
A Connectionist Inductive Learning System for

Modal Logic Programming

Artur S. d’Avila Garcezδ, Luís C. Lambλ and Dov M. Gabbayγ

δ
Dept. of Computing, Imperial College, London, SW72BZ, UK

aag@doc.ic.ac.uk
λ
Faculdade de Informática, PUCRS, Porto Alegre, RS, 90450-030, Brazil

lamb@inf.pucrs.br
γ
Dept. of Computer Science, King’s College, London WC2R 2LS, UK

dg@dcs.kcl.ac.uk

Abstract. Neural-Symbolic integration has become a very active re-

search area in the last decade. In this paper, we present a new massively

parallel model for modal logic. We do so by extending the language of

Modal Prolog [32, 37] to allow modal operators in the head of the clauses.

We then use an ensemble of C-IL
2
P neural networks [14, 15] to encode

the extended modal theory (and its relations), and show that the ensem-

ble computes a fixpoint semantics of the extended theory. An immediate

result of our approach is the ability to perform learning from examples

efficiently using each network of the ensemble. Therefore, one can adapt

the extended C-IL
2
P system by training possible world representations.

Keywords: Neural-Symbolic Integration, Artificial Neural Networks,

Modal Logic, Change of Representation, Learning from Structured Data.

1 Introduction

Neural-Symbolic integration concerns the utilization of problem-specific sym-

bolic knowledge within the neurocomputing paradigm. In spite of the progress

in the last decade, important open problems remain to be solved. In particular,

neural systems have not been shown to fully represent and learn predicate logic

[11]. We believe that a promising approach to unravel this problem is to investi-

gate ways of representing the necessity and possibility operators of modal logic

[9, 16] and the modal acessibility relation in artificial neural networks.

In this paper, we present a new massively parallel model for propositional

modal logic, contributing towards the representation of quantification in neural

networks. We do so by extending the language of Modal Prolog [32, 37] with the

necessity and possibility operators. We then set up an ensemble of Connection-

ist Inductive Learning and Logic Programming (C-IL2P) networks [14, 15], each

network being an extension of Holldobler and Kalinke’s parallel model for logic

programming [24], to compute a fixpoint semantics of a given modal theory.

As pointed out in [4], most ILP systems, including FOIL [33], GOLEM [31]

and PROGOL [30], apply a covering algorithm in order to generate hypothe-

sis. Such systems “have difficulties in learning multiple predicates and recursive

definitions, and will have unnecessarily long clauses for hypothesis”[4], in con-

trast with most Neural-Symbolic Learning Systems [11, 14]. Examples of Neural-

Symbolic Learning Systems for first order logic include [4] and [7], which use,

respectively, a Cascade ARTMAP [38] and a Radial-basis Function (RBF) net-

work [22]. Differently, C-IL2P networks use Backpropagation [35], the neural

learning algorithm most successfully applied in real-world problems such as DNA

sequence analysis and pattern recognition. In [5], a single C-IL2P network has

been used in conjunction with LINUS [26]. In this paper, an ensemble of C-IL2P

networks is used, allowing efficient learning with examples by training a number

of possible world representations. In addition, as modal logics have been the

subject of intense investigation in knowledge representation, this work is contri-

bution towards the learning of modally defined aspects of reasoning using neural

networks [16].

In Section 2, we briefly present the basic concepts of modal logic and artificial

neural networks used throughout this paper. In Section 3, we present a Modal-

ities Algorithm that translates extended modal programs into artificial neural

networks. The network obtained is an ensemble of simple C-IL2P networks, each

representing a given possible world. We then show that the network computes

a fixpoint semantics of the given modal theory, thus proving the correctness of

the Modalities Algorithm. In Section 4, we conclude and discuss directions for

future work.

2 Preliminaries

In this section, we present some basic concepts of Modal Logic and Artificial

Neural Networks that will be used throughout the paper. We also extend Modal

Prolog [32, 37] to allow modalities � and � in the head of the clauses and default

negation ∼ in the body of the clauses [10]. Finally, we define a fixpoint semantics

for such extension.

2.1 Modal Logic and Extended Modal Programs

Modal logic began with the analysis of concepts such as necessity and possibility

under a philosophical perspective [25, 27]. A main feature of modal logics is the

use of possible world semantics (proposed by Kripke and Hintikka) which has

significantly contributed to the development of new non-classical logics, many

of which have had a great impact in computing science [1, 29]. A proposition is

necessary in a world if it is true in all worlds which are possible in relation to

that world, whereas it is possible in a world if it is true in at least one world

which is possible in relation to that same world.

Modal logic was found to be appropriate to study mathematical necessity (in

the logic of provability), time, knowledge, belief, obligation and other concepts

and modalities. In artificial intelligence and computing, modal logics are among

the most employed formalisms to analyse and represent multi-agent systems

and concurrency properties [16]. The basic definitions about modal logics that

we shall use in this paper are as follows. As usual, we assume that any clause is

ground over a finite domain.

Definition 1. A modal atom is of the form MA where M ∈ {�,�} and A is

an atom. A modal literal is of the form ML where L is a literal.

Definition 2. A modal prolog program is a finite set of clauses of the form
MA1, ...,MAn → A.

We define extended modal programs as modal prolog programs extended with

modalities � and � in the head of clauses, and default negation ∼ in the body of

clauses. In addition, each clause is labelled by the possible world in which they

hold, similarly to Gabbay’s Labelled Deductive Systems [20].

Definition 3. An extended modal program is a finite set of clauses C of the

form ωi : ML1, ...,MLn → MA, where ωi is a label representing a world in
which the associated clause holds, and a finite set of relations R(ωi, ωj) between

worlds ωi and ωj in C.

For example: P = {ω1 : r→ �q, ω1 : �s→ r, ω2 : s, ω3 : q→ �p,R(ω1, ω2),

R(ω1, ω3)} is an extended modal program. The � and � modalities will have

the following interpretation.

Definition 4. (Kripke Models for Modal Logic) Let L be a modal language. A
model for L is a tuple M = 〈Ω,R, v〉 where Ω is a set of possible worlds, v is

a mapping that assigns to each propositional letter of L a subset of Ω, and R

is a binary relation over Ω, such that: (i) (M, ω) |= �α iff for all ω1 ∈ Ω, if

R(ω, ω1) then (M, ω1) |= α, and (ii) (M, ω) |= �α iff there exists a ω1 such

that R(ω,ω1) and (M, ω1) |= α.

A variety of proof procedures for modal logics has been developed over the

years, e.g., [18, 36]. In some of these, formulas are labelled by the worlds in

which they hold, thus facilitating the modal reasoning process (see [36] for a

discussion on this topic). In the natural deduction-style rules below, the notation

ω : α represents that the formula α holds at the possible world ω. Moreover, the

explicit reference to the accessibility relation also helps in deriving what formula

holds in the worlds which are related by R. The rules we shall represent using

C-IL2
P are similar to the ones presented in [36], which we reproduce below.

The �E rule can be seen (informally) as a skolemization of the existential

quantifier over possible worlds, which is semantically implied by the formula

�α in the premise. The term f
α
(ω) defines a particular possible world uniquely

associated with the formula α, and inferred to be accessible from the possible

world ω (i.e., R(ω, fα(ω))). In the �I rule, the temporary assumption should be

read as “given an arbitrary accessible world gα(ω)”. The rule of �I represents

that if we have a relation R(ω1, ω2), and if α holds at ω2 then it must be the

case that α holds at ω1 The rule �E represents that if �α holds at a world ω1,

and ω1 is related to ω2, then we can infer that α holds at ω2.

Table 1. Rules for modality operators

[R(ω, gα(ω))] . . . gα(ω) : α
�I

ω : �α

ω1 : �α,R(ω1, ω2)
�E

ω2 : α

ω : �α
�E

fα(ω) : α,R(ω, fα(ω))

ω2 : α,R(ω1, ω2)
�I

ω1 : �α

In what follows, we define a model-theoretic semantics for extended modal

programs. When computing the semantics of the program, we have to consider

both the fixpoint of a particular world, and the fixpoint of the program as a

whole. When computing the fixpoint in each world, we have to consider the

consequences derived locally and the consequences derived from the interaction

between worlds. Locally, fixpoints are computed as in the stable model seman-

tics of logic programming, by simply renaming each modal literal MLi by a

new literal Lj not in the language L, and applying the Gelfond-Lifschitz Trans-

formation [8] to it. When considering interacting worlds, there are two cases

to be addressed, according to the �I and �I rules in Table 1, together with

the acessibility relation R, which might render additional consequences in each

world.

Definition 5. (Modal Immediate Consequence Operator) Let P = {P1, ...,Pk}

be an extended modal program, where each Pi is the set of modal clauses that

hold in a world ωi (1 ≤ i ≤ k). Let BP be the Herbrand base of P and I be a

Herbrand interpretation for Pi. The mapping MTPi
: 2

BP → 2
BP in ωi is defined

as follows: MTPi
(I) = {MA ∈ BP | either (i) or (ii) or (iii) below holds}. (i)

ML1, ...,MLn → MA is a clause in Pi and {ML1, ...,MLn} ⊆ I; (ii) M = �

and there exists a world ωj such that R(ωi, ωj), ML1, ...,MLm → A is a clause

in Pj and {ML1, ...,MLm} ⊆ J, where J is a Herbrand interpretation for Pj ;

(iii) M = � and for each world ωj such that R(ωi, ωj), ML1, ...,MLo → A is

a clause in Pj and {ML1, ...,MLo} ⊆ K, where K is a Herbrand interpretation

for Pj.

Definition 6. (Global Modal Immediate Consequence Operator) Let P = {P1,

...,Pk} be an extended modal program. Let BP be the Herbrand base of P and Ii be

a Herbrand interpretation for Pi (1 ≤ i ≤ k). The mapping MTP : 2
BP → 2

BP

is defined as follows: MTP (I1, ..., Ik) =
⋃
k

j=1
{MTPj

}.

In the case of definite extended modal programs, by renaming each modal
atom MAi by a new atom Aj, we can apply the following result of Ramanujam
[34], regarding the fixpoint semantics of distributed definite logic programs.

Theorem 1. (Minimal Model of Distributed Programs [34]) For each distrib-

uted definite logic program P, the function MTP has a unique fixpoint. The se-

quence of all MTm
P
(I1, ..., Ik),m ∈ N, converges to this fixpoint MT�

P
(I1, ..., Ik),

for each Ii ⊆ 2BP .

In order to provide a fixpoint semantics for extended modal programs, we

have to extend the definition of acceptable programs [2, 3].

Definition 7. (Level Mapping) Let P be a general logic program. A level map-

ping for P is a function | | : BP → N from ground atoms to natural numbers.

For A ∈ BP , |A| is called the level of A and |∼ A| = |A|.

Definition 8. (Acceptable Programs) Let P be a program, | | a level mapping

for P, and I a model of P. P is called acceptable w. r. t | | and I if for every

clause L1, ..., Lk → A in P the following implication holds. If I �
∧
i−1

j=1
Lj then

|A| > |Lj| for 1 ≤ i ≤ k.

Theorem 2. (Minimal Model of Acceptable Programs [17]) For each accept-

able program P, the function TP has a unique fixpoint1. The sequence of all

T
m

P
(I),m ∈ N, converges to this fixpoint T�

P
(I) (which is identical to the stable

model of P [21])2, for each I ⊆ BP .

Definition 9. (Acceptable Extended Modal Programs) An extended modal pro-

gram P is acceptable iff the program P ′, obtained by renaming each modal literal

MLi in P by a new literal Lj not in the language L is acceptable.

Following [6], one can construct the semantics of extended modal programs by

considering extended modal ground formulas in order to compute the fixpoint. As

a result, one can associate with every extended modal program a modal ground

program (the modal closure of the program) so that both programs have the

same models. Hence, the classical results about the fixpoint semantics of logic

programming can be applied directly to the modal ground closure of a program.

Thus, Theorem 3, below, follows directly from Theorems 2 and 1.

Theorem 3. (Minimal Model of Acceptable Extended Modal Programs) For

each acceptable extended modal program P, the function MTP has a unique fix-

point. The sequence of all MTm
P

(I1, ..., Ik),m ∈ N, converges to this fixpoint

MT�
P

(I1, ..., Ik), for each Ii ⊆ 2BP .

Finally, note that in the above semantics, the choice of an arbitrary world

for � elimination (made before the computation of MTP) may lead to different

fixpoints of a given extended modal program. Such a choice is similar to the

approach adopted by Gabbay in [19], in which one chooses a point in the future

for execution and then backtracks if judged necessary (and at all possible).

1
The mapping TP is defined as follows: Let I be a Herbrand interpretation, then

TP(I) = {A0 | L1, ..., Ln → A0 is a clause in P and {L1, ..., Ln} ⊆ I}.
2
A Herbrand interpretation I of a general logic program P is called stable iff TPI

(I) =
I, where PI is the definite program obtained from applying the Gelfond-Lifschitz

Transformation over P.

2.2 Artificial Neural Networks

An artificial neural network is a directed graph. A unit in this graph is charac-

terised, at time t, by its input vector Ii(t), its input potential Ui(t), its activation
state Ai(t), and its output Oi(t). The units (neurons) of the network are inter-

connected via a set of directed and weighted connections. If there is a connection

from unit i to unit j, then Wji ∈ � denotes the weight associated with such a

connection.

We start by characterising the neuron’s functionality (see Figure 1). The ac-

tivation state of a neuron i at time t (Ai(t)) is a bounded real or integer number.
The output of neuron i at time t (Oi(t)) is given by the output rule fi, such that

Oi(t) = fi(Ai(t)). The input potential of neuron i at time t (Ui(t)) is obtained
by applying the propagation rule of neuron i (gi) such that Ui(t) = gi(Ii(t),Wi),
where Ii(t) contains the input signals (x1(t), x2(t), ..., xn(t)) to neuron i at time

t, and Wi denotes the weight vector (Wi1,Wi2, ...,Win) to neuron i. In addition,
θi (an extra weight with input always fixed at 1) is known as the threshold of

neuron i. Finally, the neuron’s new activation state Ai(t + ∆t) is given by its

activation rule hi, which is a function of the neuron’s current activation state

and input potential, i.e. Ai(t + ∆t) = hi(Ai(t), Ui(t)), and the neuron’s new

output value Oi(t +∆t) = fi(Ai(t+∆t)).

W1

W2

W

Ui(t)Ai(t+∆t) Oi(t+∆t)

Ai(t)x1(t)

x2(t)

xn(t) -qi

1

Fig. 1. The Processing Unit or Neuron.

In general, hi does not depend on the previous activation state of the unit,

that is, Ai(t + ∆t) = hi(Ui(t)), the propagation rule gi is a weighted sum,

such that Ui(t) =
∑

j
Wijxj(t), and the output rule fi is given by the identity

function, i.e. Oi(t) = Ai(t).
The units of a neural network can be organised in layers. A n-layer feed-

forward network N is an acyclic graph. N consists of a sequence of layers and

connections between successive layers, containing one input layer, n − 2 hidden

layers and one output layer, where n ≥ 2. When n = 3, we say that N is a single

hidden layer network. When each unit occurring in the i-th layer is connected
to each unit occurring in the i + 1-st layer, we say that N is a fully-connected

network (see Figure 2).

Input Vector

Output Vector

Fig. 2. A typical feedforward Neural Network.

The most interesting properties of a neural network do not arise from the

functionality of each neuron, but from the collective effect resulting from the
interconnection of units. Let r and s be the number of units occurring in the input

and output layer, respectively. A multilayer feedforward network N computes a

function f : �r → �s as follows. The input vector is presented to the input

layer at time t1 and propagated through the hidden layers to the output layer.

At each time point, all units update their input potential and activation state
synchronously. At time tn the output vector is read off the output layer. In

addition, most neural models have a learning rule, responsible for changing the

weights of the network so that it learns to approximate f given a number of

training examples (input vectors and their respective target output vectors).

In this paper, we concentrate on single hidden layer feedforward networks,

since they can approximate any (Borel) measurable function arbitrarily well,
regardless of the dimension of the input space [12]. In this sense, single hidden

layer networks are approximators of virtually any function of interest. We also

use bipolar semi-linear activation functions h(x) = 2

1+e−βx
− 1 with inputs in

{−1, 1}, and the Backpropagation learning algorithm to perform training from

examples (see [35]).

3 Connectionist Modal Logic

In this section, we extend the C-IL
2
P system to represent modal theories by

using ensembles of C-IL2
P networks. In [24], it is shown that the semantics of

any first order acyclic logic program [28] can be approximated by a single hidden

layer recurrent neural network (although no translation algorithm is presented).

Since this is precisely the kind of network used by C-IL
2
P, ensembles of C-IL

2
P

networks can enhance the expressive power of the system, yet maintaining the

simplicity needed for performing inductive learning efficiently. In this section, we

also present an efficient translation algorithm from extended modal programs to

artificial neural networks.

We start with a simple example. It briefly illustrates how an ensemble of

C-IL
2
P networks can be used for modelling non-classical reasoning with modal

logic. Input and output neurons may represent literals �L, �L and L.

Example 1. Figure 3 shows an ensemble of three C-IL
2
P networks (ω1, ω2, ω3),

which might “communicate” in many different ways. If we look at ω1, ω2 and ω3

as possible worlds, we might be able to incorporate modalities in the language of

C-IL
2
P. For example, (i) “If ω1 : �A then ω2 : A” could be communicated from

ω1 to ω2 by connecting �A in the output layer of ω1 to A in the output layer of

ω2 such that, whenever �A is activated in ω1, A is activated in ω2. In addition,

analogously to the feedback of C-IL2
P networks, we could have feedback between

ensembles of C-IL2
P networks. For example, (ii) “If (ω2 : A) ∨ (ω3 : A) Then

ω1 : �A” could be implemented by connecting output neurons A of ω2 and ω3

into output neuron �A of ω1, through two hidden neurons (say, h1 and h2) in

ω1 such that ω1 : h1 ∨ h2 → �A. Examples (i) and (ii) simulate, in a finite

universe, the rules of � Elimination and � Introduction (see Table 1).

C

C

B

B

A

A

C

C

B

B

A

A

C

C

B

B

A

A

w1

w3

w2

Fig. 3. An ensemble of C-IL
2
P networks for modeling uncertainty by using modalities

and possible worlds.

Due to the simplicity of each C-IL
2
P network, e.g. ω1, performing inductive

learning within each possible world is straightforward. The main problem to be

tackled when it comes to learning in the new neural model, therefore, is how

to learn or set up the connections that establish the necessary communication

between networks, e.g., ω1 and ω2. In the case of modal logic, such connections

are defined analogously to the modal rules of natural deduction (Table 1). The

Modalities Algorithm presented in Section 3.2 implements those rules, but first

we recall how the C-IL2
P sytem works.

3.1 The C-IL
2
P System

C-IL
2
P [14, 15] is a massively parallel computational model based on a feedfor-

ward artificial neural network that integrates inductive learning from examples

and background knowledge with deductive learning from logic programming.

Following [23] (see also [24]), a Translation Algorithm maps a general logic pro-

gram P into a single hidden layer neural network N such that N computes the

least fixpoint of P . This provides a massively parallel model for computing the

stable model semantics of P [28]. In addition, N can be trained with examples

using Backpropagation [35], having P as background knowledge. The knowledge

acquired by training can then be extracted [13], closing the learning cycle (as in

[39]).

Let us exemplify how C-IL
2
P’s Translation Algorithm works. Each rule (rl)

of P is mapped from the input layer to the output layer of N through one neuron

(Nl) in the single hidden layer of N . Intuitively, the Translation Algorithm from

P to N has to implement the following conditions: (C1) The input potential of

a hidden neuron (Nl) can only exceed Nl’s threshold (θl), activating Nl, when

all the positive antecedents of rl are assigned the truth-value true while all the

negative antecedents of rl are assigned false; and (C2) The input potential of

an output neuron (A) can only exceed A’s threshold (θA), activating A, when

at least one hidden neuron Nl that is connected to A is activated.

Example 2. Consider the logic program P = {BC ∼ D → A;EF → A;→ B}.

The Translation Algorithm derives the network N of Figure 4, setting weights

(W ′
s) and thresholds (θ

′
s) in such a way that conditions (C1) and (C2) above

are satisfied. Note that, if N ought to be fully-connected, any other link (not

shown in Figure 4) should receive weight zero initially.

A B
θA θB

W WW

θ1 N1 θ2 N2 θ3 N3

B FEDC

WWW -WW

Interpretations

Fig. 4. Sketch of a neural network for the above logic program P.

Note that, in Example 2, each input and output neuron of N is associated

with an atom of P . As a result, each input and output vector of N can be

associated with an interpretation for P. Note also that each hidden neuron Nl

corresponds to a rule rl of P. In order to compute the stable models of P , output

neuron B should feed input neuron B such that N is used to iterate TP , the

fixpoint operator of P. N will eventually converge to a stable state which is

identical to the answer set of P [15].

Notation : Given a general logic program P , let q denote the number of rules

rl (1 ≤ l ≤ q) occurring in P ; η, the number of literals occurring in P ; Amin,

the minimum activation for a neuron to be considered “active” (or true),

Amin ∈ (0,1); Amax, the maximum activation for a neuron to be considered

“not active” (or false), Amax ∈ (−1,0); h(x) = 2

1+e−βx
−1, the bipolar semi-

linear activation function3 ; g(x) = x, the standard linear activation function;

s(x) = y, the standard nonlinear activation function (y = 1 if x > 0; and y =

0 otherwise), also known as the step function; W (resp. -W), the weight of

connections associated with positive (resp. negative) literals; θl, the threshold

of hidden neuron Nl associated with rule rl; θA, the threshold of output

neuron A, where A is the head of rule rl; kl, the number of literals in the

body of rule rl; pl, the number of positive literals in the body of rule rl; nl, the

number of negative literals in the body of rule rl; µl, the number of rules in P

with the same atom in the head, for each rule rl; MAXrl
(kl, µl), the greater

element among kl and µl for rule rl; and MAXP (k1, ..., kq , µ1, ..., µq), the

greatest element among all k’s and µ’s of P. We also use
−→
k as a shorthand

for (k1, ..., kq), and
−→
µ as a shorthand for (µ

1
, ..., µq).

For instance, for the program P of Example 2, q = 3, η = 6, k1 = 3, k2 = 2,

k3 = 0, p1 = 2, p2 = 2, p3 = 0, n1 = 1, n2 = 0, n3 = 0, µ
1
= 2, µ

2
= 2,

µ
3
= 1, MAXr1(k1, µ1) = 3, MAXr2(k2, µ2) = 2, MAXr3(k3, µ3) = 1, and

MAXP (k1, k2, k3, µ1, µ2, µ3) = 3.

In the Translation Algorithm below, we define Amin, W, θl, and θA such that

conditions (C1) and (C2) above are satisfied. Given a general logic program P,

consider that the literals of P are numbered from 1 to η such that the input and

output layers of N are vectors of length η, where the i-th neuron represents the

i-th literal of P . We assume, for mathematical convenience and without loss of

generality, that Amax = −Amin. We start by calculating MAXP (
−→
k ,
−→
µ) of P

and Amin such that:

Amin >
MAXP (

−→
k,
−→
µ)− 1

MAXP (
−→
k,
−→
µ) + 1

— Translation Algorithm:

1. Calculate the value of W such that the following is satisfied:

W ≥
2

β
·

ln (1 +Amin)− ln (1−Amin)

MAXP (
−→
k,
−→
µ) (Amin − 1) +Amin + 1

;

3
We use the bipolar semi-linear activation function for convenience. Any monotoni-

cally crescent activation function could have been used here.

2. For each rule rl of P of the form L1, ..., Lk → A (k ≥ 0):

(a) Add a neuron Nl to the hidden layer of N ;

(b) Connect each neuron Li (1 ≤ i ≤ k) in the input layer to the neuron

Nl in the hidden layer. If Li is a positive literal then set the connection

weight to W ; otherwise, set the connection weight to −W ;

(c) Connect the neuron Nl in the hidden layer to the neuron A in the output

layer and set the connection weight to W ;

(d) Define the threshold (θl) of the neuron Nl in the hidden layer as:

θl =
(1 +Amin) (kl − 1)

2
W

(e) Define the threshold (θA) of the neuron A in the output layer as:

θA =
(1+Amin) (1− µl)

2
W

3. Set g(x) as the activation function of the neurons in the input layer of N .

In this way, the activation of the neurons in the input layer of N , given by

each input vector i, will represent an interpretation for P .

4. Set h(x) as the activation function of the neurons in the hidden and output

layers of N . In this way, a gradient descent learning algorithm, such as

backpropagation, can be applied on N efficiently.

5. If N ought to be fully-connected, set all other connections to zero.

Theorem 4. [14, 15] For each propositional general logic program P, there ex-

ists a feedforward artificial neural network N with exactly one hidden layer and

semi-linear neurons such that N computes the fixpoint operator TP of P.

3.2 The Modal C-IL
2
P System

In this section, we extend the C-IL2P system to deal with modalities. We use

the Translation Algorithm presented in Section 3.1 for creating each network

of the ensemble, and the following Modalities Algorithm for interconnecting the

different networks. The Modalities Algorithm translates natural deduction rules

into the networks. Intuitively, the accessibility relation is represented in the

metalevel by connections between (sub)networks, as depicted in Figure 5, where

R(ω1,ω2) and R(ω1,ω3). Connections from ω1 to ω2 and ω3 represent either �E

or �E (Table 1). Connections from ω2 and ω3 to ω1 represent either �I or �I.

Let P be an extended modal program with clauses of the form ωi :ML1, ...,

MLk →MA, where each Lj is a literal,A is an atom andM ∈ {�,�}, 1 ≤ i ≤ n,

0 ≤ j ≤ k. As in the case of individual C-IL
2
P networks, we start by calculating

MAXP (
−→
k ,
−→
µ ,n) of P and Amin such that:

Amin >
MAXP (

−→
k,
−→
µ ,n) − 1

MAXP (
−→
k,
−→
µ ,n) + 1

which, now, also considers the number n of networks (possible worlds) in the

ensemble.

C

C

B

B

A

A

C

C

B

B

A

A

C

C

B

B

A

A

w1

w3

w2

Ñ E

Ñ I

ù E

ù I

Fig. 5. An ensemble of networks that represents modalities.

— Modalities Algorithm

1. Let Pi ⊆ P be the set of clauses labelled by ωi in P. Let Ni be the neural

network that denotes Pi. Let W
M ∈ � be such that W

M
> h

−1(Amin) +
µ
l
W + θA, where µl, W and θA are obtained from C-IL

2
P’s Translation

Algorithm
4 .

2. For each Pi do:

(a) Rename each MLj in Pi by a new literal not occuring in P of the form

L
�

j
if M = �, or L�

j
if M = �;5

(b) Call C-IL2
P’s Translation Algorithm;

3. For each output neuron L
�

j
in Ni, do:

(a) Add a hidden neuron L
M

j
to an arbitrary Nk (0 ≤ k ≤ n) such that

R(ωi, ωk);

(b) Set the step function s(x) as the activation function of LM
j
;

(c) Connect L�
j
in Ni to L

M

j
and set the connection weight to 1;

(d) Set the threshold θ
M

of LM
j

such that −1 < θ
M

< Amin;

(e) Connect L
M

j
to Lj in Nk and set the connection weight to W

M
.

4. For each output neuron L
�

j
in Ni, do:

(a) Add a hidden neuron L
M

j
to each Nk (0 ≤ k ≤ n) such that R(ωi, ωk);

(b) Set the step function s(x) as the activation function of LM
j
;

(c) Connect L�
j
in Ni to L

M

j
and set the connection weight to 1;

(d) Set the threshold θ
M

of LM
j

such that −1 < θ
M

< Amin;

(e) Connect LM
j

to Lj in Nk and set the connection weight to WM .

4
Recall that µ

l
is the number of connections to output neuron l.

5
This allows us to treat each MLj as a literal and apply the Translation Algorithm

directly to Pi, by labelling neurons as �Lj, �Lj , or Lj.

5. For each output neuron Lj in Nk such that R(ωi, ωk) (0 ≤ i ≤m), do:

(a) Add a hidden neuron L
∨

j to Ni;

(b) Set the step function s(x) as the activation function of L
∨

j ;

(c) For each output neuron L
�

j in Ni, do:

i. Connect Lj in Nk to L∨j and set the connection weight to 1;

ii. Set the threshold θ
∨
of L

∨

j such that −nAmin < θ
∨
< Amin−(n−1);

iii. Connect L∨j to L�j in Ni and set the connection weight to WM .

6. For each output neuron Lj in Nk such that R(ωi, ωk) (0 ≤ i ≤m), do:

(a) Add a hidden neuron L
∧

j to Ni;

(b) Set the step function s(x) as the activation function of L∧j ;

(c) For each output neuron L
�

j in Ni, do:

i. Connect Lj in Nk to L∧j and set the connection weight to 1;

ii. Set the threshold θ
∧
of L

∧

j such that n− (1+Amin) < θ
∧
< nAmin;

iii. Connect L∧j to L�j in Ni and set the connection weight to WM .

Let us now illustrate the use of the Modalities Algorithm with the following

example.

Example 3. Let P = {ω1 : r→ �q, ω1 : �s→ r, ω2 : s, ω3 : q → �p, R(ω1,ω2),

R(ω1,ω3)}. We start by applying C-IL2
P’s Translation Algorithm, which creates

three neural networks to represent the worlds ω1, ω2, and ω3 (see Figure 6). Then,

we apply the Modalities Algorithm. Hidden neurons labelled by {M,∨,∧} are

created using the Modalities Algorithm. The remaining neurons are all created

using the Translation Algorithm. For the sake of clarity, unconnected input and

output neurons are not shown in Figure 6.

Taking N1 (which represents ω1), output neurons L
�

j should be connected

to output neurons Lj in an arbitrary network Ni (which represents ωi) to which

N1 is related. For example, taking Ni =N2, �s in N1 is connected to s in N2.

Then, output neurons L�j should be connected to output neurons Lj in every

network Ni to which N1 is related. For example, �q in N1 is connected to q in

both N2 and N3.

Now, taking N2, output neurons Lj need to be connected to output neurons

L
�

j and L
�

j in every world Nj related to N2. For example, s in N2 is connected

to �s in N1 via the hidden neuron denoted by ∨ in Figure 6, while q in N2 is

connected to �q in N1 via the hidden neuron denoted by ∧. Similarly, q in N3 is

connected to �q in N1 via ∧. The algorithm terminates when all output neurons

have been connected.

We are now in a position to show that the ensemble of neural networks

N obtained from the above Modalities Algorithm is equivalent to the original

extended modal program P , in the sense that N computes the modal immediate

consequence operator MTP of P (see Definition 5).

Theorem 5. For any extended modal program P there exists an ensemble of

feedforward neural networks N with a single hidden layer and semi-linear neu-

rons, such that N computes the modal fixpoint operator MTP of P.

s

q

q

©p

w2

w3

w1

Ñq

r

r

©s

q

¤

©s

⁄

M

MM

Fig. 6. The ensemble of networks {N1, N2, N3} that represents P.

Proof. We have to show that there exists W > 0 such that the network N ,

obtained by the above Modalities Algorithm, computes MTP . Throughout, we

assume that Ni and Nj are two arbitrary sub-networks of N , representing possi-

ble worlds ωi and ωj, respectively, such that R(ωi, ωj). We distinguish two cases:

(a) rules with modalities � and � in the head, and (b) rules with no modalities

in the head.

(a) Firstly, note that rules with � in the head must satisfy �E, while rules

with � in the head must satisfy �E in Table 1. Given input vectors i and j

to Ni and Nj , respectively, each neuron A in the output layer of Nj is ac-

tive (A > Amin) if and only if: (i) there exists a clause of Pj of the form

ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied by interpretation j, or (ii)

there exists a clause of Pi of the form ML1, ...,MLk → �A s.t. ML1, ...,MLk

are satisfied by interpretation i, or even (iii) there exists a clause of Pi of the

form ML1, ...,MLk → �A s.t. ML1, ...,MLk are satisfied by interpretation i,

and the Modalities Algorithm (step 3a) has selected Nj as the arbitrary network

Nk.

(←) (i) results directly from Theorem 4. (ii) and (iii) share the same proof,

as follows: from Theorem 4, we know that if ML1, ...,MLk are satisfied by in-

terpretation i then MA is active in Ni (recall, M ∈ {�,�}). Hence, we only

need to show that MA in Ni activates A in Nj . From the Modalities Algorithm,

A
M

is a non-linear hidden neuron in Nj. Thus, if MA is active (MA> Amin)

then A
M presents activation 1. As a result, the minimum activation of A is

h(WM − µAW − θA). Now, since W
M

> h
−1(Amin) + µAW + θA, we have

h(WM − µAW − θA) > Amin and, therefore, A is active (A > Amin). (→)

Directly from the Modalities Algorithm, since A
M is a non-linear neuron, it

contributes with zero to the input potential of A in Nj when MA is not active

in Ni. In this case, the behaviour of A in Nj is not affected by Ni. Now, from

Theorem 4, Nj computes the fixpoint operator TPj
of Pj. Thus, if ML1, ...,MLk

is not satisfied by j then A is not active in Nj.

(b) Rules with no modalities must satisfy �I and �I in Table 1. Given input

vectors i and j to Ni and Nj , respectively, each neuron �A in the output layer

of Ni is active (�A > Amin) if and only if: (i) there exists a clause of Pi of

the form ML1, ...,MLk → �A s.t. ML1, ...,MLk are satisfied by interpretation

i, or (ii) for all Nj , there exists a clause of Pj of the form ML1, ...,MLk →

A s.t. ML1, ...,MLk are satisfied by interpretation j. Each neuron �A in the

output layer of Ni is active (�A > Amin) if and only if: (iii) there exists a

clause of Pi of the form ML1, ...,MLk → �A s.t. ML1, ...,MLk are satisfied by

interpretation i, or (iv) there exists a clause of Pj of the form ML1, ...,MLk →

A s.t. ML1, ...,MLk are satisfied by interpretation j.

(←) (i) and (iii) result directly from Theorem 4. (ii) and (iv) are proved in

what follows: from Theorem 4, we know that if ML1, ...,MLk are satisfied by

interpretation j then A is active in Nj. (ii) We need to show that if A is active

in every network Nj (0 ≤ j ≤ n) to which Ni relates to, �A is active in Ni.

From the Modalities Algorithm, A∧ is a non-linear hidden neuron in Ni. If A

is active (A > Amin) in Nj, the minimum input potential of A∧ is nAmin − θ
∧

.

Now, since θ
∧

< nAmin (Modalities Algorithm, step 6(c)ii), the minimum input

potential of A∧ is greater than zero and, therefore, A∧ presents activation 1. (iv)
We need to show that if A is active in at least one network Nj (0 ≤ j ≤ n) to
which Ni relates to, �A is active in Ni. From the Modalities Algorithm, A∨

is a non-linear hidden neuron in Ni. If A is active (A > Amin) in Nj, the

minimum input potential of A∨ is Amin − θ
∨

. Now, since θ
∨

< Amin − (n − 1)
(Modalities Algorithm, step 5(c)ii), and n � 1, the minimum input potential of

A
∨ is greater than zero and, therefore, A∨ presents activation 1. Finally, if A∧

presents activation 1, the minimum activation of �A is h(WM −µ
�A

W −θ�A),
and, exactly as in item (a) above, �A is active in Ni. Similarly, if A

∨ presents

activation 1, the minimum activation of �A is h(WM
− µ

�AW − θ�A), and,
exactly as in item (a) above, �A is active in Ni.

(→) Again, (i) and (iii) result directly from Theorem 4. (ii) and (iv) are

proved below: (ii) We need to show that if �A is not active in Ni then at least

one A is not active in Nj to which Ni relates to (0 ≤ j ≤ n). If �A is not active,

A
∧ presents activation 0. In the worst case, A is active in n − 1 networks with

maximum activation (1.0), and not active in a single network with minimum

activation (−Amin). In this case, the input potential of A∧ is n − 1 − Amin −

θ
∧
. Now, since θ

∧
> n − (1 + Amin) (Modalities Algorithm, step 6(c)ii), the

maximum input potential of A∧ is smaller than zero and, therefore, A∧ presents

activation 0. (iv) We need to show that if �A is not active in Ni then A is

not active in any network Nj to which Ni relates to (0 ≤ j ≤ n). If �A is not

active, A∨ presents activation 0. In the worst case, A presents activation −Amin

in all Nj networks. In this case, the input potential of A∨ is −nAmin−θ
∨
. Now,

since θ
∨
> −nAmin (Modalities Algorithm, step 5(c)ii), the maximum input

potential of A∨ is smaller than zero and, therefore, A∨ presents activation 0.
Finally, from Theorem 4, if A∧ and A

∨ present activation 0, Ni computes the
fixpoint operator MTPi

of Pi. This completes the proof. �

Now, if each network Ni in the ensemble is transformed into a partially recur-

rent network N r
i
by linking the neurons in the output layer to the corresponding

neurons in the input layer, the ensemble can be used to compute the extended

modal program in parallel. For example, in Figure 6, if we connect output neu-

rons �s and r to input neurons �s and r, respectively, in N1, and output neuron
q to input neuron q in N3, the ensemble computes {�s, r,�q} in ω1, {s, q} in

ω2, and {q,�s} in ω3. As expected, these are some of the logical consequences of

the original program P given in Example 3. Although the computation is done

in parallel in N , following it by starting from facts (such as s in ω2) would help

in verifying this.

Corollary 1. Let P be an acceptable extended modal program. There exists an

ensemble of recurrent neural networks N r with semi-linear neurons such that,

starting from an arbitrary initial input, N r converges to a stable state and yields

the unique fixpoint (MT	
P
(I)) of MTP .

Proof. Assume that P is an acceptable program. By Theorem 5, N r computes

MTP . Recurrently connected, N r computes the upwards powers (Tm
P
(I)) of TP .

Finally, by Theorem 3, N r computes the unique fixpoint (MT	
P
(I)) of MTP . �

Hence, in order to use N as a massively parallel model for modal logic, we
simply have to recurrently connect N with fixed-weight links W

r
= 1.

4 Conclusions and Future Work

In this paper, we have presented a new massively parallel model for modal logic,

thus contributing towards the representation of quantification in neural net-

works. We have defined an extension of the languageModal Prolog [32, 37], which

allows modal operators in the head of clauses. We then presented an algorithm to

translate the modal theory into an ensemble of C-IL2
P neural networks [14, 15],

and showed that the ensemble computes a fixpoint semantics of the theory. As

a result, the ensemble can be seen as a new massively parallel model for modal

logic. In addition, since each C-IL2
P network can be trained efficiently using the

Backpropagation learning algorithm [35], one can adapt the C-IL
2
P ensemble

by training possible world representations from examples in each network.

Our next step is to perform experiments on learning possible world represen-

tations in the C-IL2
P ensemble. This would lead us to another interesting avenue

of research, namely, rule extraction from neural networks ensembles, which would

need to consider extraction methods for more expressive knowledge representa-

tion formalisms [13]. In addition, extensions of the basic modal C-IL2
P ensemble

presented in this paper include the study of how to represent properties of other

modal logics, e.g., S4 and S5, and of inference and learning of fragments of first

order logic. Finally, the addition of modalities to the C-IL2
P system leads us to-

wards richer distributed knowledge representation and learning mechanisms [16],

with a broader range of potential applications, including practical reasoning and

learning in a multiagent environment.

References

1. G. Antoniou. Nonmonotonic Reasoning. MIT Press, Cambridge, MA, 1997.

2. K. R. Apt and N. Bol. Logic programming and negation: a survey. Journal of

Logic Programming, 19-20:9—71, 1994.

3. K. R. Apt and D. Pedreschi. Reasoning about termination of pure prolog programs.

Information and Computation, 106:109—157, 1993.

4. R. Basilio, G. Zaverucha, and V. Barbosa. Learning logic programs with neural

networks. In Inductive Logic Programming. Springer LNAI 2157, 2001.

5. R. Basilio, G. Zaverucha, and A. S. d’Avila Garcez. Inducing relational concepts

with neural networks via the LINUS system. In Proceedings of the Fifth Interna-

tional Conference on Neural Information Processing ICONIP98, pages 1507—1510,

1998.

6. M. Baudinet. Temporal logic programming is complete and expressive. In Proceed-

ings of ACM Symposium on Principles of Programming Languages, pages 267—280,

Austin, Texas, 1989.

7. M. Botta, A. Giordana, and R. Piola. FONN: Combining first order logic with

connectionist learning. In Proceedings of International Conference on Machine

Learning ICML97, pages 46—56. Morgan-Kaufmann, 1997.

8. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Arti-

ficial Intelligence, 109:297—356, 1999.

9. A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon Press, Oxford, 1997.

10. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293—322, Plenum Press, New York, 1978.

11. I. Cloete and J. M. Zurada, editors. Knowledge-Based Neurocomputing. The MIT

Press, 2000.

12. G. Cybenco. Approximation by superposition of sigmoidal functions. In Mathe-

matics of Control, Signals and Systems 2, pages 303—314. 1989.

13. A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge extraction

from trained neural networks: A sound approach. Artificial Intelligence, 125:155—

207, 2001.

14. A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learning Sys-

tems: Foundations and Applications. Perspectives in Neural Computing. Springer-

Verlag, 2002.

15. A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and

logic programming system. Applied Intelligence Journal, Special Issue on Neural

Networks and Structured Knowledge, 11(1):59—77, 1999.

16. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT

Press, 1995.

17. M. Fitting. Metric methods: Three examples and a theorem. Journal of Logic

Programming, 21:113—127, 1994.

18. Melvin Fitting. Proof methods for modal and intuitionistic logics. Reidel, Dor-

drecht, 1983.

19. D. M. Gabbay. The declarative past and imperative future. In H. Barringer, editor,

Proceedings of the Colloquium on Temporal Logic and Specifications, LNCS 398.

Springer-Verlag, 1989.

20. D. M. Gabbay. Labelled Deductive Systems, volume 1. Clarendom Press, Oxford,

1996. Oxford Logic Guides, Vol. 33.

21. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In Proceedings of the fifty Logic Programming Symposium. MIT Press, 1988.

22. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

23. S. Holldobler and Y. Kalinke. Toward a new massively parallel computational

model for logic programming. In Proceedings of the Workshop on Combining Sym-

bolic and Connectionist Processing, ECAI 94, 1994.

24. S. Holldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic

programs by recurrent neural networks. Applied Intelligence Journal, Special Issue

on Neural Networks and Structured Knowledge, 11(1):45—58, 1999.

25. G. E. Hughes and M. J. Cresswell. A new introduction to modal logic. Routledge,

London and New York, 1996.

26. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-

cations. Ellis Horwood Series in Artificial Intelligence, 1994.

27. C. Lewis. A Survey of Symbolic Logic. University of California Press, Berkeley,

1918.

28. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

29. R. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence,

25(1):75—94, 1985.

30. S. Muggleton. Inverse entailment and progol. New Generation Computing, 13:245—

286, 1995.

31. S. Muggleton and C. Feng. Efficient induction of logic programs. In Inductive

Logic Programming, pages 453—472. Academic press, 1992.

32. Mehmet A. Orgun and Wanli Ma. An overview of temporal and modal logic

programming. In Proceedings of International Conference on Temporal Logic,

ICTL’94, LNAI 827, pages 445—479. Springer.

33. J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239—266, 1990.

34. R. Ramanujam. Semantics of distributed definite clause programs. Theoretical

Computer Science, 68:203—220, 1989.

35. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

volume 1. MIT Press, 1986.

36. Alessandra M. Russo. Generalising propositional modal logic using labelled de-

ductive systems. In F. Baader and K. U. Schulz, editors, Frontiers of Combining

Systems, Applied Logic Series (APLS),, volume 3, pages 57—74. Kluwer, 1996.

37. Yasubumi Sakakibara. Programming in modal logic: An extension of PROLOG

based on modal logic. In Logic Programming 86, pages 81—91. Springer LNCS 264,

1986.

38. A. H. Tan. Cascade artmap: Integrating neural computation and symbolic knowl-

edge processing. IEEE Transactions on Neural Networks, 8(2):237—250, 1997.

39. G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Ar-

tificial Intelligence, 70(1):119—165, 1994.

