
25/09/01 14:33 © 2001, all rights reserved 1 Tech. Report, Dept. of Comp., Imp. Col.

A Paradigm for the Behavioural Modelling of Software
Processes using System Dynamics

M. M. Lehman J. F. Ramil G. Kahen
Dept. of Computing

Imperial College, London SW7 2AZ
tel +44 (0)20 7594 8214 fax +44 (0)20 7594 8215

{mml,ramil,gk}@doc.ic.ac.uk

ABSTRACT
Industrial software evolution processes are, in general, complex
feedback systems. Recognition of this opens up opportunities to
achieve sustained process improvement. The system dynamics
approach was used in the FEAST projects to model behaviour of
key process and product attributes, yielding foundations for a
paradigm to achieve dynamic models of software evolution
processes. It is based on top-down model refinement of a high
level abstracted view of the process. Resulting models are
relatively simple, when compared to others in the literature. Their
simplicity, however, facilitates understanding, progressive
refinement, subsequent validation, and industrial take-up.

The paper illustrates the paradigm with a model of a process
highlighting a particular issue. The results of executing this model
indicate how one may analyse and eventually optimise division of
resources between progressive activity such as functional
enhancement and anti regressive activity such as complexity
control. The approach and model are based on empirical
observations and interpretation of the evolution phenomena. When
appropriately refined and validated to reflect a particular process,
a model such as this can more generally be used for release
planning and process improvement. The approach, together with
its models, provides the basis for management technology and
tools to achieve sustainable long-term evolution of complex
software and systems.

Keywords
FEAST, Feedback in Software Process, Laws of Software
Evolution, Management, Process Improvement, Process Models,
Software Complexity, Refactoring, Resource Allocation, System
Dynamics

1 INTRODUCTION
Evolution describes the phenomenon of progressive, as opposed to
revolutionary, change. Evolution in the software context occurs in
many areas [leh01c], including, for example, ab initio
development, maintenance over releases and the application and
related domains. Many of these areas evolve concurrently,
influencing one another. Software evolution per se describes the
process of progressive change and enhancement, with new
versions or releases of the software, made available to users, as
appropriate. Evolution is an intrinsic need of E-type software1,
arising from the need to maintain stakeholders satisfaction [leh85].
Most systems upon which businesses and organisations rely for
their operations are of the type E, hence its importance. In this, as
in previous studies [www01], we focus in the study of the E type.

1 Software being actively used to solve a problem or address an application
within a real world domain [leh85]

Under systematic evolution, many systems outlive the periods for
which they were originally conceived. Evolution is an expensive
process. As reflected in published maintenance data, evolution is
believed to consume up to 80 percent of the lifetime expenditure.
If this expenditure is applied to increasing the capability and
effectiveness of the system, then this may be a sound investment.
To ensure that this is so requires sound planning, management and
control. Nevertheless, the topic of long-term evolution
management has been the Cinderella of software engineering
research. What is needed, is, a sound discipline for long-term
software evolution management [leh01b], the focus of the present
paper. It presents an approach for the planning and management of
long-term software evolution processes. The approach is
exemplified by a system dynamics [for61,ven00] model. This
model has potential for guiding decision procedures and for
leading to decisions regarding resource allocation policies and
related issues in software evolution processes.

The approach presented addresses three aspects of the evolution
phenomena: continuing software change, continuing growth and a
trend to increasing complexity. Together with earlier models
[leh98,wer99,cha99,kah00], it exemplifies an approach developed
during the FEAST (Feedback, Evolution And Software
Technology) projects [www01] to study the behaviour of long-
term evolution processes. The approach provides guidelines for
building system dynamics models that reflect specific software
systems and evolution domains, and thereafter for direct use as a
tool in the context of their industrial processes for software
evolution planning, management and process improvement.

2 CHARACTERISTICS OF THE E-TYPE
EVOLUTION PROCESSES

E-type evolution is driven by the need to maintain stakeholder
satisfaction within a changing application and usage domain. The
ultimate goal of the process is to at least maintain, and generally to
increase, stakeholder satisfaction in a changing operational
domain. It entails adaptation of existing properties, functionality in
particular, and the addition of new capability. The latter implies
system functional growth over calendar time or by releases.
Installation of the software changes the operational domain
[leh85,ant01]. Therefore, some change requests result from the
introduction of system releases into use. Others arise from user
learning, familiarisation. Still others arise from market forces,
human interest and ambition, advances in technology and other
factors and agents exogenous to the application and system. All of
resultant forces for change interact.

25/09/01 14:33 © 2001, all rights reserved 2 Tech. Report, Dept. of Comp., Imp. Col.

Managing this complex situation raises the question whether
evolution processes can be characterised so as to facilitate their
management. It is a truism to affirm that behaviour of E-type
software processes does not obey precise laws of nature as do
those that govern phenomena in Physics, for example. The role of
humans in all aspects of system design, implementation, and
usage, and in the usage domains guarantees that. Observation and
measurement of software processes at a high-level of abstraction
has, however, led to positive identification of qualitative empirical
generalisations [col64]. The latter represent elements of a
characterisation. Success in behavioural process modelling will,
therefore, be increased if the models are consistent with, and
reflect a degree of understanding of, them.

Characteristics that have been identified by those concerned with
the design and management of such processes [e.g.
for61,71,80,sen90,coy96] or that may be expected to emerge in
software and other complex socio-technical processes include:
• Counter-intuitive behaviour: Links between behaviour and its

triggers are not easily identified. Effects persist long after
their causes have ceased to operate. This may, for example,
lead to unanticipated outcomes from implementation of
management policies, if not properly identified and addressed

• Tight coupling between process attributes: There are likely to
influence one another in unexpected ways

• Non-linear relationships: An additional challenge in process
modelling, prediction, control

Other common characteristics of industrial software evolution
processes relevant to the present discussion have been identified
by a series of empirical investigations over a period of some 30
years [leh69,74,78,85,89], most recently as part of the FEAST/1
and /2 [www01] projects (1996-2001). These studies have
assembled evidence supporting the suggestion that such processes
tend to display similar behaviours at some level abstraction. Some
of these have been encapsulated in statements, termed laws
[leh74,78,85], to indicate that the phenomenon they reflect appear
to be, at least in part, beyond the scope of control of individual
process participants. That is, the behaviour implied by the laws is
likely to emerge unless the laws are explicitly acknowledged and
process participants act in co-ordination to compensate for their
effects. Table 1 displays the current statement of the laws. The
laws are numbered and presented in the order of their
identification. Column one indicates the year in which the
phenomenon was first recognised.

The laws have been identified across systems and processes
representing a wide variety of domains. Each has been
progressively refined to reflect current understanding and
interpreted in terms of the observed phenomenon. Laws I, II, VI,
VII and VIII are strongly supported by reasoning [leh85,01d].
With regards to the empirical evidence during the FEAST
investigation, the situation is as follows: laws I and VI have been
directly supported by the data, though without a fully satisfying
distinction between relative intensity of the growth and change
phenomena. Both phenomena are in general observed together. All
the laws with exception of VII can be linked in varying degrees to
indirect metric evidence. The most recent view is that the
regularities suggested by laws III, IV and V are stronger over
individual segments or stages of the system lifetime, hence their
refinement. No empirical data has been available to us to verify
law VII, though as said, this law is supported by reasoning. There
are inevitably differences in the strength of the regularities across
processes and over intervals of the lifecycle and their clarification
requires further study. There appears, for example, to be a relation

between these intervals and a recent description of stages in the
software lifecycle [raj00].

The eighth law provides a formal statement of the feedback
system nature of E-type evolution processes. It states that, except
perhaps for the less mature, software evolution processes are
complex feedback systems [bel71,leh74,85,94]. The reference
here is to the full (also termed global [leh94]) software process.
This includes the activities of all those involved, not only
developers, but also their managers, support personnel,
marketeers, users and so on. The other seven laws encapsulate
various aspects that can be rationalised in terms of interacting
feedback influences. That is, the eighth law abstracts the forces
and mechanisms that underpin the other seven. The majority of the
commonalties observed can be interpreted within the feedback-
system view of the process.

Observation of industrial projects, their modelling and accounts of
experiences provide supporting evidence of the role and impact of
feedback [leh85,abd91,bro95] on the process. Evidence has been
obtained from experiments with subjects in simulated
environments (flight simulators, for example) of software process
management [e.g. dra00] and other domains
[sen90,kle93,ste94,lan98]. This suggests that failure to foresee and
take into account feedback effects will, in many cases, explain
failure to meet cost, schedule and quality targets. It also explains
why software process improvement is so difficult to achieve
[leh94]. On the other hand, one may expect that appropriate
behavioural process models have potential an important tool
towards mastering process behaviour and towards its
improvement. This reinforces the suggestion that the use of
behavioural process modelling techniques that focus on feedback
influences such as system dynamics [for61] are promising
[rio77,abd91]. If this is to be so, one needs modelling approaches
that overcome inbred scepticism and facilitate industrial take up of
the models and the technology they encapsulate.

In summary, there is a now a reasonable level of confidence that
the laws reflect the likely long-term behaviour of E-type software
processes. They have practical implications, not only for
management of the process but also for software engineering in
general [leh01c]. For example, rules and guidelines have been
recently derived from the laws [leh01b]. It follows that the laws
offer a context and framework within which to build behavioural
process models. The latter must be models, in the mathematical
sense, of a potential theory underlying the laws [leh01d].

3 SYSTEM DYNAMICS MODELLING
System dynamics [for61] techniques have been proposed and used
to model real world socio-technical and other complex processes
to support policy making and assessment [coy96]. From the start,
the field was conceived and applied to examine the behaviour of
complex processes through computer modelling and simulation
tools [mea72] such as the Vensim tool [ven00] used to develop
and execute the model presented in this paper. In particular,
application of the approach, enables one to study process
behaviour in terms of its feedback loop structure, often called the
systemic structure. That is, system dynamics is a tool that, when
properly applied, can help software managers to deal with the
systemic properties of their decision environments. Since the focus
in system dynamics is on capturing the feedback structure of the

25/09/01 14:33 © 2001, all rights reserved 3 Tech. Report, Dept. of Comp., Imp. Col.

system involved, the technique was expected to be particularly
appropriate to modelling evolution processes, hence its usage here.

System dynamics has previously been used to model software
processes [abd91,ara93,mda96]. It should be noted, however, that,
with few exceptions [ara93], the focus of interest of many of these
studies appear to have been in ab initio development
[abd91,mda96], not in long-term evolution. Moreover, they were
all based on one or two step development of fine-grained models.
Such an approach is likely to produce large and complex models

that, though possibly of value within the context of the individual
process they reflect, tend to be difficult to grasp, utilise or
generalise. Thus they are not easily ported from process to process
and are difficult to calibrate, interpret and exploit. This may
explain, at least in part, why they have not found widespread
industrial acceptance as decision-making tools. The general
tendency in system dynamics to build large, complex models has
yielded results that, defy intellectual mastery. To avoid this one
must impose a top-down discipline to the modelling process. This
insight provided the basis and rational for the approach [ram00a].

Table 1: Current statement of the laws

No. Brief Name Law
I

1974
Continuing Change E-type systems must be continually adapted else they become progressively

less satisfactory in use
II

1974
Increasing

Complexity
As an E-type system is evolved its complexity increases unless work is done to
maintain or reduce it

III
1974

Self Regulation Evolutionary attributes of E-type system evolution processes tend to display a
degree of statistical regularity

IV
1978

Conservation of
Organisational

Stability

Average work rate in an E-type process tends to remain constant over periods
of system evolution

V
1978

Conservation of
Familiarity

In general, the average incremental growth of E-type systems tends to remain
constant or to decline

VI
1991

Continuing Growth The functional capability of E-type systems must be continually increased to
maintain user satisfaction over the system lifetime

VII
1996

Declining Quality Unless rigorously adapted to take into account changes in the operational
environment, the quality of E-type systems will appear to be declining

VIII
1996

Feedback System
(Recognised 1971,
formulated 1996)

E-type evolution processes are multi-level, multi-loop, multi-agent feedback
systems

4 A PROCESS MODELLING PARADIGM
The present approach has emerged from experiences accumulated
during earlier process modelling work [leh98,wer99,cha00,kah00].
Elements were already described in [leh01a]. A key ingredient is
that model development follows a top-down successive refinement
process [zur68,wir71] and its further elaboration in the LST
development paradigm [leh84]. The idea is that, starting at a high-
level of abstraction, the model is achieved by a sequence of
refinements (reification) based on successive transformation and
validation steps. The output of each transformation step becomes
the input to the next step. The process terminates when a process
model that reflects the level of granularity and precision desired is
achieved in, for example, the context of policies or improvements
to be assessed. In summary, the FEAST approach to behavioural
process modelling includes the following activities:
• gather historical data and derive any process phenomenology
• identify reference modes [coy96], patterns and trends

observed in real process behaviour. These are inputs for
model validation

• identify specific questions to be answered by means of
process modelling

• start at the highest level of abstraction possibly with a high
level description of the process to be modelled

• construct an initial model that reflects only elements that are
considered essential, keeping detail to the minimum
necessary

• calibrate and validate model’s output against real world
behaviour

• iterate refinement and validation steps until the appropriate
level of detail is reached

Some comments on the approach follow. A system dynamics
model can reflect a system at many levels. It is important to
identify an appropriate starting level of abstraction or aggregation.
Subsequent refinement must lead, in a disciplined fashion, to a
model that is appropriate for the purpose for which it is being
constructed. In model building and refinement the
recommendation is to aggregate or even exclude some of the real
world detail. In particular those elements believed to be constant
or of second order are initially left out. Only influences that may
change significantly over system lifetime must be reflected in the
model, at least in the first instance.

Elements not often varying significantly over the period studied
are considered constant. They are not explicitly represented in the
model. If and when they change significantly, as when a new
behavioural stage emerges due, for example, to fundamental
changes in the process, it must be treated as a structural change.
The latter can be suitably (dynamically) modelled by changes
during model execution in model structure and parameters, as
appropriate.

This procedure may appear to be self-evident. It is, however, our
experiences that it is of value to describe such procedure. This is
particularly so since the focus in process modelling research has,
in the past, been more on formalisms than on methodology.

25/09/01 14:33 © 2001, all rights reserved 4 Tech. Report, Dept. of Comp., Imp. Col.

5 ILLUSTRATING THE PARADIGM
5.1 Rationale Underlying the Model
Increasing complexity is, in general, primarily due to, and
evidenced by, greater inter-element connectivity. As functionality
is added by applying change upon change, functional
interdependence increases, interfaces become more complex (sic)
and the system grows in size. The consequent higher level of
reciprocal interdependency will, itself, lead to more control
mechanisms. Information hiding [par72], and other good
evolutionary practices [leh01b] may make a contribution to the
control of complexity growth, though mostly through prevention
rather than correction. However, even under the best of conditions
and processes, evolving E-type systems without a degree of
intrinsic system complexity growth does not appear to be possible.
This follows from the fact that the application implemented by the
evolving system is increasing in complexity. That is, the many
causes of inherent complexity growth during system evolution
include complexity growth of the application and of the
operational domain. Developments in software architecture, on the
other hand, particularly architectures that are component based,
may reduce such complexity growth or even mitigate it. We
hypothesise, however, that even in component-intensive processes
the constraints implied by increasing complexity will emerge at a
higher level of aggregation or abstraction [leh00].

Given that these consequences must accompany software
evolution, a minimum level of complexity management and
control activity are essential to sustain the rate of system evolution
at the required or desired level over a lifetime that is
commensurate with the investment in it.

5.2 Anti-regressive Activity
In a 1967 study the leading economist W J Baumol applied a
categorisation of progressive and anti-progressive to distinguish
between activities in the work place that had or had not a potential
for growth in their productivity [bau67]. The paper was drawn to
the attention to one of the present authors (mml) who noted that in
the context of the software process there was a vital third category
which he termed anti-regressive [leh74,85]. This was
distinguished by its having zero or even negative productivity in
that it absorbed production resources without adding to the
immediate, marketable, value of the product. What such activity
contributed was durability, a potential for the product to retain its
value in the future. Lehman recognised that this, in the form of
complexity control and reduction to compensate for the inevitable
complexity growth of evolving software, was a vital concept in
software evolution management. Another example was the
preparation and maintenance of technical documentation that
would enable continued evolution of the software long after those
who created it had become unavailable. In other words, anti-
regressive activity prevents or circumvents system decline due to
non-material factors, it prevents system decline. Thus, the new
term anti-regressive was used to refer to work effort intended to
compensate for aging effects [par94] or code decay [eic01]. Such
work consumes effort without any immediate, perceived
stakeholder return in system value as reflected, for example, by
system functional power or performance. Instead, it facilitates
continued evolution, enabling it to be achieved more easily with
less effort.

In planning and executing sustainable evolution a portion of the
work must be devoted to complexity control otherwise the

software is likely to become a legacy system. There is anecdotal
evidence that in some processes as much as 30 percent of the work
is devoted to complexity control, though it may not be explicitly
identified as such. Thus, in general, the following question arises:
what is the optimum level of complexity control activity in the
long-term evolution context? There have been already attempts to
address this question [rio77,leh85]. The modelling work presented
here follows in that tradition. The model presented in the
following sections presents an attempt to address the above
question, based on current modelling technology [ven00] and
showing how the modelling approach described above may be
used to identify complexity control mechanisms that operate by
balancing resource allocation between progressive and anti-
regressive activities. Though focusing here on the specific issue of
complexity control [leh74] the approach described is, in principle,
applicable to all aspects of compensation for software aging
effects [par94], an issue that under the term refactoring has
recently has received wide attention [fow99].

5.3 The Model
The diagrams and terminology of system dynamics provide one
approach to modelling the dynamic behaviour of long-term
software evolution processes. The model presented here takes the
form of a stock and flow diagram [ven00]. It is a graph that
consists of two connected networks: the stock and flow network,
and the information network. Levels (or stocks) are represented by
variables within the rectangles. The double-line arrows represent
flow variables (or rates). The remainder of the model, represented
by single line arrows and variables constitutes the information
network. The single lines indicate that the variable close to the
arrow’s origin has an immediate influence on the variable being
pointed to. Further details on the semantics of the diagrams are
given in [coy96,ven00].

The model will be presented in a series of four figures that present
increasing detail. This exemplifies the process of successive
refinement that has been advocated. This approach clearly is of
major benefit to the development of understanding of the model.
An initial top-level view of is provided by figure 1. This
represents the view of the software evolution process as a service
process, by showing the arrival and implementation or rejection of
work requests, their validation, and delivery of the product to the
field. It is visualised as a process that addresses a continuing flow
of work. To ensure consistency of the model with industrial
practice, the model structure was discussed with FEAST industrial
collaborators at various stages of its development and reflects their
comments where appropriate.

Figure 2 presents a first refinement of the model, making
provision for the holding back of the output of the validation step
and for the authorisation of rework. Figure 3 refines the model
further to include the assignment of resources to progressive work.
Finally, figure 4 incorporates additional elements such as the
variables and mechanisms involved in the split of effort between
progressive and anti-regressive activities.

The model is built around a simple mechanism already proposed
in [rio77]. It is of striking simplicity. It enables one to deal with
the problem of managing complexity without actually having to
define a complexity metric [zus90], an issue that is still an open
issue. Its further clarification requires, inter alia, a formal
definition of complexity as a function of measurable program
attributes. However, the present model is built upon the

25/09/01 14:33 © 2001, all rights reserved 5 Tech. Report, Dept. of Comp., Imp. Col.

observation that a degree of anti-regressive activity may control
the complexity as perceived by the developers/evolvers of the
system so as to minimise its impact. This implicitly defines
complexity indirectly by means of the observed global effects. The
mechanism relies on the fact that for each unit of progressive work
accomplished, a minimal amount of anti-regressive work is
required, otherwise an anti-regressive deficit begins to
accumulate. As the anti regressive neglected work accumulates
over time, its impact on productivity begins to be noticeable. Only
its restoration to an adequate level can reverse that growing trend
and seek to restore productivity. A tool, such as this model is
required to determine what is adequate.

Resource allocation is represented by two variables: Progressive
Effort and Anti-regressive Effort. A key policy parameter is
indicated on the right-hand side of Figure 3 by the fraction of the
personnel dedicated to progressive activities, as represented in
Vensim formalism [ven00] as:

Progressive Effort =
= (1- “PROGRESSIVE ANTI REGRESSIVE RATIO")*TEAM SIZE

Space limitations prevent inclusion of the other equations
constituting the model. The full set is available from the authors
on request.

Approval for
Release or Rework

Released
System

<Time>

Work Awaiting
Assignment

TIME STEP

Assigned Work
Completed Outputs

Implementation Flow

Adaptation Work
Requests

Validated
Components

Component
Validation

Work
Implemented

Integration
Flow

Validated
Elements System

Validation

New Work
Requests

Rejected Work
Requests

Discarded

RELEASE
POLICY

Release Rate

Figure 1: The starting view

Approval for
Release or Rework

Released
System

<Time>

Work Awaiting
Assignment

TIME STEP

Assigned Work
Completed Outputs

Implementation Flow

Adaptation Work
Requests

Rework

Validated
Components

Component
Validation

Work
Implemented

Integration
Flow

Validated
Elements System

Validation

New Work
Requests

Rejected Work
Requests

Discarded

StandBy

Cumulative
Progressive

Work

RELEASE
POLICY

Flow to
StandBy

Delayed
Decision

Release Rate

Figure 2: The model after the first refinement: some part of output held, rejected or recycled

25/09/01 14:33 © 2001, all rights reserved 6 Tech. Report, Dept. of Comp., Imp. Col.

5.4 Further Model Refinement
Once the portion of resources to be dedicated to progressive and
anti-regressive activities respectively has been selected, the model
assigns a fixed portion of progressive effort to Implementation,
Component Validation, Component Integration and System
Validation. This is to reflect the fact that, on average, none of
these activities can be neglected. Otherwise the neglected activity
will produce a bottleneck. It will be clear to the reader that all
these assignments represent simplifications to permit initial, high
level, validation of the model against real industrial processes.
Further refinements can be applied, preferably one at the time, to
reflect and investigate the factors arbitrarily assigned as above,
based on such model output behaviour that can be explained in
terms of current understanding of the processes, or of changed
understanding as a result of model interpretation.

5.5 Model Calibration
As already stressed, an essential part of the approach being
described is that the model be validated [for80] at the appropriate
level of detail after each refinement. One possible way of
achieving this is by calibrating the model, comparing predictive
model output with actual behaviour.

Validation and calibration may start by exposing the model to
available data so that confidence in the model increases
progressively. Such increases will, generally, be accompanied by
growing understanding of the process being modelled.

As a first step in the calibration process, parameters must be set to
be consistent with the process being modelled. This implies
measurement of real world attributes indicated by the model.
Once those values are obtained, one sets model parameters to
reflect real values. In practice, some of these may not be readily
available, as for example when, as in the present case, one is
modelling long term behaviour. It may, therefore, be necessary to,
identify ranges of parameters that produce specific behaviours. In
doing so, the model builders start to identify which parameters are
critical in determining specific behaviours. Then one proceeds to
check with process experts and/or by using documentary sources
the possible values in the real process, thereby, building
confidence in the model. Of course, this only yields a partial
calibration. A full calibration requires that all model parameters
reflect actual values. On the other hand, validation requires that
the model is shown to predict real world behaviour not observed
during model building or calibration and remains accurate over
time. Hence, calibration and validation must be continuing
activities.

These are, of course, important activities that are required to build
confidence in the model and the emphasis here is in the approach
and not in the particular model being presented. It is, nevertheless,
interesting to note that a relatively simple model (by comparison
with system dynamic models as presented by others that may
involve tens or even hundreds of variables [e.g. abd91]) such as
the one presented in figures 1-4 can so closely approximate real
world patterns of behaviour. Figure 5 shows how closely the

model reproduces the growth trend of one software system over
176 months of its lifetime. This system is an operational support
system. Its evolution trends, as measured by its growth and
cumulative modules handled, are broadly similar to those of other
software systems studied in FEAST.

As illustrated by figure 5 calibration, to the extent performed,
shows that the model is able to replicate actual trends despite the
fact that, in general, not all model parameters are known. By
fixing the known parameters and exploring the effects of the
others, one establishes the sensitivity of the model to the various
parameters. At this stage of model development it may, of course,
not be possible to determine whether such sensitivity, or its
absence, is a property of the process or of the model. In some
cases, however, reasoning may suggest a solution to this
fundamental question. For example, in the present model, it was
evident that the value of parameters representing the flows
feeding to Work Awaiting Assignment were relatively unimportant
with respect to the rest of the model as long as there was "enough
work waiting". This was, in fact, accepted as an appropriate
property since it implements common experience in real world
evolution processes that the work waiting queue tends never to be
empty. This may, in fact, be a general characteristic of the type
introduced in section 2.

In some cases, non availability of direct measures forces one to
use attribute surrogates. For example, to calibrate the model to
this system, the level of effort applied (STAFFING POLICY) was
assumed to be roughly proportional to the workrate metric,
modules handled [leh85] that, in a later study [ram00b], was
found to be correlated with estimates of the effort applied. Other
parameters were found to have no visible impact on growth trend
within a range of values. This suggested that the mechanism to
which they related had no major impact on growth trend at the
present level of detail; that it was not a candidate for calibration
adjustments (and hence for process control) in the current setting.
The inflexion point at around month 96 was modelled by a step
change in the value of the variable Impact of Anti-regressive
Deficit. To date we have been unable to identify the real world
cause of the inflexion point, or its source in a change in the
process or the implementation domain. It may reflect a switch of
process stages in the sense of other researchers [raj00,ant01].

Model parameters whose value could not be readily ascertained
were set to values that minimised the difference between the
actual growth trend and model outputs. Of course, the full validity
of values obtained in this way to advance, for example,
understanding of the process and its model representation,
depends on confirmation of its validity by, for example,
successful behavioural prediction. With the conclusion of the
FEAST/2 project we were unable to pursue the next stage of
model refinement by determining actual values of the data related
to the parameters and recalibrating. However, the model as
presented here suffices to exemplify the approach.

25/09/01 14:33 © 2001, all rights reserved 7 Tech. Report, Dept. of Comp., Imp. Col.

Approval for
Release or Rework

STAFFING POLICY

Released
System

Growth Productivity

<Time>

Work Awaiting
Assignment

TIME STEP

BASELINE
PRODUCTIVITY

Assigned Work
Completed Outputs

Implementation Flow

<Time>

Adaptation Work
Requests

Rework

Validated
Components

Component
Validation

Work
Implemented

Integration
Flow

TEAM SIZE

Validated
Elements System

Validation

New Work
Requests

Rejected Work
Requests

Discarded

StandBy

Progressive effort

Cumulative
Progressive

Work

RELEASE
POLICY

Flow to
StandBy

Delayed
Decision

Release Rate

Figure 3: The model after the second refinement: resources for new function

Approval for
Release or Rework

STAFFING POLICY

Released
System

Anti Regressive Deficit

Growth Productivity

<Time>

PROGRESSIVE
ANTI-REGRESSIVE

RATIO

Work Awaiting
Assignment

TIME STEP

BASELINE
PRODUCTIVITY

Assigned Work
Completed

Cumulative Anti
Regressive Work

Outputs

Implementation Flow

<Time>

Adaptation Work
Requests

Rework

Validated
Components

Component
Validation

Work
Implemented

Integration
Flow

TEAM SIZE

Validated
Elements System

Validation

New Work
Requests

Anti regressive effort

Rejected Work
Requests

Discarded

StandBy

Progressive effort

Cumulative
Progressive

Work

RELEASE
POLICY

Flow to
StandBy

Delayed
Decision

Release Rate

Anti regressive work

DOMAIN
FACTORS

Impact of Anti
Regressive Deficit<Time>

Effective
Productivity

Figure 4: The model after the third refinement: resource allocation for complexity control

5.6 Virtual Experiments
Given a model in which one has confidence that it reflects real
world behaviour, one can usefully perform virtual experiments.
The term virtual is used here to highlight the fact that these
experiments are performed with the model, not in the real world
software organisation and process. There are, however, classes of
questions, such as policy evaluation for long-term evolution, that,
by their very nature, can only be pursued by means of models.
One would require to have, for example, two evolution processes
running more or less in parallel for which one is willing and able
to adopt conflicting policies and whose impact one is able to
monitor, measure and evaluate. But in general one must rely on
virtual experiments with models that, to some degree, represent
the observed phenomena. The results of such experiments that
follow must then, of course be handled intelligently.

0 24 48 72 96 120 144 168 192 216 240
Months

actual
simulated

Figure 5: Simulated model output vs actual growth trend (a
collaborator system)

25/09/01 14:33 © 2001, all rights reserved 8 Tech. Report, Dept. of Comp., Imp. Col.

The example of a virtual experiment to be outlined is that of the
long-term consequences of different levels of anti-regressive
activity on the system growth rate. The result of one such
experiment is shown in Figure 6. It suggests that allocation of a
portion of resources to anti-regressive work results in significant
extension of the potential life span of the system.

0 24 48 72 96 120 144 168 192 216 240
Months

 0% anti-regressive
40% anti-regressive
60% anti-regressive

Figure 6: Simulated model output for 3 values of anti regressive
work, expressed in percentage of total resources. Several varying

parameters make it difficult to identify the effects

The trends reflected in Figure 6 include, however, temporal
variations in effort applied and an inflexion point. To simplify
interpretation, one can investigate the impact of parameter
changes, one parameter at the time. This is illustrated in Figures 7
and 8 where, to isolate the inflexion point issue from this analysis,
the model was fitted to the first growth segment only. Execution
of the resultant model permits a clearer visualisation of the effect
of different anti-regressive policies. The simulated growth trends
for various values of anti regressive effort, given these
experimental changes outlined above, are presented in figure 7.

0 24 48 72 96 120 144 168 192 216 240
Months

 0% anti-regressive
40% anti-regressive
60% anti-regressive
80% anti-regressive

Figure 7: Growth trends under different policies

In Figure 7 one observes several cross-over points amongst the
trajectories. Those that reflect a low level of anti-regressive work
provide the highest initial accomplishment rates. This suggests
that a sound strategy would start by selecting trajectories with low
anti-regressive activity, thus maximising the initial growth rate.

In figure 8 one observes the impact of different levels of anti
regressive work on productivity. The overall conclusion from
both figures is that, even with a constant a level of anti regressive
work there is one which maximises long-term growth capability
(in this case approx. 60 percent). Anti regressive work in excess
of such level, represents resource wastage.

0 24 48 72 96 120 144 168 192 216 240
Months

 0% anti-regressive
20% anti-regressive
40% anti-regressive
60% anti-regressive
80% anti-regressive

Figure 8: Growth productivity under different policies

A simple interpretation of these diagrams suggests that one can
switch trajectories at cross-over points by changing the
progressive anti-regressive ratio so as to always sit on that
trajectory with the highest growth rate. However, experiments that
cannot be accommodated within the limitations of this paper have
shown that this is not sufficient and system re-structuring, will be
also required. This reflects a beautiful example of how behaviour
of a feedback system is often counterintuitive. In any event,
whether restructuring occurs or not, figure 7 suggests that as the
system ages one may seek to maintain system growth rate – or,
equivalently, the effort required to achieve the desired rate of
evolution, and, hence, productivity - by increasing the level of
anti-regressive activity.

The optimum level of anti-regressive work is likely to vary from
process to process and from stage to stage in the life cycle of a
given system. To best manage this process and to allocate
resources to maximise benefit requires an approach, models and
tools such as those we have explored, provisionally tested and
presented here. More detailed policies and mechanisms such as
the inclusion of a management feedback control loop that changes
the degree of anti-regressive activity over time in response to
some simulated circumstances, should only require minor model
modification for their exploration.

In summary, one may conclude that:
• The intended emphasis of this paper is on the modelling

approach. The model presented provides a tool, which, when
calibrated to a particular process, can be used to evaluate the
impact of different policies and managerial decisions
concerning effort allocation

• It is also, in general, a prototype of the models required to
determine the impact of policies and managerial decisions

• Differences are expected from process to process, and from
stage and stage, within the same process, in specific policies
and the evolution dynamics as a whole. To remain useful the
modelling process must parallel and reflect the evolution
process and system evolution

• The model provides a generic view that can be adapted by
structural and equational changes to reflect specific evolution
processes. One can pursue further refinement through
extension and addition of detail

25/09/01 14:33 © 2001, all rights reserved 9 Tech. Report, Dept. of Comp., Imp. Col.

6 RELATED WORK
The principal focus in process modelling has been in modelling
formalisms and languages [ost87], in presenting and analysing
specific models [ispw], not in the methods by which such models
are derived. In contrast to data collection methodology, that has
received some attention [e.g. bas84], process modelling
methodology has not been the focus of much research.

Additionally, the vast majority of software process simulation
models have had the individual ab initio project context as their
focus. Only a few exceptions, exemplified by the model in Aranda
et al [ara93] and the FEAST white box process modelling work
[leh98,wer99,cha99,kah00], has the full evolution process [leh94]
and long-term evolution as their focus. A related characteristic of
the modelling work presented here, also recognised by others [e.g.
rui00], is the representation of the process at a high-level of
abstraction. This is sharp contrast to the wider effort that has
chosen to investigate the process at a low level of abstraction,
leading to complex models that are difficult to comprehend,
absorb, calibrate, utilise and reuse.

7 THE WAY FORWARD
For wide application, the model presented will need to be refined
to accommodate, for example, allocation of work to a wider
variety of activities than just anti-regressive and progressive
work. Several classifications of maintenance and evolution work
have been proposed over the years. They may serve this purpose
[cha00]. One could further address the split between the other
categories of effort, though in principle it appears that anti-
regressive effort provides a major element to sustain process
effectiveness over the entire system life cycle.

Extension to more general paradigms and customisation to
specific instances is likely to raise issues not considered here.
These would likely include measures of stakeholder satisfaction
and the impact of this on the dynamics. A particular factor cannot
be achieved without a satisfactory definition that is probably
domain dependent. This question requires further exploration and
may involve the inclusion of system value [boe00]. Another
aspect, previously considered [cha99] and that requires further
study and development, is the role of domain and technology
changes as drivers of software evolution. Furthermore one will
have to compare the role of discrete and continuous activities, for
example, the role and impact of field trial events [leh98,wer99] as
opposed to the continuing validation activity assumed in the
present model. Finally, in this highlighting of aspects for future
investigation, we mention the consequences of different release
policies [woo79]. All these exemplify issues that could be studied
by means of the approach presented.

8 FINAL REMARKS
Behavioural process modelling have been pursued in the software
engineering community for many years. The approach indicates
that, even when the processes are executed and managed by
humans whose individual decision-making behaviour is
essentially unpredictable, the process models are useful, a source
of insight and provide a rational for decision making. The local
process will, at each instant in time, be the result of and reflect
local decision making in the context of locally perceived
circumstances. Process modelling at an aggregated, high level of
abstraction, reflects process behaviour at that level. Thus, the
approach and the model presented here can assist managers to

recognise and control the various influences on long-term
behaviour. By taking them into account, they may then direct
effort to specific activities that otherwise would have been
ignored or neglected. They may also be able to predict and control
key evolutionary attributes and reduce the likelihood of
counterintuitive behaviour. Society relies increasingly on
software, as demonstrated by the essential role of software in
businesses and organisations. Management of long-term evolution
processes is becoming an ever more critical issue. Such processes
are very complex and dynamic. There is long way to go before a
full understanding is reached. We foresee that systematic
arrangement of the concepts and principles that are now being
established may provide software process technology with the
conceptual framework it so sadly lacks [leh01d].

9 ACKNOWLEDGEMENTS
Many thanks are due to the FEAST industrial collaborators for
provision of data, interpretations and for sharing with us their
process insight. Financial support from the UK EPSRC, most
recently via grant number GR/M44101 (FEAST/2) (1999-2001),
is gratefully acknowledged.

10 REFERENCES2

[abd91] Abdel-Hamid T. & Madnick S., “Software Project
Dynamics - An Integrated Approach“, Prentice-Hall,
Englewood Cliffs, NJ., 1991

[ant01] Anton A & Potts C, “Functional Paleontology: System
Evolution as the User Sees It”, ICSE 23, Toronto, 12-19
May 2001, pp. 421-430

[ara93] Aranda R et al., "Quality Microworlds: Modeling the
Impact of Quality Initiatives over the Software Product
Life Cycle", Am. Programmer, 6(5), 1993, pp. 52-61

[bas84] Basili V.R. and Weiss D.M., “A Methodology for
Collecting Valid Software Engineering Data”, IEEE
Trans. on Softw. Engineering, v. 10, n. 6, 1984, pp. 728
- 737

[bau67] Baumol W.J., “Macro-Economics of Unbalanced
Growth - The Anatomy of Urban Cities“, Am.. Econ.
Review, Jun 1967, pp. 415 - 426

[boe00] Boehm B.W. & Sullivan K.J., “Software Economics: A
Roadmap“, in Finkelstein A (ed.), The Future of
Software Engineering, ICSE 22, Limerick, Ireland, 4-
11th June 2000, pp. 321 - 343

[bro95] Brooks F. P., “The Mythical Man-Month”, 20th

Anniversary Edition, Reading, Massachusetts: Addison
Wesley Longman, 1995

[cha00] Chapin N. et al, "Types of Software Maintenance and
Evolution", ICSM 2000, 11-13 Oct. 2000, San Jose, CA

[cha99] Chatters B. W., Lehman M. M., Ramil J.F. & Wernick
P., “Modelling a Software Evolution Process“,
ProSim'99, Softw. Process Modelling and Simulation
Workshop, Silver Falls, Oregon, 28-30 Jun. 1999, also
as Modelling a Long Term Software Evolution Process
in J. of Softw. Proc.: Improvement and Practice, Vol. 5,
iss. 2/3, July 2000, pps. 95 - 102

[cho81] Chong-Hok-Yuen C.K.S., "A Phenomenology of
Program Maintenance and Evolution", PhD thesis,
Imperial College, Dept. Computing, 1981, 302 pp

2 An * indicates that the reference has been reprinted in [leh85].

25/09/01 14:33 © 2001, all rights reserved 10 Tech. Report, Dept. of Comp., Imp. Col.

[col64] Coleman J.S., “Introduction to Mathematical
Sociology”, The Free Press Of Glencoe, Collier-
Macmillan Limited, London, 1964, 554 pps.

[coy96] Coyle, R.G., “System Dynamics Modelling - A
Practical Approach”, Chapman & Hall London, 1996,
413 p

[dra00] Drappa A. & Ludewig J. "Simulation in Software
Engineering Training", Proc, ICSE 2000, June 4-11th,
Limerick, Ireland, pp. 199 - 208

[eic01] Eick S.G., Graves T.L., Karr A.F., Marron J.S. and
Mockus A., “Does Code Decay? Assessing the
Evidence from Change Management Data”, IEEE
Trans. on Softw. Eng., v. 27, n. 1, Jan. 2001, pp. 1 - 12

[for61] Forrester, J. W., “Industrial Dynamics”, MIT Press,
Cambridge, Mass., 1961

[for71] id., “Counterintuitive Behaviour of Social Systems”,
Technology Review, v. 73, 1971, pp. 52-67

[for80] Forrester, J. W. & Senge, P., “Tests for Building
Confidence in System Dynamics Models”, In System
Dynamics, Legasto A. A. Jr., et al. (eds.) TIMS Studies
in the Management Sciences, Vol. 14. North Holland,
NY, 1980, pp. 209 - 228

[fow99] Fowler M., "Refactoring: Improving the Design of
Existing Code", Addison-Wesley Longman, NY, 1999

[ispw] Intl. Softw. Process Workshop, Proceedings 1991-1996,
IEEE Computer Society Press, Los Alamitos, CA

[kah01] Kahen G., Lehman M. M., Ramil J. F. & Wernick P. D.,
“Modelling of Software Evolution Processes for Policy
Investigation: Approach and Example”, to appear in J.
of Systems and Software, 2001, a revised version of
paper presented at ProSim 2000 Workshop, July 12 -
14, 2000, Imp. Col., London UK

[kit82] Kitchenham, B.A., "System Evolution Dynamics of
VME/B", ICL Tech. J., May 1982, pp 42 - 57

[kle93] Kleinmuntz, D. N., “Information Processing and
Misperceptions of the Implications of Feedback in
Dynamic Decision Making”, System Dynamics Review,
v. 9, 1993, pp. 223-237.

[lan98] Langley, P. A., “Using Cognitive Feedback to Improve
Performance and Accelerate Learning in a Simulated
Oil Industry”, WP-0027, LBS, UK, 1998

[leh69]* Lehman, M. M., "The Programming Process", IBM Res.
Rep. RC 2722, IBM Res. Centre, Yorktown Heights,
NY 10594, Sept. 1969

[leh74]* Lehman, M. M. “Programs, Cities, Students, Limits to
Growth?”, Inaugural Lecture, 1974,, in Imperial College
of Science and Technology Inaugural Lecture Series,
Vol. 9, 1970, 1974, pp. 211 - 229. Also in Programming
Methodology, (D. Gries. ed.), Springer Verlag, 1978,
pp. 42 – 62.

[leh78]* Lehman, M. M., “Laws of Program Evolution _ Rules
and Tools for Programming Management”, Proc.
Infotech State of the Art Conf., Why Software Projects
Fail?, 1978, pp. 11/1-11/25

[leh84] Lehman, M. M., Stenning V. and Turski W., "Another
Look at Software Design Methodology", ACM Softw.
Engineering Notes, v. 9, n. 2, 1984, pp. 38-53

[leh85] Lehman, M. M & Belady, L. A., “Program Evolution -
Processes of Software Change”, Acad. Press, 1985

[leh89] Lehman, M. M., “Uncertainty in Computer Application
and its control through the Engineering of Software”,
Journal of Software Maintenance, Research and
Practice, Vol. 1, 1989, pp. 3-27.

[leh94] Lehman, M. M., “Feedback in the Software Evolution
Process”, Keynote Address, CSR Eleventh Annual
Workshop on Software Evolution: Models and Metrics.
Dublin, 7-9th Sept. 1994, Workshop Proc., Information
and Softw. Tech., sp. is. on Softw. Maint., v. 38., n. 11,
1996, Elsevier, 1996, pp 681 – 686

[leh98] Lehman M. M. & Wernick P., “System Dynamics
Models of Software Evolution Processes”, Proc.
IWPSE-98, 20-21 Apr. 1998, Kyoto, Japan, pp. 6-10

[leh00] Lehman MM & Ramil JF, “Software Evolution in the
Age of Component Based Software Engineering”, IEE
Proc. Softw., sp. issue on Component Based Software
Engineering, v. 147, n. 6, Dec. 2000, pp. 249 - 255

[leh01a] Lehman M. M., Ramil J. F. and Kahen G., “Experiences
with Behavioural Process Modelling in FEAST, and
some of its Practical Implications”, EWSPT 8, 21 June
2001, Haus Bommerholz, Witten, Germany, LNCS
2077, Springer, Berlin, 2000, pp. 47-62

[leh01b] Lehman, M.M. & Ramil, J.F., “Rules and Tools for
Software Evolution Planning and Management”, to
appear in special issue on Software Management,
Annals of Software Engineering, vol. 11, 2001, revised
version of a FEAST 2000 contribution and as DoC
Research Report 2000/14 Nov. 2000

[leh01c] Lehman, M. M. and Ramil, J. F., “Software Evolution”,
inv. lect., Pre-prints IWPSE 2001, Vienna, Sept. 10-11,
to be publ. in Proc, IWPSE 2001, IEEE Press

[leh01d] id., “An Approach to a Theory of Software Evolution”,
loc. cit.

[mda96] Madachy, R., “System Dynamics Modeling of an
Inspection-based Process”, Proc. ICSE 96, Berlin,
Germany, March 25 - 29, 1996, pp 376 - 386

[mea72] Meadows, D.H. et al, "Limits to Growth", Signet, 1972
[ost87] Osterweil L, "Software Processes Are Software Too",

Proc. ICSE 9, 1987, pp 2 - 12
[par72] Parnas, D.L., "On the Criteria to be Used in

Decomposing Systems into Modules", CACM, v. 15, n.
12, pp. 1053-8

[par94] Parnas, D. L., “Software Aging”, Proc. 16th ICSE, May
16-21, Sorrento, Italy, 1994, pp. 279-287

[pau93] Paulk, M.C. et al, “Capability Maturity Model”, Version
1.1, IEEE Softw., v. 10, n. 4, 1993, 18 – 27

[raj00] Rajlich VT & Bennett KH, “A Staged Model for the
Software Life Cycle”, Computer, July 2000, pp. 66 - 71

[ram00a] Ramil, J.F., Lehman M.M. and Kahen G., “The FEAST
Approach to Quantitative Process Modelling of
Software Evolution Processes”, Proc. PROFES 2000,
June 20 - 22, 2000, in Frank Bomarius and Markku
Oivo (eds.) LNCS 1840, Springer, 2000, pp. 311 - 325

[ram00b] Ramil, J.F. and Lehman M.M., “Metrics of Software
Evolution as Effort Predictors - A Case Study”, Proc.
ICSM 2000, October 11-14, 2000, San Jose, CA, pp.
163 – 172

[rio77] Riordan JS, “An Evolution Dynamics Model of
Software Systems Development”, in Software
Phenomenology - Working Papers of the (First) SLCM
Workshop, Airlie, Virginia, Aug 1977. Pub
ISRAD/AIRMICS, Comp. Sys. Comm. US Army, Fort
Belvoir VI, Dec 1977, pp 339 - 360

[rui00] Ruiz, M. & Ramos I., "A Dynamic Estimation Model
for the Early Stages of a Software Project", ProSim
2000, Workshop on Software Process Simulation and

25/09/01 14:33 © 2001, all rights reserved 11 Tech. Report, Dept. of Comp., Imp. Col.

Modelling, Imperial College, London, 12-14 July, 2000,
http://www.prosim.org <as of July 2000>

[sen90] Senge, P.M., "The Fifth Discipline - The Art & Practice
of The Learning Organisation", Currency- Doubleday,
NY, 423 pp., 1990

[ste94] Sterman, J., “Learning in and about Complex Systems”,
System Dynamics Review, Vol. 10, 1994, pp. 291-330.

[ven00] Vensim - Ventana Simulation Environment, Reference
Manual, Version 4, Belmont, MA, 2000

[wer98] Wernick P. & Lehman M. M., "Software Process White
Box Modelling for FEAST/1", ProSim '98 Workshop,
Silver Falls, OR, 23 Jun. 1998. As a rev. version in J. of
Systems and Software, v. 46, n. 2/3, 15 April 1999

[wer00] Wernick P, “Identifying and Justifying Metrics for
Software Evolution Investigations Using the Goal-
Question Metric Method”, FEAST 2000, July 10-12,
2000, Imperial College, London,
http://www.doc.ic.ac.uk/~mml/f2000 <as of July 2000>

[wir71] Wirth, N., "Program Development by Stepwise
Refinement", CACM, v.14, n.4, Apr., 1971, pp. 221-227

[woo79] *Woodside, C.M., "A Mathematical Model for the
Evolution of Software", ICST CCD Res. Rep 79/55,
Apr. 1979. Also in J Sys and Software, Vol 1, No 4, Oct
1980, pp 337 – 345

[www01]FEAST “Feedback, Evolution And Software
Technology”, FEAST/2 Project Web Site, 2001
http://www.doc.ic.ac.uk/~mml/feast/

[zur68] Zurcher, F.W. & Randell, B., Iterative Multi-Level
Modeling - A Methodology for Computer System
Design, Proc. IFIP Congress 1968, Edinburgh, Aug 5 -
10, pp D-138 – 142

[zus90] Zuse H, Software Complexity Measures and Models, de
Gruyter, NY, 1990

http://www.prosim.org/
http://www.doc.ic.ac.uk/~mml/f2000
http://www.doc.ic.ac.uk/~mml/feast/

	INTRODUCTION
	CHARACTERISTICS OF THE E-TYPE EVOLUTION PROCESSES
	SYSTEM DYNAMICS MODELLING
	A PROCESS MODELLING PARADIGM
	ILLUSTRATING THE PARADIGM
	RELATED WORK
	THE WAY FORWARD
	FINAL REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

