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Abstract

A Bayesian network is a construct that represents a joint probability
distribution, and can be used in order to model a given joint probability
distribution.
A principal characteristic of a Bayesian network is the degree to which it
models the given joint probability distribution accurately; the accuracy of a
Bayesian network. Although the accuracy of a Bayesian network can be well
defined in theory, it is rarely possible to determine the accuracy of a
Bayesian network in practice for real-world applications. Instead, alternative
characteristics of a Bayesian network, which relate to and reflect the
accuracy, are used to model the accuracy of a Bayesian network, and
appropriate measures are devised.
A popular formalism that adopts such methods to study the accuracy of a
Bayesian network is the Minimum Description Length (MDL) formalism,
which models the accuracy of a Bayesian network as the probability of the
Bayesian network given the data set that describes the joint probability
distribution the Bayesian network models. However, in the context of
Bayesian Networks, the MDL formalism is flawed, exhibiting several
shortcomings, and thus inappropriate for examining the accuracy of a
Bayesian network.
An alternative framework for Bayesian Networks is proposed, which models
the accuracy of a Bayesian network as the accuracy of the conditional
independencies implied by the structure of the Bayesian network, and
specifies an appropriate measure called the Network Conditional
Independencies Mutual Information (NCIMI) measure. The proposed
framework is inspired by the principles governing the field of Bayesian
Networks, and is based on formal theoretical foundations.
Experiments have been conducted, using real-world problems, that evaluate
both the MDL formalism and the proposed framework for Bayesian
Networks. The experimental results support the theoretical claims, and
confirm the significance of the proposed framework.
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1. Introduction

1.1. Bayesian network

In essence, a Bayesian network is a construct that represents a joint
probability distribution, and can be used in order to model a given joint
probability distribution.

Bayesian network
(BN)

arc AC:
does not represent/imply causation
does not represent/imply dependence

no arc BC:
does represent/imply independencies

B conditionally independent of C given A (BC|A)

A

CB

Figure 1

Definition 1.1 {1}

•  V  is a finite set of finite variables defined on the same probability space
•  P  is the joint probability distribution of V
•  ),( EVG =  is a directed acyclic graph (DAG), where E  are the edges

•  VvparentsVv ⊂∈∀ )(:  is the set of all parents of v
•  VvsdescendantVv ⊂∈∀ )(:  is the set of all descendants of v
•  }){)(()(,)(: vvsdescendantVvaVvaVv ∪−=⊆∈∀  is the set of variables in V

excluding v  and the descendants of v
•  )(: vaWW ⊆∀ , W  and v  are conditionally independent given the parents

of v : if 0))(( >vparentsP , then 0))(|( =vparentsvP  or 0))(|( =vparentsWP
or ))(|())(|( vparentsvPvparentsWvP =∪

� ),,( PEVBN =  is a Bayesian network

If ∅=)(vparents ,then W  and v  are unconditionally independent (conditionally
independent given the empty set).

                                        
1 [Neapolitan 1990] Definition 5.4.
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Bayesian network
(BN)

A

F

EDC

B

nodes (roots)

node

arc

nodes: {A,B,C,D,E,F}

node: D
parents(D) = {A,B}
descendants(D) = {F}
�(D) = {A,B,C,E}
D,C conditionally independent given {A,B}
D,E conditionally independent given {A,B}

node: B
parents(B) = {}
descendants(D) = {D,E,F}
�(D) = {A,C}
B independent of A
B independent of C

Figure 2

Bayesian network
(BN) 1/2 3/4

1/2 1/4

1/3 2/3
P(A)

P(B|A)

prior probabilities matrix

conditional probabilities matrix

A

B

Figure 3

Theorem 1.1 {2}

For a Bayesian network ( ),,( PEVBN = ), the joint probability distribution the

Bayesian network represents ( BNP ) is given by:

∏
>

∈

==
0))((

))(|()(

vparentsP
Vv

BN vparentsvPVPP

Bayesian network
(BN)

A

F

EDC

B

PBN = P(A)P(B)P(C|A)P(D|AB)P(E|B)P(F|DE)

Figure 4

Bayesian network
(BN) 1/2 3/4

1/2 1/4

1/3 2/3
P(A)

P(B|A)
PBN = P(A)P(B|A)

1/6 1/6
1/2 1/6

P(AB)
A

B

Figure 5

                                        
2 [Neapolitan 1990] Theorem 5.1.
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Theorem 1.2 {3}

For a joint probability distribution ( JPRD ), there exists a Bayesian network
( BN ) that models the joint probability distribution.

JPRDPBNJPRD BN =∃∀ :,

For a trivial proof of Theorem 1.2, consider any joint probability distribution
and the corresponding fully connected Bayesian network; a fully connected
Bayesian network can model any joint probability distribution.

Bayesian network
(BN)

A

B C

PBN = P(A)P(B|A)P(C|AB) = P(ABC)

by specifying the prior probabilities and the
conditional probabilities of the Bayesian network
appropriately, the Bayesian network can model
any joint probability distribution of three variables

Figure 6

The significance of Theorem 1.2 is apparent, since it guarantees that for any
joint probability distribution, there exists a Bayesian network that models
the given joint probability distribution.
Theorem 1.2 constitutes a “proof of completeness” for the field of Bayesian
Networks, indicating that it is always possible to use a Bayesian network
instead of the joint probability distribution itself.

Bayesian network
(BN)

joint probability distribution
(PBN)

represents

use PBNuse BN equivalent

Figure 7

A Bayesian network represents a joint probability distribution, and so, in
effect, a Bayesian network represents relationships between a set of
variables.
A Bayesian network does not necessarily represent causation between a set
of variables. For example, the parents of a node should not necessarily be
considered causes of the node, although they can be interpreted as such in
certain cases; instead, they should be viewed as shields against other
influences.

A principal feature of a Bayesian network is the conditional independencies
implied by the structure of the Bayesian network regarding the variables of
the joint probability distribution it represents.
The absence of an arc (direct connection) between two nodes of a Bayesian
network implies certain conditional independencies regarding these nodes.

                                        
3 [Neapolitan 1990] Theorem 5.4.
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The structure of a Bayesian network does not imply dependencies regarding
the variables of the joint probability distribution it represents.
The existence of an arc (direct connection) between two nodes of a Bayesian
network does not imply dependence regarding these nodes.

All independencies implied by the structure of a Bayesian network are
considered conditional; an unconditional independence can be viewed as a
conditional independence given the empty set.

Bayesian network
(BN)

arc AC:
does not represent/imply causation
does not represent/imply dependence

no arc BC:
does represent/imply independencies

B conditionally independent of C given A (BC|A)

A

CB

Figure 8

The reader may refer to [Neapolitan 1990] and [Pearl 1988].

1.2. Assumptions

The report makes assumptions regarding the Bayesian network, which limit
the scope of the research.

The Bayesian network models a data set; the report considers only the case
when a Bayesian network is used to model the joint probability distribution
described (represented) by a given data set; the method used to build the
Bayesian network is irrelevant.

Bayesian network
(BN)

joint probability distribution
(PBN)

joint probability distribution
(PD)

represents

models

data set
(D)

represents { given }

Figure 9

The data set is complete; the report assumes that there are no missing
values for any of the variables of the data set.

The variables of the data set are finite; the report assumes that there are
finite possible values for each of the variables of the data set.

1.3. Structure of the report
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Chapter 2 introduces the subject of the report; the accuracy of a Bayesian
network. A definition for the accuracy of a Bayesian network is presented,
together with an appropriate measure of accuracy that can, unfortunately,
be rarely used in practice for real-world applications.

Chapter 3 presents the Minimum Description Length (MDL) formalism,
which examines the accuracy of a Bayesian network, by modelling it as the
probability of the Bayesian network given the data set that describes the
joint probability distribution the Bayesian network models. A lengthy
discussion points out the shortcomings of the formalism, indicating that
MDL is flawed, and thus inappropriate for examining the accuracy of a
Bayesian network.

Chapter 4 presents a new framework for Bayesian Networks, which models
the accuracy of a Bayesian network as the accuracy of the conditional
independencies implied by the structure of the Bayesian network, and
specifies an appropriate measure of accuracy called the Network Conditional
Independencies Mutual Information (NCIMI) measure. The framework is
formally established, with several definitions and theorems, and well-defined
semantics. A lengthy discussion follows, which outlines the characteristics
and properties of the proposed framework for Bayesian Networks, and
indicates that the framework does not exhibit the shortcomings of MDL.

Chapter 5 presents the experiments that have been conducted, and provides
the experimental results that have been collected. Both the MDL formalism
and the proposed framework for Bayesian Networks are evaluated, in view of
the experimental results, which confirm what has been previously claimed in
theory. Therefore, the experiments confirm that MDL is inappropriate for
examining the accuracy of a Bayesian network, while the proposed
framework for Bayesian Networks is not only appropriate but also performs
remarkably well at determining the accuracy of a Bayesian network.

Chapter 6 concludes the report; it provides a review, it discusses the
significance of the innovative research, and it indicates possible directions
for future work.

The proofs for the theorems mentioned throughout the report are presented in
Appendix A.
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2. Accuracy of a Bayesian network

A Bayesian network can be used in order to model the joint probability
distribution represented by a given data set.

A principal characteristic of a Bayesian network is the degree to which it
models the joint probability distribution represented by the given data
accurately; the accuracy of a Bayesian network with respect to the data set.

The degree of accuracy of a Bayesian network, with respect to a data set,
depends on how well the Bayesian network models the given data set, and is
determined by how well the joint probability distribution represented by the
Bayesian network matches the joint probability distribution described by the
given data set.

Definition 2.1
A Bayesian network ( BN ) is accurate with respect to a data set ( D ), if and
only if, the joint probability distribution represented by the Bayesian
network ( BNP ) matches the joint probability distribution described by the

data set ( DP ).

DBN PPBN =⇔D respect to with  accurate

Bayesian network
(BN)

data set
(D)

models accurately

joint probability distribution
(PD)

joint probability distribution
(PBN)

re
pr

es
en

ts

matches exactly
(PBN = PD)

re
pr

es
en

ts

Figure 10

Theorem 2.1
For a data set ( D ), there exists a Bayesian network ( BN ) that models the
joint probability distribution described by the data set ( DP ) accurately.

DBN PPBND =∃∀ :,

Theorem 2.1 is derived directly from Theorem 1.2. The distinction between
these theorems is the fact that Theorem 2.1 refers to a data set that
describes a joint probability distribution, which can be represented by a
Bayesian network, unlike Theorem 1.2 which refers to a joint probability
distribution that can be represented by a Bayesian network

Theorem 2.1 guarantees that for any data set, there exists a Bayesian
network that models the joint probability distribution described by the data
set accurately.
Therefore, given any data set, an accurate Bayesian network can be
constructed.
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Both the joint probability distribution represented by the Bayesian network
and the joint probability distribution described by the data set can be
represented as n -dimensional matrices of nstatesstates ∗∗ ...1  elements,

assuming the data set has n  variables, and each variable iv  has istates
states.
Since a matrix of n  elements can be represented geometrically as a point in

the nℜ  space, then both the joint probability distribution represented by the
Bayesian network and the joint probability distribution described by the
data set can be represented geometrically as points in the nstatesstates ∗∗ℜ ...1  space.

In view of the geometrical representation, the degree to which the joint
probability distribution represented by the Bayesian network matches the
joint probability distribution described by the data set is reflected by how
close the corresponding points are.

Bayesian network
(BN)

data set
(D)

joint probability distribution
(P

D
)

joint probability distribution
(P

BN
)

represents

represents

represented as

represented as

.

.

.

.

.....

.

.

.

.

.....

matrix of:
n dimensions

states
1
�…�states

n
 elements

reflects

accuracy of
Bayesian network

with respect to
data set

R...

Figure 11

Definition 2.2
A Bayesian network is accurate with respect to a data set, if and only if, the
point corresponding to the joint probability distribution represented by the
Bayesian network matches the point corresponding to the joint probability
distribution described by the data set.

Definition 2.3
The degree of accuracy of a Bayesian network, with respect to a data set, is
determined by the geometrical distance between the point corresponding to
the joint probability distribution represented by the Bayesian network and
the point corresponding to the joint probability distribution described by the
data set.

)),((),()( 1 DBN PPdistancefDBNaccuracyBNaccuracy ==

The degree of accuracy of a Bayesian network is inversely related to the
distance between the point corresponding to the joint probability distribution
represented by the Bayesian network and the point corresponding to the
joint probability distribution described by the data set; thus, it is more
convenient to examine the inaccuracy of a Bayesian network, which is
positively related to the distance.

Definition 2.4a
The degree of inaccuracy of a Bayesian network, with respect to a data set, is
the geometrical distance between the point corresponding to the joint
probability distribution represented by the Bayesian network and the point
corresponding to the joint probability distribution described by the data set.
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),()),((),()( 2 DBNDBN PPdistancePPdistancefDBNinaccuracyBNinaccuracy ===

It is assumed that xxf =)(2  for simplicity; another function could be used,

such as xxf
2

1)(2 = .

In the nℜ  space, according to the Pythagorean Theorem principles, the
distance between two points is given by the following formula.

),...,(),,...,(,)(),( 1211
1

2
21 nn

n

i
ii qqpointpppointqppointpointdistance ==−= ∑

=

The Euclidean distance is used as a distance measure to derive one of the
possible definitions for the inaccuracy of a Bayesian network; alternative
measures of distance between joint probability distributions could be used,
such as the Kullback-Liebler distance.

Definition 2.4b
The degree of inaccuracy of a Bayesian network, with respect to a data set, is
the geometrical distance between the point corresponding to the joint
probability distribution represented by the Bayesian network and the point
corresponding to the joint probability distribution described by the data set.

∑ ∑
= =

−=
1

1 1 1

2
11 )),...,(),...,((...)(

states

v

states

v
nDnBN

n

n

vvPvvPBNinaccuracy

The joint probability distribution described by the data set is determined
directly from the data set, while the joint probability distribution represented
by the Bayesian network is determined from the data set using Theorem 1.1.

Bayesian network
(BN1)

1/2 1
1/2 0

2/3 1/3
P(A)

P(B|A)
PBN1 = P(A)P(B|A)

data set
(D)

PD = P(A)P(B|A)1 1
1 2
2 1

A B

1/3 1/3
1/3 0

PD

matrix of 2 dimensions, 4 elements
point in R4

1/3 1/3
1/3 0

P
BN1

A

B 2/3 1/3

2/3 1/3
P(A)

P(B)
PBN2 = P(A)P(B)

4/9 2/9
2/9 1/9

PBN1

Bayesian network
(BN2)

0)),(),((),1(
2

1

2

1

2

1 =−= ∑∑
= =a b

DBN baPbaPDBNinaccuracy

9/2)),(),((),2(
2

1

2

1

2
2 =−= ∑∑

= =a b
DBN baPbaPDBNinaccuracy

A

B

Figure 12

Theorem 2.2
The range of values for the actual degree of inaccuracy of a Bayesian

network is ]2,0[ .
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2)(0 ≤≤ BNinaccuracy

Unfortunately, although the accuracy of a Bayesian network is well defined
in theory, and an appropriate measure of inaccuracy is specified, it is rarely
possible to determine the degree of inaccuracy of a Bayesian network in
practice for real-world applications.
This is due to the fact that in most cases it is computationally unfeasible to
determine and use the joint probability distribution described by the data
set, because of both processing and storage limitations; so it is not possible
to determine the degree of inaccuracy of a Bayesian network, using
Definition 2.4.
For example, for the Hepatitis C data set, which is used subsequently for
experimentation, the matrix of the joint probability distribution described by
the data set is 9  dimensional containing 640,696,14  elements. So, it is not
only computationally unfeasible to determine the matrix, but also virtually
impossible to use the matrix in practice.
This is principally the reason why a Bayesian network is used to model the
joint probability distribution described by the data set, instead of the joint
probability distribution itself.
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3. Minimum Description Length (MDL)

Since it is rarely possible to determine the actual degree of accuracy of a
Bayesian network in practice for real-world applications, alternative
characteristics of a Bayesian network, which relate to and reflect the
accuracy, are used to model and examine the accuracy of a Bayesian
network.

A popular formalism that adopts such methods to examine the accuracy of a
Bayesian network is the Minimum Description Length (MDL) formalism
[Rissanen 1978] (see also [Friedman et al 1997]), which evaluates the
accuracy indirectly, by examining alternative characteristics of a Bayesian
network.

3.1. Formalism

The MDL formalism provides an evaluation scheme for a model that
represents a data set, based on the length of the description of the data set;
the sum of the length of the description of the model and the length of the
description of the data set given the model.
The length of the description of the model reflects the model size and
complexity, while the length of the description of the data set given the
model is interpreted as the model accuracy.

length of description of
data set

length of description of
model

length of description of
data set given model

model size/complexity model accuracy

model

data set

re
pr

es
en

ts

Figure 13

In the context of the Communication domain, the MDL formalism is
employed in data compression, in order to identify the model that provides
the shortest description of the data set.
In this case, the length of the description of the data set is the number of
bits required to encode the data set; the sum of the number of bits required
to describe the model and the number of bits required to encode the data set
given the model.
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bits required to encode
data set

length of description of
data set

length of description of
model

length of description of
data set given model

bits required to
describe model

bits required to
encode data set given model

Figure 14

In the context of Bayesian Networks, the model that represents a data set is
a Bayesian network that models the joint probability distribution described
by a data set.
In this case, the length of the description of the data set given the Bayesian
network is the negation of the log likelihood of the Bayesian network given
the data set, which is interpreted as the degree of inaccuracy of the Bayesian
network.

model

data set

re
pr

es
en

ts

length of description of
data set

length of description of
Bayesian network

length of description of
data set given Bayesian network

negation of
log likelihood of

Bayesian network given
data set

Bayesian network

degree of inaccuracy of Bayesian network

Figure 15

The MDL formalism models the accuracy of a Bayesian network with respect
to a data set as the likelihood of the Bayesian network given the data set.
The complexity term of the MDL measure is missing, since the complexity of
the structure of the Bayesian network is not taken into account when
evaluating the accuracy of the network

Definition 3.1
The degree of accuracy of a Bayesian network, with respect to a data set, is
the log likelihood of the Bayesian network given the data set.

))|((log),()( 2 DBNPDBNaccuracyBNaccuracy ==

Definition 3.2a
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The degree of inaccuracy of a Bayesian network, with respect to a data set, is
the negation of the log likelihood of the Bayesian network given the data set.

))|((log),()( 2 DBNPDBNinaccuracyBNinaccuracy −==

It is apparent that the degree of inaccuracy of a Bayesian network is the
negation of the degree of accuracy of the Bayesian network.

Since the MDL formalism is searching for the most accurate Bayesian
network given a data set, and assuming a uniform distribution over the
possible Bayesian networks, the likelihood of a Bayesian network given the
data set is equivalent to the likelihood of the data set given the Bayesian
network.

uniform is )( andconstant, is )(, since

)}|({max)}()|({max}
)(

)()|(
{max

)}|({maxD)}BN,{accuracy(max
MDL

BNPDPBBN

BNDPBNPBNDP
DP

BNPBNDP

DBNP

BBNBBNBBN

BBNBBN

∈∀

==

==

∈∈∈

∈∈

The MDL formalism models the accuracy of a Bayesian network with respect
to a data set as the likelihood of the data set given the Bayesian network.

Definition 3.3
The likelihood of a data set given a Bayesian network is given by:

∏
∈

=
Dd

BN dPBNDP )()|(

Definition 3.2b
The degree of inaccuracy of a Bayesian network, with respect to a data set, is
the negation of the log likelihood of the data set given the Bayesian network.

∑∏
∈∈

−=−=−=
Dd

BN
Dd

BN dPdPBNDPBNinaccuracy ))((log))((log))|((log)( 222

The joint probability distribution represented by the Bayesian network is
determined from the data set, using Theorem 1.1.



- 16 -

Bayesian network
(BN)

PBN = P(A)P(B|A)

data set
(D)

PD = P(A)P(B|A)1 1
1 2
2 1
2 2

d1
d2
d3
d4

A B

1/4 1/4
1/4 1/4

P
D

1/2 1/2
P(A)

1/4 1/4
1/4 1/4

PBN

8

||||

)2/1()2/1*2/1(*)2/1*2/1(*)2/1*2/1(*)2/1*2/1(

))4()4(())3()3(())2()2(())1()1((

)4()3()2()1()()|(

=

=∗∗∗

=∗∗∗==∏
∈

dPdPdPdPdPdPdPdP

dPdPdPdPdPBNDP

ABAABAABAABA

BNBNBNBN
Dd

BN

8))2/1((log))|((log)( 8
22 =−=−= BNDPBNinaccuracy

1/2 1/2
1/2 1/2

P(B|A)

A

B

Figure 16

Theorem 3.1a
The range of values for the MDL measure of the degree of accuracy of a
Bayesian network, with respect to any data set, is ]0,(−∞ .

0)( ≤<∞− BNaccuracy

Theorem 3.1b
The range of values for the MDL measure of the degree of inaccuracy of a
Bayesian network, with respect to any data set, is ),0[ +∞ .

+∞<≤ )(0 BNinaccuracy

The range of values for the MDL measure of the degree of accuracy of a
Bayesian network, with respect to a data set, depends on the size of the data
set.

3.2. Discussion

3.2.1. Characteristics

The MDL formalism evaluates the likelihood of a Bayesian network given a
particular data set, and so the accuracy of a Bayesian network with respect
to a given data set depends on the nature of the data set.

The degree of accuracy of a Bayesian network, with respect to a data set, is
affected directly by the size of the data set [Friedman & Yakhini 1996].
Apparently, the range of values for the degree of accuracy of a Bayesian
network, with respect to a data set, depends on the size of the data set.

Therefore, it is not possible to determine whether a Bayesian network is
accurate given a non-zero value for the degree of accuracy of the Bayesian
network, or to determine the degree of accuracy of a Bayesian network given
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the Bayesian network is accurate, unless the size of the data set is
considered.

Consider the data set D  and the data set D′  that consists of all the data
entries of the data set D  twice, so that DD 2=′ . Given any Bayesian
network, the degree of inaccuracy of the Bayesian network with respect to
D′  is twice the degree of inaccuracy of the Bayesian network with respect to
D , according to Definition 3.2. However, both the data set D  and the data
set D′  describe the same joint probability distribution, and so the degree of
inaccuracy of the Bayesian network should be the same in both cases.

Evidently, the MDL formalism does not determine the “absolute” degree of
accuracy of a Bayesian network, but instead, MDL determines the “relative”
degree of accuracy of a Bayesian network for a particular data set.

Consequently, the MDL formalism cannot draw any conclusions about the
“absolute” accuracy of a Bayesian network, but instead, MDL can only be
used to compare “relative” degrees of accuracy for a set of Bayesian networks
and for a particular data set.
Any results acquired and any conclusions drawn are valid for the specific set
of Bayesian networks, and only in view of the particular data set.

3.2.2. Semantics

Although the MDL formalism is being used in the field of Bayesian Networks,
it was initially developed for the Communication domain.

In the Communication domain, the focus is the transmission of a message;
the reconstruction of a data set.
In the field of Bayesian Networks, the focus is the construction of a Bayesian
network that models the joint probability distribution in a given data set; the
reconstruction of the joint probability distribution described by a data set.

Evidently, the semantics of these two fields are different, and thus the MDL
formalism, which was developed for the Communication domain, is being
taken out of context when used in the field of Bayesian Networks.

The MDL formalism examines the accuracy of a Bayesian network with
respect to the data entries of the data set, and not with respect to the joint
probability distribution represented by the data set.

data set
(D)

data entries
(d)

joint probability distribution
(PD)

co
nsis

ts 
of

represents

Bayesian Networks
domain

reconstruct

reconstruct
Communication

domain

application

application transmit data set

construct Bayesian network
that models

joint probability distribution
represented by data set

MDL

Figure 17
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The above points are illustrated by the previous example, where two data
sets are given, such that the second data set consists of all the data entries
of the first data set twice.
In the context of the Communication domain, the length of the description of
the second data set given a model is indeed twice the length of the
description of the first data set given the same model.
However, in the context of Bayesian Networks, the degree of accuracy of a
Bayesian network with respect to the first data set should be the same as
the degree of accuracy of the Bayesian network with respect to the second
data set, since both data sets describe the same joint probability
distribution.

Consequently, it is evident that although the MDL formalism is appropriate
for the Communication domain, its semantics are not completely appropriate
for the field of Bayesian Networks, and thus MDL is not entirely appropriate
for examining the accuracy of a Bayesian network.

3.3. Other approaches

The MDL formalism is one of the formalisms that provide an evaluation
scheme for the characteristics, and in particular the accuracy, of a Bayesian
network.

Other formalisms that have been developed to evaluate the characteristics of
a Bayesian network are the Akaike Information Criterion (AIC) [Akaike 1974]
and the Bayesian Information Criteria (BIC) [Schwarz 1978]. However, both
of these formalisms are identical to the MDL formalism with regards to the
evaluation of the accuracy of a Bayesian network, since they both model the
accuracy as the log likelihood of the Bayesian network given the data set.

Even Bayesian network learning algorithms, such as the Maximum Weight
Spanning Tree (MWST) algorithm [Chow & Liu 1968], provide some sort of an
evaluation scheme for a Bayesian network. However, each algorithm is based
on its own heuristic methods, which do not specify clearly what the
characteristics of a Bayesian network are, and how these are evaluated.
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4. Framework for Bayesian Networks

A framework for Bayesian Networks is presented, which is used to examine
and evaluate the accuracy of a Bayesian network indirectly, by examining
the conditional independencies implied by the structure of the Bayesian
network.

4.1. Framework

The structure of a Bayesian network implies a set of conditional
independencies regarding the joint probability distribution it models, which
provides information about the accuracy of the Bayesian network.

Theorem 4.1 (NCI Theorem)
Given:
•  A data set ( D ) representing a joint probability distribution ( P ) over

variables (V )
)(VPPD =

•  A Bayesian network ( BN ) of nodes ( N ), arcs ( A ), distribution ( P′ )

)(

),,(

NPP

PANBN

BN ′=
′=

Provided:
•  The nodes of the Bayesian network are the variables of the joint

probability distribution represented by the data set

iiii vnVvNni

VN

≡∈∈∀
≡

:,,
•  The probabilities of the Bayesian network reflect the corresponding

probabilities of the joint probability distribution represented by the data
set

))(|())(|(:, iiiii nparentsnPnparentsnPNni =′∈∀
� The Bayesian network is accurate with respect to the data set, if and

only if, the conditional independencies implied by the structure of the
Bayesian network are conditional independencies of the joint probability
distribution represented by the data set

))(|())(|(:)(,,, iiiiii

DBN

vparentsvPvparentsWvPvaWWVvi

PP

=∪⊆∀∈∀
⇔=
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Since the report considers only the case when a Bayesian network is used to
model the joint probability distribution represented by a data set, in order
for the assumptions of the NCI Theorem to be satisfied, the nodes of the
Bayesian network should model one-for-one the variables of the joint
probability distribution represented by the data set, and the probabilities of
the Bayesian network should be acquired directly from the data set.

Definition 4.1
A conditional independence implied by the structure of a Bayesian network
is accurate with respect to a data set, if and only if, the conditional
independence implied by the structure of the Bayesian network is a
conditional independence of the joint probability distribution represented by
the data set.

Theorem 4.2
A Bayesian network is accurate, if and only if, the conditional
independencies implied by the structure of the Bayesian network are
accurate.

The degree of accuracy of a Bayesian network is reflected by the degree of
accuracy of the conditional independencies implied by the structure of the
Bayesian network.

4.1.1. NCI & DCI

An individual conditional independence is denoted as CI .

Definition 4.2
The set of conditional independencies implied by the structure of a Bayesian
network is the Network Conditional Independencies (NCI) set.

The NCI set contains only those conditional independencies implied by the
structure of the network that are derived directly from the definition of a
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Bayesian network (Definition 1.1). Additional conditional independencies
implied by the structure of the network that are derived using d-separation
are not included in the NCI set.

Definition 4.3
The set of conditional independencies of the joint probability distribution
represented by a data set is the Distribution Conditional Independencies
(DCI) set.

For a conditional independence implied by the structure of a Bayesian
network to be accurate it is required that it is a conditional independence of
the joint probability distribution represented by the data set (Definition 4.1),
which can be formulated as DCICI ∈ .

Definition 4.4
A conditional independence implied by the structure of a Bayesian network
is accurate, if and only if, DCICI ∈ .

For a Bayesian network to be accurate it is required that every conditional
independence implied by the structure of the Bayesian network is a
conditional independence of the joint probability distribution represented by
the data set (NCI Theorem), which can be formulated as DCINCI ⊆ .

Theorem 4.3
A Bayesian network is accurate, if and only if, DCINCI ⊆ .
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Figure 19

The condition DCINCI ⊆  reflects the soundness (accuracy) of the NCI; that
is to say whether every conditional independence implied by the structure of
the Bayesian network is a conditional independence of the joint probability
distribution represented by the data set, and thus reflects the accuracy of
the Bayesian network.

Definition 4.5
The NCI is sound (accurate), if and only if, DCINCI ⊆ .

Theorem 4.4
A Bayesian network is accurate, if and only if, the NCI is sound (accurate).

The degree to which ∅=− DCINCI  reflects the degree of soundness
(accuracy) of the NCI, which, in turn, reflects the degree of accuracy of the
Bayesian network.
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Theorem 4.5 (NCI Soundness Theorem)
For a data set, there exists a Bayesian network so that the NCI is sound.

DCINCIBND ⊆∃∀ :,

The NCI Soundness Theorem indicates that for any data set, there exists a
Bayesian network, so that every conditional independence implied by the
structure of the Bayesian network is a conditional independence of the joint
probability distribution represented by the data set.
Consequently, given any data set, it is possible to construct a Bayesian
network that satisfies the condition DCINCI ⊆ , and is thus accurate.

The condition NCIDCI ⊆  reflects the completeness of the NCI; that is to say
whether every conditional independence of the joint probability distribution
represented by the data set is implied by the structure of the Bayesian
network.

Definition 4.6
The NCI is complete, if and only if, NCIDCI ⊆ .

The degree to which ∅=− NCIDCI  reflects the degree of completeness of
the NCI.

Theorem 4.6 (NCI Incompleteness Theorem)
There exists a data set, so that for any Bayesian network, the NCI is
incomplete.

NCIDCIBND ⊆/∀∃ :,
NCIDCIBND ⊆¬∃∃ :,

The NCI Incompleteness Theorem indicates that there exists at least one
data set, for which there exists no Bayesian network, such that every
conditional independence of the joint probability distribution represented by
the data set is implied by the structure of the Bayesian network.
Consequently, given certain data sets, it is not possible to construct a
Bayesian network that satisfies the condition NCIDCI ⊆ , since the
structure of the Bayesian network fails to imply all the conditional
independencies of the joint probability distribution represented by the data
set. Thus, given an arbitrary data set, it may not be possible to construct a
Bayesian network whose NCI is complete.

The condition DCINCI =  reflects the soundness (accuracy) and
completeness of the NCI; whether every conditional independence implied by
the structure of the Bayesian network is a conditional independence of the
joint probability distribution represented by the data set, and whether every
conditional independence of the joint probability distribution represented by
the data set is implied by the structure of the Bayesian network.

Definition 4.7
The NCI is sound (accurate) and complete, if and only if, DCINCI = .
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4.1.2. RR/  & CC/

Definition 4.8
The set of conditional independencies implied by the structure of the
Bayesian network that are not conditional independencies of the joint
probability distribution represented by the data set is the “unrealistic” set
R .

DCINCIR −=

Definition 4.9
The set of conditional independencies implied by the structure of the
Bayesian network that are conditional independencies of the joint probability
distribution represented by the data set is the “realistic” set R .

RNCIR −=

The “unrealistic” set R  represents the conditional independencies implied by
the structure of the Bayesian network that are not accurate, while the
“realistic” set R  represents the conditional independencies implied by the
structure of the Bayesian network that are accurate.

R R

NCI

DCINCIR −=

RNCIR −=

Figure 21

Definition 4.10
The set of conditional independencies of the joint probability distribution
represented by the data set that are not implied by the structure of the
Bayesian network is the “uncaptured” set C .

NCIDCIC −=

Definition 4.11



- 24 -

The set of conditional independencies of the joint probability distribution
represented by the data set that are implied by the structure of the Bayesian
network is the “captured” set C .

CDCIC −=

C

DCI

C

NCIDCIC −=

CDCIC −=

Figure 22

Theorem 4.7
The R  set and the C  set are identical.

CR =

Theorem 4.8
The R  set is a subset of the DCI  set.

DCIR ⊆

Theorem 4.9
The C  set is a subset of the NCI  set.

NCIC ⊆

Theorem 4.10
The R  set and the C  set are disjoint.

∅=∩ CR

NCI

C

C

R

R

DCI

DCINCI ∩DCINCI − NCIDCI −

CR =
DCIR ⊆
NCIC ⊆

∅=∩ CR

Figure 23

The R  set reflects the condition DCINCI ⊆ , and thus the soundness
(accuracy) of the NCI, and, in turn, the accuracy of the Bayesian network

Definition 4.12
The NCI is sound, if and only if, ∅=R .

Theorem 4.11
A Bayesian network is accurate, if and only if, ∅=R .
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The degree to which ∅=R  reflects the degree to which ∅=− DCINCI , and
thus the degree of soundness (accuracy) of the NCI, and, in turn, the degree
of accuracy of the Bayesian network

The C  set reflects the condition NCIDCI ⊆ , and thus the completeness of
the NCI.

Definition 4.13
The NCI is complete, if and only if, ∅=C .

The degree to which ∅=C  reflects the degree to which ∅=− NCIDCI , and
thus the degree of completeness of the NCI.

Definition 4.14
The NCI is sound (accurate) and complete, if and only if, ∅=∧∅= CR .
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4.1.3. Inaccuracy of a conditional independence

Consider a dependency measure for variables that determines the degree of
dependence of variables.
The reader may refer to [Johnston 2000].

The dependency measure can be used to determine either the degree of
conditional dependence of variables given another variable or the degree of
unconditional dependence of variables.

The report employs the Mutual Information as a dependency measure for
variables.

Definition 4.15a
The unconditional dependency measure ( uDM ) for variables A  and B  is the

unconditional Mutual Information ( MI ) for variables A  and B .
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Definition 4.15b
The conditional dependency measure ( cDM ) for variables A  and B  given

variable C  is the conditional Mutual Information ( MI ) for variables A  and
B  given variable C .
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Theorem 4.12
The unconditional dependency measure ( uDM ) for variables A  and B  is the

conditional dependency measure ( cDM ) for variables A  and B  given the

empty set ∅ .
)|,(),( ∅= BADMBADM cu

A value of zero for the dependency measure indicates that the variables are
independent, while a non-zero value indicates that the variables are
dependent in some degree.
In particular, the higher the value for the dependency measure, the more
dependent the variables are.

The dependency measure can identify either a conditional independence of
variables given another variable or an unconditional independence of
variables.

Theorem 4.13a
The unconditional dependency measure ( uDM ) for variables A  and B  has a

value of zero, if and only if, the variables A  and B are unconditionally
independent.

tindependennally unconditio ,0),( BABADMu ⇔=

Theorem 4.13b
The conditional dependency measure ( cDM ) for variables A  and B  given

variable C  has a value of zero, if and only if, the variables A  and B are
conditionally independent given C .

CBACBADM c given t independenlly conditiona ,0)|,( ⇔=

The dependency measure for variables can be used as an inaccuracy
measure for conditional independencies; the degree of inaccuracy of a
conditional independence is reflected by the degree of dependence of the
variables described by the conditional independence.
If the variables described by the conditional independence are dependent,
then the conditional independence is inaccurate, whereas if the variables
described by the conditional independence are independent, then the
conditional independence is accurate.

Definition 4.16
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The inaccuracy measure for a conditional independence is the dependency
measure for the variables described by the conditional independence.

)()( CIDMCIinaccuracy =

The inaccuracy measure determines whether a conditional independence
implied by the structure of a Bayesian network is indeed a conditional
independence of the joint probability distribution represented by the data
set.

A value of zero for the inaccuracy measure indicates that the implied
conditional independence is accurate and thus a conditional independence
of the joint probability distribution represented by the data set, while a non-
zero value indicates that the implied conditional independence is inaccurate
in some degree, and thus not a conditional independence of the joint
probability distribution represented by the data set.
In particular, the higher the value for the inaccuracy measure, the more
inaccurate the conditional independence implied by the structure of the
Bayesian network is.

Theorem 4.14a
The degree of inaccuracy of a conditional independence implied by the
structure of a Bayesian network has a value of zero, if and only if, the
conditional independence implied by the structure of the Bayesian network
is accurate.

CICIinaccuracy  accurate0)( ⇔=

Theorem 4.14b
The degree of inaccuracy of a conditional independence implied by the
structure of a Bayesian network, with respect to a data set, has a value of
zero, if and only if, the conditional independence implied by the structure of
the Bayesian network is a conditional independence of the joint probability
distribution represented by the data set.

DCICICIinaccuracy ∈⇔= 0)(

For a set of conditional independencies, the inaccuracy is reflected by the
inaccuracy of the individual conditional independencies of the set of
conditional independencies.

Definition 4.17
The degree of inaccuracy of a set of conditional independencies is the sum of
the degrees of inaccuracy of the individual conditional independencies of the
set of conditional independencies.
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Apparently, the more inaccurate conditional independencies the set of
conditional independencies contains, the higher the degree of inaccuracy for
the set of conditional independencies.

Theorem 4.15
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The degree of inaccuracy of a union of sets of conditional independencies is
the sum of the degrees of inaccuracy of each of the sets of conditional
independencies.
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4.1.4. Inaccuracy of the NCI

The “realistic” set R , the “captured” set C , and the “uncaptured” set C
represent conditional independencies that are conditional independencies of
the joint probability distribution represented by the data set, and so the sets
R ,C , and C  represent accurate conditional independencies.

Theorem 4.16
The degree of inaccuracy for each of the sets of conditional independencies
R ,C , and C  has a value of zero.

0)(

0)(

0)(

=
=
=

Cinaccuracy

Cinaccuracy

Rinaccuracy

The DCI set represents the conditional independencies of the joint
probability distribution represented by the data set, and so the DCI set
represents accurate conditional independencies.

Theorem 4.17
The degree of inaccuracy of the DCI has a value of zero.

0)( =DCIinaccuracy

The “unrealistic” set R  represents conditional independencies that are not
conditional independencies of the joint probability distribution represented
by the data set, and so the set R  represents inaccurate conditional
independencies.

Theorem 4.18
The degree of inaccuracy for the set R  has a non-zero value, when the R
set is not empty, while the degree of inaccuracy for the set R  has a zero
value, when the R  set is empty.

∅=⇔=
∅≠⇔≠

RRinaccuracy

RRinaccuracy

0)(

0)(

The NCI set represents conditional independencies that are not all
necessarily conditional independencies of the joint probability distribution
represented by the data set, and the degree of inaccuracy of the NCI is
determined by the degree of inaccuracy of the set R .

Theorem 4.19
The degree of inaccuracy of the NCI is the degree of inaccuracy of the set R .

)()( RinaccuracyNCIinaccuracy =
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Theorem 4.20
The degree of inaccuracy of the NCI has a non-zero value, when the R  set is
not empty, while the degree of inaccuracy of the NCI has a zero value, when
the R  set is empty.

∅=⇔=
∅≠⇔≠

RNCIinaccuracy

RNCIinaccuracy

0)(

0)(

Definition 4.18
The degree of inaccuracy of the NCI is the sum of the degrees of inaccuracy
of the individual conditional independencies implied by the structure of the
Bayesian network.
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4.1.5. Inaccuracy of a Bayesian network

The accuracy of a Bayesian network is reflected by the condition ∅=R
(Theorem 4.11), and so the degree of inaccuracy of the set R  reflects the
accuracy of the Bayesian network.

Theorem 4.21
A Bayesian network is accurate, if and only if, 0)( =Rinaccuracy .

Since the degree of inaccuracy of the NCI is the degree of inaccuracy of the
set R , the degree of inaccuracy of the NCI reflects the accuracy of the
Bayesian network.

Theorem 4.22
A Bayesian network is accurate, if and only if, 0)( =NCIinaccuracy .

The degree of accuracy of a Bayesian network is determined by the degree of
accuracy of the NCI.

Definition 4.19
The degree of inaccuracy of a Bayesian network is the degree of inaccuracy
of the NCI.

)())(()( NCIinaccuracyNCIinaccuracyfBNinaccuracy ==

It is assumed that xxf =)(  for simplicity.

The accuracy of a Bayesian network is modelled as the soundness (accuracy)
of the NCI; the accuracy of the set of conditional independencies implied by
the structure of the Bayesian network.

Definition 4.20
The degree of inaccuracy of a Bayesian network is determined by the
following formulas:
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4.1.6. Semantics

A Bayesian network is characterised by a set of nodes and the corresponding
prior probabilities, together with a set of arcs connecting the nodes and the
corresponding conditional probabilities regarding the nodes each arc
connects.
A joint probability distribution is characterised by a set of variables and the
corresponding prior probabilities, together with a set of relationships
between the variables and the corresponding conditional probabilities.

Bayesian network

nodes
(prior probabilities)

arcs connecting nodes
(conditional probabilities)

joint probability distribution

variables
(prior probabilities)

relationships between variables
(conditional probabilities)

Figure 26

The nodes of the Bayesian network model the variables of the joint
probability distribution, while the prior probabilities of the nodes of the
Bayesian network model the prior probabilities of the variables of the joint
probability distribution.
For every pair of nodes of the Bayesian network, there is either an arc
connecting the nodes, or there is no such arc. When a pair of nodes is
connected with an arc, the arc models the relationship between the variables
of the joint probability distribution. In the case when the pair of nodes is not
connected with an arc, the Bayesian network implies conditional
independencies that model the relationship between the variables of the joint
probability distribution.
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The arcs of the Bayesian network and the conditional independencies
implied by the structure of the Bayesian network due to the absence of arcs
model the relationships between the variables of the joint probability
distribution, while the conditional probabilities of the arcs of the Bayesian
network model the conditional probabilities of the variables of the joint
probability distribution.

Bayesian network

nodes

conditional probabilities

joint probability distribution

variables

conditional probabilities

prior probabilities

arcs
conditional independencies
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relationships between variables

represents

represents

represents

represents

Figure 27

The Bayesian network is an accurate model of the joint probability
distribution, if and only if, the Bayesian network is an accurate model of the
variables of the joint probability distribution, and the Bayesian network is an
accurate model of the relationships between the variables of the joint
probability distribution.

The Bayesian network is an accurate model of the variables of the joint
probability distribution, if:
1. the nodes of the Bayesian network model the variables of the joint

probability distribution one-for-one,
2. the prior probabilities of the nodes of the Bayesian network model

correctly (accurately) the prior probabilities of the variables of the joint
probability distribution.

The Bayesian network is an accurate model of the relationships between the
variables of the joint probability distribution, if:
1. the structure of the Bayesian network (the arcs and the conditional

independencies implied due to the absence of arcs) models correctly
(accurately) the relationships between the variables of the joint
probability distribution,

2. the conditional probabilities of the arcs of the Bayesian network model
correctly (accurately) the conditional probabilities of the variables of the
joint probability distribution.

The structure of the Bayesian network models correctly (accurately) the
relationships between the variables of the joint probability distribution, if:
1. the conditional independencies implied by the structure of the Bayesian

network, due to the absence of arcs, are conditional independencies of
the joint probability distribution represented by the data set.

Bayesian network:
accurate model of
joint probability distribution

accurate model of
variables

accurate model of
relationships between variables

nodes model
variables, one-for-one

prior probabilities of nodes model
prior probabilities of variables

NCI sound

conditional probabilities of arcs model
conditional probabilities of variables

DCINCI ⊆

Figure 28
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Provided the nodes of the Bayesian network model the variables of the joint
probability distribution one-for-one, and given that the prior probabilities of
the nodes of the Bayesian network and the conditional probabilities of the
arcs of the Bayesian network are acquired directly from the data set, then
the Bayesian network is an accurate model of the variables of the joint
probability distribution.
In this case, the Bayesian network is an accurate model of the joint
probability distribution, if and only if, the Bayesian network is an accurate
model of the relationships between the variables of the joint probability
distribution.
So, under these conditions, the Bayesian network is an accurate model of
the joint probability distribution, if and only if, the NCI is sound
( DCINCI ⊆ ).

4.2. Discussion

The framework for Bayesian Networks has been developed specifically for the
field of Bayesian Networks; the framework is inspired by the fundamental
principles governing the field of Bayesian Networks, employing concepts and
methodologies associated with Bayesian networks.

The framework is based on formal theoretical foundations; the framework is
formally established, with several definitions and theorems, and precise
semantics.

The framework examines a Bayesian network with respect to a specific data
set, and in particular with respect to the joint probability distribution
represented by the specific data set.
A Bayesian network models the joint probability distribution represented by
a given data set, it does not model the data entries of the data set.

Bayesian network:
(BN)

data entries

joint probability distribution
(PD)

models

models

data set
(D)

consits of

represents

Figure 29

The framework identifies as a principal feature of a Bayesian network the
conditional independencies implied by the structure of the Bayesian
network; the NCI set.
The soundness (accuracy) of the NCI and the completeness of the NCI are
principal characteristics of a Bayesian network, and reflect properties of a
Bayesian network, under certain conditions.
In particular, when the nodes of the Bayesian network model the variables of
the joint probability distribution represented by the data set one-for-one,
and the probabilities of the Bayesian network are acquired directly from the
data set, the soundness (accuracy) of the NCI reflects the accuracy of the
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Bayesian network, while the completeness of the NCI affects the complexity
and size of the Bayesian network.

NCI

soundness

completeness

Bayesian network
accuracy

reflects

reflects

Bayesian network:
(BN)

characterised by

Bayesian network
complexity/size

NCIDCI ⊆

DCINCI ⊆

Figure 30

The framework models the accuracy of a Bayesian network as the soundness
of the NCI; the accuracy of the conditional independencies implied by the
structure of the Bayesian network.
The framework provides formal specifications for examining the soundness
(accuracy) of the NCI, and supplies an evaluation scheme for the accuracy of
a Bayesian network that allows the degree of inaccuracy of a particular
Bayesian network to be determined precisely.

The framework presents the NCI Soundness Theorem and the NCI
Incompleteness Theorem, which are remarkably significant for the field of
Bayesian Networks.
The NCI Soundness Theorem indicates that given a data set there exists a
Bayesian network whose NCI is sound, and so guarantees that given any
data set it is possible to construct an accurate Bayesian network.
The NCI Incompleteness Theorem indicates that there exist data sets (at
least one) for which there exist no Bayesian networks whose NCI is complete,
and so points out that given any data set it might be impossible to construct
a Bayesian network whose structure implies all the conditional
independencies of the joint probability distribution represented by the data
set.

The framework can be used in and applied to many areas of the field of
Bayesian Networks.
The framework facilitates the comparison of individual Bayesian networks
with regards to their characteristics, and provides the theoretical means to
justify when and why a particular Bayesian network is more accurate than
another Bayesian network.
The framework can clarify the procedure of the addition and deletion of arcs
and nodes from the structure of a Bayesian network [Sucar 1991][Sucar et al
1993], and provide the means to illustrate and explain the effects of such
actions on the characteristics of a Bayesian network.
The framework can supply a theoretical rationale to the process of the
introduction of a hidden node within the structure of a Bayesian network
[Kwoh 1995][Kwoh & Gillies 1996] and the effects of such an action.
The framework can be employed to develop Bayesian network construction
(learning) algorithms [Tahseen 1998] as tree search algorithms that examine
the accuracy of a Bayesian network and use the degree of inaccuracy as the
evaluation function of the tree nodes.
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4.3. Comparison

The framework for Bayesian Networks examines a Bayesian network with
respect to the joint probability distribution represented by a particular data
set, unlike the Minimum Description Length (MDL) formalism [Rissanen
1978] that examines a Bayesian network with respect to the data entries of a
particular data set.
Consequently, the semantics of the framework are correct with regards to
the field of Bayesian Networks, and therefore the framework does not exhibit
the shortcomings of the MDL formalism.

The degree of inaccuracy of a Bayesian network is not affected by the size of
the data set. When different data sets are used that represent, however, the
same joint probability distribution, the degree of inaccuracy of a particular
Bayesian network remains the same, regardless of the data set used to
examine the accuracy of the Bayesian network.

The framework determines the “absolute” degree of inaccuracy of a Bayesian
network, and so it can be used both for drawing conclusions about the
accuracy of an individual Bayesian network and for comparing the accuracy
of a set of Bayesian networks that model either different or the same data
sets.

Of course, the framework has been developed specifically for the field of
Bayesian Networks, unlike the MDL formalism, and it is entirely appropriate
for examining the accuracy of a Bayesian network.
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5. Experiments

So far, the report has examined the field of Bayesian Networks from a
theoretical point of view; the definition of the accuracy of a Bayesian
network, the presentation of the Minimum Description Length (MDL)
formalism [Rissanen 1978], and the development of a framework for
Bayesian Networks.

Now, the report examines the field of Bayesian Networks from an
experimental point of view; several experiments are conducted to examine
the MDL formalism and the proposed framework for Bayesian Networks.

The experiments constitute a significant part of the report, aiming to provide
insight about the MDL formalism and the proposed framework for Bayesian
Networks, and to support what has been previously stated in theory.

5.1. Present

The experiments examine two distinct real-world problems, each with
different characteristics, and so two distinct real-world data sets are used.
The first data set represents information concerning Hepatitis C patients
[Bang 1999], while the second data set provides information about the
morphological development of neurons [Kim 2001][Kim & Gillies 1998].
The Hepatitis C data set has 1672 data entries; each being an individual
Hepatitis C patient, characterised by 9 distinct variables.
The Neurons data set has 44 data entries; each being an individual neuron,
characterised by 6 distinct variables.

Data set Hepatitis C (HC) Neurons (N)
Entries 1672 44

Variables 9 (A, B, C, D, E, F, G, H, I) 6 (A, B, C, D, E, F)
States for
variables

A:2, B:10, C:9, D:7, E:9, F:12, G:6, H:9, I:2 A:4, B:8, C:8, D:6, E:6, F:6

The experiments are conducted using part of the real-world data sets; at any
time, only three variables of the original real-world data set are used to carry
out the experiments and collect experimental results.
Such a limited approach is adopted, so that it is computationally feasible to
calculate the joint probability distribution represented by the data set. This
is essential for conducting the experiments, and determining the actual
degree of accuracy of a Bayesian network.
Therefore, a data set used for the experiments is uniquely identified by the
original data set (that it is derived from), and the set of variables (that are
being actually used).
For example, “ ABCHC : ” denotes that the data set used for the experiments
is the data set obtained from the Hepatitis C data set using only the
variables A , B , and C , while “ BCDN : ” denotes that the data set used for
the experiments is the data set obtained from the Neurons data set using
only the variables B , C , and D . Of course, the “ ABCHC : ” data set is
different from the “ BCDHC : ” data set, which is, in turn, different from the
“ BCDN : ” data set.
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Data set HC:ABC
Entries 1672

Variables 3 (A, B, C)
States for variables A:2, B:10, C:9

The experiments are conducted for a collection of different data sets, which
are acquired from the original Hepatitis C data set and the original Neurons
data set, by randomly selecting the set of variables.
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BCDNABFNABENABDNABCND
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=
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The experiments are conducted for a collection of different Bayesian
networks. In particular, for a given data set, all possible tree structured
Bayesian networks that can model the given data set are used to carry out
the experiments and collect experimental results.

data set
(D)

XYZ

all possible tree structured Bayesian networks are BN1, BN2, BN3

all other tree structured Bayesian netwoks are equivalent to the ones above

eg. PBN=P(X)P(Y|X)P(Z|Y)=P(XY)P(Z|Y)=P(Y)P(X|Y)P(Z|Y)

BN = { BN1, BN2, BN3 }

X

ZY

BN1:

Y

ZX

BN2:

Z

YX

BN3:

Y

Z

X

Y

ZX

Figure 31

Therefore, the experiments are conducted for a collection of different data
sets, and for the set of all possible tree structured Bayesian networks for
each particular data set.
For a given data set and a given Bayesian network, the experiments
determine the accuracy of the Bayesian network with respect to the data set.
In particular, the experiments determine the actual degree of inaccuracy of
the Bayesian network (Definition 2.4), the degree of inaccuracy of the
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Bayesian network according to the Minimum Description Length formalism
(Definition 3.2), and the degree of inaccuracy of the Bayesian network
according to the proposed framework for Bayesian Networks (Definition
4.20).

BND ∀∀ ,
determine:

1. )(BNinaccuracy , according to the actual measure (Definition 2.4)

2. )(BNinaccuracy , according to MDL (Definition 3.2)

3. )(BNinaccuracy , according to NCIMI (Definition 4.20)

5.2. Experimental results

A software prototype has been implemented, which conducts the
experiments for the given collection of data sets, and the corresponding sets
of Bayesian networks.

Data 
Set

Bayesian 
Network

actual MDL NCIMI

B ← A → C 0.159 8496.75 0.567
A ← B → C 0.018 7607.67 0.036
A ← C → B 0.025 7615.20 0.040
B ← A → D 0.121 7537.36 0.287
A ← B → D 0.012 7080.98 0.014
A ← D → B 0.025 7097.85 0.024
B ← A → E 0.021 6992.09 0.063
A ← B → E 0.032 6954.81 0.041
A ← E → B 0.029 6931.39 0.027
B ← A → F 0.018 8861.48 0.053
A ← B → F 0.018 8820.34 0.028
A ← F → B 0.021 8828.10 0.033
C ← B → D 0.127 8572.08 0.457
B ← C → D 0.023 8018.15 0.125
B ← D → C 0.099 8460.20 0.390H
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Data 
Set

Bayesian 
Network

actual MDL NCIMI

B ← A → C 0.108 245.20 0.710
A ← B → C 0.109 256.41 0.965
A ← C → B 0.085 233.99 0.455
B ← A → D 0.114 253.70 0.897
A ← B → D 0.093 243.56 0.667
A ← D → B 0.100 244.31 0.684
B ← A → E 0.090 217.81 0.671
A ← B → E 0.132 232.76 1.010
A ← E → B 0.103 209.28 0.477
B ← A → F 0.103 234.85 0.748
A ← B → F 0.101 234.41 0.738
A ← F → B 0.148 250.83 1.111
C ← B → D 0.098 273.21 0.932
B ← C → D 0.106 273.35 0.935
B ← D → C 0.105 275.17 0.976N

eu
ro

n
s 

(4
4)
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inaccuracy(BN)

The experimental results are also presented in a graphical form; the graphs
are used to illustrate the properties of the Minimum Description Length
formalism and the proposed framework for Bayesian Networks.

The graphs are scatterplots [Johnston 2000] of the actual degree of
inaccuracy of the Bayesian network, against either the degree of inaccuracy
of the Bayesian network according to MDL, or the degree of inaccuracy of the
Bayesian network according to the proposed framework.
Hence, different graphs are used for the experimental results collected for
MDL, and the experimental results collected for the proposed framework.

There are two types of graphs; the first type of graphs presents the
experimental results as different sets of points, grouped according to the
data set used; the second type of graphs presents the experimental results
as one set of points, regardless of the data set used.

In addition, different graphs are used for the experimental results collected
for the data sets of the Hepatitis C domain, and the experimental results
collected for the data sets of the Neurons domain.
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The graphs also display the best trendline for the points of the graph
[Johnston 2000]; the line that best fits the points, so that the overall
distance of the points from the trendline is minimum.
A trendline is characterised by the 2R  value, which reflects the reliability of
the trendline. The closer the 2R  value of the trendline is to 1, the more
reliable the trendline is, and the better it fits the points of the graph.
However, in the case when the points of the graph are either too few or too
close to each other, the best trendline is least reliable, and fits the points
poorly.
The best trendline for the points of a graph is associated with the correlation
of the variables represented in the graph. A low correlation coefficient
indicates that the variables are unrelated and so the best trendline fits the
corresponding points of the graph very poorly, while a high correlation
coefficient indicates that the variables are correlated and so the best
trendline fits the corresponding points of the graph well.
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Neurons (44)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200 250 300

MDL : inaccuracy(BN)

a
ct

u
a

l 
: 

in
a

cc
u

ra
cy

(B
N

) ABC

ABD

ABE

ABF

BCD

Linear (ABC)

Linear (ABD)

Linear (ABE)

Linear (ABF)

Linear (BCD)

Neurons (44)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 0.2 0.4 0.6 0.8 1.0 1.2

NCIMI : inaccuracy(BN)

a
ct

u
a

l 
: 

in
a

cc
u

ra
cy

(B
N

) ABC

ABD

ABE

ABF

BCD

Linear (ABC)

Linear (ABD)

Linear (ABE)

Linear (ABF)

Linear (BCD)

5.3. Discussion

The experiments are conducted to examine the MDL formalism and the
proposed framework for Bayesian Networks, and determine how well each of
these methodologies models the inaccuracy of a Bayesian network.
Such an examination requires the identification of the characteristics and
properties of the MDL formalism and the proposed framework for Bayesian
Networks, and the classification of the advantages and disadvantages of each
methodology in view of the experimental results.

5.3.1. Minimum Description Length (MDL) formalism

According to the MDL formalism, the degree of inaccuracy of a Bayesian
network, with respect to a data set, is affected directly by the size of the data
set [Friedman & Yakhini 1996].
For the data sets of the Hepatitis C domain, the average degree of inaccuracy
of the Bayesian networks examined is 30.7858 ; for the data sets of the
Neurons domain, the average degree of inaccuracy of the Bayesian networks
examined is 26.245 . Thus, the average degree of inaccuracy of the Bayesian
networks for the data sets of the Hepatitis C domain is 04.32  times greater
than the average degree of inaccuracy of the Bayesian networks for the data
sets of the Neurons domain. This result is not only of the same magnitude
but also very close to the size ratio of the Hepatitis C data set and the
Neurons data set, which is 38 .
The experimental results point to a linear correlation between the degree of
inaccuracy of a Bayesian network, with respect to a data set, and the size of
the data set, which agrees with what is predicted in theory.

The correlation coefficient between the actual degree of inaccuracy of a
Bayesian network and the degree of inaccuracy of a Bayesian network
according to MDL is significantly low, while the best trendlines of the
corresponding scatterplots are significantly unreliable and fit the points of
the scatterplots poorly.

Hepatitis C Neurons
Correlation coefficient 0.31 0.14

2R  value 0.09 0.02

So, the experimental results point to a significantly weak correlation,
indicating that the actual degree of inaccuracy of a Bayesian network and
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the degree of inaccuracy of a Bayesian network according to MDL are not
correlated.
Therefore, the MDL formalism does not actually determine the “absolute”
degree of inaccuracy of a Bayesian network.

The correlation coefficient between the actual degree of inaccuracy of a
Bayesian network and the degree of inaccuracy of a Bayesian network
according to MDL, for a particular data set, is reasonably high, while the
best trendlines of the corresponding scatterplots are reasonably reliable and
fit the points of the scatterplots well.

HC:ABC HC:ABD HC:ABE HC:ABF HC:BCD
Correlation coefficient 0.99 0.99 -0.76 -0.26 0.99

2R  value 0.99 0.99 0.58 0.07 0.99

N:ABC N:ABD N:ABE N:ABF N:BCD
Correlation coefficient 0.88 0.97 0.79 0.99 0.42

2R  value 0.78 0.95 0.62 0.99 0.18

So, the experimental results, for a particular data set, point to a reasonably
strong correlation, indicating that the actual degree of inaccuracy of a
Bayesian network and the degree of inaccuracy of a Bayesian network
according to MDL, for a particular data set, are correlated.
Therefore, although the MDL formalism does not actually determine the
“absolute” degree of inaccuracy of a Bayesian network, it does determine, to
some extent, the “relative” degree of inaccuracy of a Bayesian network for a
particular data set.

Since the MDL formalism does not determine the “absolute” degree of
inaccuracy, it is not possible to examine the “absolute” inaccuracy of a
Bayesian network.
For example, the degree of inaccuracy according to MDL of the Bayesian
network CAB →←  with respect to the data set ABCHC : , which has a
value of 8496.75 , cannot be used to draw conclusions about the inaccuracy
of the Bayesian network.

The MDL formalism should only be used to compare the “relative”
inaccuracy of Bayesian networks for a particular data set. Any results
acquired and any conclusions drawn are valid for the specific set of Bayesian
networks, and only in view of the particular data set. A comparison between
the degrees of inaccuracy of Bayesian networks for different data sets is not
valid.
For example, the degree of inaccuracy according to MDL of a Bayesian
network with respect to a data set of the Hepatitis C domain should never be
compared to the degree of inaccuracy according to MDL of a Bayesian
network with respect to a data set of the Neurons domain. Besides, such a
comparison would point to the bizarre conclusion that any of the Bayesian
networks used for the data sets of the Neurons domain is less inaccurate
than any of the Bayesian networks used for the data sets of the Hepatitis C
domain.
However, the degree of inaccuracy according to MDL of the Bayesian network

CAB →←  with respect to the data set ABCHC : , which has a value of
8496.75 , can be compared to the degree of inaccuracy according to MDL of
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the Bayesian network CBA →←  with respect to the data set ABCHC : ,
which has a value of 67.7607 , since the Bayesian networks model the same
data set.

5.3.2. Framework for Bayesian Networks

The correlation coefficient between the actual degree of inaccuracy of a
Bayesian network and the degree of inaccuracy of a Bayesian network
according to the proposed framework is significantly high, while the best
trendlines of the corresponding scatterplots are significantly reliable and fit
the points of the scatterplots well.

Hepatitis C Neurons
Correlation coefficient 0.97 0.73

2R  value 0.94 0.53

So, the experimental results point to a significantly strong correlation,
indicating that the actual degree of inaccuracy of a Bayesian network and
the degree of inaccuracy of a Bayesian network according to the proposed
framework are correlated.
Therefore, the proposed framework for Bayesian Networks does determine
the “absolute” degree of inaccuracy of a Bayesian network.

Since the proposed framework for Bayesian Networks determines the
“absolute” degree of inaccuracy, it is possible to examine the “absolute”
inaccuracy of a Bayesian network.
For example, the degree of inaccuracy according to the proposed framework
of the Bayesian network CAB →←  with respect to the data set ABCHC : ,
which has a value of 567.0 , can be used to draw conclusions about the
inaccuracy of the Bayesian network.

Furthermore, the proposed framework for Bayesian Networks can also be
used to compare Bayesian networks with regards to their inaccuracy. The
comparison of the degrees of inaccuracy of the Bayesian networks can be
carried out, regardless of whether the Bayesian networks model the same
data set or different data sets.
For example, the degree of inaccuracy according to the proposed framework
of a Bayesian network with respect to a data set of the Hepatitis C domain
could easily be compared to the degree of inaccuracy according to the
proposed framework of a Bayesian network with respect to a data set of the
Neurons domain.
Of course, comparisons can be carried out for Bayesian networks that model
the same data set as well, and so the degree of inaccuracy according to the
proposed framework of the Bayesian network CAB →←  with respect to the
data set ABCHC : , which has a value of 0.567 , can be compared to the
degree of inaccuracy according to the proposed framework of the Bayesian
network CBA →←  with respect to the data set ABCHC : , which has a
value of 036.0 .

5.4. Conclusion
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The experiments offer substantial support to the theory, and constitute, in
some degree, a proof of soundness of the theory.
The experimental results support the theoretical statements, and agree with
what is predicted by the theory.

Despite the use of distinctly different data sets from two unrelated domains,
the experimental results point to the same conclusions regardless of the data
set used.

The proposed framework for Bayesian Networks does not exhibit the
shortcomings of the Minimum Description Length (MDL) formalism, but
instead, it overcomes the limitations of MDL, and manages to model the
accuracy of a Bayesian network correctly.

The MDL formalism fails to model the accuracy of a Bayesian network
precisely, so that MDL can only be used in a limited context, examining only
the “relative” accuracy of a Bayesian network for a particular data set.

On the other hand, the proposed framework for Bayesian Networks models
the accuracy of a Bayesian network correctly, so that the proposed
framework can be used in a more general context than MDL, examining the
“absolute” accuracy of a Bayesian network.

Correlation
(Hepatitis C)

Correlation
(Neurons)

2R  value
(Hepatitis C)

2R  value
(Neurons)

MDL 0.31 0.14 0.09 0.02
NCIMI 0.97 0.73 0.94 0.53

Both methodologies can be employed in the field of Bayesian Networks;
however, the proposed framework for Bayesian Networks is evidently more
appropriate than the MDL formalism.
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6. Conclusion

The aim of the research is the study of a Bayesian network; the identification
and the examination of the features and the characteristics of a Bayesian
network.

The report examines the accuracy of a Bayesian network with respect to a
given data set; the degree to which the Bayesian network models the joint
probability distribution represented by the given data set accurately.

6.1. Review

Initially, the report provides a formal definition for a Bayesian network,
based on solid theoretical foundations. The features of a Bayesian network
are presented, and the conditional independencies implied by the structure
of the network are identified as a principal feature.

Then, the report identifies the accuracy as a principal characteristic of a
Bayesian network. A formal definition of the accuracy of a Bayesian network
with respect to a given data set is provided, together with a method for
determining the degree of accuracy of a Bayesian network. However, the
methodology presented is computationally unfeasible in practice for real-
world applications.

The report examines the Minimum Description Length (MDL) formalism as
an alternative methodology for evaluating the accuracy of a Bayesian
network in practice for real-world applications. However, the semantics of
the MDL formalism are not entirely appropriate for the field of Bayesian
Networks, and thus, MDL exhibits several shortcomings. Other approaches,
such as the Akaike Information Criterion (AIC) [Akaike 1974] and the
Bayesian Information Criteria (BIC) [Schwarz 1978], are similar to the MDL
formalism, and so, exhibit several weaknesses.

Subsequently, the report proposes a framework for Bayesian Networks,
which attempts to overcome the shortcomings and weaknesses of previous
formalisms. The proposed framework examines the accuracy of a Bayesian
network, by examining the conditional independencies implied by the
structure of the Bayesian network. The framework is formally established,
with several definitions and theorems, and well-defined semantics.

Finally, the report presents experiments that have been conducted in order
to examine the MDL formalism and the proposed framework for Bayesian
Networks. The experimental results provide significant insight, and confirm
what has been previously stated in theory.

6.2. Discussion

The main contribution of the research is the development of a framework for
Bayesian Networks.
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The framework has been specifically developed for the field of Bayesian
Networks, inspired by fundamental principles governing this field, and
employing concepts and methodologies associated with Bayesian networks.

The framework is based on formal theoretical foundations, employing several
definitions and theorems, and characterised by precise semantics.

The framework provides formal specifications in order to examine the
accuracy of a Bayesian network with respect to a given data set, and
specifies an evaluation scheme in order for the degree of inaccuracy of a
Bayesian network to be determined precisely.

Although the report is focused on the accuracy of a Bayesian network, the
framework examines a Bayesian network from a general point of view,
identifying several other features and characteristics of a Bayesian network.
The framework can be used in a wide context, and examine all the features
and characteristics of a Bayesian network.

The framework can be used in and applied to many areas of the field of
Bayesian Networks; it can facilitate the comparison of individual Bayesian
networks with regards to their characteristics, clarify the procedure of the
addition and deletion of arcs and nodes from the structure of a Bayesian
network, supply a theoretical rationale for the process of the introduction of
a hidden node within the structure of a Bayesian network, develop
construction (learning) algorithms for Bayesian networks, and so on.

The framework has a substantial impact on the field of Bayesian Networks.
It is a rigid and precise, yet simple and intuitive, framework that accurately
reflects the essence of a Bayesian network.

6.3. Future work

So far, the research into Bayesian Networks has been considerably
systematic; however, it is not yet complete. Several issues need to be
investigated in order for the research to be thoroughly comprehensive.

The framework for Bayesian Networks has to be refined and improved, by
enriching the theoretical foundations, and identifying subtle and distinctive
features of the theory. In addition, several assumptions have to be relaxed or
even lifted in order to augment the framework.
Although this research is a uniquely systematic examination of the features
and characteristics of a Bayesian network, there is past relevant research. In
particular, the framework has subtle similarities with research by Pearl
[Pearl 1988], Neapolitan [Neapolitan 1990], and Chow & Liu [Chow & Liu
1968]. Further investigation is required to identify these similarities, and to
amalgamate these seemingly different methodologies into a unified
framework.
The theoretical foundations of the framework focus on the structure of a
Bayesian network and the implied conditional independencies. However, the
framework can be refined to examine not only the conditional
independencies implied by the structure of a Bayesian network but also the
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conditional independencies implied by the conditional probabilities matrices
of the arcs of a Bayesian network.

Although the report is focused on the accuracy of a Bayesian network, the
framework can be used in an extended context, and facilitates the
identification and study of additional characteristics of a Bayesian network.
In particular, the framework can be extended to examine the complexity, the
classification performance, and the classification accuracy of a Bayesian
network.

The experiments conducted to examine the framework for Bayesian
Networks are relatively simple. Further experimentation is essential, and
supplementary experiments need to be carried out.
The Bayesian networks employed for the experiments are singly-connected
networks whose nodes have single parents. Supplementary experiments
would employ singly-connected Bayesian networks whose nodes have
multiple parents, and multiply-connected Bayesian networks.
The data sets employed for the experiments are data sets of just three
variables. Supplementary experiments would employ larger data sets of more
than three variables. However, the data sets have to remain relatively small
so that the experiments are computationally feasible.
In addition to real-world data sets, experiments can also be carried out
employing artificial data sets.

The refinement and the extension of the framework will result in an even
greater understanding of Bayesian Networks, while the supplementary
experiments will offer further insight, and additional evidence in support of
the proposed framework.

The research is to be completed within the following nine months.
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Appendix A – Proofs

Theorem 2.1

For a data set ( D ), there exists a Bayesian network ( BN ) that models the
joint probability distribution described by the data set ( DP ) accurately.

DBN PPBND =∃∀ :,

Proof

This is a trivial proof, since in this case, the data set ( D ) uniquely specifies a
joint probability distribution ( DP ), and so it is apparent according to
Theorem 1.2 that for the joint probability distribution described by the data
set ( DP ), there exists a Bayesian network ( BN ) that models the joint
probability distribution accurately.

Theorem 4.1 (NCI Theorem)

Given:
•  A data set ( D ) representing a joint probability distribution ( P ) over

variables (V )
)(VPPD =

•  A Bayesian network ( BN ) of nodes ( N ), arcs ( A ), distribution ( P′ )

)(

),,(

NPP

PANBN

BN ′=
′=

Provided:
•  The nodes of the Bayesian network are the variables of the joint

probability distribution represented by the data set

iiii vnVvNni

VN

≡∈∈∀
≡

:,,
•  The probabilities of the Bayesian network reflect the corresponding

probabilities of the joint probability distribution represented by the data
set

))(|())(|(:, iiiii nparentsnPnparentsnPNni =′∈∀
� The Bayesian network is accurate with respect to the data set, if and

only if, the conditional independencies implied by the structure of the
Bayesian network are conditional independencies of the joint probability
distribution represented by the data set

))(|())(|(:)(,,, iiiiii

DBN

vparentsvPvparentsWvPvaWWVvi

PP

=∪⊆∀∈∀
⇔=

Proof
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1. 
DBN

iiiiii

PP

vparentsvPvparentsWvPvaWWVvi

=
⇒=∪⊆∀∈∀ ))(|())(|(:)(,,,

Since the Bayesian network is a Directed Acyclic Graph (DAG), then there is
an ancestral ordering of the nodes of the Bayesian network. {4}

Let ],...,[ 1 nvv  be the ancestral ordering, considering that ii vni ≡∀ :
It follows from the ancestral ordering that:

},...,{)(: 11 −⊆∀ ii vvvparentsi

},...,{)(: 1 nii vvvsdescendanti +⊆∀
So, it holds that:

},...,{},...,{)(: 1111 −− =∪∀ iii vvvvvparentsi

The set W  is any subset of the set )( iva

}){)(()( iii vvsdescendantVva ∪−=
Consider },...,{ 11 −= ivvW , then )( ivaW ⊆
It holds that:

},...,{)(},...,{)( 1111 −− =∪=∪ iiii vvvparentsvvvparentsW

For the Bayesian network, it holds that:
1

)( ⇔′= NPPBN

2

1

))(|( ⇔′= ∏
=

n

i
iiBN nparentsnPP

3

1

))(|( ⇔= ∏
=

n

i
iiBN nparentsnPP

4

1

))(|( ⇔= ∏
=

n

i
iiBN vparentsvPP

5

1

))(|( ⇔∪= ∏
=

n

i
iiBN vparentsWvPP

6

1
11 }),...,{|( ⇔= ∏

=
−

n

i
iiBN vvvPP

⇔= )(VPPBN

DBN PP =
... deq

1

⇔ : Because of Theorem 1.1
2

⇔ : Because the probabilities of the Bayesian network reflect the
corresponding probabilities of the joint probability distribution represented
by the data set (provided)

3

⇔ : Because the nodes of the Bayesian network are the variables of the joint
probability distribution represented by the data set (provided)

                                        
4 [Neapolitan 1990] Theorem 3.7
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4

⇔ : Because the conditional independencies implied by the structure of the
Bayesian network are conditional independencies of the joint probability
distribution represented by the data set (condition)

5

⇔ : Because of },...,{)( 11 −=∪ ii vvvparentsW  (proven)
6

⇔ : Because of the probabilities chain rule

2. 
))(|())(|(:)(,,, iiiiii

DBN

vparentsvPvparentsWvPvaWWVvi

PP

=∪⊆∀∈∀
⇒=

This is a trivial proof, since in this case, the joint probability distribution
represented by the Bayesian network is identical to the joint probability
distribution described by the data set, and so it is apparent that the
conditional independencies implied by the structure of the Bayesian network
are indeed conditional independencies of the joint probability distribution
described by the data set.

It holds that:
⇔= DBN PP

1

)()( ⇔=′ VPNP
⇔=′ )()( NPNP

PP =′

1

⇔ : Because the nodes of the Bayesian network are the variables of the joint
probability distribution represented by the data set (provided)

For the Bayesian network, it holds that:
))(|())(|(:)(,,, iiiiii nparentsnPnparentsWnPvaWWVvi ′=∪′⊆∀∈∀

So, it holds that:
:)(,,, ii vaWWVvi ⊆∀∈∀

1

))(|())(|( ⇔′=∪′ iiii nparentsnPnparentsWnP
2

))(|())(|( ⇔=∪ iiii nparentsnPnparentsWnP

))(|())(|( iiii vparentsvPvparentsWvP =∪
... deq

1

⇔ : Because of PP =′  (proven)
2

⇔ : Because the nodes of the Bayesian network are the variables of the joint
probability distribution represented by the data set (provided)

Theorem 4.5 (NCI Soundness Theorem)
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For a data set ( D ), there exists a Bayesian network ( BN ) so that the NCI is
sound.

DCINCIBND ⊆∃∀ :,

Proof

According to Theorem 2.1:
For a data set ( D ), there exists a Bayesian network ( BN ) that models the
joint probability distribution described by the data set ( DP ) accurately.

DBN PPBND =∃∀ :,

According to Definition 2.1:
A Bayesian network ( BN ) is accurate with respect to a data set ( D ), if and
only if, the joint probability distribution represented by the Bayesian
network ( BNP ) matches the joint probability distribution described by the

data set ( DP ).

DBN PPBN =⇔D respect to with  accurate

So, it holds that:
For a data set ( D ), there exists a Bayesian network ( BN ) that is accurate
with respect to the data set ( D ).

D respect to with  accurate:, BNBND ∃∀

According to Theorem 4.3:
A Bayesian network is accurate, if and only if, DCINCI ⊆ .

So, it holds that:
For a data set ( D ), there exists a Bayesian network ( BN ) so that DCINCI ⊆
(i.e. the NCI is sound).

DCINCIBND ⊆∃∀ :,

Theorem 4.6 (NCI Incompleteness Theorem)

There exists a data set ( D ), so that for any Bayesian network ( BN ), the NCI
is incomplete.

NCIDCIBND ⊆/∀∃ :,
NCIDCIBND ⊆¬∃∃ :,

Proof

According to Pearl [Pearl 1988], there are models of dependencies (i.e. joint
probability distributions) that cannot be represented by Bayesian networks
(i.e. DCINCI = ). {5}

DCINCIBNJPRD =¬∃∃ :,

                                        
5 weak transitivity and chordality are some of the dependencies that are not representable by Bayesian
networks



- 53 -

So, there are models of dependencies (i.e. joint probability distributions) and
data sets that describe such models of dependencies, for which it holds that:

)()(::

)())((::

))()((::

)()(::

::

NCIDCIDCINCIBND

NCIDCIDCINCIBND

NCIDCIDCINCIBND

NCIDCIDCINCIBND

DCINCIBND

⊆/→⊆∀∃
⇔⊆/∨⊆¬∀∃
⇔⊆∧⊆¬∀∃

⇔⊆∧⊆¬∃∃
⇔=¬∃∃

Similarly, it holds that:
)()(:: DCINCINCIDCIBND ⊆/→⊆∀∃

So, for certain data sets, if there exist Bayesian networks whose NCI is
sound, then for those Bayesian networks the NCI is incomplete.
This indicates that, for certain data sets, there do not exist Bayesian
networks whose NCI is both sound and complete.

Of course, this allows for the case when there exist Bayesian networks
whose NCI is not sound but may be complete.
This agrees with Pearl’s research, which indicates that there exist Bayesian
networks that employ auxiliary nodes and whose NCI is complete (and thus
not sound).

However, if the argument is limited to the case of Bayesian networks that do
not use auxiliary nodes, then it can be proven that there exist data sets so
that there exist no Bayesian networks whose NCI is complete.

NCIDCIBND ⊆¬∃∃ :,
This is a complex proof, which employs results of research by Pearl.
For the theoretical background, and an in-depth discussion of the fact that
there are models of dependencies (i.e. joint probability distributions) that
cannot be represented by Bayesian networks, the reader is advised to refer
to Pearl [Pearl 1988], and in particular sections 3.1.4 and 3.3.3.

Below, we provide a “proof by example” of the fact that there exist data sets
so that there exist no Bayesian networks (that do not use auxiliary nodes)
and whose NCI is complete.

Consider a joint probability distribution so that }|,{ ABCBCDCI = , and a

Bayesian network employing only three nodes A , B , C  to model the given
joint probability distribution.
For the conditional independency BC  to be implied by the structure of the
Bayesian network, these are the possible structures:

CBA   
BCA  →
BCA  ←
CBA  →
CBA  ←

CAB ←→
For the conditional independency ABC |  to be implied by the structure of
the Bayesian network, these are the possible structures:

CAB →←
CAB →→
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CAB ←←
It is evident that there is no common structure that represents both
conditional independencies.
Therefore, there is a joint probability distribution, so that there is no
Bayesian network, which does not use auxiliary variables, and whose NCI is
complete.


