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1. INTRODUCTION

Motivation. Large software is made up of many di�erent components with dif-

ferent properties. Further it is a norm in modern distributed applications that a

number of di�erent programming constructs, or even di�erent languages, are used

in a single application. Types for programming o�er a primary means to classify

and control programs' behaviour with rigour and precision, with well-developed

theories and an increasing number of applications. In particular, type structures

often play a crucial role as a basis of diverse program analyses [47; 53; 7]. Can we

use types for describing and reasoning about such an aggregation of diverse com-

ponents, forming a basis for specifying, analysing and controlling their behaviour?

For this to be e�ective, it should be possible to type-check one component with

a speci�c type, say (N ) N)) N (where N is a type for a natural number and)

is a function type constructor), and combine it with other parts, which may have

di�erent type structures, with a guarantee that it behaves as decreed by the original

type discipline. For example, if (N )N))N is inferred in a strongly normalising

type discipline, and if we need to ensure this property, then we want the piece of

code to behave as a total function producing a natural number. Note a program

of this type needs a procedure given by its peer to perform its function: thus we

cannot achieve our objective unless we have a consistent integration of multiple

type disciplines.

A central technical diÆculty in having such an integrated framework, even for ba-

sic type structures, comes from di�erent nature of operations each typed formalism

deals with. Assignment, function application, controls, method invocation, diverse

forms of synchronisation, all have quite di�erent dynamics: we can see this di�er-

ence clearly when we write down their formal operational semantics and compare

them. It is largely due to this di�erence why it is so hard to consistently merge

individually coherent theories for isolated constructs, or to apply what was found

in one realm to another realm. A well-known example is issues in transplanting

polymorphism, initially developed for pure higher-order functions, to the universe

of imperative programming idioms [13; 60; 39; 59; 63]. The di�erent nature of

dynamics of assignment commands from that of pure higher-order functions is the

culprit of this diÆculty. Given this variety, it looks hard to conceive any uniform

framework of type structure for di�erent language constructs: unless we have a

tool, say syntax, which can represent them on a uniform basis.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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The �-Calculus. The �-calculus [43; 42; 11; 26] is an extension of CCS [41] based

on name passing. A basic form of its dynamics can be written down as the following

reduction.

x(~y):P jxh~wi �! Pf~w=~yg

Here a vector of names ~w are communicated, via x, to an input process, resulting

in name instantiation. Perhaps surprisingly, this single operation can composition-

ally represent dynamics of diverse language constructs, including function appli-

cation, sequencing, assignment, exception, object, not to speak of communication

and concurrency. We are thus prompted by the following question: can we have

a foundational type structure for this calculus, similar to those for the �-calculus,
in which we can precisely capture diverse classes of computational behaviour uni-

formly? Unlike those for functions, types for interaction is an unexplored realm.

More concretely, the preceding studies, cf. [42; 36; 51; 64], have shown that, even

though operational encodings of diverse typed calculi into the �-calculus are pos-
sible, they rarely capture the original type structures fully. The issue is visible

through, for example, the almost omnipresent lack of full abstraction in such en-

codings. At a deeper level, this means the encoded types guarantee only a weaker

notion of behavioural properties than the original ones: the essential content of

types is partially lost through the translation.

Gaining insights from the preceding studies on types for interaction including

types for the �-calculus [42; 51; 22; 64; 36] and game semantics [4; 5; 34; 29],

the present authors, with Martin Berger, recently reported [8; 66] that basic type

structures for the �-calculus which precisely capture existing type structure do

exist, allowing fully abstract translation of prominent functional typed calculi. In

[8; 66], we have presented two type disciplines for the �-calculus which precisely

characterise two classes of sequential higher-order functional behaviours, which we

call aÆne and linear. These terms are used with the following meaning:

� AÆnity. This denotes possibly diverging behaviour in which a question is given

an answer at most once.

� Linearity. This denotes terminating behaviour in which a question is always given

an answer precisely once.

As a theoretical underpinning, [8; 66] have shown PCF and strongly normalising

�-calculi are fully abstractly embeddable in the aÆne and linear �-calculus, respec-
tively. In spite of faithfulness in embeddings, the form of types is quite di�erent from

that of function types, articulating a broader realm of computational behaviour.

In particular, both call-by-value and call-by-name �-calculi are embeddable into a

single typing system by changing translation of types.

Using the �-Calculus. The uniform embeddability of typed languages in the �-
calculus with linear/aÆne typing would suggest its potential usage as an integrated

basis for multiple type disciplines. As a possible area for experimenting with such

possibility, we consider so-called type-based program analyses, which are program

analyses performed relying on type structures non-trivially. Here we can exploit

the faithful representability of language constructs to organise the development of

analyses into the following three steps (pictorially illustrated in Figure 1).

Step 1: Embedding. If there is a programming language with a faithful embedding

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Fig. 1. Type-based Program Analysis using the �-Calculus

into the typed �-calculus, and there is a type-based analysis on that language, then

we can transfer this analysis into the image of the embedding through syntactic

translation.

Step 2: Extension. In the next step we extend this analysis, which is initially re-

stricted to the image of the embedding, to the whole collection of typed processes.

Basic syntactic and semantic properties of the analysis would be established, whose

formulation can be assisted by those in the original analysis through the embed-

ding.

Step 3: Re
ection. After the completion of Step 2, we can now use the extended

analysis for any language embeddable into the �-calculus. This is done by re
ecting
the analysis in the �-calculus onto another programming language through its em-

bedding. The key safety properties of the new analysis are ensured through those

of the analysis in the typed �-calculus.

Among others Step 2 can be challenging, since it is far from clear whether we can

soundly extend the original analysis from the image of the embedding to the whole

set of typed processes. When this challenge is met, however, the reward is the

generalised analysis which not only retains the precision of the original analysis

but which is repositioned in a broader realm of interacting processes, amenable to

extension and integration.

Secure Information Flow. The present paper reports our experience of using the

�-calculus for type-based program analyses, taking secure information 
ow analysis

[3; 19; 49; 50; 56; 57; 58; 62] as an application domain. In this analysis, we use

a typing system to ensure the safety of information 
ow in a given program, i.e. a

high-level (secure) data never 
ows down to low-level (public) channels. Informa-

tion 
ow analysis needs precise understanding of observable behaviour of program

phrases and their interplay, because of the existence of covert channels [14]. In the

�-calculus representation, computational dynamics is decomposed into interaction,

where the notion of observables is made explicit. This makes the �-calculus a poten-
tially e�ective tool for analysing subtle information 
ow among program phrases.

Further, in many type-based information 
ow analyses, distinction between totality

and partiality is crucial, both in functional [3] and imperative [62] settings, strongly

suggesting its connection to linear/aÆne type structures. A uniform treatment of

call-by-name and call-by-value pure functions as well as stateful computation in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Fig. 2. A Family of Linear/AÆne �-Calculi

secrecy is another motivation for using the �-calculus.

Summary of Contributions. The following summarises the main technical

contributions of the present work.

� A typed �-calculus for secure information 
ow based on linear/aÆne type disci-

plines, which enjoys a basic noninterference property.

� The embeddability of the dependency core calculus (DCC) [3] in the secrecy-

enhanced linear/aÆne �-calculus, and a simple operational proof of its noninter-

ference property. We also present a novel call-by-value version of DCC.

� A new type system for secrecy in concurrent imperative programs with references

and higher-order procedures. Its embeddability in the linear/aÆne �-calculus
with state again gives a simple proof of non-interference.

A picture of typed calculi used in this paper is given in Figure 2. Each box rep-

resents a name of the typed �-calculus with a speci�c type structure (\L", \A"

and \M" mean linear, aÆne and state, respectively). The right-hand side of the

box shows systems we can embed in the basic typed �-calculus. The left-hand side

shows secure languages we can embed in the secure version of the �-calculus. The
grey box shows a basic property satis�ed by the calculus.

Outline. This paper is a full version of [30], with complete de�nitions and de-

tailed proofs. The emphasis is on illustrating, through concrete examples, how the

typed �-calculus can be used for developing and justifying a non-trivial type-based

analysis of programming languages. Along this spirit, the presentation of the call-

by-value version of DCC and the extended version of Smith-Volpano language is

considerably simpli�ed from [30] by reformulation of encodings and a simpli�cation

of the linear/aÆne �-calculus with state. The present version also gives more com-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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parisons with related work, including a formal conservativity result with respect to

Smith's recent secure imperative language [57].

In the remainder, Section 2 introduces the �-calculus with a linear/aÆne type

discipline, integrating type disciplines presented in [8; 66]. Section 3 studies a type-

based secrecy analysis for the linear/aÆne �-calculus. Section 4 embeds DCC in the

secure �-calculus and develops its call-by-version, both justi�ed via the secure �-
calculus. Section 5 presents a stateful extension of the linear/aÆne type discipline.

Section 6 extends the secrecy analysis in Section 4 to stateful processes. Section

7 develops an extension of the Smith-Volpano's secure multi-threaded imperative

calculus with general references and higher-order procedures, based on the secrecy

analysis in Section 6. Section 8 concludes the paper with discussions on related

work and further topics.

Acknowledgements. We thank Martin Berger for our ongoing collaboration on

typed �-calculi and their applications. Stephen Zdancewic pointed out several mis-

takes in the conference version for which we are particularly grateful. Discussions
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ected in Introduction.
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2. THE �-CALCULUS WITH LINEAR/AFFINE TYPING

2.1 Processes

As a syntax, we use the asynchronous �-calculus [11; 26] enriched with branching

constructs [21; 25; 27]. Let x; y; : : : and sometimes a; b; : : : range over a countable

set of names (also called channels). We write ~y for a �nite, possibly null, string of

names. The set of untyped terms, which we often call processes, is given by the

following grammar.

P ::= x(~y):P input j P jQ parallel

j xh~yi output j (� x)P hiding

j x[&i2I (~yi):Pi] branching j 0 inaction

j xinih~zi selection j !P replication

In !P we require P to be an input or a branching. We always assume names in (~v)
(of input and branching) are pairwise distinct. This and (� x) act as binders. The
sets of free/bound names, written fn(P ) and bn(P ), as well as the alpha equality

��, are de�ned in the standard way. We write (� y1::yn)P for (� y1)::(� yn)P .
x(~y)P stands for (� ~y)(xh~yijP ) (assuming names in ~y are pairwise distinct), which

sends new names ~y local to P . We often omit empty parameters (e.g. x:P stands

for x():P ). We often omit the indexing set I (which should be either countable

or �nite) of x[&i2I (~yi):Pi]. We write x[(~y1):P1&(~y2):P2] for a binary branching

and xinlh~vi/xinrh~vi for binary selections. Branching is used for representing base

values as well as conditionals [8; 66]. While this construct can be simply encoded

into the calculus without it, the branching plays a basic rôle in the typed setting

and is essential for the secrecy analysis we discuss later.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Processes are often considered modulo the structural congruence �, which is the

least congruence generated from the following rules.

� If P �� Q then P � Q.

� P j0 � P , P jQ � QjP and (P jQ)jR � P j(QjR).

� (� x)0 � 0, (� xy)P � (� yx)P and (� x)(P jQ) � ((� x)P )jQ when x 62 fn(Q).

2.2 Reduction

The dynamics of processes is de�ned by the reduction relation �!, which is gener-

ated by the following rules. First, there are two rules for the unary name passing.

x(~y):P jxh~vi �! Pf~v=~yg

!x(~y):P jxh~vi �! !x(~y):P jPf~v=~yg:

The reduction for branching involves selection of one branch, discarding the re-

maining ones, as well as name passing.

x[&i(~yi):Pi] j xinjh~vi �! Pjf~v=~yjg

!x[&i(~yi):Pi] j xinjh~vi �! !x[&i(~yi):Pi] j Pjf~v=~yjg

Finally we close the reduction under parallel composition, hiding and �.

P �! P 0

P jR �! P 0
jR

P �! P 0

(� x)P �! (� x)P 0
P � Q Q �! Q0 Q0

� P 0

P �! P 0

For representing a sequence of zero or more reductions we use the multi-step re-

duction !!
def
= � [ �!�. Simple examples of processes and their reduction follow.

Example 2.1 (processes and reduction)

(1) A natural number agent, [[n]]u
def
=!u(c)cinn, acts as a server which necessarily

returns a �xed answer, n. As an example, [[2]]ujuhei �! [[2]]ujein2.

(2) The process u(c)c[&n2!einn+1] (with ! the set of natural numbers) behaves as

the successor of the natural number agent above as follows (for illustration we

follow the use of � in some detail).

[[2]]uju(c)c[&n2!einn+1] � (� c)([[2]]ujuhcijc[&n2!einn+1])
�! (� c)([[2]]ujcin2jc[&n2!einn+1])
�! (� c)([[2]]ujein3)
� [[2]]ujein3

The essence of this encoding lies in a precisely representation of the functional

behaviour as an interaction process, rather than arithmetic calculation itself.

(3) f(ac)([[1]]ajc[&n2!einn]) represents an open �-term f : N)N ` f1 : N with N

denoting the type of natural numbers. The process �rst inquires at f carrying

two new channels. At the �rst channel it in turn may receive an inquiry,

to which it provides the argument 1. At the second channel it receives an

answer from the function, which it simply forwards to e. We can check, with

[[succ]]f
def
=!f(ue):u(c)c[&n2!einn+1]:

[[succ]]f jf(ac)([[1]]ajc[&n2!einn])!! [[succ]]f jein2j(� a)[[1]]a

Note (� a)[[1]]a remains as a garbage without any further potential interaction.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(4) De�ne [x ! y]
def
=!x(c):y(c0)c0[&i2!cini]. This is a copy-cat agent, linking two

locations x and y. Having this agent in-between does not change the whole

behaviour. For example: [[2]]yj[x! y]jxhei �! [[2]]yj[x! y]jy(c0)c0[&ieini] �!
[[2]]yj[x ! y]j(� c0)(c0in2jc

0[&ieini]) �! [[2]]yj[x ! y]jein2, which is the same

as [[2]]yjyhei �! [[2]]yjein2 save some internal reductions.

(5) Let 
u
def
= (� y)([u ! y]j[y ! u]). Then we can check 
ujuhei �!�!�! :::.


u immediately diverges after the initial invocation.

2.3 Linear/AÆne Typing

Linearity and aÆnity are fundamental concepts which have long been studied and

applied in semantics of computation. Below we show one of the ways to incorporate

these ideas into the �-calculus, integrating the linear type discipline in [66] and the

aÆne type discipline in [8]. On the basis of [8; 66], the following three key steps

lead to the coherent integrations of aÆnity and linearity.

� distinction between linear and aÆne action modes;

� constraint in channel types such that linear output cannot be carried by aÆne

replication; and

� constraint in pre�x typing such that aÆne input never suppresses linear output.

Since our main objective in this paper is applications, the following presentation of

the linear/aÆne type discipline focusses on the salient features of this calculus in

the present context. For detailed discussions of this type discipline, see [67; 65].

Action Modes. We use the following action modes [8; 22; 27; 66], which prescribe

di�erent modes of interaction at each channel.

#L Linear input "L Linear output

#A AÆne input "A AÆne output

!L Linear server ?L Client request to !L
!A AÆne server ?A Client request to !A

We also use the mode l to indicate uncomposability at linear/aÆne channels.

p; p0; : : : range over action modes. The modes in the left column are input modes

while those in the right are output modes. The pair of modes in each row are dual

to each other, writing p for the dual of p. We also write:

M# = f#L; #Ag;M" = f"L; "Ag;M! = f!L; !Ag; and M? = f?L; ?Ag:

The L-modes correspond to linear modes in [66] while the A-modes to aÆne modes

in [8]. The di�erence between linearity and aÆnity in non-replicated channels is

that, in a linear channel, an interaction takes place precisely once, while it does so

at most once in an aÆne channel. In replicated channel, linearity essentially means

convergence while aÆnity means potential divergence.

Channel Types. Next we de�ne channel types by the following grammar. Below

pI (resp. pO) denotes input (resp. output) modes.

� ::= �I j �O j l �I ::= (~� )pI j [&i~�i]
pI �O ::= (~� )pO j [�i~�i]

pO

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(~� )pI and (~� )pO are unary input/output types, respectively, while [&i~�i]
p and [�i~�i]

p

are branching/selection type. We sometimes write [~�1&~�2]
p=[~�1 � ~�2]

p for binary

branching/selection type. md(�) denotes the outermost mode of � except we set

md(l) = l. The dual of � , written � , is the result of dualising all action modes and

exchanging & and � in � . We de�ne � is the least commutative partial operation

on channel types such that:

(1) � � � = l (md(�) 2M#)

(2) � � � = � (md(�) 2M?) � � � = � (md(�) 2M!)

Intuitively, (1) says once we compose input-output linear channels it becomes un-

composable. (2) says that a server should be unique, to which an arbitrary number

of clients can request interactions. The following well-formedness condition is an

integral part of the present type discipline.

De�nition 2.2 The set of well-formed channel types is inductively generated by

the following conditions.

(C1). (~� )p with p 2 M# is well-formed when each �i is well-formed and, more-

over, md(�i) 2M? for each i. Dually when p 2M".

(C2). (~� )!L is well-formed when each �i is well-formed and, moreover, there exists
a unique j s.t. md(�j) 2 f"L; "Ag, while md(�i) 2M? for others. Dually for (~� )?L .

(C3). (~� )!A is well-formed when each �i is well-formed and, moreover, there is a

unique j s.t. md(�j) = "A, while md(�i) 2M? for others. Dually for (~� )?A .

Similarly for branching/selection types, imposing the same constraint for each sum-

mand in branching/selection types. Hereafter we assume all channel types are well-

formed unless otherwise stated.

In a well-formed type, an input only carries an output (and dually), and only a

replicated input carries a unique linear/aÆne output (and dually). These conditions

come from game semantics [34; 4]. An additional condition, given in (C2) and (C3)

is that a linear output "L can only be carried by a linear replicated input !L (and

dually), which is crucial for consistently integrating linearity and aÆnity. This

is because an invocation at linear replication will eventually terminate, �ring an

associated linear output (see x 2 in [65] for more discussions). Some examples of

channel types follow.

Example 2.3 (channel types)

(1) ()"L is a type indicating an output without carrying any value which takes place

exactly one; ()"A represents an output which takes at most once. Both ()"L and

()"A are (vacuously) well-formed. Further ()"L = ()#L and ()"A = ()#A .

(2) Let N� = [�i2!]
"L . This type represents an output of a natural number which

is done precisely once. N
Æ = (N� )!L is a type which can repeatedly receive

an invocation carrying one name, and through that name necessarily sends a

natural number. Note N� = [&i2!]
#L and NÆ = ([&i2! ]

#L)?L . The latter is

a type which inquires at a replicated channel carrying a unique name as its

parameter, and via that name receives a natural number precisely once.
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(Zero)

�

` 0 .

(Par)

` Pi . Ai (i =1; 2)

A1 � A2

`P1jP2 . A1�A2

(Res)

` P . Ax:�

md(�) 2M! [ flg

` (� x)P . A=x

(Weak)

` P . A-x

md(�) 2M? [ flg

` P . A 
 x :�

(In#L)

` P . ~y :~� 
 "LA
-x 
 "A?B

-x

` x(~y):P . (x : (~� )#L!A)
B

(In!L)

` P . ~y :~� 
 ?LA
-x 
 ?AB

-x

`!x(~y):P . (x : (~� )!L!A)
B

(In#A)

` P . ~y :~� 
 "A?A
-x

` x(~y):P . x : (~� )#A
A

(In!A)

` P . ~y :~� 
 ?L?AA
-x

`!x(~y):P . x : (~� )!A
A

(Out)

�i = �j (if yi = yj)

` xh~yi . x : (~� )pO
 (�i yi :�i)

Fig. 3. Linear/AÆne Typing (composition and unary pre�x)

(3) (()"L)!L , (()"A)!A and (NÆ ()"L )!L are well-formed, but (()#L)!L , (()"L)!A and (NÆ )!L

are not.

Action Types and Typing. An action type is a �nite map from names to channel

types together with directed edges between names, where edges represent causality

among linear (resp. linear replicated) channels. We write x :� for an assignment of

� to x, and x : �!x0 : � 0 when x0 causally depends on x. x : �!x0 : � 0 is allowed if

either (1) md(�) = #L and md(�) = "L or (2) md(�) = !L and md(�) = ?L.

Action types control the formation of typed processes via three operations: com-

position A� B, with the associated composability relation A � B; pre�x x : �!A
and hiding A=x. Intuitively, A � B composes two action types after checking, us-

ing �, the consistency of type assignment and the lack of circularity in causality;

x : �!A adds an edge from a new node x : � to the unsuppressed existing nodes;

and A=x takes o� a node with name x (if any) from A. For formal de�nitions, see
Appendix A. � is an associative operator whose n-ary extension is written �iAi.

The typing rules are given in Figure 3 and Figure 4. In each rule we assume

channel types are well-formed, and processes obey the standard bound name con-

dition. The rules use the following notations (fn(A) and md(A) denote the sets of
free names and modes of A, respectively).

� Ax:� indicates x :� occurs in A. A-x indicates x 62 fn(A)

� ~pA indicates md(A) � f~pg, while ?A indicates md(A) �M? .

� A
B denotes the disjoint union of A and B, assuming fn(A) \ fn(B) = ;.

We give a brief illustration of typing rules.

� (Par) uses � for controlling composition. (Res) allows hiding of a name only

when its mode is l or replicated (so that channels of modes " ; # or ? should be
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12 � Kohei Honda and Nobuko Yoshida

(Bra#L)

` Pi . ~yi :~�i 
"LA
-x
"A?B

-x

` x[&i(~yi):Pi] . (x : [&i~�i]
#L!A)
B

(Bra!L)

` P . ~yi :~�i
?LA
-x 
 ?AB

-x

`!x[&i(~yi):Pi] . (x : [&i~�i]
!L!A) 
B

(Bra#A)

` Pi . ~yi :~�i 
"A?A
-x

` x[&i(~yi):Pi] . x : [&i~� ]
#A
A

(Bra!A)

` Pi . ~yi :~�i 
 ?L?AA
-x

`!x[&i(~yi):Pi] . x : [&i~�i]
!A
A

(Sel)

�ij = �ij0 (if yi = yj)

` xinih~yi . x : [�i~�i]
pO
 (�j yj :�ij)

Fig. 4. Typing Branching and Selection

compensated by their duals before restricted). (Weak) weakens l and ?-nodes

since they allow the possibility of no action.

� In (In#L) and (In!L), we record causality for ensuring linearity. In these rules and

(In#A) and (In!A), an input never suppresses another input. Note (In!L) never

suppresses "L="A actions (except for that which is abstracted).

� In (In#A), #A never suppresses "L, which is crucial for integration (suppose x is

aÆne while y is linear in x:y: then a message at x may never arrive so that y
may not �re, violating linearity [65]).

� In (Out), the condition �i = �j if yi = yj ensures that a duplicated object name

is assigned the same type (for example, xhyyi has type x : (��)"L 
 y : � with

md(�) 2 M?). The rule assigns the dual of the corresponding carried type to

each yi. This is because a passed name will eventually be used by the dual of its

own type (for example, u in [[2]]ujuhei is typed by NÆ = ([&i2! ]
#L)?L , while e, via

which 2 will be outputted, should have a type [�i2!]
"L).

� The typing rules for branching and selection, given in Figure 4, are similar to

those for unary pre�xes. In the antecedent of each branching rule, each summand

should have an identical action type A (except for abstracted channels ~yi : ~�i).
This is similar to the sum type in the �-calculus and additives in Linear Logic.

The following variant of (Out), which is specialised for bound output [8; 9; 27; 66;

67], is a permissible rule in the calculus. This rule is often useful for type inference

of various encodings (in fact the rule is equipotent to (Out) via simple syntactic

translation [23]).

(Bout)
` P . C~y:~� C � x : (~� )pO

` x(~y)P . C=~y � x : (~� )pO
(1)

Similarly for selection with bound output, which we omit.
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Some examples of typed terms follow (processes are from Example 2.1).

Example 2.4 (typed processes)

(1) ` [[n]]x . x :NÆ is well-typed. Similarly ` [[succ]]x . x : (NÆN� )!L is well-typed.

(2) ` x:y . x : ()#L!y : ()"L is well-typed, but ` x:y . x : ()#A
y : ()"L is not.

(3) The copy-cat (cf. Example 2.1 (3)) can be typed as ` [u! x] . u :NÆ!x :NÆ .
This sequent can be considered as the encoding of a typed variable, x :N ` x :N,
located at u.

(4) Let N� be the aÆne version of NÆ , i.e. N�
def
= ([�i2!]

"A)!A . We can then type

[x! x0] with a di�erent action type: [x! x0]: ` [x! x0] . x :N� 
 x0 :N� .

(5) The divergent agent 
u is typed as ` 
u . u :N� , starting from (4) above.

We write �LA for the resulting typed calculus. Salient features of this calculus

include subject reduction and fully abstract embeddability of various functional

calculi, such as the simply typed �-calculus with products and sums, call-by-name

PCF and call-by-value PCF. We use this calculus as a basis of our secrecy analysis

in the subsequent sections.

3. SECRECY ANALYSIS IN THE LINEAR/AFFINE �-CALCULUS

3.1 Secrecy Annotations and Tampering Level

Channel Types. Let (L;v;>;?) be a complete lattice of secrecy levels (higher

means more secure), whose elements are written s; s0; : : :. We �rst annotate channel

types with these secrecy levels. Annotated types are still written �; � 0; : : :, generated
from the following grammar.

� ::= �I j �O j ls �I ::= (~� )pIs j [&i~�i]
pI
s �O ::= (~� )pOs j [�i~�i]

pO
s

Duality is de�ned respecting secrecy levels (e.g. ()"As and ()
#A
s0 are dual i� s = s0).

We write sec(�) for the outermost secrecy level of � .

Action Types and Tamper Level. The secrecy typing uses the same action

types as before, except we use the annotated channel types. We still write A;B; : : :
for secrecy-enhanced action types. We use a function which maps an action type

to a secrecy level. We call this level a tamper level (in the sense that it is the level

at which the process may a�ect, or tamper, the environment). It is �rst de�ned on

channel types, which is then extended to action types.

De�nition 3.1 � is immediately tampering if either � = [�i~�i]
"L or md(�) = "A. �

is innocuous if md(�) 2 f?L; ?A; lg.

De�nition 3.2 The tamper level of � , denoted tamp(�), is inductively given by:

tamp(�) = sec(�) if � is immediately tampering.

tamp(�) = > if � is innocuous.

tamp((~� )ps) = uftamp(�i)g with p 2M!;# [ f"Lg.

tamp([&i~�i]
p
s) = uftamp(�ij)g with p 2M!;#.

We set tamp(A)
def
= uftamp(�) j x :� 2Ag.
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Intuitively, a channel type is immediately tampering if it emits non-trivial infor-

mation at the time of interaction. Even if a type is not immediately tampering,

an action of that type can have a non-trivial e�ect on the environment via an im-

mediately tampering type inside. However an innocuous type does not even have

such a latent e�ect: for example ?L-actions just create a new copy of the resource,

leaving the environment as it originally was. Thus the tampering level of ?L-types

is always >. Note this discussion relies on stateless nature of recursive behaviour

of type !L and !A. The notion also relates to inhabitation properties of �LA (cf. [67]).

A few concrete calculations of tamper levels follow.

Example 3.3 (tampering level)

(1) ()"Ls is not immediately tampering: in fact, its tamper level is >. This is

because this type represents a behaviour which necessarily sends an empty out-

put precisely once: its behaviour is completely determined, so no information

is transmitted by interaction. On the other hand [�i2!]
"L
s is immediately

tampering and does have a non-trivial tamper level, s.

(2) Both ()"As and [�i2!]
"A
s are immediately tampering, with the same tamper level

s. Intuitively ()"As transmits information by having two possibilities: either

outputting at that channel, or not doing so at all.

(3) Let � = (()"Ls )!Ls0 . Then tamp(�) = > regardless of s and s0. The process

inhabiting x : � is always ready to receive at x: then it necessarily outputs an

empty message via that name precisely once. Thus neither interaction at x nor

that at c contain information.

(4) Let N
Æ
s

def
= ([�i2!]

"L
s )!Ls0 . Then we have tamp(NÆs ) = s. N

Æ
s is not immedi-

ately tampering, but it a�ects the environment latently. To see this, take

[[2]]x
def
=!x(c):cin2 which, in the typing system presented later, has type x :NÆs .

This process does contain information which it emits after the invocation at x.
Similarly for (()"As )!As0 .

(5) By de�nition, tamp(�) = > for any � such that md(�) 2 f?L; ?Ag.

If neither � nor � is immediately tampering (i.e. either md(�) 2 fl; !L; !A; ?L; ?Ag
or it is unary and md(�) 2 f#L; "Lg), then sec(�) is not used for calculating the

tampering level: nor would it be anyway used in the secrecy typing given next. For

this reason we stipulate:

Convention 3.4 From now on we usually omit the outermost secrecy level of a

channel type if neither the type nor its dual is immediately tampering.

For example, NÆs above would be written ([�i2!]
"L
s )!L , omitting the outermost se-

crecy level.

3.2 Secrecy Typing

To distinguish from the underlying linear/aÆne typing, the secrecy typing uses the

sequent of the form
s̀ec
P . A, where A is now an action type which uses secrecy-

annotated channel types. The typing rules are the same as those in Figures 3 and

4 (under Convention 3.4), except for the three rules, (In#A), (Bra#L ) and (Bra#A),
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(In#A) s v tamp(A)

s̀ec
P . ~y :~� 
 "A?A

-x

s̀ec
x(~y):P . x : (~� )#As 
A

(Bra#L) s v tamp(A
B)

s̀ec
Pi . ~yi :~�i 
"LA

-x
"A?B
-x

s̀ec
x[&i(~yi):Pi] . (x : [&i~�i]

#L
s !A)
B

(Bra#A) s v tamp(A)

s̀ec
Pi . ~yi :~�i 
"A?A

-x

s̀ec
x[&i(~yi):Pi] . x : [&i~� ]

#A
s 
A

Fig. 5. Secrecy Typing (rules with added constraints)

which are now replaced by the rules in Figure 5. Each new rule adds a condition

on secrecy levels. We say
s̀ec
P . A is well-typed (or P is secure under A) when

s̀ec
P . A is derivable from the secrecy typing rules. Some observations on the

secrecy-sensitive rules:

� In (In#A), we care the secrecy level since aÆne input directly receives information

(dually to an aÆne output which directly emits information). If the information

is received at s, its e�ects can only be shown to the outside at s or above.

� In (Bra#L ), a linear branching receives information by being invoked at one of its

branches. In (Bra#A), an aÆne branching receives information both by branching

and aÆnity. Again these e�ects should not be transmitted at levels which are the

same as or above the receiving level.

We illustrate the secrecy typing by a few simple examples (cf. Example 2.4).

Example 3.5 (securely typed terms)

(1)
s̀ec
[[n]]x . x :NÆs is well-typed for each s.

(2)
s̀ec
x:y . x : ()#L

>
! y : ()"L

?
and

s̀ec
x:y . x : ()#A

?

y : ()"A

>
are well-typed, but

s̀ec
x:y . x : ()#A

>

y : ()"A

?
is not. Also

s̀ec
u[:x(y)[[1]]y&:x(y)[[2]]y ] . u : [ & ]

#L
>
!

x : (NÆs )
"L is well-typed i� s = > (note tamp((NÆs )

"L) = s).

(3)
s̀ec
[[succ]]u . u : (NÆsN

�
s0 )

!L is well-typed i� s v s0. Remembering the de�nition of

[[succ]]u from Example 2.1, it suÆces to check
s̀ec
c[&n2!:einn+1] . c :N�s!e :N�s0

is well-typed, the condition for which is nothing but s v s0.

(4)
s̀ec
[x! y] . x :NÆs !y :NÆs0 is well-typed i� s0 v s, with the same reasoning as

above. Similarly
s̀ec
[x! y] . x :N�s 
 y :N�s0 is well-typed i� s0 v s.

(5)
s̀ec

x . x :N�s is always well-typed.

More substantial examples will be presented in the next section through the embed-

ding of secrecy analysis of call-by-name and call-by-value functions in the secrecy

analysis for �LA.

3.3 Basic Properties of Secure Typing

This subsection discusses a couple of key results in the secrecy analysis for �LA. The

�rst property is the following result.
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Proposition 3.6 (subject reduction) If
s̀ec
P . A and P !! Q then

s̀ec
Q . A.

Proof. First we prove commutativity and associativity of the operator � on

action types. Secondly we show closure under �. The closure under �! is proved

using the following substitution lemma:

(1) (linear type) If
s̀ec
P . x :�
A, md(�) 2M" and y 62 fn(A), then

s̀ec
Pfy=xg . y :

� 
A and tamp(x :� 
A) = tamp(y :� 
A).

(2) (client type) If
s̀ec
P . x : � 
 A and A(y) = � , then

s̀ec
Pfy=xg . A and

tamp(x :� 
A) = tamp(A).

The rest is a routine, by the rule induction on the reduction rules. See Appendix

C.1 for the proof.

A basic element of the present theory of secrecy analysis is a family of contextual

congruences relativised by secrecy levels. We �rst de�ne the notion of observables.

De�nition 3.7 We write P +x when P �!� P 0 such that either P 0 � (� ~z)(xh~yijR)
or P 0 � (� ~z)(xinih~yijR) such that x 62 f~zg.

Note we only take an output as an observable [26; 28]. Using this observable, we

de�ne the secrecy-sensitive congruence. Below a typed congruence is an equivalence

relation over �LA

sec
-terms which always relates two typed terms with the same typing

and which is closed under typed contexts.

De�nition 3.8 (secrecy-sensitive contextual congruence) �=�
s is the maximum

typed congruence which satis�es the following condition: if
s̀ec
P1 �=

�
s P2 . x : ()"As

and P1 +x then P2 +x.

Intuitively, �=s ignores actions which are not observable from the level s. By de�-

nition we immediately obtain:

Proposition 3.9 If
s̀ec
P1 �=s P2 . A then s w s0 implies

s̀ec
P1 �=s0 P2 . A. In

particular,
s̀ec
P1 �=> P2 . A implies

s̀ec
P1 �=s P2 . A for each s.

For reasoning about processes using �=s, one of the basic tools is a context lemma.

Lemma 3.10 (context lemma) Let
s̀ec
P1;2 . A. Then P1 �=s P2 if and only if, for

each
s̀ec
R . A
 x : ()"As , (� fn(A))(P1jR) +x i� (� fn(A))(P2jR) +x.

Proof. The \only if" direction is immediate from the de�nition. For the \if"

direction, let C[ � ] be a context with hole typed A and the result typed x : ()"As
with x fresh (if x 2 fn(A) we can always use a copy-cat to mediate x to a fresh

name). Assume the latter condition and C[P1] +x. If the hole of C[ � ] is not

under an input pre�x, then we already have C[ � ]
def
= (� fn(A))(Rj[ � ]). Suppose

the hole is under an input pre�x. If C[P1] +x by C[P1] !! xjC 0[P1�] keeping P1
under the input pre�x along the way (possibly with some substitution �) then we

have C[P2] !! xjC 0[P2], i.e. C[P2] +x. If not, then suppose C[P1] !! C 0[P1�]
where C 0[P1�] is the �rst con�guration in which the input pre�x is taken o�. Using

copycats (cf. Appendix B) we can represent � by parallel composition and hiding,

so that the former condition gives us C[P2] +x, as required.
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One of the most basic properties in any secrecy analysis is noninterference, which

essentially says that high-level data never interfere with low-level observable be-

haviour. Since data and programs are all processes in the present context, and

because P �=s Q means P and Q have the same s-level observable behaviour, the
noninterference result in the present context simply says that two processes with a

secrecy level incompatible with s can always be equated by �=s.

Proposition 3.11 (non-interference in �LA) If
s̀ec
P1;2 . A such that tamp(A) = s

and s 6v s0, then
s̀ec
P1 �=

�
s0 P2 . A.

We have so far developed two methods for proving Proposition 3.11. One is based

on the secrecy-sensitive bisimilarity discussed in [67] which sheds a new light on

the semantic aspects of the present secrecy analysis enlarging typability. The proof

based on this method is outlined in [67] for the secrecy typing in the linear �-
calculus. Another method is based on an inductive analysis of causal chains of

actions in secure processes, and o�ers a basic insight on the operational structure

ensured by the presented secrecy typing and its extensions. The proof based on

this method is developed in detail in a separate appendix [31].

The following is an immediate corollary of Proposition 3.11.

Corollary 3.12 Let
s̀ec
P1;2 . A such that tamp(A) 6v s. Let C[ � ] be a context

with its hole typed A and its result typed B. Then
s̀ec
C[P1] �=s C[P2] . B.

3.4 Re�nement (1): Subtyping

The rest of the section discusses two re�nements of the basic secrecy analysis. While

these re�nements are in some way or other reducible to the basic analysis, not only

are they useful in practice but also they shed new light on the secrecy analysis in

�LA and its extensions itself. Those readers whose main interests lie in applications

may safely skip the rest of the section, referring back to it as needed.

The �rst re�nement uses a basic subtyping relation for secrecy [1; 27].

p 2 f?L; ?A; "Lg
�i � � 0i

(~� )p � (~� 0)p

�i � � 0i s v s0

(~� )"As � (~� 0)"As0

p 2 f?L; ?Ag
�ij � � 0ij

[�i~�i]
p � [�i~�

0
i ]
p

p 2 f"L; "Ag
�ij � � 0ij s v s0

[�i~�i]
p
s � [�i~�

0
i ]
p

s0

� 0
I
� �I

�I � � 0
I

For l we set l � l. We call this relation, as well as its pointwise extension to

action types denoted A � A0, secrecy subtyping. The type-based secrecy analysis

now incorporates the standard subsumption rule.

(Subs)
s̀ec
P . A A � B

s̀ec
P . B

(2)

The resulting system satis�es the subject reduction (the proof follows [27]). A

simple example which shows the added typability is the following derivation.

(Out)
�

(Subs)
s̀ec

xhyi . x : (()#A
?
)?A 
 y : ()"A

?

s̀ec
xhyi . x : (()#A

?
)?A 
 y : ()"A

>
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To see the resulting typed process is in fact secure, we observe that xhyi behaves
precisely as x(u)u:y up to the contextual equality in �LA.

The safety of the re�ned analysis is established via its reduction to the basic

analysis, which is done by �lling the gap between the original level and the raised

level using secure copy-cats. As an example, let us simulate the subsumption above

using this method.

(Par, Res)
s̀ec

xhui . x : (()#A
?
)?A 
 u : ()"A

? s̀ec
u:y . u : ()#A

?

 y : ()"A

?

s̀ec
x(u)u:y . x : (()#A

?
)?A 
 y : ()"A

>

Here
s̀ec

u:y . u : ()#A
?

 y : ()"A

?
acts as a bridge between two types. This transfor-

mation can be performed for arbitrary types using generalised copy-cats, written

[x ! y]� , which are de�ned in Appendix B. The following property is the key to

the soundness of such transformation.

Proposition 3.13 (copycat) Let �; � 0 be input types such that � � � 0. Then

s̀ec
[x! x0]� . x :� 3x0 :� 0 where 3 =! if md(�) 2 f!L; #Lg, and 3 = 
 if else.

By replacing each application of (Subs) by this transformation in a given derivation,

we can always reduce the derivation in the subtyped analysis into the equivalent

one in the basic analysis. By noting (� x)([x ! y]� jP ) �=s Pfy=xg whenever

s̀ec
P . A such that A(y) = � for any s, we know any typed process derived using

(Subs) is equivalent to a process derived without using it, leading to the same

noninterference property of the extended set of typed processes. We also observe

that this transformation also indicates that subsumption is in fact redundant for

processes which are inferred using (Bout) instead of (Out). To be precise:

De�nition 3.14 A direct free output in P is yi 2 f~yg in a subterm xh~yi of P such

that either (1) yi occurs free in P , or (2) yi is bound by some input in P .

Proposition 3.15 (subsumption in bound output) If no direct free output occurs

in P , then (Subs) is admissible in the basic secrecy analysis.

3.5 Re�nement (2): In
ation

Another re�nement of a di�erent nature, suggested by the dependency core calculus

[3] discussed in the next section, allows local violation of secure 
ow while retaining

global secrecy. This re�nement is used in the embedding of DCC and its call-by-

value version in Section 4 (but not in the embedding of the Smith-Volpano calculus

in Section 7). As a motivation, consider the following process (annotated by secrecy

levels, writing H and L for > and ?).

Q
def
= y(ab)(!a(c):z(c0)c0

H
[&i:c

Lini] j b
H :eHin3)

Now let B
def
= y : (NÆLN

�
H )?L 
 z :NÆH 
 e :N�H , under which Q is untypable because

a high-level input c0 suppresses a low-level output c. Yet we can argue Q is in fact

secure under B, since this violation is not observable to the environment which

receives information only at the high-level.

The re�ned analysis allows such a process to be well-typed using a simple op-

eration called in
ation. � t s in
ates each secrecy level in � by taking the join,
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i.e. (~� )"As0 t s
def
= (~�ts)"As0ts, [&i~�i]

p

s0t s
def
= [&i~�its]

p

s0ts and [�i~�i]
p

s0t s
def
= [�i~�its]

p

s0ts

(with ~� t s standing for �1 t s::�n t s with ~� = �1::�n). The operation is pointwise

extended to action types, written A t s. Noting (A t s) t s0 = A t (s t s0), we
know A t s is idempotent, associative and compatible with � (i.e. A � B implies

(A t s) � (B t s) and (A t s)� (B t s) = (A�B) t s). These properties give us:

Proposition 3.16 If
s̀ec
P . A then

s̀ec
P . A t s for each s.

The extension of the analysis is done by incorporating the converse of Proposition

3.16 in a limited form.

De�nition 3.17 We say
s̀ec
P . A is well-typed with in
ation if it is typable with

the secrecy typing in x3.3 using (BOut) instead of (Out) augmented with:

(Inf)
s̀ec

P . inf(A)

s̀ec
P . A

(Str)
s̀ec

P . A P � Q

s̀ec
Q . A

where we de�ne inf(A) by: inf(A)
def
= A t tamp(A).

The use of (BOut) is to have subject reduction: as discussed in the previous sub-

section, this does not sacri�ce the expressive power. Intuitively inf(A) in
ates the
secrecy level which may contribute to the �nal e�ect up to tamp(A), and those which
are not to some level higher than A. In practice the use of � is often avoided. As

a simple example of the use of (Inf), we show the derivation of Q under B above.

(...)
: : :

(Inf)
s̀ec
y(ab)(!a(c):z(c0)c0[&icini]jb(c):cin3) . y : (NÆHN�H )?L 
 z :NÆH 
 e :N�H ;

s̀ec
y(ab)(!a(c):z(c0)c0[&icini]jb(c):cin3) . y : (NÆLN

�
H )!L 
 z :NÆH 
 e :N�H ;

where the omitted part is by the basic analysis.

The subject reduction for the extended analysis is proved in Appendix C.2. For

noninterference, we �rst de�ne �=s in precisely the same way as De�nition 3.8,

except we use processes typed with in
ation this time. Then we have the same

noninterference result as before. For the proof, see [31].

Proposition 3.18 (noninterference with in
ation) If
s̀ec

P1;2 . A is well-typed

with in
ation such that tamp(A) = s and s 6v s0, then so is
s̀ec
P1 �=

�
s0 P2 . A.

The basic analysis (possibly combined with subtyping) would suÆce in most ap-

plications: however the extended analysis gives a deep insight on the nature of the

present secrecy analysis and its possible extensions.

4. SECRECY IN PURE FUNCTIONS

This section applies the secrecy analysis for �LA presented in the previous section

to the secrecy analysis for functional calculi. The �rst analysis is for call-by-name

functions, re-justifying the secrecy of dependency core calculus by Abadi and others

via �LA. Next we attempt a secrecy analysis for call-by-value functions, developing

a secrecy typing for PCFv-like syntax. This is done by re
ecting the secrecy typing

in �LA via the standard process encoding of call-by-functions [42; 29].
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4.1 Dependency Core Calculus

The dependency core calculus [3] (DCC) is interesting in the present context at least

in two ways. First it is one of the signi�cant examples of a functional meta-language

for type-based information 
ow analysis. Second it crucially relies on pointed types

to combine total function types and partial ones [32; 46]. After outlining DCC in

this subsection, we show a faithful embedding of DCC in �LA, leading to a new proof

of its non-interference.

We use a slightly di�erent, but semantically equivalent, presentation of DCC

based on implicit typing. This is to allow a simpler presentation of the embedding.

In particular the lifting associated with secrecy is used implicitly. We consider

the system without products for simplicity: their incorporation poses no technical

diÆculty, and is outlined later.

The set of DCC-types are given by the following grammar. We use the same

lattice L of secrecy levels, ranged over by s; s0; : : :.

T ::= units j T1 +s T2 j T1)T2 j xTys j (T )s

Unit, sums and function types should be familiar. The lifted type xTys is the so-
called pointed type [32; 46], which indicates potential divergence. The level s in

(T )s indicates a secrecy level which protects a datum (in [3], this is denoted as

Ts(T )). We consider types modulo the following equations (which is justi�able via

isomorphisms in the denotational universe in [3]).

(units)s0 = (unitsts0); (T1 +s T2)s0 = T1 +sts0 T2;
(T1)T2)s = T1)(T2)s; (xTys)s0 = xTysts0 and ((T )s)s0 = (T )sts0 :

These equations essentially say that, if you protect (i.e. raise the secrecy level of)

a datum with two levels s and s0, then it is the same thing as protecting it with

their join. By reading the above equations from left to right, we can rewrite types

to simpler forms. It is easy to check each type rewrites to a unique normal form

which erases all expressions of form (T )s. This normal form has the following shape:

T1)(T2)(: : : (Tn�1)
) : : :) (n � 1) where 
 is given by the following grammar:


 ::= units j T1 +s T2 j xTys

where T; T1;2 is also a normal form. We write [T1T2:::Tn�1
] for a normal form

T1)(T2)(: : : (Tn�1)
) : : :). Using normal forms, we introduce two key ideas in

the DCC-types.

� The protection level of T , denoted protect(T ), is given by: protect(units) =

protect(T1 +s T2) = protect(xTys) = s and protect([T1:::Tn
]) = protect(
).

� T is pointed if T = [T1::::TnxT
0
ys] (n � 0).

Proposition 4.1

(1 ) T is pointed in [3] i� there exists T1; ::; Tn; T
0
and s such that T = [T1::::TnxT

0
ys].

(2 ) T is protected at s in [3] i� s v protect(T ).

Proof. By mechanical structural induction.
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[Var] �; x :T ` x : (T )s [Unit] � ` () : units

[Lam]
�; x :T `M : T 0

� ` �x:M : T)T
0 [App]

� `M : T)T
0 � ` N : (T )s

� `MN : T 0 s v protect(T 0)

[Inl] � `M : T1
� ` inl(M) : T1+sT2

[Case]
� `M :T1+sT2 �; xi :Ti `Mi :T

0

� ` case M of fini(xi):Mig : T
0 s v protect(T 0)

[UnitM] � `M : T
� `M : (T )s

[BindM]
� ` N : (T )s �; x :T `M : T 0

� ` bind x = N in M : T 0 s v protect(T 0)

[Lift] � `M : T
� ` lift(M) : xTys

[Seq]
� ` N : xTys �; x :T `M : T 0

� ` seq x = N in M : T 0

s v protect(T 0)
T 0 pointed

[Rec]
�; x :T `M : T
� ` �x:M : T

T pointed

Fig. 6. Dependency Core Calculus

The sequent of DCC has the form � `M : T where M is an untyped �-term with

units, sums, recursion, lifting and two let-like constructs, bind and seq, while � is

a base, which is a �nite map from variables to types. The reduction relation �! is

generated from the following rules together with closure under all contexts.

(�x:M)N �! MfN=xg
case in1(N) of fini(yi):Migi=1;2 �! M1fN=y1g

seqx=lift(N) inM �! MfN=xg
bindx=N inM �! MfN=xg

Mf�x:M=xg�!N ) �x:M�!N

The typing rules are given in Figure 6, which are essentially the Curry (implicitly

typed) version of the original rules given in [3]. Apart from the implicit typing, these

rules are slightly generalised without changing semantics, so that the typability

is closed under reduction. See Appendix D.1 for illustration of the typing rules,

including the di�erence from the original presentation.

Simple examples of DCC terms follow. Below let B s
def
= () +s () and write H and

L for > and ? for readability.

(1) �x:x : BL ) BH is well-typed. This is a function which outputs a low-level

datum as a high-level datum, which is surely safe.

(2) �x:in1(()) : BH ) BL is well-typed. This function receives a high-level datum

and returns a low-level datum: if it non-trivially uses the former it violates the

secrecy, but since it does not it is safe.

(3) y : BL ) BH ; z : BH ` bind x = z in yx : BH is well-typed. This open term

shows a subtle use of bind, where a local violation of secrecy is permitted (a

high-level z is used as a low-level datum) while retaining safe information 
ow

globally. Note we also have y : BL ) BH ; z : BH ` (�x:yx)z : BH , indicating

bind is in fact redundant in the present formulation.

We list two basic syntactic properties of DCC-terms. In (2) the generalised rules

are crucial for the closure under reduction, see Remark 4.4 below.
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Proposition 4.2

(1 ) (typability) If � ` M : T in [3] then � ` Erase(M) : T in the present system

where Erase(M) erases all type annotations from M including coercions �s.

(2 ) (subject reduction) If � `M : T and M �!M 0
then � `M 0 : T .

Proof. (1) is by rule induction via Prop. 4.1. (2) uses a strengthened substitu-

tion lemma, showing �; x :T `M :T 0 and � ` N : (T )s with s v protect(T 0) implies

� `MfN=xg : T 0. See Appendix D.2.

We conclude the presentation of DCC by stipulating a Morris-like contextual con-

gruence on DCC-terms, relativised by secrecy levels. It suÆces to use the simplest

pointed observable. Let Os
def
= xunitys. Below M + stands for 9N:M �!� N 6�!.

De�nition 4.3 Fix some s. Then �=DCC

s is the maximum typed congruence on DCC-

terms such that whenever `M1;2 : Os , we have M + i� N +.

Remarks 4.4 (subject reduction in DCC) For reference we give instances of vio-

lation of subject reduction in DCC in the original typing rules [3] (cf. [30]). We

show examples in both implicitly typed and explicitly typed systems. For implicit

typing, we can take y : BL ) B
H ; z : BH ` bind x = z in yx : BH . Then we have

bind x = z in yx �! yz. However y :BL)B
H ; z :BH ` yz : BH is not well-typed

if we are to use the standard application rule (which does not in
ate the argument

type, cf. [App], Figure 6). For the explicitly typed system as in the original DCC, a

violation comes via the coercion �lM , which is symmetric to the issue noted above

for BindM. As a simple example, we have x :unit ` �>x : (unit)> and �> x �! x,
but x :unit 6` x : (unit)>. Thus the issue arises more directly: the same remedy as

we presented in Figure 6 can be used for the explicit typing.

Remarks 4.5 (redundancy of [UnitM] and [BindM]) In the typing rules in Figure

6, [UnitM] and [BindM] are redundant in the sense that they are admissible in the

system without them (regarding bind x = N in M as (�x:M)N). The permissibil-

ity of [BindM] is immediate. For [UnitM], we simultaneously establish the following

two statements:

(1) If � `M : T then � `M : (T )s for any s.

(2) If � � x :T `M : T 0 with protect(T 0) = s0, we have � � x : (T )s0 `M : T 0.

(1) is the required statement itself: (2) is needed for establishing (1) for [Rec].

4.2 Embedding DCC

The embedding of DCC in �LA

sec
is done by mapping non-pointed types to linear types

and pointed ones to aÆne ones. The lifting xTy is replaced by a transformation from
linearity to aÆnity. The overall scheme comes from [42; 34; 8]. First, the translation
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of types is performed on their normal forms.

(type) unit�s
def
= ()"Ls (T1 +sT2)

� def
= [T Æ

1 � T Æ
2 ]
"L
s xTy�s

def
= (T Æ)"As

[T1:::Tn�1
]
Æ def

=

(
(T Æ

1 :::T
Æ
n�1


�)!L 
 non-pointed

(T Æ
1 :::T

Æ
n�1


�)!A 
 pointed

(base) ;Æ
def
= ; (� � x :T )Æ

def
= �Æ � x :T Æ

(action) hT i�u
def
=

(
(u :T Æ!A)
B T non-pointed, �Æ = ?LA
 ?AB

u :T Æ 
 �Æ T pointed

We observe:

Lemma 4.6 tamp(T Æ) = > if T = [T1::Tn�1units]. tamp(T Æ) = protect(T ) if

else. Further tamp(hT i�u) = tamp(T Æ) for an arbitrary T and �.

Proof. For the �rst half, note tamp([T1:::TnT
0]Æ) = tamp(T 0) since md((Ti)Æs) 2

f?L; ?Ag always. Using this, we calculate: tamp([T1::Tnunits])
Æ = tamp(unit�s) = >.

Similarly, tamp([T1::Tn(T
0
1 +s T

0
2)]

Æ) = tamp((T 0
1 +s T

0
2)
�) = tamp([T 0

1
Æ
� T 0

2
Æ
]"Ls ) =

s = protect(T ). The case [T1::TnxT
0
ys] is the same. The second half is immediate

by noting types in �Æ are innocuous.

The translation of DCC-types into process types sheds a new light on DCC in a

way quite di�erent from their original denotational interpretation [3]: [T1:::Tn�1
]
is now interpreted as the abstraction of interaction which may inquire at each Ti,
to receive a datum (at speci�c secrecy levels) and �nally emits a datum at 
 again

(at a speci�c secrecy level). Among others we observe:

� The equation protect([T1:::Tn�1
]) = protect(
) is now given a clear operational

understanding: the translation of Ti has either ?L or ?A mode, so the tamper level
of Ti is irrelevant.

� s in units is ignored in the translation. [T1::Tnunits]
Æ says that, whatever the

results of interactions at T1:n, it simply signals a unique output, hence in e�ect

there is no 
ow of information.

Some examples of the encoding of channel types: B �s = [ � ]"Ls , B Æs = ([ � ]"Ls )!L ,

xB sy
�
L

def
= (B Æs )

"A
L , and (BL ) BH )Æ = (B ÆLB

�
H )!L . As an example of the encoding of

action types, we have hBH i
u
x:BL

= u :B ÆH !x :B ÆL .
The translation of DCC-terms into processes, written [[� `M : T ]]u (often omit-

ting � for brevity), closely follows that of types, and are given in Figure 16. The

translation follows [42; 35] and does not rely on secrecy annotation of DCC-types.

Some examples follow, again using H and L for > and ?. The third example shows

a usage of bind where (Inf) (cf. x 3.3, x 3.5) is needed to justify the well-typedness

of the encoding.

Example 4.7 (DCC translations) Below we omit secrecy levels when irrelevant.

(1) [[x : B ]]u
def
=!u(c):x(c0)c0[:cinl& :cinr]. Then

s̀ec
[[x : B ]]u . u : B ÆL ! x : B ÆH is

well-typed, since c0 has level L while c has level H .
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(2) [[�x:x : B)B ]]u
def
=!u(xc):x(c0)c0[:cinl& :cinr]. By the similar reasoning as (1),

this process is secure under u : (BL)BH )Æ but not in u : (BH )BL )
Æ.

(3) A DCC-term y :BL)BH ; z :BH ` bind x = z in yx : BH (cf. x4.1) is translated

into the following process (with some optimisation for simplicity).

!u(a):y(bc)(!b(e):z(f)fH [ :eLinl & :eLinl] j c[ :ainl & :ainr]):

Note y has type (B ÆLB
�
H )?L while z has type B ÆH , so that f is high while e is

low, making the process untypable without (Inf). Using (Inf), we can regard

the type of y as (B ÆH B
�
H )?L , making e high and the process as a whole typable.

Basic properties of the embedding follow. Below in (2) we de�ne 
O
Æ

u as follows:


O
Æ

u

def
= (� y)([u! y]O

Æ

j[y ! u]O
Æ

) where [x! x0]� appears in Appendix B.

Proposition 4.8

(1 ) (typability) If � ` M : T in DCC, then
s̀ec
[[M ]]u . hT i�u is well-typed in the

secrecy typing with in
ation.

(2 ) (adequacy) Let `M :Os . Then M + i� [[M ]]u 6�=
�
s 
Osu .

(3 ) (soundness) [[M1]]u �=
�
s [[M2]]u implies M1

�=DCC

s M2.

Proof. (1) is straightforward induction, using (Inf) for [App] and [BindM]. For

(2), the standard reasoning gives M + implies [[M ]]u !! ujR for some R, that
is [[M ]]u 6�=�

s 
u. For the other direction, we can obtain the stated result for the

embedding without secrecy level closely following the method in [9, x J.1]. Thus

in particular [[M ]]u 6�=
�
> 
u implies M +. But by �=�

>�
�=�
s this means [[M ]]u 6�=

�
s 
u

implies M +. (3) is standard, using (2).

We are now ready to establish the non-interference of DCC-terms. The result also

follows from the soundness of the denotational interpretation in [3]. The present

proof method has interest in that it smoothly extends to other settings such as

stateful computation, cf. x 7. Below and henceforth we only consider a substitution

whose codomain are closed terms. A closing substitution is the one whose domain

covers all free variables of a given term.

De�nition 4.9 We write E ` �1 �s �2 if, for well-typed substitutions �1;2, we
have �1(x) = �2(x) whenever protect(E(x)) v s.

Theorem 4.10 (non-interference) Let E ` M : Os . Then for any closing �1;2
s.t. E ` �1 �s �2, M�1 + i� M�2 +.

Proof. Let ` Ni :T (i = 1; 2) with protect(T ) 6v s. Since protect(T ) v tamp(T Æ)

and tamp(�) = tamp(A) t s for each � and s, we can apply Proposition 3.18 to

obtain [[N1]]x �=
�
s [[N2]]x under x :T Æ. Assume x :T `M :Os (the reasoning trivially

extends to multiple variables). We now reason as follows. The �rst implication is

by non-interference. The second implication is by the standard replication theorem
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[8, Proposition 7], while the third is by Proposition 4.8 (3).

[[N1]]x�=
�
s [[N2]]x ) (�x)([[M ]]uj[[N1]]x) �=

�
s (�x)([[M ]]uj[[N2]]x)

) [[MfN1=xg]]u �=
�
s [[MfN2=xg]]u

)MfN1=xg �=
DCC

s MfN2=xg

)MfN1=xg + i� MfN2=xg +;

hence done.

Remarks 4.11 (product) We brie
y discuss the encoding of product types which

are omitted from our discussion of DCC so far. The encoding follows that of [35;

16] where each component of a product type (modulo associativity and other basic

equations) is given a distinct name. This necessitates a mapping from a variable

of type 
1 � :: � 
n to a sequence of names x1::xn. For example, a variable x of

type unit� unit is translated with the map x 7! x1x2 and two names u1 and u2
as follows:

!u1(c1):x1(c
0
1)c

0
1:c1 j !u2(c2):x2(c

0
2)c

0
2:c2

whose action type becomes 
i=1;2ui : unit
Æ! xi : unit

Æ. With this extension, all

preceding results and reasoning extends to the calculus with products.

Remarks 4.12 ([BindM] and (Inf)) In Example 4.7 (3), we observed the need of

(Inf) for justifying the encoding of [BindM] (which corrects our development in [30]).

However the encoding of many signi�cant usage of [BindM] in the original DCC

are typable in the secrecy typing without (Inf). Examples include the generalised

versions of [Case] and [Seq] used in Figure 6. It remains to be seen in which practical

situations [BindM] becomes indispensable in a way which necessitates (Inf) for its

justi�cation.

4.3 Call-by-Value Dependency Core Calculus

This subsection introduces a call-by-value version of DCC. Our goal is to experi-

ment with the e�ectiveness of the schema mentioned in Introduction, by developing

a type-based secrecy analysis for call-by-value functional calculi by re
ecting the

secrecy analysis in �LA. The resulting call-by-value calculus is useful when we con-

sider combination with imperative features, including concurrency. It is di�erent

from the calculus called vDCC in [3] in that it is directly based on call-by-value

evaluation. To distinguish the calculus from vDCC, the calculus is called DCCv.

We use PCFv-like types and syntax, which are more convenient for our later ap-

plications (we can similarly use DCC-like syntax). We �rst give the grammar of

types, which use non-standard lifting motivated from the �LA-encoding.

(common) T ::= S j U j (T )s

(total) S ::= Ns j S)T (partial) U ::= xSys

In the grammar above, S is a total type while U is a partial one. We call a type of

form S)U pointed (note pointed types are total). Notice we only allow total types

to occur at the argument position of an arrow type. This does not lose generality

since we can recover two kinds of partial arrow types (cf. [15]) in the following way.
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[Var] E; x :S ` x : (S)s [Num] E ` n : Ns

[Succ] E `M : Ns
E ` succ(M) : Ns

[If ] E `M : Ns E ` Ni : T
E ` if M then N1 else N2 : T

s v protect(T )

[Lam]
E; x :S `M : T

E ` �x:M : S)T
[App]

E `M : S)T E ` N : (S)s
E `MN : T

s v protect(T )

[Lift] E `M : S
E `M : xSys

[Seq]
E ` N : xSys E; x :S `M : U
E ` seq x = N in M : U

s v protect(U)

[Rec]
E; x :S ` �y:M : S
E ` �x:�y:M : S

S pointed

Fig. 7. Typing Rules of Call-by-Value DCC

� U**U 0 def
= S ) U 0 (with U

def
= xSys), which is a total type. Intuitively, this

type represents a closure which expects a possibly nonterminating argument and,

therefore, produces a possibly nonterminating datum.

� U**sU
0 def= xU**U 0

ys, which is a partial type (this notation restores the partial

function space constructor in our original presentation in [31]). This is a partial

version of **, and is convenient when we have successive partial applications.

These reductions are later illustrated through their representation in �LA. Equations

and protection levels over types are de�ned as before:

(Ns )s0 = (Nsts0 ); (xTys)s0 = xTysts0 ; and (S)T )s = S)(T )s:
protect(Ns ) = protect(xTys) = s and protect(S)T ) = protect(T )

The equations above again give normal forms which have no occurrence of types of

the form (T )s. For terms we use the standard PCFv syntax extended with seq:

M ::= n j succ(M) j pred(M) j x j �x:M j MN j �x:�y:M j seq x = N in M

(we omit bind since it becomes redundant in our presentation, cf. Remark 4.5).

The reduction �! in DCCv is call-by-value, generated from the following rules

together with closure under all contexts except �-abstraction. V stands for either

a variable, a natural number or a �-abstraction.

succ(n) �! n+ 1

pred(n) �! n� 1

(�x:M)V �! MfV=xg
seqx=V inM �! MfV=xg

((�y:M)f�x:�y:M=xg)V �!N ) (�x:�y:M)V �!N

The typing rules of DCCv are given in Figure 7, using the sequent of the form

E `M : T where we take base E to be a �nite map from variables to total types.

We omit the rule for pred(M), which is typed as succ(M). The main di�erence

from the typing rules for DCC lies in its distinction between total types and partial

types. It is notable all typable values can be typed by total types: in this sense

total types are types for values. The restriction of bases to total types does not lose

generality: in fact, via the translation of partial types to total types noted above,
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we can derive the following typing rules (which assume bases with partial types) as

permissible rules of the present system.

[LamP]
E; x :U 0

`M : U

E ` �x:M : U 0**U
[AppP]

E `M :U1**U2 E ` N :U1

E `MN : U2

protect(U1)

v protect(U2)

For justi�cation we encode the partial application MN in [AppP] into seq x =

N in Mx, which gives us, via [Seq], the stated side condition. We can further

derive the introduction/elimination rules of **s. Including these derivations, the

types and typing rules of DCCv are best illustrated through their embedding in

�LA. Here we brie
y discuss two simple DCCv-terms, focussing on partiality.

Example 4.13 (DCCv-terms) Below we write N for N? for brevity.

(1) Assume E ` N : xNyM . Then E � y : N ) xNyH ` seq x = N in yx : xNyH is

well-typed, with M being a secrecy level between H and L. The use of possibly
divergingN in seq, to be observed at levelM , is justi�ed by having a high-level

partial type for the whole term. The term �rst evaluates N to, say, V (if it

does not diverge), then evaluates yV .

(2) Using [LamP] and [AppP] given above, as well as the notation**s, the sequent `

�x:�y:xy : (xNyL**LxNyH )**LxNyL**MxNyH is well-typed. This term denotes

a higher-order partial function, receiving two potentially diverging data and

applying one to the other. The type speci�es a level of observation at each

termination. The initial termination may be observed at L. Next the result

of application of the �rst argument may be observed at level M . Finally the

result of the second application may be observed at H .

A basic property of DCCv follows.

Proposition 4.14 (subject reduction in DCCv) If E `M : T and M �!M 0
then

E `M 0 : T .

Proof. For total types we show a strengthened (call-by-value) substitution

lemma as in DCC. For partial types we prove E; x : S ` M : T 0 and E ` V : xSys
with s v protect(T 0) implies E `MfV=xg : T 0. See Appendix D.

Remarks 4.15 (DCCv-typing) DCCv-typing in Figure 7 simpli�es our presenta-

tion in [30], while maintaining its essential features. In particular, [LamP] and

[AppP] in [30] are derivable as the lifted version of [LamP] and [AppP] given above,

while [Rec] in [30] is the same as [Rec] in Figure 7 via the embedding of lifted partial

arrow types to pointed types (in the present sense). The simpli�cation comes from

the analysis of the �LA-encoding, given in the next subsection.

Remarks 4.16 (sums and products) For reference we brie
y outline a treatment

of sums and products (both using eager evaluation). In both, we only combine total

types, i.e. they have the form S1+sS2 and S1�S2 (note product does not mention
a secrecy level). Typing rules are given accordingly. The use of total types suÆces

since, for example, given U1 = xS1ys1 and U2 = xS2ys2 , we can encode their product

as xS1 � S2ys1us2 .
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4.4 Embedding DCCv: Types

As we already noted, the construction of DCCv is strongly motivated by the secrecy

analysis in x3 over the standard process encoding of call-by-value functions. The

embedding is also used for proving the noninterference result. We �rst present the

encoding of types.

(type) S�
def
= (SÆ)"L U�

s

def
= (UÆ)"As (s = protect(U))

N
Æ
s = ([
i2! ]"Ls )!L (S)T )Æ

def
=

(
(SÆT �)!L T total

(SÆT �)!A T partial

xSyÆs
def
= SÆ

(base) ;Æ
def
= ; (E � x :S)Æ

def
= EÆ � x :SÆ

(action) hT iEu
def
= u :T � 
EÆ

In the standard process encoding of call-by-value computation, interaction starts

from an output [42; 29; 16]. The encoding above re
ects this idea, motivating the

construction of DCCv-types. Among others we observe:

(1) The encoding T � indicates whether this output comes from a linear channel or

from an aÆne channel. If the channel is aÆne, then this emittance itself has

information, hence we should specify its secrecy level. This is s in xSys.

(2) The encoding of bases (as well as types in contravariant positions) uses the

dual of (�)Æ, and shows why it suÆces to use only total types in them in the

DCCv-typing. Even if we use a partial type, say, xSys, in a base, its translation

is the same as SÆ, so that it does not di�er from having just S.

(3) hT iEu represents the operational structure of call-by-value which is distinct from

that of call-by-name. While, as before, the process may still inquire at the

environment by ?L=?A-actions, it directly emits (if ever) information at u, rather
than getting invoked at it.

Simple examples of encodings follow.

Example 4.17 (encoded DCCv types)

(1) N ) N and its (least-level) lifting xN ) NyL are respectively translated as

((NÆN� )!L)"L and ((NÆN� )!L)
"A
L . Thus the lifting in DCCv simply changes "L

to "A and adds a mandatory secrecy level (which is essentially the canonical

embedding of a total type to its partial counterpart [29]).

(2) Consider xNy**LxNy**MxNyH . This lifted partial arrow type is translated as

((NÆ ((NÆ (NÆ )
"A
H )!A)

"A
M )!A)

"A
L , indicating the behaviour which �rst signals at L,

then, if the result of the �rst application terminates, signals at M , and �nally

if the second application terminates, signals at H , emitting a natural number.

(3) hxNyH i
E
u with E

def
= x :N is encoded as u : (NÆ )"AH 
 x :NÆ . This type represents

the behaviour which may inquire at x for a natural number and may emit one

at u. The use of x : NÆ in the environment indicates we already assume that

(the datum corresponding to) x is already in a terminated form.
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The protection level and the tamper level completely match via the encoding.

Proposition 4.18 protect(T ) = tamp(T �) for each T . Further tamp(hT iEu ) =

tamp(T �) for each T , u and E.

4.5 Embedding DCCv: Terms and Noninterference

Figure 17 in Appendix G lists the encoding of DCCv-terms. The encoding is stan-

dard [42; 29; 16]. We discuss some of the key aspects of the encoding.

(1) hV iu always outputs at u immediately, having the form uhxi if V = x, and
u(c)P if else.

(2) The application hMNiu
def
= (�m)(hMim j m(a):(� n)(hNin j n(b):ahbui) �rst

waits for hMim to provide the name of a function a via m; then it waits for

N to output an argument b via n. Finally it sends b and the name u of a

�nal value to the function via a. Note m and n are potential points at which

information may 
ow down if they are aÆne (as in the derived [AppP]).

(3) seq is encoded as hseq x = N in Miu � (� n)(n(x):hMiujhNin). Here n is

aÆne, hence it can receive a non-trivial information from hNin. Another use

of aÆnity is in recursion which relies on the fact that x in h�x:�y:Miu should

be typed with a ?A-type (by the DCCv-type of x being pointed).

The typing rules of DCCv are easily justi�able by the secrecy typing in �LA via

the encoding. Here we only show the case of [Seq]. In this rule we wish to infer

E ` seq x = N in M : U from E ` N : xSys and E � x : S ` M : U . Assuming

the encoding of these terms are well-typed, our purpose is to make the following

derivation secure.

(In#A , Par, Res)

s̀ec
hNin . n : ((SÆ)"As )!A 
 EÆ

s̀ec
hMiu . u :U� 
EÆ 
 x :SÆ

s̀ec
(� n)(n(x):hMiu j hNin) . u : (U�)!A 
EÆ

Secrecy-wise, the only non-trivial inference is for the aÆne input \n(x)", using the
secure version of (In#A). The secrecy condition of this rule requires (apart from the

aÆnity of U�) that s v tamp(U�) = protect(U) (cf. Proposition 4.18), reaching the

side condition in [Seq].

Typability of other encodings can similarly be veri�ed, so that we obtain:

Proposition 4.19 (typability) If E ` M : T in DCCv then
s̀ec
hMiu . hT iEu is

well-typed in the secrecy analysis with in
ation.

As before, the non-interference in DCCv is proved via Proposition 4.19 and com-

putational adequacy. The argument is identical except for the use of observables

at xNys . We conclude:

Theorem 4.20 (non-interference) Let E ` M : xNys . Then for any closing �1;2
s.t. E ` �1 �s �2, M�1 + i� M�2 +.
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5. STATE IN LINEAR/AFFINE �-CALCULUS

5.1 Reference Agent

The purpose of this section is to introduce a simple extension of the �LA-calculus

to stateful computation. A basic stateful process is an encoding of an imperative

variable, which we call reference. Using a recursive de�nition (which is often more

convenient for representing stateful processes than replication), we can de�ne this

agent as follows.

Refhxvi
def
= x[(c):(Refhxvijchvi)&(v0e):(Refhxv0ije)] (3)

In Refhxvi, x is its principal channel and v is (a pointer to) its stored value. This

process waits for invocation with two branches at x, with its right branch for reading
and its left branch for writing. The read branch receives a single name c as a

continuation from the request, which is used to return its content v. In the write

branch, it receives two names, v0 and e, and uses v0 as its new value (thus changing

its state) and acknowledge the receipt via e. Writing down these behaviours as

reduction, we can formalise the dynamics of Refhxvi as follows.

Refhxvi j xinlhci �! Refhxvi j chvi (4)

Refhxvi j xinrhv0ci �! Refhxv0i j c (5)

As is well-known, combination of state and concurrency leads to a loss of Church-

Rosser property via interference [37; 38; 40], as the following process shows:

R
def
= Refhx1i j xinl(2c)c:0 j xinr(c)c(y):y(e)e[:uinn & :
u] (6)

where Refhxni stands for (� v)(Refhxvij[[n]]v), and xinr(nc)P for xinr(wc)([[n]]w jP ).
By the racing condition at x, this agent may or may not emit at u, i.e. either:

R �!+ Refhx1i jxinr(2c)c:0 juinn �!
+ Refhx2i juinn or R �!+ Refhx2i j
u.

Hence the write action at x a�ects termination at u.
Another signi�cant property of a reference agent is that we can represent a large

class of stateful and non-deterministic behaviours by combining references and repli-

cation (for a formal related result in the context of sequential computation, see [5]).

As an example, a counter agent which increments a number at each time it is in-

voked, can be de�ned from a reference and replication as follows.

Counterhxi
def
= (� y)(!x(f):yinl(c)c(n):yinr(me)([[succhni]]mje:fhni)jRefhy0i) (7)

where [[succhni]]m is a successor of n de�ned as [[succhni]]m
def
=!m(c):n(e)e[&i :cini+1].

This agent �rst reads the value n stored in a local reference and write n+ 1 to it,

and �nally returns n to port f .
In the light of its expressiveness as well as for the sake of a clean presentation,

we incorporate state into �LA by introducing a reference as a constant. The syntax

of processes now becomes:

P :: = ::: j Refhxyi

The constant Refhxyi has the same reduction rules as (4,5) above. Since �LA is not

sequential, the incorporation of references results in nondeterminism.
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(In!M)

` P . ~y :~� 
 ?A-x

`!x(~y):P . x : (~�)!M
A

(Ref)

�

` Refhxyi . x : refh�i
y :�

(Read)

�

` xinlhci . x : refh�i
c : (� )"L

(Write)

�

` xinrhvci . x : refh� i
v :�
c : ()"L

Fig. 8. Typing Stateful Actions

5.2 Typing Stateful Agents

Action Modes. In the following incorporation of stateful interaction, our main

goal is to maintain the behavioural constraint of (pure) linear/aÆne interaction

for processes typed with original �LA-types, while seamlessly integrating them with

stateful behaviour. The following action modes are additionally used.

!LM Linear stateful server ?LM Linear stateful client

!M AÆne stateful server ?M AÆne stateful output

These modes are stateful versions of !L, ?L, !A, and ?A, respectively. !LM and ?LM are

mutually dual, while !M and ?M are mutually dual. We add !LM and !M (resp. ?LM
and ?M) to M! (resp. M?).

Channel Types. Using the added action modes, the channel types are extended

by the following syntax.

�I ::= ::: j (~� )!M j refh�i �O ::= ::: j (~� )?M j refh�i

where refh�i
def
= [(�)"L&� ()"L ]!LM with md(�) 2 M! , which is a type of reference

agents whose value has type � . For simplicity we only consider reference types for

stateful linear replication and unary types for stateful aÆne replication, which is

enough for our applications (aÆne stateful branching/selection types follow their

unary counterpart; the incorporation of general linear stateful types are outlined

in [30]). A reference has the linear behaviour since it necessarily returns an answer

(resp. acknowledges) whenever it is read (resp. written). This linear nature of

reference is essential for the secrecy analysis in the next section.

Using extended M! and M? , the well-formedness of channel types are de�ned in

the same way as before. For example, the well-formedness of (~� )!M and (~� )?M follows

(C3) in De�nition 2.2, so the former should carry a unique "A-channel and zero

or more ?-channels, dually for the latter. Note also refh�i is indeed well-formed

whenever md(�) 2M! .

Typing. The typing rules are given by Figure 8 combined with the rules in Figure 3.

?A now indicate A may include ?LM=?M-types. (In
!M) is de�ned as in (In!A). In (Ref),

we note md(�) 2M! by the well-formedness. (Read) is the left selection which �rst

inquires at a reference, then receives a value; (Write) is the right selection which
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writes to a reference then gets an acknowledgement. These rules can be understood

in the light of the reduction rules given in (4) and (5) in x 5.1. A few examples of

stateful processes follow.

Example 5.1 (reference)

(1) (reference as a product) It is well-known that we can encode an imperative

variable as a pair of functions. For example, a variable x can be represented as

h�y:!x; �v:x := vi. We can represent this behaviour as the following process:

ProdVarrx
def
= (� w)(!r(c):xinl(c0)c0(v):chvi j !w(vc):xinrhvci). We can then

type this agent as ` ProdVarrx . r : ((�)"A )!M 
 x : refh�i.

(2) (newref) In ML, Ref M creates a new reference and stores M in it (after

evaluating M). To represent Ref as a process, we �rst decompose it into �ner

operations: �m:new y 7! m in y (where new y 7! V inN creates a new reference

y with value V in N). This is then encoded as u(c)!c(mz):z(y)Refhymi, which
is well-typed under u : ((� (refh�i)"L )!L)"L . The process �rst signals itself, then

receives a value v and a return channel z, and �nally sends, via z, a pointer to
a new reference with value v.

(3) (read) In ML, !M indicates the result of evaluating M into a reference label

and reading from it. To represent the operation ! as a process, we again �rst

decompose it into �m:(let x = !m in x), using �ner operations. We can then

represent this expression as u(c)!c(mz):minl(c)c(x):zhxi. This process has the
typing u : ((refh�i(�)"A )!A)"L , assuming the type of x is � .

The stateful extension of �LA, written �LAM, satis�es the subject reduction (which is

established for its secure version in the next section) and allows faithful embeddings

of languages with imperative features. Using �LAM, the next section develops a

theory of secrecy analysis for imperative, concurrent computation.

6. SECRECY WITH STATE

6.1 Secrecy Annotation on Channel Types.

We start from annotating the extended set of channel types as follows.

�I ::= ::: j (~� )!Ms j refsh�i �O ::= ::: j (~� )?Ms j refsh�i

where refsh�i is a reference type with secrecy level s: refsh�i
def
= [(�)"L&� ()"L ]!LMs

(with md(�) 2 M! by well-fomedness). Note a reference type can carry another

reference type, noting M! now includes !LM and !M.

6.2 Re�ned Typing for Stateful Agents

Motivation. We use a re�ned typing for reference types based on a distinction

between read and write modes, rather than by building the secrecy analysis directly

on �LAM. This is needed for a precise secrecy analysis for stateful processes. We

illustrate the idea with a concrete example. First consider the following imperative

command (we assume x is an imperative variable of a boolean type; !x reads the

content of x).

C
def
= if !x then C1 else C2:
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The encoding of [[C]]f would be given as follows (with B
Æ
s = ([ � ]"Ls )!L):

` xinl(c)c(b):b(g)g[:[[C1]]f&:[[C2]]f ] . x : refshB Æs i 
A (8)

We leave the unknown part of the action type as A. Note the �rst action of this

process reads from x, which does not change the state of x, even though x has a

mutable type. So the tampering level of this process at x should not be recorded.

For example, even if s = ?, if C1;2 tamper only at the high level, the command as

a whole should be regarded as a high-level command.

Now suppose C1 is y := 1 and C2 is y := 2. Each command writes a natural

number at a variable y, whose encoding is given by:

[[y := n]]f
def
= (� c)(yinrhcfi j [[n]]c) (9)

where f is a channel for acknowledgement. The typing of the process in (8) can

now be elaborated as follows.

x : refshB Æs i 
 y : refs0hN
Æ
s0 i 
 f : ()"L (10)

(f has a truly linear output since command \y := n" always terminates). The

actions of this process at y changes the state of the reference y in the environment,

hence the tamper level of an output at y should be recorded, unlike x. Thus, if the
level of the boolean type, s, is high, then for g[:[[C1]]f&:[[C2]]f ] in (10) to be typable,

s0 should also be high (cf. (Bra#L ) in Figure 5), conforming to the treatment of

conditionals in [58; 62].

This example suggests the distinction between reading and writing at a mutable

type is fundamental for assigning an appropriate tamper level to stateful processes.

The typing in (10) however does not distinguish the reading at x from the writing

at y: the write mode annotation, which we introduce next, is used to supply this

very information.

Annotated Typing. In the re�ned typing, we annotate a channel typed with a

?LM=?M-type by the write mode w if the channel can be used for mutating interaction,
using the notation xw : � . Otherwise the name is not annotated. Thus xw : refsh�i
indicates there may be a write action to x, while x : refsh�i indicates there can only

be a read action at x. For uniformity we assume mutating channels are annotated

with " when it has no write-mode annotation, writing x" : � , and let Æ range over

fw; "g. In spite of this, we often omit " from x" : � . The type assignment for

?LM=?M-types obeys the following algebra. Let md(�) 2 f?LM; ?Mg below.

xw :� � xÆ :� = xÆ :� � xw :� = xw :� x :� � x :� = x :�

The composition with � is as before, i.e. xÆ : � � x : � = x : � . The tampering level

for annotated typing is now given as follows.

De�nition 6.1 (tampering) tamp(�) is de�ned by the same clauses as De�nition

3.2, except we stipulate � such that md(�) 2 f?LM; ?Mg is immediately tampering.

tamp(A) is then given by:

tamp(A)
def
= uf tamp(�) j (x :� 2A and md(�) 62 f?LM; ?Mg) or x

w :� 2Ag
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Example 6.2 (tampering level for references) (~� )?Ms is immediately tampering

since the opponent !x(~y):P in the environment may expose free write actions from

P which a�ects the environment. Similarly refsh�i is immediately tampering. How-
ever in the de�nition of tamp(A), we do not record s of refsh�i if it is not annotated
with w. Thus, for example, tamp(xw : refsh�i) = s, but tamp(x : refsh�i) = >.

6.3 Structural Security

A key element in secrecy typing for stateful agents is an additional well-formedness

condition for channel types. It re
ects a di�erent way in which information leaks

in stateful computing. We �rst state the condition, then illustrate the idea.

De�nition 6.3 (structural security) � is structurally secure if for each occurrence

� 0 in � (1) sec(� 0) v tamp(� 0) when md(� 0) 2 f!LM; !Mg, and (2) sec(� 0) v tamp(� 0)
when md(� 0) 2 f?M; ?LMg.

As a simple example, refLhBH i is structurally secure while refHhBL i is not, with H
and L standing for > and ?. The de�nition says a mutable type should have higher

tampering levels in carried types than enclosing types. This is to prevent leakage of

information, as the following example shows (the process already appeared in (6)

in x 5.1: the notations Refhx1i and xin2(2c)P are also illustrated there).

R
def
= Refhx1i j xinl(2c)c:0 j xinr(c)c(y):y(e)e[:uinn & :
u]

As we already observed in x 5.1, the write action at the channel x by xin2(2c)P
may a�ect termination at a channel u. Now let N�s stand for ([�i2! ]"As )!A . Assume

x has reference type refHhN
�
L i violating structural security in De�nition 6.3 (here

u should have type N
�
L due to non-termination). Then we can observe that the

high-level channel x a�ects an action at a low-level channel u.
The anomaly takes place because stateful agents can transmit information using

time-di�erence, storing what has happened in its state to transmit it later [42].

Structurally secure types prevent this leakage by requiring that a stateful replication

to transmit information at the same, or higher, level than it receives. Hereafter we

assume all channel types are structurally secure.

6.4 Secrecy Typing with State

The secrecy typing for stateful processes adds the additional rules in Figure 9 as

well as re�ning the existing rules as given in Figure 10. Other rules remain the

same as before (the summary of all secrecy typing rules for �LAM is given in Figure

19 in Appendix, the last page). A brief illustration of these rules follow.

� (In!M) requires the secrecy level s to be lower than the tampering level of body P ,
since it directly receives information. Note we allow the pre�xing of free mutating

outputs with write modes (which we never allow for stateless !LM=!M-replications).

� (Out?M) not only annotate its subject with w, but also its object yi if it has a
mutable type. Intuitively this is because a communicated name may as well be

used, in the receiving process, for both reading and writing.

� (Ref) is the same as in Figure 8 except we annotate y (which points to the content
of the reference) with the w-mode when � is mutable. This is because when y is
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(In!M) s v tamp(A)

s̀ec
P . ~y :~� 
 ?A-x

s̀ec
!x(~y):P . x : (~� )!Ms 
A

(Out?M)

ifmd(�i)2f!LM; !Mg then Æi=w else Æi="

` xh~yi . xw : (~� )?M
 (�i y
Æi
i :�i)

(Ref)

if md(�)2f!LM; !Mg then Æ=w else Æ="

s̀ec
Refhxyi . x : refsh�i
y

Æ :�

(Read)

ifmd(�)2f!LM; !Mg then Æ=w else Æ="

s̀ec
xinlhci . xÆ : refsh�i
c : (�)

"L

(Write)

ifmd(�)2f!LM; !Mg then Æ=w else Æ="

s̀ec
xinrhvci . xw : refsh�i
v

Æ :�
c : ()"L

(Weak-w)

s̀ec
P . A
 x :� md(�) 2 f?LM; ?Mg

s̀ec
P . A
 xw :�

Fig. 9. Secrecy Typing for Stateful Actions (added rules)

later sent to the environment, y may as well be used for writing. s should be lower
than tamp(�) by structural security.

� In (Read), if md(�) 2 f!LM; !Mg, then x is given the write mode, even if x is in fact

\read", at least directly in this action, which is dual to (Ref) above. Note also

tamp(�) v s by structural security. The annotation of v in (Write) is understood

as (Out) above.

� (Weak-w) adds the write mode later (which is needed for subject reduction, cf. Ap-

pendix C). Note the original (Weak) rule can be used to add ?LM=?M-types without
the write mode, which makes sense since weakened type has no e�ect.

� For the re�ned rules, possible annotations on objects in (Out) and (Sel) are un-

derstood as in (Out?M). (In!A) and (Bra!A) re�ne the typing for stateless aÆne

replicated inputs, exploiting the distinction between read/write modes. ?"�A indi-

cates md(A) � f?LM; ?Mg such that no write action occurs in A. These rules allow

(Out) (pO 6= ?M)

ifmd(�i)2f!LM; !Mg then Æi=w else Æi="

` xh~yi . x : (~� )pO
 (�i y
Æi
i :�i)

(Sel) (pO 6= ?LM)

ifmd(�ij)2f!LM; !Mg then Æj=w else Æj="

` xinih~yi . x : [�i~�i]
pO
 (�jy

Æj
j :�ij)

(In!A)

s̀ec
P . ~y :~� 
 ?L?A?

"
�A

-x

s̀ec
!x(~y):P . x : (~� )!A
A

(Bra!A)

` Pi . ~yi :~�i 
 ?L?A?
"
�A

-x

`!x[&i(~yi):Pi] . x : [&i~�i]
!A
A

Fig. 10. Secrecy Typing for Stateful Actions (Re�ned Rules)
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\pure" aÆne replicated outputs to cause a read action at a mutable channel. We

note the same re�nement cannot be done for (In!L) and (Bra!L) because it can lead

to the violation of linearity.

Example 6.4 (secrecy typing for state)

(1)
s̀ec
[[y := n]]f . yw : refshN

Æ
s0 i 
 f : ()"L if s v s0 (cf. (9) in x 6.2).

(2)
s̀ec
[[if !x then y := 1 else y := 2]]f . x : refshB Æsb i 
 yw : refs0hNÆsn i 
 f : ()"L if

s v sb v s0 v sn (cf. (8) in x 6.2).

(3) Let [[let new y 7! x in y]]m
def
= m(y)Refhyxi (cf. Example 5.1 (2)). Then we

have
s̀ec

[[let new y 7! x in y]]m . x : � 
 m : (refsh�i)
"L with s v tamp(�).

Then the process representing �x:let new y 7! x in y (cf. Example 5.1 (2)) is

typable with type u : ((� (refsh�i)
"L )!L)"L .

(4)
s̀ec
[[let x = !y in x]]u . u :� 
 yÆ : refsh�i if s v tamp(�) (cf. Example 5.1 (3))

where Æ = " if md(�) 2 f?L; ?Ag; else Æ = w.

(5)
s̀ec
Counterhxi . x : ((NÆsn )

"A
s )!Ms0 if s0 v s v sn (cf. (7) in x 5.1).

6.5 Basic Properties of Secrecy Typing in �LAM

We start from the subject reduction theorem.

Proposition 6.5 (subject reduction) If
s̀ec
P . A and P !! Q then

s̀ec
Q . A.

Proof. As in the proof of Proposition 3.6, we �rst prove the substitution lemma.

Since w may be attached to each name with mutable type ?LM=?M, we need to prove

the following additional substitution lemma.

Suppose
s̀ec
P . xÆ :� 
 yÆ

0

:� 
A with either Æ = Æ0 or Æ = " and Æ0 = w.

Then (a)
s̀ec
Pfy=xg . yÆ

0

:� 
A and (b) tamp(xÆ :� 
 yÆ
0

:� 
A) =
tamp(yÆ

0

:� 
 A).

The remaining interesting case is references, which is similarly proved in [65, Propo-

sition 3]. See Appendix C.3 for the full proof.

There are several ways for de�ning a secrecy-sensitive contextual congruence for

�LAM. If we use the same clause as given in De�nition 3.8, Section 3, we obtain a

version of May-equivalence. In the presence of nondeterminism, however, it is often

more convenient to use those equivalences which capture branching structure, such

as failure/testing equivalences and bisimulations. Here we consider the equality

over stateful processes based on reduction-closure [28]. Below we say A is closed

when md(A) �M! [ flg.

De�nition 6.6 A typed congruence �= on secure processes in �LAM is reduction-

closed when
s̀ec
P �= Q . A with A closed and P !! P 0 implies Q!! Q0 such that

s̀ec
P 0 �= Q0 . A. It is s-sound if it is reduction-closed and, moreover, whenever

s̀ec
P �= Q . x : ()"As , we have P +x i� Q +x. The maximum s-sound congruence

exists for each s, which we denote by �=�
s .
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The restriction of this congruence to secure �LA-processes coincides with �=s in

Section 3, so our overloaded notation is consistent. As before, a basic tool for

reasoning about �=s in �LAM is a context lemma, whose form is more complicated

than before due to nondeterminism.

Lemma 6.7 (context) Let
s̀ec

P1;2 . A in �LAM
. Then P1 �=s P2 if and only if

P1RP2 for some R satisfying the following condition: whenever
s̀ec
Q1 RQ2 . B,

(1 ) For each
s̀ec
R . C s.t. B � C, we have

s̀ec
Q1jRRQ2jR . B � C

(2 ) if Q1 �! Q0
1 with B closed, then Q2 !! Q0

2 s.t. Q0
1 RQ

0
2, and the symmetric

case, and

(3 ) if B = C 
 x : ()"As with C closed, then Q1 +x i� Q2 +x.

Proof. The \only if" direction is immediate. The \if" direction is shown by

closing the relation R under all contexts, and by showing it is sound, which is

standard [36; 28].

As in �LA, an alternative characterisation of �=s can be given by a secrecy-sensitive

bisimulation, see [67]. The context lemma above can also be sharpened by restrict-

ing the form of composed type C, in a form close to Lemma 3.10, though the above

form suÆces for its use in the present paper.

Finally we extend the noninterference result to stateful processes.

Proposition 6.8 (non-interference) Let
s̀ec

P1;2 . A such that tamp(A) = s.
Then s 6v s0 implies

s̀ec
P1 �=

�
s0 P2 . A.

The statement is literally the same as the noninterference theorem for stateless

processes (Proposition 3.11). However the involved equivalence is di�erent which

now uses reduction-closure. The proof of Proposition 6.8 is given in [31], which uses,

following the proof of noninterference of secure �LA-processes, an inductive causality

analysis of secure stateful processes, �nally appealing to the context lemma above.

6.6 Re�nement by Subtyping and In
ation

We can consistently extend the secrecy subtyping for �LA discussed in x3.4 to stateful

processes, by adding the following subtyping rules (retaining all preceding subtyping

rules and the subsumption rule).

�i � � 0i s v s0

(~� )?Ms � (~� 0)?Ms0

s v s0

refsh�i � refs0h�i

In the last rule, we cannot vary � in refsh�i
def
= [(�)"L&� ()"L ]!LMs since it occurs both

as itself (covariant position) and as its dual (contravariant position), cf. [51]. As

in x3.4, we can translate away the subsumption into copy-cats (see Appendix B

for details). This translation reduces the subtyping to the basic analysis in �LAM,

leading to the noninterference for the subtyped analysis.

The re�nement based on in
ation (cf. x 3.5) is also consistently extendible to

stateful processes with bound output, using the same rule and reaching the same

noninterference result. The proof of subject reduction in Appendix C.2 extends

without change: the proof of noninterference is given in [31].
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7. CONCURRENCY, REFERENCE AND PROCEDURE

In this section we use the secrecy analysis in �LAM for the development of a secrecy

typing for concurrent programs with general -references and procedures. The lan-

guage is based on Smith-Volpano's secure multi-threaded imperative calculus. The

typing rules are directly suggested from the secrecy typing in �LAM. Among oth-

ers we establish (1) the conservativity result for Smith's recent secrecy discipline

[57] when restricted to �rst-order references; and (2) the noninterference for the

language via its reduction to the secrecy analysis in �LAM.

7.1 A Volpano-Smith Language

We brie
y review the syntax and operational semantics of an imperative language

we consider. Below x; y; : : : range over a countable set of names, used both for

(function) variables and labels for reference.

(expression) e ::= 1; 2; ::: j x j succ(e) j pred(e)

j �x:e j (e1)e2 j c return e j seq x = e in e0

(value) v ::= 1; 2; ::: j x j �x:e

(command) c ::= skip j x := v j c1; c2

j if v then c1 else c2

j while ! y do c

j let x = e in c

j let x = ! y in c

j new x 7! v in c

(threads) o ::=
Q

i ci

The syntax of commands is from [58], extended with general references, local vari-

able declaration and higher-order procedures. We use two let commands for simpler

presentation of typing rules, though we shall be sometimes informal about them,

writing e.g. x := !y instead of let z = !y in x := z. For brevity of presentation

we do not include lets and new in expressions (which can be treated similarly in

both dynamics and types). seq is used in expressions following DCC and DCCv,

since it gives a simpler presentation of typing rules.

The reduction rules of commands are given in Figure 11, which uses the con-

�guration of the form (c; �)X �! (c0; �0)X0 where �; �0; : : : denote environments,

i.e. �nite maps from names to values such that X � dom(�) and X 0 � dom(�0). X
in (c; �)X indicates hidden (local) references. Names in X are bound occurrences in

(c; �)X , and assume the standard �-equality �� on con�gurations combined with

other standard bindings in commands and expressions. We stipulate:

(c; �)Y � (c0; �0)Y 0 ((c; �)Y �� (c
0; �0)Y 0)

((new x 7! v in c1); c2; �)Y � (new x 7! v in (c1; c2); �)Y (x 62 fv(c2))
(new x 7! v in c; �)Y � (c; � � x 7! v)Y [fxg (x 62 fv(�))

For expressions we assume the single-step call-by-value reduction following DCCv,

which again takes the form (e; �)X �! (e; �)X0 due to the new name creation inside
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(x := v; �)X �! (skip; �[x 7! v])X

(skip; c; �)X �! (c; �)X

(c1; �)X �! (c01; �
0)X0

(c1; c2; �)X �! (c01; c2; �
0)X0

(if v then c1 else c2; �)X �! (c1; �)X (�(v) = 0)

(if v then c1 else c2; �)X �! (c2; �)X (�(v) 6= 0)

(while !y do c; �)X �! (c; while !y do c; �)X (�(y) = 0)

(while !y do c; �)X �! (skip; �)X (�(y) 6= 0)

(let x = e in c; �)X �! (let x = e0 in c; �0)X0 ((e; �)X�!(e0; �0)X0)

(let x = v in c; �)X �! (cfv=xg; �)X

(let x = !y in c; �)X �! (cfv=yg; �)X (�(y) = v)

(c; �)X � (c0; �0)X0
�! (c00; �

0
0)X0

0

� (c0; �0)X0

(c; �)X �! (c0; �0)X0

Fig. 11. Reduction of VS-Calculus with Reference and Procedure

e. We omit concrete rules except for c return e, which are given as:

�

(skip return e; �)X �! (e; �)X

(c; �)X �! (c0; �0)X0

(c return e; �)X �! (c0 return e; �0)X0

The rules for other forms of expressions are just as in DCCv. Finally the reduction

for threads is given as follows, assuming X 0
i \X 0

j = ; whenever i 6= j.

9i: (ci; �)Xi
�! (c0i; �

0)X0

i

(
Q

i ci; �)
S
i
Xi

�! (
Q

i c
0
i; �

0)S
i
X0

i

Note if X 0
i and X 0

j are disjoint then so are Xi and Xj since Xi � X 0
i for each i

always. (o; �)X is also called con�guration. (o; �) stands for (o; �);.

Remarks 7.1

(1) (choice of syntax) The presented syntax is based on distinction between com-

mands and expressions, which would make the comparison with, and heritage

from, languages by Smith and Volpano clearer. Another possible choice of

syntax is to consider commands as part of expressions (as in ML), which is

discussed in Section 8.

(2) (local names in con�guration) As is customarily done (and as we did in the con-

ference version), we could have omitted the use of local labels in operational
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semantics by choosing fresh names appropriately. We choose the present for-

mulation since it allows us to treat transition more rigorously. The local labels

are also in direct correspondence with the process encoding of con�gurations.

7.2 Secrecy with Reference and Procedure

We �rst illustrate the subtlety in secrecy with local references and procedure by

examples. For brevity we assume u; v; w are low-level variables while x; y; z are

high-level variables in the following examples. In x 7.7, we shall see how secure

or insecure property of each of the following commands is exactly analysed via its

encoding into the �-calculus.

Local references. Local references give abstraction, while aliasing may break this

abstraction. As an example, let u be a low-level reference to a natural number and

consider the following command.

c1
def
= new u 7! 0 in u := !v;x := !u;

Here the locality raises abstraction, hiding the low-level writing at u: only the

writing at x is visible. Thus in e�ect c1 only writes at the high-level. Now consider

the following:

c2
def
= new w 7! v in (w := u; let w0 = !w in w0 := 3):

The command writes at w and w0, which are both local; however in fact it is writing

at u, which is free. Thus c2 tampers at the low-level.

Imperative procedures. DCC and DCCv capture non-trivial features of secrecy

in pure higher-order functions. With imperative features, procedures add di�erent

kinds of subtlety.

� (Divergence) Let e1
def
= �y:(!x)y and e2

def
= �y:y. Consider

c3
def
= u :=1; (if z then x :=e1 else x :=e2); z

0 :=(!x)0;u :=0

Then c3 reveals z at u by diverging when z = true.

� (Side e�ects) Take e3
def
= �x: u := x return 0. Then

c4
def
= if z then let y = (e3)0 in skip:

leaks information at u, though e3 is secure as a function. If we use e4
def
=

�x: skip return !u instead of e3 then c4 becomes secure, since it only reads

from u.

� (Aliasing) Given e5
def
= �u: !!u := 1 return 0, Then

c5
def
= if z then new v 7! w in letx = (e5)v inskip

is not secure since w can be aliased. However if we further hide w, the command
becomes secure.

The aim of the proposed typing system is to detect any possible danger involving

aliasing and side-e�ects, while type-checking pure functions generously.
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7.3 Types

The syntax of types for commands and expressions follows. This is an extension

of call-by-value DCC (x 4.3) adding a general reference type and mutable arrow

types. A base is a �nite function from annotated variables to total value types,

where an annotation is either w or ". The symbol " in x" :T is usually omitted. As

will be stipulated later, the w-annotation is used only when a name is assigned to a

reference type or a mutable arrow type, and indicates the possibility of writing to

a reference, directly or indirectly. Following DCCv (cf. x 4.3), we use S for total

types and U for partial types.

(value) T ::= S j U

S ::= Ns j refs(S) j S)T j S
s
) U

U ::= xSys

(base) E ::= ; j E � x :S j E � xw :S

(command) � ::= cmd �s (� 2 f+;*g)

refs(S) is a reference type of value typed by S, which may receive a writing as side
e�ects at the level s. We have the following kinds of arrow types:

� S)S0 is a pure function space from a total type to a total type.

� S)U is a pure function space from a total type to a partial type.

� S
s
) U is an impure function space from a total type to a partial type with side

e�ect at the level s (as s in refs(S)).

The restriction of argument types to total types is as in DCCv, and does not lead

to a loss of expressiveness: following x4.3, we have a pure partial function space

U**U 0 and an impure partial function space U*s*U as derived constructions (which

are interpreted in terms of) and
s
) as before). In an impure arrow type S

s
) U ,

we do not allow the resulting type to be total (i.e. we only allow pointed types

to be impure). This is for the sake of simplicity. While non-pointed impure arrow

types can be added, their typing rules become complicated due to the necessity to

preserve totality (see [30]).

The following distinction between pure and impure types is important in the type

discipline given later.

De�nition 7.2 T is mutable if it is of form either refs(S) or S
s
) U .

Using this de�nition, we assume S in E � xw :S in the grammar of bases, is always

mutable.

In cmd �s, �=+ (resp. �=*) indicates convergence (resp. potential divergence),

while s is a lower bound at which the termination may be observed (or, as Smith

[57] puts it, at which level of variables a termination depends upon).

We use the subtyping on value and command types, which come from [58; 27;

57], as well as the secrecy subtyping for the �LAM-calculus discussed in x6.6. First

for value types, we set:

s v s0

Ns � Ns0

S0 � S T � T 0

S)T � S0)T 0

s0 v s

refs(S) � refs0(S)
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S0 � S U � U 0 s0 v s

S
s
) U � S0

s0

) U 0

S � S0 s v s0

xSys � xS0ys0

Note T does not vary in refs(T ) (see illustration in Proposition 7.7).

�
cmd +s� cmd +s0

�
cmd +s� cmd *s

s v s0

cmd *s� cmd *s0

Note secrecy levels are irrelevant in converging commands. For this reason we

sometimes omit s from +s without loss of precision. The subtyping on expression

types and command types will be later illustrated in their relationship to the secrecy

subtyping in �LAM.

7.4 Information Level and Safety

As in DCC and DCCv, we de�ne the protection level of each value type T , denoted
by protect(T ), which indicates the level of information which T embodies. One

di�erence from DCC and DCCv is that protection levels should be assigned not

only to value types but also to their duals, which we call environment types. To

motivate their introduction, we start from stateless interactions in a DCCv-term

E `M : T . In its �-calculus translation, this becomes
s̀ec
hMiu . u :T � 
EÆ. The

tampering level of this behaviour is calculated from the action type T �
EÆ. Since

all channel type in EÆ has mode ?L or ?A, we can completely neglect EÆ from the

calculation, and consider only T �.

The situation is however quite di�erent in the present imperative setting. In both

E ` c : � and E ` e : T , the command/expression viewed as a process interacts at

E at mutable channels so that the levels of these actions should also be taken into

account. Incorporating these dual levels are also essential when formalising what

corresponds to structural security in the present context. The de�nition follows.

(1) � protect(Ns ) = protect(xSys) = s
� protect(S)T ) = protectE(S) u protect(T )

� protect(S
s
) U) = protectE(S) u protect(U)

� protect(refs(S)) = protectE(S) u protect(S).

(2) � protectE(Ns ) = protectE(S)T ) = >

� protectE(S
s
) U) = protectE(refs(T )) = s

The illustration of the de�nition is best given after we present its embedding into

secure process types, where, among others, we show the above de�nition precisely

corresponds to the tamper level in �LAM (cf. Proposition 7.8). Using protection

levels, we can now introduce a basic condition on value types, which plays a key

rôle for harnessing aliases.

De�nition 7.3 (safety) The set of safe types are generated by:

� Ns is safe for any s.

� If S and T are safe then S)T is safe.

� If S is safe and s v protect(refs(S)) then refs(S) is safe.

� If S and U are safe and s v protect(S
s
) U) then S

s
) U is safe.

� If S is safe then xSys is safe for any s.
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The condition is directly suggested by structually security of the �LAM-calculus (Def-

inition 6.3), see Proposition 7.9 later. In essence, it says that, as a command unfolds

a sequence of references, the secrecy level either remains the same or gets higher.

As an example, take the following program:

let z = !x in let w = !z in if w then u := 0 else u := 1

The safety condition statically ensures that w is higher than x and z. We observe:

� For writing, a program should be prohibited from writing at a low-level as the

result of reading a high-level information, so the constraint makes sense.

� For reading, making the secrecy level of a local resource lower than its container

would not be meaningful since the reader has already cleared a higher level of

security (in particular if a low-level datum is pointed from a high-level reference

by a destructive update, one may safely upgrade the level of this datum to the

high-level).

From these observations we claim that the constraint is reasonable in practice, at

least for basic programming. We hereafter assume all types are safe.

7.5 Secrecy Typing

We use the following three kinds of sequents, which are derived from the associated

typing rules.

(expression) E ` e :T (rules given in Figure 12)

(command) E ` c :cmd �s (rules given in Figure 13)

(thread) E ` o :cmd �s (the rule given in Figure 13)

Further Figure 14 gives weakening and subsumption rules common to expres-

sions and commands (letting t range over their union, and � over the union of

value/command types). In the rules we use the following notations (each de�ni-

tion coincides with the corresponding notion in the �LAM-calculus via the encoding

presented later, cf. Proposition 7.8).

(1) E-x indicates x 62 dom(E).

(2) E1 � E2 indicates that, if x� : � 2 E1 and x�
0

: � 0 2 E2, then � = � 0. Then

E1 � E2 is de�ned by taking their union so that xw :� and x" :� are composed

to become xw :� .

(3) tamp(E) (cf. De�nition 3.2) is de�ned as:

tamp(E)
def
= ufprotectE(S) j xw :S 2 E or (x :S 2 E and S immutable)g

As we shall show later, the system is a conservative extension of [57] (neglecting

protect [12; 27]). Below we illustrate the typing rules, concentrating on those points

which are new in the present system. One of the key aspects is the use of write

modes at mutable types for capturing the level of writing, which is crucial for

controlling aliasing e�ects. In the following we illustrate typing rules one by one.
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[Var] S immutable
E � x :S ` x : S

[VarM] S mutable
E � xw :S ` x : S

[Num] E ` n : Ns

[Lam] E � xÆ :S ` e : T
E ` �x:e : S)T

(�) [App] E ` e : S)T E ` e
0 : S

E ` ee
0 : T

[LamM] E � xÆ :S ` e : U
E ` �x:e : S

s
) U

(?) [AppM] E ` e : S*s*U E ` e
0 : S

E ` ee
0 : U

[Lift] E ` e : S
E ` e : xSys

[Seq] E
0-x ` e

0 :xSys E � x :S ` e :U E
0 � E

E
0 �E ` seq x = e

0
in e :U

(y)

[Ret]
E ` c : cmd +s E ` e : T

E ` c return e : T
[RetP]

E
0 ` c : cmd *s E ` e : U E

0 � E

E
0 �E ` c return e : U

(?)

(�) For each xÆ :S 2 E, (1) S is immutable if T is total; and (2) Æ = " if T is partial.
(?) s v tamp(E).
(y) s v protect(U) u tamp(E).

Fig. 12. Typing Rules for the Extended VS-Calculus: expressions

(Expressions)

� Var, VarM, Num. [VarM] records the mutable variable in E. This is because

such x can be used both for reading and writing. Constants such as succ and

pred are typed just as in DCCv.

� Lam, LamM. The condition (�) in [Lam] prohibits, for ensuring pure functional

behaviour: (1) accessing free variables of mutable types for ensuring totality, and

(2) doing mutable actions. In [LamM], this constraint does not exist; on the

other hand, we require the constraint on secrecy levels, which says that invoking

a mutable abstraction should not a�ect write actions in its body lower than the

receiving level. This has a clear process-based interpretation, see Proposition

7.10.

� App, AppM. Neither [App] nor [AppM] mention secrecy levels since they assume

the arguments always terminate. As in DCCv, we can derive the following partial

version of [AppM] from the rules in Figure 12.

[AppPM]
E ` e :U1**U2 E ` e0 :U1

E ` ee0 : U2
protect(U1) v tamp(E) u protect(U2)

We omit the corresponding partial version of [LamM], which is given just as

[LamM]. [AppPM] is easily justi�able by regarding ee0 as seq x = e0 in ex and

using [Seq], noting U1 can always be written as xSys for some S and s.

� Lift, Seq. These rules are as in DCCv except [Seq] now respects the level of writing

at the base, which should be the same as, or higher than, the level of termination

of N , which a�ects the actions at the base (note having distinct bases allow us

to type more terms since tamp(E1 �E2) v tamp(E2) in general).

� Ret, RetP. The total higher-order procedure [Ret] does not need considering

secrecy levels. On the other hand, if the command c is partial, the termination
level a�ects to the level of e; hence we need the side condition on secrecy.
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[Skip] E ` skip : cmd +

[Ass]
E � xÆ :refs(S) ` v : S

E � xw :refs(S) ` x := v : cmd+

[Com]
Ei ` ci : cmd �si (i = 1; 2) E1 � E2

E1 �E2 ` c1; c2 : cmd �s
2

if � =* then
s1 v s2 u tamp(E2)

[If] E ` v : Ns E ` ci : cmd �s0
E `if v then c1 else c2 : cmd �s0

s v tamp(E)
if � =* then s v s0

[While]
E(x) = refs0(Ns ) E ` c : cmd *s

0

E ` while !x then c : cmd *s
0

s v s0 v tamp(E)

[Let] E ` e :S E � x :S ` c : cmd �s0
E ` let x = e in c : cmd �s0

[LetP]
E ` e :xSys E � x :S ` c : cmd *s0
E ` let x = e in c : cmd *s0

s v s0 u tamp(E)

[Deref]
E � zÆ :refs(S) � x :S ` c : cmd �s

0

E � zÆ0 :refs(S) ` let x = !z in c : cmd �s
0

if S mutable then Æ0 = w

else Æ0 = Æ

[New]
E ` v : S E � xÆ :refs(S) ` c : cmd �s

0

E ` new x 7! v in c : cmd �s
0

[Par] E ` ci : cmd �s
E `
Y
i

ci : cmd �s

Fig. 13. Typing Rules for the Extended VS-Calculus: command and thread

(Command and Thread)

� Skip. skip terminates immediately, so it has the +-type.

� Assignment. The rule crucially relies on the safety condition (De�nition 7.3). For

example, u :=!x with u and x typed as refL(NL ) and (unsafe) refH(NL ), respec-

tively, becomes typable without the safety condition, which is clearly insecure.

The rule records the write mode of \x" in E by [VarM].

� Com and If. [Com]'s side condition is equivalent to [57], which enhances [27; 58].

If the preceding command may not terminate, the information of termination

(at s1) should not 
ow down to c2's termination (s2) and tampering (tamp(E2)).

Note allowing distinct bases in these two commands adds typability since, if

we weaken E1;2 so that they coincide, the resulting tampering level is in general

lower than tamp(E2). The condition does not specify the case when the preceding

command does terminate, since if so no information 
ows down to the subsequent

command. [If ] is standard, requiring the conditional variable cannot in
uence

later behaviour at lower levels.
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[Sub]
E ` t : � � � �

0

E ` t : �0
[Weak]

E ` t : �

E � y :S ` t : �
[Weak-w]

E � x :S ` t : �

E � xw :S ` t : �
S mutable

Fig. 14. Weakening and Subsumption

� While. The side condition is due to Smith [57] who enlarges the typability of the

while command on the basis of [58; 27] (the condition is somewhat simpli�ed,

but is equivalent to the one given in [57], see Proposition 7.6 (2) later). We

o�er intuitive illustration following [57]. The information at s in
uences whether
this command terminates at s0, hence s v s0. The condition s0 v tamp(E) is
more subtle. Assume !x is initially true. Then we unfold the while loop into

c; while !x do c, which shows the termination of c in
uences later actions of c at
E, leading to the side condition. Later we shall see these conditions are precisely
what are derivable from the embedding into �LAM. Note that x is allowed to have

the "-mode in E because x only reads a natural number (which is immutable).

� Let, LetP. In [Let], e is total, so both tampering and secrecy levels are ignored.

[LetP] corresponds to [Seq], considering the tampering of write actions of c in

addition.

� Deref. Note z has w-mode in E if z is mutable, even though z is read in this

command. To see its necessity, we consider:

let x = !z in x := 3: (11)

Here x looks local, but may be aliased to a free name referred by z. By chang-

ing mode of z (which is lower than x by the safety condition), we e�ectively

accumulate the tampering level of z in the environment.

� New. Similar to [Deref ], if v has a mutable type, then it is recorded with w-mode

by [VarM]. To understand its necessity, consider:

new z 7! y let in x = !z in x := 3: (12)

Note y should have a reference type. Hence when z 7! y is inferred, y has w-mode
in E, which subsumes the writing at x since x is higher than y by safety.

(Weakening/Subsumption)

� Sub, Weak, Weak-w. [Sub,Weak] are standard (in particular, when mutable

types are weakened, real actions at them are non-existent, hence we annotate

them with "). [Weak-w] adds the write mode to mutable types, and is necessary

for subject reduction. These rules correspond to (Sub), (Weak) and (Weak-w) in

�LAM, respectively.

We list a few typing examples, using the expressions and commands discussed in

x 7.2. Below we freely use the partial versions of abstraction and application rules.

Example 7.4 (typing examples in the extended Smith-Volpano calculus) Com-

mands/expressions are from x 7.2. We assume x; y; z are high while u; v; w are low

unless otherwise stated.
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(1) Let E = uw :refL(BH ); xw :refH(BH ); y :refL(BH ). By [Ass] and [Deref ]:

E ` x := !u : cmd +s and E ` u := !y : cmd +s

(note x := !u in fact stands for let x0 = !u in x := x0). By [Seq], we have:

E ` u := !y;x := !u : cmd +s

We also have E=x ` 0 : BH . Finally by [New],

E=u ` new u 7! 0 in u := !y;x := !u : cmd +s

for arbitrary s (we omit such s from now on). The level of writing of this

command is protectE(E(x)) = H .

(2) Let E = ww :refL(refL(BH )); uw :refL(BH ); vw :refL(BH ). Then we have

E � ww

0 :refL(BH ) ` w0 := 3 : cmd +

Since w0 has a mutable type, by [Deref ], we obtain:

E ` let w0 = !w in w0 := 3 : cmd + (13)

Note w should have w-mode in E to infer the above sequent. We also have, by

[VarM], E ` u : refL(BH ), which implies u should have w-mode in E. Hence

by [Ass] we obtain:

E ` w := u : cmd + (14)

We now apply [Com] to (13) and (14). Also by [VarM] we have E=w ` v :

refL(BH ) (we note v should have w-mode in E). Finally we obtain, by applying
[New]:

E ` new w 7! v in w := u; let w0 = !w in w0 := 3 : cmd +

The tampering level is protectE(E(u)) t protectE(E(v)) = L.

(3) Recall c3
def
= u := 1; (if z then x := e1 else x := e2); z

0 := (!x)0;u := 0, with

e1
def
= �y:(!x)y and e2

def
= �y:y (note z0 :=(!x)0 stands for let w = !x in let k =

w0 in z0 := k). To analyse this command, we �rst note that since e1 contains
a mutable variable x, it is only typable by [LamMP] (which is equivalent to,

via decomposition into seq x = e in e0, the combination of [Seq] and [LamM]).

Secondly, to type if-command, x should have type refH(T ). By the safety

condition, this means T has type T = xSyH . Hence by the side condition of

[LetP], let k = w0 in z0 := k has type cmd *H , so that z0 := (!x)0 has type

cmd *H . To compose z0 := (!x)0 and u := 0, we need to satisfy the side

condition of [Seq], that is H v tamp(E), which is impossible because we have

tamp(E) = protectE(E(u)) = L. Hence c3 is untypable.

(4) Let e3
def
= �x: u := x return 0 and E = z : BH ; u : refL(NH ). We can check

e3 is typable as E ` e3 : xNL
H
) NHyH . We now analyse the command

c4
def
= if z then let y = (e3)0 in skip. We observe that the tampering level of

the internal let-command is tamp(E) = L. Thus the side condition for the if-

command, H v tamp(E), is not satis�ed, so c4 as a whole is untypable. Next
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let c04
def
= if z then let y = (e4)0 in skip, with e4

def
= �x: skip return !u.

Then we have:

E ` let u0 = !u in let y = (e4)0 in skip : cmd +

(note u is not recorded by [Deref ] because NH immutable). Hence c04 is typable
because H v tamp(E) = H .

(5) Similarly we can check c5 of x 7.2 is untypable. This is because the write

mode of w is recorded by [New] and its tampering level is L, which violates the

condition for if-command. However if we change c5 into:

if z then neww 7! 1 in new v 7! w in letx = (e5)v inskip

Then the command is typable since the body of the if-command is a high-level

(by the lack of free variable).

Basic syntactic properties of the secrecy typing follow, after a de�nition. In Propo-

sition 7.6 (2) below, the possibilistic Smith-calculus is the calculus by Smith [57]

which neglects (Protect) (i.e. we ignore the part of the system in [57] which \counts

execution steps"). Since the calculus by Smith does not use annotation on bases,

we write jEj for the base which erases the write-mode annotation from E.

De�nition 7.5 Let E ` c : �. Then we say c is �rst-order under E i�: (1) each

type in cod(E) has shape either refshNs i or Ns ; and (2) c is typed under E using

none of (i) [New] in Figure 13 and (ii) the rules in Figure 12 except for [Var],

[VarM] and [Num].

Proposition 7.6

(1 ) (subject reduction) Let E ` c : � and E ` �. Then (c; �)X �! (c0; �0)X0

implies: (i) if dom(�0) = dom(�) then E ` c0 : � and E ` �0 ; and (ii) if

dom(�0) = dom(�) ] fx0g then E � x0 :T 0 ` c : � and E � x0 :T 0 ` �0 for some T 0
.

(2 ) (conservativity) Assume L
def
= f?;>g and c is �rst-order under E in the above

sense. Then (i) if E ` c : cmd *s0 in the present calculus, then jEj ` c : s cmd *s0

with s = tamp(E) in the possibilistic Smith calculus; and (ii) if E ` c : s cmd *s0

in the possibilistic Smith calculus then E0 ` c : cmd *s in the present calculus

such that E = jE0j and s v tamp(E0).

Proof. For (1) we use the both-way correspondence in typability between the

explicit versions of secure �LAM and the extended Smith-Volpano, as well as with

their implicit versions. For (2), we interpret the sequent E ` c : s cmd s0 in [57] as

E0 ` c : cmd *s0 , with E0 an annotated version of E so that tamp(E0) essentially

has the level s or higher, and E ` c : s cmdm (with m a natural number) as

E0 ` c : cmd +. The only non-trivial points are the correspondence between the

tampering level in [57] and tamp(E), as well as the side conditions in while-rules.

See Appendix E.
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7.6 Embedding

We �rst show the embedding of types. Except for the mutable types, the embedding

of value types is the same as DCCv.

(value) S�
def
= (SÆ)"L U� def

= (UÆ)"As (protect(U) = s)

N
Æ
s = ([
i2! ]"Ls )!L (S)T )Æ

def
= (SÆT �)!L

xSyÆs
def
= SÆ

refs(S)
Æ def
= refshS

Æi (S
s
) U)Æ

def
= (SÆU�)!Ms

(base) (;)Æ=; (E � xÆ :S)Æ = EÆ � xÆ :SÆ

(action) +�s
def
= ()"L +�s

def
= ()"As

hcmd �si
E
u

def
= u :��s 
EÆ hSiEu

def
= u :S� 
EÆ

The subtyping in command types for converging commands, cf. x 7.3, is now given

a clear account: the termination channel has a unary "L-type, so its level is in-

signi�cant. Similarly, the invariance in subtyping of reference types is elucidated

by observing the content type now occurs both covariantly and contravariantly [5].

In fact the subtyping on value types in x 7.3 precisely corresponds to the secrecy

subtyping in �LAM-types.

Proposition 7.7 (subtyping) T1 � T1 i� T Æ
1 � T Æ

2 i� T �
1 � T �

2 .

Proof. See Appendix F.1.

The protection levels in the VS-calculus and the tampering levels in the �LAM-

calculus coincide via encoding. For the proof see Appendix F.2.

Proposition 7.8 (protection levels and tampering levels)

(1 ) tamp(S�) = tamp(SÆ) = tamp(xSyÆs).

(2 ) protect(T ) = tamp(T �) and protectE(S) = tamp(SÆ)

(3 ) tamp(E) = tamp(EÆ)

Using (1) above, we can prove the coincidence between safety and structurally

security on mutable types.

Proposition 7.9 (safety and structurally security) T is safe i� T Æ
is structurally

secure i� T �
is structurally secure.

Proof. By induction on the size of types. We only prove if T is safe then

T Æ is safe. The only interesting case is either T = refs(S) or T = S
s
) U .

Suppose refs(S) is safe. Then by de�nition and Proposition 7.8 (1), we have

sec(refs(S)
Æ) = s v protect(refs(S)) = tamp(refs(S)

Æ), as required. The case

T = S
s
) U is just similar.

The encoding of commands and expressions is given in Figure 18 in Appendix.

Expressions use call-by-value encoding [42; 29]. while is translated using tail re-

cursion. By Propositions 7.7, 7.8 and 7.9, we can easily verify:
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Proposition 7.10 (syntactic soundness)

(1) (expression) E ` e :T implies
s̀ec
[[e]]Eu . hT iEu

(2) (command) E ` c : � implies
s̀ec
[[c]]Eu . h�iEu

(3) (thread) E ` o : � implies
s̀ec
[[o]]Eu . h�iEu

Proof. See Appendix F.3 (the while command is treated in x7.7).

7.7 Analysis of Imperative Secrecy via Embedding

The embedding o�ers an in-depth analysis of imperative secrecy via the �ne-grained

representation as name passing processes, both in types and operations. In the

following we explore this point using the examples from x 7.2 and x 7.5, as well as

presenting a derivation of the conditions for while loop due to Smith [57].

(1) (if) if v then c1 else c2 is encoded as, assuming v is a boolean for simplicity:

(� x)(hvix j x(c):c(z)z[:[[c1]]e& :[[c2]]e]):

Hence the secrecy level of z (i.e. s of B s ) should be lower than the tampering

level of [[c1]]e and [[c2]]e by the side condition of (Bra#L ). If either c1 or c2 may

not terminate, then e should have aÆne type ()"As0 . Hence the tampering level of
[[ci]]e is the tampering level of mutable names which appeared in [[ci]]e, and if ci
non-terminated, the level s0. This essentially corresponds to the side condition
of [Seq] of the VS-calculus given in Figure 13.

(2) (deref) First we show the encoding of command let w0 =!w in w0 := 3 from

(11) in Example 7.4, x 7.5 (cf. Example 6.4 (1)).

s̀ec
winl(e)e(w0):w0inrh3fi . ww : refLhrefLhBH ii 
 f : ()"L

Since f (the linear unary output) has no tampering level, the tampering level

of the above command is that of w, i.e. protectE(refLhrefLhBH ii) = L.

(3) (new) A process representation of new w 7! v let in w0 =!w in w0 := 3

appeared in (12) in x 7.5 is typed as follows.

s̀ec
(� w)(Refhwvi j [[let w0 =!w in w0 := 3]]f ) . f : ()"L 
 vw : refLhBH i

In the above encoding, we can observe that w0 is assigned v; hence the tamper-
ing level of the above command is that of v, i.e. L. Note also if we set the type
of v to be refHhBL i, then this command is untypable (and in fact unsafe), due

to a violation of structurally security. Similarly we can analyse the correspon-

dence between tampering level of the commands c1 and c2 which appeared in

x 7.2 and that of the encoding.

(4) (let and the sequential composition) We analyse the untypability of c3 in x 7.2

by its encoding. The middle command z0 := (!x)0 (
def
= let w = !x in let k =

w0 in z0 := k) is encoded as follows.

(� c)(xinl(e)e(w):wh0ci j c(k):zinr(kc0)c0:f)

First because of if-statement, x should have the high reference type. Hence

w and k should have H by structurally security. Also the reply at c may not

terminate, hence for c(k):zinr(kc0)c0:f to be typable, by (In#A), z's level should
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be H and moreover f has a type ()
"A
H . Now, the sequential composition is given

as:

(� f)([[z := (!x)0]]f j f:[[u := 0]]f 0)

To type f:[[u := 0]]f 0 , by (In#A), it is necessary for H to be lower than the

tampering level of [[u := 0]]0f , but we have tamp(uw : refLhB s i) = L, hence the
command is untypable. Similarly we can observe the untypability of c4 and the
typability of c04 via the tampering level of their encodings.

(5) (while) The side condition for the typability of while commands is due to Smith

[57]. We show this condition is precisely what we derive from the security of

the encoding. The encoding of while !x do c reads:

(� e)(ehui j !f(k):ehki j !e(k):xinl(c)c(y):y(z)z[(� l)([[c]]l j l:fhki)&k]):

Note e and f have mode !M because [[c]]l may as well have (free) mutable outputs.
Since e and f suppresses each other, they should have the same level, say s0.
Assuming that x stores a natural number of level s, that l has level s0 and that
c tampers under E, we can annotate the above process with secrecy levels as
follows. Below s00 is the level of u, i.e. the termination level of the command.

(� ef)(ehui j !fs
0

(k):es0hks
0
0i j !es

0

(k):xinl(c)c(y):y(z)zs[(� l)([[c]]l j l
s
0 :f

s0

hki)&k
s0
0 ])

From this we can immediately derive the following conditions:

(a) By (In!M) at the e-replications, we require s0 v tamp(E). Further by struc-

tural security (for the types of f and e) we require s0 v s00.

(b) By (Bra!M) at the z-input, we require s v tamp(E) and s v s00.

(c) By (In#A) at the l-input, we require s0 v s0 and s0 v s00.

Thus we reach the following conditions : (i) s0 t s v s00, (ii) s v tamp(E),
and (iii) s0 v tamp(E) (s0, which is a level for hidden names f and e, is
any such that s0 v s0 v tamp(E)). Since s0 can be raised by subsumption

we may set s0 = s00 without loss of precision, reaching the stated condition

s v s0 v tamp(E), which is equivalent to the condition by Smith [57] (in fact

the condition in [57], which is s00 = s0 t s together with (ii) and (iii) above,

are more directly derivable from these conditions). Note the structural security

plays a fundamental rôle in this derivation.

7.8 Noninterference

An environment is a �nite map from variables to values. �; �0; : : : range over envi-
ronments. We write E ` � when � is well-typed with respect to E in the obvious

sense, and often implicitly assume well-typedness of an environment under a given

base. We de�ne:

� E ` �1 �s �2 denotes �1(x) = �2(x) such that protectE(E(x)) v s for each

x 2 dom(E).

� [[�]]
def
= �iRefhxicii

Æ where Refhxicii
Æ is given as, with �(xi) = vi, (1) (� ci)(RefhxiciijP )

if hviiu � u(c)P and (2) Refhxiyii if hviiu � uhyi.

Using the noninterference result for �LAM (cf. Proposition 6.8), we obtain the follow-

ing equational correspondence between environments and their embedding.
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Proposition 7.11 Let E, �1;2 and A be such that E(xi) = refs(Si), dom(�1) =
dom(�2) = fx1; :::; xng and A = x1 : refs1hS

Æ
1 i
 v1 :SÆ1 
� � �
xn : refsnhS

Æ
ni
 vn :SÆn.

(1) If E ` �1 �s �2 then
s̀ec
[[�1]] �=

�
s [[�2]] . A.

(2) Further let Ti = Nsi for each i. Then E ` �1 �s �2 i�
s̀ec
[[�1]] �=

�
s [[�2]] . A.

Proof. Let �1(xi) = vi and �2(xi) = v0i for each xi in their domain. For (1)

if si 6v s then since tamp(refsihTii
Æ) w si we have tamp(refsihTii

Æ) 6v s. Hence

s̀ec
(� ci)(Refhxiciijhvii

Æ
ci
) �=�

s (� ci)(Refhxiciijhv
0
ii
Æ
ci
) . xi : refsihTii

Æ for each i by
Proposition 6.8, hence done. For (2) we already know \only if" by (1). For the \if"

direction we use a contextual reasoning. Suppose
s̀ec
[[�1]] �=

�
s [[�2]] . A and si v s.

Then we have

hviiu �=
�
s (� ~x)([[�1]]jxiinl(c)c(y):uhyi) �=

�
s (� ~x)([[�2]]jxiinl(c)c(y):uhyi) �=

�
s hv

0
iiu:

By taking a suitable context we know hviiu �=
�
s hv

0
iiu implies vi = v0i, as required.

Write (o; �)X + �0X0 if (o; �)X �!� (�iskip; �
0)X0 . (o; �)X + stands for (o; �)X +

�0X0 for some �0 and X 0. We can now establish the operational correspondence.

Below P �=� Q stands for P �=�
> Q.

Proposition 7.12 (operational correspondence)

(1) (a) Suppose (o; �)X �! (o0; �0)X0 . Then there exists P 0
such that (�X)([[o]]~uj[[�]])

�!+ P 0
and P 0 �=� (�X 0)([[o0]]~uj[[�

0]]).

(b) Suppose (o; �)X !! (o0; �0)X0 . Then there exists P 0
such that (�X)([[o]]~uj[[�]])

!! P 0
and P 0 �=� (�X 0)([[o0]]~uj[[�

0]]).

(2) Suppose (�X)([[o]]~uj[[�]]) �! P with X � dom(�). Then P !!�=� (�X 0)([[o0]]~uj[[�
0]])

such that (o; �)X �! (o0; �0)X0 .

(3) If (o; �)X + �0X0 then (�X)([[o]]~uj[[�]]) !! ~u j R such that R �= (�X 0)[[�0]].
Conversely, if (�X)([[o]]~uj[[�]]) !! ~u j R with X � dom(�) then (o; �)X + �0X0

such that R �=� (�X 0)[[�0]].

Proof. For (1-a), we �rst show (o; �)X �! (o0; �0)X0 implies (�X)([[o]]~uj[[�]]) �!7!+

(�X 0)([[o0]]~uj[[�
0]]) where 7! is the extended reduction as given in [9; 66; 67]. For

reference we present these rules for unary cases (we assume the binding condition):

x(~y):P jC[xh~zi] 7! C[Pf~z=~yg]
!x(~y):P jC[xh~zi] 7! !x(~y):P jC[Pf~z=~yg]

(� x)!x(~y):P 7! 0

where the second rule is applied only when x is typed with a !L=!A-type (hence 7!
satis�es CR [8; 66; 67]). Since 7! stays within �=�, this immediately gives us the

stated property. (1-b) is a corollary of (1-a). (2) is similar, showing [[(o; �)]]~u �! P
implies P �!� 7!+ [[(o0; �0)]]~u for each rule. (3) is from (1-a) and (2).

We are now ready to establish the noninterference results.

Theorem 7.13 (non-interference) If E ` o : cmd �s and E ` �1 �s �2 then

(o; �1) + i� (o; �2) +. If, moreover, E(xi) = Nsi for each xi 2 dom(�), then

(o; �1) + �01X1

implies (o; �2) + �02X2

such that E ` �01 � dom(E) �s �
0
2 � dom(E).
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Proof. For both statements, we use the following claim:

Claim. Let E ` o : cmd �s and E ` �. Then (�X)([[o]]~uj[[�]]) �!
� P �=�

s �iuijR
implies P � �iuijR

0 such that R �=�
s R

0.

For the proof of the claim, we use the context C[ � ]
def
= (� ~u)(Sh~u; zij[ � ]) where

Sh~u; zi is a synchroniser which signals, via an aÆne channel z, the arrival of all of ~u.
For example, the following process suÆces (using booleans and their conjunctions

w.l.o.g.).

Sh~u; zi
def
= (� ~xy)(�iui:xiin2(Fc)c:0 j �iRefhxiT i j hy := ^ixi ; while !y do skipiz)

This agent stores information for each ui as it arrives in separate references, while

polling these stores by busy-waiting. With the context C[ ] using this S, we can
show (assuming appropriate typing in �LAM) that C[P ] +z i� P !! �iuijR. We are

now ready to show the �rst half. Assume the stated conditions. From (o; �1) + and

Proposition 7.12 (3) we know [[(o; �1)]]~u �!
� �iuijR for some R. We now infer:

E ` �1 �s �2 ) [[�1]] �=
�
s [[�2]] (Prop. 7.11 (1))

) [[o]]~u j [[�1]] �=
�
s [[o]]~u j [[�2]] (congruency of �=�)

) [[o]]~uj[[�2]] �!
� �iuijR (Claim above)

) (o; �2) + (Prop.7.12 (3))

as required. For the second half, from (o; �1)X �!� �01X1

and Proposition 7.12 (3)

we know [[o]]~uj[[�1]] �!
� P1

def
= �iuijR1 such that R1

�=�
s (�X1)[[�

0
1]]. Using this we

infer:

E ` �1 �s �2

) [[�1]] �=
�
s [[�2]] (Prop. 7.11 (1))

) ([[o]]~uj[[�1]]) �=
�
s ([[o]]~uj[[�2]]) (congruency of �=�)

) ([[o]]~uj[[�2]]) �!
+ P2 �=

�
s P1

) P2 �=
Q

i uijR2 s.t. R2
�=�
s (� ~z2)[[�

0
2]]

and (o; �2)!! �02: (Claim, Prop. 7.12 (3))

) (�X1)[[�
0
1]]
�=� (� ~u)(~u j (�X1)[[�

0
1]] j
Q
ui:0)

�=�
s (� ~u)(~u j (�X2)[[�

0
2]] j
Q
ui:0)

�=� (�X2)[[�
0
2]] (By 7!��=�)

) (�X1)[[�
0
1]]
�=�
s (�X2)[[�

0
2]] (By �=���=�

s )

) E ` �01=X1 �s �
0
2=X2 (Prop. 7.11 (2))

where, in the �nal step, we can take o� X1;2 because, due to the type of �1;2,
[[�01;2]] is the disjoint union of [[�001;2]] and S1;2 where dom(�

00
i ) = dom(�i) and Si is the

parallel composition of replicated processes with subjects in Xi.

We can generalise (2) to arbitrary types (using a contextual congruence for the

extended VS-calculus) if we used a generalised version of Proposition 7.11 (2). Fur-

ther we can prove a stronger non-interference property in which intermediate states

are also s-equated (cf. [12]), by establishing a close operational correspondence be-

tween the original program phrases and their embedding. See Section 8 for more

discussion.
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[VarM] S mutable
E � xw :S ` x : (S)s

[Skip] �
E ` skip : COM

[LamM] E � xÆ :S `M : U
E ` �x:M : S

s
) U

(�) [AppM]
E `M : S*s*U E ` N : (S)s0

E `MN : U
(?)

[Ass]
E � xÆ :refs(S) ` V : S

E � xw :refs(S) ` x := V : COM
[New]

E ` V : S E � xÆ :refs(S) `M : T
E ` new x 7! V in M : T

[Deref]
E � zÆ :refs(S) � x :S `M : T

E � zÆ0 :refs(S) ` let x = !z in M : T
if T mutable then Æ0 = w else Æ0 = Æ

(�) sv tamp(E):

(?) s0 v protectE(S) u protect(U)

Fig. 15. Additional Typing Rules for Imperative DCCv

8. DISCUSSIONS

8.1 Further Study on Imperative Secrecy

In Section 7 we proposed a new secure imperative and higher-order programming,

extending Volpano-Smith multi-threaded imperative language with higher-order

procedures and general references. In this subsection, we outline how we can

directly apply the �LAM-calculus to propose another sequential secure imperative

programming, extending DCCv (cf. 4.3) with imperative constructs. The syntax

is extended as:

M ::= ::: j x := V j let x = !y in M j new x 7! V in M j skip

where V denotes a value (the set of values are given by the union of variables,

natural numbers, skip and abstractions). For types we only extend total types:

S ::= ::: j refs(S) j S
s
) U j COM

Unlike the language in Section 7, we use COM (which is equivalent to the unit type)

instead of having a separate category for command types. For typing rules, we set:

� From Figure 7, the following rules are used without change: [Num], [Succ], [Lift]

and [Rec].

� For [App] in Figure 7, the side condition s v protect(T ) is replaced by s v

protectE(S) u protect(T ). For the remaining rules ([Var], [If], [Lam] and [Seq]),

we give additional secrecy conditions following Figures 13 and 12.

� For imperative extensions, we add the rules in Figure 15.

The encoding follows Figure 18, based on which the noninterference is proved just

as in Section 7. This language can soundly encode the sequential part of the

extended Smith-Volpano language in Section 7. First, command types are recovered

by regarding cmd +s as COM (note s does not matter for converging commands) and
cmd *s as xCOMys. The language constructs are translated in the standard manner:
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for example, while !x do c is encoded as follows (assuming c is translated into M
and using shorthands for ; and !x):

(�z:�y:if !x then M ; z else y)skip

We can verify that the encoding yields precisely the same side condition as given in

Figure 13. The syntax presented above would be useful when we consider secrecy

analyses of functional languages with imperative constructs, such as ML.

8.2 Related Work and Further Issues

First, there are a few prominent examples of integrated function-based type dis-

ciplines, which often use monads. Basic examples include pointed types [32; 46]

and the incorporation of imperative constructs in Haskell [33]. They o�er not only

combination of type structures but also preservation of individual type structures

in the integrated types. The present work explores the same kind of integration in

the context of the �-calculus, and shows its signi�cance in secrecy analysis.

Secrecy and other security issues in processes are widely studied recently, cf. [1;

54; 17; 20]. [1] includes insightful discussions on secrecy. These studies mainly focus

on modelling security concerns in cryptography protocols or distributed systems,

and do not directly pursue integrated secrecy typing for language constructs. One

of the challenging topics is the integration of the technologies as experimented in

the present paper with secrecy/security concerns in distributed computing.

For secrecy analysis proper, we observe that the �-calculus-based secrecy analyses
in the preceding work including our own, cf. [20; 27], have been based on the explicit

recording of a secrecy level, whose sequent may be written

`s P . A

which means P tampers the environment at a secrecy level at most s. Here we

explicitly record the tampering level of P independently from A and handle its

level via subtyping (i.e. we infer `s P .A if `s0 P .A with s v s0). In contrast, the

approach in the present paper, which we may call implicit approach, does not use

such s but derive this level from A. In principle, �LA and �LAM can adopt both kinds

of approaches, of which the present paper explored the implicit approach. At this

point it looks the implicit approach tends to o�er more typable terms while the

explicit one has a merit in the imperative setting in that it does not need structural

security, though details are to be seen. It is a valuable enterprise to study the

explicit secrecy analysis to �LA and �LAM, which would lead to precise comparisons

of the merits and demerits of these approaches. It also opens a possibility to

analyse and compare typability of the known implicit [3]/explicit [50; 58; 68] secure

programming languages using the secure �-calculi as meta-calculi via translations.
The secrecy analysis proposed in the present paper owes much to the preced-

ing work on type-based secrecy analyses for traditional functional and imperative

languages. Among secure functional calculi (cf. [48; 49; 3; 19]), the dependency

core calculus [3] is a powerful functional metalanguage for secrecy, using pointed

types [32; 46]. The semantics is given by a denotational universe based on logi-

cal relations. The calculus is e�ective for analysing diverse sequential notions of

dependency and secrecy. At the same time, the formalism is diÆcult to apply to

the realm outside of sequential higher-order functions. The present work o�ers an
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alternative tool which can easily incorporate impure features such as concurrency

and state. Another signi�cant aspect of the �-calculus would be its �ne-grained na-
ture as a meta-language, due to which developing analyses would in general become

more elementary (this is especially true when there are subtle interplays between

language constructs, as in languages we have studied in Sections 7 and x8.1 above).

Smith and Volpano (cf.[57; 58; 62]) studied various aspects of secrecy in impera-

tive languages. Sequential procedures are studied in [62]. Multi-threading is studied

in [58], whose typability was enlarged by our work with Vasconcelos [27] using the

�-calculus, based on which a further enhancement was done in [57]. As we have

seen in Proposition 7.6, our calculus is a conservative extension of the possibilistic

part of the calculus in [57], integrating it with higher-order procedures and general

references. One of the interesting aspects is the correspondence between the two

kinds of command types in Smith-Volpano languages on the one hand and linear-

ity/aÆnity in �LA on the other. The incorporation of execution steps into secrecy

typing [57] into the present framework is one of the remaining topics.

Boudol and Castellani [12] also studied a language similar to [57]. One of the

signi�cant features is the use of bisimulation for formulating and proving nonin-

terference properties, leading to a stronger property. In this context, the use of

secrecy bisimulation in �LA [67] for proving similar results would be worth explor-

ing. Another topic is the incorporation of scheduler into the �LAM-calculus to enrich

language constructs following [12].

There are two prominent recent work which presented secrecy analysis for the

combination of higher-order procedures and imperative features, one by Myers [44]

(using Java) and another by Pottier and Simonet [50] (using ML). Both are based on

explicit secrecy analysis (in the terminology we introduced above). For this reason,

the treatment of a function with imperative e�ect (such as �xL:x := 1; return yH)
is done using a closure type (and in e�ect would have a low tampering level) in

[50], while it is treated just as other program phrases with a high-tampering level

in our approach. We are currently working on an exact comparison in typability

between our approach (based on implicit secrecy) and [50], using the �-calculus as
an intermediate language (we believe this will fairly easily extends to the compar-

ison with [44]). One aspect of secrecy in programming languages whose study has

just started is secrecy for low-level programming primitives. In this respect, one

interesting work [68] presents a typed control calculus with references, intended

as a meta-language for possibly low-level languages via CPS translation. Its type

discipline is adapted to this end, in particular in its use of linear continuations. As

secrecy typing for imperative languages, [68] does not treat multi-threading, and

is not (intended as) an extension of the language in [58; 57]. We believe that the

incorporation of the dynamics and types in [68] into the �-calculus is a topic for

the further study [24], as well as polymorphic extension of the �LA-calculus [10].

Finally we brie
y discuss type inference in the presented secrecy analysis in �LAM.

It is easy to show that, given P and A, it is linearly decidable whether ` P . A or

not. Another possible question is to what extent a feasible type inference is possible

when we leave out secrecy levels of some of the types as unknown. For example, one

may wish to leave secrecy levels for implicit aÆne channels unknown, and deduce

permissible secrecy levels as a whole. A study in this direction would o�er a useful

basis for considering possible forms of type inference for secrecy analyses in complex
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programming languages.
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A. ACTION TYPES

We �rst reiterate the de�nition of action types. An action type, denoted A;B; : : :,
is a �nite directed graph with nodes of the form x :� , such that:

|no names occur twice; and

|edges are of the form x :� ! y :� 0.

We write x! y if x :� ! y :� 0 for some � and � 0, in a given action type. If x occurs

in A and for no y we have y ! x then we say x is active in A. jAj (resp. fn(A),
sbj(A), md(A)) denotes the set of nodes (resp. names, active names, modes) in A.
We often write x :� 2 A instead of x :� 2 jAj, and write A(x) for the channel type
assigned to x in A. A=~x is the result of taking o� nodes with names in ~x from A.
A
B is the graph union of A and B, with the condition that fn(A) \ fn(B) = ;.

The symmetric partial operator � on types is already given in Section 2. We

then write A � B i�:

|whenever x :� 2 A and x :� 0 2 B, � � � 0 is de�ned; and

|whenever x1!x2; x2!x3; : : : ; xn�1!xn alternately in A and B (n � 2), we

have x1 6= xn.

Then A� B, de�ned i� A � B, is the following action type.

|x : � 2 jA � Bj i� either (1) x 2 (fn(A)nfn(B)) [ (fn(B)nfn(A)) and x : � occurs

in A or B; or (2) x :� 0 2 A and x :� 00 2 B and � = � 0 � � 00.

|x ! y in A �B i� x = z1!z2; z2!z3; : : : ; zn�1!zn = y alternately in A and

B (n � 2) and, moreover, for no w we have w ! x and for no w0 we have y ! w0

in A or B.

We can easily check that � is a symmetric and associative partial operation on

action types with unit ;.
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B. COPYCATS

Let md(�) be an input type in �LA. Then [x ! x0]� is given by the following

induction.

[x! x0](~�)
p def
= x(~y):x0(~y0)�i[y

0
i ! yi]

�i (p 2M#)

[x! x0](~�)
p def
= !x(~y):x0(~y0)�i[y

0
i ! yi]

�i (p 2M!)

[x! x0][&i~�i]
p def
= x[&i(~yi):x0ini(~y0i)�ij [y

0
ij ! yij ]

�ij ] (p 2M#)

[x! x0][&i~�i]
p def
= !x[&i(~yi):x0ini(~y0i)�ij [y

0
ij ! yij ]

�ij ] (p 2M!)

Note [x! y] in Example 2.1 (4) is precisely [x! y]N
Æ

. Using general copy-cats, we

can build divergent agents with arbitrary types as: 
�
u

def
= (� x)([u ! x]j[x ! u])

where md(�) = !A. Then s̀ec

�
u . x : � always. A copy-cat with a reference type is

introduced as a constant which is inferred by the following axiom (since we do not

include (Bra?LM) in �LAM). We show the secrecy-sensitive version below.

(CRef)

s v s0 if md(�) 2 f!LM; !Mg then Æ = w else Æ = "

s̀ec
[x! y]refsh�i . x : refsh�i!yÆ : refs0h�i

Note the causality is recorded in this rule, re
ecting the linear character of repli-

cation in references. Opereationally the copycat [x ! y]refsh�i is representable as

!x[ (c):yinl(c0)[c0 ! c](�)
#L

& (vc):yinr(v0c0)([v0 ! v]� jc0:c)]. �LAM extended with

this constant does not alter the essential operational properties of �LAM such as live-

ness at linear channels [66; 65; 67]. Proposition 3.13 (1) extends to reference types.

For secrecy analysis, adding this constant does not change the nature of the analy-

sis, leading to the non-interference via precisely the same method. Proposition 3.13

(2) is intact due to structural security.

Using copy-cats, we can translate arbitrary (typed) free outputs by bound name

outputs. The encoded free outputs mention types and are de�ned as follows.

xhy1::yni
�1::�n def

= x(y01::y
0
n)�i[y

0
i ! yi]

�i

assuming ` xhy1::yni . x : (�1::�n)
pO 
 y1::yn :�1::�n.

C. SUBJECT REDUCTION

C.1 �LA and �LAM

In this section, we prove the following result for the secrecy typing for �LAM (sub-

suming the same property for �LA).

(subject reduction) Let
s̀ec
P . A. Then P !! P 0

implies
s̀ec
P 0 . A.

Note that if the subject reduction is satis�ed as above, then the subject reduction

of the �LA, �LAM and �LA's secrecy extension are automatically proved. For the proof,

we follow the same routine as given in Appendix A.1 in the long version of [66].

We also follow the same routine as given in the proof of Proposition 3 in [65] for

references. What corresponds to Lemma A.1 of [66] (well-de�nedness of operators)

is easy. A basic lemma follows, which corresponds to Lemma A.2 in [66].
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Lemma C.1 Let A1, A2, A3, A and B be action types. Then we have:

(i) (commutativity) Assume A1 � A2. Then we have A2 � A1 and A1 � A2 =

A2 �A1.

(ii) (associativity) Assume A1 � A2 and (A1�A2) � A3. Then we have: (1) A1 �

A3 and A2 � A3, (2) A1 � (A2�A3) and (3) (A1�A2)�A3 = A1�(A2�A3).

(iii) If x : � 2 jAj and md(�) 2 M!;# then there is no y : � 0 2 jAj such that

y :� 0 ! x :� .

(iv) If A � B with A=~x = A0, xi : �i 2 jAj, md(�i) 2 M!;#;l, and fn(B) \ f~xg = ;,

then A0 � B and (A�B)=~x = A0 �B.

(v) If A � B with A=~x = A0, xi : �i 2 jAj, md(�i) 2 M!;#, and B=~x = B0, then

A0 � B, A � B0, A0 � B0, and (A�B)=~x = A0 �B0.

(vi) ?B � ?B and B �B = B.

(vii) Suppose A=~x = A0, B=~x = B0 and A0 � B0. Assume also xi : �i 2 jAj,
xi : �

0
i 2 jBj with �i � � 0i , and md(�i) 2 M!;#. Then A � B and (A � B)=~x =

A0 �B0.

Proof. By regarding !LM=?LM as !A=?A, we can essentially follow the reasoning

given in [9; 66]. (i,ii) are immediate from the de�nitions. (iii) is obvious since there

is no edge to input/l nodes. (iv) is because we can write A = 
i(xi :�i ! Ai)
A0

by the side condition M
!;#;l (note Ai may be ;). Then by A � B, obviously

A0 = (Ai 
 A0) � B. Hence we have (A � B)=V ECx = (A=~x � B=~x) = A0 � B.
Similarly for (v). (vi) is by � � � = � with md(�) 2M? . (vii) uses (v) and (vi).

Lemma C.2 (substitution lemma) In the following, Æ is either " or w.

If
s̀ec
P . x :� 
A, md(�) 2M" and y 62 fn(A), then

(a)
s̀ec
Pfy=xg . y :� 
A and (b) tamp(x :� 
A) = tamp(y :� 
A).

(1 ) (innocuous client type) If
s̀ec
P . x :� 
A, md(�) 2M? and A(y) = � , then

(a)
s̀ec
Pfy=xg . A and (b) tamp(x :� 
A) = tamp(A).

(2 ) (mutable client type) Suppose
s̀ec
P . xÆ :� 
 yÆ

0

:� 
 A with either Æ = Æ0 or
Æ = " and Æ0 = w. Then we have (a)

s̀ec
Pfy=xg . yÆ

0

:� 
A and

(b) tamp(xÆ :� 
 yÆ
0

:� 
 A) = tamp(yÆ
0

:� 
A).

Remark: For the subject reduction theorem, we do not have to prove the case

such that Æ0 = " and Æ = w.

Proof. (b) of (1,2) is by de�nition. (a) is proved by the rule induction of

s̀ec
P . A. The only interesting case is x 2 fn(P ) and the last rule is either (Par),

(In#A), (Bra#L ), (In!LM) or (Bra#A). We prove (1) in the case of (Par) and (3) in the

case of (In!LM). Others are similar.

Suppose
s̀ec
P1 j P2 . x :� 
A and this is obtained by (Par) as follows.

s̀ec
P1 . A1 
 x :�

s̀ec
P2 . A2

s̀ec
P1 j P2 . A1 �A2 
 x :�

In the above we assume x 2 fn(P1) (hence x 62 fn(P2)) and A1�A2 = A. We prove

s̀ec
(P1 j P2)fy=xg . A1 �A2 
 y :� (15)
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By inductive hypothesis, we have
s̀ec
P1fy=xg . A1 
 y :� . Since x; y 62 fn(A2), we

have (A1 
 y :�) � A2 and (A1 
 y :�)�A2 = A
 y :� . Hence by (P1 j P2)fy=xg =
(P1fy=xg j P2), we have (15) as required.
Next suppose

s̀ec
!a(~z):Q . A
x :� 
 yw :� . Assume the last applied rule is (In!M)

as follows.

s v tamp(A
 x :� 
 yw :�)

s̀ec
Q . ~z :~� 
 ?A-a 
 x :� 
 yw :�

s̀ec
!a(~z):Q . a : (~� )!Ms 
A
 x :� 
 yw :�

Then we prove

s̀ec
!a(~z):Qfy=xg . a : (~� )!Ms 
 A
 yw :� (16)

By inductive hypothesis, we have

s̀ec
Qfy=xg . ~z :~� 
 ?A
 yw :� (17)

By (b), we know s v tamp(A
x" :� 
 yw :�) = tamp(A
 yw :�). Hence by applying
(In!M) to the above again, we conclude (16) as desired.

Lemma C.3

(i)
s̀ec
P . A and P � Q then

s̀ec
Q . A.

(ii)
s̀ec
x(~y):P j xh~vi . A implies

s̀ec
Pf~v=~yg . A. Similarly for selection.

(iii)
s̀ec
!x(~y):P j xh~vi . A implies

s̀ec
Pf~v=~yg j !x(~y):P . A. Similarly for selection.

(iv)
s̀ec
Refhxyi j xinlhci . A implies

s̀ec
Refhxyi j chyi . A

(v)
s̀ec
Refhxyi j xinrhwci . A implies

s̀ec
Refhxwi j c . A.

Proof: For (i), we can use the same reasoning as the proof of (i) in Lemma A.3 in

[66]; For example, in the structural rule

(� ~y)P jQ � (� ~y)(P jQ) with yi 62 fn(Q)

yi's mode should be M
!;l because of the de�nition of (Res). Hence we can use (iv)

and (v) of Lemma C.1 as in [66]. For (ii) and (iii), we �rst note that if vi in xh~vi
has mode ?LM or ?M, then vi has write mode, so we can use the condition of (3) in

Substitution Lemma. Then we can directly use (v,vi,vii) of Lemma C.1 together

with Substitution Lemma to prove (ii) and (iii) as in [66]. Hence we only have to

prove (iv) and (v).

(iv, read): We prove this statement by rule induction. If the last rule is (Weak),

then it is trivial. So assume

s̀ec
Refhxyi j xinlhci . x : refsh�i 
 yÆ :� 
 c : (�)"L (18)

where Æ = w if md(�) 2 f?M; ?LMg. Then we prove:

s̀ec
Refhxyi j chyi . x : refsh�i 
 yÆ :� 
 c : (�)"L (19)

We know (18) is inferred by (Par). Hence we have:

s̀ec
Refhxyi . x : refsh�i 
 yÆ :� and

s̀ec
xinlhci . c : (�)"L 
 xÆ

0

: refsh�i
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By this, we can apply (Out) to obtain:

s̀ec
chyi . c : (�)"L 
 yÆ :� (20)

By (iv) of Lemma C.1, we know yÆ :� � yÆ :� = yÆ :� . By applying (Par) to Refhxyi
and (20) again, we now have (19) as required.

(v, write): Assume

s̀ec
Refhxyi j xinrhwci . x : refsh�i 
 wÆ :� 
 c : ()"L 
 yÆy :� (21)

where Æ; Æy = w if md(�) 2 f?LM; ?Mg (else Æ and Æy are arbitrary due to (Weak-w)).

We shall prove:

s̀ec
Refhxwi j c . x : refsh�i 
 wÆ :� 
 c : ()"L 
 yÆy :� (22)

We know (21) is inferred by (Par), so we have:

s̀ec
Refhxyi . x : refsh�i 
 yÆy :� and

s̀ec
xinrhwci . xw : refsh�i 
 wÆ :� 
 c : ()"L

Then, we have

s̀ec
Refhxwi . x : refsh�i 
 wÆ :� and

s̀ec
c . c : ()"L (23)

Now by applying (Par) above, and by x : refsh�i � xw : refsh�i = x : refsh�i, we have
(22), as desired.

C.2 �LA with In
ation

In this subsection we prove the subject reduction for �LA with in
ation. For brevity

of the proof, we consider the unary fragment and use the following restricted variant

of (BOut). Below we write P y when P is input-pre�xed by P :

(BOut0)
s̀ec
�P yi

i . C~y:~� C � x : (~� )pO

s̀ec
x(~y)�Pi . C=~y � x : (~� )pO

(24)

This rule does not lose generality in comparison with the original (BOut) since, up

to �, all bound output can be decomposed into this form combined with parallel

composition. We also assume (Weak) is combined with input pre�x rules when

discussing derivations. This does not lose generality since (Weak) is only needed (if

ever) just before each pre�x rule and restriction.

Convention C.4 In the present subsection the secrecy typing is for �LA combined

with in
ation, i.e. we write
s̀ec
P . A when the sequent is derivable by the basic

secrecy typing for �LA combined with (Inf) and (Str) in x 3.5.

We �rst observe:

Lemma C.5

(1) (A t s) t s0 = A t (s t s0).

(2) tamp(A)ts = tamp(Ats). Thus inf(A)ts = inf(Ats). Further (A
B)ts =
(A t s)
 (B t s).

(3) If A � B then we have (A t s) � (B t s) and (A t s)� (B t s) = (A�B) t s.
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(4) (In#L) commutes over (Inf), i.e. (In#L) followed by (Inf) can be equivalently

replaced by (Inf) followed by (In#L). Similarly for (In#A), (In!L), (In!A) as well

as their branching counterpart. The same holds for (BOut') when the pre�x is

linear.

(5) If
s̀ec
P . A then

s̀ec
P . A t s for each s.

Proof. (1) is immediate. (2) is from (1). (3) is easy. (4) is because the tamper

level does not change by the application of these pre�x rules and linear unary output

(for example, tamp((�1::�n)
#L) = uitamp(�i)). (5) is mechanical by rule induction

of
s̀ec
P . A, using (1,2,3). We only show a couple of cases. Let s be arbitrary in

each case below.

(Par). Let
s̀ec

P jQ . A � B be derived from
s̀ec

P . A and
s̀ec

P . B. By

(IH) we have
s̀ec
P . A t s and

s̀ec
P . B t s. Since by A � B and (3) we have

(A t s) � (B t s), hence
s̀ec
P jQ . (A t s)� (B t s), to which we apply (3) again.

(In#A). Let
s̀ec
x(~y):P . x : (~� )#As0 
 "AA 
 ?B from

s̀ec
P . ~y : ~� 
 "AA 
 ?B

where, by the associated secrecy constraint, we have s0 v tamp(A
B). From this

condition we know s0 t s v tamp(A 
B) t s = tamp(A t s
 B t s). We can now

use (IH) and apply (2) again.

(Inf). Suppose
s̀ec
P . A from

s̀ec
P . inf(A). By (IH) we have

s̀ec
P . (inf(A))ts

which is equivalent to
s̀ec
P . inf(A t s) by (2), to which we apply (Inf) to obtain

s̀ec
P . A t s, as required.

Other cases are immediate from the induction hypotheses.

We can now prove the main results. Below it suÆces to show the case when (Par)

is the last rule since, if (Inf) is used, we can apply (Inf) to the new derivation.

Proposition C.6

(1 ) If
s̀ec

x(~y):P jx(~y)Q . A is derived using (Par) as the last applied rule, then

s̀ec
(� ~y)(P jQ) . A=x. Similarly for selection.

(2 ) If
s̀ec
!x(~y):P jx(~y)Q . A is derived using (Par) as the last applied rule, then

s̀ec
!x(~y):P j(� ~y)(P jQ) . A. Similarly for selection.

Proof. By Lemma C.5 (1), the only non-trivial case is when the pre�x is not

unary linear in (1). We show the case when it is unary aÆne. W.l.o.g. we prove

the monadic case. Suppose
s̀ec
x(y):P jx(y)Q . A is derived using (Par) as the last

applied rule, hence

s̀ec
x(y):P . x : (�)#As 
B and

s̀ec
x(y)Q . x : (� )"As 
 C with B � C (25)

By Lemma C.5 (1), we can permute the ordering of (Inf) and (In#A), so we can

assume x(y):P is immediately derived by (In#A) as follows.

s̀ec
P . y :� 
B with s v tamp(B) (26)

Next suppose x(y)Q is derived by applying �rst using (BOut') with s0 being the

level of aÆne output, followed by (Inf) as the last rule. Note that C only has

?-mode since y has !-mode. Hence tamp(x : (� 0)"As0 
 C) = s0, so we can set
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s0 = s = tamp(B) because ((� 0)"As0 )t s0 = ((� 0 t s)"As0 ) = (� )"As . Now we can assume

the following derivation.

s̀ec
Q . y :� 0 
 C 0

s̀ec
x(y)Q . x : (� 0)"As 
 C 0

with � 0 = � t s; C 0 = C t s (27)

Then by Lemma C.5 (3), from (26), we have:

s̀ec
P . y :� t s
 (B t s) (28)

We know B � C implies Bts � Cts. Since md(� ) 2M! , we have (�ts)�(�ts) =
� t s. Hence by applying (Par) and (Res), we have:

s̀ec
(� y)(P jQ) . (B t s)� (C t s) (29)

Note that tamp((Bts)�(Cts)) = tamp(Bts) = tamp(B) = s [since md(C) vM? ;

and we can set B = "AB1 
 ?B2, so tamp(B1) t s = tamp(B1) = tamp(A) =

s]. Hence �nally applying (Inf) to the above, we have
s̀ec

(� y)(P jQ) . A=x, as
desired.

C.3 �LAM with In
ation

Lemma C.5 holds without change, with (4) applied to added actions except for im-

mediately tampering ?LM=?M-actions. We prove the cases which involve immediately

tampering actions, starting from aÆne input/output.

Proposition C.7 If
s̀ec
x(~y):P jx(~y)Q . A is derived using (Par) as the last applied

rule with x being aÆne, then
s̀ec
(� ~y)(P jQ) . A=x.

Proof. As before we assume
s̀ec
x(y)Q . C 0
x :� is inferred �rst using (BOut')

with s0 being the level of aÆne output, followed by (Inf) as the last rule, and

s̀ec
Q . C 
 y :� 0 be the sequent preceding (BOut'). Further we let

s̀ec
P . B 
 y :�

so that B � C 0. We set tamp(C) = s1 and tamp(B) = s w s0. Thus we have

C 0 t (s0 u s1) = C. Let s0 = s u s1. By s w s0 we have (B t s0) � (C t s0) as well
as � 0 t s0 = � t s0. The rest is the same as Proposition C.6.

The cases for stateful replication are the same, of which we show unary stateful

replication. The case for references is the same.

Proposition C.8 If
s̀ec
!x(~y):P jx(~y)Q . A is derived using (Par) as the last applied

rule such that the mode of x is !A, then we have
s̀ec
!x(~y):P j(� ~y)(P jQ) . A.

Proof. We assume, without loss of generality, the following derivations preced-

ing (Par). For the output side, with C(x) = (��)?Ms :

s̀ec
Q . inf(C) 
 y :� 0 
 z :�0

(BOut')
s̀ec
x(yz)Q . inf(C)

(Inf)
s̀ec
x(yz)Q . C

For the input side, noting (In!M) can be permuted over (Inf) as other input pre�x

rules, we simply assume:

s̀ec
P . B 
 y :� 
 z :�

(In!M)
s̀ec
!x(yz):P . x : (��)!Ms0 
B
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We now set:

(1) tamp(C) = s1(v s) and tamp(B) = s2(w s).

(2) A0 = B � C (hence A = A0 � x : (��)!Ms0 ).

By B � C we have (B t s1) � (C t s1). Further by (��)?Ms t s1 = (� 0�0)?Ms we

have � 0 t s1 = � t s1 and �0 t s1 = � t s1. Hence we obtain s̀ec
(� yz)(P jQ) . (B t

s1) � (C 0 t s1), that is s̀ec
(� yz)(P jQ) . A0 t s1. Since B and C 0 do not overlap

at compensating names, we have tamp(A0) = tamp(B) u tamp(C 0) = s1 u s2 = s1.
Thus we have

s̀ec
(� yz)(P jQ) . A0. By (Par) we obtain the required sequent.

D. FURTHER DISCUSSIONS ON DCC

D.1 Illustration of DCC Typing Rules

The presented typing rules for DCC are semantically the same as the original pre-

sentation [3] but are extended for the subject reduction to hold (see Remark 4.4 for

the discussion on the violation of subject reduction in the original DCC). Together

with these di�erences we give a brief illustration of each typing rule.

� [V ar] says that if there is a 
ow from x : T then it will safely be outputted at

the same or higher level. [Unit] says the constant for the unit type can have an

arbitrary level (since it does not receive information from anywhere). [Lam] says

that if information from � and x : T safely 
ows via M , then the same is true

with x substituted for any term of type T .

� In the original presentation [3] [App] has the standard shape. Here we allow

the type of the agurment to be raised if the answer type is suÆciently high (see

the illustration of [BindM ] below). We note this application can be semantically

representable as bind x = N inMx. The extension is done for subject reduction.

� [Inl] is standard. Its dual [Case] says that if M emits information at some

secrecy level, the resulting processes should not reveal this level. The original

presentation [3] uses the least secrecy level as the level ofM , which is semantically

enough when combined with [BindM ]. This extension is however necessary for

subject reduction.

� [UnitM] says that if information never non-trivially 
ows down to the level as

low as T via M , then the same is true if we raise the level of T . Its symmetric
rule [BindM] says that M can use N at the level higher than originally ensured

to be safe, as far as the resulting datum has a suÆciently high level. This is the

most interesting rule in DCC, so that we illustrate this rule through examples.

(1) Starting from y :BH ; x :BL ` case xL of inl():inl() or inr():inr() : BH , we

can infer y :BH ` bind x = y in case xL of inl():inl() or inr():inr() : BH .

x is originally low, to which a high-level datum y 
ows down. However this

is still secure since it is in fact used to produce a high-level datum.

(2) Starting from w : BM ) B
H ; y : BL ) B

M ; x : BL ; z : BH ` w(yx) : BH , we

infer w : BM ) B
H ; y : BL ) B

H ; z : BH ` bind x = z in w(yx) : BH (where

M is a secrecy level between H and L). Because this term uses (in e�ect)

a high-level z to feed y which expects a low-level datum, there is a local
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secrecy violation. However, even if y does use the argument (i.e. there is a

non-trivial frow from the argument to the result), what y would produce by

yx can only be H-level information, from which w will again produce H-level

information, so, at the end of the day, it is safe.

Note (2) is more subtle than (1). In (1), the result of subtitution (regarding bind

as let) is case yH of inl():inl() or inr():inr() : BH , which is evidently secure

(cf. Figure 6 in Section 4). However in (2) the result of substution is w(yz) which
contains a locally unsecure subterm yz. This aspect of [BindM] also leads to an

issue in subject reduction, as discussed in Remark 4.4 in Section 4.

|[Lift] produces a pointed type to which [Rec] can be applied. The distinction

between pointed and non-pointed types thus allows separation of total types

from possibly diverging types. [Seq] waits for a recursion to terminate at a lifted

type of some secrecy level, and uses the resulting datum with a unlifted type at

a higher level. Since N may diverge, T 0 should be partial too.

Remarks D.1 ([Seq] and [BindM]) While similar in shape, there is a signi�cant

di�erence between [Seq] and [BindM]. In the original presentation of DCC, [Seq]

involves cancellation of lift, while [BindM] involves cancellation of coersion. The

coersion is less signi�cant operationally than lift: for example, in implicit typing

systems with subtyping in general, the construct for coercion is turned into subtyp-

ing without a constructor (as we do here). The reduction rule �sM �! M given

in [3] would be understood in this spirit.

D.2 Subject Reduction in DCC/DCCv

The proof of subject reduction is by the substitution closure of the following form.

Lemma D.2 (1 ) If � � x : (T )s ` M : T 0
, � ` N : T and s v protect(T 0) then

� `MfN=xg : T 0
.

(2 ) If � � x : T ` M : T 0
, � ` lift(N) : xTys and T 0

pointed and s v protect(T 0)

then � `MfN=xg : T 0
.

Proof. For (1) we prove the following strengthened property by rule induction

of the extended DCC typing rules.

If � � x : (T )s ` M : T 0, � ` N : T and s v protect(T 0) then for each s0

we have � `MfN=xg : (T 0)s0 .

We show the reasoning for [App] and [Seq]. Below for simplicity we assume (T 0)s0 =

T 0 (this loses no generality).

� The last applied rule is [App]. Suppose � � x : T ` M1M2 : T 0 is inferred

from � � x : T ` M1 : T0 ) T 0 and � � x : T ` M2 : T0. Let � ` N : (T )s
and s v protect(T 0). By induction hypothesis � ` M2fN=xg : (T0)s as well as

� `M1fN=xg : T0)T 0. By applying [App] we obtain � ` (M1M2)fN=xg : T
0.

� The last applied rule is [Seq]. Suppose � � x : T ` seq y = M1 in M2 : T 0 is

inferred from � � x :T � y :T0 `M2 : T
0 and � � x :T `M1 : xT0ys0 with T 0 pointed

and s0 v protect(T 0), and let � ` N : (T )s with s v protect(T 0). By induction
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hypothesis we have both � `M1fN=xg : xT0ysts0 and � � y :T0 `M2fN=xg : T
0.

By assumption we have sts0 v protect(T 0), hence we can apply [Seq] to conclude

� � x :T ` seq y =M1fN=xg in M2fN=xg : T
0.

Other cases are similar. (2) is easy (note we placed no restriction on s, which is

enough by the shape of the term lift(N)).

The subject reduction of DCC is now easily established using Lemma D.2 by struc-

tural induction. We show two cases which use the strengthened substitution lemma

non-trivially.

|Assume � ` �x:M : T ) T 0, � ` N : (T )s such that s v protect(T 0) and

(�x:M)N �! MfN=xg. By assumption � � x :T ` M : T 0. By Lemma D.2 we

have � `MfN=xg : T 0 hence done.

|Assume � ` bind x = N in M : T 0 and bind x = N in M �! MfN=xg. By
assumption we have � ` N : (T )s and � � x :T ` M : T 0 where s v protect(T 0).

By Lemma D.2 we are done.

Other cases are easier.

Finally we brie
y discuss the subject reduction for DCCv. The proof does not

di�er from that for DCC, based on (the call-by-value version of) the in
ated sub-

stitution lemma. As an aside, it is notable that the subject reduction is violated if

we introduce [BindM] which also acts on partial types (in spite of our presentation

in [30]). As an example, let M
def
= bind x = 
 in x with 


def
= (�x:�y:xy)0. We can

easily check `M : N. However M �! 
 and 
 : N is not well-typed. Note we can

amend this by combining [BindM] with [Seq], requiring the partiality of the whole

term.

E. CONSERVATIVITY RESULT FOR THE SMITH CALCULUS

We �tst observe we have only to use [Var,VarM] and [Const] from Figure 12 by

the restriction to the �rst-order value types. Thus x := v always tampers at s
whenever E(x) = refshNs i. By induction we can show s in E ` c : scmd *s0 in [57]

and tamp(E) in E ` c : cmd *s0 coincide (up to the downward subsumption of s)
by induction.

For while rules, two side conditions look di�erent but they are in fact equivalent.

From the condition in our rule we derive:

s v tamp(E) u s0 ^ s0 v tamp(E);

from which we trivially obtain (1) s v tamp(E) and (2) s0ts = s0, the latter being
the termination level of the resulting command in [57]. On the other hand, assume

given the condition by Smith:

s v tamp(E) ^ s0 v tamp(E):

Since we can always raise the termination level s0 of the command in the antecedent

by subsumption, we let the raised level be s00
def
= s0 t s. The condition is now

rewritten for s00 as:

s v tamp(E) u s00 ^ s00 v tamp(E);
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that is s v s00 v tamp(E), with the resulting termination level s00, which is the

condition given in the present paper. The remaining rules are directly mutually

translatable.

F. THE EMBEDDABILITY OF THE EXTENDED SMITH-VOLPANO CALCULUS

F.1 Proposition 7.7 (subtyping)

T Æ
1 � T Æ

2 i� T �
1 � T �

2 is direct by de�nition. Thus we only have to show T1 � T2
i� T Æ

1 � T Æ
2 , which is proved by rule induction of T1 � T2 de�ned in Section 7.3.

Here we only show the \only if"-direction for the case of Ti = Si*
si*Ui; (i = 1; 2).

Others are similar. Assume S2 � S1, U1 � U2 and s2 v s1. Then by induction,

SÆ1 � SÆ2 and U�
1 � U�

2 . Note for the input type, the security level is contravariant,

while the carried types are covariant. Hence we have: (S1*
s1*U1)

Æ def
= (SÆ1U

�
1 )

?M
s1
�

(SÆ2U
�
2 )

?M
s2

def
= (S2*

s2*U2), as required.

F.2 Proposition 7.8 (coincidence of protection/tampering levels)

By induction on the size of types. For (1), we have tamp(S�) = tamp((SÆ)"L) =

tamp(SÆ) = tamp(xSyÆs) (Note xSyÆs
def
= SÆ). (2) is by simultaneous induction. We

use (1). Here we only prove the �rst part of the statement. Suppose T = Ns . Then

protect(Ns ) = s. Also by (1), tamp(T �) = tamp(NÆs ) = tamp([
! ]"Ls ) = s. Similarly
for the case T = xSys. Next suppose T = S*s*U . Then we have:

protect(S*s*U) = protectE(S) u protect(U) (by de�nition in Section 7.4)

= tamp(SÆ) u tamp(U�) (by inductive hypothesis)

= tamp((SÆU�)!Ms ) (by De�nition 6.1)

= tamp((S*s*U)Æ) (by de�nition of Æ)

= tamp((S*s*U)�) (by (1))

The cases T = S)T is similar. If T = refs(S), we have:

protect(refs(S)) = protectE(S) u protect(S) (by de�nition in Section 7.4)

= tamp(SÆ) u tamp(S�) (by inductive hypothesis)

= tamp(SÆ) u tamp(SÆ) (by (1))

= tamp([(SÆ)"L&SÆ()"L ]?LMs ) (by de�nition of Æ)

= tamp(refs(S)
Æ)

= tamp(refs(S)
�) (by (1))

For (3), it is enough to prove the case when E is a singleton. Let E = fxÆ :Tg. By
(1), if Æ = w, then tamp(fxw :Sg) = protectE(S) = tamp(SÆ) = tamp(fxw :SgÆ), as
required. The case Æ = " is easy by tamp(E) = > = tamp(EÆ).

F.3 Proposition 7.10 (well-typedness of the encoding of commands)

The proof is by mechanical induction. We only show [LamM] and [Lam] for expres-

sions, and [Seq], [Sub] and [Deref ] for commands. [While] is discussed in the main

section (x7.7). Other cases are similar.

Case [LamM]. Let E � xÆ : S ` e : U . By inductive hypothesis, we have
s̀ec

heiu . EÆ 
 xÆ : SÆ 
 u : U�. By the condition s v tamp(E) = tamp(EÆ) we
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know s v tamp(EÆ), hence by (In!M):

s̀ec
!c(xm):heim . EÆ


 c : (SÆU�)!Ms (30)

Hence by (Out), we have

s̀ec
u(c)!c(xm):heim . EÆ


 u : (S*s*U)�;

as required.

Case [Lam]. Suppose in this rule, M has a total type T 0. If heim contains mutable

names except x, then we cannot type the process (30) because in (In!L) we only

allow ?LA 
 ?AB appears as free in its body. But this is guaranteed by the side

condition (1) of (�), which says that for all y, E(y) = S immutable (note then

md(E(y)Æ) 2 f?L; ?Ag).
Next suppose M has a partial type U . In this case, we do not abstract the body

which contains mutable variables, which is guranteed by the side condition (2) of

(�). Thus we can apply (In!A) to obtain (30).

Case [Seq]. By assumption, we know
s̀ec
[[ci]]ui . ui : ()

pi 
 Ai such that Ai = EÆ
i

and A1 � A2 = EÆ with pi 2 f"L; "Ag. First assume �1 =+, so that p1 = "L. We

observe we can pre�x [[c2]]u by a unary linear input regardless of its secrecy level,

since a unary linear input does not have the constraint on the secrecy level. Thus

by (In#L), (Par) and (Res), we infer:

s̀ec
(� u1)([[c1]]u1 j u1:[[c2]]u2) . u2 : ()

p2
s2

A2

as required. If on the other hand � =*, then p1;2 = "A. By the side condition and

by noting tamp(E) = tamp(A2), we have s1 v s2u tamp(A2) = tamp(u2 : ()
"A
s2

A2).

This satis�es the constraint of (In#A). Thus the following is well-typed:

s̀ec
u1:[[c2]]u2 . u2 : ()

"A
s2

 u1 : ()

#A
s1

A

Hence by (Par) and (Res) we are done.

Case [Sub]. The only non-trivial case is when we replace +s with *s, which we show

by induction. Others are straightforward by (Weak), (Weak-w) and Proposition 7.7

for T . The base cases (c
def
= skip and c

def
= x := v) are trivial. For induction, for

[[c1; c2]]u we note [[c1]]e outputs at e linearly), similarly for [[if x then c1 else c2]]u.
Other cases are direct from the induction hypothesis.

Case [Deref ]. We show the case when T is mutable (the reasoning when T is

immutable is easier). Assume E ` z : refs(T ) and E � x : T ` c : cmd �s0 with T
mutable. By induction hypothesis, we have, with p 2 f"L; "Ag,

s̀ec
[[c]]u . EÆ


 xw :T Æ 
 u : ()ps0

Note refs(T )
Æ = [(T Æ)"L&T Æ()"L ]!LM . Since T is mutable, x should have the write

mode. Hence we have

s̀ec
zinl(c)c(x):[[c]]u . E=zÆ 
 zw : refshT Æi 
 u : ()ps0

Finally noting the above action type is hcmd �si
E
u , we are done.
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Throughout we set T = [T1::Tn�1
] and ~x = x1:::xn�1. Annotated types are determinined
from a given DCC sequent up to secrecy levels (which is enough for unique translation).
[x! y]T and xh~yi~� are given in Appendix B.

[[x : T ]]u
def
= [u! x]T

Æ

[[() : unit]]u
def
= !u(x):x

[[�x0:M : T0)T ]]u
def
= !u(x0~xz):(� u

0)([[M : T ]]u0 j u0h~xzi
TÆ
1
::TÆ

n�1

�)

[[MN : T ]]u
def
= !u(~xz):(�mx0)([[M : T0)T ]]m j [[N : T0]]x

0
jmhx0~xzi

TÆ
0
::TÆn


�

)

[[inl(M) : T1 + T2]]u
def
= !u(c):cin1(m)[[M : T1]]m

[[caseL of inl(xT11 )M1 or inr(x
T
2

2 )M2 : T ]]u
def
= !u(~z):(� l)([[L : T1+T2]]l j Sumhl~z; (xi)M

T
i i)

where Sumhl~z; (xi)MT
i i

def
= l(c)c[&i=1;2(xi):(�m)([[Mi : T ]]m jmh~z T1::T

Æ
n�1


�i)]

[[bind x = N : T 0
in M : T ]]u

def
= (� x)([[M : T ]]u j [[N : T 0]]x)

[[lift(M) : xTys]]u
def
= !u(c):c(m)[[M : T ]]m

[[seq xT
0

=N inM :T ]]u
def
= (� n)( !u(~z):n(c)c(x):P j [[N :T 0]]n) ([[M :T ]]

def
= !u(~z):P )

[[�x:M : T ]]u
def
= (�m)([[M : T ]]u j [x! u]T

Æ

)

We omit inr(M).

Fig. 16. Encoding of Dependency Core Calculus

G. ENCODINGS

Figures 16, 17 and 18 list the encodings of DCC, DCCv and the extended Smith and

Volpano-calculus. The encoding of (call-by-name) DCC uses bound name passing,

while DCCv uses free name passing. We can change one form into the other by

turning genuine free output to the encoded free output and vice versa. Free name

passing makes the encoding concise, while bound name passing tends to give a more

uniform encoding and dispenses with the need of subtyping (as discussed in x3.4).
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hxiu
def
= uhxi hniu

def
= u(c)[[n]]c h�x:Miu

def
= u(c)! c(xm):hMim

hsucc(y)iu
def
= u(c)!c(e):y(c0)c0[&i :eini+1]

hMNiu
def
= (�m)(hMim jm(a):(� n)(hNin j n(b):ahbui)

hseq x = N in Miu
def
= (� n)(hNin j n(x):hMiu)

h�x:�y:Miu
def
= u(c)(� x)(P j !x(yz):chyzi) (h�y:Miu � u(c)P )

hifM thenN1 elseN2iu
def
= (�m)(hMimjm(c):c(e)e[&ihNiiu]) (Nj=N2 if i � 2)

� Formally we regard xh~yi as its bound output encoding.

Fig. 17. Encoding of Call-by-Value DCC

(Expression)

hc return eiu
def
= (�m)([[c]]m jm:heiu)

Others are the same as DCCv de�ned in Figure 17.

(Command)

[[skip]]u
def
= u

[[x := v]]u
def
=

(
(� y)(xinrhyui j P ) (hvim

def
= m(y)P )

xinrhyui (hvim
def
= mhyi)

[[c1; c2]]u
def
= (� e)([[c1]]e j e:[[c2]]u)

[[if v then c1 else c2]]u
def
=

(
(� y)(P j ifzerohy; [[c1]]e; [[c2]]ui) (hvim=m(y)P )

ifzerohy; [[c1]]e; [[c2]]ui (hvim=mhyi)

[[while ! x do c]]u
def
= (� e)(ehui j !f(k):ehki

j !e(k):xinl(c)c(y):ifzerohy; (� l)([[c]]l j l:fhki); ki)

[[let x = e in c]]u
def
= (�m)(heim jm(x):[[c]]u)

[[new x 7! v in c]]u
def
=

(
(� xy)(Refhxyi j P j [[c]]u) (hvim

def
= m(y)P )

(� x)(Refhxyi j [[c]]u) (hvim
def
= mhyi)

[[let x = !y in c]]u
def
= yinl(e)e(x):[[c]]u

[[�ici]]~u
def
= �i[[ci]]ui

ifzerohx;P; Qi
def
= x(z)z[&iRi] (R0=P; Ri=Q if i � 1)

Fig. 18. Encoding of VS-Calculus with Reference and Procedure
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(Zero)

�

s̀ec 0 .

(Par)

s̀ec Pi . Ai (i =1; 2)

A1 � A2

s̀ecP1jP2 . A1�A2

(Res)

s̀ec P . Ax:�

md(� ) 2M! [ flg

s̀ec (� x)P . A=x

(Weak)

s̀ecP . A-x

md(�) 2M? [ flg

s̀ecP . A 
 x :�

(In#L)

s̀ecP . ~y :~� 
 "LA
-x 
 "A?B

-x

s̀ec x(~y):P . (x : (~�)#L!A)
B

(In!L)

s̀ec P . ~y :~� 
 ?LA
-x 
 ?AB

-x

s̀ec! x(~y):P . (x : (~�)!L!A)
B

(In#A) s v tamp(A)

s̀ecP . ~y :~� 
 "A?A
-x

s̀ec x(~y):P . x : (~�)#As 
A

(In!A)

s̀ecP . ~y :~� 
 ?L?A?
"
�A

-x

s̀ec!x(~y):P . x : (~�)!A
A

(BOut) pO 6= ?M

s̀ec P . C~y:~� C � x : (~�)pOs

s̀ec x(~y)P . C=~y � x : (~�)pOs

(In!M) s v tamp(A)

s̀ecP . ~y :~� 
 ?A-x

s̀ec !x(~y):P . x : (~�)!Ms 
A

(BOut?M)

s̀ec P . C~y:~� C � x : (~�)?Ms

s̀ec x(~y)P . C=~y � xw : (~�)?Ms

(Bra#L) s v tamp(A
B)

s̀ecPi . ~yi :~�i 
"LA
-x
"A?B

-x

s̀ec x[&i(~yi):Pi] . (x : [&i~�i]
#L
s !A)
B

(Bra!L)

s̀ec P . ~yi :~�i
?LA-x 
 ?AB
-x

s̀ec!x[&i(~yi):Pi] . (x : [&i~�i]
!L!A)
B

(Bra#A) s v tamp(A)

s̀ecPi . ~yi :~�i 
"A?A
-x

s̀ec x[&i(~yi):Pi] . x : [&i~� ]
#A
s 
A

(Bra!A)

s̀ec Pi . ~yi :~�i 
 ?L?A?
"
�A

-x

s̀ec!x[&i(~yi):Pi] . x : [&i~�i]
!A
A

(BSel) pO 62 f?M; ?LMg

s̀ecP . C~y:~�j C � x : [
~�i]
pO
s

s̀ec xinj(~y)P . C=~y � x : [
~�i]
pO
s

(Weak-w)

s̀ec P . A
 x :� md(� ) 2 f?LM; ?Mg

s̀ec P . A
 xw :�

(Ref)

ifmd(�)2f!LM; !Mg then Æ=w else Æ="

s̀ecRefhxyi . x : refsh�i
y
Æ :�

(Read)

s̀ec P . Ac:(�)#L

s̀ec xinl(c)P . xÆ : refsh� i 
A=c

(Write)

s̀ecP . Avc:�()"L

s̀ec xinr(vc)P . xw : refsh�i
A=vc

(CRef) s v s0

if md(� ) 2 f!LM; !Mg then Æ = w else Æ = "

s̀ec [x! y]refsh�i . x : refsh�i!yÆ : refs0h�i

Fig. 19. Summary of Secrecy Typing for �LAM (with bound output)
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