Lifting assertion and consistency checkers from single to multiple viewpoints

Michael Huth Shekhar Pradhan
Department of Computing, Imperial College Central Missouri State University
London, United Kingdom, mfadoc.ic.ac.uk  Warrensburg, Missouri, pradh@emsul.cmsu.edu

Abstract reasons for extending their reach to the reasoning about
software artifacts in the presence of multiple stake-holders.

Using a priority preorder on requirements or specifications, The adoption and training for the competent use of model-
we lift established property-verification techniques of three- checking tools such as SMV [26] and Spin [21], which has
valued model checking from single to multiple viewpoints. over 4000 installations worldwide, also provide an incentive
This lift guarantees a maximal degree of autonomy and for multiple-viewpoint frameworks to make use of single-
accountability to single views, automatically synthesizes view tools. At the same time, individual stake-holders want
single-analysis results for multiple-view consistency and as-to retain sufficient autonomy and accountability for their
sertion checking, allows the re-use of single-view technol- design and analysis activities, thereby enabling informed
ogy (e.g. standard model checkers), and transforms manyand constructive negotiations of design issues among stake-
meta-results (e.g. soundness of abstraction) from the single-holders. These demands create a genuine opportunity to
view to the multiple-view setting. We formulate assertion- re-use in the multiple-view setting existing single-view
consistency lattices as a proper denotational universe for model-checking technology such as model description lan-
this lift, show that their symmetric versions are DeMor- guages, property specification languages and their patterns,
gan lattices, and classify both structures through (idempo- refinement and abstraction techniques, model-checking and
tent) order-isomorphisms on (self-dual) priority preorders model-construction algorithms, their implementations/data
in the finite case. In particular, this lift generalizes Fitting’s  structures, fairness, etc. In the sequel, we refer to such a
multiple-valued semantics of modal logic in that our treat- loose bundle of know-how asraodel-checking framewark
ment of negation generalizes Heyting negation beyond fully
specified and consistent models. We compare our approacrhcope of our results.

- X . In thi ) lay the fi -
to existing work on multiple-valued model checking. n this paper, we lay the founda

tions for asystematic re-usef existing model-checking
frameworks in the design and analysis of systems under
multiple viewpoints. Our definitions and results are basi-
1. Introduction cally independent from the specific details of a single-view
model-checking framework (e.g. its data structures, prop-

Motivation. During software development life cycles one €rty logic, etc) and apply to all three-valued model-checking
invariably has to construct, maintain, and change require-frameworks. Without compromising any of the objectives
ments and specifications that stem from a number of stake-aforementioned, our lift of such frameworks to the multiple-
holders who express their own viewpoints of the expected view setting transfers meta-results about single-view model
state and behavior of a software artifact [25, 35]. This nec- checking to practically important meta-results of multiple-
essary multiplicity of perspectives makes the formal anal- View checking (e.g. soundness of refinement), and intro-
ysis of such descriptions difficult, if not impossible: view- duces little computational overhead on the complexity of
points often have informal, semi-formal, or non-executable the underlying single-view assertion and consistency check-
descriptions; multiple descriptions of the same behavior iNg- We present AC-latticésas our denotational structures
very likely give rise toinconsistenciesand existing static- which distinguish themselves in their treatment of negation.
analysis methods (e.g. model checking [31, 8, 9]) don’'t We then go on to show that whereas each finite AC-lattice
directly enable assertion checking or the detection of in- corresponds to an order-automorphism on a finite prior-
consistencies in a collection of executable models, whereity preorder the corresponding result for DeMorgan lattices

each mOdel represents a partlgula_r pomt_of wev_v. AS_ static- LOur results specialize to standard two-valued abstraction-based model
a':]alyS'S tools slowly but steadily find their way into |ndu§- checking, but are then, as usual [11], limited to universal properties.
trial research and development, one has very compelling 2Assertion-consistency lattices.




[14] requires the preorder to be self-dual via an idempotentof priorities among views to derive a multiple-valued se-
order-isomorphism. This corroborates our need to general-mantics that can reason about properties as well as expose
ize DeMorgan lattices to AC-lattices, structures that allow inconsistencies and other kinds of conflicts, thus enabling
for the inevitable asymmetry in requirements. rational discourse between all stake-holders. We base this
choice on the fact that prioritizing is widely recognized as a

Three-valued model checking. Our work rests on the Kkey instrument in dealing with requirements [25, 34, 35].
premise that sound notions of abstraction and (stepwise) re-

finement are crucial ingredients of frameworks for assertion Outline of paper. In Section 2, we axiomatize three-
and consistency checking. Sound abstraction is typically valued model-checking frameworks, give an example, and
limited to universalproperties [11]. However, checking the define AC-lattices as their denotational universes. We rep-
inconsistency of a universal requires reasoning about an resent finite, distributive AC-lattices (DeMorgan lattices)
existentialproperty—¢.> Moreover, many interesting sys- through (idempotent) order-isomorphisms on (self-dual) fi-
tem properties are non-trivial combinations of universal and nite preorders. Section 3 discusses how a preorder of prior-
existential aspects. Therefore, model-checking frameworksities between views determines a multiple-valued semantics
for multiple viewpoints require sound assertion and consis- of single-view design and analysis results. We lift single-
tency checks of a logic witbnrestricteduse of negationand  view meta-results to multiple-valued semantics — notably
quantification. Three-valued model-checking frameworks refinement, abstraction, the model-checking engine, and the
(e.qg. [4, 32, 23)) fulfill this requirement, conservatively ex- semantic laws of the three-valued model-checking frame-
tend conventional model-checking frameworks, and sup-work. Lifted denotations give rise to an AC-lattice. We
port consistency and assertion checking through the instru-show how this lift can be used for multiple-view assertion
mented re-use of conventional, two-valued model check-and consistency checking and the detection of inconsisten-
ers, as pioneered in [5]. Such three-valued approaches aleies. In particular, the lift of negation turns out to be a
ready exist for Kripke structures [12, 4, 5], labeled transi- generalization of Heyting negation to collections of under-
tion systems [30, 29, 23, 18], and models of first-order logic determined models (Theorem 5). In Section 4, we develop a
[24] with relational closure [32]. A three-valued structure multiple-view semantics of a branching-time temporal logic
explicitly specifies and distinguishes mandatory (denotedwith fixed-points that interprets logical connectives com-
“a" for assertion) from merely possible (denoted' for positionally over a multiple-valued AC-lattice of meaning.
consistency) state and behavior. As a specification of a sin-This turns out to be our lifted semantics which we compare
gle vieww, such a structure may express own specifica-  to existing work on multiple-valued modal logic [16, 15].
tion through its mandatory state and behavior, whereas itsFinally, Section 5 concludes.

possible state and behavior are those aspects that viewpoint

v is willing to “accept”, if stipulated by other points of view. 2 Three-valued model-checking frameworks

As a running example, we will consider a three-valued
model-checking framework for a branching-time temporal
logic that subsumes CTL [9], thus enabling a comparison
to a semantics [16, 7] and model checker [15]rdaultiple-
valuedCTL.

The modelsM of three-valued model-checking frame-
works have a countable property logic of formulasq £)
with negation ), conjunction {\), and atomic proposi-
tions (y € AP) among its operators. Models and atomic
propositions may well have structure, e.g. as a set of re-
Key issues. In transferring single-view model checks to a |ations and their types, but we will abstract from such de-
multiple-view setting, two key issues are present. First, how tajls here. These models ateee-valuedsince their spec-
does one handle a check of propetiyn view v, if some ob- jfications consist of amandatorypart (state and behav-
servables o) have specified state or behavior outside of  jor that is asserted and has to be realized), anmmbssi-
only? Second, given a collection of views, how should we pje part (state and behavior that is consistent with the as-
organize the analysis results from these single views intogerted state and behavior). This implicitly defines dise
information about multiple viewpoints? Our earlier work  gjlowed state and behavior which, according to the spec-
[24] and other recent work on three-valued model checking ifications, are neither mandatory nor possible. As an ex-
[4, 32, 23], where external observables are modeled throughymple, we consider one-letter Kripke modal transition sys-
possible state and behavior, adequately deals with the firsgems A1 [23] with signatureAP — referred to aghree-
issue. This paper addresses the second question by propogm|ued Kripke structuresn this paper — which can be
ing one particulaautomaticsynthesis of single-view anal- represented as paifs\i®, M¢) of ordinary Kripke struc-
ysis results that uses a light-weight and flexipteorder turesM? = (I,R* C ¥ x %,L*: ¥ — P(AP)) and
3Similarly, consistency checking involves existential quantification M = (EvRC CYxX LY — ’P(AP)) with signa-
over models. ture AP, where M?® specifies mandatory ant© possible




Figure 1. A three-valued Kripke structure
modeling laptop modes.
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Figure 2. Property semantics over three-
valued Kripke structures for mode  m € {a,c}.

state and behavior (respectively). These two descriptions . e
are made consistent by imposing that each mandatory staté, Wherey € L*(s). The evaluation of M, i)="AGEF =

transition or proposition be also possibl&* C R° and
L?(s) C L°(s) for all s € X [30, 23]; see Example 1 be-
low. For state propositiong/ (€ AP) and recursion variables
(Z € var), we define a property logic

pu=Z |y| 0| one | EX® | pZ.o (1)

where allg in uZ.¢ are formally monotone [3]. For each
m € {a,c}, referred to as thenode of analysisthe se-
mantics| ¢ [ C X for properties, interpreted over three-
valued Kripke structures, is depicted in Figure 2, where
pre™(A) = {s € X | 3s' € X: (s,8') € R™, s’ € A}

for A C ¥ and environmentsf*) have typevar — P(X).

We writesl=)'¢ iff s € [ ¢ [

Example 1 (Laptop modes [22]) Figure 1 shows a three-
valued Kripke structure that models the modes of a lap-
top, wherez, y, and z denote “AC powered”, “battery
powered”, and “in suspend mode” (respectively). The la-
beling in the Figure means € L?(sg) N L%(sp), y €
L°(s2) \ L?*(s2), andz € L°(sy1) \ L*(s1). Dashed lines
represent transitions itk® \ R?; solid lines denote transi-
tions in R* N R°. The mandatory part of that model speci-
fies the state and behavior of the laptop’s AC power supply.
The possible part specifies an additional power source (a
battery) and a suspend mode for the machine. The prop-
erty AG EF z — “all reachable states can reach a state in
suspend mode” — is expressible in (1)-agY.—~(uW.z V
(EX(W) A EX(=(p A =p)))) V EX(Y). This formula is

an invalid assertiof (we don't have(M, i)="AG EF z),

but a consistent condition (we do hai®t, i) =“AG EF z).

The evaluation of(M,i)="AGEF 2 effectively checks
whether allR°-reachable states contain/a*-path to a state

4If convenient, we identify modeld4 with pointed ones [33[M, 1).

conducts the same analysis but swaps the modes of paths.

One can show that three-valued Kripke structures are an in-
stance of a three-valued model-checking framework.

Definition 1 (Three-valued model-checking framework)
A three-valued model-checking framework consists of

#1 two satisfaction relations, one for assertion checking
(ME"9¢), one for consistency checking(="°¢) —
we refer tom € {a, c} as themode of analysis

#2 consistency of models in that =" ¢ always implies
ME"¢;

#3 form € {a,c}, the semantics of conjunction as
ME" 1 A ¢ iff ME"¢; and M= ¢o;°

#4 for m € {a,c}, the semantics of negation as
ME"=¢ iff not M="¢, where

def
-a =¢C

def
-C = a;

2
#5 form € {a,c}, the semanticsvi="y (y € AP) de-
termined by the specifications iv;

#6 noM and¢ with M|="¢ A —¢ (consistency of=");

#7 aformal notion ofrefinemen{a preorder<) between
models, wheréV" < M means that\" refines (is ab-
stracted by)M;

#8 sound assertion and consistency checking with re-
spect to refinement: for alk, if A<M, then
(i) ME"¢ impliesN'="¢, and (ii) N'=¢ implies
ME“¢; and

5This property won't hold for the stronger semantics of Bruns and
Godefroid in [5].




#9 the property thai=" equals=° on models that spec-
ify mandatory state or behavior only.

_‘a_‘c(zs = ¢ _‘_'d) = ¢
These properties have redundancy. For example, in the - - = ¢ (P A) =~V )
context of properties #3 and #4, properties #2 and #6 are ¢ < ) = =) <. a0 (¢ V) =~ A~
equivalent. We remark that the properties above determine ¢ < 4 = —.1p <, —c¢ ¢ <= <o

a semantics for propositional logic which is equivalent to

Kleene’s strong three-valued interpretation [27].
Figure 3. Axioms for AC-lattices (left) and De-

Proposition 1 (Examples) Partial Kripke structures [4], Morgan lattices [14] (right)

extended labeled transition systems [4], modal transition

systems [30], partial models of first-order logic [24], and

(modal) shape graphs [32, 23] are three-valued model-

checking frameworks that meet the nine properties above. Definition 3 (Entailment) For m € {a,c}, defineg <,
iff for all models M € C, ME"¢ implies ME"1.
For m € {a,c}, the definitions¢], = {¢ € L |

def

V<o, d<pmip} and -y (4] = [-¢]_, determine count-
able setsC,, = {[¢],, | ¢ € £} and functions-y, : L, —

Three-valued model-checking frameworks are intimately
tied to a lattice-like structure.

Definition 2 (AC-lattices and DeMorgan lattices)

A (complete AC-latticeis a tuple(La, <, 7a, Le, <¢, 7)), ; /
. X . <

where(L,, <,) and (L., <.) are partial orders that induce ifz [w\]lvesiectr[\(bt]ﬁ:’;\@?]jb];z/ iff there are ¢’ € [¢],, and

(complete) lattices, aneh,: £, — L. and—.: L. — L, m —mr

are functions that meet the axioms of Figure 3 (Ieft). A (COM- 1pg heed for two notions of logical equivalences in the pres-

plete) DeMorgan latticés a tuple(L, <, ), where(L, <) ence of under-determined models is illustrated by the exam-
is a partial order that induces a (complete) lattice, and ple below.

—-: L — L is a function that meet the axioms of Figure 3
(right). Example 2 (Semantic laws)For partial Kripke structures

Note that the axioms of Figure 3 (left) spell out that the par- [4] and the semantics of [4], we havel], = [ A —¢],
tial orders(L,, <,) and (L., <.°P) are isomorphic vian, but wedon't have[ L], = [¢ A —=¢].. For partial Kripke
and—.. Bilattices [17] can also be represented as pairs of Structures and the strong semantics of [5], we haug =
lattices, except that the treatment of negation for one model® A ~¢]. and[T], = [¢ V ~g],.

(truth ordering) significantly differs from that of the other
mode (knowledge ordering). In particular, these lattices
may not be dually isomorphic. This asymmetry of negation
rules out their use in our context. AC-lattices are crucial to
the con_tributions of this paper: the quotient space for logi- 5 | we restrict the range of models in Definition 3 to
cal equwalepces of three-valued modfal checks (Theorem 1), those that specify mandatory state and behavior only,
the denotation space for the synthesis of model checks un- then this AC-lattice is a countable DeMorgan lattice.
der multiple points of view (Theorem 4), and DeMorgan

lattices — denotation spaces of multiple-valued modal log- Proof: See the Appendix.

ics [16] — are all AC-lattices (Proposition 2).

Theorem 1 (Model theory and its AC-lattice) 1. For
any three-valued model-checking framework, Defini-
tion 3 specifies a countable AC-lattice.

In the AC-lattice above, assertion and consistency checking
Proposition 2 (DeMorgan lattices as AC-lattices)Up to are connected through¢] = {—v¢ | ¢ € [¢]_} for
order-isomorphism, DeMorgan lattices are in one-to-one eachm € {a, c}. " o

correspondence to AC-lattices, whé&,, <., —,) is equal

to (Le, <¢y 7e)- Example 3 (Topologies as AC-lattices)et (L£,,<,) be

the complete lattice of closed subsets of a topological space
_ X, ordered by inclusion<,). Dually, let(L., <.) be the

A class C of models of a three-valued model checking complete lattice of open subsetsXf ordered by inclusion

framework — e.g. all countable three-valued Kripke struc- (< ) This gives rise to an AC-lattice, where the negations
tures with Signatur@P — determines two preorders of l0g-  4re set complementation.

ical entailment whose space of equivalence classes, an AC-
lattice, captures the semantics laws for assertions and conwe now give representation theorems (Theorem 2 and The-

Proof: See Appendix.

sistency checks of claga® orem 3 below) for finite, distributive AC-lattices and De-
6We will omit the paramete€ from these preorders as its nature will Mqrgan lattices. Our represgntatlon of finite, distribute AC-
be clear from the context, or irrelevant. lattices turns out to be an instance of Example 3, except



that set complementation is precomposed with an order-
isomorphism on the underlying preorder. In subsequent sec-
tions, we argue that our context of use requires that this au-

tomorphism be the identity. Finite, distributive DeMorgan

®)

e = (77V o i—l)u

(respectively) for somee Aut(V, <).

—a = (€v 0 i)c

lattices have the same representation, with the additionalproof: See Appendix.

requirement that the underlying preorder be self-dual via
an idempotent anti-tone order-isomorphism. Although De-
Morgan lattices have been used for multiple-valued model
checking [7], this result suggests that they are ill-suited for
an approach that is driven by priority requirements — which
never are symmetric in practice. The proof of these results
requires standard machinery of power-domains [1].

Definition 4 (Power-domains) Given a preorder(V, <),
L(V,<) denotes the set of lower subsets 6f° Let
nv: (V<) — (L(V.<),S) mv(v) = Lo = {v' €V |
v’ < w}. Givenamonotone mafy (V,<) — (L,<)intoa
complete lattice, we writef ), for the unique sup-mésat-

isfying(f)ﬁ ony = f. This defines the lower power-domain
functor [1] L(g) = (nw o g),, whereg: (V, <) — (W,C)

is @ monotone map. Dually, we writiV, <) for the set of
upper subsets df® and\ : (L(V,<),C) — (U(V, <), D)
and\_: (U(V,<),2) — (L(V, <), C) for set complemen-
tation. Letey = \, ony: (V,<) — (U(V,<),D). For

f as above, we writ@u for the unique sup-map satisfy-

ing (f), o ev = f. This defines theomplemented lower

power-domain functot)(g) = (e o g), for g as above.
Finally, let Aut(V, <) be the set of order-isomorphisms of
type(V, <) — (V, <).

Proposition 3 (Dual functors) 1. U(-): Pre — Lat
is a monotone functor between the categories of pre-
orders and monotone maps and complete lattices and
sup-maps.

. We have,, = (ev),,\. = (nv),, nv =\ o€y, and
U(f) =\aoL(f) o\

. The functorsL(-) and U(:) restrict to isomor-
phisms of typeAut((V, <)) — Aut(L(V, <)) and
Aut((V, <)) — Aut(U(V, <)) (respectively).

Proof: See Appendix.

Theorem 2 (Finite, distributive AC-lattices) For

any preorder(V, <), the tuple(L(V, <), C,\,,U(V, <), C
.\c) is an AC-lattice.  Conversely, every AC-lattice
(La, <a, 7, Le, <¢, 7c) Whose partial order$L,, <,) and

(Le, <.) induce finite, distributive lattices can be repre-

sented in that form, wherg, = (ev), and\. = (nv),
change to

7A subsetL of V is alower setiff v € L andv’ < vimply v’ € L.

8A function f: L — L’ between complete latticds and L’ is a sup-
map iff f(VX) =V f(X)forall X C L.

9A subsetl of V is anupper seiff v € U andv < v’ imply v’ € U.

Theorem 3 (Finite, distributive DeMorgan lattices)

For any preorder(V, <) and an anti-tone and idempotent
mapi: (V,<) — (V,<),' the tuple(L(V, <),C,-) is a
DeMorgan lattice, where

-L={i(v)|veV\L. (4)

Conversely, every finite, distributive DeMorgan lattice
(L, <,-) can be represented in that form, wheié <) is
a finite partial order.

Proof: See the Appendix.

Example 4 (Representation of DeMorgan lattices) 1.
For a positive example, consider the finite, self-dual
partial order V' = {v,w} in the discrete ordering.
There are exactly two anti-tone idempotent maps on
(V, <), the identityid and sw which permutes and
w. This gives rise to two different DeMorgan nega-
tions: =, = (ey oid) and—~, = (ey osw) . We
have—,{v} = {w}, and—,{w} = {v}, “u{v} =
{v}, and—,{w} = {w}. Thus, the first negation is
the classical one\_, and the second negation renders
Belnap’s four-valued logic [2]. By Theorem 3, this
lattice cannot have any other DeMorgan negations.

2. For a negative example, consider the finite partial or-
der of priorities (V, <), whereV = {z,y, 2} and

y and z are incomparable but have higher prior-
ity than z. This partial order is not self-dual; in
particular, there cannot be an anti-tone, idempotent
mapi: (V,<) — (V,<). By Theorem 3L(V, <)
cannot have a DeMorgan negation. To see this ex-
plicitly, the third axiom of Figure 3(right) renders
{} = ﬁ{x’ywz} = ﬁ({x’y} U {‘TWZ}) = ﬁ{x’y} n
—{z,z}. Thus, at least one of the set§{z,y}
and —{z, 2z} has to be empty. But then cannot
be a bijection, sincd} = —{z,y,z}. Of course,
(L(V,<),S,\,, U(V, £), S, \,) is an AC-lattice.

The examples above illustrate that the partial-order quotient
of a preordefV, <) will not be self-dual, if that preorder de-
notes realistic priorities of requirements. Thus, DeMorgan
lattices are an inadequate denotational universe for synthe-
sizing single-view analysis according to a preorder of prior-
ities. But AC-lattices, as their generalizations beyond self-
dual priorities, are suitable denotation spaces for any kind

WA mapf: (V,<) — (V, <) is anti-tone and idempotent if < v’
implies f(v') < f(v) and if f(f(v)) = vforallv,v’ € V.



of preorder. This mathematical justification is corroborated Proof: If v < v’ obliges M, to “assert’s, then M., =",
by the intuition that, in under-determined models, denota- N, <M., and property #8 imply\, ="¢. But thenv <
tions of assertion checks £,) may not be denotations of v’ creates an obligation fo¥/, to “assert’¢. The argument
consistency checksg€ L) and vice versa. for item 2 is dual.

Thus, any assertion obligation detected withi persists
3. Lifting single-view analysis as an assertion obligation in all its refinements. Conversely,
any consistency obligation detected in any/afs refine-

In the sequel, we writeM and A\ for finite collections ~ Ments, persists and can be detected within

(My)vev and (N,),ecv of models M, and N, (respec-

t|Ve|y) of a three-valued mode|_checking framework. We Definition 6 (PlatoniC World) A collection M is Platonic
make no assumptions about the degree of precision thatﬁ all the Obligations of the priority Ordering; are fulfilled
each view imposes on model checks, =" ¢ that mention N M. In other words, ifv < v" implies thatM, < M, in
external behavior, nor do we restrict the sound techniquesthe underlying three-valued model-checking framework.
utilized in gaining that precision — be they (three-valued)

versions of compositional model checking [10], module If M is not Platonic, then it may not meet its own obliga-

checking [28], etc. tions of the priority preorder. But we claim that we can suc-
cessfully perform assertion and consistency checks within
Definition 5 (Refinement of collections of models) M in the presence of conflicting and inconsistent obliga-

For M and A\ as above, we say that” < M iff, for each tions. Moreover, these checks can be used to expose the
v e V, N, <M, in the underlying three-valued model- conflicts in those obligations.
checking framework.
Example 5 (Exposing conflicting obligations)Suppose
Note thatM < M holds since refinements are preorders thatv < o/, v < v”, My="¢, and M, =*-$. Now
(property #7). We assume that the set of vislvbe en-  for any refinement, of M., which may be a concrete im-
dowed with a preordex of priorities: v < v’ denotes that  plementation, we are obliged to assert bgtland ~¢, and
view v’ has equal or higher priority over view suggest-  a contradiction is apparent.
ing that M, is a more abstract, higher-level or authori-
tative description of the underlying artifact, where&$, ~ The ontology of our framework does not require any con-
specifies a more concrete, lower-level, or less important as-nections between the priority preorderon viewpoints —
pect. We understand < o’ to create — for all instances  which is based on system needs, empirical evidence or any
of N'< M — the obligation that whatever is asserted in a other mechanisms for prioritizing — and the preorder
model M., € M shouldbe asserted in modal, € Nand  of refinement between models!,, of viewpointsv. As the
whatever is possible i, shouldbe possible in\1,,: example above already suggests, it is this independence that
allows us to model and expose inconsistencies across view-

* (Assertion obligations) M., |="¢ obligesviewpoint  points. In a Platonic world, all assertion and consistency

v to “assert’¢ in everyrefinementV,; that is, it opligations are met and no contradictions will ansithin

should be the case thaf, ="¢, and that world (Proposition 5). Alas, in our actual world of soft-
ware design and analysis the consistency requirements be-
tween multiple viewpoints may be violated at a number of,
if not all, instances oK — due to the conflicts of interests
between different stake-holders, specification or implemen-
tation errors, miscommunication, or other sources of con-
flict.

In the remainder of this section, we develop a tool that
collects assertion and consistency obligations and has the
Proposition 4 (Sound obligation checking)Let A'<M. powgrto trace t_he origin of contrgdictions, thereby eljabling
For all ¢, cpnfhct_ resolution through .t.ool—lnformed changes in t.he

viewpoints and/or the priorities. But much more signifi-

1. if v < o' obliges M, to “assert” ¢, then it also cantly, the approach we develop here also has the power to

obliges\, to “assert” ¢. detect this contradiction in the requirementsvofand v”
without having to construct aimconsistenmodel A, with

2. if v < o obligesN, to “hold ¢ possible”, then it jts resulting “logical collapse”. We avoid the use of incon-

also obligesM, to “hold ¢ possible”. sistent models by assuming that some later refinement of

¢ (Consistency obligations) V,=°¢ obliges v’ to
“hold ¢ as possible” ireveryabstractionM,,,; that
is, it should be the case thatl, |="¢.

We argue that such obligations, and their resulting conflicts,
can be statically analyze#dithin the collectionM of three-
valued models.



M, will satisfy the obligations oy < v" andv < v’ — Proposition 5 (Consistency in Platonic world) All

which may not be a correct assumption — and by pre- Platonic worldsM meet all their own assertion and con-
tending that the models in already satisfy these obliga- sistency obligations; in particular, the set in (6) is empty.
tions — which may be false. This hon-standard treatment of

truth permits us to efficiently detect the conflicting require- Proof: The first claim is immediate from the definition
ments ofu’ andv” by processing the modelsit andtodo  of (5) and property #8, noting that preorders are reflexive.
this by exploiting the order structure gf The resulting se-  As for the second claim, assume thats in {M:¢}* N
mantics of negation turns out to generalize Heyting negation {{M: —¢[}*. By definition of {{M: -[}*, there exist’,v"” €

to under-specified collections of models (Theorem 5). Our V' such that ()v < »” and M,,="¢; and (i) v < v”
semantic tool for effectively analyzing assertion and con- and M. [="-¢. Since the priority preorder realizes refine-
sistency checks maintains autonomy and accountability of ments, we may use property #8 on (i), resultingi, ="¢;
views as well as the portability of single-view technology: ~and on (ii), obtaining\,,="-=¢. In summary, we conclude

M, E"¢ A —¢, contradicting property #6. [ |
Mg = {weV | eV:iv<v, MyEtg} Proposition 6 (Meet in Platonic world) In
e der / L e any world, {{M: ¢ AY[f™ C {M: o™ N {M:y™. In
Mol iy fveviaieviv v, Mui=9} a Platonic world, this inclusion is equality.
Mgl = (Mol M off°). )

Proof: If v € {M:¢ Ay}, then there is some’ € V
Sets{M: ¢[}* are inL(V, <) and collect all viewsy that with v/ < v and M, =% A . But then M, =4 and
have equal or lower priority than some viewin which the M., = follow. Thus,v € {{M: ¢[}° N {M:¢[}¢. Con-
assertionp holds; sets|M: ¢[}¢ are inU(V, <) and com-  versely, letw € {{M:¢[}° N {M:y[}°. Then there exist
prise all viewsy that have equal or higher priority than some w’,w” € V with w’, w” < w, My ="¢, and M, = .

view v’ in which ¢ is consistent. The sgfM: ¢[}* con- In a Platonic worldaw’, w” < w then imply M, =¢, and
tains all the views that arebligedto assert accordingto ~ M, =", so M, =°¢ A ¢. Sincew < w, this renders
M, whereas the sdiM : ¢[}© contains all those views that  w € {{M: ¢ A ¢[}°. The proof for mode: is dual. |

areobligedto hold that¢ is possible according td1. By  The straightforward consistency requiremdptt : ¢[}> C
Proposition 4, all assertion obligations created by priorities {M: ¢} for our synthesis of assertion and consistency
persist in refinements (item 1). Dually, consistency obliga- checking does not hold in general. Interestingly enough,

tions that are created by priorities and not met in a model the mixed power-domain [19, 20] provides a weaker con-
are also not met in any of its subsequent refinements: ifsjstency condition of this sort.

the obligation that\M,, “holds ¢ possible” is not met, then

M, £ ¢ implies M, =*—¢, meaningV,, = ¢ for all re- Definition 7 (Multiple-valued AC-lattice operations)
finements\,<M,. This semantics is still meaningful if ~ For eachm € {a,c}, any collection of model$ deter-
single views use different ontologies for expressing and an-mines a partial ordeiM,, & {{M:¢[}™ | ¢ € L}, or-
alyzing their partial views, assuming that one can state thegered by inclusion, and a negation operatioft : M,, —
properties of interest in all ontologies involved. Apart from pp_ -

assertion and consistency checking in multiple views, we

may use this semantics to detect and locate conflicts among M g™ dof M =g ™. )

views: _ ) )
The mixed power-domairf19, 20] My, < is the sublat-

tice of (L(V, <), C) x (U(V, <), D), consisting of all pairs

IM: o™ 0 M=ol ©) (L, U) that satisfy the consistency condition
represents all those viewsthat face an inconsistency re-
garding propertyp: there are views/’,v” with equal or L={veV|uelnU:v<u} (8)

higher priorities tharv that obligev to assertp and —¢

(respectively).! More generally, for a finite set of formu- - . . :
lasT', the setn{{{M:¢[}* | ¢ € T'} collects those views {M: gl}* andU is set asfM: ¢l then equation (8) holds

that are obliged to “assert” the conjunctiod’. In a Pla- Whenever{|/\/l;¢\}; c {M:af°. Hovc\i/_e_ver, equ.atioé:l (8)
tonic world { M : ¢[}* (M : ¢]}°) coincides with the set of ~ EXPresses aweaker consistency condition s ¢f;* C

all views in which the assertion (consistency chetkplds. {M:gli. Letv < o' <0, Let My =76, Myr=,
( y cheekp My ==¢, and M, [="=¢. Then{ M: ¢}* = {v,v'} and

{M:g}c = {v',v"}. These satisfy (8) bulfM: ¢[}* &
11Note that property #6 ensures that v/ = v’/ cannot occur. {‘M : ¢|}C

Example 6 (Mixed consistency)Clearly, if L is set as




Theorem 4 (AC-lattice of denotations) The tuple(M,,, C
, % M, C,—%) is an AC-lattice satisfyingM: ¢} €
Mv,<) for all ¢. In a Platonic world, the lattice$M,, C)
and (M., C) are distributive.

Proof:

def

1. Clearly, L = {M:¢[}* € L(V,<) andU
{M: g € U(V,<). We show thatL andU as
defined satisfy (8). In (8), the right-hand side is al-
ways contained in the left-hand side. Conversely, let
v € L. Then there is some’ € V with v < v/
and M, ="¢. Sov' € L sincev’ < v'. Since
M, "¢ implies M, =°¢ (property #2), we infer

v/ € U. Thus,v’ € LNU andv < v’ show thatv is

an element of the right-hand side.

. Note that—‘m_‘ﬁmﬂ./\/l . ¢|}m = _'m{‘M . _‘¢|}—~m _
{M:==¢[}™. But the latter set equal§M : ¢[}™
since[-—¢] = [¢],..-

3. Let {M:g[}* < IM:yY}*. Forv € {M:—f}°
there exists somev’ € V with v < v
and M, =°—, i.e. we have thatM,, .
From {M:¢}* <, {M:y[}* and v/ < ', we

therefore infer thatM, ="¢ is not the case, so
M, = =¢ holds. Thus,w € {M:—g¢[}. Hence
{M: =g} < AM:—¢[}c.  The other axiom is
shown dually.

. Since existential quantification distributes over dis-
junctions, {M: ¢ v g™ = {M: ¢} U M g
Thus,(M,, <,) and(M,, <.) have joins, so they are
both (complete) lattices.

. The claim about distributivity is a consequence of
Proposition 6 and the previous item. [ |

As in any lattice, the meet operationM,,, is expressible
via its join operation. It is also expressible in the logic. Us-
ing that existential quantification distributes over disjunc-
tions, {M: o™ A {M:y}™ equals{iM :n[}™, wheren

is defined as

Vi MR < Mgl ™ M9 (9)

In case thatC has no infinite disjunction, the set compre-
hension in (9) can be restricted to a finite set of representa-
tives of the equivalence relatier,,, defined byy =, +' iff

{MeA™ = My

Remark 1 (Lift of semantic laws) The se-
mantics{M:[}: L — My, <) in (5) factors through the
canonical projection — [¢], of typel — Ly,.

Since the interpretation of negation is absolutely crucial for
assertion and consistency checking, we compare our lifted
semantics of- to set complement and the Heyting negations
—a: L(V,<) — L(V.<) and—c: U(V,<) — U(V,<)
(respectively):2

def

ﬁAL

Ut eLv,9) [ LnL = {3} (0)
(U eu(V,<)|[UUU =V} (11)

def

ﬁcU

Theorem 5 (Lift of negation) Letm € {a,c} and¢ € L.
1. We havd” \ {M:¢[}™™ C {M:—g[™.

2. In a Platonic world, V' \ {{M:¢[}™™ equals
{M:=g}™. This set is contained ifmy {|M: ¢}™
ifm=aorif [T], =[¢V-g],.13

If all viewpointsM,, (v € V) specify mandatory
state and behavior only, themy{M:g}™ C

M=ol

In a Platonic world with mandatory state and be-
havior only, V' \ {M:¢}™ {M: =)™ C
—m{M: ¢[}™, where all three forms of negation are
equal ifm = a orif [T], = [¢ V ¢, .

Proof:

1. Letv € V \ {M:¢[}*. Thus, for allv’ € V with
v < v/, we haveM,, ¢, i.e. M, E=°—¢. Since
v < v, we inferv € {{M:—¢[}°. Dually, letv €
V A\ {M:¢}c. Thus, for all’ € V with v’ < v, we
have M, ¢, i.e. M, E"-¢. Sincev < v, we
inferv € {M:—¢f}*.

2.(a) To show equality, lat € {{M: —¢[}. Then there ex-
ists somev’ € V with v < o' and M, E*—¢. If
there is some” € V with v" < v and M, ¢,
thenv” < v < o' implies M, =% in a Platonic
world (property #8). But this contradictt,, ="—¢
by property #4. Thusp € V \ {M:¢[}°. This
and item 1 establish equality. The proof for the other
combination of modes is dual.

2.(b) To show the inclusion fora, using (10) and
{M:—¢)}* € L(V, <), we are done if|M: —¢[}* N
{M: ¢}* = {}, which follows from Proposition 5.

We can lift meta-results of the single-view model-
checking framework to our multiple-view semantics in (5),
even in a non-Platonic world.

121n any Heyting algebra; = — o0 = o —, so its image of~ o - is a
DeMorgan lattice.
13The latter holds for the generalized model-checking of Bruns & Gode-

froid [5], but not for the semantics of Figure 2.



2.(c) To show the inclusion foe, let v € {{M:—g[}°.
By (11), it suffices to show that for aiy’ € U(V, <)
with V' = {M:¢[}°c U U’ we havev € U’ . Since
v € {M: ¢}, there is some’ € V with o' < v
and M, E°—¢. If v € U’ thenV = {{M: ¢} U U’
impliesv € {M:¢[}°. So then there exists some
v € V with v < v and M, E4. In a Platonic
world, we getM., |=¢ and M, |=—¢, contradicting
[T], = 6V ],

3.(a) LetL € L(V, <) with LN{M: ¢}* = {}. By (10), it
suffices to show that C {|M: —¢[}*. Foranyw € L,
we havev ¢ {M: ¢[}?, sothere cannotbe any € V
with v < »" and M,/ ="¢. Sincev < v, we conclude
M, ¢, i.e. M,="~¢. Now, property #9 renders
M, E"-¢.

3.(b) Dually, since M : —¢[}¢ is an upper set, it suffices to
show that{ M : =¢[}¢ U {M : ¢[}° equalsV’. But for
anyv € V\ {M:¢}¢, v < vimplies thatM, = ¢
is not the case, i.eM,[="~¢ holds by property #9.
Thereforep € {{M:—¢[}°.

4. This follows from items 2 and 3.

In eachM,,, state and behavior external to viewpaimeed
to be expressed through possible state and behavior. Thu
models cannot specify only mandatory behavior and states
furthermore, even thought normally cannot be expected
to be Platonic, byretendingit is Platonic (i.e., by collect-
ing all priority-based obligations as in (5)) we detect and lo-
cate inconsistencies, if desired. In this respect our semantic
deviates significantly from and—¢ sinceLN—-,L = {}
andU U -¢U = V hold for any preorde(V, <). Addi-
tionally, our interpretation of- respects both the priority
preorder and single-views’ autonomy to the extent possible:
under the assumption that the world is Platonic, vieac-
cepts the assertion (consistency cheek)as an obligation
iff there is a viewv’ with equal or higher (lower) priority
that actually verifies the assertion (consistency chegk)
in its model.

Crucially, our lift of single-view technology preserves
soundness of (stepwise) refinement.

Theorem 6 (Lift of sound refinement) For each m €
{a,c} and¢ € L, if N < M, then

Mot < {N:9  InMyq). (12)
Proof: Letv € {{M: ¢[}*. Then there exists somé € V
with v < o and M, ="¢. But thenN, < M, implies
N =9, by property #8, and thereforec {N: ¢[}*. The
proof for the second statement is dual. [ |

S

u=1yV;
L = emptyset;
while (U != emptyset) {
% invariants: L contained in { M : phi }a,
% { M : phi Ya contained in L union U
for all v in max(U) {
if (check(M[v], phi)) {
L=~Luwunon{V |V <=V}

U U\N{VvV |V <=vVv]}
} else {

U=U\{Vv}
}

}
}

Figure 4. Model-checking algorithm for com-
puting

the set {M: ¢[}*. The call check(M[v], phi)
decides whether M, |="¢.

The significance of this theorem is that assertion and con-
sistency checking in (5) as well as the detection and loca-
tion of inconsistencies using (6) are preserved under actual
refinements of some or all of the viewpointsgardless of
whether this happens in a Platonic or a non-Platonic world
Thus, stake-holders may use familiar sound technology for
their model checks — such as semantic laws, proof the-
ory, and abstraction techniques — and all analysis results
remain relevant for all refinements. Our lift preserves even

the model-checking engine. In computing the denotations

gIM: gl it is intuitively clear that the priority preorder

efficiently guides the use of a single-view model checker to
drive that computation. FdjfM : ¢[}?, the algorithm is de-
picted in Figure 4. It is clear how to dualize this algorithm
for computing{ M : ¢[}¢, and we omit its description.

Theorem 7 (Lift of model checker) The correctness of
the decision procedureheck(M[v], phi) implies that

the algorithm in Figure 4 terminates and that equals
{M: ¢[}* upon program termination. If the underlying
three-valued model-checking framework is based on Kripke
structures [4] or labeled transition systems [30, 23, 18],
thencheck(M[v], phi) can be implemented as an in-
strumented call to a conventional model checker such as
SMV or SPIN.

Proof: See the Appendix.

The complexity of computing]M: ¢}™ depends on the
complexity of decidingM,,="¢; the cost of computing
and specifying single-view model§1,; and the structure
of the priority preordefV, <) — its width, height, etc. In

the worst case, the algorithm of Figure 4 needs to make
| V| many calls tocheck(M[v], phi) . Not only does



this algorithm extend the reach of multiple-valued model
checking from self-dual [7, 6] to arbitrary preorders, it may
also dramatically improve the algorithms of [7, 6] — which
compute over the lattick(V, <) — since|L(V, <)| may be
exponential inV].

4. Multiple-valued modal logic

Existing work on multiple-valued modal logics either con-

siders a Platonic world whose models have mandatory state
and behavior only [16] or presents single-view models as

multiple-valued specifications to begin with [15]. Fitting

[16] presents a semantics and proof theory of modal logic,

1Z15s = p™(2)s
[ylys = L™(s,y)
[0 lys = V[, "s
[orng s = [ s ys
[EX¢ s = (J R™s,s)n]o[ys

s'ex

|nZo I3 2 1™ P whereF™ (A) 1 6 [z, a)

Figure 5. Property semantics for multiple-

where state properties and state transitions of models take yajyed Kripke structures.

on values in some finite, distributive lattitgV, <). Fit-
ting’s modelsM = (X, R, L) of type (V, <) have state
transitionsR: ¥xX — L(V, <) and labelingd.: X xAP —
L(V, <) thatmap intd_(V, <); if V is a singletor{x}, these
models are ordinary Kripke structures wheke denotes
truth (mandatory state and behavior) afjd denotes fal-
sity (disallowed state and behavior). We extend Fitting’s
multiple-valued models and their multiple-valued composi-
tional semantics [16] to under-specified models.

Definition 8 (Multiple-valued Kripke structures)

A multiple-valued Kripke structure (mvKS) of typd’, <)
is a pair (M?, M°) of Fitting models of typgV, <) such
that R* < R° and L?(s,y) < L°(s,y) forall s € ¥ and
y € AP.

A property semantics for mvKSs is given in Figure 5, where
environments™ have typevar — (X — L(V,<)). Note
the treatment of negation, the meaning-af in mode m

is the set complement of the meaning¢in mode —m,;
and fixed pointdfp™ F™, which are least fixed points in
(L(V, <), Q) and(U(V, <), C) (respectively).

Definition 9 (Induced three-valued Kripke structures)
For a mvkKS(M?#, M¢) of type (V,<) and anyv € V,
we define a pair of Kripke structure$t,, = (M2, M9)
via functionsr?: L(V,<) — L({*}) and7S: U(V, <) —
U({+}) which map any set that containsto {«} and any
other set tof }. We set

def
M (8,

» o RIH’ ﬂ_;ﬂ o Ll’ﬂ)

(13)

for eachm € {a,c}. These Kripke structures retain the
initial state: of the mvKksS, if applicable.

Proposition 7 (Priorities as refinements) The models
M., of (13) are three-valued Kripke structures. The identity
relation on states makes this collection a Platonic world.

Proof: See the Appendix.

10

The collection of models\t = (M,,),cv Of (13) defines
a multiple-valued semantic§M: ¢} through Figure 2
and (5). We call a modeM finitary if the syntactic approx-
imationsy,, Z.¢ (m > 0) [3] of least fixed pointg.Z.¢ are

sound and complete in each model, for =* and=°.

Theorem 8 (Soundness & completeness of liftet each
modelM,, of (13) be finitary andn € {a,c}. Then
{M: oy

= 1ol

" (14)

Proof: See the Appendix.

We obtain a sound notion of refinement for mvKSs that
is simply the point-wise lift of the refinement of one-letter
Kripke MTSs [23].

Corollary 1 (Soundness of refinement)Let M and A/ be
mvKSs of typéV, <) with initial states: and j (respec-
tively) such thatV" < M. For all p and ¢,

[eloi € Molpi and []55 2 [ [5i (15

Proof: This follows from Theorems 6 and 8. [ |

Note the mode of the ordering in (15): assertions that
are validated on abstractions remain valid on refinements;
checks that are consistent on a refinement are also consis-
tent on its abstraction. MvKSs are under-specified versions
of Fitting’s models, since the latter models correspond to
those mvKSs, where\{® equalsM®. In that case, each
M., corresponds to a Kripke structure.

Corollary 2 (Fitting’s semantics) Let M?* equal M°©. If
¢ is negation-free, then the semanti® [5 of Figure 5
equals Fitting’s semantics.



Proof: See the Appendix.

For Fitting’s models and semantics, a weaker version of

Theorem 8 can be proved in modeand for negation-free
formulas only, where the equality in (14) turns irfo The
restriction to negation-free formulas and the weakening of
equality are due to the fact that < o’ then implies that
Mz, is a simulation ofM?2 that preserves atomic proper-
ties [33], but such simulations atmi-directional and pre-
serveuniversalproperties only. Fitting’s models and se-

a self-dual partial order with an idempotent anti-tone order-
isomorphism). For a multiple-viewpoint analysis based on
a preorder of priorities, these two semantics are therefore
ill-suited. Finally, we emphasize that our three-valued ap-
proach not only ensures the instrumented use of single-view
model checkers — driven by a priority preorder — and
property preservation and sound refinement for logics with
unrestricted negation and quantification, it also allows for
the efficient computation of sound abstractions (e.g. [18])
which, by construction, can be used to verify assertions and

mantics are also used by Chechik and Easterbrook [15, 744 refute consistency checks.

except that they choose a negation operator that satisfies

the axioms of Figure 3 (right). By Theorem 3, they im-

In future work, we plan to extend the language of priori-
ties to more expressive formalisms for the design and anal-

plicitly assume and choose some idempotent anti-tone MaRsis of distributed software engineering systems.

i: (V,<) — (V,<). Thus, we may compare our semantics
to the one of Chechik and Easterbrook [7] only if there ex-
ists such a map, M?* equalsM*®, and negation is defined
as in (4). In re-defining-a = a, one can therefore re-write
the semantics of Figure 5 in mode a only; Hatisfies

V(L,U) € My.<), ve Liff i(v) U (16)

then it is not hard to see that this re-defined semantics co-

incides with our] - [3. In fact, this equality requires (16)
to hold for all elements oMy, <) that are denotations of
formulas. However, it is unlikely that a heuristically cho-
seni meets condition (16). If we také = U = {v} in
Example 4.2, then choosingto beid we getv € L and
i(v) € U. A meaningful comparison of the performance of
the tools in [15] with that of the algorithm in Figure 4 can
therefore only be conducted for choices dfiat meet (16).

5. Conclusions

We gave axioms for assertion-consistency lattices and three-
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1. Letm € {a,c}. First, given ME=""--¢, we have

M "=, ie. MOE"G. Thus, =—¢ <., ¢.
Similarly, we showg <., =—¢. Therefore,[¢] =



[-—¢],,, but the latter equals-—,,—,[¢], by def-

inition. Second, letl¢], <., [¢], with ¢’ and )’

as respective witnesses. M ""—y’, then we
have M "y, Since ¢' <, 7', we conclude
M E"Y, e MET"¢. Thus, (Y] =

(), <-m [P0]_, = “m[d],. Third, we claim
that the meet of¢]  and[¢], is [¢ A¢],,. Since
¢ N Y <, ¢, we know that[p A is a lower
bound of [¢]  and [¢] . If [n], is another such
lower bound, then there arg’,n” € [n],, and

¢" € [¢], andy” € [¢], such that) <., ¢" and

n" <nv". Given ME"7n, we haveME"7" and

ME"Y", for o', 0" € [n],. Thenn' <, ¢ and

0" < v follow and imply M =" ¢ and M ="+ (re-

spectively) ThusM =" ¢ A1) showsny <., A1) and

S0 [n],, <m [@ A 9], follows.

2. By property #9[¢|, = [¢]. forall ¢, soL, = L. and
<, equals<.. We then apply Proposition2. 1

Proof of Proposition 3:

1. The proof thatJ(-) is a monotone functor is routine,

noting thatl/ = 1, ev (v) for eachU € U(V, <),
so(f), (U) = V{f() |vg U}

2. The first three equations are immediate. Finailyp
L(f) o —¢ is a sup-map, so it suffices to shdw, o
L(f)omc)oey = ewo f. But(maoL(f)oc)oey =
—ao(L(f)ony)=—ao(mwof)=ewof.

3. Clearly, automorphisms are lifted by functors, so

f = L(f): Aut(V, <) - Aut(L(V, <)) is an injec-
tion, as the functor is faithful. Conversely, givere
Aut(L(V, <)), the mapgg o ny : (V, <) — L((V, <))
is monotone and s@g o 7v), is well defined, but
g = (gonv), sinceg is also a sup-map with
pony = gony. The proof forU(-) follows from
thisandU(f) =\, o L(f)o\..

Proof of Theorem 2: Given a preorderV, <), the tu-
ple (L(V,<),C,\,,U(V,<),C,\,) is an instance of Ex-
ample 3 WhereU(V <) is the collection of open and
L(V, <) the collection of closed subsets &. Con-

versely, by Stone duality there exists an order-isomorphism

D: (L, <.) = L(V,<) [1] for some finite partial order
(V,<) since(L,, <,) is a finite, distributive lattice. But
then\ o ® o —: (L., <.°?) — (U(V, <), D) is an order-
isomorphism as well. Thus, we may assufig, <,) =
L(V,<) and (L, <.°?) = (U(V,<),D). Since—, pre-

serves complete primes as an order-isomorphism and since
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the set of complete primes ¢tJ(V, <), D) is the image
of ¢y, we infer that for everyy € V there is a unique
i(v) € V with =,(nv(v)) = ey (i(v)). Sinceey is an
order-isomorphism onto its image; (V,<) — (V,<)
is monotone. Thus;, oy = ey o i implies -, =

(ev oi),. Dually, we infer the existence of a monotone
mapj: (V :(V,<) = (V, <) with = o ey = ny 0 j, and so
—c = (v 0j),. Thus, it suffices to show = i~'. But

ey oi = uony = (7a0\,)oey implies—, 0\ . = U(i). Du-
ally, Ny oj = mcoey = (_'co\a)onv impliesﬁco\a = L(])
ButL(i) =\ oU(@) o\, =\.0(mao\)o\, =\. 0
From this we immediately get that(:) is the inverse of
L(j). Thus,j =i~ 1.

Proof of Theorem 3:

1. Leti: (V,<) — (V,<) be an anti-tone idempo-
tent map. The map-: L(V,<) — L(V,<), de-
fined in (4), is well defined as is anti-tone;— is
clearly anti-tone (with respect to set inclusion). We
compute——L = {i(w) | w = i(v) impliesv &
V\L} = {i(i(v)) | v € L} sincei is onto and
one-to-one. Thus;—L = L and so— establishes
an order-isomorphism betweéV, <) and its dual.
Therefore(L(V, <), C, —) is afinite, distributive De-
Morgan lattice.

2. Given a finite, distributive DeMorgan lattideC, <
,—1), Stone duality guarantees an order-isomorphism
¢: (L£,<) — (L(V, <), Q) for some finite partial or-
der (V,<). But then the mameg = ¢ o0 =0 ¢!
is anti-tone and idempotent di(V, <). Thus, it is
an order-isomorphism of typg(V, <) — L(V, <)°P
and, therefore, maps complete primed 6, <) (all
elements of the formv, v € V) to complete co-
primes ofL(V, <) (all elements of the forn¥ \ 1v,
v € V). Thus,neg(lv) = V'\ 1i(v) for a uniquei(v)
in V. It is routine to check that — i(v): (V, <
) — (V,<) is anti-tone. Dually,neg maps com-
plete co-primes ofL(V, <) to complete primes of
L(V,<). Thus,neg(V \ Tv) = |j(v) for a unique
j(v) in V. The mapo — j(v): (V,<) — (V<)
is anti-tone. The equatiofw = neg(neg(lv)) ren-
dersj(i(v)) = v for all v € V. Dually, equation
V \ Tv = neg(neg(V \ 1v)) yieldsi(j(v)) = v for
all v € V, soi is an isomorphism with as inverse.
We claim that; = 4. We compute|v =
neg(neg(1v)) = neg(V \ 1i(v)) = neg(U{lw |
w € V\Ti(v)}) = Nfneg(lw) | i(v) £ w} =
({V \ Ti(w) | i(v) £ w}. In particular,v is an
element of the latter set. Therefore we have

Yw €V, i(v) £ wimpliesi(w) € v. a7



Forw = j(v), i(w) = i(j(v)) = v < v therefore
impliesi(v) < w = j(v). Sinces is anti-tone, this
results inv = i(j(v)) < i(i(v)). Suppose that it is
not the case tha(i(v)) < v. Thenv € V '\ 1i(i(v)),
ie. lv € V\ 1i(i(v)) = neg(li(v)). But then
li(v) = neg(neg(li(v))) C neg(lv) = V' \ Ti(v)
impliesi(v) € V'\ 1i(v), a contradiction.

Finally, we show thatieg is defined as in (4). Given
L € L(V, <), we haveneg(L) = neg(U, ¢, V') =

Norer neg(1v) = Nyer V\Ti(v') = A. We claim
thatA equalsB = {i(v) |v € V' \ L}:

o If w € A, thenv' € L impliesi(v') £ w,
i.e. i(w) £ ¢ sincei is an anti-tone order-
isomorphism. Thusi(w) € V' \ L sinceL is
a lower set. Thereforey = i(i(w)) € B.

e If w € B, thenw = i(v) for somev € V' \ L.
Givenv’ € L, we havev £ v’ sincev € V' \ L
andL € L(V,<). Thus,i(v') £ i(v) = w
showsw € V' \ 1i(v'), i.e.w € A. |

Proof of Theorem 7: Before execution of the while-
statement, the invariants hold sinte= {} andLUU = V.
The if-branch removes fror only elements that cannot be
in {M: ¢[}™, due to property #8; it leaves the valuelof U
invariant. Thus, this branch maintains both invariants. The
else-branch only removesfrom U which cannot violate
the second invariant sineecannot be in M : ¢[}*. In any
event, the finite sel/ gets smaller with each iteration of
the while-statement, ensuring termination. Upon termina-
tion, U is empty, so the conjunction of both invariants states
that{M: ¢[}* equalsL. The claims about the instrumented
use of standard model checkers follow from work in [5] and
[22]. |

Proof of Proposition 7: We refer to [23] for a formal defini-
tion of refinement of Kripke MTSs. By definition, the iden-
tity relation relates initial states. If the se}, (R*(s,s')) is
non-empty (must-transition [30, 23]), the is contained
in the lower setR?(s,s’). Thus,v < v impliesv €
R2(s,s'), som2(R?(s,s’)) is non-empty as well. Dually,
let 7¢(R°(s,s’)) be non-empty (may-transition [30, 23]).
Thenv is contained in the upper sBf (s, s’). Thus,v < v’

. Fory, ﬂy[l

upper set in(V, <). But the latter setiv € V |
' e Vi <v, Myl  Z}, whichis{iM: Z[}¢.
The proof for mode: is dual

La(z y) which equals{v € V |
I e Vv <, v € L*i,y)} sinceL?(i,y) is
a lower set in(V <) But the latter set igv € V' |
€ Vv <, Myl y}, whichis{iM:y}}3.
The proof for mode: is dual

. For=¢, [ =¢ [5i =V \ | ¢ |,™ i which, by induc-

tion, equalsl” \ {M:¢[} ™. By Theorem 5.2, this
equals{iM: —¢[} 7.

. ForEX ¢, we show this for mode only; the proof

for modec is dual. First, letv € [ EX¢ [5i. So
there exists som¢ € ¥ with v € R?(4,¢') and
v € [¢[3i. By induction, the latter implies
v € {M[i i']: 4}3. So there exists someé € V
with v < v and M [i — zH: ,¢. Then Propo-
sition 7 and property #8 rendeM [i — ]2 o @
Sincev € R*(i,i'), we infer M, =) EX¢, sov €
{IM:EX¢J}5 sincev < v. Conversely, letw €
{M:EX ¢|} Then there existe’ € V with w < v’
and M,, Fg EX ¢. Proposition 7 and property #8
then |mpIyM )=Zw EX ¢. So there exists somé& €
S with w € R*(i,7") and M, [i — "] 6. The
latter andw < w imply w € {M[i i"]: @[}
which, by induction, equal$ ¢ [5i"”. Thus,w €
R(i,i") impliesw € | EX ¢ [5.

. ForuZ.¢,letv € | uZ.¢ [3 4. Since the model is fini-

tary, there is some > Osuch thavisin| ux Z.¢ [5i
which, by induction, equalﬂM:ukZ.¢|};. There-
fore, there is soma’ € V with v < ¢/ and
Mv/k kZ.¢. But thenMy/F 1Z.¢ follows
from the monotomcny of the Ieast fixed- -point itera-
tion. Sov < o' impliesv € {M:puZ.¢f}5. Con-
versely, letw € M:uz. ¢|}"* Then there exists
somew’ € V with w < o' and/\/lu,/#p Z..
But then there is some< 0 with M, D:pw,mZ 0.
Therefore,w € {M:u;Z.4[}5 which, by induc-
tion, equals| uZ.¢ |54, which is contained in
| uZ.¢ [3i. The proof for mode is dual. [ |

implies v' € R%(s,s"), som}, (R°(s,s')) is non-empty as  proof of Corollary 2: If ¢ is negation-free, then the clause
well. The arguments for the labeling function are reasonedfor negation in Figure 5 is never invoked and all other
similar to the previous case. clauses render Fitting’s semantics as in [16]. [ |

Proof of Theorem 8:

1. ForZ, | Z [5i = p°(Z)i which equals{fv € V|
I e Vv <wv, v € p(Z)i} sincep®(Z)iis an

HWe write [i — 4] to update the initial state fromto i”.
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