biometric image recognition 
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problems, such as face recognition, are examples of promising applications.  Another 

objective of this work is to propose a new covariance estimator for the sample group co-

variance matrices given by a convenient combination of the sample group covariance 

matrix and the pooled covariance one.  This new estimator should have the property of 

having the same rank as the pooled estimate, while allowing a different estimate for each 

group. 

The organisation of this report is as follows.  Section 2 contains a brief and theoretical 

description of statistical pattern recognition problems, including a discussion between 

parametric and non-parametric methods.  Section 3 describes the Bayes plug-in classifier 

and formally states the “small sample size”  problems related to this type of classifier.  A 

number of Bayes plug-in covariance estimators available in statistical pattern recognition 

regarding the difficulties inherent to small sample size settings is reviewed in section 4.  

Section 5 presents the basic concepts of the new covariance estimator proposed in this 

work.  An account of experiments and results carried out to evaluate and compare the new 

covariance approach in two pattern recognition applications is presented in section 6.  

Finally, section 7 summarises the main ideas presented and concludes the work. 

2   Statistical Pattern Recognition 

Statistical pattern recognition has been used successfully to design several recognition 

systems.  In statistical pattern recognition, a pattern is represented by a set of p features or 

measurements and is viewed as a point in a p-dimensional space. 

The decision making process in statistical pattern recognition consists of assigning a 

given pattern with p feature values T
pxxxx ],...,,[ 21= to one of g groups or classes 

gπππ ,...,, 21 on the basis of a set of measurements obtained for each pattern.  The meas-

urements associated with the population of patterns belonging to the iπ  class are assumed 

to have a distribution of values with probability conditioned on the pattern class (or prob-

ability density function).  That is, a pattern vector x belonging to class iπ  is viewed as an 

observation drawn randomly from the class-conditional probability function )|( ixp π .  
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There are a number of decision rules available to define appropriate decision-making 

boundaries, but the Bayes rule that assigns a pattern to the group with the highest condi-

tional probability is the one that achieves minimal misclassification risk among all possi-

ble rules [And84]. 

  The idea behind the Bayes rule is that all of the information available about group 

membership is contained in the set of conditional (or posterior) probabilities.  The Bayes 

decision rule for minimizing the risk in the case of a 0/1 loss function can be formally 

stated as follows [Jam85]:  Assign input pattern x  to class iπ  if  

)|()|( xPxP ji ππ >  , for all ij ≠ . (1) 

If there is more than one group with the largest conditional probability then the tie may be 

broken by allocating the object randomly to one of the tied groups.  Yet quantities such as 

)|( xP iπ  are difficult to find by standard methods of estimation, this is not the case, how-

ever, for quantities such as )|( ixp π .  The probability of getting a particular set of meas-

urements x  given that the object comes from class iπ , that is the class-conditional prob-

ability )|( ixp π , can be estimated simply by taking a sample of patterns from class iπ  

(likelihood information).  Fortunately there is a connection between )|( xP iπ  and 

)|( ixp π  known as the Bayes theorem [Jam85]: 
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It is important to note that all the items on the right-hand side of the equation (2) are 

measurable quantities and so can be found by sampling.  The item )( ip π  is simply the 

probability that the pattern comes from class iπ  in the absence of any information (prior 

probability), i.e. it is the proportion of class iπ  in the population.   Using the Bayes theo-

rem described in (2) with the previous Bayes rule (1) gives the following decision rule: 

Assign input pattern x  to class iπ  if 
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, for all ij ≠ and gk ≤≤ 1 . 
(3) 



 5

As on both sides of the inequality the denominators are equal, the Bayes rule can be con-

veniently written as follows:  Assign pattern x to class iπ  if 

)()|(max)()|(
1

jj
gj

ii pxppxp ππππ
≤≤

= . (4) 

The classification rule defined in (4) is the final practical form of the optimal Bayes deci-

sion rule.  This practical form of the Bayes decision rule is also called the maximum a 

posteriori (MAP) rule. 

2.1   Parametr ic and Non-Parametr ic Methods 

Several methods have been utilized to design a statistical pattern recognition classifier.  

Strategies for choosing the most appropriate method basically depend on the type and the 

amount of information available about the class-conditional probability densities. 

The optimal Bayes rule discussed in the previous section can be used to design a classi-

fier when all of the class-conditional densities are specified.  In practice, however, the true 

class-conditional densities are typically not known and must be estimated from the avail-

able samples or training sets.  If at least the form of the class-conditional densities is 

known (e.g. multivariate Gaussian distributions) but some of the parameters of these den-

sities (e.g. mean vectors and covariance matrices) are unknown, then this problem is de-

fined as a parametric decision problem.  A common strategy to tackle this problem is to 

replace the unknown parameters in the density functions by their respective estimated 

values calculated from the training sets.  This strategy is often referred as the Bayes plug-

in classifier and will be fully described in the next section. 

When the form of the class-conditional densities is either not known or assumed, non-

parametric models have to be considered.  In non-parametric problems, either the density 

functions must be estimated by using kernel functions or the class decision boundary has 

to be directly constructed based on the available training samples.  These ideas are respec-

tively the bases of the two most common non-parametric models: the Parzen Classifier 

and the k-nearest neighbour (k-NN) classifier – see [Fuk90] for more details. 
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Another subtle point in choosing a convenient statistical pattern method is related to the 

amount of information available.  When a classifier is designed using a finite number of 

training samples, the expected probability of error is greater than if an infinite number of 

training samples were available.  It is reasonable to expect that the probability of error 

decreases as more training samples are added and this behaviour obviously depends on the 

type of classifier used [Hof95].  Raudys and Jain [RJ91] found that the additional error 

due to finite training sample size for parametric classifiers was inversely proportional to 

N, where N is the total number of training samples.  On the other hand, they showed that 

for the non-parametric Parzen classifier this additional error was inversely proportional to 

N .  This result indicates that the additional error due to finite training sample size de-

creases more quickly for parametric classifiers than for non-parametric ones [Hof95].   

Therefore, since in image recognition applications the number of training samples is usu-

ally limited and significantly less than the number of parameters considered, parametric 

techniques seem to be more convenient than non-parametric ones. 

3   The Bayes Plug-in Classifier  

One of the most common parametric methods applied to statistical pattern recognition 

systems is the Bayes plug-in classifier. 

The Bayes plug-in classifier, also called the Gaussian maximum likelihood classifier, is 

based on the p-multivariate normal or Gaussian class-conditional probability densities 
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where µi and Σi are the true class i population mean vector and covariance matrix.  The 

notation | |, i.e. a pair of vertical lines, denotes the determinant of a matrix. 

The class-conditional probability densities ),|( iii xf Σµ  defined in (5) are also known 

as the likelihood density functions.  Substituting equation (5) into equation (4) and assum-

ing that all of the g groups or classes have the same prior probabilities, that is 

)()( ji pp ππ = , for all ij ≠ and gji ≤≤ ,  1 ,  (6) 
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lead to the following Bayes classification rule form: Assign pattern x to class i if  

),|(max),|(
1

jjj
gj

iii xfxf Σ=Σ
≤≤

µµ  (7) 

Another way to specify equation (7) is to take the natural logarithms of the quantities 

involved, such as 
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where di(x) is often called the quadratic discriminant score for the ith class.  Since the 

constant (p/2)ln(2π) is the same for all classes, it can be ignored.  Therefore, the optimal 

Bayes classification rule defined in equation (7) may be simplified to: Assign pattern x to 

class i if 
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The Bayes classification rule specified in (9) is known as the quadratic discriminant rule 

(QD).  In addition, the measure dj(x) is sometimes referred to as the generalized distance 

between x and jµ .  The first term is related to the generalized variance of the jth group 

and the second term is the familiar Mahalanobis distance between x and the mean vector 

for the jth group. 

In practice, however, the true values of the mean and covariance matrix, i.e. iµ and Σi, 

are seldom known and must be replaced by their respective estimates calculated from the 

training samples available- this is when the term “plug-in”  of the Bayes plug-in classifier 

takes place.  The mean is estimated by the usual sample mean ix  which is the maximum 

likelihood estimator of iµ , that is  
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where jix ,  is observation j from class i, and in  is the number of training observations 

from class i. The covariance matrix is commonly estimated by the sample group covari-

ance matrix iS  which is the unbiased maximum likelihood estimator of Σi , that is 

[ ] 0)),|(ln( =Σ=
Σ∂
∂

iiii xxf µ      when 

∑
=
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=≡Σ
in

j
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1
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1
. 

(11) 

Then, assuming normal and statistically independent data, the sample mean and the sam-

ple group covariance matrix estimates have the property that they maximise the joint like-

lihood of the training observations [JW98], that is, they maximise the product of the mar-

ginal normal density functions: 

∏
=Σ

Σ=
i

ii

n

j
iijiiii xfSx

1
,

,
),|(maxarg),( µ

µ
. (12) 

From replacing (“plug-in” ) the true values of the mean and covariance matrix in (9) by 

their respective estimates, the QD rule can be rewritten as:  Assign pattern x to class i that 

minimizes the generalized distance between x and ix  

)()(ln)( 1
ii

T
iii xxSxxSxd −−+= − . (13) 

3.1   “ Small Sample Size”  Problems 

The similarity measures used for Bayes plug-in classifiers involve the inverse of the true 

covariance matrices.  Since in practice these matrices are not known, estimates must be 

computed based on the patterns available in a training set. 

Although ix  and iS  are maximum likelihood estimators of iµ and Σi, the misclassifi-

cation rate defined in (13) approaches the optimal rate obtained by equation (9) only when 

the sample sizes in the training set approach infinity.  Furthermore, the performance of 

(13) can be seriously degraded in small samples due to the instability of ix  and iS  esti-

mators.  In fact, for p-dimensional patterns the use of iS  is especially problematic if less 
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than p + 1 training observations from each class i are available, that is, the sample group 

covariance matrix is singular if ni is less than the dimension of the feature space. 

One method routinely applied to overcome the “small sample size”  problem and conse-

quently deal with the singularity and instability of the iS  is to employ the so-called linear 

discriminant rule (LD) which is obtained by replacing the iS  in (13) with the pooled sam-

ple covariance matrix 

gN

SnSnSn
S gg

p −
−++−+−

=
)1()1()1( 2211

�

, (14) 

where gnnnN +++= �
21 .  Since more observations are taken to calculate the pooled 

covariance matrix, Sp is indeed a weighted average of the Si, Sp will potentially have a 

higher rank than Si (and would be eventually full rank) and the variances of their elements 

are smaller than the variances of the corresponding Si elements.  Thus, although theoreti-

cally Sp is a consistent estimator of the true covariance matrices Σi only when 

Σ1=Σ2=…=Σg, various simulation studies including [MD74, WK77] have showed that LD 

can outperform QD for small sample sizes even when the individual Σi differ.  In contrast, 

these simulation studies have also showed that QD can significantly outperform LD when 

the samples sizes are large and Σi differ. 

In view of these studies, the choice between the sample group covariance matrices Si 

(or QD classifier) and the pooled covariance matrix Sp (or LD classifier) represents a lim-

ited set of estimates for the true covariance matrices Σi.  Several other methods of covari-

ance estimation have been proposed where the sample group covariance estimate is re-

placed by covariance matrices of various forms.  Some of these approaches are reviewed 

in the next section. 

4   Covar iance Estimators 

As discussed in the previous section, a critical issue for the Bayes plug-in classifier is the 

instability and singularity of the sample group covariance estimate.  Several approaches 

have been applied to overcome these problems and provide higher classification accuracy 
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with small training set size.  Some of these covariance estimators can also be viewed as 

choosing an intermediate classifier between the LD and QD classifiers. 

4.1   Eigenvalues Shr inkage Methods 

When the class sample sizes ni are small compared with the dimension of the measure-

ment space p, the sample group covariance estimates defined in equation (11) become 

highly variable or even not invertible when 1+< pni . 

The effect of that instability has on the QD classifier can be seen by representing the 

sample group covariance matrices by their spectral decompositions [Fuk90] 

∑
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p

k
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T
iiiiS
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φφλ , (15) 

where λik is the kth eigenvalue of Si ordered in decreasing value and φik is the correspond-

ing eigenvector.  According to this representation, the inverse of the sample group covari-

ance matrix is 
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Substituting equation (15) into equation (13) and using the well-known theorem that the 

determinant of a matrix Q is equal to the product of all its eigenvalues [Fuk90], the dis-

criminant score of the QD rule becomes 
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λ
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As can be observed, the discriminant score described in equation (17) is heavily weighted 

by the smallest eigenvalues and the directions associated with their eigenvectors.  There-

fore, the low-variance subspace spanned by the eigenvectors corresponding to the smallest 

sample eigenvalues has strong effect on the Bayes plug-in discriminant rule [Fri89]. 

Another problem related to equation (17) is the well-known upward bias of the large 

eigenvalues and downward bias of the smaller eigenvalues of the sample group covariance 

matrix.  When the sample size decreases the estimates based on equation (11) produce 
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biased estimates of the eigenvalues, that is, the largest eigenvalues are larger than the 

eigenvalues of the true covariance and the smallest ones are biased toward lower values.  

In fact, when the sample covariance matrix is singular the smallest ( 1+− inp ) eigenval-

ues are estimated to be 0 and the corresponding eigenvectors are arbitrary, constraint to 

the orthogonality assumption [Fri89]. 

Hence, the effect of the instability and biasing incurred in estimating the Bayes plug-in 

parameters tend to exaggerate the importance associated with the low-variance informa-

tion and consequently distort the corresponding discriminant analysis.  Several investiga-

tors have demonstrated that Stein-like biased estimators, which basically shrink or expand 

the sample eigenvalues depending on their magnitude, dominate the sample covariance 

matrix under a variety of loss functions [Haf79, DS85].  Moreover, in [EM76] an estimate 

for the inverse of the sample covariance matrix that shrinks the eigenvalues of the sample 

group covariance matrix toward a common value has been developed. Also in [PN82], 

shrinkage estimates of this type have been substituted for Sp and the resulting rules outper-

form LD considering classification accuracy.  In these works, the problem of estimating 

the covariance matrix Si is based on its distribution, often called the Wishart distribution 

[And84]. 

In nearly all of the eigenvalues shrinkage methods quoted, the sample covariance ma-

trix Si must be non-singular, since the probability density function of the Wishart distribu-

tion does not exist unless the sample size ni is greater than the number of parameters p 

[JW98]. As discussed earlier, this constraint is quite restrictive and, therefore, alternative 

covariance estimators have been provided by biasing the Si towards non-singular matrices. 

The most often used approaches are described in the following sub-sections. 

4.2   Discr iminant Reguralization Method 

Several regularization methods have been successfully used in solving poorly and ill-

posed inverse problems [OSu86].  An estimation problem can be briefly stated as a poorly 

posed problem when the number of observations available (training set) is not considera-

bly larger than the number of parameters to be estimated and ill-posed if this number of 
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parameters exceeds the training sample size.  As a result, such parameter estimates be-

come highly variable due to limited training set size. 

Regularization methods attempt to reduce the variability of poorly and ill-posed esti-

mates by biasing them toward values that are considered to be more “physically plausible”  

[Fri89].  The idea behind the term “ regularization”  is to decrease the variance associated 

with the limited sample-based estimate at the expense of potentially increased bias.  The 

extent of this variance-bias trade-off is controlled by one or more regularization parame-

ters [Fri89]. 

Friedman [Fri89] has proposed one of the most important regularization procedures 

called “ reguralized discriminant analysis”  (RDA).  RDA is an alternative to the usual 

Bayes plug-in estimates for the covariance matrices and can be viewed as an intermediate 

classifier between the LD and QD classifiers. 

The Friedman’s approach is basically a two-dimensional optimisation method that 

shrinks both the Si towards Sp and also the eigenvalues of the Si towards equality by blend-

ing the first shrinkage with multiples of the identity matrix.  In this context, the sample 

covariance matrices Si of the discriminant rule defined in (13) are replaced by the follow-
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where the notation “ tr”  denotes the trace of a matrix, that is, the sum of all eigenvalues.  

Thus the regularization parameter λ  controls the degree of shrinkage of the sample group 

covariance matrix estimates toward the pooled covariance one, while the parameter γ  

controls the shrinkage toward a multiple of the identity matrix.  Since the multiplier 

pStr rda
i /))(( λ  is just the average eigenvalue of )(λrda

iS , the shrinkage parameter γ  has 

the effect of decreasing the larger eigenvalues and increasing the smaller ones [Fri89].  

This effect counteracts the aforementioned upward and downward biases of the sample 

group covariance estimates and favours true covariance matrices that are some multiples 
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of the identity matrix.  In fact, the RDA method provides a number of regularization alter-

natives.  Holding the mixing parameter γ  at 0 and varying λ  yields classification models 

between LD and QD classifiers.  Holding λ  at 0 and increasing γ  attempts to unbias the 

sample-based eigenvalue estimates while holding λ  at 1 and varying γ  gives rise to 

ridge-like estimates of the pooled covariance matrix [DPi77, Cam80]. 

The mixing parameters λ  and γ   are restricted to the range 0 to 1 (optimisation grid) 

and are selected to maximise the leave-one-out classification accuracy based on the corre-

sponding rule defined in (13).  That is, the following classification rule is developed on 

the 1−N  training observations exclusive of a particular observation vix ,  and then used to 

classify vix , : Choose class k such that 

)(min)( ,
1

, vij
gj

vik xdxd
≤≤

= , with 

( ) )(),()(),(ln)( /,
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//,/, vjvi
rda

vj
T
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vjvij xxSxxSxd −−+=
−
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(19) 

where the notation /v represents the corresponding quantity with observation vix ,  re-

moved.  Each of the training observations is in turn held out and then classified in this 

manner.  The resulting misclassification loss, i.e. the number of cases in which the obser-

vation left out is allocated to the wrong class, averaged over all the training observations 

is then used to choose the best grid-pair ),( γλ . 

Although Friedman’s RDA method is theoretically a well-established approach and has 

the benefit of being directly related to classification accuracy, it has some practical draw-

backs.  First of all, RDA is a computationally intensive method.  For each point on the 

two-dimensional optimisation grid, RDA requires the evaluation of the proposed estimates 

of every class.  In situations where the optimisation has to be done over a fine grid and a 

large number of g groups is considered, for instance g is a number of 102 order, the RDA 

seems to be unfeasible. Also, despite the substantial amount of computation saved by 

taking advantage of matrix updating formulas based on the Sherman-Morrison-Woodbury 

formula [GL89], RDA requires the computation of the eigenvalues and eigenvectors for a 

(p by p) matrix for each value of the mixing parameter λ .  In addition to the computa-

tional limitation, Greene and Rayens [GR91] have observed that RDA has the disadvan-
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tage of partially ignoring information from a considerable portion of the data in the selec-

tion of the mixing parameters λ  and γ   - the same error rates could take place over a 

wide range of parameter values - and the optimal values of the grid-pair ),( γλ  are not 

unique.  Therefore, a tie-breaking method needs to be applied.  Finally, as RDA maxi-

mises the classification accuracy calculating all covariance estimates simultaneously, it is 

restricted to using the same value of the mixing parameters for all the classes.  These same 

values may not be optimal for all classes. 

4.3   Leave-One-Out L ikelihood Method 

The RDA [Fri89] method described in the previous sub-section uses the leave-one-out 

procedure to optimise its respective mixing parameters under a classification loss func-

tion.  Since this function depends on calculating all covariance estimates simultaneously, 

Friedman’s approach must employ the same mixing parameters for all classes.  In prac-

tice, however, it is common to have classes with different forms and, consequently, differ-

ent covariance matrices.  In such situations, it seems appropriate to allow these covariance 

matrices to be estimated by distinct mixing parameters. 

Hoffbeck [Hof95] has proposed a leave-one-out covariance estimator (LOOC) that de-

pends only on covariance estimates of single classes.  In LOOC each covariance estimate 

is optimised independently and a separate mixing parameter is computed for each class 

based on the corresponding likelihood information. The idea is to examine pair-wise mix-

tures of the sample group covariance estimates iS  (defined in (11)) and the unweighted 

common covariance estimate S , defined as 
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together with their diagonal forms.  The LOOC estimator has the following form: 
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The mixing or shrinkage parameter iα  determines which covariance estimate or mixture 

of covariance estimates is selected, that is:  if 0=iα  then the diagonal of sample covari-

ance is used; if 1=iα  the sample covariance is returned; if 2=iα  the common covari-

ance is selected; and if 3=iα  the diagonal form of the common covariance is considered.  

Other values of iα  lead to mixtures of two of the aforementioned estimates [Hof95]. 

In order to select the appropriate mixing parameter iα , the leave-one-out likelihood 

(LOOL) parameter estimation has been considered.  In the LOOL technique, one training 

observation of the ith class training set is removed and the sample mean (defined in (10)) 

and the covariance estimates (defined in (21)) from the remaining 1−in  samples are es-

timated.  Then the likelihood of the excluded sample is calculated given the previous 

mean and covariance estimates.  This operation is repeated 1−in  times and the average 

log likelihood is computed over all the in  observations.  The Hoffbeck strategy is to 

evaluate several values of iα  over the optimisation grid 30 ≤≤ iα , and then choose iα  

that maximizes the average log likelihood of the corresponding p-variate normal density 

function, computed as follows: 
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where the notation /v represents the corresponding quantity with observation vix ,  left out.  

Once the mixture parameter iα  is selected, the corresponding leave-one-out covariance 

estimate )( i
looc
iS α  is calculated using all the in  training observations and substituted for 

iS  into the Bayes discriminant rule defined in (13) [Hof95]. 

As can be seen, the computation of the LOOC estimate requires only one density func-

tion be evaluated for each point on the iα  optimisation grid, but also involves calculating 

the inverse and determinant of the (p by p) matrix )( i
looc
iS α  for each training observation 

belonging to the ith class.  Although this is a one-dimensional optimisation procedure and 

consequently requires less computation than the two-dimensional RDA estimator previ-

ously discussed, LOOC is still computationally expensive.  Hoffbeck has reduced signifi-
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cantly the LOOC required computation by considering valid approximations of the covari-

ance estimates and using the Sherman-Morrison-Woodbury formula [GL89] to write the 

estimates in a form that allows the determinant and inverse of each corresponding class to 

be computed only once, followed by a relatively simple computation for each left out 

observation.  Therefore, the final form of LOOC requires much less computation than 

RDA estimator. 

LOOC differs from the previous covariance method described basically in the mixtures 

it considers and the optimisation index utilised to select the best estimator.  Although 

RDA estimator investigates the sample covariance matrix, pooled covariance matrix and 

the identity matrix multiplied by a scalar, LOOC employs the sample covariance matrix, 

unweighted common covariance matrix and the diagonal forms of these matrices.  In 

LOOC the optimisation search is one-dimensional and limited to pair-wise mixtures, while 

in RDA estimator more general two-dimensional mixtures are considered.  Moreover, the 

optimisation index maximised in LOOC is the leave-one-out likelihood that allows a sepa-

rate mixing parameter to be computed for each class.  On the other hand, RDA estimator 

uses leave-one-out optimisation procedures based on all the training observations of all 

classes and is restricted to using the same mixing parameters for all classes [Hof95]. 

Hoffbeck and Landgrebe have carried out several experiments with computer generated 

and remote sensing data to compare LOOC and RDA performances [Hof95, HL96].  In 

about half of these experiments, LOOC has led to higher classification accuracy than 

RDA, but required much less computation. 

5   A New Covar iance Estimator  

As discussed previously, when the group sample sizes are small compared with the num-

ber of parameters the covariance estimates become highly variable and, consequently, the 

performance of the Bayes plug-in classifier deteriorates. 

According to Friedman’s RDA and Hoffbeck’s LOOC approaches described in the pre-

vious section, and several other similar methods [GR89, GR91, Tad98, TL99] not de-
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scribed in this report, optimised linear combinations of the sample group covariance ma-

trices iS  and, for instance, the pooled covariance matrix pS  not only overcome the 

“small sample size”  problem but also achieve better classification accuracy than LD and 

standard QD classifiers.  However, in situations where iS  are singular, such approaches 

may lead to inconvenient biasing mixtures.  This statement, which is better explained in 

the following section, forms the basis of the new covariance estimator idea, called Covari-

ance Projecting Ordering method. 

5.1   Covar iance Projection Order ing Method 

The Covariance Projection Ordering (COPO) estimator examines the combination of the 

sample group covariance matrices iS  and the pooled covariance matrix pS  in the QD 

classifiers using their spectral decomposition representations.  This new estimator has the 

property of having the same rank as the pooled estimate, while allowing a different esti-

mate for each group. 

First, in order to understand the aforementioned inconvenient biasing mixtures, let a 

matrix mix
iS  be given by the following linear combination: 

pi
mix
i bSaSS += , (23) 

where the mixing parameters a and b are positive constants, and the pooled covariance 

matrix pS  is a non-singular matrix.  The mix
iS  eigenvectors and eigenvalues are given by 

the matrices mix
iΦ  and mix

iΛ , respectively.  From the covariance spectral decomposition 

formula described in equation (15), it is possible to write 
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where mix
s

mixmix λλλ ,...,, 21  are the mix
iS  eigenvalues and s is the dimension of the measure-

ment space considered1.  Using the information provided by equation (23), equation (24) 

can be rewritten as: 
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where **
2

*
1 ,...,, i

s
ii λλλ  and **

2
*

1 ,...,, p
s

pp λλλ  are the corresponding spread values of sample 

group covariance and pooled covariance matrices spanned by the mix
iS  eigenvectors ma-

trix mix
iΦ . Then, from equation (17), the discriminant score of the QD rule becomes 
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As can be observed, the discriminant score described in equation (26) considers the dis-

persions of sample group covariance matrices spanned by all the mix
iS eigenvectors.  

Therefore, in problems where the group sample sizes in  are small compared with the 

dimension of the feature space s, the corresponding ( 1+− ins ) lower dispersion values 

are estimated to be 0 or approximately 0.  In this way, a linear combination as defined in 

equation (23) of the sample group covariance matrix and the pooled covariance in a sub-

space where the former is poorly represented seems to be not convenient.  Other covari-

ance estimators have not addressed this problem and have used the same parameters a and 

b defined in equation (23) for the whole feature space. 

The COPO estimator is a simple approach to overcome this problem.  Basically, the 

idea is to use all the sample group covariance information available whenever possible 

and the pooled covariance information otherwise.  Regarding equations (23) and (25), this 

idea can be derived as follows: 
                                                           
1 All over the text the dimension of the measurement space or, analogously, the number of parameters have been 

represented by the variable p.  In this section, this variable representation was changed in order to avoid misun-
derstandings. 
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otherwise,
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and copo
ikφ is the corresponding k-th eigenvector of the matrix given by pi SS +  ordered in 

*i
kλ  decreasing values.  Then the discriminant scored described in equation (26) becomes: 
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where )( iSrankr = . 

The COPO estimator provides a new combination of the sample group covariance ma-

trices iS  and the pooled covariance matrix pS  in such a way that this combination is 

strongly related to the rank of iS  or, equivalently, to the number of training samples in .  

It can be viewed as an s-dimensional non-singular approximation of an r-dimensional 

singular matrix.  Although several other covariance methods of combining or biasing iS  

towards pS  have been developed, their optimisation procedures have not explicitly con-

sidered the sample group singularity effects.  The COPO method does not require an op-

timisation procedure, but an eigenvector-eigenvalue ordering process to select information 

from the projected sample group covariance matrices whenever possible and the pooled 

covariance otherwise.  Therefore, the computational issues regarding the Covariance Pro-

jection Ordering approach is less severe than the Friedman’s RDA and Hoffbeck’s LOOC 

approaches.  In addition, the COPO method is not restricted to use the same covariance 

combination for all classes, allowing covariance matrices to be distinctly estimated. 

6   Exper iments and Results 

In order to evaluate the Covariance Projection Ordering (COPO) approach, two image 

recognition applications were considered: face recognition and facial expression recogni-

tion.  The evaluation used two different image databases. 
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6.1   Databases 

In the face recognition experiments the ORL Face Database2 was used.  This database 

contains a set of face images taken between April 1992 and April 1994 at the Olivetti 

Research Laboratory in Cambridge, U.K, with ten images for each of 40 individuals, a 

total of 400 images.  All images were taken against a dark homogeneous background with 

the person in an upright frontal position, with tolerance for some tilting and rotation of up 

to about 20 degrees.  Scale varies about 10%.  The original size of each image is 92x112 

pixels, with 256 grey levels per pixel. 

The Tohoku University has provided the database for the facial expression experiment.  

This database [LBA99] is composed of 193 images of expressions posed by nine Japanese 

females.  Each person posed three or four examples of each six fundamental facial expres-

sion: anger, disgust, fear, happiness, sadness and surprise.  The database has at least 29 

images for each fundamental facial expression. 

For implementation convenience all images were first resized to 64x64 pixels. 

6.2   Exper iments 

The experiments were carried out as follows.  First the well-known dimensionality reduc-

tion technique called Principal Component Analysis (PCA) reduced the dimensionality of 

the original images and secondly the Bayes plug-in classifier using one of the five covari-

ance estimators was applied: 

1. Sample group covariance estimate Sgroup or iS –  equation (11); 

2. Pooled covariance estimate Spooled or pS –  equation (14); 

3. Friedman’s reguralized discriminant estimate Srda or rda
iS –  equation (18); 

4. Hoffbeck’s leave-one-out estimate Slooc or looc
iS –  equation (21); 

5. Covariance projection ordering estimate Scopo or copo
iS –  equation (27). 

Each experiment was repeated 25 times using several PCA dimensions.  Distinct train-

ing and test sets were randomly drawn, and the mean and the standard deviation of the 

                                                           
2 The ORL database is available free of charge, see http://www.cam-orl.co.uk/facedatabase.html 
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recognition rate were calculated.  The face recognition classification was computed using 

for each individual in the ORL database 5 images to train and 5 images to test.  In the 

facial expression recognition, the training and test sets were respectively composed of 20 

and 9 images. 

In order to compare the covariance methods based solely on the optimisation indexes 

utilised to select the best estimator, only RDA and LOOC mixtures that shrink the sample 

group covariance matrices towards the pooled covariance matrix were considered.  In 

other words, the RDA γ  parameter was held at 0 and the λ  optimisation range was taken 

to be 20, that is, ]1,,10.0,05.0[ �=λ .  Analogously, the size of the LOOC mixture pa-

rameter was ]2,,10.1,05.1[ �=iα .  The stars over both label results indicate these special 

parameter selections. 

6.3   Results 

Tables 1 and 2 present the training and test average recognition rates (with standard devia-

tions) of the ORL and Tohoku face and facial expression databases, respectively, over the 

different PCA dimensions. 

Since only 5 images of each individual were used to form the ORL face recognition 

training sets, the results relative to the sample group covariance estimate (Sgroup) were 

limited to 4 PCA components.  Table 1 shows that all the quadratic discriminant covari-

ance estimators (Srda, Slooc and Scopo) performed better than the linear covariance esti-

mator (Spooled), leading to higher training and test recognition rates.  For the training 

samples, the Scopo estimator led to higher classification accuracy than the other two quad-

ratic estimators considered.  The Srda and Slooc estimators outperformed the Scopo in 

lower testing dimensional space, but these performances deteriorated when the dimen-

sionality increased.  The Scopo estimator achieved the best recognition rate – 96.6% – for 

all PCA components considered.  In terms of how sensitive the covariance results were to 

the choice of training and test sets, the covariance estimators similarly had the same per-

formances, particularly in high dimensional space. 
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Table 1. ORL face database results. 

The results of the Tohoku facial expression recognition are presented in table 2.  For 

more than 20 PCA components, when the sample group covariance estimates became 

singular, all the quadratic discriminant covariance estimators performed better than the 

linear covariance one for training and test samples.  In lower dimension space, Srda led to 

higher classification accuracy, followed by Scopo and Slooc.  However, analogously to the 

ORL face results, when the dimensionality increased, Scopo estimator apparently outper-

formed the other estimators, achieving the highest recognition rate – 84.7% – for all PCA 

components considered.  In this recognition application, all the computed covariance es-

timators were quite sensitive to the choice of the training and test sets. 

Table 2. Tohoku facial expression database results. 

7   Conclusion 

A number of Bayes plug-in covariance estimators available in statistical pattern recogni-

tion have been described regarding the difficulties caused by small sample sizes.  Some 

experiments carried out have confirmed that choosing an intermediate estimator between 

PCA Sgroup Spooled Srda* Slooc* Scopo

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

10 76.3(3.6) 38.8(5.6) 49.6(3.9) 26.5(6.8) 69.8(4.6) 33.8(6.4) 58.5(3.7) 27.8(5.6) 66.5(3.2) 31.5(5.8)

15 99.7(0.5) 64.3(6.4) 69.1(3.6) 44.4(5.3) 92.7(5.3) 59.2(7.1) 82.9(2.9) 49.7(7.7) 90.4(3.0) 60.0(7.4)

20 81.2(2.6) 55.9(7.7) 98.1(1.5) 71.2(7.4) 91.4(2.8) 61.3(7.1) 95.6(1.9) 66.5(7.4)

40 95.9(1.4) 75.6(7.0) 98.5(1.5) 78.9(6.2) 98.3(1.1) 77.2(5.7) 98.2(0.8) 74.7(5.7)

65 99.5(0.6) 83.3(5.5) 99.7(0.5) 84.4(6.0) 99.8(0.4) 84.5(6.2) 99.9(0.2) 84.7(6.0)

 

PCA Sgroup Spooled Srda* Slooc* Scopo

TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

4 99.5(0.4) 51.6(4.4) 73.3(3.1) 59.5(3.0) 94.7(2.9) 75.9(3.4) 90.1(2.1) 70.8(3.2) 97.0(1.1) 69.8(3.4)

10 96.6(1.2) 88.4(1.4) 99.8(0.3) 93.8(1.7) 99.4(0.5) 92.0(1.5) 99.9(0.2) 90.2(2.5)

30 99.9(0.2) 94.7(1.7) 100.0 96.0(1.4) 100.0 95.9(1.5) 100.0 95.6(1.8)

50 100.0 95.7(1.2) 100.0 96.4(1.5) 100.0 96.4(1.5) 100.0 96.6(1.7)

60 100.0 95.0(1.6) 100.0 95.4(1.6) 100.0 95.8(1.6) 100.0 95.9(1.5)
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the linear and quadratic classifiers improve the classification accuracy in settings for 

which samples sizes are small and number of parameters or features is large. 

The new covariance estimator, called Covariance Projection Ordering method (COPO), 

has showed to be a powerful technique in small sample size image recognition problems, 

especially when concerns about computational costs exist.  However, this statement is not 

conclusive.  Comparisons between estimators like RDA and LOOC have to be analysed 

considering synthetic data and standard biometric databases, such as the FERET database  

(US Army Face Recognition Technology facial database). 

A high-dimensional image recognition model involves not only the decision-making or 

classification process but also the data representation or feature extraction.  In practice, a 

feature extraction algorithm is usually used to reduce the dimensionality of the data and, 

consequently, the number of parameters and computation time.  The new covariance esti-

mator might be helpful when using a feature selection algorithm, such as Linear Discrimi-

nant Analysis, that requires the estimation of covariance matrices in the high-dimensional 

space. 

The aforementioned comparisons and feature analysis will provide a strong assessment 

of the COPO method. 
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