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Abstract

Measurements on a high-performance switched Ethernet system are presented

that reveal new insights into the statistical nature of �le server and web server
traÆc. Both �le sizes and data requested from the web server are shown to match
well a truncated Cauchy distribution. This is a distribution with heavy tails simi-
lar in nature to the commonly used Pareto distribution but with a much better �t

over smaller �le/request sizes. We observe self similar characteristics in the traÆc
at both servers and also at a CPU server elsewhere on the network. TraÆc from
this server is predominantly targeted at the �le and web servers, suggesting that
self-similar properties at one point on a network are being propagated to other

points. A simple simulation model of an isolated server is presented with Poisson
arrivals and service (packet transmission) demands with the same Cauchy dis-
tribution as we observed. The departure process is shown to follow a power law
and the corresponding power spectrum is shown to match extremely well that
of the observed traÆc. This supports the suggested link between �le/request

size distribution and self-similarity. The resulting implication that self similarity
and heavy tails are primarily due to server-nodes, rather than being inherent
in o�ered traÆc, leads to the possibility of using conventional queueing network
models of performance. This idea is further supported by an additional simulation

experiment and suitable models are proposed.
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1. Introduction

In preparation for the building of performance models for network performance
we have been measuring and analysing network traÆc at various parts of an aca-
demic departmental network, speci�cally the Computing Department of Imperial

College, London. The motivation is to provide a better understanding of net-
working issues and to provide a body of data that can be used to validate future
models of networks and network traÆc.
Network traÆc has been measured by many researchers and been analysed in

many di�erent ways ever since the seminal papers of Leland et al. and Eramili
et al. [1, 2]. There are many papers debating the reason for the apparent self-
similarity in modern communications traÆc. The explanations put forward range
from ON/OFF models of heavy-tail distributions [1, 2], through the �le size

distribution in �le systems and web servers [3, 4] to user behaviour, higher level
network protocols, back-o� algorithms in the Ethernet [6], bu�ers in routers and
the TCP congestion avoidance algorithms [7, 8, 9, 10].
Like many earlier papers the main motivation here is to obtain a better un-

derstanding of the characteristics of network traÆc and to explain the sources of

self-similarity. In addition, however, we want to build accurate models of net-
work traÆc, together with the web-servers with which it interacts. This requires
that such models should be able to reconstruct the type of self-similar patterns
that are observed in real networks. To this end, we develop a simple simulation

reference model, carefully parameterised using insights from various observations
of real traÆc, which is shown to recreate most e�ectively the power laws observed
in practice.
A key property that the simulation reproduces is the distribution of both web

server and �le server response sizes, in terms of the number of Ethernet pack-
ets required to transmit them. It is well known that these often exhibit power
laws [1, 2] but previous work has tended to match them to Pareto distributions.
Our analysis suggests that the data may be better represented by a (truncated)
Cauchy distribution and the success of the simulation model in reproducing ob-

served traÆc patterns bears this out. The paper thus adds to the growing body
of evidence linking heavy-tailed distributions with self-similarity, here backed up
with a supporting model.
Curiously the Cauchy distribution appears elsewhere in our analysis, speci�-

cally when we consider the changes in the packet transmission rates over time.
This type of measurement is commonplace in the analysis of stock prices, for ex-
ample [11], but not, to date, for network traÆc. Interestingly stock price changes
have also been found to be well approximated by a Cauchy distribution.

The measurements we have performed are cheap and easy to reproduce at other
sites. In particular, in our discussions we promote the use of /proc/net/dev �les
when analysing over very long time periods. This is both economical on resources
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and can be done without system privileges. A comparison of /proc/net/dev and
tcpdumpbased measurements is presented later in the paper.
The rest of the paper is organised as follows: Section 2 discusses the two

main mechanisms for real-time data capture within the Linux operating system.

Section 3 describes the architecture of the network in question and the type of
monitoring that has been performed. Section 4 describes the analysis techniques
that have been applied to the captured traces and Section 5 presents the results
of applying that analysis. The simulation model is detailed in Section 6 and the

interpretation of its output in relation to our measurements and queueing models
is discussed in Section 7. The paper concludes in Section 8, summarising the
main contributions and indicating future research directions.

2. Data Capture

This paper refers to data measured in two di�erent ways. One uses the tcpdump
program that monitors traÆc at the packet level. The other method reads the
contents of the �le /proc/net/dev periodically.

2.1. tcpdump. The tcpdump [12] utility attaches itself to the network socket in
the Linux kernel and makes a copy of each network packet that arrives at the

network interface. To be more precise it allows all Ethernet packets arriving at
the kernel to be logged. We have used the program to obtain for every frame
that is transmitted:

� A timestamp indicating when the packet reaches the kernel;
� Source and destination IP addresses and port numbers;
� The size of the frame (only the user data is reported, the headers for

various protocol layers have to be added on to recover the actual size of
the frame);

� The traÆc type (tcp, udp, icmp, etc).

The timestamp is the time the kernel �rst \sees" the packets rather than the time
it seen by the Ethernet card. The output of tcpdump can be written to a �le for
later analysis. This allows monitoring over long periods of time.

2.2. /proc/net/dev. The Linux operating system keeps track of the number of
packets and bytes sent and received in a virtual �le called /proc/net/dev using

counters. The counters get reset at machine reboot, the values are modulo 232.
We have used a PERL program to query this �le at regular intervals of 1 second
and record the value of the counters and a time stamp. Occasionally this process
fails to record the counter within 1 second. In the processing phase we then
linearly interpolate the missing values and get a time series of the counter values

for every second. The data is similar to the aggregated data of the previous
section although the time resolution is by no means as good. This method has
three advantages over tcpdump : it usually requires no special operating system
privileges, it can be run for a much longer time as only summary data is collected,
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and it incurs lower intrusion overheads. The tradeo� between resolution and
eÆciency, both space and time, is addressed later in this paper.
All raw data discussed in this paper has been anonymised and is freely available

for inspection and use in other research|see [13] for the url.

3. Network Architecture and Monitoring

The monitored system is a departmental switched Ethernet. We focus attention
on three components of this network for the purposes of this paper, as illustrated
in Figure 1: The router, which connects the network to the outside world, an
arbitrarily chosen CPU server (named MOA), and the departmental web server
which services both internal and external web page requests.

3.1. Router. The department is connected to the Internet via a Black Diamond
router from Extreme Networks [14]. The Black Diamond is used as both a top-
level switch for the internal switched Ethernet and as a router for all outgoing

traÆc. Those two functions are completely separate. All outgoing packets from
machines in the department are duplicated at media access control (MAC) level
to the second network interface card (NIC) of a dedicated monitoring machine
(ORWELL2). Log �les are transferred to a di�erent machine (GAUSS) for anal-
ysis. We have used PERL scripts to turn the tcpdump output into text �les. Also,

we made the data anonymous by replacing the IP numbers with an indication
whether the number was internal or external. In this paper we concentrate on
data gathered over a two hour interval on 22 March 2002 between 12pm and 2pm.
When interpreting the results, the reader should keep in mind what time scales

are involved. A 100Mbits/sec network manages to transmit about 13 Bytes per
microsecond. Following is a list of important Ethernet data sizes and their trans-
mission times for a 100Mbps network:

� Inter frame gap: 12 Bytes or 0.92 �seconds
� Smallest frame: 64 Bytes or 4.9 �seconds
� Largest frame: 1500 Bytes or 115 �seconds.

The inter frame time gap is the minimum gap between two consecutive Eth-
ernet frames. The inter-arrival time histograms show peaks at about 6 and 120

�seconds, as these are the most likely inter arrival times on a busy network.
We also measured the outgoing traÆc as seen by the monitoring machine using

the /proc/net/dev �le starting at 6 March 2002 at 18:48:03. We compare the
two hour periods measured by both methods in Section 5.

3.2. CPU server. On one of the departmental CPU servers, MOA, we ran the
/proc/net/dev monitor for twelve days at a measurement interval of one second.
The measurement started at 1 February 2002 at 16:24:47.

2
The Black Diamond provides a link of 1 Gbit/s. The monitoring machine runs Linux 2.2.x,

has 256 Mbytes RAM and 4 SCSI disks used in rotation for the log �les. ORWELL can monitor

at a rate of 100Mbit/s
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3.3. Web Server. Web server traÆc was �ltered so as to collect only outgoing
data generated by external requests. The web server itself provides information
on the individual web requests, in particular bytes shipped per request. This
data is sent to the outside world via the router (Black Diamond) and individual

(www) packets are monitored as they pass through the same router. We thus
obtain the measured request size distribution and a time series representing the
instants the corresponding stream of Ethernet packets pass through the router.
Again we use the interval on 22 March 2002 between 12pm and 2pm.

4. Analysis Methods

We concentrate here on the point processes formed by packet departure events
happening at times ti, i 2 I � IN . The event that occurs at time ti is called
Eti . We assume that there are n 2 IN events (or observations of events), the �rst
happening at t1 and the last one at tn. The observation period may begin before
the �rst event and end after the last, so we de�ne it to be T = [t0; tn+1] � IR with

t0 � t1 � : : : � tn � tn+1, for arbitrary t0; tn+1 bounding the set of event-instants.
The inter-event times, �ti, 1 � i � n� 1, are de�ned as

�ti = ti+1 � ti

For a �nite observation of a point process we can easily generate a histogram that

approximates the probability density function (pdf) of inter-event times.

4.1. Power Laws. The probability density function p(x) is said to follow a power
law if

p(x) / �x



as x !1, for � > 0; 
 < �1. When investigating the existence or otherwise of
a power laws we use exponentially growing bin sizes for the histograms. Apart

from the histogram, we also compute the mean and variance of the inter-event
times which are useful for distribution �tting.

4.2. Aggregation. Starting from a point process one can investigate the be-
haviour of the corresponding aggregated time series. The observation period T is
divided into N contiguous intervals of size TN = T=N . In each of these intervals,

we count the number of events or, if suitable, we aggregate the properties of the
events. So the time series consists of N values

ai =
���fEtjt0 + iTN � t < t0 + (i+ 1)TNg

���:
for i = 1; 2; : : : ; N . Sometimes it is preferred to use the quantity Ai = ai=TN .
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4.3. Self Similarity. An aggregated time series can be subjected to many anal-
yses, one of which is its scaling behaviour. This is also known as testing self-
similarity. Two of the �rst investigations of the statistical nature of network
traÆc were [1, 2]. The authors found evidence that the observed traÆc was

distinctly non-Poisson and thus not amenable to conventional traÆc modelling
techniques. They instead used methods that had been developed earlier by Hurst
who was investigating the \ideal" size of reservoirs (a good summary of Hurst's
work is given in [15, 16]). In particular, Hurst introduced the rescaled range

statistic R=S which gives an idea of the self-similarity or long-range dependence
of a time series. Many other statistics, which are all proved or conjectured to
be related to the Hurst parameter, have since been introduced. A good review
of the estimators and their relationships can be found in [17, 18, 19]. The next
section is based on the material found in those papers. In this investigation, we

will use the power spectrum to analyse the correlation of the monitored data and
inter-event interval histograms to analyse the inter-departure time distribution.

4.4. Power Spectrum. To gather information about the correlation of the point
process observed, one can go down many avenues. For a time series X(t) with
zero mean the auto-correlation function at lag � is de�ned as

C(�) = lim
T!1

1

2T

Z
1

�1

dtX(t+ �)X(t):

In fact, it is usually easier to work with the Fourier transform of the auto-
correlation function. By the Wiener-Khintchine theorem [20], under certain as-

sumptions, this is the same as the power spectrum (density) of the time series
signal 3

S(f) = lim
T!1

1

4�T

��� Z T

�T

dtX(t)e�i2�ft
���2:

Note that this expression can be discretised for discrete time series. Since the

actual point process tends to be rather sparse it is best to turn the time series
into an aggregate time series of counts. In our investigation we have used 10ms
bins for the aggregation in line with previous research [1, 2]. Again one is looking
for power laws where the power spectrum S(f) behaves like S(f) / 1=f�; where

f is the frequency. The exponent � turns out to be 0 for white noise and 2
for a Brownian motion. From the relation of the power spectrum to the auto-
correlation function

C(�) / j� j��1 for 0 < � < 1

it also follows that an exponent � close to but smaller than 1 corresponds to
long term correlations.

3
We should note that this is not a very rigorous way of de�ning the power spectrum, as the

time series has to ful�l certain criteria for the integral to be well de�ned, for instance.
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The power spectra were computed using standard methods published in the
Numerical Recipes in C with overlapping windows [21]. In addition we averaged
the values of the power spectra in logarithmic intervals to reduce the noise that
is usually seen for higher frequencies. When interpreting a power spectrum it

is useful to keep in mind that the leftmost (highest) frequency is determined by
sampling rate and corresponds to the shortest time, while the rightmost (lowest)
frequency is determined by the sampling length and corresponds to the longest
time.

Other methods to investigate the correlation of the data are the rescaled range
statistic, the log-variance plot, [15, 16, 22] detrended 
uctuation analysis, wavelet
transformations [23],the Fano factor and the Allan factor [17, 18, 19, 23].

4.5. Scaling Behaviour and Power Laws. Suppose a time seriesX(t) exhibits
the scaling law X(t�) = g(�)X(t) for some function g(�). Then it is known that
X(t) = bg(t) and g(�) = �

c, for real constants b; c, is the only non-trivial solution
to the above functional equation. This property is related to what is known as

self-similarity. The exponent c is related to the Hurst parameter and, in fact, there
is a �rm belief { even a mathematical proof in some cases { that all exponents
retrieved from power laws discovered in statistics of self-similar or fractal time
series are related. So, the choice of the method used to analyse a time series is,

up to a point, a matter of taste and ease of use.
If one assumes that a time series is generated by a stochastic process, such

as Brownian motion, for example, one can investigate the distribution of the
changes of the ai from one time step to the next, i.e. the di�erenced time series
f�ai = ai+1�aij1 � i � N�1g. Alternatively one can work out the distribution

of the ai as they are the changes of the underlying counting process. Depending
on the statistical nature, one also expects a di�erent kind of scaling law for these
distributions with respect to the length of the aggregation interval TN .

5. Measurements

5.1. Outgoing Router TraÆc. We begin with a routine analysis of the outgo-
ing traÆc at the Black Diamond router. We expect no surprises here and �nd, as
has been observed numerously elsewhere, that there is strong evidence of a power
law in underlying time series for packet departure times over the measurement

interval, as measured using tcpdump (Figure 1). In particular it is clear that
the inter-event times (�gure 2) are distinctly non-exponential as evidenced in the
�gure. Rather, they have two humps corresponding to the shortest and longest
packet size. The remainder of the distribution could resemble an exponential but
the power spectrum shows a power law, as indicated by the straight line in �gure

3.
More interestingly the data gathered provides the opportunity to compare data

obtained from tcpdump with that of /proc/net/dev . Whilst gathering the
tcpdump data, we also used /proc/net/dev to measure network activity over
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the same period as reported in Figure 4 and 5. Aggregated over two minute
intervals, the packet rates are almost identical for both methods. The power
spectrum obtained by /proc/net/dev is rather jerkier due to the smaller number
of points. Still, we can observe a power law behaviour similar to the one observed

with tcpdump. The results show that data obtained by /proc/net/dev provides
an excellent alternative to tcpdump particularly when monitoring over very long
time periods. /proc/net/dev is used exclusively in the analysis of the CPU
server which was monitored continuously over a twelve-day period.

Looking at the changes in the packet rates, �i, we �nd that they are not
Normally distributed, see �gure 5. The distributions instead show a power law
in a double-logarithmic plot.

5.2. CPU Server. The power spectrum of a twelve-day observation period clearly
shows peaks corresponding to the daily cycles, and also has a peak between one
and two hours, an interval that will correspond to typical session lengths of stu-
dent users during term time, see �gure 6. The main interest lies in the plots

which show the changes in the observed packet rate. We see a distribution that
is distinctly leptokurtic and certainly non-Gaussian, see �gure 7, 8 and 9. In fact
the plot 8 shows that the asymptotic power law has a gradient of -2. And the
plot 9 shows that the distributions at di�erent aggregation levels fall into one

master curve when plotted on top of each other as they should do for a Cauchy
distribution, see p. 92 in Voit's book and p. 71 in Mantegna's book [11].
These plots were inspired by related work in the analysis of stock prices where

changes in prices have been shown to follow similar patterns, see for example [11].
In order to trace possible causes of this behaviour we next study the characteris-

tics of the �le sizes stored at the �le server and the request sizes generated by the
web server, as requests to these two servers constitute the main source of network
traÆc to/from the CPU server.

5.3. File Size and Webserver Request Distribution. Many authors have
repeatedly showed that these distributions follow Zipf's law to a good approxi-
mation, which says that

P (�le or request size > x) �
1

x
:

One pdf that can exhibit this behaviour is the Pareto distribution

p(x) = �k
�
x
���1

;

where �; k > 0 and x � k. If � = 1 the Pareto distribution shows the behaviour of
the Zipf law for large x. In a double logarithmic plot, this distribution is a straight

line with gradient �(1 + �). In [4] the authors use the log-log complementary

distribution plots to estimate the distribution for request sizes.
We have measured both the �le size distribution on several Linux/UNIX ma-

chines (using an adapted script from [3])and the distribution of the request size
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of external requests made to the departmental web server. In doing so, we adopt
a di�erent approach by plotting the histogram of the measured pdf using expo-
nentially increasing bin sizes. The results are shown in Figures 10 and 12. These
measurements are distinctly non-Pareto but we �nd that they are extremely well

approximated by a Cauchy distribution. The symmetric Cauchy distribution has
a pdf given by

p(x) =
1

�

s

s2 + x2

where s > 0. In our case we only use the positive half of the distribution and
therefore have to multiply the equation above by a factor of 2. For large x

the distribution behaves like 1=x2 so the cumulative distribution function (cdf)
therefore obeys Zipf's law. The distribution is distinguished from the Pareto
distribution by its behaviour for small x. This is easily missed when linearly sized

bins are used to create the histogram { hence the value of choosing exponentially
scaled bin sizes. Although qualitatively the approximation for small �le sizes
is not brilliant, it is signi�cantly better than the Pareto assumption as can be
clearly seen in �gure 12. A Pareto distribution does not describe the request sizes

smaller than 1 Kbyte at all.

6. Modelling the Traffic

We have now characterised the measured network traÆc with its inter-event
time histogram, the power spectrum of the aggregated time series and the change
in the rates of packets seen on the network.

In this section we describe a simulation study that makes simple assumptions in
line with our measurements. We are going to look at a single server queue where
jobs arrive according to a Poisson process and where the service requirement
is distributed according to a (truncated) Cauchy distribution. The server itself

removes work from the queue in blocks (Ethernet frames) and waits after each
frame for a short period (inter-frame gap). The blocks are all of the same size,
i.e. we only have frames of one size.
This very simple model should re
ect some the features seen in the Ethernet

traÆc of �le or web server. We do not take the TCP connection build-up, close
down or acknowledgements into account. This may be a serious de�ciency of our
model. However, the advantage is that we can attempt to model the traÆc of
both UDP-based (like NFS) and TCP-based (like web servers) systems.
Our main focus will be the inter-departure time histogram and the power

spectrum or the auto correlation function of the departure process of this model.
We use our earlier measurements to parameterise this process.

6.1. Simulation. In this section we present a very simple model of network
traÆc exhibiting scaling features (see �gure 11). In our model, requests to a
webserver arrive with exponentially distributed inter-arrival times. However, the
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requests themselves have a size distribution that is a truncated Cauchy distribu-
tion. This choice was motivated by the observation in Figure 12. The Cauchy
distribution seems to describe the features of the empirical distribution well and
has the advantage of being analytically tractable and easy to implement. The

full Cauchy distribution has pdf

~p(x) =
1

�

s

s2 + x2
where s > 0

but here we use a truncated Cauchy distribution whose pdf is given by:

p(x) =

(
~p(x)=C 0 � x � xmax

0 else

where C is a normalisation constant

C =

Z xmax

0

~p(x)dx:

The truncation of the Cauchy distribution gets rid of its usually prohibiting

features like in�nite moments. Neglecting all other factors like disk and CPU
access caused by a request, the blocks requested get added to the input queue of
a server that represents the network interface. We assume that all blocks leave
the server at a given network speed. The server spends the same amount of time

serving each block and then waits before the next block is processed, similar to the
e�ect of the inter-frame gap on an Ethernet. The model has been implemented
in JAVA.
We measure the cumulative queue length at the server to make sure the system

is in equilibrium. Each departure from the system is logged and the time series

of departures is analysed like those of real network traÆc in previous sections.
For the power spectra, we aggregated packet counts in 0.01 second bins.
To parametrise the model we used the log �le of the departmental webserver

covering the period from 12pm to 2pm on 22 March 2002. As the reader will

recall, we have already presented an analysis of the traÆc going through the
Black Diamond router. Figure 12 shows the request size distribution for that
period and compares it to a Cauchy distribution with s = 1500. If we truncate
this distribution at 10,000 blocks we get a mean of 11.3 blocks per request and

a standard deviation of 112 blocks. This compares to a mean 16 blocks and a
standard deviation of 248 blocks with the measurements. The main reason for
the discrepancy is likely to be the bad �t of the empirical distribution for requests
larger than 1,000 kbytes, see �gure 12. Empirically there were 4.6 external re-
quests per second and in the simulation we used 5 requests per second. We make

the assumption that the requests are Poisson, partly motivated by the desire to
keep the model as simple as possible, given that we cannot tell from the log�le
when the requests arrived, only when their service �nished. However, there are
also sound theoretical reasons for this assumption, see Section 7.2.
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We ran the simulation 11 times with a simulation time of about 4.5 days for
three di�erent network speeds: 1Mbit/sec, 10Mbit/sec and 100Mbit/sec for the
same arrival process speci�ed above. In each case it took at least hours if not
days to reach equilibrium. The average queue lengths were 1258� 47, 41:6� 1:4

and 3:97� 0:15 blocks respectively.
We analysed the last two hours of each simulation run similarly to the analyses

of real network traÆc before. Figure 13 shows the representative power spectra
for each of the network speeds simulated. The increase in network speed appears

to shift the frequency interval governed by a power spectrum to the higher fre-
quencies. This is presumably caused by the blocks being processed at a higher
rate. The shift is approximately one `decade' (order of magnitude) for each speed
increase by a factor of ten. The slope of the power law is not a�ected at all by
the network speed.

To compare our simulation at the network level with the measurements made
at the Black Diamond router, we �ltered the traÆc trace discussed in section
5 for packets originating from an internal webserver which are bigger than one
Kbyte. In total there were 556,907 packets ful�lling these criteria. Their mean

inter arrival time was 13 msec with a standard deviation of 68 msec. The simu-
lations generally produce around 410,000 events and have inter-departure times
with mean around 20 msec and standard deviations of 50 to 80 msec, depending
on the network speed. When we compare the power spectra, we �nd that the sim-

ulation corresponding to a network speed of 10Mbps �ts best, see �gure 14. Still,
the simulation shows a much more distinct power law. This is likely to be related
to factors that our model has neglected, like CPU, I/O waits and competition
with other network traÆc. Competition with other network traÆc might also
account for the fact that the empirical data agrees more with the 10Mbps simu-

lation rather than the 100Mbps even though the webserver does have a 100Mbps
network connection. However, the slope of the power law in the power spectrum
based on the simulation and the empirical data are very similar.
To demonstrate the e�ect of the power law in the distribution of the request

sizes, we ran our simulation with an exponentially distributed request size. The
mean request size was 16 blocks per request. While the model manages to repro-
duce the mean inter arrival time well, it fails to capture the power spectrum, see
�gure 15.

In the simulation, the power law behaviour of the request size distribution can
also be seen in the distribution of changes in the packet rate, �gure 16. Compare
this with the measurements we made at the CPU server, �gure 8. The pictures
look very similar, supporting the hypothesis that the self-similarity seen at the
CPU server is largely caused by the �le size distribution.

The inter-departure time histogram of the simulation has a spike at the shortest
time between transmissions, i.e. one block plus the inter frame gap, caused by
the busy periods. The remainder is an exponential distribution caused by the
gaps between an idle period and the next request arrival.
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7. Interpretation

7.1. Comparison of our data with that collected at Bellcore. In addition
to data collected locally, we have also analysed the Ethernet data sets in the
Internet traÆc archive [24]. This is the data that has been measured and discussed

in [1]. We used the following �les: pAug.TL.Z, pOct.TL.Z, OctExt.TL.Z and
OctExt4.TL.Z. The �rst two are shorter traces of one million arrivals measured
on the internal Ethernet, the latter two are longer traces measuring the external
arrivals only. For a more detailed description see [1].

The time-stamps in the �les have microsecond granularity although accuracy
is limited to around 10 microseconds by the hardware clock (four microseconds)
and bus contention. However, this is still (just) enough to distinguish between
packets as there is around a 10 microsecond silence between packets on a 10Mbps

Ethernet and the smallest packet lasts about 60 microseconds.
We applied the same methods used to analyse our own data to the LBL data

investigated in [1]. Looking at the inter-departure time histograms in �gures 2
and 17, the internal traces are more similar to our data. This data also exhibits
the same two peaks corresponding to the smallest and largest packet size on

Ethernets. Note, though, that the peaks are shifted to the right by an order of
magnitude due to the di�erent speed of the measured Ethernets. This seems to
suggest that the measurement errors for the time stamps are not as bad as the
authors of [1] thought. It also suggests an interesting way to measure the speed

of an unknown network.
Just like our data, the internal traces do not provide a power law in the inter-

departure time distribution. There is also a similar picture when we look at the
power spectra in �gures 18 and 3. The range of the power laws are similar. The

external traces seem to provide a better power law than the internal ones. There
is, however, a di�erence in the data when we look at the changes in the packet
rates. Figure 19 shows a linear plot for the internal sources. In contrast to the
data we measured, see �gures 5,7,8 and 9, the internal data shows no sign of a
power law for this metric. However, the external traces plotted in �gure 20 show

a similar leptokurtic behaviour. The slope in the log-log plot is di�erent to ours;
in the Bellcore data it is approximately -2.4, see �gure 21.
In summary the data we have gathered shows a slightly di�erent quantitative

behaviour compared to the Bellcore data, especially in the change of the packets'

rates. However, there are many qualitative similarities, for example in the inter-
departure time histograms and the power spectra.

7.2. Analytical modelling. The comparison between the properties of the traf-
�c generated by the simulation and that observed at the Black Diamond router

suggest that �le size distribution can be a suÆcient cause of power laws, self-
similarity and long range correlation. This is the case even for Poisson external
arrivals, which were used in the simulation. Although we have not tested the
hypothesis that external request instants approximate Poisson streams, this has
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been found to be the case for many decades in a wide range of teletraÆc systems.
In fact, the hypothesis has sound theoretical foundations. It can be proved that
a superposition of arrival processes is asymptotically Poisson under appropriate
conditions; for example a large number of independent renewal processes of which

none is dominant, i.e. has a much higher rate than the average { see [25, 26] for
example.
The output traÆc from a server comprises (a) a sequence of constant-size

packets separated by the small interframe gap when the server is busy (with

any work); (b) a null stream, when the server is idle. Put in queueing terms, the
output is an on-o� process with constant inter-event times during the on-periods,
which are the busy periods of the queue, and exponentially distributed o�-periods,
with parameter equal to the arrival rate to the queue. Clearly, for heavy-tailed
service times, the busy period must also be heavy tailed, although the precise

calculation is complex.
We therefore set up another simulation experiment to test the hypothesis di-

rectly that on-o� traÆc with Cauchy (to characterise the heavy tail) on-periods
and exponential o�-periods follows a power law. We used the same Cauchy dis-

tribution as in the simulation of Section 6.1. Thus, at low queue utilisations,
the output of this simulation must be close to that of the simulated queue in
Section 6.1 since busy periods would be the same as service times with high
probability. Consequently, in this case, the output would also match the ob-

served traÆc. As expected the simulation output did follow a power law for
various exponential distribution parameter values.
Whilst this does not fully justify our conjecture { we would need to determine

the actual busy period distribution for this { it provides considerable support.
If true, it would mean that many internet sub-networks could be modelled by

conventional queueing networks with Poisson external arrivals and general (here
Cauchy) service times. Moreover, servers rarely operate �rst-come-�rst-served
(FCFS) and processor sharing (PS) is a better representation. Thus, by the
BCMP Theorem [5], product-form solutions exist for these sub-networks, from

which performance measures like mean queue length, throughput and mean re-
sponse time follow via recursive algorithms that can be implemented eÆciently.
Moreover, such models can easily accommodate multiple classes of traÆc (with
di�erent demands at each node and di�erent paths through the network). In

some sense, one of the conclusions of our analysis in this paper is that we need
not have bothered, product-form queueing networks are �ne! However, we have
gained more insight and backed up our conjecture by systematic experimentation.
Moreover, the actual internal processes are important for other purposes, such
as jitter analysis and computation of higher moments than the mean of response

time. Furthermore, it is not always the case that PS queueing discipline is faithful
to reality; if it is not and, for example, FCFS is appropriate, the product-form
solution is lost and with it the eÆcient computation of performance measures.
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8. Conclusion

The following main contributions have been made by this paper:

� /proc/net/dev has been proposed as an e�ective and eÆcient alterna-

tive to tcpdump for monitoring network traÆc. This was supported by
comparing observations made using both methods.

� The results of measurements taken from three locations on a state-of-the-
art switched Ethernet have been investigated. These are publicly available

via the world-wide web.
� Measured traÆc at these locations was shown to �t closely various (trun-
cated) Cauchy distributions, which have heavy tails.

� Changes in packet rates (�rst di�erence of the packet-density time series)
were also shown to conform to a Cauchy distribution, revealing a possible

link with the observations of the server traÆc.
� Simulation of a speci�c M/G/1 queue supports the hypothesis that trans-
mission of a (truncated) Cauchy-distributed number of Ethernet packets
by a �xed-rate communication device produces a time series of (aggregate)

packet densities whose power spectrum matches closely that of observed
network traÆc.

� By the nature of the server-nodes, traÆc conforming to the observed
power law should be generated by an on-o� process with exponentially

distributed o� periods and on periods distributed as the busy time of the
server. We postulated that this busy time should be heavy-tailed and a
simulation experiment based on this did indeed produce traÆc with the
right kind of power law.

� This suggests a possible internet modelling strategy based on processor

sharing and conventional (product-form) queueing networks.

In our future work we will investigate better �tting methods for the distribu-
tions we have discussed here. We would also like to make our simulation model

more realistic without introducing unnecessary complications.
Also, we would like to investigate how we can incorporate results in [8, 9, 10],

which indicate that the congestion avoidance algorithm of TCP [27] introduces
power laws, into to our model. Perhaps combining our �ndings with a model as it

is used in dynamical systems will shed more light on the nature of network traÆc.
In mathematical and theoretical physics self-similarity has been studied widely
over the last few decades, motivated by the widespread occurrence of 1=f noise in
natural phenomena. A possible interpretation of 1=f noise is the notion of self-
organised criticality (SOC) [28]. The word criticality is borrowed from physics

where a critical state of a system is related to an in�nite correlation length and
the system going through a phase transition. There are many areas in science
where 1=f has been seen: see for instance Jensen's book [28] for a good overview
of the topic.
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Figure 1. Overview of the departmental network. Note that the

activity of the core router due to the internal network is not
recorded.The Black Diamond is a router for external traÆc and a
top-level switch for the internal traÆc. Both parts are implemented
by di�erent pieces of hardware and are independent of each other.



18

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1 10 100 1000 10000 100000 1e+06

P
ro

ba
lit

y 
de

ns
ity

Inter arrival time in microseconds

pdf of outgoing Ethernet packets
pdf of exp. distribution with mean arrival rate 1/(802 microseconds)
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Figure 11. This is a sketch of our model. Requests arrive at the
left. Their sizes L measured in blocks B of 1518 bytes are dis-
tributed according to a Cauchy distribution, the time between re-
quests E is exponentially distributed. The server D emits each
block after a service time corresponding to the network speed. The

minimum time between blocks after service is the inter frame gap
I of twelve bytes. The time between blocks can be larger I, namely
S if the server was idle. The queue-length Q is measured as the
number of blocks awaiting service.
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was measured with tcpdump on 22 March 2002 between 12pm and
2 pm.

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
P

ow
er

)

log10(Frequency in Hz)

10 Mbps
100 Mbps

100 Mbps - exponential
10 Mbps - exponential

Figure 15. This plot compares the power spectra of the simula-
tion using Cauchy distributions to ones using exponential distribu-
tions for the request sizes.



25

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000

P
ro

ba
bi

lit
y

Change in the packet rates, bytes per second

100 Mbps
1/pi * 10 /(10^2+x^2)

Figure 16. This plot compares the changes in the packet rate for

the simulation running at 100 Mbps to that of a Cauchy distribu-
tion.
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Figure 18. The power spectra of the four LBL traces, based on

an aggregation of 10 msec.
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as a log-linear plot.
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Figure 21. The change in the packet rates for the external traces
as a log-log plot to determine the slope of the power law.


