1

The design of complex multi-agent systems is increasingly having to confront the
possibility that agents may not behave as they are supposed to. In e-commerce,
in security, in automatic negotiation, in any application where agents are pro-
grammed by different parties with competing interests, it is unrealistic to as-
sume that all agents will behave according to some given protocol or standard
of behaviour. In addition to analysing the properties that hold if protocols
are followed correctly, it is also necessary to predict, test, and verify the prop-
erties that would hold if these protocols were to be violated, and to test the

The bit transmission problem revisited

Alessio Lomuscio Marek Sergot
Department of Computing
Imperial College of Science, Technology and Medicine
London SW7 2BZ, United Kingdom

{A.Lomuscio,M.Sergot}@doc.ic.ac.uk

January 17, 2002

Abstract

The design of complex multi-agent systems is increasingly having to
confront the possibility that agents may not behave as they are supposed
to. In addition to analysing the properties that hold if protocols are fol-
lowed correctly, it is also necessary to predict, test, and verify the proper-
ties that would hold if these protocols were to be violated. We illustrate
how the formal machinery of deontic interpreted systems can be applied
to the analysis of such problems by considering three variations of the
bit transmission problem. The first, an example in which an agent may
fail to do something it is supposed to do, shows how we deal with viola-
tions of protocols and specifications generally. The second, an example in
which an agent may do something it is not supposed to do, shows how it
is possible to specify and analyse remedial or error-recovery procedures.
The third combines both kinds of faults and introduces a new component
into the system, a controller whose role is to enforce compliance with the
protocol. In each case the formal analysis is used to test whether critical
properties of the system are compromised, in this example, the reliable
communication of information from one agent to the other.

Introduction

effectiveness of introducing proposed enforcement mechanisms.

Consider an online auction mechanism modelled and implemented as a multi-
agent system, where agents play the parts of auctioneers and bidders. At each
round the protocol of the system gives the opportunity to a selected number of
agents to bid for some goods, according to the specific auction protocol being
employed. Suppose that an agent bids an amount which it is unable to fulfil
(either by mistake, or perhaps with the sole intention of raising the bid so that an
opponent will have to pay a higher price). If that bid is made in the prescribed
manner then it would still count as a valid bid — even if it were to be regarded as
illegal, anti-social, unethical to make a bid in those circumstances. Undesirable
behaviour of this kind will often have adverse effects on the system as a whole.
Perhaps the agent will be forced to de-commit from the commitment it entered
upon by bidding, as a result of which the seller will (at least temporarily) lose
the deal, which in turn may have consequences on other deals it has entered
upon with other agents. At the very least, the resulting disputes will have to
be resolved at a cost.

One way out of such problems is to attempt to devise tighter controls in
the protocols, such as stipulating that a bid by an agent is valid only if made
with previously cleared funds. The opportunities for inventing such controls are
limited, however, and in any case have associated costs too (in the example, the
costs of the clearing mechanism and the consequently diminished liquidity of
the market). Moreover forcing agents of an open multi-agent system to behave
according to a rigid set of rules is seen as increasingly unfeasible because of the
inherent distribution of the system. One alternative, having specified what is
correct, desirable, or acceptable behaviour of the agents within a given context,
is to strive to handle and reason about violations of these norms within the
system. The required formalisms not only have to be capable of handling local
violations, but must also be capable of representing the usual attributes ascribed
to agents in a multi-agent setting, such as knowledge, intentions, and goals (see
e.g., [Woo00]).

This then is the context within which the work presented in this paper is
being undertaken. It is important to emphasise that the focus here is not on
formalisms used internally by the agents as part of their reasoning mechanisms,
but rather for specification of properties of the system as a whole, ideally accom-
panied by verification mechanisms. The question of how an agent may reason
internally about the norms that constrain its behaviour is an interesting one,
but it is a different question that will not be pursued in this paper. Note that
it is legitimate and perfectly meaningful to make this separation. Consider the
familiar problem of controlling access to sensitive or confidential data. There is
a specification of what access is permitted or forbidden at the system level but
the agents who actually make the access need not be aware, and usually are not
aware, of what this specification is.

These are inherently complex issues, and we do not expect to have methods
able to give comprehensive answers to all of them in the near future. One
approach being explored by the authors of this note as a step in this direction is
an attempt to extend interpreted systems [FHMV95], a mainstream and well-
developed semantics for reasoning about knowledge in multi-agent systems, with

a deontic component. Deontic interpreted systems [LS01la, LS01b] are designed
to represent correct and incorrect functioning behaviour of agents as well as
their epistemic properties.

The specific aims of this paper are to illustrate how deontic interpreted sys-
tems may be applied to model and reason about violations in a simple example,
the bit-transmission problem [HZ92]. This is a much discussed scenario in dis-
tributed computing involving two agents attempting to communicate the value
of a bit over a faulty communication channel. Of course, the example is trivial
compared to the kinds of applications alluded to in the introductory sections.
Nevertheless, using a small, well understood problem has several advantages,
including;:

e It provides a simple yet interesting scenario on which to test formal appa-
rati that deal with violations, self-correcting protocols, and enforcement
mechanisms.

e Because the example is small, it is possible to show in some detail how
these features can be treated.

e It is possible to reason about it by means of semantics with finer or coarser
levels of detail.

e A syntactic analysis of the scenario is possible by means of standard tem-
poral epistemic languages.

We will consider three variations of the bit-transmission problem. The first
(Section 5) is an example in which an agent may fail to do something it is
supposed to do, and shows how we deal with violations of protocols and specifi-
cations generally. The second (Section 6) is an example in which an agent may
do something it is not supposed to do, and shows how it is possible to specify
and analyse remedial or error-recovery procedures. The third (Section 7) com-
bines both kinds of faults and introduces a new component into the system, a
controller whose role is to enforce compliance with the protocol. In each case
the formal analysis is used to test whether critical properties of the system are
compromised, in this example, the reliable communication of information from
one agent to the other.

2 Preliminaries

In this paper we use the machinery of interpreted systems as presented in
[FHMV95], and the extensions for modelling correct and incorrect function-
ing behaviours as presented in [LS0la, LS01b]. We present the main definitions
here.

Consider n non-empty sets Ly, ..., L, of local states, one for every agent of
the system, and a set of states for the environment Lg. Elements of L; will be
denoted by 14,11,12,1}, Elements of Lg will be denoted by lg,l%,

Definition 1 (System of global states) A system of global states for n agents
S is a non-empty subset of a Cartesian product Ly X Ly X --- X L.

An interpreted system of global states is a pair IS = (S,h) where S is a
system of global states and h : S — 2F is an interpretation function for a set of
propositional variables P.

When g = (Ig,l1,...,1,) is a global state of a system S, l;(g) denotes the
local state of agent i in global state g. lg(g) denotes the local state of the
environment in global state g.

Systems of global states can be used to interpret epistemic modalities K,
one for each agent.

(IS,9) E K;p if for all ¢’ we have that [;(g) = I;(g)
implies (IS, ¢") E ¢.

Alternatively one can consider generated models (S, ~1,---,
~n,h), where the equivalence relations ~; are defined on equivalence of local
states, and then interpret modalities in the standard modal tradition [HC96].
The resulting logic for modalities K; is S5,,; this models agents with complete
introspection capabilities and veridical knowledge [Hin62, MH95].

The notion of interpreted systems can be extended to incorporate the idea of
correct functioning behaviour of some or all of the components [LS01a, LS01b].

Definition 2 (Deontic system of global states) Given n agents and n+ 1
non-empty sets Gg,G1,...,G,, a deontic system of global states is any system
of global states defined on Ly O Gg,...,L, O G,. Gg is called the set of green
states for the environment, and for any agent i, G; is called the set of green
states for agent i. The complement of G with respect to Lg (respectively G;
with respect to L;) is called the set of red states for the environment (respectively
for agent 7).

The terms ‘green’ and ‘red’ are chosen as neutral terms, to avoid overloading
them with unintended readings and connotations. The term ‘green’ can be read
as ‘legal’, ‘acceptable’, ‘desirable’, ‘correct’, depending on the context of a given
application.

Deontic systems of global states are used to interpret modalities such as the
following

(I1S,9) E O;p ifforall g’ we have that l;(g') € G; implies
(IS,9') = .

O; ¢ is used to represent that ¢ holds in all (global) states in which agent
i is functioning correctly. Again, one can consider generated models (.S, ~1
ye-ey~n,Ri,..., Ry, h), where the equivalence relations are defined as above
and the R;’s are defined by gR;¢' if [;(¢') € G;, and give a standard modal logic
interpretation.

Knowledge can be modelled on deontic interpreted systems as on interpreted
systems, and one can study various combinations of the modalities such as

K;Oj, O; K;, and others. Another concept of particular interest is knowledge
that an agent i has on the assumption that the system (the environment, agent j,
group of agents X) is functioning correctly. We employ the (doubly relativised)
modal operator K f for this notion, interpreted as follows:

(IS,9) E I?Z’go if for all ¢’ such that l;(g) = l;(¢') and
l;(¢") € G, we have that (IS, g') = .

Uses of this modal operator will be illustrated in the examples to follow.

Finally, interpreted systems can be extended to deal with temporal evolution.
Consider a set of runs over global states R = {r : N — S}, representing flows
of time for the system. When this structure is in place one can interpret the
usual temporal connectives on it [GHR93].

3 The bit transmission problem

The bit-transmission problem [FHMV95] involves two agents, a sender S, and
a receiver R, communicating over a possibly faulty communication channel. S
wants to communicate some information — the value of a bit for the sake of
the example — to R. We would like to design a protocol that accomplishes this
objective while minimising the use of the communication channel.

Two (trivial) special cases of the scenario can immediately be solved. The
first is the one in which the channel is actually working, or is at least operative
for the first few rounds of computation. In this case we would require S to send
the value of the bit once as the system comes alive. The other special case arises
when the channel is constantly non-operative. There is obviously no protocol
that can ensure that R receives the information in that case.

The interesting scenario arises when the channel is working correctly at cer-
tain times while failing at others. There are several ways in which this can be
approached, for instance by stipulating that the channel delivers messages with
a fixed probability P > 0 at any given round. In this paper we do not make any
of these assumptions; instead, we analyse the most general case with respect
to a most simple protocol. The protocol is as follows. S immediately starts
sending the bit to R, and continues to do so until it receives an acknowledge-
ment from R. R does nothing until it receives the bit; from then on it sends
acknowledgements of receipt to S. S stops sending the bit to R when it receives
an acknowledgement. Note that R will continue sending acknowledgments even
after S has received its acknowledgement. Intuitively S will know for sure that
the bit has been received by R when it gets an acknowledgement from R. R,
on the other hand, will never be able to know whether its acknowledgement has
been received since S does not answer the acknowledgement!.

1One might think that this problem can be solved by insisting that S sends an acknowl-
edgement of the acknowledgement, but by doing so we simply push the problem one level
deeper, and S would never know whether its acknowledgement of the acknowledgement has
been received by R.

4 Analysis

The bit-transmission problem can be analysed using the formalism of interpreted
systems. To do this we follow the approach taken by Halpern and colleagues in
[FHMV95].

There are three active components in the scenario: a sender, a receiver,
and a communication channel. In line with the spirit of the formalism of in-
terpreted systems, it is convenient to see sender and receiver as agents, and
the communication channel as the environment. Each of these can be modelled
by considering their local states. For the sender S, it is enough to consider
four possible local states. They represent the value of the bit S is attempting
to transmit, and whether or not S has received an acknowledgement from R.
Three different local states are enough to capture the state of R: the value of
the received bit, and e representing a circumstance under which no bit has been
received yet. So we have

LS = {07]‘7 (07 G‘Ck)7 (]‘7a6k)}7 LR = {07]‘76}'

To model the environment we consider four different local states, representing
the possible combinations of messages that have been sent in the current round,
by S and R, respectively. The four local states are:

Lg = {(.,.), (sendbit, .), (., sendack), (sendbit, sendack)},

where ‘.” represents configurations in which no message has been sent by the
corresponding agent.

Global states for the system G are defined as G C Lg x Lg x Lg. A global
state g = (Is,lRr,lE) gives a snapshot of the system at a given time. Note that
not all triples of the product are admissible in principle, but only those that can
be reached in a run of the protocol, as will be explained below.

This simple formalisation has the advantage of being suitable for integration
with finer semantics representing actions and protocols. To do so consider a set
of actions Act; for every agent in the system and the environment.

Actg = {sendbit,\}, Actg = {sendack,\},
Actg = {transmit, lose}.

’

Here X stands for no action (‘no-op’).

Under the assumptions of determinism we can model the evolution of the
system by means of a transition function 7 : G x Act — G, where Act =
Actg x Actg x Actg is the set of joint actions for the system. To conserve space
we do not present the full definition of 7 for the example. Intuitively, 7 codes the
fact that the state of the environment determines whether the actions performed
by the agents (i.e., the messages they send on the channel) are effective or not.
For example, the definition of 7 contains the following;:

m((0, €, (sendbit, .)), (sendbit, A, transmit)) =

(0,0, (sendbit, .)),
w((0, €, (sendbit, .)), (sendbit, \,lose)) =

(0, ¢, (sendbit, .)),

(0,0) ((0,ack),0)

((1,ack),1)

(1,1)
(0,€) | (1,¢)

Figure 1: The state space of the bit-transmission system. Columns (respectively
rows) represent global states epistemically equivalent for S (respectively for R).

to capture that when the channel works properly the message does get through
and gets processed accordingly by R. Other cases can be similarly expressed.
We leave the details to the reader.

For compliance with a given protocol, only certain actions are performable
at a given time for an agent. For example if S has not yet received an acknowl-
edgement from R, i.e., in the model when S is in the local state 0 or 1, then
according to the simple protocol under consideration, S should send the value of
the bit over the channel to R, i.e., perform the action sendbit. To capture such
requirements the concept of protocol can be used. A protocol for agent i is a
function P; : L; — 24°% mapping sets of actions from a local state. P;(l;) is the
set of actions performable according to the protocol by agent ¢ when its local
state is I;. For the example under consideration the protocol can be defined as
follows:

Ps(0) = Ps(1) = sendbit, Ps((0, ack)) = Ps((1,ack)) = A,
Pgr(e) = A, Pg(0) = Pr(1) = sendack.

Throughout, as here, we omit brackets when writing singleton sets, to reduce
clutter.
For the environment, we use the constant function:

Pg(X) = {transmit,lose}

where X is a variable ranging over Lg. Note that while we have assumed
determinism for the agents, we work under the assumption of nondeterminism
for the environment (but without making any probabilistic assumptions about
its behaviour). If we assume that the system starts from a state go = (0, ¢, (.,.)),
it is possible to show that S will start sending the bit and will only stop after
having received an acknowledgement from R. In turn R will remain silent until
it receives the bit, and it will never stop sending acknowledgements from then
on. This analysis can formally be made by using the mechanism of contexts
[FHMV97] — for our purposes it is not necessary to pursue this analysis here.
The set of global states reachable from the initial configurations {(0, €, (.,.)), (1,€, (.,.))}
as defined by the transition function 7 and the protocol functions Ps, Pr and Pg
is summarised in Figure 1. The environment component is omitted for clarity?.

2More precisely, the table represents the quotient set of the set of reachable states with
respect to an equivalence relation defined by (Is,lr,le) ~ (I4,1,,1L) if Is = 1% and I, = I,..

Having defined the set of reachable global states, we can apply the tools
of formal logic to the analysis of the scenario by considering an interpreta-
tion of a suitably chosen set of propositional variables. We shall use the set
P = {bit = 0,bit = 1, recbit,recack}. We interpret these on the interpreted
system ISy, = (G, ~g,~g,h), where G is the set of reachable global states as
defined by 7, Ps, Pg and Pg, ~g,~g are equivalence relations on global states
as defined in [FHMV95], and h is an interpretation for the atoms in P such that
the following holds:

(ISy,9) Fbit =0 if Is(g) =0, or ls(g) = (0, ack)
(ISw,g9) Ebit =1 if Is(g) =1, orls(g) = (1,ack)
(ISv,9) Erecbit if Ig(g9) =1, orlr(g) =0

(ISv,9) Erecack if Is(g) = (1,ack), orls(g) = (0,ack).

This permits us to represent and check properties of the system directly on
the semantical models. For example, by employing standard temporal connec-
tors on the runs as constructed above one can check that:

ISy [~ recbit — Qrecack

which represents the intrinsic unreliability of the channel.

Irrespective of the analysis of the dynamic properties of the system, there is
one interesting static epistemic property that is worth observing. By ascribing
knowledge to the agents using the standard [FHMV95] approach, it can be
checked that

ISy, IZ recbit — (KR (bit = 0) V Kg (bit = 1))

which confirms our intuition about the model. It is also worth noting that (since
IS}, |= recack — recbit):

ISy, = recack — (Kg (bit = 0) V K (bit = 1))
and perhaps most interestingly that

IS, [recack — Kg(Kg (bit =0)V Kg (bit = 1))
ISy, = recack A (bit = 0) - Kg Kg (bit = 0)

(and similarly for the case (bit = 1)). So, if an ack is received by S, then S
is sure that R knows the value of the bit. Intuitively this represents the fact
that although the channel is potentially faulty, if messages do manage to travel
back and forth the protocol is strong enough to eliminate any uncertainty in the
communication problem.

5 Violation of specifications

In the previous section we have assumed that both agents and environment fol-
low the protocols. We now apply the machinery of deontic interpreted systems

[LS01a, LSO1b] to analyse what happens when the specified protocols are vio-
lated in the bit-transmission problem, Because of space limitations, we examine
in detail only the possibility of R being faulty. The possibility that S is faulty,
and other combinations of faulty R, S and E, can be treated in similar fashion.
Specifically, we shall consider in this section the possibility that R may send
acknowledgements without having received the bit. This is a simple example
of an agent doing something that it should not do. In the following section we
shall consider an example where an agent does not do something that it should
do.

In order to apply the machinery, we modify the framework of the previous
section so that the set of local states of agent i is composed of two disjoint
sets of green (G;) and red (R;) local states, representing correct and incorrect
functioning behaviour respectively. For S, since we are not admitting (for the
purposes of the example) the possibility of faults, its local states are all green,
that is to say, allowed by the protocol. We thus have:

Ls =Gs =1{0,1,(0,ack),(1,ack)}, Rs=0.

For the case of the environment, we have admitted the possibility of faulty, or
unreliable, behaviour but these ‘faults’ are not violations of the protocol under
examination. Accordingly, all local states of the environment are also green;
Rg =0, Lg = Gg, and we have:

Ge ={(,,.), (sendbit, .), (., sendack), (sendbit, sendack)}.

How shall we model the local states of the, now potentially faulty, receiver
R? One possibility is to extend the set of local states {0, 1, €} with an additional
element (¢,ack) representing the (red) local state in which R has sent an ac-
knowledgement without having received the value of the bit. However, we also
want to consider local states in which R sent an acknowledgement in violation
of the protocol but has received the value of the bit in the meantime. These are
also ‘red’ local states. Accordingly, we define the local states of R as follows:

GR = {07 176}7 RR = {(07f)7 (17f)7 (67 f)}7 LR = GR u RR-

Here, f in the ‘red’ states Rg is intended to indicate that at least one faulty
acknowledgement was sent before the value of the bit had been received®.

We turn now to defining the protocol functions Py, Pg, Py of this deontic
interpreted system. Given that the two sets of local states for S and E have not
changed we can keep the functions Ps and Pg described in Section 4, i.e., we
take Pg = Pg, Py, = Pg, but we need to extend Pg so that it is defined also on
the red local states of R. We want to define what we might call a ‘monotonic’

3In employing this device we are effectively coding something of the past into the (red)
local states for R. This allows us to avoid the complication of adding temporal constructs to
the framework. We are investigating temporal extensions to deontic interpreted systems but
will not discuss these further here. The non-temporal version is adequate for the purposes of
the examples in this paper.

extension of the protocol function Pg: the protocol Pp should be the same as
Pr, when evaluated on the green local states for R and it remains only to define
how it should be evaluated on the red local states. The projection of the new
interpreted system onto the green local states should result in the ‘old’ system
IS}, of Section 4. So we have, as for Pg:

Pp(e) =)\, Py(0) = Py(1) = sendack

How shall we define Pj for the red local states Rgp = {(0,f),
(1,£),(e, f)}? Of course, the protocol described in Section 3 does not say:
as presented, it does not cover the possibility of violation, and does not specify
any remedial or recovery actions to be taken if errors arise. For the sake of
concreteness, let us define

Pr((0, £)) = Pr((1, f)) = Pr((e, f)) = Actr = {sendack, A}

In fact, in this example, it makes little difference how we define Py, for red
local states. As is perhaps obvious, there is no extension of the protocol that
will recover effectively from the erroneous sending of an acknowledgement by
R. The point, however, is that in general it is meaningful to define protocols on
red states as well as green, whenever the protocol makes provision for remedial
or error recovery actions.

One question that we would like to ask is how the runs of the system change
following the introduction of red local states for R. Suppose the system starts
as before from the global state go = (0, A, .). It can either produce an error-free
run or R can act faultily at any time during the evolution. R’s faults may
indeed inhibit the communication of the bit. For example, if at any point R
sends an ack without having received the bit, this, if received by S, will make
S stop sending messages, preventing any communication between the agents.
This simple observation indicates that some of the properties that hold true in
the case of no incorrect behaviour will no longer be valid here. This should be
reflected in the analysis.

Let us then explore this further by applying the same multi-modal language
based on the set of atoms P = {bit = 0,
bit = 1, recbit,recack}, and augmented by the modal operators Oi,Ki,IA('{
described in Section 2. We interpret formulas on the deontic interpreted system
IS}, = (G', ~y, ~%, Ry, R, b') resulting from defining the relations ~%, R.,i €
{S, R} on the set of the reachable global states G' C L' x L'y x L.

For the computation of reachable global states G', it remains to define the
evolution function n’ for system IS}. Essentially we would like to extend the
definition of 7 in system IS4, by insisting that R’s local states will be red if R has
sent an acknowledgement, either in the current round or in the past, without
having received the bit first. R will otherwise copy R’s transitions in ISy, i.e., R
will correctly store the bit if it has received it and remain in the undetermined
state € otherwise. More formally, for the case of the bit being 0 (the other can

10

0, (0, f)) ((0, ack), (0, f))
(1, (1, f)) ((1, ack), (1, f))
0, (e, f) | (1, (e f)) | ((0,ack), (e f)) | ((1,ack), (e [))
(0,0) ((0,ack),0)
(1,1) ((1,ack), 1)
(0,€) (1,€)

Figure 2: The state space of the bit-transmission system in case R may send
incorrect acknowledgements.

be done similarly) we shall impose:

7' ((0,€, X), (sendbit, sendack,lose)) =

((0,ack), (e,), (sendbit, sendack))
' ((0, €, X), (sendbit, sendack, transmit)) =

((0,ack), (0, f), (sendbit, sendack))

where X is a variable ranging over L. Note that in the second case the result
state is a faulty state even though communication has taken place. Once R is
in a red state we also impose that it will forever be in a red state, although it
will correctly store messages, if received.

@' ((0, (¢, f)), X), (sendbit, sendack, transmit)) =

((0, ack), (e,), (sendbit, sendack))
7' ((0, €, X), (sendbit, sendack,lose)) =

(0, (0, 1), (sendbit, sendack))

For the rest of the system we define 7’ to behave in the same way as 7 in ISy,
i.e., the projection of 7' onto the components of S and E coincides with .
Given these definitions we can compute the set of reachable states as before.
They are shown Figure 2, again omitting the environment component for clarity.
The interpretation h' for the new system is the extension of h from the
previous section in which the only atom for which the interpretation needs
updating is recbit, giving:

(IS}, 9) E recbit if Ir(g) =1, or Ig(g) =0, or
Ir(g) = ((0,£)), or lr(g) = ((1, f)).

We can now investigate whether or not the formulas that held true in the
scenario with no fault remain true here. It is easily checked that

IS, |= recbit — (Kg (bit = 0) V Kg (bit = 1))

which confirms our intuition about the model. Even if faults occur, if the
bit has been received, surely R will know its value. It is the mechanism of
acknowledgements that is no longer reliable. Indeed we find in our model that:

IS, £ recack — recbit
IS}, [recack — (Kg(bit = 0) V Kg (bit = 1))

11

and as expected:

IS}, £ recack — Kg(Kpg (bit = 0) vV Kg (bit = 1))
IS}, £ recack A (bit = 0) = Kg Kg (bit = 0)

But note that, using the operator Og introduced in Section 2, which represents
what holds in states where R is operating correctly, we have the following;:

ISy E Og(recack — recbit)
IS;, = Og(recack — (KR (bit = 0) V K (bit = 1)))
IS, E Og(recack A (bit = 0) - K5 Kg (bit = 0))

What is more interesting though, is that a particular form of knowledge also
still holds. Intuitively if S could make the assumption of R’s correct functioning
behaviour, then, upon receipt of an acknowledgement, it would then make sense
for it to know that R does know the value of the bit. To model this intuition we
use the operator K] “knowledge under the assumption of correct behaviour” as
presented in Section 2. This describes the knowledge agent 7 has if attention is
restricted to states in which j is performing as intended. We refer to [LSO01b]
for more details, but note that unlike the usual epistemic operators associated
with interpreted systems, K is not an S5 operator, and in particular it does
not validate axiom T, i.e., knowledge under assumptions of correct functioning
behaviour does not imply truth. This operator is of particular interest in this
circumstance because it captures precisely our intuition about the example.

IS, [recack — I/(\'g(KR (bit = 0) V Kg (bit = 1))
IS, = recack A (bit = 0) » K& Kg (bit = 0)

To summarise: we have modified the scenario of the bit-transmission prob-
lem, relaxing slightly the assumptions of correct functioning behaviour that
hold true for it. In particular, we have allowed for the possibility that one of
the agents, the receiver R, may violate the protocol by performing an action it
should not perform according to the protocol. We have seen that some key prop-
erties of the system then no longer hold. In particular under the assumptions
we have studied, S will never know whether or not R knows the value of the
bit; at best S can know this only under the assumption of correct functioning
behaviour for R. This is an intuitive result that was validated syntactically, and
semantically on the model.

In specifying the extended protocol, the value of Py, for the red local states of
R was chosen arbitrarily. It seems intuitively obvious that no other specification
of Py, on the red states would allow us to recover the key property we require
of the protocol. In other words, it should be possible to show that recack A
(bit = 0) - Kg K (bit = 0) is not valid in IS}, no matter how we extend the
definition of Pg to cover the red local states of R — there is no protocol that
will recovery of communication once a violation has occurred.

How could the system recover after R has sent an incorrect ack? It seems as
though the only way to proceed is for the two agents to re-synchronise, perhaps

12

with a message from R signalling the failure of all communication so far with a
request to restart the protocol from scratch. Clearly this request could per se
fail to reach S, so we would need to insist on S to acknowledge the request to
R. So the roles of S and R would need to be swapped before communication
can be resumed. We see no conceptual difficulty in modelling this setting with
the tools presented so far.

6 An error correcting protocol

Consider again the bit-transmission problem as modelled in Section 4, but as-
sume now that R can be faulty in a different way, in that it may fail to send
acknowledgements when in fact it has received the bit. Indeed, it is clear that
in this simple example there are only two ways in which R can violate the pro-
tocol of Section 4 — the one described in the previous section and this one. To
what extent would this second kind of fault compromise communication, and
are there ways of recovering from it? In line with the development of the pre-
vious section, let us define the elements of the model for this new setting: sets
of green and red local states, protocols, the transition function, and reachable
global states.

The set of local red and green states for S and E are the same as in the
models of Sections 4 and 5. The local states for R are those of Section 5 except
that we do not include the red local state (e, f) — in this new setting, no fault
can have occurred if the bit has not been received yet. So we have:

III%Z{OJLG}JRI}IBZ (Oaf)a(laf)}a I}QZGI}IBUR}IB

The protocol functions we use for S and E are again the ones we employed in
Sections 4 and 5; what changes is the protocol function for agent R. Again, we
wish to define an extension Py of Pg that has the same values as P for the
green local states and specifies in addition how R should behave when in a red
local state. In this example, unlike the one of Section 5, there is an obvious way
of extending the protocol so that we obtain error-correcting behaviour in case
a fault has occurred: if R has failed to send an acknowledgement, we simply
require that R does so at the next round. Formally:

Pp(e) = A, Pg(0) = Py(1) = sendack,
Pi((0,) = Pp((1, f)) = sendack.

So in this case, it is easy to spell out the conditions for recovery from a red state.
To check that this is indeed the case we evaluate formulas on the evolution of the
deontic interpreted system just constructed. It remains to define the transition
function of the system, so that we can compute the set of reachable global states.

Consider first the conditions under which we move to a red local state for
agent R, and then the outcome of transitions originating from red local states

13

(0, (0, f)) ((0, ack), (0, f))
1, (1, f)) ((1, ack), (1, f))
(0,0) ((0,ack),0)
(1,1) ((1,ack), 1)
(0,€) (1,€)

Figure 3: The state space of the bit-transmission system in case R may fail to
send acknowledgements when supposed to do so.

for agent R (the results for bit=1 are analogous):

(0,0, X), (sendbit, .,a)) = (0, (0, f), (sendbit, .))
"' (((0, ack), 0, X), (sendbit, ., a)) =

((0, ack), (0, £), (sendbit, .))
"((0,(0, f), X), (sendbit, .,a)) = (0, (0, f), (sendbit, .))
"((0,(0, f),X), (sendbit, sendack, lose)) =

(0,0, (sendbit, sendack))
«"((0, (0, f), X), (sendbit, sendack, transmit)) =
((0, ack), 0, (sendbit, sendack)),

3

where X € L., and a € Act.. With this information, we can compute the set of
reachable global states. Once again we do not show the entire computation here,
but simply summarise the results in Figure 3, with the environment component
omitted as usual.

Following what is by now our standard procedure we can determine the
corresponding deontic interpreted system IS” and interpret the formulas of
interest. The interpretation function A for atoms needs no adjustment: A" is
h' with the obvious adjustment to restrict its domain. It is easily confirmed
that we have all of:

ISy E recack — (Kg (bit = 0) V K (bit = 1))
ISy E recack —» Kg (KR (bit = 0) V K (bit = 1))
ISy E recack A (bit = 0) - Ks Kg (bit = 0)

Naturally, assuming correctness of R’s behaviour does not invalidate the above
— we have also, e.g.:

IS} = recack A (bit = 0) = K% Kg (bit = 0)

Indeed, Kgyp — K £ is valid in the class of all deontic interpreted systems
— K;p — K f for all pairs of agents ¢ and j is a property of the logic (see
[LSO01a, LSO1b] for details).

This example shows two rather intuitive points about the formalism of deon-
tic interpreted systems. First, not all incorrect behaviours by the participating

14

agents necessarily compromise the validity of crucial properties of the system be-
ing modelled. Secondly, it is possible and useful to reason about these incorrect
error states and devise protocols that attempt recovery from them.

7 ‘Regimentation’

In the previous section it was possible to devise a simple error-correcting pro-
tocol that, if followed, ensures that the system will get back to a state in which
all the agents are in a green local state. This is not always possible, of course.
Given a system in which agents cannot be assumed to behave in accordance
with the specified standards of behaviour or to follow the prescribed protocols,
it is natural to seek additional control or enforcement mechanisms that can be
introduced to encourage or even force agents to comply. Of these the simplest
(but by no means the only) strategy is to look for a way of constraining the
agents’ behaviour so that the possibility of violation is simply eliminated. In
the present example, for instance, we could add an additional filter on the trans-
mission of messages from R to block out those that would cause violations of
the protocol. If successful, we would have an example of an enforcement strat-
egy called ‘regimentation’ in [JS93]. Discussion of other possible strategies is
beyond the scope of this paper.

So let us consider another variation of the bit-transmission problem. We
will assume that R may develop faults of either of the two kinds analysed in
Sections 5 and 6. We formally introduce a third agent C' in the system, a
controller whose function is to constrain the behaviour of R. As we understand
it, the controller agent C'is a (simple) example of what is called an ‘inter-agent’
in [RAMNT98]. Its local states are:

Gc¢ = Lo = {green,red}, Rpr=70.

The controller C' must be able to detect violations of the protocol by R: we
use green to represent the case where faults have not developed in the current
round or in the past, and red to represent states in which they have.

C’s actions are the following:

Acts = {allow, block}.

The idea is that these actions provide an additional filter on the attempted ac-
tions of receiver R. The block action will be used to override any transmit action
of the environment when R attempts to send an erroneous acknowledgement;
allow allows a message from R to enter the transmission channel to S.

The protocols for S and E are the same as those we have employed so far. As
for R, we want the protocol function Py’ to be the same as Pr when evaluated on
green local states, as usual, and to have the error-correcting behaviour discussed
in Section 6 for the local states (0, f) and (1, f). It thus has the value of Py for

those states. The value of Py’ in the state (e, f) can be chosen arbitrarily since

15

nothing of interest will depend on this; for concreteness, we will define it to be
A. So we have:

Pp'(e) =X, Py'(0) = Py'(1) = sendack,
Pg'((0, f)) = Pg'((1, f)) = sendack, Pg'((e, f)) = A.

Note that while C' is expected to block erroneous ack messages when R is in
the critically faulty state (e, f), it cannot prevent R entering this or any other
faulty state.

The protocol of C' is simple: it either blocks the transmission of messages
from R or lets them through, depending on its local state:

Pl (green) = allow, P('(red) = block.

We now consider the transition function of this system. In this case both
global states and joint actions are 4-tuples. Let us first consider agent C. It
is an assumption of the formalism of interpreted systems that all local states
are private to the agents whereas actions are public. Given this, the controller
may block R’s messages only by performing a sequence of observations of the
joint actions performed. We get the desired effect by stipulating that C' remains
in state red until the successful transmission of a bit from S to R is observed,
i.e., since S is stipulated to work correctly, the environment action is transmit;
when this happens, C' switches to state green, and it remains in that state for
the rest of the run. So:

7" (B, X,red,Y), (sendbit, 8, block, lose)) =
(B,X',red,Y")
7" (B, X,red,Y), (sendbit, 8, block, transmit)) =
(B, X", green,Y")

where (to save space) B stands for 0 or 1, and (B,XY') =
7"((B,X,Y), (sendbit, 3, lose)), (B, X", Y") = (B, X,Y),
(sendbit, 8, transmit)). Further:

"' (W, X, green,Y), (a, B, allow, transmit)) =

(W', X', green,Y")
7" (W, X, green,Y), (a, B, allow,lose)) =

(W", X", green,Y")

where (W', X" Y") =" (W, X,Y), (a, B8, transmit)) and (W", X", Y") = 7" (W, X,Y), (a, B, lose)).
In all of the above W, X,Y (possibly with superscripts) are variables ranging
over the respective local states, and «, § are variables ranging over actions.

When C is in a red state it blocks all attempts to send messages by R:

7" (0, €, red, X), (sendbit, sendack, block, transmit)) =
(0,0, green, (sendbit, sendack))
7'"(0, ¢, red, X), (sendbit, sendack, block, lose)) =
(0, (¢, f), red, (sendbit, sendack))

16

(0, (0, f)) ((0, ack), (0, f))
(1, (1, f)) ((1, ack), (1, f))
0, (e, 1)) | (4,(f))
(0,0) ((0,ack),0)
(1,1) ((1,ack), 1)
(0,€) (1,€)

Figure 4: The state space of the ‘regimented’ bit-transmission system in case R
may both fail to send acknowledgements when supposed to, and send acknowl-
edgements when supposed not to.

Note that the first of the above is a case where C observes the successful arrival
of a bit value message at R and so is also a case where C’s local state switches
from red to green. Note also that only R’s messages can be blocked by C. Last,
given the presence of C', we can allow for R to recover from a critical fault and
return to one of its green states:

70, (¢, f),red, X), (sendbit, ., block, lose)) =
(0, €,red, (sendbit, .))

Once again we have presented only the main cases of the definition here, and
leave it to the reader to complete the other (straightforward) cases. We assume
that C’s state does not affect the transitions of E, i.e., the transition function
7" is equal to 7" when restricted to the states of E.

We may now move to consider the deontic interpreted system IS"' = (G, ~g
,~R,~C,Rs,Rr, Rc,h'"") generated by the system above. The set of global
states G""' C Lgx Lrx L¢, can be computed from the initial states (0, €, red, (.)),
(1,¢,red, (.)) from the transition function «'" described above. The resulting
set of reachable global states is summarised in Figure 4 — given that the local
states of C' do not affect the epistemic states of S and R, which is our prime
object of interest in this analysis, we leave out C’s component from the table
as we have done for E earlier. Comparing Figure 4 with Figure 2 one can see
that the regimentation mechanism amounts to making unreachable the third
and fourth global states in the third row of Figure 2.

Let us now go back to the formulas we analysed before and check whether
they hold true on I15". We should expect that the introduction of the controller
mechanism eliminates the possibility of incorrect acknowledgements reaching S.
This is indeed what we find by analysing the formulas.

ISy E recack — recbit

IS} E recack — (Kpg(bit = 0)V K (bit = 1))
ISy | recack — Kg(Kg (bit = 0) V Kg (bit = 1))
IS} E recack A (bit = 0) - Kg K (bit = 0)

17

8 Conclusions

We have presented three variations of the bit-transmission problem to illus-
trate and evaluate how the machinery of deontic interpreted systems provides
a means of analysing violations and (certain) enforcement mechanisms. Clearly
the example is trivial compared to the complex multi-agent systems applications
referred to in the introductory section. Nevertheless, it does exhibit many of the
features we shall have to confront in these complex examples, and encourages
us to believe that useful tools and methods can be developed on this basis.

Apart from examining further examples, we have two main lines of develop-
ment that we are pursuing. First, the investigation of examples has identified
a number of technical questions concerning what we called ‘monotonic’ exten-
sions of protocol functions to include red states. Second, we are investigating
an alternative formalism which colours transitions red or green and not just
states, combining the formalism of interpreted systems with the construction of
a dynamic logic of permission reported in [Mey96].

Acknowledgements

This work was supported by the EU-funded FET project ALFEBIITE (IST-
1999-10298).

References

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, 1995.

[FHMV97] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-
based programs. Distributed Computing, 10(4):199-225, 1997.

[GHR93] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds. Tempo-
ral Logic: Mathematical Foundations and Computational Aspects,
Volume 1:Mathematical Foundations. Oxford University Press,
1993.

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal
Logic. Routledge, New York, 1996.

[Hin62] J. Hintikka. Knowledge and Belief, an introduction to the logic
of the two notions. Cornell University Press, Ithaca (NY) and
London, 1962.

[HZ92] J.Y. Halpern and L. D. Zuck. A little knowledge goes a long way:
Knowledge-based derivations and correctness proofs for a family
of protocols. Journal of the ACM, 39(3):449-478, 1992.

18

[7S93]

[LSO1a]

[LSO1b]

[Mey96]

[MH95]

[RAMN™+98]

[Woo000]

A. J. 1. Jones and M. J. Sergot. On the Characterisation of Law
and Computer Systems: The Normative Systems Perspective. In
John-Jules Ch. Meyer and Roel J. Wieringa, editors, Deontic Logic
in Computer Science: Normative System Specification, chapter 12,
pages 275-307. John Wiley & Sons, Chichester, England, 1993.

A. Lomuscio and M. Sergot. Extending interpreting systems with
some deontic concepts. In J. van Benthem, editor, Proceedings
of TARK 2001, pages 207—218, San Francisco, CA, July 2001.
Morgan Kauffman.

A. Lomuscio and M. Sergot. On multi-agent systems specification
via deontic logic. In J.-J Meyer, editor, Proceedings of ATAL 2001.
Springer Verlag, July 2001. To Appear.

R. van der Meyden. The dynamic logic of permission. Journal of
Logic and Computation, 6(3):465-479, 1996.

J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and
Computer Science, volume 41 of Cambridge Tracts in Theoretical
Computer Science. Cambdridge University Press, 1995.

J. A. Rodriguez-Aguilar, F. J. Martin, P. Noriega, P. Garcia, and
C. Sierra. Towards a test-bed for trading agents in electronic auc-
tion markets. AI Communications, 11:5-19, 1998.

M. Wooldridge. Reasoning about rational agents. MIT Press, July
2000.

19

