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Abstract

The development of requirements specifications inevitably in-

volves modification and evolution. To support modification

while preserving the main requirements goals and properties,

we propose the use of a cycle composed of two phases: analysis

and revision. In the analysis phase, a desirable property of the

system is checked against a partial specification. Should the

property be violated, diagnostic information is provided. In

the revision phase, the diagnostic information is used to help

modify the specification in such a way that the new specifica-

tion no longer violates the original property.

We have investigated a particular instance of such a cy-

cle that combines the techniques of logical abduction and in-

ductive learning to analyse and revise specifications respec-

tively. Given an (event-based) system description and a sys-

tem property, our abductive reasoning mechanism identifies a

set of counter-examples of the property, if any exists. This

set is then used to generate a corresponding set of examples

of system behaviours that should be covered by the system

description. These examples are used as training examples by

our inductive learning mechanism, which performs the neces-

sary changes to the system description in order to resolve the

property violation. The approach is supported by an abduc-

tive decision procedure and a hybrid (neural and symbolic)

learning system that we have developed. A case study of an

automobile cruise control system illustrates our approach and

provides some early validation of its capabilities.

Keywords: Logic-based Analysis, Revision, Abduction,

Inductive Learning.

1 Introduction

“Models for reasoning about current alternatives and fu-

ture plausible changes have received relatively little at-

tention to date, even though such reasoning should be

at the heart of the requirements engineering process”.[38]

We aim to facilitate the evolution of requirements specifi-

cations by providing the requirements engineer with tools

to support the change management process.

We argue that the development of requirements spec-

ifications can be supported by a cycle composed of two

phases: analysis and revision, as illustrated in Figure 1.

The analysis phase is responsible for checking whether

a number of desirable properties of the system is satis-

fied by its partial specification. It also provides appro-

priate diagnostic information when a certain property is

violated by the specification. The revision phase should

change the given specification (Spec) into a new (partial)

specification (Spec ′) - by making use of the diagnostic in-

formation obtained from the analysis phase - in such a

way that Spec
′ no longer violates the system’s property

in question.
1

Analysis Revision

Spec’

Diagnosis

Spec

Spec

Fig. 1: The cycle of requirements specification evolution

In this paper we have investigated a particular instance

of this cycle (Figure 2), which uses techniques of abductive

reasoning [17] during the analysis phase to (i) discover

1A preliminary version of the analysis-revision cycle will appear

in the Proceedings of the IEEE International Conference on Auto-

mated Software Engineering [6].



whether a given system’s description satisfies a system

property and (ii) if not, generate appropriate diagnostic

information; and inductive learning [24] during the revi-

sion phase to change the description whenever it violates

a property, utilising a machine learning algorithm. The

two techniques are combined together by using the diag-

nostic information (∆) generated by abduction, to derive

a number of training examples (∆′) for inductive learning

such that ∆′ is consistent with system and domain prop-

erties. Although other kinds of formal reasoning tech-

niques could be used for analysis and revision (such as

model checking and belief revision) the use of abduction

and induction facilitates the integration of these two ac-

tivities, as illustrated throughout the paper and also ad-

vocated in [9].

In what follows, we concentrate on requirements specifi-

cations composed of deterministic, state transition based

system descriptions, i.e. system requirements expressed

in terms of system reactions to events, and global system

properties, such as safety properties. An individual run

of our cycle would be as follows. An event-based system

description D and a system property P can be given as

input to our abductive reasoning mechanism. Here, ab-

duction is used in a refutation mode to check whether P is

satisfied by the description D. In particular, it attempts

to identify a (set of) counter-example(s), if any exists, to

the system property P , where each such counter-example

is in terms of a “current” system state, a (possibly con-

ditioned) event, and an associated new state. Counter-

examples are essentially state transitions that violate the

property. Failure to find such a counter-example estab-

lishes the validity of the property and no revision is per-

formed on the given description. If, on the other hand,

any such counter-example ∆ is identified, its particular

form makes it simple to evaluate, as it tells us that when-

ever the system is in a given current state, the occurrence

of the detected event should not take the system into the

new state identified in ∆. A (possibly singleton) set of

training examples ∆′ may, therefore, be (automatically)

derived from ∆ by, for instance, considering transitions

that would take the system into different new states that

are consistent with the property P . Such training exam-

ples can be seen as correct state transitions that should

be covered by the system description for the property P

not to be violated. The generated ∆′ is then given as

input, together with the current system description, to

our inductive learning mechanism. Finally, the learning

process uses the training examples to perform changes in

the description of the system, which should (i) subsume

the correct state transitions ∆′ and (ii) generate a new

system description D
′ where the property P is expected

to be no longer violated.

The paper is organised as follows. Section 2 provides

a brief description of the general techniques of abduction

and inductive learning. Section 3 describes our analysis-

revision cycle. It defines the use of abduction in refutation

mode to analyse system’s properties and generate diag-

nostic information (i.e. counter-examples) when proper-

ties are violated. It then (i) presents a technique for gen-

erating correct examples (i.e. training examples) of sys-

tem behaviours from a given set of counter-examples, (ii)

describes the inductive learning technique used in the re-

vision phase of the analysis-revision cycle, and (iii) shows

how this learning technique may be employed to revise ex-

isting descriptions with the training examples. Section 4

applies the analysis-revision cycle in a case study, using a

specification of an automobile cruise control system. Sec-

tion 5 reviews related work, and Section 6 concludes and

discusses directions for future work.
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Fig. 2: Combining abductive reasoning and learning

2 Background

Formal reasoning techniques can be of three main forms:

deduction, abduction and induction. In general terms,

deduction is an analytic reasoning process that uses a

given set of assumptions ∆ (e.g., instances of a system’s

behaviour), and a rule-based domain-specific description

D (e.g., a system’s description) to infer consequences α

(e.g., a given system’s property). In contrast, abduction

is a constructive reasoning process that identifies the set

of assumptions ∆ needed in order to infer from the de-

scription D the consequence α. Finally, induction is a

synthetic reasoning process that produces general rules

from a collection of specific instances, thus expanding the

description D so that it covers such instances. Deductive

reasoning is often used to support query-based reasoning

on formal specifications, abductive reasoning for diagno-

sis, planning, theory and database updates, as well as

knowledge-based software specification analysis, and in-

ductive reasoning for performing machine learning tasks

in different application domains, ranging from bioinfor-

matics to software engineering. The formal framework

proposed in this paper combines two of these three reason-

ing modes — abduction and induction — to support the de-

velopment process of requirements specifications through

iterative phases of analysis and revision. In this section,

we briefly introduce these two types of reasoning.



2.1 Abductive Reasoning

Abduction is commonly defined as the problem of finding

a set of assumptions (or explanation) that, when added

to a given (formal) description, allows a goal (or observa-

tion) to be inferred without causing contradictions [17].

In logic terms, given a rule-based domain-specific descrip-

tion D and a goal G, abduction attempts to identify a

set of assumptions ∆ such that: (1) D ∪ ∆ � G, and

(2) D ∪ ∆ is consistent. The set ∆ is often required to

satisfy two main properties: (i) it must consist only of

abducible sentences, where the definition of what is ab-

ducible is generally related to some domain-specific no-

tion of causality, and (ii) it must be minimal. For ex-

ample, given a simple description composed of just one

rule Measles(X) → Red Spots(X), and the observation

Red Spots(John), abduction would identify the single as-

sumption Measles(John) as an explanation for such ob-

servation. Existing abductive procedures, written as logic

programs, work on the assumption that the given goal G

is a ground sentence (e.g., an instance). This makes such

procedures decidable since they only consider (starting

from the goal and reasoning backwards) the ground in-

stances of the rules included in the description D that are

necessary to prove the goal.

Abduction could be used to identify assumptions of sys-

tem bevahiours that would allow the inference of obser-

vations of system states from a given system description.

In event-driven system descriptions, abduction would, for

instance, be used to identify a trace of events and system

transitions (starting from the initial state) that would

prove a given requirement. This would be a direct use of

abduction to reason about requirements specifications.

In our approach, abduction is used, instead, in refuta-

tion mode, to enable the analysis of system descriptions

with respect to system properties, and the generation of

counter-examples (incorrect system transitions) as diag-

nostic information of properties violation [31, 32]. Section

3.1 illustrates in detail this use of abduction for analysis

as part of our analysis-revision cycle.

2.2 Inductive Learning

The task of inductive learning is to find hypotheses, in

the form of rules, that are consistent with background

knowledge to explain a given set of examples. These hy-

potheses are definitions of domain concepts, the examples

are descriptions of instances and non-instances of such

concepts to be learned, and the (possibly empty) back-

ground knowledge provides additional information about

the domain [23]. In logic terms, given background knowl-

edge B, positive examples e+, and negative examples e−

of some concept, inductive learning finds a hypothesis h

such that: (1) B ∪ h � e+, and (2) B ∪ h � e
−

.

Using the same example domain above, assume that

the background knowledge is empty, and that the set of

examples, also called training examples, is composed of

the following instances (all positive examples):

e
+
1 : Measles(John), Red Spots(John);

e
+

2 : Measles(Dan), Red Spots(Dan);

e
+

3 : Measles(Susan), Red Spots(Susan);

A hypothesis for the above training examples could be

Measles(X) → Red Spots(X). Of course, an alterna-

tive hypothesis would be Red Spots(X) →Measles(X).

Now, assume that the background knowledge, instead

of being empty, contained the common-sense knowledge

about the domain diseases trigger symptoms. This in-

formation would clearly eliminate the latter hypothesis

Red Spots(X) → Measles(X). Similarly, the presence

of more training examples; such as the observation that

even though Peter presented red spots, he had not con-

tracted measles; could achieve the same result.2 This

illustrates that the quality of the selection of hypotheses

increases as the amount of information about the domain

increases, either in the form of more training examples or

better background knowledge.

Different inductive learning techniques have been de-

veloped, based on one of these three forms of representa-

tion: symbolic [30], neural networks [14] or hybrid sys-

tems [3]. Symbolic learning has the advantage of us-

ing existing background knowledge to reduce the search

space during the learning process, making it more effi-

cient. The basic assumption is that the given background

knowledge is correct, and that the learned concept should

simply be added to such knowledge. An example of sym-

bolic learning technique is any Inductive Logic Program-

ming (ILP) technique [27]. In contrast, neural networks

perform inductive learning using statistical, rather than

declarative, definitions of data dependency that are en-

coded as weights on the network. This has enabled the

neural learning process to be effective in different applica-

tion domains, despite the fact that no background knowl-

edge is used. However, neural networks can outperform

symbolic learning systems, especially when the set of ex-

amples is noisy3 , as indicated in [36]. In response to these

results, there is a growing interest in combining symbolic

and neural learning systems [7, 5]. Such hybrid models of

inductive learning try to exploit some of the advantages

of both kinds of learning approaches and overcome their

respective limitations. For example, by combining back-

ground knowledge and neural networks, the number of

training examples that a hybrid system requires to learn

a given concept may be reduced. Moreover, when back-

ground knowledge is encoded in the set of weights of a

neural network, the subsequent neural learning process

2
For instance, a negative example e

−

1
= Measles(Peter),

Red Spots(Peter) would indicate that new hypotheses must not

derive Measles(Peter) and Red Spots(P eter) simultaneously.
3A set of examples is noisy when some examples are not correct

or missing altogether.



(which changes such weights based on the training ex-
amples) can not only expand the background knowledge,
but also revise it when necessary. The revision phase of
our analysis-revision cycle makes use of a specific hybrid
learning system, called Connectionist Inductive Learning

and Logic Programming System (C-IL2P) [7, 5], which is
explained in more detail in Section 3.3.

3 Evolving Specifications

In this section, we describe how abductive reasoning

and inductive learning can be integrated to, respectively,
analyse and revise specifications. We present an auto-
mated formal reasoning process that interleaves analysis
and revision phases, eventually stopping when no more vi-
olations of system properties are detected, thus providing
a revised specification that is consistent with such prop-
erties. The remainder of this section describes the two
reasoning techniques in detail, and illustrates a run of the
analysis-revision cycle using the (intentionally corrupted)
description of a simple electric circuit. Recall that we are
concerned with state transition based descriptions of de-
terministic systems.

3.1 Abducing Counter-examples

The tasks of validating system descriptions with respect
to system properties and generating appropriate diag-
nostic information whenever a property is violated are
performed here using an abductive reasoning approach
[31, 32] that combines both tasks into a single automated
decision procedure. This approach uses abduction in refu-
tation mode. This means that the problem of finding
whether a system description D satisfies a system prop-

erty P (i.e. D � P ) is translated into the equivalent prob-

lem of showing that it is not possible to find a set (∆) of

state transitions that is consistent with D and that, to-

gether with D, proves the negation of P . In logic terms,

our abductive procedure shows that D � P by failing to

find a set ∆ of abducibles that is consistent with D, such

that D ∪ ∆ � ¬P . The equivalence of these two tasks

is proved in [32]. If, on the other hand, the abductive

procedure finds such a ∆ (of incorrect state transitions),

then ∆ acts as a set of counter-examples to the validity

of P . These counter-examples describe particular (system

or environmental) events occurring in particular contexts

(classes of system’s current states). These contexts, to

be relevant, must themselves satisfy the properties. This

is ensured by considering the properties as integrity con-

straints on a symbolic current state, thus pruning the set

of possible counter-examples to be searched.

To illustrate the analysis phase we provide a simple ex-

ample. Consider an electric circuit consisting of a single

light bulb and two switches (SwitchA and SwitchB), all

connected in series. Let us assume that a (possibly in-

correct) description D of our electric circuit includes the

following rules r1 to r4, formalised using propositional

logic programming [20] and the “prime” notation often

used in formal specifications, where unprimed conditions

c denote that c is true at the current state, and primed

conditions c
′ denote that c is true at the next state.4

¬SwitchA-On ∧ ¬Light-On ∧ FlickA → Light-On
′ (r1)

¬SwitchB-On ∧ ¬Light-On ∧ FlickB → Light-On
′ (r2)

¬SwitchA-On ∧ FlickA → SwitchA-On
′ (r3)

¬SwitchB-On ∧ FlickB → SwitchB-On
′ (r4)

For example, rule r1 can be read as “if, in the current

state, SwitchA is not on and the Light is not on and the

event FlickA happens then the Light will be on in the

next state”. One of the system properties that we would

like the above description D to satisfy is:

P = Light-On → SwitchA-On ∧ SwitchB-On

Let us assume that, at the initial state, both SwitchA and

SwitchB are not on. In order to check whether D � P,

our abductive procedure assumes P to be true at (an arbi-

trary) current state and checks whether its negation (¬P )

is true at an arbitrary next state. It applies backward rea-

soning from the current goal over the rules (r1 − r4), and

makes use of the default assumption that each condition

preserves its truth-value, unless changed by the occur-

rence of some event, whenever necessary. We refer to this

as the no change assumption. The negated property, in-

stantiated at an arbitratry next state, is given by ¬P ′ =

(Light-On′
∧ (¬SwitchA-On′

∨ ¬SwitchB-On′)), which

can be re-written as ¬P ′ = ¬P
′

1
∨ ¬P

′

2
, where:

¬P
′

1
= Light-On′

∧ ¬SwitchA-On′

¬P
′

2
= Light-On′

∧ ¬SwitchB-On′

To prove ¬P , the abductive procedure checks whether

¬P
′

1
or ¬P ′

2
can be proved from the description D. At this

point, the procedure makes an arbitrary choice, say ¬P ′

1
,

which is taken as an intermediate goal.5 To prove ¬P ′

1
,

the procedure has to prove both Light-On′ and ¬SwitchA-

On′. Consider the second condition. Since no rule in the

description D defines ¬SwitchA-On′
, no backward rea-

soning step over the description can be applied. The

procedure may use, however, the no change assumption

to conclude that a possible explanation for not having

SwitchA on at the next state is simply not to have it on

at the current state and not to have the event FlickA

happening. At this point, the procedure constructs a

first temporary set of assumptions ∆0 = {¬SwitchA-On,

¬FlickA}, and tries to prove, taking into account the set

∆0, the second conjunct of ¬P ′

1
, which is Light-On′. To

prove Light-On′, reasoning backwards, we can use either

4These rules could be thought of as derived from a state tran-

sition diagram, where FlickA and FlickB are the only two possible

events of the system. FlickA makes SwitchA-On true at the next

state, if it is not true at the current state, and vice-versa. FlickB

has the same effect on SwitchB. For a detailed logic representation

of this example using the Event Calculus see [32].
5Note that ¬P ′

1
is a ground sentence, as required for the proce-

dure to be decidable.



rule r1 or r2. In the first case, the procedure gener-
ates, in its abductive phase, the additional temporary
assumptions ¬SwitchA-On, ¬Light-On and FlickA, and
then checks whether these assumptions are consistency
with ∆0. This consistency check clearly fails, since∆0 in-
cludes ¬FlickA and the new assumptions include FlickA.
Thus, this first attempt to prove Light-On′ is rejected,
and the abductive reasoning phase starts again, now con-
sidering rule r2. In its second attempt, similar to that
above, the procedure generates the new additional as-
sumptions ¬SwitchB-On, ¬Light-On and FlickB, which,
this time round, are all consistent with ∆0 and, therefore,
accepted. As a result, our abductive procedure produces:
∆={¬SwitchA-On, ¬SwitchB-On, ¬Light-On, FlickB,

¬SwitchA-On′, SwitchB-On′, Light_On′
}

which is such that D ∪∆ � ¬P1. Since ¬P1 is provable
from D, whenever ∆ is true, ¬P ′ is also provable from D,
whenever ∆ is true. Hence, the property is not validated
by the description, and ∆ is a counter-example. It says
that both SwitchA and SwitchB are not on and Light is
also not on, and only the event FlickB happens, taking
the system into a new state where the Light is on but
SwitchA is not on, thus violating the property P .

3.2 Generating Training Examples

A crucial aspect of the analysis-revision cycle is how to
use the diagnostic information ∆, identified by the analy-
sis phase, to generate system behaviours ∆′ (i.e. training
examples) that should, instead, be covered by the sys-
tem description. Since ∆ is a counter-example, it informs
us that some state transitions are not correct. Consider-
ing that an state transition is defined by a current state,
an event and a new state, ∆′ should include information
about alternative transitions, in which one or more of
these three components has been changed. For instance,
we might want to assume that the current state needs
to be changed, or else that the current state and event
should take the system into a different new state. Both
modifications would be plausible. Therefore, we need to
decide (a) which changes to consider, and (b) which of
the alternative values of such changes to consider. In this
paper, we address item (a) by only considering changes
in the new state of a diagnosed incorrect state transition.
We address item (b) by arbitrarily selecting one of the
alternative new states that make ∆′ consistent with P .
In what follows, we use the term entry configuration to

refer to the current state and the event of a given state
transition, with associated event conditions (if any), and
exit configuration to refer to the new state of the tran-
sition. The diagnostic information ∆ generated by our
abductive procedure informs us that a given entry con-
figuration (c1) should not produce a given exit config-
uration (c2). Taking the electric circuit example, ∆ in-
forms us that the entry configuration c1= (¬SwitchA-On,
¬SwitchB-On, ¬Light-On, FlickB) should not produce

the exit configuration c2= (¬SwitchA-On′, SwitchB-On′,
Light-On′). In other words, the set {c1, c2} is an incor-
rect state transition. A way of solving this problem is
to make sure that c1 produces an exit configuration c3,
different from c2 (assuming that the system’s description
must be deterministic). The set {c1, c3} would be one of
our training examples (or correct state transition).

In formal terms, given a description D and a set
P of properties, for each diagnostic information ∆ =
{i1, ..., ij , o1, ..., ok}, where {i1, ..., ij} is an entry config-
uration and {o1, ..., ok} is an exit configuration, find a
training example ∆′ = {i1, ..., ij, o′

1, ..., o
′

k} such that (i)
there exists at least one o′

l (1≤l≤k)
/∈ ∆, and (ii) ∆′ is

consistent with system and domain properties.
Returning to the electric circuit example, recall that

∆ = {c1, c2}. If we change, for instance, ¬SwitchA-On′

to SwitchA-On′ in c2, we may derive an inconsistency
from the observation that SwitchA has changed its posi-
tion without having been flicked (since the event FlickA
is not included in c1). Similarly, if we try to change
SwitchB-On′ to ¬SwitchB_On′ in c2, we may derive an
inconsistency from the observation that SwitchB has not
changed its position, despite having been flicked (again,
see c1). The remaining option6 would be to change Light-
On′ to ¬Light-On′ in c2, obtaining c3= (¬SwitchA-On′,
SwitchB-On′, ¬Light-On′) and, therefore, the following
valid ∆′ composed of c1 and c3:

∆
′ = {¬SwitchA-On,¬SwitchB-On,¬Light-On, FlickB,

¬SwitchA-On′,SwitchB-On′,¬Light-On′}

3.3 Inducing a New Specification

So far, we have seen that a desirable property P of a
system may be checked against its system description D,
abducing a number of counter-examples ∆ whenever P is
violated. This information can then be used to generate
a set ∆′ of state transitions that should be covered by
the system description, if property P is no longer to be
violated. In terms of Machine Learning, the set ∆′ can
be seen as the training examples upon which a learning
mechanism can be applied. By either defining new state
transition rules or appropriately revising existing ones, a
new system description D′ is expected to cover all the
instances in the set of training examples.

We are now in a position to induce a revised description
D′ from ∆

′, using D as background knowledge. Recall
that our ultimate goal is to find a D′ such that D′ � P , in
which case the set of training examples would be empty
(indicating that the analysis-revision cycle could termi-
nate). In this paper, we use the Connectionist Inductive

Learning and Logic Programming System (C-IL2P) [7, 5]
to induce D′. C-IL2P is a hybrid machine learning sys-
tem that uses Backpropagation [14], the neural learning

6 In this paper, we restrict the generation of training examples

to the cases where there exists a single o′

l
such that o′

l (1≤l≤k)
/∈ ∆.



algorithm most successfully applied in industry, as the un-

derlying learning technique. In what follows, we briefly

describe the C-IL
2
P system and present the results of

applying it in the electric circuit example used above. A

discussion about the choice of C-IL2
P, in comparison with

other machine learning techniques, is given in Section 4.2.

C-IL
2
P is a hybrid system, based on a neural net-

work, that integrates inductive learning from examples

and background knowledge with logic programming. The

system is composed of three main modules: knowledge

insertion, revision and extraction, as shown in Figure 3.

The insertion module consists of a Translation Algorithm

that takes background knowledge, described as a general

logic program [20], and generates the initial architecture

and set of weights of a (single-hidden layer and feedfor-

ward) neural network (Figure 3(1)). That neural net-

work computes the (stable model [12]) semantics of the

program inserted in it, thus guaranteeing the correctness

of the translation (the proof of the equivalence between

the logic program and the neural network is given in [7]).

The revision module revises the background knowledge by

training the neural network with examples (Figure 3(2))

using standard Backpropagation. It does so by present-

ing the network with input and output sequences so that

it can adapt (change its weights) to new situations, but

taking into consideration the background knowledge that

defined its initial set of weights. The extraction mod-

ule consists of an Extraction Algorithm that takes the

trained network and generates new symbolic knowledge,

described in the form of a logic program (Figure 3(3)).

The set of extracted rules are generally more comprehen-

sible than the trained network, facilitating the analysis

of the knowledge refinement process by a domain expert

(the proof of the correctness of C-IL2
P’s rule extraction

algorithm is given in [5]).

Revised
Knowledge

Background
Knowledge

Neural
Network

ExamplesInsertion

Revision

Extraction

1

2

3

Fig. 3: The C-IL
2
P System

Rule extraction from trained networks is an extensive

research topic in its own right (see [1] for a comprehen-

sive survey). Intuitively, the extraction task is to find the

relations between input and output concepts in a trained

network, in the sense that certain inputs cause a partic-

ular output. Neglecting many interesting details, C-IL2
P

performs rule extraction by simply presenting the trained

network N with different input sequences, and generat-
ing rules according to the output sequence obtained. The
core of C-IL

2
P’s rule extraction algorithm is concerned

with the selection of good candidate input sequences to

be presented toN , so that it can be described by a correct
and compact set of rules [5].

Example. To illustrate a run of our revision phase
using C-IL

2
P, we consider again the electric circuit ex-

ample. Module 1 of C-IL2
P is responsible for translating

rules r1 − r4 of the (partial) description D into the ini-
tial architecture of a neural network N . It does so by
mapping each rule (ri) from the input layer to the output
layer of N , through a hidden neuron Ni. For example,
rule r1 = ¬SwitchA_On ∧ ¬Light_On ∧ Flick_A →

Light_On′ is mapped into N by simply: (a) connecting
input neurons representing the concepts SwitchA_On,
Light_On and Flick_A to a hidden neuron N1, (b) con-
necting hidden neuron N1 to an output neuron represent-
ing the concept Light_On′, and (c) setting the weights
of these connections in such a way that the output neu-
ron representing the concept Light_On′ is activated (or
true) if the input neurons representing SwitchA_On,
Light_On and Flick_A are, respectively, deactivated (or
false), deactivated (false) and activated (true), thus re-
flecting the information provided by rule r1.

Figure 4 shows the neural network obtained from rules
r1 − r4. Note that output neuron Light

′ must also be
activated, now through hidden neuron N2, if input neu-
rons B On and Light are deactivated and input neu-
ron FlickB is activated (corresponding to rule r2 =

¬SwitchB_On ∧ ¬Light_On ∧ Flick_B → Light_On′
).

In this initial network, positive weights (indicated in Fig-
ure 4 by solid lines) are used to represent positive literals
(such as Flick_A in r1) and negative weights (indicated
in Figure 4 by dotted lines) are used to represent nega-
tive literals (such as ¬SwitchA_On and ¬Light_On in
r1). As a result, output neurons perform an or of the
concepts represented in the hidden neurons that are con-
nected to them, and hidden neurons perform an and of
the concepts represented in the input neurons that are
connected to them. For example, from Figure 4, output
neuron Light

′ will be activated if and only if either N1

or N2 is activated. Hidden neuron N1 will be activated if
and only if A On and Light are deactivated (see dotted
lines) and FlickA is activated. Similarly, hidden neuron
N2 will be activated if and only if B On and Light are de-
activated and FlickB is activated. In logic terms, Light′

will be true if and only if either A On and Light are false
and F lickA is true (corresponding to rule r1), or B On

and Light are false and F lickB is true (corresponding
to rule r2).

Recall from Section 3.1 that one of our training exam-
ples is ∆′

= {¬SwitchA On, ¬SwitchB On, ¬Light On,

Flick B, ¬SwitchA On
′
, SwitchB On

′
, ¬Light On′}.

As a result, module 2 of C-IL
2
P was used for training

the initial network N with input sequence ii = {A On =

−1,B On = −1, Light = −1, F lickA = −1, F lickB = 1}

and output sequence oi = {Light′ = −1, A On
′
=

−1,B On
′
= 1}, where 1 indicates true and −1 indi-



cates false. Finally, after the network was trained with
example (ii, oi), module 3 of C-IL2

P was applied to ex-
tract the new knowledge from the network. The extrac-
tion algorithm derived a new rule r

′

2
= {SwitchA_On ∧

¬SwitchB_On ∧ ¬Light_On ∧ Flick_B → Light_On′},
as well as rules r1, r3 and r4. In other words, the learning
process has specialised rule r2 into rule r′

2
, without having

changed the remaining rules. Clearly, rule r2 was under-
specifying the system, and the suggestion of C-IL

2
P to

the requirements engineer, as a result of learning ∆′
, was

to add to r2 the condition that switch A also needs to be
on for the light to come on once switch B is flicked to on.
The analogous change to rule r1 (in which SwitchB_On
would be added) would require training another example.

Light ' B_On'

N1 N2 N3 N4

A_On'

A_On B_On FlickALight FlickB

Input Sequence

Output Sequence

Fig. 4: The network (N ) obtained from description D

The revision of D into D
′
= D − r2 + r

′

2
guarantees

that ∆ is no longer an explanation for the violation of
the domain property P . It does not guarantee that P

will not be violated by the new description D
′. This is

why we regard the process of evolving specifications as
cyclic, in which the specification is being refined during
each cycle, until the domain properties of the system are
provably satisfied, in which case our analysis phase will
not produce any new training example.

4 Case Study

We have applied the analysis-revision cycle to evolve a

specification of an automobile cruise control system [19].

Different specifications of such a system have been pre-

sented in the literature [34]. In this case study, we have

considered a deterministic, partial state transition based

specification, in which the system must be in one of four

possible states at any given time: off, inactive, cruise

or override. Several environmental and system variables

are considered in the specification, such as the ignition

switch, the cruise control lever, and the automobile’s

speed. Events in the environment cause changes in the

values of domain and system variables, and may cause

the system to change its state, according to the values of

the event conditions. For example, when the system is in

state inactive, if the ignition is on, the engine is running,

and the brake is off, the event of moving the cruise con-

trol lever to the activate position is supposed to take the

system into the state cruise. Figure 5(a) shows two such

state transitions where the event of pressing the brake

should take the system from state cruise to state over-

ride, provided that the automobile is not going too fast;

and the event of moving the lever to activate should take

the system from state override back to state cruise, pro-

vided that the brake is not engaged.

One of the cruise control system’s safety properties

states that “if the system is in state cruise then the ig-

nition switch should be on, the engine should be running

and the brake should not be engaged”. This property has

been found to be violated. The partial state transition

given in Figure 5(a) implicitly assumes that, whenever

the conditions of the event transition brake from cruise to

override are false, the system will stay in its state cruise.

As a result, when the system is in state cruise and the

brake is engaged, but the automobile is going toofast,

the system remains in state cruise, therefore violating

the above safety property. Such an incorrect transition is

depicted in Figure 5(b) as the diagnostic information ∆.

The process of deriving a training example∆′ from∆ is

illustrated in Figure 5(c). It can be seen as simply chang-

ing the state to which an incorrect transition points to.

In this case study, as we will see in the sequel, the in-

correct transition ∆ becomes transition ∆′, so that when

the system is in state cruise and the brake is engaged,

but the automobile is going toofast, the system moves

into state override. Finally, we need to accommodate ∆′

consistently into the original specification. In this case

study, this has been done by changing the conditions of

the original state transition from cruise to override, as

illustrated in Figure 5(d) (compare with Figure 5(a)).

In what follows, we will explain in detail how our cycle

of analysis and revision has been used to achieve such

a change. In order to combine the abductive reasoning

process with C-IL
2
P, we have used a logic programming

implementation of the original formalisation given in [32].

Each state transition is formalised as follows:

s
c
∧ c1 ∧ ... ∧ c

n
∧ e → s′

n

where sc and sn represent, respectively, the current and

next state of the transition, e denotes the event transi-

tion, and c1, ..., c
n

denote the conditions of the event

(n = 0 if the event transition does not have any con-

dition). The rule defines the transition of the system

from a current state to a (different) next state when-

ever an event happens and the conditions of the event

are true. Each rule has a counterpart rule of the form

sc ∧ c1 ∧ ... ∧ cn ∧ e → ¬s′

c
to express that, when

the transition occurs, its current state is no longer true.

In addition, each event has rules to express the effect



¬toofast ∧  happens(brake) 

Cruise Override

¬brake ∧  happens(activate) 

(a)

¬toofast ∧  happens(brake) 

Cruise Override

¬brake ∧  happens(activate) ∆ = toofast ∧  happens(brake) 

(b) ¬toofast ∧  happens(brake) 

Cruise Override

¬brake ∧  happens(activate) 

∆’ = toofast ∧  happens(brake) 

(c)

         happens(brake) 

Cruise Override

¬brake ∧  happens(activate) 

(d)

Fig. 5: Analysis and revision of state transitions

on its associated variable. For example, for an event

brake, the rule ¬brake ∧ happens(brake)→ brake′ must

be introduced. Domain properties have also been con-

sidered, as for example, the property that, at any given

time, the cruise control lever has to be in exactly one of

the three positions: activate, deactivate or resume. Rules

r1 to r4 below are part of the logic programming repre-

sentation of the case study
7
: r1 = override ∧ ¬brake ∧

¬activate ∧ happens(activate) → cruise
′
; r2 = ¬brake ∧

happens(brake) → brake
′
; r3 = cruise ∧ ignited ∧ running ∧

¬toofast ∧ ¬brake ∧ happens(brake) → override
′
; and r4 =

¬activate ∧ happens(activate) → activate
′
.

The set of properties that the description has to verify

at any point in time is given by P1 to P5 below, where

“|” means “exclusive or” and the logical operator “↔”

means “if and only if”.

off | inactive | cruise | override (P1)
off ↔ ¬ ignited (P2)
inactive → ignited ∧ (¬ running ∨ ¬activated) (P3)
cruise → ignited ∧ running ∧ ¬brake (P4)
override → ignited ∧ running (P5)

In the logic programming representation, each of the

properties (P1 − P5) is converted into a set of integrity

constraints (ic). The rationale behind the conversion is

that if, for example, a | b | c were a desirable property

of the system then having any two of a, b and c would

not be desirable and should lead to an inconsistency. Of

course, having none of a, b and c should also lead to an

inconsistency (indicated by ⊥). Similarly, if a → b were

a desirable property, having a and ¬b should imply ⊥, if

a→ b∨ c were a desirable property, having a, ¬b and ¬c

should imply ⊥, and so on. For example, the conversion

of property P4 gives three integrity constraints: ic4.1 =

{cruise∧¬ignited→⊥}, ic4.2 = {cruise∧¬running →⊥

} and ic4.3 = {cruise ∧ brake →⊥}. The conversion of

P5 derives two integrity constraints: ic5.1 = {override ∧

¬ignited→⊥} and ic5.2 = {override ∧ ¬running →⊥}.

7
Rule r3 defines fully the state transition from cruise to

override, which is only partially illustrated in the diagrams of Fig-

ure 5.

4.1 Evolving the Rules with Examples

Let us now illustrate a run of the analysis-revision cy-

cle, when checking whether property P4 is verified. As

mentioned in Section 3.1, the abductive phase tries to

prove the negation of P4 at an arbitrary next state of

the system. Taking, for instance, ic4.3, it tries to prove

cruise
′∧brake

′. To prove brake′, reasoning backwards, it

considers rule r2 above, and starts constructing a tempo-

rary set of assumptions ∆0 = {¬brake,happens(brake)}.

It then tries to prove cruise
′. One possibility is to use

the no change (default) assumption, i.e. assume cruise

to be true as a current state and prove that transitions

leading to any other state do not happen. In this case,

rule r3 (taking the system into override) must not be

applied. To prove this, the procedure has to fail prov-

ing, consistently with ∆0, at least one of the conditions

of r3. Both ignited and running must be true; otherwise

integrity constraints ic4.1 and ic4.2, respectively, would

be violated. However, ¬toofast can be proved to fail, by

simply considering (or abducing) the assumption toofast.

At this point, the abductive procedure stops, generat-

ing a counter-example8: ∆ = {cruise, ignited, running,

toofast, ¬brake, happens(brake), cruise′, brake′, ignited′,

running′, toofast′}.

A number of training examples (∆′) can be obtained

from ∆. If, for instance, we try and make cruise
′
false,

we know from property P1 that one of off
′
, inactive

′

or override
′ has to be made true. From property P2,

having off
′ and ignited

′ simultaneously would lead to

an inconsistency. So, we are left with two options:

inactive
′ or override

′
, and, therefore, two possible train-

ing examples: ∆′ = {cruise, ignited, running, toofast,

¬brake, happens(brake), override ′, ignited ′, running ′,

toofast ′, brake ′}, and ∆′′ = {cruise, ignited, running,

toofast, ¬brake, happens(brake), inactive
′
, ignited

′
, run-

ning ′, toofast ′, brake ′}. At this point, either we recourse

to the knowledge of a domain expert, or we try and apply

some heuristics to choose between ∆′ and ∆′′
. A heuristic

8
Note that other counter-examples could be generated by run-

ning the abductive procedure again and applying backward reason-

ing on other rules of the system description.



that we have used here was as follows: although neither

override
′ nor inactive

′ leads to an inconsistency, in the

case of ∆′
, none of the constraints regarding override

′

(see property P5) could possibly be violated, since ∆′

states that both ignited
′ and running

′ must be true. On

the other hand, one of the constraints regarding inactive
′

(see property P3) could clearly be violated by ∆′′
. This

is so because, although running is true, activate is un-

defined in ∆′′
. If we assumed, thus, that activate is true

then inactive → (¬running ∨ ¬activate) would be vio-

lated. In this case, we say that ∆′ is preferred over ∆′′ be-

cause on the number of potential property violations. The

definition of a metric to guide the above choice of mutu-

ally exclusive training examples is still work in progress.

Taking ∆′ as our training example (Figure 5(c)), we are

now in a position to (1) translate the system description

into the initial architecture of a neural network N , (2)

train N with examples, and (3) extract a revised descrip-

tion from the trained network. Figure 6 shows a small

part of the network, in which rules r2 and r3 are repre-

sented. In addition, the no change assumption regarding

cruise is explicitly represented by connecting input neu-

ron cruise to output neuron cruise
′

via hidden neuron

rdef , and making sure that whenever neuron r3 is acti-

vated, neuron cruise
′ is deactivated (i.e. the outcome

of neuron rdef is blocked) by means of the dotted line

(a negative weight). This corresponds to the situation

where the system is supposed to stay in cruise unless a

transition into override happens [4] (Figure 5(d)).

The network N is then fed training example ∆′, de-

scribd above, which gives the following input and output

vectors to N : ii = {cruise = 1, ignited = 1, running =

1, toofast = 1, brake = −1, happens(brake) = 1} and

oi = {cruise
′ = −1, override′ = 1, brake′ = 1}. After the

network is trained, the extraction of rules from N indi-

cates that C-IL2P has combined the background rule r3

and the training example ∆′ to determine that the truth-

value of toofast should be irrelevant to the conclusion

of override′. It has done so by changing the background

rule r3 into the new rule r
′

3
= cruise∧ignited∧running∧

¬brake ∧ happens(brake)→ override
′
.

4.2 Tool Support and Discussion

The analysis phase of our analysis-revision cycle uses an

abductive logic programming proof procedure. The tool

was implemented in Prolog and uses (i) a logic program

conversion of the given specification, and (ii) the abduc-

tive logic program module described in [18]. The revi-

sion phase of our analysis-revision cycle uses the modules

of knowledge insertion, revision and extraction of the C-

IL
2
P system, which was implemented in C.

The above case study shows how the analysis-revision

cycle proposed in this paper can be used to analyse and

revise requirements specifications. It indicates that the

choice of the training examples is a very important one,

in that the better the choice, the faster the convergence

of the system to a specification that does not violate any

desirable property.

override’ brake’

cruise ignited running too-fast brake happens
(brake)

cruise’

r3rdef r2

Fig. 6: Part of the network for the cruise control system

Different learning techniques could be applied in the

process of revising specifications. As a result, a major

problem we had to tackle in this paper was how to find an

appropriate inductive learning technique for such a task.

In the context of requirements specifications, firstly, it is

desirable to use a push-button technique, i.e. a technique

that does not require the user to have specific knowledge

in order to use it. In addition, in comparison with most

problems of machine learning, here we are faced with a

limited number of training examples, which may compro-

mise the accuracy of the results of the learning process.

On the other hand, we have background knowledge, i.e.

some domain specific, prior information D, which may

be useful to compensate the reduced number of training

examples. Moreover, such background knowledge may be

incomplete and incorrect, since we work with partial spec-

ifications. As a result, traditional techniques of inductive

learning that perform training from examples only, do not

seem to be adequate. This includes Case Based Reasoning

[24] and most models of Artificial Neural Networks [14].

We are left with (i) Inductive Logic Programming (ILP)

techniques, (ii) Hybrid (neural and symbolic) Systems;

and (iii) Explanation Based Learning (EBL) algorithms

(see [24]). Among these, hybrid systems seem to be more

appropriate as far as dealing with incorrect background

knowledge and theory refinement is concerned [7, 37, 36].

Hybrid systems are not normally push-button techniques

though, as they typically use traditional neural learning

algorithms (such as Backpropagation), which require the

adaptation of a learning rate via trial and error. On the

other hand, explanation based learning algorithms seem

to require less interaction with the user [25], but are not

appropriate in the presence of incorrect domain knowl-

edge [24], as they rely heavily on the correctness of the

background knowledge in order to generalise rules from

fewer training examples. Finally, while the strength of

ILP lies in the ability to induce relations due to the use

of a more expressive language, most ILP systems present



significant limitations in terms of efficiency due to the

extremely large space of possible hypotheses that needs

to be searched. In the presence of incorrect background

knowledge, such a problem may become intractable.

5 Related Work

The approach presented in this paper integrates two for-

mal techniques for analysing and revising requirements

specifications. Most of the techniques presented in the

literature address either one of these two activities inde-

pendently, but not both.

Several formal techniques have been developed for

analysing requirements specifications, such as those based

on theorem proving or model checking, and declarative

logic-based approaches. Techniques based on theorem

proving [29] might not be decidable, thus not always ter-

minating. On the other hand, techniques based on model

checking facilitate automated analysis and generation of

counter-examples, when errors are detected [2, 15]. They

provide as counter-examples long traces of system exe-

cutions. In contrast, our abductive procedure generates

counter-examples as individual state transitions. This fa-

cilitates the mapping of counter-examples into training

examples to be handled by inductive learning.

Among declarative logic-based approaches, the work of

van Lamsweerde et. al. [39] is particularly relevant. This

describes a goal-driven approach to requirements engi-

neering in which “obstacles” are part of a specification

that leads to a negated “goal”. This approach is similar

to our abductive analysis technique in that its notion of

goal is similar to our notion of system property, and its no-

tion of obstacles is analogous to our notion of abducibles.

However, our abductive decision procedure differs from

the goal-regression technique used in [39] in that it uses

grounded goals to make the procedure decidable, and in-

tegrity constraints to validate the properties efficiently

[32]. Other examples of the application of abduction to

software engineering tasks can be found in [22].

A variety of (logic-based) formal techniques have also

been developed for revising requirements specifications in

order to resolve inconsistencies. Our revision process can

be seen as one of these techniques, since violation of a

property is an example of inconsistency detection between

the system description and the system property. Belief re-

vision for default theories has been suggested as a formal

approach for resolving inconsistencies arising during the

evolution of requirements specifications [41]. The incon-

sistency detection is implicit in the definition of the belief

revision operator, and the process is a single-shot revision.

In contrast, our approach provides an explicit analysis of

inconsistency via the use of abductive reasoning, and a

cyclic, interactive process of revision. Most of the ex-

isting techniques for revising requirements specifications

(see also [33]) perform revision comprising only the addi-

tion and deletion of deducible and existing requirements.

In contrast, with the use of inductive learning, the revi-

sion process presented in this paper enables the evolution

of specifications via the acquisition of genuinely new re-

quirements.

Of the inductive learning-based approaches, the work

of van Lamsweerde and Willemet [40] is particularly rel-

evant. It describes the use of an inductive based goal

inference procedure to elicit new requirements from sets

of operational scenarios. This approach uses symbolic in-

ductive learning and, therefore, differs from our technique

in the same way as purely symbolic systems differ from

hybrid learning systems. Moreover, while in [40] the use

of a learning technique is aimed at the elicitation of new

requirements from scenarios provided by the user, in our

approach the focus of the learning technique is on the gen-

eration of new requirements in order to resolve detected

errors in the specification. Training examples are gener-

ated by the analysis phases, and the learning process per-

forms a revision of the (possibly incorrect) partial specifi-

cation. Learning techniques have also been used in other

software engineering applications, such as the inference of

process models from process traces [11] and the validation

of an air trafic control requirements model [21].

6 Conclusion and Future Work

In this work, we have seen that the process of systemat-

ically changing requirements specifications can be sup-

ported by a cycle composed of an analysis phase and

a revision phase, in which abductive and inductive rea-

soning are applied respectively. Our approach provides

both theoretical foundations and practical techniques for

the development of logic-based methods of requirements

specifications. It also contributes to the management of

inconsistency in requirements specifications [28, 16, 13].

Following the idea that inconsistency should be seen as

a “trigger for actions” [10], this paper shows that one of

these actions could be learning [8].

Although the generation of training examples is guided

by ∆, the definition of ∆′ has been left quite open in

Section 3.2. However, the effectiveness of our analysis-

revision cycle depends on the generation of good training

examples. This may be domain dependent and, indeed,

require the help of an expert. Still, we could apply heuris-

tics to decide between mutually exclusive training exam-

ples. Thus, an important extension of this work would

be to investigate the use of new heuristics to help in the

choice of potential training examples.

Although the combination of inductive and analyti-

cal learning, via the use of a hybrid machine learning

technique, seems to be a good choice for requirements

specifications evolution, another extension of this work

would be to investigate the use of other techniques of

machine learning. These include Inductive Logic Pro-

gramming, Knowledge-based Artificial Neural Networks

(KBANN) [37] and Explanation-based Neural Networks



EBNN [35] (and their hybrids, e.g., [26]). This would al-

low us to perform more detailed technical evaluation of

these techniques, and draw general conclusions on when,

why, and for which type of requirements specifications,

one technique would be more appropriate than others.

The extension of our analysis-revision cycle to elicit new

requirements from scenarios would be another interesting

direction to pursue.

Finally, note that the abductive derivation of diagnos-

tic information assumes that system properties are cor-

rectly defined. However, if a diagnostic information is not

validated by the stakeholders as a counter-example to a

property, this could indicate that the property itself is

wrong and, therefore, that the cycle of analysis and revi-

sion needs to be re-started with a new system property.
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