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Abstract

In this paper we present a new stochastic non-
deterministic high-level action languageSAA which is
a stochastic extension of Action LanguageA. We de-
scribe the syntax and semantics ofSAA and show it
has an equivalent expressive power to Hidden Markov
Models (HMMs). The main advantage ofSAA is its
smooth conversion of propositions and probability, and
use of a well-established stochastic model. We show
two simple examples in the nuclear reactor domain and
propose a normalisation technique for declarative prob-
ability assignments which match our intuition.

1 Introduction
We propose a new Stochastic non-deterministic Action
LanguageA (SAA) which has an expressive power equiv-
alent to Hidden Markov Models(HMMs). During the past
30 years Logic Based Artificial Intelligence (LBAI) has
investigated a wide variety of representations and methods
for reasoning about the world (Minker 2000). Large
quantities of time-series data is available in various fields
such as cognitive robotics, reliability engineerings, and
bioinformatics. In order to meet the demands of analyzing
such data in LBAI frameworks, there has been a need
to develop a high-level action language which supports
declarative descriptions of changing worlds in a simple
way. Previous studies(Reiter 2001)(Shanahan 1997) have
indicated several challenges. These include the ‘frame
problem’ and the ‘ramification problem’. Such difficulties
increase the hard task of programming, and act as a bottle-
neck in real-world problems. In addition to issues related
to description complexity, uncertainty is also a issue for
handling the dynamic world.

Action LanguageA (Gelfond & Lifschitz 1993) has
provided a basic framework for high-level action language
research in terms of syntax and semantics. Nabeshima et
al(Nabeshima & Inoue 1997) propose Automata Theory
for analyzing action languages and showed the expres-
sive power of Action LanguageA is equivalent to finite
automata. In order to extend the expressive power ofA,
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many variants of high-level action languages have been
designed(Baral & Gelfond 1997). One of the advantages
of using Automata Theory is to provide the formal lan-
guage theory view point for the action language design.
For instance, Action LanguageNA(Nabeshima, Inoue,
& Haneda 1999) is designed based on nondeterministic
finite automata. On the high-level action language under
uncertainty, few investigations have been carried out except
the language PAL (Baral & Tuan 2001). PAL is designed
to represent Markov Decision Process (MDP). They assign
probability to ”unknown” variables which are unobserved
fluents, and uniform probability for next possible state tran-
sitions. However, they have not investigated the relationship
between PAL and HMMs.

This paper presents a stochastic extension of Action
LanguageA and provides the syntax (Section 2) and
semantics (Section 3) of the new action languageSAA. We
also provide two examples in the nuclear reactor domain
(Section 4) to show how to convert the domain description
into HMMs.

2 Syntax of SAA
The syntax of SAA is based on Action LanguageA. In
LanguageA situations and actions are represented by effect
propositions and value propositions. InSAA stochastic
versions of these statements are expressed the conditional
probability notation ofPr(j).

Let Asaa = fa1; :::; amg be a non-empty finite set of
action names. We usea for simply denoting an action
name. LetF = fF1; :::; Fng be a non-empty finite set of
fluent names. A positive fluenttn is defined as a lower case
version of a fluent nameFn. A negative fluent:tn is a
logical negation oftn. We simply usef for denoting a fluent
that is either positive or negative. LetT = fT1; :::; Tng
be a family of setsTn = ftn;:tng. Let U be a set of the
cross product (or Cartesian product) ofTn � T . A state
nameQ is a set of fluents appearing in a tuple fromU . Let
Qsaa = fQ1; ::; Qkg be a family of sets of every state name
appearing inU .

Example 1: state name.
Let T1 = ft1;:t1g; T2 = ft2;:t2g. U = T1 � T2 =



f(t1; t2); (t1;: t2); (: t1; t2); (: t1;: t2)g: Q1 = ft1; t2g.
Q2 = ft1;: t2g. Q3 = f: t1; t2g. Q4 = f: t1;: t2g.
Qsaa = fft1; t2g; ft1;: t2g; f: t1; t2g; f: t1;: t2gg:

Let D = fD1; :::; Dlg be a family of sets of action
namesDl = fd1; :::; dxg wherex is a finite number. Letc
be a constant number in the range[0; 1].

In Action LanguageA, effect propositions are defined
to represent effects of actions as follows.

a causes f if p1; ::; pm (m � 0)

wherecauses and if are connectives.f; p1; ::; pm are flu-
ents. We callf an effect of action. We sayp1; ::; pm is
a precondition. For convenience, we use a notation of set
for preconditions. LetP = fP1; :::Png be a family of sets
Pn = fp1; ::; pmg. We simply denote a precondition asP
and rewrite the effect proposition as

a causes f if P:

We extend the effect proposition to a stochastic conditional
proposition so calledStochastic Effect Proposition (SEP) in

Pr(a causes f j p1; ::; pm) = c (m � 0)

or Pr(a causes f j P ) = c:

We also allow anunconditional SEP (uSEP) in

Pr(a causes f) = c

which is a stochastic extension of

a causes f

where the connectiveif and the precondition is omitted
sincep1; ::; pm is always true.

In Action LanguageA, value propositions are defined
to represent observed evidences as follows.

f after d1; :::; dx (x � 0)

or f after D:

We extend this to aStochastic Value Proposition (SVP) in

Pr(f j D) = c

The statementPr(initially f1; ::; fo) = c is called a
stochastic initial value proposition. f1; ::; fo is called an
initial fluent. For convenience, set notation is used for
initial fluents. LetI = fI1; ::; Ipg be a family of sets
Ip = ff1; ::; fog.

A SAA S is a set of SEPs and SVPs. More formally,
SAA is defined as the 4-tupleS = < A;F;E; V >
where

A = fa1; :::; amg : A non-empty finite set of action names,

F = fF1; :::; Fng : A non-empty finite set of fluent names,

E = f(am; fj ; Pn; c)g : a non-empty finite set of SEP;

V = f(fm; Dl; c)g : a non-empty finite set of SVP.

SPn , the subset ofE with the preconditionPn, is called
thedefinition of precondition Pn. If every initial fluents Ip
in SVPs is an element ofQsaa, I is said to be pure.I is
impure otherwise.

Definition 1: Complete SAA
SAA is complete if all of the following conditions are
satisfied, otherwiseincomplete.

1. For a family of sets of preconditionsP = fP1; ::; Png,
the summation of constantsc in thedefinition of the pre-
condition Pn equals 1 for eachn.

X

c2SP1

c = 1; :::;
X

c2SPn

c = 1:

2. The summation of all constantsc of the stochastic initial
value proposition in SVP equals 1.

3. E does not contain any uSEP,

4. Every preconditionsPn in SEPs is an element ofQsaa,

5. Every initial fluentsIp in I is an element ofQsaa,

Definition 2: Deterministic and Non-deterministic
If there exist two or more occurrences of an action name
in the definition ofPn, we say thePn and SAA S is
non-deterministic and deterministic otherwise.

Example 2: Assume the following SEPs defineSP2 :

Pr(a1 causes f1 j P2) = 0:1

Pr(a2 causes f1 j P2) = 0:2

Pr(a4 causes f1 j P2) = 0:3

Pr(a4 causes f3 j P2) = 0:7

S is incomplete because
P

c2SP2
c = 0:1+0:2+0:3+0:7 6=

1, and non-deterministic since there exist twoa4 in SP2 .

3 Semantics of SAA
This section provides the semantics ofSAA. A domain
description written inSAA specifies a stochastic state
transition diagram.E (or SEPs) defines a probability distri-
bution of the state transitions and a probability distribution
of actions. We show a completeSAA has a stochastic
non-deterministic state transition diagram equivalent to
HMMs. We considerS =< Asaa; Qsaa; E; V > as a
SAA instead ofS =< Asaa; F; E; V >. Note that the
transformation betweenQsaa andF is straightforward.

Formally, we give an interpretation ofSAA in the stochas-
tic state transition diagramM = (QM ; AM ;  ; '; �)
whereQM = fq1; ::; qmg is a non-empty finite set of
states,AM = fa1; ::; ang is a non-empty finite set of
actions, = f qiqjg is probability distribution of the
state transition from stateqi to qj where

P
j
 qiqj = 1 ,

' = f'qiqj (an)g is probability distribution of actionan
taken between stateqi to qj where

P
n
'qiqj (an) = 1, and

� = f�qig is probability distribution of the initial stateqi
where

P
i
�qi = 1.



A function� fromA to B is calledone-to-one if whenever
a1 6= a2 (a1; a2 2 A) then� (a1) 6= � (a2). A function
� from A to B is calledonto if for all b 2 B there is an
a 2 A such thatf(a) = b. Let name(f) be a function
which returns the fluent name off . We define a function
replace(g; P ) which replaces the fluentf in the precondi-
tion P with the fluentg whenevername(f) = name(g) if
name(g) 2 F . replace(g; P ) is based on theinertia low.

Example 3: replace(g; P ). For the precondition
P = ff1; ::; fk; ::; fig, replace(:fk; P ) returns the
set of fluentsP

0

= ff1; ::;:fk; ::; fig.

Let sub(f; P ) be a function of selecting every SEPs
with the effect of action f from the definition of pre-
condition P and returning them as a subsetSP;f . LetP

SP;f
c be the summation of the constant inSP;f .

norm(a; f; P ) = c=
P

SP;f
calculates a normalized con-

stant c ofPr(a causes f j P ) = c.

Example 4: sub(f; P ),
P

SP;f
c, and norm(a; f; P ). For

the followingSAA:

Pr(a1 causes f2 j P1) = c1

Pr(a1 causes f3 j P1) = c2

Pr(a2 causes f2 j P1) = c3

Pr(a1 causes f2 j P2) = c4

sub(f2; P1) generates the following subsetSP1;f2 :

Pr(a1 causes f2 j P1) = c1

Pr(a2 causes f2 j P1) = c3

where
P

SP1;f2
c = c1 + c3, norm(a1; f2; P1) = c1=(c1+

c3).

Let full state(P;Q) be a function of finding all state
namesQk whereP � Qk andQk is an element ofQ, and
returning them as a family of sets. We denote an element of
the family of sets asPfull. Note thatPfull = P if P = Qk.
We can viewfull state(P;Q) is based on theinertia low.

Example 5: full state(P ).
Let P1 = ft1g. For Q1; Q2; Q3; Q4; andQsaa shown at
Example 1,full state(P1; Qsaa) = fQ1; Q2g.

The interpretation ofQsaa is given byQM . Note that
Qsaa is a family of sets andQM is a set. We consider a state
name as an state-object andQsaa as a set of state-objects.
Let qsaa = ff1; ::; fsg be a state-object andqsaa 2 Qsaa.
We give a one-to-one onto function�q from Qsaa to QM

where the state�(qsaa) 2 QM containsf1; ::; fs - all the
members ofqsaa. Note thatjQsaaj = jQM j is required for
�q . The interpretation ofAsaa are given byAM . We define
a one-to-one onto function�a from Asaa to AM where

jAsaaj = jAM j is required.

At the stateq, a SEPPr(a causes f j P ) = c is said
to betrue if the preconditionP = fp1; ::; pmg � qsaa, that
is, if the stateq contains all the members ofP . A SVP
Pr(f j d1; :::; dx) = c is said to betrue if f is a member
of qsaa and

c =
X

path

�x

t=1 qt�1qt
'qt�1qt

(dt)

is satisfied where q0q1 = �q1. Note that
P

path
sums up

every transition path which generates the action sequence
d1; :::; dx.

The interpretation ofE is given by  (probability dis-
tribution of the state transitions) and' (probability
distribution of actions). Generally speaking,E is involving
uSEPs and SEPs whose preconditions are not the ele-
ment ofQsaa. The compactness ofP is decompressed
and extracted byfull state(P;Qsaa) into a subset of
Qsaa. uSEP,Pr(a causes f) = c, is also modified
to SEPsPr(a causes f j Qk) = c for every k of
Qsaa = fQ1; ::; Qkg. We assumePn is an element of
Qsaa in the following part. A constructive view ofE
provides a clear explanation for the interpretation ofE.
Recall another definition ofE: E = fSP1 ; ::; SPng is a
family of sets of thedefinitions-of-precondition-Pn SPn
whereSPn is a set of SEPs with the preconditionPn. First
at Pr( a causes f j Pn) = c 2 SPn level, the action
�a(a) 2 AM causes a stochastic state transition from
�q(Pn) 2 QM to �q(replace(f; Pn)) 2 QM . Next atSPn
level,SPn contains all stochastic state transitions originated
from the state�q(Pn) 2 QM . Note that if theSPn is
deterministic,SPn represents a stochastic state transition
function from the state�q(Pn) and actions to states. In case
SPn is non-deterministic, it maps from the state�q(Pn)
and actions to a set of states.SPn;f contains all stochastic
state transitions from the state�q(Pn) 2 QM to the state
�q(replace(f; Pn)) 2 QM . We interpret

X

SPn;f

c =  �q(Pn)�q(replace(f;Pn)) and

norm(a; f; Pn) = '�q(Pn)�q(replace(f;Pn))(�a(a)):

Finally at the top level,E contains all stochastic state tran-
sitions originated from every state inE and all probability
distribution of actions.

The interpretation of the stochastic initial value propo-
sitions is c = ��q(Ip). In caseI is not pure, we use
full state(Ip; Qsaa) and assignc=jfull state(Ip; Qsaa)j
for each new stochastic initial value proposition.

Next we discuss on the model of the domain descrip-
tion. Any domain description has a stochastic model under
the interpretationM if following conditions are satisfied.

1. jQsaaj = jQM j andjAsaaj = jAM j are satisfied.

2. SVPs in the domain description are true inM .
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Figure 1: Three Mile Island Nuclear Power Station Model

3.
P

j
 qiqj = 1,

P
n
'qiqj (an) = 1, and

P
i
�qi = 1 are

satisfied.

The stochastic model is equivalent to HMMs. Every domain
descriptions described incomplete SAA has a HMMs as
their models.

4 Examples: Reactor Domain
We give an example of acomplete stochastic domain de-
scription. Fig.1 is a simple pressurized water reactor model
based on the nuclear power plant at Three Mile Island. In
the reactor, nuclear fuel is used to produce heat which is
applied to turn the water into steam in the first condenser.
The steam spins the turbine and turns back into water at the
second condenser. In the nuclear reactor domain (Fig.2),
we only consider two components, a control rod and a pres-
sure release valve. The state of the control rod is explained
by thedown fluent. If down is true, the control rod is in-
serted into the nuclear fuel core and stops the nuclear re-
action. If :down, the control rod does not moderate the
reaction and reactor pressure would increase. The state of
the pressure release valve is represented by theclose flu-
ent. If close is true, the reactor pressure is below a thresh-
old level and nuclear pollution does not happen. Once the
pressure is over the threshold level, the valve opens auto-
matically and the nuclear pollution would be spreading. The
valve closes automatically when the pressure level becomes
lower than the threshold level. Fig.1 and Fig.2 show the
state(down; close) and(:down;:close) respectively. All
the possible actions for the system controller arerod up,
rod down, andsleep. First, the followingdeterministic do-
main description is used to show the procedure of creating a
model.

Pr(Initially close; down) = 0:6
Pr(Initially close;:down) = 0:4
Pr(rod up causes :downjclose; down) = 0:3
Pr(rod down causes downjclose; down) = 0:1
Pr(sleep causes downjclose; down) = 0:6
Pr(rod up causes :downjclose;:down) = 0:1
Pr(rod down causes downjclose;:down) = 0:8
Pr(sleep causes :closejclose;:down) = 0:1
Pr(rod up causes :downj:close;:down) = 0:07
Pr(rod down causes downj:close;:down) = 0:9
Pr(sleep causes :closej:close;:down) = 0:03

Control Rod Pressure Release Valve

down close

Figure 2: A Nuclear Reactor Model
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Figure 3: A deterministic Stochastic Transition Diagram

Pr(rod up causes :downj:close; down) = 0:05
Pr(rod down causes :closej:close; down) = 0:05
Pr(sleep causes closej:close; down) = 0:9

We can convert above domain description into the stochastic
state transition diagram in three steps.

Step1: Create a family of set ofdefinitions of precondition.
Let P1 = fclose; downg; P2 = f:close; downg; P3 =
fclose;:downg; P4 = f:close;:downg.For instance,
SP1 = fPr(rod up causes :downjclose; down) = 0:3;
P r(rod down causes downjclose; down) = 0:1;
P r(sleep causes downjclose; down) = 0:6g.

Step2: Generate a stochastic state transition function
by defining and'. For example,SP1;down

= f
Pr(rod down causes downjclose; down) = 0:1;
P r(sleep causes downjclose; down) = 0:6g represents
stochastic state transitions from stateq1(= �q(P1)) to q1 in
probability

P
P1;down

= 0:1 + 0:6 = 0:7; that is, q1q1 =

0:7. We also get'q1q1(rod down) = 0:1=0:7 = 0:143 and
'q1q1(sleep) = 0:6=0:7 = 0:857.

Step3: Assign the initial state probability�. For in-
stance,�q1 = 0:6.

Next we consider thenon-deterministic version of the
reactor domain description. OnlySP1

is modified as follows
in order to introduce non-determinacy.

Pr(rod up causes :down j close; down) = 0:29
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Figure 4: A non-deterministic Stochastic Transition Dia-
gram

Pr(rod up causes down j close; down) = 0:01
Pr(rod down causes down j close; down) = 0:09
Pr(rod down causes :down j close; down) = 0:01
Pr(sleep causes down j close; down) = 0:59
Pr(sleep causes open j close; down) = 0:01

5 Discussion and Conclusion
In the previous sections, we showed examples of thecom-
plete SAA. The semantics of probability on HMMs is clear,
however, at the high-level language level it sometimes does
not meet our intuitions even in thecomplete domain descrip-
tion. One approach for assigning constants of SEPs based on
our intuitions is to apply the normalization of probability.
Consider failures of actions in probability setting (Bacchus,
Halpern, & Levesque 1995). In the reactor domain, failures
of actions can be represented as follows.

Pr(rod up causes :down j close; down) = 0:95
Pr(rod up causes down j close; down) = 0:05
Pr(rod down causes down j close; down) = 0:9
Pr(rod down causes :down j close; down) = 0:1
Pr(sleep causes down j close; down) = 0:99
Pr(sleep causes open j close; down) = 0:01

Each action name causes different results. Note that the
summation of probability at the state namefclose; downg
equals 1 for each action name. By using the normalization
technique, it is possible to generate a complete model.

Since our language is equivalent to HMMs, we can
use various algorithms developed in HMMs. Learning
SAA would be possible with HMMs’ parameter learning
and topology learning algorithms.

In this paper, we described the new stochastic action
languageSAA as a stochastic extension of Action Lan-
guageA. This stochastic language provides stochastic
extension for existing Action LanguageA programs and
also gives a framework for designing new stochastic action
languages based on current existing other high-level action
languages.
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