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Abstract

Using a priority preorder on requirements or specifications,
we lift established property-verification techniques of three-
valued model checking from single to multiple viewpoints.
This lift guarantees a maximal degree of autonomy and
accountability to single views, automatically synthesizes
single-analysis results for multiple-view consistency and as-
sertion checking, allows the re-use of single-view technol-
ogy (e.g. standard model checkers), and transforms many
meta-results (e.g. soundness of abstraction) from the single-
view to the multiple-view setting. We formulate assertion-
consistency lattices as a proper denotational universe for
this lift, show that their symmetric versions are DeMor-
gan lattices, and classify both structures through (idempo-
tent) order-isomorphisms on (self-dual) priority preorders
in the finite case. In particular, this lift generalizes Fitting’s
multiple-valued semantics of modal logic in that our treat-
ment of negation generalizes Heyting negation beyond fully
specified and consistent models. We compare our approach
to existing work on multiple-valued model checking.

1. Introduction

Motivation. During software development life cycles one
invariably has to construct, maintain, and change require-
ments and specifications that stem from a number of stake-
holders who express their own viewpoints of the expected
state and behavior of a software artifact [25, 35]. This nec-
essary multiplicity of perspectives makes the formal anal-
ysis of such descriptions difficult, if not impossible: view-
points often have informal, semi-formal, or non-executable
descriptions; multiple descriptions of the same behavior
very likely give rise toinconsistencies; and existing static-
analysis methods (e.g. model checking [31, 8, 9]) don’t
directly enable assertion checking or the detection of in-
consistencies in a collection of executable models, where
each model represents a particular point of view. As static-
analysis tools slowly but steadily find their way into indus-
trial research and development, one has very compelling

reasons for extending their reach to the reasoning about
software artifacts in the presence of multiple stake-holders.
The adoption and training for the competent use of model-
checking tools such as SMV [26] and Spin [21], which has
over 4000 installations worldwide, also provide an incentive
for multiple-viewpoint frameworks to make use of single-
view tools. At the same time, individual stake-holders want
to retain sufficient autonomy and accountability for their
design and analysis activities, thereby enabling informed
and constructive negotiations of design issues among stake-
holders. These demands create a genuine opportunity to
re-use in the multiple-view setting existing single-view
model-checking technology such as model description lan-
guages, property specification languages and their patterns,
refinement and abstraction techniques, model-checking and
model-construction algorithms, their implementations/data
structures, fairness, etc. In the sequel, we refer to such a
loose bundle of know-how as amodel-checking framework.

Scope of our results. In this paper, we lay the founda-
tions for a systematic re-useof existing model-checking
frameworks in the design and analysis of systems under
multiple viewpoints. Our definitions and results are basi-
cally independent from the specific details of a single-view
model-checking framework (e.g. its data structures, prop-
erty logic, etc) and apply to all three-valued model-checking
frameworks.1 Without compromising any of the objectives
aforementioned, our lift of such frameworks to the multiple-
view setting transfers meta-results about single-view model
checking to practically important meta-results of multiple-
view checking (e.g. soundness of refinement), and intro-
duces little computational overhead on the complexity of
the underlying single-view assertion and consistency check-
ing. We present AC-lattices2 as our denotational structures
which distinguish themselves in their treatment of negation.
We then go on to show that whereas each finite AC-lattice
corresponds to an order-automorphism on a finite prior-
ity preorder the corresponding result for DeMorgan lattices

1Our results specialize to standard two-valued abstraction-based model
checking, but are then, as usual [11], limited to universal properties.

2Assertion-consistency lattices.



[14] requires the preorder to be self-dual via an idempotent
order-isomorphism. This corroborates our need to general-
ize DeMorgan lattices to AC-lattices, structures that allow
for the inevitable asymmetry in requirements.

Three-valued model checking. Our work rests on the
premise that sound notions of abstraction and (stepwise) re-
finement are crucial ingredients of frameworks for assertion
and consistency checking. Sound abstraction is typically
limited to universalproperties [11]. However, checking the
inconsistency of a universalφ requires reasoning about an
existentialproperty¬φ.3 Moreover, many interesting sys-
tem properties are non-trivial combinations of universal and
existential aspects. Therefore, model-checking frameworks
for multiple viewpoints require sound assertion and consis-
tency checks of a logic withunrestricteduse of negation and
quantification. Three-valued model-checking frameworks
(e.g. [4, 32, 23]) fulfill this requirement, conservatively ex-
tend conventional model-checking frameworks, and sup-
port consistency and assertion checking through the instru-
mented re-use of conventional, two-valued model check-
ers, as pioneered in [5]. Such three-valued approaches al-
ready exist for Kripke structures [12, 4, 5], labeled transi-
tion systems [30, 29, 23, 18], and models of first-order logic
[24] with relational closure [32]. A three-valued structure
explicitly specifies and distinguishes mandatory (denoted
“a” for assertion) from merely possible (denoted “c” for
consistency) state and behavior. As a specification of a sin-
gle viewv, such a structure may expressv’s own specifica-
tion through its mandatory state and behavior, whereas its
possible state and behavior are those aspects that viewpoint
v is willing to “accept”, if stipulated by other points of view.
As a running example, we will consider a three-valued
model-checking framework for a branching-time temporal
logic that subsumes CTL [9], thus enabling a comparison
to a semantics [16, 7] and model checker [15] formultiple-
valuedCTL.

Key issues. In transferring single-view model checks to a
multiple-view setting, two key issues are present. First, how
does one handle a check of propertyφ in view v, if some ob-
servables ofφ have specified state or behavior outside ofv
only? Second, given a collection of views, how should we
organize the analysis results from these single views into
information about multiple viewpoints? Our earlier work
[24] and other recent work on three-valued model checking
[4, 32, 23], where external observables are modeled through
possible state and behavior, adequately deals with the first
issue. This paper addresses the second question by propos-
ing one particularautomaticsynthesis of single-view anal-
ysis results that uses a light-weight and flexiblepreorder

3Similarly, consistency checking involves existential quantification
over models.

of priorities among views to derive a multiple-valued se-
mantics that can reason about properties as well as expose
inconsistencies and other kinds of conflicts, thus enabling
rational discourse between all stake-holders. We base this
choice on the fact that prioritizing is widely recognized as a
key instrument in dealing with requirements [25, 34, 35].

Outline of paper. In Section 2, we axiomatize three-
valued model-checking frameworks, give an example, and
define AC-lattices as their denotational universes. We rep-
resent finite, distributive AC-lattices (DeMorgan lattices)
through (idempotent) order-isomorphisms on (self-dual) fi-
nite preorders. Section 3 discusses how a preorder of prior-
ities between views determines a multiple-valued semantics
of single-view design and analysis results. We lift single-
view meta-results to multiple-valued semantics — notably
refinement, abstraction, the model-checking engine, and the
semantic laws of the three-valued model-checking frame-
work. Lifted denotations give rise to an AC-lattice. We
show how this lift can be used for multiple-view assertion
and consistency checking and the detection of inconsisten-
cies. In particular, the lift of negation turns out to be a
generalization of Heyting negation to collections of under-
determined models (Theorem 5). In Section 4, we develop a
multiple-view semantics of a branching-time temporal logic
with fixed-points that interprets logical connectives com-
positionally over a multiple-valued AC-lattice of meaning.
This turns out to be our lifted semantics which we compare
to existing work on multiple-valued modal logic [16, 15].
Finally, Section 5 concludes.

2. Three-valued model-checking frameworks

The modelsM of three-valued model-checking frame-
works have a countable property logic of formulas (φ ∈ L)
with negation (¬), conjunction (∧), and atomic proposi-
tions (y ∈ AP) among its operators. Models and atomic
propositions may well have structure, e.g. as a set of re-
lations and their types, but we will abstract from such de-
tails here. These models arethree-valued, since their spec-
ifications consist of amandatorypart (state and behav-
ior that is asserted and has to be realized), and apossi-
ble part (state and behavior that is consistent with the as-
serted state and behavior). This implicitly defines thedis-
allowed state and behavior which, according to the spec-
ifications, are neither mandatory nor possible. As an ex-
ample, we consider one-letter Kripke modal transition sys-
temsM [23] with signatureAP — referred to asthree-
valued Kripke structuresin this paper — which can be
represented as pairs(Ma,Mc) of ordinary Kripke struc-
turesMa = (Σ, Ra ⊆ Σ × Σ, La : Σ → P(AP)) and
Mc = (Σ, Rc ⊆ Σ × Σ, Lc : Σ → P(AP)) with signa-
ture AP, whereMa specifies mandatory andMc possible
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Figure 1. A three-valued Kripke structure
modeling laptop modes.

state and behavior (respectively). These two descriptions
are made consistent by imposing that each mandatory state
transition or proposition be also possible:Ra ⊆ Rc and
La(s) ⊆ Lc(s) for all s ∈ Σ [30, 23]; see Example 1 be-
low. For state propositions (y ∈ AP) and recursion variables
(Z ∈ var), we define a property logic

φ ::= Z | y | ¬φ | φ ∧ φ | EXφ | µZ.φ (1)

where allφ in µZ.φ are formally monotone [3]. For each
m ∈ {a, c}, referred to as themode of analysis, the se-
mantics[| φ |]mρ ⊆ Σ for properties, interpreted over three-
valued Kripke structures, is depicted in Figure 2, where
prem(A) def= {s ∈ Σ | ∃s′ ∈ Σ: (s, s′) ∈ Rm, s′ ∈ A}
for A ⊆ Σ and environments (ρm) have typevar → P(Σ).
We writes|=m

ρ φ iff s ∈ [| φ |]mρ .

Example 1 (Laptop modes [22])Figure 1 shows a three-
valued Kripke structure that models the modes of a lap-
top, wherex, y, and z denote “AC powered”, “battery
powered”, and “in suspend mode” (respectively). The la-
beling in the Figure meansx ∈ La(s0) ∩ Lc(s0), y ∈
Lc(s2) \ La(s2), andz ∈ Lc(s1) \ La(s1). Dashed lines
represent transitions inRc \ Ra; solid lines denote transi-
tions inRa ∩ Rc. The mandatory part of that model speci-
fies the state and behavior of the laptop’s AC power supply.
The possible part specifies an additional power source (a
battery) and a suspend mode for the machine. The prop-
erty AG EF z — “all reachable states can reach a state in
suspend mode” — is expressible in (1) as¬µY.¬(µW.z ∨
(EX (W ) ∧ EX (¬(p ∧ ¬p)))) ∨ EX (Y ). This formula is
an invalid assertion4 (we don’t have(M, i)|=aAG EF z),
but a consistent condition (we do have(M, i)|=cAG EF z).
The evaluation of(M, i)|=aAG EF z effectively checks
whether allRc-reachable states contain aRa-path to a state

4If convenient, we identify modelsM with pointed ones [33](M, i).

[| Z |]mρ
def= ρm(Z)

[| y |]mρ
def= {s ∈ Σ | y ∈ Lm(s)}

[| ¬φ |]mρ
def= Σ \ [| φ |]¬m

ρ

[| φ1 ∧ φ2 |]mρ
def= [| φ1 |]mρ ∩ [| φ2 |]mρ

[| EXφ |]mρ
def= prem([| φ |]mρ )

[| µZ.φ |]mρ
def= lfpFm; whereFm(A) def= [| φ |]mρm[Z 7→A].

Figure 2. Property semantics over three-
valued Kripke structures for mode m ∈ {a, c}.

s, wherey ∈ La(s). The evaluation of(M, i)|=cAG EF z
conducts the same analysis but swaps the modes of paths.

One can show that three-valued Kripke structures are an in-
stance of a three-valued model-checking framework.

Definition 1 (Three-valued model-checking framework)
A three-valued model-checking framework consists of

#1 two satisfaction relations, one for assertion checking
(M|=a

φ), one for consistency checking (M|=c
φ) —

we refer tom ∈ {a, c} as themode of analysis;

#2 consistency of models in thatM|=a
φ always implies

M|=c
φ;

#3 for m ∈ {a, c}, the semantics of conjunction as
M|=m

φ1 ∧ φ2 iff M|=m
φ1 andM|=m

φ2;5

#4 for m ∈ {a, c}, the semantics of negation as
M|=m¬φ iff notM|=¬m

φ, where

¬a def= c ¬c def= a; (2)

#5 for m ∈ {a, c}, the semanticsM|=m
y (y ∈ AP) de-

termined by the specifications inM;

#6 noM andφ withM|=a
φ ∧ ¬φ (consistency of|=a);

#7 a formal notion ofrefinement(a preorder≺) between
models, whereN ≺M means thatN refines (is ab-
stracted by)M;

#8 sound assertion and consistency checking with re-
spect to refinement: for allφ, if N ≺M, then
(i) M|=a

φ impliesN|=a
φ, and (ii) N|=c

φ implies
M|=c

φ; and

5This property won’t hold for the stronger semantics of Bruns and
Godefroid in [5].
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#9 the property that|=a equals|=c on models that spec-
ify mandatory state or behavior only.

These properties have redundancy. For example, in the
context of properties #3 and #4, properties #2 and #6 are
equivalent. We remark that the properties above determine
a semantics for propositional logic which is equivalent to
Kleene’s strong three-valued interpretation [27].

Proposition 1 (Examples) Partial Kripke structures [4],
extended labeled transition systems [4], modal transition
systems [30], partial models of first-order logic [24], and
(modal) shape graphs [32, 23] are three-valued model-
checking frameworks that meet the nine properties above.

Three-valued model-checking frameworks are intimately
tied to a lattice-like structure.

Definition 2 (AC-lattices and DeMorgan lattices)
A (complete)AC-lattice is a tuple(La,≤a,¬a,Lc,≤c,¬c),
where(La,≤a) and(Lc,≤c) are partial orders that induce
(complete) lattices, and¬a : La → Lc and¬c : Lc → La

are functions that meet the axioms of Figure 3 (left). A (com-
plete)DeMorgan latticeis a tuple(L,≤,¬), where(L,≤)
is a partial order that induces a (complete) lattice, and
¬ : L → L is a function that meet the axioms of Figure 3
(right).

Note that the axioms of Figure 3 (left) spell out that the par-
tial orders(La,≤a) and(Lc,≤c

op) are isomorphic via¬a

and¬c. Bilattices [17] can also be represented as pairs of
lattices, except that the treatment of negation for one mode
(truth ordering) significantly differs from that of the other
mode (knowledge ordering). In particular, these lattices
may not be dually isomorphic. This asymmetry of negation
rules out their use in our context. AC-lattices are crucial to
the contributions of this paper: the quotient space for logi-
cal equivalences of three-valued model checks (Theorem 1),
the denotation space for the synthesis of model checks un-
der multiple points of view (Theorem 4), and DeMorgan
lattices — denotation spaces of multiple-valued modal log-
ics [16] — are all AC-lattices (Proposition 2).

Proposition 2 (DeMorgan lattices as AC-lattices)Up to
order-isomorphism, DeMorgan lattices are in one-to-one
correspondence to AC-lattices, where(La,≤a,¬a) is equal
to (Lc,≤c,¬c).

Proof: See Appendix.

A class C of models of a three-valued model checking
framework — e.g. all countable three-valued Kripke struc-
tures with SignatureAP — determines two preorders of log-
ical entailment whose space of equivalence classes, an AC-
lattice, captures the semantics laws for assertions and con-
sistency checks of classC.6

6We will omit the parameterC from these preorders as its nature will
be clear from the context, or irrelevant.

¬a¬cφ = φ ¬¬φ = φ
¬c¬aφ = φ ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ
φ≤a ψ ⇒ ¬aψ≤c ¬aφ ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ
φ≤c ψ ⇒ ¬cψ≤a ¬cφ φ ≤ ψ = ¬ψ ≤ ¬φ.

Figure 3. Axioms for AC-lattices (left) and De-
Morgan lattices [14] (right).

Definition 3 (Entailment) For m ∈ {a, c}, defineφ≤m ψ
iff for all modelsM ∈ C, M|=m

φ implies M|=m
ψ.

For m ∈ {a, c}, the definitions[φ]m
def= {ψ ∈ L |

ψ≤mφ, φ≤mψ} and¬m[φ]m
def= [¬φ]¬m determine count-

able setsLm
def= {[φ]m | φ ∈ L} and functions¬m : Lm →

L¬m. We set[φ]m≤m [ψ]m iff there areφ′ ∈ [φ]m and
ψ′ ∈ [ψ]m such thatφ′≤m ψ

′.

The need for two notions of logical equivalences in the pres-
ence of under-determined models is illustrated by the exam-
ple below.

Example 2 (Semantic laws)For partial Kripke structures
[4] and the semantics of [4], we have[⊥]a = [φ ∧ ¬φ]a
but wedon’t have [⊥]c = [φ ∧ ¬φ]c. For partial Kripke
structures and the strong semantics of [5], we have[⊥]c =
[φ ∧ ¬φ]c and[>]a = [φ ∨ ¬φ]a.

Theorem 1 (Model theory and its AC-lattice) 1. For
any three-valued model-checking framework, Defini-
tion 3 specifies a countable AC-lattice.

2. If we restrict the range of models in Definition 3 to
those that specify mandatory state and behavior only,
then this AC-lattice is a countable DeMorgan lattice.

Proof: See the Appendix.

In the AC-lattice above, assertion and consistency checking
are connected through[¬φ]m = {¬ψ | ψ ∈ [φ]¬m} for
eachm ∈ {a, c}.

Example 3 (Topologies as AC-lattices)Let (La,≤a) be
the complete lattice of closed subsets of a topological space
X, ordered by inclusion (≤a). Dually, let (Lc,≤c) be the
complete lattice of open subsets ofX, ordered by inclusion
(≤c). This gives rise to an AC-lattice, where the negations
are set complementation.

We now give representation theorems (Theorem 2 and The-
orem 3 below) for finite, distributive AC-lattices and De-
Morgan lattices. Our representation of finite, distribute AC-
lattices turns out to be an instance of Example 3, except
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that set complementation is precomposed with an order-
isomorphism on the underlying preorder. In subsequent sec-
tions, we argue that our context of use requires that this au-
tomorphism be the identity. Finite, distributive DeMorgan
lattices have the same representation, with the additional
requirement that the underlying preorder be self-dual via
an idempotent anti-tone order-isomorphism. Although De-
Morgan lattices have been used for multiple-valued model
checking [7], this result suggests that they are ill-suited for
an approach that is driven by priority requirements — which
never are symmetric in practice. The proof of these results
requires standard machinery of power-domains [1].

Definition 4 (Power-domains) Given a preorder(V,≤),
L(V,≤) denotes the set of lower subsets ofV .7 Let
ηV : (V,≤) → (L(V,≤),⊆), ηV (v) def= ↓v = {v′ ∈ V |
v′ ≤ v}. Given a monotone mapf : (V,≤) → (L,≤) into a
complete lattice, we write(f)

L
for the unique sup-map8 sat-

isfying(f)
L
◦ηV = f . This defines the lower power-domain

functor [1] L(g) def= (ηW ◦ g)
L

, whereg : (V,≤) → (W,v)
is a monotone map. Dually, we writeU(V,≤) for the set of
upper subsets ofV 9 and\a : (L(V,≤),⊆) → (U(V,≤),⊇)
and\c : (U(V,≤),⊇) → (L(V,≤),⊆) for set complemen-

tation. LetεV
def= \a ◦ ηV : (V,≤) → (U(V,≤),⊇). For

f as above, we write(f)
U

for the unique sup-map satisfy-

ing (f)
U
◦ εV = f . This defines thecomplemented lower

power-domain functorU(g) def= (εW ◦ g)
U

for g as above.
Finally, let Aut(V,≤) be the set of order-isomorphisms of
type(V,≤) → (V,≤).

Proposition 3 (Dual functors) 1. U(·) : Pre → Lat
is a monotone functor between the categories of pre-
orders and monotone maps and complete lattices and
sup-maps.

2. We have\a = (εV )
L

, \c = (ηV )
U

, ηV = \c ◦ εV , and
U(f) = \a ◦ L(f) ◦ \c.

3. The functorsL(·) and U(·) restrict to isomor-
phisms of typeAut((V,≤)) → Aut(L(V,≤)) and
Aut((V,≤)) → Aut(U(V,≤)) (respectively).

Proof: See Appendix.

Theorem 2 (Finite, distributive AC-lattices) For
any preorder(V,≤), the tuple(L(V,≤),⊆, \a,U(V,≤),⊆
, \c) is an AC-lattice. Conversely, every AC-lattice
(La,≤a,¬a,Lc,≤c,¬c) whose partial orders(La,≤a) and
(Lc,≤c) induce finite, distributive lattices can be repre-
sented in that form, where\a = (εV )

L
and \c = (ηV )

U
change to

7A subsetL of V is a lower setiff v ∈ L andv′ ≤ v imply v′ ∈ L.
8A function f : L → L′ between complete latticesL andL′ is a sup-

map iff f(
∨

X) =
∨

f(X) for all X ⊆ L.
9A subsetU of V is anupper setiff v ∈ U andv ≤ v′ imply v′ ∈ U .

¬a = (εV ◦ i)
L

¬c = (ηV ◦ i−1)
U

(3)

(respectively) for somei ∈ Aut(V,≤).

Proof: See Appendix.

Theorem 3 (Finite, distributive DeMorgan lattices)
For any preorder(V,≤) and an anti-tone and idempotent
map i : (V,≤) → (V,≤),10 the tuple(L(V,≤),⊆,¬) is a
DeMorgan lattice, where

¬L = {i(v) | v ∈ V \ L}. (4)

Conversely, every finite, distributive DeMorgan lattice
(L,≤,¬) can be represented in that form, where(V,≤) is
a finite partial order.

Proof: See the Appendix.

Example 4 (Representation of DeMorgan lattices) 1.
For a positive example, consider the finite, self-dual
partial order V = {v, w} in the discrete ordering.
There are exactly two anti-tone idempotent maps on
(V,≤), the identityid andsw which permutesv and
w. This gives rise to two different DeMorgan nega-
tions: ¬a

def= (εV ◦ id)
L

and¬′a
def= (εV ◦ sw)

L
. We

have¬a{v} = {w}, and¬a{w} = {v}, ¬′a{v} =
{v}, and¬′a{w} = {w}. Thus, the first negation is
the classical one,\a, and the second negation renders
Belnap’s four-valued logic [2]. By Theorem 3, this
lattice cannot have any other DeMorgan negations.

2. For a negative example, consider the finite partial or-
der of priorities (V,≤), whereV = {x, y, z} and
y and z are incomparable but have higher prior-
ity than x. This partial order is not self-dual; in
particular, there cannot be an anti-tone, idempotent
map i : (V,≤) → (V,≤). By Theorem 3,L(V,≤)
cannot have a DeMorgan negation. To see this ex-
plicitly, the third axiom of Figure 3(right) renders
{} = ¬{x, y, z} = ¬({x, y} ∪ {x, z}) = ¬{x, y} ∩
¬{x, z}. Thus, at least one of the sets¬{x, y}
and ¬{x, z} has to be empty. But then¬ cannot
be a bijection, since{} = ¬{x, y, z}. Of course,
(L(V,≤),⊆, \a,U(V,≤),⊆, \c) is an AC-lattice.

The examples above illustrate that the partial-order quotient
of a preorder(V,≤) will not be self-dual, if that preorder de-
notes realistic priorities of requirements. Thus, DeMorgan
lattices are an inadequate denotational universe for synthe-
sizing single-view analysis according to a preorder of prior-
ities. But AC-lattices, as their generalizations beyond self-
dual priorities, are suitable denotation spaces for any kind

10A mapf : (V,≤) → (V,≤) is anti-tone and idempotent ifv ≤ v′

impliesf(v′) ≤ f(v) and iff(f(v)) = v for all v, v′ ∈ V .
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of preorder. This mathematical justification is corroborated
by the intuition that, in under-determined models, denota-
tions of assertion checks (∈ La) may not be denotations of
consistency checks (∈ Lc) and vice versa.

3. Lifting single-view analysis

In the sequel, we writeM andN for finite collections
(Mv)v∈V and (Nv)v∈V of modelsMv andNv (respec-
tively) of a three-valued model-checking framework. We
make no assumptions about the degree of precision that
each view imposes on model checksMv|=m

φ that mention
external behavior, nor do we restrict the sound techniques
utilized in gaining that precision — be they (three-valued)
versions of compositional model checking [10], module
checking [28], etc.

Definition 5 (Refinement of collections of models)
For M andN as above, we say thatN ≺M iff, for each
v ∈ V , Nv ≺Mv in the underlying three-valued model-
checking framework.

Note thatM≺M holds since refinements are preorders
(property #7). We assume that the set of viewsV be en-
dowed with a preorder≤ of priorities: v ≤ v′ denotes that
view v′ has equal or higher priority over viewv, suggest-
ing thatMv′ is a more abstract, higher-level or authori-
tative description of the underlying artifact, whereasMv

specifies a more concrete, lower-level, or less important as-
pect. We understandv ≤ v′ to create — for all instances
of N ≺M — the obligation that whatever is asserted in a
modelMv′ ∈M shouldbe asserted in modelNv ∈ N and
whatever is possible inNv shouldbe possible inMv′ :

• (Assertion obligations)Mv′ |=a
φ obligesviewpoint

v to “assert”φ in every refinementNv; that is, it
should be the case thatNv|=a

φ, and

• (Consistency obligations)Nv|=c
φ obliges v′ to

“hold φ as possible” ineveryabstractionMv′ ; that
is, it should be the case thatMv′ |=c

φ.

We argue that such obligations, and their resulting conflicts,
can be statically analyzedwithin the collectionM of three-
valued models.

Proposition 4 (Sound obligation checking)Let N≺M.
For all φ,

1. if v ≤ v′ obligesMv to “assert” φ, then it also
obligesNv to “assert” φ.

2. if v ≤ v′ obligesNv′ to “hold φ possible”, then it
also obligesMv′ to “hold φ possible”.

Proof: If v ≤ v′ obligesMv to “assert”φ, thenMv′ |=a
φ,

Nv′≺Mv′ , and property #8 implyNv′ |=a
φ. But thenv ≤

v′ creates an obligation forNv to “assert”φ. The argument
for item 2 is dual.

Thus, any assertion obligation detected withinM persists
as an assertion obligation in all its refinements. Conversely,
any consistency obligation detected in any ofM’s refine-
ments, persists and can be detected withinM.

Definition 6 (Platonic world) A collectionM is Platonic
iff all the obligations of the priority ordering≤ are fulfilled
in M. In other words, ifv ≤ v′ implies thatMv ≺Mv′ in
the underlying three-valued model-checking framework.

If M is not Platonic, then it may not meet its own obliga-
tions of the priority preorder. But we claim that we can suc-
cessfully perform assertion and consistency checks within
M in the presence of conflicting and inconsistent obliga-
tions. Moreover, these checks can be used to expose the
conflicts in those obligations.

Example 5 (Exposing conflicting obligations)Suppose
that v ≤ v′, v ≤ v′′, Mv′ |=a

φ, andMv′′ |=a¬φ. Now
for any refinementNv ofMv, which may be a concrete im-
plementation, we are obliged to assert bothφ and¬φ, and
a contradiction is apparent.

The ontology of our framework does not require any con-
nections between the priority preorder≤ on viewpoints —
which is based on system needs, empirical evidence or any
other mechanisms for prioritizing — and the preorder≺
of refinement between modelsMv of viewpointsv. As the
example above already suggests, it is this independence that
allows us to model and expose inconsistencies across view-
points. In a Platonic world, all assertion and consistency
obligations are met and no contradictions will arisewithin
that world (Proposition 5). Alas, in our actual world of soft-
ware design and analysis the consistency requirements be-
tween multiple viewpoints may be violated at a number of,
if not all, instances of≤ — due to the conflicts of interests
between different stake-holders, specification or implemen-
tation errors, miscommunication, or other sources of con-
flict.

In the remainder of this section, we develop a tool that
collects assertion and consistency obligations and has the
power to trace the origin of contradictions, thereby enabling
conflict resolution through tool-informed changes in the
viewpoints and/or the priorities. But much more signifi-
cantly, the approach we develop here also has the power to
detect this contradiction in the requirements ofv′ andv′′

without having to construct aninconsistentmodelNv with
its resulting “logical collapse”. We avoid the use of incon-
sistent models by assuming that some later refinement of
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Mv will satisfy the obligations ofv ≤ v′ andv ≤ v′′ —
which may not be a correct assumption — and by pre-
tending that the models inM already satisfy these obliga-
tions — which may be false. This non-standard treatment of
truth permits us to efficiently detect the conflicting require-
ments ofv′ andv′′ by processing the models inM and to do
this by exploiting the order structure of≤. The resulting se-
mantics of negation turns out to generalize Heyting negation
to under-specified collections of models (Theorem 5). Our
semantic tool for effectively analyzing assertion and con-
sistency checks maintains autonomy and accountability of
views as well as the portability of single-view technology:

{|M :φ|}a def= {v ∈ V | ∃v′ ∈ V : v ≤ v′, Mv′ |=a
φ}

{|M :φ|}c def= {v ∈ V | ∃v′ ∈ V : v′ ≤ v, Mv′ |=c
φ}

{|M :φ|} def= ({|M :φ|}a, {|M :φ|}c). (5)

Sets{|M :φ|}a are inL(V,≤) and collect all viewsv that
have equal or lower priority than some viewv′ in which the
assertionφ holds; sets{|M :φ|}c are inU(V,≤) and com-
prise all viewsv that have equal or higher priority than some
view v′ in which φ is consistent. The set{|M :φ|}a con-
tains all the views that areobliged to assertφ according to
M, whereas the set{|M :φ|}c contains all those views that
areobliged to hold thatφ is possible according toM. By
Proposition 4, all assertion obligations created by priorities
persist in refinements (item 1). Dually, consistency obliga-
tions that are created by priorities and not met in a model
are also not met in any of its subsequent refinements: if
the obligation thatMv “holdsφ possible” is not met, then
Mv 6|=c

φ impliesMv|=a¬φ, meaningNv 6|=c
φ for all re-

finementsNv≺Mv. This semantics is still meaningful if
single views use different ontologies for expressing and an-
alyzing their partial views, assuming that one can state the
properties of interest in all ontologies involved. Apart from
assertion and consistency checking in multiple views, we
may use this semantics to detect and locate conflicts among
views:

{|M :φ|}a ∩ {|M :¬φ|}a (6)

represents all those viewsv that face an inconsistency re-
garding propertyφ: there are viewsv′, v′′ with equal or
higher priorities thanv that obligev to assertφ and¬φ
(respectively).11 More generally, for a finite set of formu-
las Γ, the set∩{{|M :φ|}a | φ ∈ Γ} collects those views
that are obliged to “assert” the conjunction∧Γ. In a Pla-
tonic world{|M :φ|}a ({|M :φ|}c) coincides with the set of
all views in which the assertion (consistency check)φ holds.

11Note that property #6 ensures thatv = v′ = v′′ cannot occur.

Proposition 5 (Consistency in Platonic world) All
Platonic worldsM meet all their own assertion and con-
sistency obligations; in particular, the set in (6) is empty.

Proof: The first claim is immediate from the definition
of (5) and property #8, noting that preorders are reflexive.
As for the second claim, assume thatv is in {|M :φ|}a ∩
{|M :¬φ|}a. By definition of{|M : ·|}a, there existv′, v′′ ∈
V such that (i)v ≤ v′′ andMv′ |=a

φ; and (ii) v ≤ v′′

andMv′′ |=a¬φ. Since the priority preorder realizes refine-
ments, we may use property #8 on (i), resulting inMv|=a

φ;
and on (ii), obtainingMv|=a¬φ. In summary, we conclude
Mv|=a

φ ∧ ¬φ, contradicting property #6.

Proposition 6 (Meet in Platonic world) In
any world,{|M :φ ∧ ψ|}m ⊆ {|M :φ|}m ∩ {|M :ψ|}m. In
a Platonic world, this inclusion is equality.

Proof: If v ∈ {|M :φ ∧ ψ|}c, then there is somev′ ∈ V
with v′ ≤ v andMv′ |=c

φ ∧ ψ. But thenMv′ |=c
φ and

Mv′ |=c
ψ follow. Thus,v ∈ {|M :φ|}c ∩ {|M :ψ|}c. Con-

versely, letw ∈ {|M :φ|}c ∩ {|M :ψ|}c. Then there exist
w′, w′′ ∈ V with w′, w′′ ≤ w, Mw′ |=c

φ, andMw′′ |=c
ψ.

In a Platonic world,w′, w′′ ≤ w then implyMw|=c
φ, and

Mw|=c
ψ, soMw|=c

φ ∧ ψ. Sincew ≤ w, this renders
w ∈ {|M :φ ∧ ψ|}c. The proof for modea is dual.

The straightforward consistency requirement{|M :φ|}a ⊆
{|M :φ|}c for our synthesis of assertion and consistency
checking does not hold in general. Interestingly enough,
the mixed power-domain [19, 20] provides a weaker con-
sistency condition of this sort.

Definition 7 (Multiple-valued AC-lattice operations)
For eachm ∈ {a, c}, any collection of modelsM deter-
mines a partial orderMm

def= {{|M :φ|}m | φ ∈ L}, or-
dered by inclusion, and a negation operation¬m : Mm →
M¬m:

¬m{|M :φ|}m def= {|M :¬φ|}¬m. (7)

The mixed power-domain[19, 20] M(V,≤) is the sublat-
tice of(L(V,≤),⊆)× (U(V,≤),⊇), consisting of all pairs
(L,U) that satisfy the consistency condition

L = {v ∈ V | ∃u ∈ L ∩ U : v ≤ u}. (8)

Example 6 (Mixed consistency)Clearly, if L is set as
{|M :φ|}a andU is set as{|M :φ|}c then equation (8) holds
whenever{|M :φ|}a ⊆ {|M :φ|}c. However, equation (8)
expresses a weaker consistency condition than{|M :φ|}a ⊆
{|M :φ|}c. Let v ≤ v′ ≤ v′′. LetMv′ |=a

φ, Mv′′ |=c
φ,

Mv′′ |=c¬φ, andMv|=a¬φ. Then{|M :φ|}a = {v, v′} and
{|M :φ|}c = {v′, v′′}. These satisfy (8) but{|M :φ|}a 6⊆
{|M :φ|}c.
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Theorem 4 (AC-lattice of denotations) The tuple(Ma,⊆
,¬a,Mc,⊆,¬c) is an AC-lattice satisfying{|M :φ|} ∈
M(V,≤) for all φ. In a Platonic world, the lattices(Ma,⊆)
and(Mc,⊆) are distributive.

Proof:

1. Clearly, L
def= {|M :φ|}a ∈ L(V,≤) and U

def=
{|M :φ|}c ∈ U(V,≤). We show thatL andU as
defined satisfy (8). In (8), the right-hand side is al-
ways contained in the left-hand side. Conversely, let
v ∈ L. Then there is somev′ ∈ V with v ≤ v′

andMv′ |=a
φ. So v′ ∈ L sincev′ ≤ v′. Since

Mv′ |=a
φ impliesMv′ |=c

φ (property #2), we infer
v′ ∈ U . Thus,v′ ∈ L ∩ U andv ≤ v′ show thatv is
an element of the right-hand side.

2. Note that¬m¬¬m{|M :φ|}m = ¬m{|M :¬φ|}¬m =
{|M :¬¬φ|}m. But the latter set equals{|M :φ|}m
since[¬¬φ]m = [φ]m.

3. Let {|M :φ|}a≤a {|M :ψ|}a. For v ∈ {|M :¬ψ|}c
there exists somev′ ∈ V with v′ ≤ v
and Mv′ |=c¬ψ, i.e. we have thatMv′ 6 |=a

ψ.
From {|M :φ|}a≤a {|M :ψ|}a and v′ ≤ v′, we
therefore infer thatMv′ |=a

φ is not the case, so
Mv′ |=c¬φ holds. Thus,v ∈ {|M :¬φ|}c. Hence
{|M :¬φ|}c≤c {|M :¬ψ|}c. The other axiom is
shown dually.

4. Since existential quantification distributes over dis-
junctions,{|M :φ ∨ ψ|}m = {|M :φ|}m ∪ {|M :ψ|}m.
Thus,(Ma,≤a) and(Mc,≤c) have joins, so they are
both (complete) lattices.

5. The claim about distributivity is a consequence of
Proposition 6 and the previous item.

As in any lattice, the meet operation inMm is expressible
via its join operation. It is also expressible in the logic. Us-
ing that existential quantification distributes over disjunc-
tions,{|M :φ|}m ∧ {|M :ψ|}m equals{|M : η|}m, whereη
is defined as

∨
{γ | {|M : γ|}m≤m{|M :φ|}m, {|M :ψ|}m}. (9)

In case thatL has no infinite disjunction, the set compre-
hension in (9) can be restricted to a finite set of representa-
tives of the equivalence relation∼=m, defined byγ∼=m γ

′ iff
{|M : γ|}m = {|M : γ′|}m.

We can lift meta-results of the single-view model-
checking framework to our multiple-view semantics in (5),
even in a non-Platonic world.

Remark 1 (Lift of semantic laws) The se-
mantics{|M : ·|} : L → M(V,≤) in (5) factors through the
canonical projectionφ 7→ [φ]m of typeL → Lm.

Since the interpretation of negation is absolutely crucial for
assertion and consistency checking, we compare our lifted
semantics of¬ to set complement and the Heyting negations
¬A : L(V,≤) → L(V,≤) and¬C : U(V,≤) → U(V,≤)
(respectively):12

¬A L
def=

⋃
{L′ ∈ L(V,≤) | L ∩ L′ = {}} (10)

¬C U
def=

⋂
{U ′ ∈ U(V,≤) | U ∪ U ′ = V }. (11)

Theorem 5 (Lift of negation) Letm ∈ {a, c} andφ ∈ L.

1. We haveV \ {|M :φ|}¬m ⊆ {|M :¬φ|}m.

2. In a Platonic world, V \ {|M :φ|}¬m equals
{|M :¬φ|}m. This set is contained in¬M{|M :φ|}m
if m = a or if [>]a = [φ ∨ ¬φ]a.13

3. If all viewpointsMv (v ∈ V ) specify mandatory
state and behavior only, then¬M{|M :φ|}m ⊆
{|M :¬φ|}m.

4. In a Platonic world with mandatory state and be-
havior only, V \ {|M :φ|}¬m = {|M :¬φ|}m ⊆
¬M{|M :φ|}m, where all three forms of negation are
equal ifm = a or if [>]a = [φ ∨ ¬φ]a.

Proof:

1. Let v ∈ V \ {|M :φ|}a. Thus, for allv′ ∈ V with
v ≤ v′, we haveMv′ 6 |=a

φ, i.e.Mv′ |=c¬φ. Since
v ≤ v, we infer v ∈ {|M :¬φ|}c. Dually, let v ∈
V \ {|M :φ|}c. Thus, for allv′ ∈ V with v′ ≤ v, we
haveMv′ 6 |=c

φ, i.e.Mv′ |=a¬φ. Sincev ≤ v, we
infer v ∈ {|M :¬φ|}a.

2.(a) To show equality, letv ∈ {|M :¬φ|}a. Then there ex-
ists somev′ ∈ V with v ≤ v′ andMv′ |=a¬φ. If
there is somev′′ ∈ V with v′′ ≤ v andMv′′ |=c

φ,
then v′′ ≤ v ≤ v′ impliesMv′ |=c

φ in a Platonic
world (property #8). But this contradictsMv′ |=a¬φ
by property #4. Thus,v ∈ V \ {|M :φ|}c. This
and item 1 establish equality. The proof for the other
combination of modes is dual.

2.(b) To show the inclusion fora, using (10) and
{|M :¬φ|}a ∈ L(V,≤), we are done if{|M :¬φ|}a ∩
{|M :φ|}a = {}, which follows from Proposition 5.

12In any Heyting algebra,¬ = ¬ ◦ ¬ ◦ ¬, so its image of¬ ◦ ¬ is a
DeMorgan lattice.

13The latter holds for the generalized model-checking of Bruns & Gode-
froid [5], but not for the semantics of Figure 2.
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2.(c) To show the inclusion forc, let v ∈ {|M :¬φ|}c.
By (11), it suffices to show that for anyU ′ ∈ U(V,≤)
with V = {|M :φ|}c ∪ U ′ we havev ∈ U ′ . Since
v ∈ {|M :¬φ|}c, there is somev′ ∈ V with v′ ≤ v
andMv′ |=c¬φ. If v 6∈ U ′, thenV = {|M :φ|}c ∪ U ′
implies v ∈ {|M :φ|}c. So then there exists some
v′′ ∈ V with v′′ ≤ v andMv′′ |=c

φ. In a Platonic
world, we getMv|=c

φ andMv|=c¬φ, contradicting
[>]a = [φ ∨ ¬φ]a.

3.(a) LetL ∈ L(V,≤) with L∩{|M :φ|}a = {}. By (10), it
suffices to show thatL ⊆ {|M :¬φ|}a. For anyv ∈ L,
we havev 6∈ {|M :φ|}a, so there cannot be anyv′ ∈ V
with v ≤ v′ andMv′ |=a

φ. Sincev ≤ v, we conclude
Mv 6|=a

φ, i.e.Mv|=c¬φ. Now, property #9 renders
Mv|=a¬φ.

3.(b) Dually, since{|M :¬φ|}c is an upper set, it suffices to
show that{|M :¬φ|}c ∪ {|M :φ|}c equalsV . But for
anyv ∈ V \ {|M :φ|}c, v ≤ v implies thatMv|=c

φ
is not the case, i.e.Mv|=c¬φ holds by property #9.
Therefore,v ∈ {|M :¬φ|}c.

4. This follows from items 2 and 3.

In eachMv, state and behavior external to viewpointv need
to be expressed through possible state and behavior. Thus,
models cannot specify only mandatory behavior and states;
furthermore, even thoughM normally cannot be expected
to be Platonic, bypretendingit is Platonic (i.e., by collect-
ing all priority-based obligations as in (5)) we detect and lo-
cate inconsistencies, if desired. In this respect our semantics
deviates significantly from¬A and¬C sinceL∩¬AL = {}
andU ∪ ¬CU = V hold for any preorder(V,≤). Addi-
tionally, our interpretation of¬ respects both the priority
preorder and single-views’ autonomy to the extent possible:
under the assumption that the world is Platonic, viewv ac-
cepts the assertion (consistency check)¬φ as an obligation
iff there is a viewv′ with equal or higher (lower) priority
that actually verifies the assertion (consistency check)¬φ
in its model.

Crucially, our lift of single-view technology preserves
soundness of (stepwise) refinement.

Theorem 6 (Lift of sound refinement) For each m ∈
{a, c} andφ ∈ L, if N ≺M, then

{|M :φ|} ≤ {|N :φ|} in M(V,≤). (12)

Proof: Let v ∈ {|M :φ|}a. Then there exists somev′ ∈ V
with v ≤ v′ andMv′ |=a

φ. But thenNv′ ≺Mv′ implies
Nv′ |=a

φ, by property #8, and thereforev ∈ {|N :φ|}a. The
proof for the second statement is dual.

U = V;
L = emptyset;
while (U != emptyset) {
% invariants: L contained in { M : phi }ˆa,
% { M : phi }ˆa contained in L union U

for all v in max(U) {
if (check(M[v], phi)) {

L = L union { v’ | v’ <= v };
U = U \ { v’ | v’ <= v };

} else {
U = U \ { v };

}
}

}

Figure 4. Model-checking algorithm for com-
puting
the set {|M :φ|}a. The call check(M[v], phi)
decides whether Mv|=a

φ.

The significance of this theorem is that assertion and con-
sistency checking in (5) as well as the detection and loca-
tion of inconsistencies using (6) are preserved under actual
refinements of some or all of the viewpoints,regardless of
whether this happens in a Platonic or a non-Platonic world.
Thus, stake-holders may use familiar sound technology for
their model checks — such as semantic laws, proof the-
ory, and abstraction techniques — and all analysis results
remain relevant for all refinements. Our lift preserves even
the model-checking engine. In computing the denotations
{|M :φ|}m, it is intuitively clear that the priority preorder
efficiently guides the use of a single-view model checker to
drive that computation. For{|M :φ|}a, the algorithm is de-
picted in Figure 4. It is clear how to dualize this algorithm
for computing{|M :φ|}c, and we omit its description.

Theorem 7 (Lift of model checker) The correctness of
the decision procedurecheck(M[v], phi) implies that
the algorithm in Figure 4 terminates and thatL equals
{|M :φ|}a upon program termination. If the underlying
three-valued model-checking framework is based on Kripke
structures [4] or labeled transition systems [30, 23, 18],
thencheck(M[v], phi) can be implemented as an in-
strumented call to a conventional model checker such as
SMV or SPIN.

Proof: See the Appendix.

The complexity of computing{|M :φ|}m depends on the
complexity of decidingMv|=m

φ; the cost of computing
and specifying single-view modelsMv; and the structure
of the priority preorder(V,≤) — its width, height, etc. In
the worst case, the algorithm of Figure 4 needs to make
|V | many calls tocheck(M[v], phi) . Not only does
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this algorithm extend the reach of multiple-valued model
checking from self-dual [7, 6] to arbitrary preorders, it may
also dramatically improve the algorithms of [7, 6] — which
compute over the latticeL(V,≤) — since|L(V,≤)|may be
exponential in|V |.

4. Multiple-valued modal logic

Existing work on multiple-valued modal logics either con-
siders a Platonic world whose models have mandatory state
and behavior only [16] or presents single-view models as
multiple-valued specifications to begin with [15]. Fitting
[16] presents a semantics and proof theory of modal logic,
where state properties and state transitions of models take
on values in some finite, distributive latticeL(V,≤). Fit-
ting’s modelsM = (Σ, R, L) of type (V,≤) have state
transitionsR : Σ×Σ → L(V,≤) and labelingsL : Σ×AP→
L(V,≤) that map intoL(V,≤); if V is a singleton{∗}, these
models are ordinary Kripke structures where{∗} denotes
truth (mandatory state and behavior) and{} denotes fal-
sity (disallowed state and behavior). We extend Fitting’s
multiple-valued models and their multiple-valued composi-
tional semantics [16] to under-specified models.

Definition 8 (Multiple-valued Kripke structures)
A multiple-valued Kripke structure (mvKS) of type(V,≤)
is a pair (Ma,Mc) of Fitting models of type(V,≤) such
thatRa ≤ Rc andLa(s, y) ≤ Lc(s, y) for all s ∈ Σ and
y ∈ AP.

A property semantics for mvKSs is given in Figure 5, where
environmentsρm have typevar → (Σ → L(V,≤)). Note
the treatment of negation, the meaning of¬φ in mode m
is the set complement of the meaning ofφ in mode¬m;
and fixed pointslfpm Fm, which are least fixed points in
(L(V,≤),⊆) and(U(V,≤),⊆) (respectively).

Definition 9 (Induced three-valued Kripke structures)
For a mvKS(Ma,Mc) of type (V,≤) and anyv ∈ V ,
we define a pair of Kripke structuresMv

def= (Ma
v,Mc

v)
via functionsπa

v : L(V,≤) → L({∗}) andπc
v : U(V,≤) →

U({∗}) which map any set that containsv to {∗} and any
other set to{}. We set

Mm
v

def= (Σ, πm
v ◦Rm, πm

v ◦ Lm) (13)

for eachm ∈ {a, c}. These Kripke structures retain the
initial statei of the mvKS, if applicable.

Proposition 7 (Priorities as refinements)The models
Mv of (13) are three-valued Kripke structures. The identity
relation on states makes this collection a Platonic world.

Proof: See the Appendix.

[| Z |]mρ s
def= ρm(Z) s

[| y |]mρ s
def= Lm(s, y)

[| ¬φ |]mρ s
def= V \ [| φ |]¬m

ρ s

[| φ1 ∧ φ2 |]mρ s
def= [| φ1 |]mρ s ∩ [| φ2 |]mρ s

[| EXφ |]mρ s
def=

⋃
s′∈Σ

Rm(s, s′) ∩ [| φ |]mρ s′

[| µZ.φ |]mρ
def= lfpm Fm; whereFm(A) def= [| φ |]mρm[Z 7→A].

Figure 5. Property semantics for multiple-
valued Kripke structures.

The collection of modelsM = (Mv)v∈V of (13) defines
a multiple-valued semantics{|M :φ|}mρ through Figure 2
and (5). We call a modelM finitary if the syntactic approx-
imationsµmZ.φ (m ≥ 0) [3] of least fixed pointsµZ.φ are
sound and complete in each modelMv for |=a and|=c.

Theorem 8 (Soundness & completeness of lift)Let each
modelMv of (13) be finitary andm ∈ {a, c}. Then

{|M :φ|}mρ = [| φ |]mρ i. (14)

Proof: See the Appendix.

We obtain a sound notion of refinement for mvKSs that
is simply the point-wise lift of the refinement of one-letter
Kripke MTSs [23].

Corollary 1 (Soundness of refinement)LetM andN be
mvKSs of type(V,≤) with initial statesi and j (respec-
tively) such thatN ≺M. For all ρ andφ,

[| φ |]cρ j ⊆ [| φ |]cρ i and [| φ |]aρ j ⊇ [| φ |]aρ i. (15)

Proof: This follows from Theorems 6 and 8.

Note the mode of the ordering in (15): assertions that
are validated on abstractions remain valid on refinements;
checks that are consistent on a refinement are also consis-
tent on its abstraction. MvKSs are under-specified versions
of Fitting’s models, since the latter models correspond to
those mvKSs, whereMa equalsMc. In that case, each
Mv corresponds to a Kripke structure.

Corollary 2 (Fitting’s semantics) Let Ma equalMc. If
φ is negation-free, then the semantics[| φ |]aρ of Figure 5
equals Fitting’s semantics.
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Proof: See the Appendix.

For Fitting’s models and semantics, a weaker version of
Theorem 8 can be proved in modea and for negation-free
formulas only, where the equality in (14) turns into⊆. The
restriction to negation-free formulas and the weakening of
equality are due to the fact thatv ≤ v′ then implies that
Ma

v′ is a simulation ofMa
v that preserves atomic proper-

ties [33], but such simulations areuni-directional and pre-
serveuniversalproperties only. Fitting’s models and se-
mantics are also used by Chechik and Easterbrook [15, 7],
except that they choose a negation operator that satisfies
the axioms of Figure 3 (right). By Theorem 3, they im-
plicitly assume and choose some idempotent anti-tone map
i : (V,≤) → (V,≤). Thus, we may compare our semantics
to the one of Chechik and Easterbrook [7] only if there ex-
ists such a mapi, Ma equalsMc, and negation is defined
as in (4). In re-defining¬a def= a, one can therefore re-write
the semantics of Figure 5 in mode a only. Ifi satisfies

∀ (L,U) ∈ M(V,≤), v ∈ L iff i(v) 6∈ U (16)

then it is not hard to see that this re-defined semantics co-
incides with our[| · |]aρ. In fact, this equality requires (16)
to hold for all elements ofM(V,≤) that are denotations of
formulas. However, it is unlikely that a heuristically cho-
seni meets condition (16). If we takeL = U = {v} in
Example 4.2, then choosingi to be id we getv ∈ L and
i(v) ∈ U . A meaningful comparison of the performance of
the tools in [15] with that of the algorithm in Figure 4 can
therefore only be conducted for choices ofi that meet (16).

5. Conclusions

We gave axioms for assertion-consistency lattices and three-
valued model-checking frameworks and showed that these
notions are intimately connected and occur naturally in
property-verification, proof theory, and multiple-viewpoint
analysis of under-determined models. We characterized
finite, distributive AC-lattices (and their symmetric ver-
sions, DeMorgan lattices) through preorders endowed with
an (idempotent anti-tone) order-isomorphism. We demon-
strated that three-valued model checking and AC-lattices
as their denotation spaces can be systematically lifted to
property verification and requirement elicitation under mul-
tiple points of view. This lift applies to the semantics of
negation, refinement and abstraction, model-checking al-
gorithms, and other important model checking techniques
such as fairness [13, 22]. We compared our approach to
Fitting’s multiple-valued modal logic [16] (within which
sound abstraction-based model checking is limited to uni-
versal properties) and its variation proposed by Chechik
and Easterbrook [7] (where the denotation space requires

a self-dual partial order with an idempotent anti-tone order-
isomorphism). For a multiple-viewpoint analysis based on
a preorder of priorities, these two semantics are therefore
ill-suited. Finally, we emphasize that our three-valued ap-
proach not only ensures the instrumented use of single-view
model checkers — driven by a priority preorder — and
property preservation and sound refinement for logics with
unrestricted negation and quantification, it also allows for
the efficient computation of sound abstractions (e.g. [18])
which, by construction, can be used to verify assertions and
to refute consistency checks.

In future work, we plan to extend the language of priori-
ties to more expressive formalisms for the design and anal-
ysis of distributed software engineering systems.
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Proof of Proposition 2: First, the axioms for a De-
Morgan lattice(L,≤,¬) in Figure 3 clearly imply that
(L,≤,¬,L,≤,¬) meets the axioms of an AC-lattice. Con-
versely, consider an AC-lattice, where(La,≤a,¬a) equals
(Lc,≤c,¬c). Then the axioms for AC-lattices read-
ily imply the first and last axiom of DeMorgan lattices.
The second and third axioms follow from the fact that
¬a : (La,≤a) → (Lc,≤c

op) is an order-isomorphism with
¬c : (Lc,≤c

op) → (La,≤a) as order-inverse.

Proof of Theorem 1:

1. Let m ∈ {a, c}. First, givenM|=m¬¬φ, we have
M 6|=¬m¬φ, i.e. M 6|=m

φ. Thus, ¬¬φ≤m φ.
Similarly, we showφ≤m ¬¬φ. Therefore,[φ]m =

12



[¬¬φ]m, but the latter equals¬¬m¬m[φ]m by def-
inition. Second, let[φ]m≤m [ψ]m with φ′ and ψ′

as respective witnesses. IfM|=¬m¬ψ′, then we
have M 6 |=m

ψ′. Since φ′≤m ψ
′, we conclude

M 6|=m
φ′, i.e. M|=¬m¬φ′. Thus, ¬m[ψ]m =

[¬ψ]¬m≤¬m [¬φ]¬m = ¬m[φ]m. Third, we claim
that the meet of[φ]m and [ψ]m is [φ ∧ ψ]m. Since
φ ∧ ψ≤m φ, ψ we know that[φ ∧ ψ]m is a lower
bound of [φ]m and [ψ]m. If [η]m is another such
lower bound, then there areη′, η′′ ∈ [η]m and
φ′′ ∈ [φ]m andψ′′ ∈ [ψ]m such thatη′≤m φ

′′ and
η′′≤m ψ

′′. GivenM|=m
η, we haveM|=m

η′ and
M|=m

η′′, for η′, η′′ ∈ [η]m. Then η′≤m φ and
η′′≤m ψ follow and implyM|=m

φ andM|=m
ψ (re-

spectively). Thus,M|=m
φ∧ψ showsη≤m φ∧ψ and

so[η]m≤m [φ ∧ ψ]m follows.

2. By property #9,[φ]a = [φ]c for all φ, soLa = Lc and
≤a equals≤c. We then apply Proposition 2.

Proof of Proposition 3:

1. The proof thatU(·) is a monotone functor is routine,
noting thatU =

⋂
v 6∈U εV (v) for eachU ∈ U(V,≤),

so(f)
U
(U) def=

∨
{f(v) | v 6∈ U}.

2. The first three equations are immediate. Finally,¬a ◦
L(f) ◦ ¬c is a sup-map, so it suffices to show(¬a ◦
L(f)◦¬c)◦εV = εW ◦f . But (¬a ◦L(f)◦¬c)◦εV =
¬a ◦ (L(f) ◦ ηV ) = ¬a ◦ (ηW ◦ f) = εW ◦ f .

3. Clearly, automorphisms are lifted by functors, so
f 7→ L(f) : Aut(V,≤) → Aut(L(V,≤)) is an injec-
tion, as the functor is faithful. Conversely, giveng ∈
Aut(L(V,≤)), the mapg ◦ ηV : (V,≤) → L((V,≤))
is monotone and so(g ◦ ηV )

L
is well defined, but

g = (g ◦ ηV )
L

since g is also a sup-mapρ with
ρ ◦ ηV = g ◦ ηV . The proof forU(·) follows from
this andU(f) = \a ◦ L(f) ◦ \c.

Proof of Theorem 2: Given a preorder(V,≤), the tu-
ple (L(V,≤),⊆, \a,U(V,≤),⊆, \c) is an instance of Ex-
ample 3, whereU(V,≤) is the collection of open and
L(V,≤) the collection of closed subsets ofV . Con-
versely, by Stone duality there exists an order-isomorphism
Φ: (La,≤a) ∼= L(V,≤) [1] for some finite partial order
(V,≤) since(La,≤a) is a finite, distributive lattice. But
then\c ◦ Φ ◦ ¬c : (Lc,≤c

op) → (U(V,≤),⊇) is an order-
isomorphism as well. Thus, we may assume(La,≤a) =
L(V,≤) and (Lc,≤c

op) = (U(V,≤),⊇). Since¬a pre-
serves complete primes as an order-isomorphism and since

the set of complete primes of(U(V,≤),⊇) is the image
of εV , we infer that for everyv ∈ V there is a unique
i(v) ∈ V with ¬a(ηV (v)) = εV (i(v)). SinceεV is an
order-isomorphism onto its image,i : (V,≤) → (V,≤)
is monotone. Thus,¬a ◦ ηV = εV ◦ i implies ¬a =
(εV ◦ i)

L
. Dually, we infer the existence of a monotone

mapj : (V,≤) → (V,≤) with ¬c ◦ εV = ηV ◦ j, and so
¬c = (ηV ◦ j)

U
. Thus, it suffices to showj = i−1. But

εV ◦i = ¬a◦ηV = (¬a◦\c)◦εV implies¬a◦\c = U(i). Du-
ally, ηV ◦j = ¬c◦εV = (¬c◦\a)◦ηV implies¬c◦\a = L(j).
But L(i) = \c ◦ U(i) ◦ \a = \c ◦ (¬a ◦ \c) ◦ \a = \c ◦ ¬a.
From this we immediately get thatL(i) is the inverse of
L(j). Thus,j = i−1.

Proof of Theorem 3:

1. Let i : (V,≤) → (V,≤) be an anti-tone idempo-
tent map. The map¬ : L(V,≤) → L(V,≤), de-
fined in (4), is well defined asi is anti-tone;¬ is
clearly anti-tone (with respect to set inclusion). We
compute¬¬L = {i(w) | w = i(v) impliesv 6∈
V \ L} = {i(i(v)) | v ∈ L} since i is onto and
one-to-one. Thus,¬¬L = L and so¬ establishes
an order-isomorphism betweenL(V,≤) and its dual.
Therefore,(L(V,≤),⊆,¬) is a finite, distributive De-
Morgan lattice.

2. Given a finite, distributive DeMorgan lattice(L,≤
,¬), Stone duality guarantees an order-isomorphism
φ : (L,≤) → (L(V,≤),⊆) for some finite partial or-
der (V,≤). But then the mapneg def= φ ◦ ¬ ◦ φ−1

is anti-tone and idempotent onL(V,≤). Thus, it is
an order-isomorphism of typeL(V,≤) → L(V,≤)op

and, therefore, maps complete primes ofL(V,≤) (all
elements of the form↓v, v ∈ V ) to complete co-
primes ofL(V,≤) (all elements of the formV \ ↑v,
v ∈ V ). Thus,neg(↓v) = V \ ↑i(v) for a uniquei(v)
in V . It is routine to check thatv 7→ i(v) : (V,≤
) → (V,≤) is anti-tone. Dually,neg maps com-
plete co-primes ofL(V,≤) to complete primes of
L(V,≤). Thus,neg(V \ ↑v) = ↓j(v) for a unique
j(v) in V . The mapv 7→ j(v) : (V,≤) → (V,≤)
is anti-tone. The equation↓v = neg(neg(↓v)) ren-
dersj(i(v)) = v for all v ∈ V . Dually, equation
V \ ↑v = neg(neg(V \ ↑v)) yields i(j(v)) = v for
all v ∈ V , soi is an isomorphism withj as inverse.

We claim that j = i. We compute↓v =
neg(neg(↓v)) = neg(V \ ↑i(v)) = neg(

⋃
{↓w |

w ∈ V \ ↑i(v)}) =
⋂
{neg(↓w) | i(v) 6≤ w} =⋂

{V \ ↑i(w) | i(v) 6≤ w}. In particular,v is an
element of the latter set. Therefore we have

∀w ∈ V, i(v) 6≤ w impliesi(w) 6≤ v. (17)
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For w
def= j(v), i(w) = i(j(v)) = v ≤ v therefore

implies i(v) ≤ w = j(v). Sincei is anti-tone, this
results inv = i(j(v)) ≤ i(i(v)). Suppose that it is
not the case thati(i(v)) ≤ v. Thenv ∈ V \ ↑i(i(v)),
i.e. ↓v ⊆ V \ ↑i(i(v)) = neg(↓i(v)). But then
↓i(v) = neg(neg(↓i(v))) ⊆ neg(↓v) = V \ ↑i(v)
impliesi(v) ∈ V \ ↑i(v), a contradiction.

Finally, we show thatneg is defined as in (4). Given
L ∈ L(V,≤), we haveneg(L) = neg(

⋃
v′∈L ↓v′) =⋂

v′∈L neg(↓v′) =
⋂

v′∈L V \↑i(v′) def= A. We claim

thatA equalsB
def= {i(v) | v ∈ V \ L}:

• If w ∈ A, then v′ ∈ L implies i(v′) 6≤ w,
i.e. i(w) 6≤ v′ since i is an anti-tone order-
isomorphism. Thus,i(w) ∈ V \ L sinceL is
a lower set. Therefore,w = i(i(w)) ∈ B.

• If w ∈ B, thenw = i(v) for somev ∈ V \ L.
Givenv′ ∈ L, we havev 6≤ v′ sincev ∈ V \ L
andL ∈ L(V,≤). Thus, i(v′) 6≤ i(v) = w
showsw ∈ V \ ↑i(v′), i.e.w ∈ A.

Proof of Theorem 7: Before execution of the while-
statement, the invariants hold sinceL = {} andL∪U = V .
The if-branch removes fromL only elements that cannot be
in {|M :φ|}m, due to property #8; it leaves the value ofL∪U
invariant. Thus, this branch maintains both invariants. The
else-branch only removesv from U which cannot violate
the second invariant sincev cannot be in{|M :φ|}a. In any
event, the finite setU gets smaller with each iteration of
the while-statement, ensuring termination. Upon termina-
tion,U is empty, so the conjunction of both invariants states
that{|M :φ|}a equalsL. The claims about the instrumented
use of standard model checkers follow from work in [5] and
[22].

Proof of Proposition 7: We refer to [23] for a formal defini-
tion of refinement of Kripke MTSs. By definition, the iden-
tity relation relates initial states. If the setπa

v′(R
a(s, s′)) is

non-empty (must-transition [30, 23]), thenv′ is contained
in the lower setRa(s, s′). Thus, v ≤ v′ implies v ∈
Ra(s, s′), soπa

v(Ra(s, s′)) is non-empty as well. Dually,
let πc

v(Rc(s, s′)) be non-empty (may-transition [30, 23]).
Thenv is contained in the upper setRc(s, s′). Thus,v ≤ v′

implies v′ ∈ Rc(s, s′), soπa
v′(R

c(s, s′)) is non-empty as
well. The arguments for the labeling function are reasoned
similar to the previous case.

Proof of Theorem 8:

1. ForZ, [| Z |]cρ i = ρc(Z) i which equals{v ∈ V |
∃v′ ∈ V : v′ ≤ v, v′ ∈ ρc(Z) i} sinceρc(Z) i is an

upper set in(V,≤). But the latter set is{v ∈ V |
∃v′ ∈ V : v′ ≤ v, Mv′ |=c

ρv′
Z}, which is{|M :Z|}cρ.

The proof for modea is dual.

2. For y, [| y |]aρ i = La(i, y) which equals{v ∈ V |
∃v′ ∈ V : v ≤ v′, v′ ∈ La(i, y)} sinceLa(i, y) is
a lower set in(V,≤). But the latter set is{v ∈ V |
∃v′ ∈ V : v ≤ v′, Mv′ |=a

ρv′
y}, which is{|M : y|}aρ.

The proof for modec is dual.

3. For¬φ, [| ¬φ |]mρ i = V \ [| φ |]¬m
ρ i which, by induc-

tion, equalsV \ {|M :φ|}¬m
ρ . By Theorem 5.2, this

equals{|M :¬φ|}mρ .

4. ForEXφ, we show this for modea only; the proof
for modec is dual. First, letv ∈ [| EXφ |]aρ i. So
there exists somei′ ∈ Σ with v ∈ Ra(i, i′) and
v ∈ [| φ |]aρ i′. By induction, the latter implies14

v ∈ {|M[i 7→ i′] :φ|}aρ. So there exists somev′ ∈ V
with v ≤ v′ andMv′ [i 7→ i′]|=a

ρv′
φ. Then Propo-

sition 7 and property #8 renderMv[i 7→ i′]|=a
ρv
φ.

Sincev ∈ Ra(i, i′), we inferMv|=a
ρv

EXφ, sov ∈
{|M :EXφ|}aρ since v ≤ v. Conversely, letw ∈
{|M :EXφ|}aρ. Then there existsw′ ∈ V withw ≤ w′

andMw′ |=a
ρw′EXφ. Proposition 7 and property #8

then implyMw|=a
ρw

EXφ. So there exists somei′′ ∈
Σ with w ∈ Ra(i, i′′) andMw[i 7→ i′′]|=a

ρw
φ. The

latter andw ≤ w imply w ∈ {|M[i 7→ i′′] :φ|}aρ
which, by induction, equals[| φ |]aρ i′′. Thus,w ∈
Ra(i, i′′) impliesw ∈ [| EXφ |]aρ.

5. ForµZ.φ, letv ∈ [| µZ.φ |]aρ i. Since the model is fini-
tary, there is somek ≥ 0 such thatv is in [| µkZ.φ |]aρ i
which, by induction, equals{|M :µkZ.φ|}aρ. There-
fore, there is somev′ ∈ V with v ≤ v′ and
Mv′ |=a

ρv′
µkZ.φ. But thenMv′ |=a

ρv′
µZ.φ follows

from the monotonicity of the least-fixed-point itera-
tion. Sov ≤ v′ implies v ∈ {|M :µZ.φ|}aρ. Con-
versely, letw ∈ {|M :µZ.φ|}aρ. Then there exists
somew′ ∈ V with w ≤ w′ andMw′ |=a

ρw′µZ.φ.
But then there is somel ≤ 0 with Mw′ |=a

ρw′µlZ.φ.
Therefore,w ∈ {|M :µlZ.φ|}aρ which, by induc-
tion, equals [| µlZ.φ |]aρ i, which is contained in
[| µZ.φ |]aρ i. The proof for modec is dual.

Proof of Corollary 2: If φ is negation-free, then the clause
for negation in Figure 5 is never invoked and all other
clauses render Fitting’s semantics as in [16].

14We write[i 7→ i′] to update the initial state fromi to i′.
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