
Noninterference Proofs through Flow Analysis

Kohei Honda and Nobuko Yoshida

August 9, 2002

1 Introduction

This note proves noninterference results (NI) for the secrecy analyses for �LA

and �LAM presented in [1], using the inductive information ow analysis. This

ow analysis is related to the secrecy typing in [1] in that, while the latter

ensures safety of information ow, the former extracts ow of information. The

presentation and study of ow analysis is restricted to its use in NI proofs:

further study of the presented ow analysis and its extensions are left for future.

Technically the note refers to [1] for �LA and �LAM as well as the secrecy typing in

them. For lucid presentation all technical development is done in the following

setting.

1. We only use unary types (except for reference types in �LAM). This does

not lose generality since aÆne unary types already have non-trivial infor-

mation ow and branching types are incorporated in the same way, both

in construction and in reasoning.

2. We restrict processes to those with bound output, which results in no

loss of generality via the standard translation. While the rules themselves

can be presented for free output with the same e�ect, each rule becomes

arguably simpler with bound output.

The remainder of the note is organised as follows. Section 2 introduces basic

ideas through examples. Section 3 proves NI for the basic secrecy typing for �LA.

Section 4 lists the additional cases needed for the secrecy typing with ination.

Section 5 discusses the NI proof for �LAM.

2 Basic Ideas

The ow analysis we shall use is given as a typing system which is superimposed

on �LA/�LAM-typing. Since our interest lies in its correspondence with secrecy

analysis, we use channel types with secrecy level annotations.

The sequent has the form ` PA
I 	, which we usually write ` P I 	,

leaving A implicit for legibility. Here 	 is a �nite set of causal maps, each of

1

which has the form �; x� , where � is a �nite set of typed names, each of form

y�. In �; x� , � is a source while x� is a target. Sometimes a typed channel in

� is also called a source. We assume target names are pairwise distinct in each

	. Intuitively �; x� says interactions at � are needed to produce information

which is emitted from x.

2.1 Example (1): copy-cat

To illustrate the idea of ow analysis, we �rst extract a ow of a copy-cat `

!x(c):y(e)e:c . x : (()"As)!A
y : (()#As)?A . We use the simpli�ed sequent, assuming

the underlying �LA-typing at each step.

�
(BOut)

` c I ;; c()
"A

(In#A)
` e:c I e()

#A
s
; c()

"A
s

(BOut)
` y(e)e:c I y(()

#A
s)?A

; c()
"A
s

(In!A)
`!x(c):y(e)e:c I y(()

#A
s)?A

; x(()
"A
s)!A

Note the action of y actually depends on y: so, from an intuitive idea of causal-

ity, one may as well consider there is a ow from x to y, rather than y to

x. However the extracted ow y(()
#A
s)?A

; x(()
"A
s)!A does capture the ow of this

typed �LA-term: as discussed elsewhere, the replicated type of x has a non-trivial
information content, which depends on the interaction starting at y.

2.2 Example (2): composition

The following simple example shows how we can extract information ow from a

parallel composition of processes. Given a term ` x(c)c:w . x : (()#A)?A
w : ()"A ,

we can extract its ow as:

` x(c)c:w I x : (()#A)?A ; w : ()"A

Then we compose it with the copy-cat we discussed in Example (1), as follows.

` !x(c):y(e)e:c I y(()
#A
s)?A

; x(()
"A
s)!A

` x(c)c:w I x(()
#A
s)?A

; w()
"A

s0

(Par)
`!x(c):y(e)e:c j x(c)c:w I f y(()

#A
s)?A

; x(()
"A
s)!A; y(()

#A
s)?A

; w()
"A

s0 g

In the inference for parallel composition, x(()
#A
s)?A in the antecedent is replaced

by y(()
#A
s)?A . This is because the complement of an output at x is already supplied

(as shown by the fact that the resulting action type has x : (()"As)!A), and because

it depends on y. In this way the resulting typed names should conform to the

resulting action type.

2

2.3 Example (3): Unused Types

We consider the following typed term in �LA, with secrecy annotation on types:

` x(y1y2):y1(e)e:f . x : ((()
#A
L)?A(()

#A
H)?A)#L
 f : ()

"A
L

This process is secure: to output a low-level f , it is suppressed by e carried by

y1, but this e is again a low-level, so no insecure ow takes place. The ow

analysis presented in the next section represents the information ow of this

process as follows.

` x(y1y2):y1(e)e:f I x : ((()#AL)?A)#L ; f : ()"AL

Here, in the causal map x : ((()#AL)?A)#L ; f : ()"AL , the type of x does not contain

the type of the channel which is not used (here y2). Thus, if we calculate the

level of input and that of output, we can see the process inputs at L and outputs

L, which is indeed secure.

3 �
LA (1): Basic Secrecy Analysis

3.1 Preliminaries

First we write � � � 0 if � is \part of" � 0. Formally we de�ne � from:

(~�1~�2)
p
s � (~�1�~�2)

p
s

and closing it under type formation. Second we write 	 ` y : � ; x : � when

�; x :� 2 	 such that y :� 2 �. We also write 	 ` ;; x :� when ;; x :� 2 	.

Note the collection of such \unit chains" in 	 completely determines 	. Based

on these de�nitions, we de�ne 	1 � 	2 and 	1 � 	2 (which are analogous to

A1 � A2 and A1 � A2) as follows. Below we say 	 conforms to A if for each

x :� we have A(x) = � 0 such that � � � 0.

De�nition 3.1 Assume A1 � A2, to which the modes of channels in 	1 and

	2 respectively conform. Then 	1 � 	2 i� the following two conditions hold.

(1) If 	1 has a source channel y�, and its compensating channel is in A2,

then it should also occur in 	2 as a target y� such that � � � ; and the

symmetric case.

(2) If x�1 occurs in 	1 and x�2 occurs in 	2 except for (a), then �1 = �2.

De�nition 3.2 Assume 	1;2 such that 	1 � 	2, with the underlying action

types A1 and A2. Then 	1 �	2 is given as follows:

(1) If 	1 [2 ` xi+1 : �i+1 ; xi : �i for 1 � i � n � 1 such that each xi is
distinct and, moreover, md(�n) = md((A1�A2)(xn)), then 	1�	2 ` xn :
�n ; x1 :�1.

3

(Zero)

�

` 0 I ;

(Par)

` Pi I 	i (i =1; 2)

	1 � 	2

` P1jP2 I 	1 �	2

(Res)

` P I 	

` (� x)P I 	=x

(Union)

` P I 	i

` P I
S

i
	i

(Subset)

` P I 	0
� 	

` P I 	

(In#L)

` P I �; w� ~� = �(~y)

` x(~y):P I �=~y � x(~�)
#L
; w�

(BOut"L)

` Pi I �i ; y
�i
i

` x(~y)(�iPi) I � �i ; x(~�)
"L

(In#A)

` P I �; w�

` x(~y):P I �=~y � x()
#A
s
; w�

(BOut"A)

` Pi I �i ; y
�i
i

` x(~y)(�iPi) I ;; x()
"A
s

(In!L;!A) p 2 f!L; !Ag

` P I �; z� p 2 f!L; !Ag

`!x(~yz):P I �=~yz ; x(�)
!L

(BOut?L;?A) p 2 f?L;?Ag

` Pi I 	i ` Q I z� � �; w�

` x(~yz)(�PijQ) I � � x(�)
p

; w�

Figure 1: Flow Analysis for �LA

(2) If �; x :� 2 	i and for no y we have 	1�	2 ` y :�; x :� by (1) above,

then we have 	1 �	2 ` ;; x :� .

Note 	1 � 	2 says we do not leave ? or #-moded channels in the resulting

source if these channels are eliminated at the level of the action type. Taking

only part of it for compensation is to deal with the situation discussed in x2.3.

3.2 Inductive Flow Analysis

The rules are given in Figure 1, each rule superimposed with the corresponding

�LA-typing rule (thus we in fact have the rule for (Weak) which weakens the

action type but does not change the causal map, which we omit). The rules

use at most one causal map except for (Par), (Union) and (Subset). Brief

illustration of the typing rules follows.

1. (Par) connects causal chains so that modes of the source match the re-

sulting (implicit) action type. It may need more than one causal maps

for compensating multiple sources in accordance with the action types.

4

(Zero), (Weak) and (Res) need no illustration except they assume the ma-

nipulation of underlying action types (as all other rules do). (Subset) and

(Union) bridge (Par) and other rules.

2. In (In#L) we extract part of the carried types used for producing the re-

sult. (BOut"L) carries all causality information from its abstracted names.

In (In#A) we cancel all carried types, unlike (In#L), since this action di-

rectly receives information. Dually (BOut"A) throws away all information

on source, since this immediately tampering action takes place without

depending on any other actions.

3. In (In!L;!A), we do not record the incoming abstracted sources (keeping

them leads to re�ned analysis, though this is unnecessary for the present

purpose). Dually, in (BOut?L;?A), the process receives information at z in

the antecedent, which is registered as the type of x.

The analysis extracts a causal chain from the source to the target.

3.3 Flow Analysis and Noninterference

In this subsection we show that our secrecy typing ensures that a causal chain is

non-existent in secure processes if the source has a higher or incompatible level

in comparison with the target, except for semantically innocuous \cancelable"

indirections. Combined with behavioural properties associated with such chains,

we can establish the noninterference property. To relate secrecy analysis and

causality analysis, we need some preparations. First we de�ne those types which

are essentially non-a�ecting due to linearity.

De�nition 3.3 Let � have mode ?L or #L. Then � is cancelable when:

1. � = (�0
#L)?L such that �0 is cancelable.

2. � = (�1::�n)
#L such that each �i is cancelable.

If we have branching, cancelable types do not include branching linear input,

since it does receive non-trivial information. Using cancelable types we can

precisely specify the level of reception of information in interaction.

De�nition 3.4 (receiving level) The receiving level of � , denoted receive(�), is
given by the following equations: receive(�) = tamp(�) if � is not cancelable,

and receive(�) = ? if else.

In the de�nition of receiving levels, the exceptional treatment for cancelable

types is necessary because these types are better to be considered as types for

which \we don't care secrecy levels", due to the inductive lack of immediate

information ow.

We can now relate the ow analysis and secrecy typing.

5

Proposition 3.5 Assume below (a)
s̀ec
P . A; (b) ` P I � ; x� is derived

following the derivation of
s̀ec
P . A and (c) y 2 dom(�).

1. If �(y) = � then receive(�) v tamp(�) for each �i.

2. If �(y) = � such that md(�) 2 f?A; #Ag, then receive(A(y)) v tamp(�).

3. If �(y) = � and receive(A(y)) 6v tamp(�) then � is cancelable.

Proof: (1) is by rule induction, noting the causal analysis uses only part of

channel types which are really used for suppressing the �nal tampering output.

(2) is immediate by the de�nition of receiving levels. For (3) let us say � is

immediately receiving if � is immediately tampering. Note if the immediately

receiving type in (2) is included in the source then receive(A(y)) 6v tamp(�)
is not possible. By induction of the immediately receiving type, the resulting

receiving type can only be cancelable.

The ow analysis allows us to inductively prove the behavioural property asso-

ciated with noninterference as follows. We use the following notion, which is a

term mediating an observable type to the canonical observable type.

De�nition 3.6 Let md(�);md(�) 2 M!;". Then we say P is a mediator from

x :� to y :� if it is typed as ` P . x :�
 y :�.

For example, w(e)e:z is a mediator from w : (()"A)!L to z : ()"A . We can now prove

the behavioural property. Below a process P compensates A if ` P . A0 where

A0 is the subset of A with names of modes in M?;#. Further A � ~y projects A
onto ~y while A=~y takes o� ~y from A.

Proposition 3.7 Assume ` P I �; w�
following ` P . A, with ~y = fn(�).

Further assume (1) R compensates A � ~y, (2) S1;2 compensates A=~yw, and (3) T
is a mediator from w : � to a fresh z : ()"A. Then P jRjT jS1 +z i� P jRjT jS2 +z.

Proof: By induction of the rules in Figure 1.

(Zero) Vacuous.

(Res) Assume we infer ` (� x)P I y : ��=x from ` P I y : ��. First assume

x 62 fn(�). If, for R, Si and T as above, we have ((� x)P)jRjS1jT +z , then

we also have P jRjS1jT +z . Since S1 compensates A=~ywx by the type of

x (which is of mode either l or modeset!, we have P jRjS2jT +z , that is

(� x)P jRjS2jT +z , as required.

(Sub) Immediate.

(Union) Immediate.

6

(Par) We show the special case when we compose ` P I x : �y :� (following

` P . A) and ` Q I y :�0u :Æ (following ` Q . B). The general case is by
the same reasoning (in fact any parallel composition can be decomposed

into parallel composition of connected processes). Let C = A � B and

assume the names compensated for in C=xz are ~v ~w where, for simplicity,

we assume ~v are in A and ~w are in B (the case when names are overlapped

can be treated similarly). Let R, Si and T be as above. Since types say

terms are either replicated or linear outputs, we can decompose S1 into

V ~v
1 and W ~w

1 . Similarly we decompose S2 into V ~v
2 and W ~w

2 . Now assume

(P jQ)jS~v~w1 jRujT xz +z , that is P jV1j(� u)(QjR)j(� ~w)(W1jT) +z . By the

induction hypothesis on P we have: P jV2j(� u)(QjR)j(� ~w)(W1jT) +z ,

that is QjW1jRjV2j(� x)(P jT) +z . By the induction hypothesis on Q we

have: QjW2jRjV2j(� x)(P jT) +z , as required.

(In#L) Assume given the inference

` P I �; w� ~� = �(~y)

` x(~y):P I �=~y � x(~�)
#L
; w�

following appropriate linear/aÆne typing. Assume given appropriate S1;2,
R and T as stated. Then by applying extended reduction at x we have,

x(~y):P jSi �= (� ~y)(P jS0
i) where S

0
i is in an appropriate form for P . Thus

if (x(~y):P)jS1jRjT
wz +z then P jS0

1jRjT +z hence P jS0
2jRjT +z that is

(x(~y):P)jS2jRjT
wz +z hence as required.

Other pre�x rules are similar.

As a special case of Proposition 3.7 (setting � = ;), we obtain:

Corollary 3.8 Let ` P I ; ; x
"A

following ` P . A. Let B = A=x and

` R1;2 . B. Then P jR1 +x i� P jR2 +x.

We can now establish the key property related with noninterference in �LA.

Proposition 3.9 Let ` P I � ; x
"A

following ` P . A with each type in �

cancelable. Let B = A=x and ` R1;2 . B. Then P jR1 +x i� P jR2 +x.

Proof: By induction on the structure of cancelable types we check that, in P jRi

as above, there is a unique P 0 for both i = 1; 2 such that P jRi
�= P 0jR0

i and

the interface � is all cancelled. This is because, by the liveness properties [2],

we can always force the interaction via !L-?L channels and unary #L-"L channels

regardless of the shape of the process in the environment (i.e. the compensating

actions of the other party is uniquely determined by its type). Thus the state-

ment is reduced to Corollary 3.8.

We can now prove the noninterference. Below the side condition for A given at

the top does not lose generality since if A (hence R) contains replication they

can be distributed by the replication theorem.

7

Proposition 3.10 Assume md(A) �M?;#.

1. Let
s̀ec

R . A
 x : ()"As such that tamp(A) 6v s and ` R I � ; x()
"A
s

following the derivation of
s̀ec
R . A
 x : ()"As . Then for each y 2 dom(�),

�(y) is cancelable.

2. Let
s̀ec

P1;2 . A and
s̀ec

R . A
 x : ()"As with tamp(A) 6v s. Then

(� fn(A))(P1jR) +s i� (� fn(A))(P2jR) +s.

3. (noninterference) If
s̀ec
P1;2 . A then tamp(A) 6v s then

s̀ec
P1

�=s P2 . A.

Proof: (1) is direct from Prop. 3.5 (1) and (3). For (2), by (1) above and

by induction on the number of such forced reduction steps, we can reduce A to

that which contains only ?A or #A-channels. We can now appeal to Proposition

3.9, to obtain (2). Finally (3) is from the context lemma give and (2) above,

hence as required.

4 �
LA (2): Ination

For ination, we assume the rule in which we change the secrecy annotation of

typed names in the ow analysis following the change in action types. Formally,

using the full sequent, we add the following rule (with 	ts de�ned as for action

types):

(Inf)
` P inf(A)

I 	 t tamp(A)

` PA
I 	

Now assume ` P I � ; x : � is the antecedent of the above rule, with the

conclusion ` P I �0
; x : � 0. Clearly tamp(� 0) = tamp(�) and, for each yi

in fn(�), receive(�0(yi)) v receive(�(yi)). Further cancelable types in �0 are

precisely those in �. Thus we obtain:

Proposition 4.1 The same properties as stated in Proposition 3.5 hold for the

secrecy analyse with ination.

The rest is the same as Section 3.

5 �
LAM

In this section we consider the secrecy analysis on �LAM with ination. The rule

for the ow analysis of ination is already given in x4. The causality analysis in

�LAM is more complex than that in �LA in that we have more possibility of causal

relations, together with more \observable" actions. Among others it uses \part

of" reference types depending on their use in producing information. The key

insight is that reference types (and mutable types in general) have the property

that they as well as their duals have non-trivial tampering levels, unlike stateless

replicated types. Part of reference types is written using the following notation.

8

(In!M -1)

` P I �; z� z 2 f~yg

`!x(~y):P I �=~y ; x(�)
!M
s

(In!M -2)

` P I �; z� z 62 f~yg

`!x(~y):P I (�=~y) � x()
!M
s
; z�

(BOut?M -1)

` Pi I 	i ` Q I 	

` x(~yz)(�iPijQ) I ;; x()
?M
s

(BOut?M -2)

` Pi I 	i ` Q I z� � �; u�

` x(~yz)(�iPijQ) I x(�)
?M
s

� �; u�

(BOut?M -3)

` Pi I 	i 	j = � � y
�
j ; u� ` Q I 	

` x(~yz)(�iPijQ) I (�=yj) � x
(�)

?M
s
; u�

(Ref-1)

�

` Refhxyi I y� ; xrefLsh�i

(Ref-2)

� mutable

` Refhxyi I xrefsh�i
; y�

(Read-1)

` P c
I � � c(~�)

#L
; z�

` xinl(c)P I � � xrefLsh~�i
; z�

(Read-2)

` P c
I 	 � mutable

` xinl(c)P I ;; xrefsh"i

(Write-1)

` P v
I 	 ` Qc

I 	0

` xinr(vc)(P jQ) I ;; xrefsh"i

(Write-2)

` P v
I � � v� ; u� ` Qc

I 	0

` xinr(vc)(P jQ) I � � xrefRsh�i
; u�

(Write-3)

` P v
I 	 ` Qc

I � � c()
#L
; u�

` xinr(vc)(P jQ) I � � xrefsh"i
; u�

Figure 2: Flow Analysis for Stateful Actions

1. refLsh~�i stands for [(~�)
"L&()"L]!Ls .

2. Symmetrically refRsh~�i stands for [()
"L&~�()"L]!Ls .

where, in fact, we only treat the case ~� is a vector of length zero or one. Note

these types are not mutating: these are used when a channel is used as a source

of information, not as a target. The grammar of cancelable types adds those

9

of form refLsh"i as well as closing under the new syntax of types (so if � is

cancelable then so is refLsh�i). We observe:

Proposition 5.1 tamp(refsh�i) = tamp(�)utamp(�), tamp(refLsh�i) = tamp(�),
tamp(refRsh�i) = tamp(�), and tamp(refsh"i) = s.

We list the additional rules for stateful actions in Figure 2, writing P c when P
is an input pre�xed term with subject c. In addition to these rules, linear/aÆne

output rules for stateless actions should also have the counterpart of (Write-3),

which are omitted since the treatment is the same. (Write-3) and related rules

introduce a typed channel to a source when the dual of the type can have a non-

trivial tampering level. Below we observe the construction of reference types

add a new collection of cancelable types since they are linearly replicated.

Proposition 5.2 The same properties as stated in Proposition 3.5 hold for the

secrecy analyse for �LAM
with ination.

Proof: By inspecting each rule as before. In detail:

(In!M-1) Because the receiving levels of the source and the tampering level of

the target do not change (except some names are taken o�).

(In!M-2) Because z is tampering its level is the same as, or higher than, s.

(Out?M-1) Trivial.

(Out?M-2) Because no change takes place in receiving levels in the source and

the tampering level in the target.

(Out?M-3) Same as above except some names are taken o�.

(Ref-1) By Proposition 5.1.

(Ref-2) By structural security.

(Read-1) If ~� is null then the type of x is cancelable hence done. If ~� = � then

we use Proposition 5.1.

(Read-2) Immediate.

(Write-1) Immediate.

(Write-2) By Proposition 5.1.

(Write-3) Because the type at x is cancelable.

(Inf) has already been reasoned in x4. Thus we have exhausted all cases.

Instead of Proposition 3.10 (2), we use the following operational property which

suits the form of context lemma for �LAM. The proof is essentially the same.

10

Corollary 5.3 Let
s̀ec
R . A
B such that tamp(A) 6v s and, for each x :� 2 B,

tamp(�) v s. Then, for each y 2 fn(B), whenever ` R I �; y� and z 2 fn(�),
either z 62 fn(A) or, if not, �(z) is cancelable.

We now prove the noninterference.

Proposition 5.4 (noninterference for secrecy analysis in �LAM) If
s̀ec
P1;2 . A

in the secrecy analysis for �LAM
, we have

s̀ec
P1

�=s P2 . A where �=s is the

reduction-based secrecy sensitive congruence.

In the following proof we consistently ignore l-channels (assume they are hidden

immediately after composition) and cancelable types, both of which lose no gen-

erality. Further we ignore edges in action types which are irrelevant in the proof.

Proof:We show the closure of the following relation under parallel composition

satis�es the context lemma for �LAM.

s̀ec
P1RP2 . A

def
,

s̀ec
P1;2 . A; 8x :� 2 A:tamp(�) 6v s:

Since tamp(A) 6v s implies tamp(�) 6v s for each x :� 2 A, this suÆces. Suppose

s̀ec
PRQ . A as above and, moreover,

s̀ec
R . B such that A � B. For simplicity

we assume B = A
 C (this does not lose any generality since by mode-closure

we should compensate all linear/aÆne/?-channels) and further assume, again

w.l.o.g. md(C) � M! and md(A) � M! [M? . Let C = C1
 C2 such that (1)

tamp(�1) 6v s for each z : � in C1 and (2) tamp(�1) v s for each z : � in C2. Let

R1 and R2 are parts of R which contain all replicated processes and reference

agents which correspond to C1 and C2, respectively. By Corollary 5.3 there are

no mediating names between R1 and 2, so that we can write R
def
= R1jR2 for R1

and R2 which have, again using Corollary 5.3, the following typings:

s̀ec
R1 . C1
A
 C 0

2 s̀ec
R2 . C2
 C 0

1
A0

where C 0
2 compensates part of C2 by reading (including non-stateful ?-actions),

C 0
1 compensates part of C1 by stateful writing and A0 compensates part of

A by writing. Now suppose P jR �! P 0. The interaction with P can take

place only with R1 by their types. Hence we can write this reduction as either

P jR �! (� ~y)(P 0jR0
1)jR2 or P jR �! P1jR1jR

0
2.

1. If P jR �! (� ~y)(P 0jR0
1)jR2, then QjR simulates this by non-action. In-

deed, since both P jR1 and QjR1 has type E
def
= C1
 (A � A)
 C 0

2 for

which tamp(�) 6v s for each � in E, we have (� ~y)(P 0jR0
1)RQjR1 so that

the resulting pair are again in the j-closure of R.

2. If P jR �! P jR1jR
0
2, then QjR simulates this by QjR �! QjR1jR

0
2, which

is again in the j-closure of R.

This concludes the proof of reduction-closure. The convergence is established

by the same reasoning. By context lemma for state we are done.

11

References

[1] Honda, K. and Yoshida, N. A Uniform Type Structure for Secure Informa-

tion Flow. Typescript, 72 pages, 2002.

[2] Yoshida, N., Type-Based Liveness Guarantee in the Presence of Nontermi-

nation and Nondeterminism, April 2002. MCS Technical Report, 2002-20,

University of Leicester. Available at www.mcs.le.ac.uk/~yoshida.

12

