
Compiled Only Knowing

Bjorn Bjurling, Krysia Broda

Department of Computing

Imperial College of Science Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

email: {bgb,kb}@doc.ic.ac.uk

Departmental Technical Report 2002/9

Abstract

We report on a sound and complete proof system, COOL, for the propo-
sitional fragment of Hector Levesque’s nonmonotonic logic ‘The Logic of
Only Knowing’ [Lev90]. The proof system is devised using the framework of
compiled labelled deductive systems [BrGaRu00], which enables a transla-
tion of COOL-theories into theories of first order logic. With this first order
translation, we are able to perform OL-derivations in standard first order
theorem provers.

The main events in the report are the soundness and completeness the-
orems for COOL.

Contents

1 The Logic of Only Knowing 2
1.1 The language of OL . 2
1.2 Semantics . 2
1.3 OL Axiomatic Proof System 4

2 COOL 5
2.1 Preliminary Definitions . 5

2.1.1 The consequence relation `COOL 7
2.1.2 Completing the definition of COOL 11

2.2 Cool-Semantic . 12

3 Properties of configurations 12

4 Soundness and Completeness 13
4.1 Soundness . 13
4.2 Completeness . 17

5 Future Work 20

A A Sample Proof in COOL 21

B A Sample Script from Otter 21

1

1 The Logic of Only Knowing

In 1990 Hector Levesque [Lev90] presented an approach to Autoepistemic
logic called ‘the logic of only knowing’, OL. OL is a first order language but
in this paper we only consider the propositional fragment of OL. We call
that fragment OL as well.

1.1 The language of OL

The alphabet consists of a countable set of propositional letters (which we
call p or q possibly with subscripts); two propositional connectives (¬ and
∧); and three unary modal operators, O, B, and N. The OL-atoms are the
propositional letters and the OL-formulas are built in the normal way and
we use standard abbreviations as we like.

A formula without any modal operators is called objective. A formula
that has all of its objective subformulas within the scope of a modal operator
is called subjective. A subjective formula without the operators O and N is
called basic. A formula that is neither subjective, basic nor objective hasn’t
got any special name but is still potentially quite interesting.

The operators B and N stand for belief in two different ways. The formula
Bα says that ‘at least α is believed’ in the sense that α is true in all the
worlds that are accessible, and possibly some inaccessible worlds as well.
The formula Nα says that ‘α is at most believed’ in the sense that α is
true in all inaccessible worlds and possibly in some accessible as well. The
formula Oα says that α is true in exactly the accessible worlds.

The operators B and N work as weak S5 (K45) operators, hence belief
is closed under logical consequence, and anything believed is believed to
be believed, and anything not believed is believed not to be believed. The
operator O is not normal in the sense of ordinary monotonic modal logic as
defined in [Che80].

1.2 Semantics

From now on, let LA stand for the set of atoms in the language OL.

We define an assignment to be a subset of LA. Levesque defines assign-
ments as functions from LA to {0, 1}, but that is equivalent to the charac-
teristic functions of our subsets.

The structures of OL are pairs (W,w), where w is an assignment and W
is a set of assignments. We now proceed to define the satisfaction relation.

2

Levesque defines satisfaction of formulas with respect only to maximal
structures (W,w). Both maximality and satisfiability are defined in terms
of the following weaker relation.

Definition 1.1. Let (W,w) be a pair such that w is an assignment and W
is a set of assignments. Let α and β be sentences of OL. Then the (weak
satisfaction) relation between such pairs and sentences of OL is defined
as follows.

(i) for any atomic p, (W,w) p iff p ∈ w

(ii) (W,w) ¬α iff (W,w) 6 α

(iii) (W,w) α ∧ β iff (W,w) α and (W,w) β

(iv) (W,w) Bα iff ∀x(x ∈ W → (W,x) α)

(v) (W,w) Nα iff ∀x(x 6∈ W → (W,x) α)

(vi) (W,w) Oα iff ∀x(x ∈ W ↔ (W,x) α) �

Definition 1.2. Two sets W1 and W2 of assignments are said to be equiv-
alent iff for every basic α it holds that W1 Bα iff W2 Bα.

Theorem 1.3. For any set W of assignments there exists a unique largest
superset W+ of W such that W+ is equivalent to W .

Proof. See [Lev90].

Definition 1.4. Let W be a set of assignments. The unique superset W+ of
W , such that W+ and W are equivalent is said to be maximal. A structure
(W,w) where W is maximal is also said to be maximal.

It follows from the theorem that for any set A of basic sentences, any w,
and any W , that

(W,w) A iff (W+, w) A

Hence, it follows from the theorem that it suffices to consider maximal
sets when investigating the satisfiability and validity of any OL-sentence.

Definition 1.5.

(i) a sentence α is satisfiable iff there is a maximal set W and some w
such that (W,w) α

3

(ii) a set A of sentences is satisfiable iff each element of A is satisfiable

(iii) a set A entails a sentence α (written A |= α) iff A ∪ {¬α} is not
satisfiable

(iv) α is valid iff ∅ |= α.

If α is satisfiable by a structure (W,w), we say that (W,w) is a model
for α and we write (W,w) |= α. �

In the definition, the truth of objective sentences does not depend on W ,
and the truth of subjective sentences does not depend on w. Hence, when
convenient and appropriate, we can write just w |= α or W |= α as it suits
us. (Also, we treat the structure (W,x) as an unordered pair.)

1.3 OL Axiomatic Proof System

Levesque gives an axiomatic proof system for OL. We just restate it here.
It includes:

1. all propositional tautologies are theorems of OL.

2. weak S5 axioms for the operators B and N

(i) B(α → β) → (Bα → Bβ), N(α → β) → (Nα → Nβ)

(ii) Bα → BBα, Nα → NNα

(iii) ¬Bα → B¬Bα, ¬Nα → N¬Nα

3. cross axioms

(i) let σ be a subjective sentence, then σ → Bσ, and σ → Nσ

(ii) let φ be a falsifiable objective sentence, then Nφ → ¬Bφ

4. the definition of O. Oα ↔ (Bα ∧ N¬α)

5. and has two inference rules

(i) if α is a valid objective sentence, then Bα and Nα are valid sub-
jective sentences.

(ii) if α → β and α are valid, then so is β �

The formulas in the above definition are of course only schemata. Ob-
serve that the first cross axiom subsumes the last two weak S5 axioms.

4

2 COOL

We shall employ the framework of Compiled Labelled Deductive Systems
CLDS [Ru96, BrGaRu00] and devise a sound and complete proof system
for the propositional fragment of the logic of only knowing. There are two
reasons for employing such a framework. First, any CLDS translates a
logic to first order logic and so makes is possible to use standard first order
theorem provers on the logic of only knowing. Second, CLDS provides a
general setting for analysing the logic of only knowing, in which possibly
other nonmonotonic formalisms are analysable as well. A CLDS is a labelled
deductive system with some added features, as described bellow.

A labelled deductive system [Gab96] is given by a triple ((L,LL),A, ρ),
where L and LL are any two languages (in the LDS literature, LL is called
the labelling language, often taken to be a first order language), A is a
first order theory written in the language LL (in the literature called the
labelling algebra), and ρ is a relation defined on the set of configurations.
(configurations to be defined shortly).

Basically and simplistically, to form a compiled labelled deductive system
from some LDS, we do the following:

1. choose a third language LC ;

2. define a translation from the language (L,LL) to LC ;

3. maybe add a couple of elements to the theory A.

2.1 Preliminary Definitions

In this subsection we define the compiled labelled deductive system COOL,
Compiled OL, ((L,LL),A+,R).

The language L is the propositional fragment of OL extended with the
propositional constant ⊥COOL. We will later on have a first order ⊥FOL as
well. Often, we shall omit the subscripts on ⊥ and let the context indicate
which one we are talking about.

Definition 2.1. The labelling language LL is a two-sorted (sorts S1 and
S2) first order language with the following signature.

(i) a set N of constant symbols of the first sort, denoted by natural
numbers

5

(ii) a set M of constant symbols of the second sort, denoted by m with
subscripts

(iii) two binary relation symbols R and R̄ of sort S1 × S2.

(iv) for each formula α of OL, a unary function symbol fα, and a unary
function symbol gα. Both are of sort S2×S1, that is, their arguments
are of sort S2 and their values are of sort S1. �

Variables of sort S1 will be denoted by x with subscripts, and variables
of sort S2 will be denoted by y with subscripts. The set of variables of sort
S1 is denoted by X and the set of variables of sort S2 is denoted by Y .

The system we are defining is more general than we need in this paper.
In effect, we will never use more than one constant m from M . This constant
is denoted by y throughout the paper. In this sense, all references to that
constant y may seem redundant. Indeed, y is redundant throughout, but we
keep it because we have a more general approach in the back of our minds.

Definition 2.2. The terms of the language LL are pairs of elements (η, ζ)
where η ∈ X ∪N and ζ ∈ Y ∪M . The terms are called labels. �

Definition 2.3. A declarative unit (with respect to an LDS ((L,LL),A, ρ))
is a pair (α, λ) where α is a formula in the language L and λ is a term in
the labelling language LL. We write the declarative unit (α, λ) as α :λ. �

In the construction of the labelling language and labelling theory A, we
aim to reflect the semantics of OL. In the labelling language we do it by
defining the labels as pairs, informally corresponding to the OL-structures
that are pairs (w,W) of an assignment and a set of assignments. Note that,
as with our treatment of y in COOL, the W in (w,W) is also held constant
throughout derivations in OL.

The labelling theory, A, is consequently defined to reflect an important
property of the the OL-semantics. The labelling theory informally reflects
the property that if an OL-structure (w,W) is a model for a formula α, then
for any assignment u, either u ∈ W or u is in the complement of W , which
equivalently is to say that W ∩ W̄ = ∅ and W ∪ W̄ = U , where U is the
universe of assignments. Incidently, our labelling theory is very simple:

Definition 2.4. The labelling theory A is the first order theory, written in
the language LL, defined as

A = {∀x∀y(¬Rxy ↔ R̄xy)}
.

6

Definition 2.5. An R-atom is a formula of the form Rxy or R̄xy where
x ∈ X ∪N and y ∈ Y ∪M . An R-literal is an R-atom or a negated R-atom.
An R-formula is an R-literal or an existentially or universally quantified
R-literal, ±∃x±Rxy, or ±∃x± R̄xy.

Definition 2.6. A diagram is an at most countable set of R-formulas.

Definition 2.7. A configuration is the union of an at most countable set of
declarative units and a diagram. The set of configurations is denoted by C.
The union of two configurations is the union of the two diagrams and the
two sets of declarative units. The difference of two configurations, c − c′ is
the ordinary set difference c \ c′.

Proposition 2.8. Let c and c′ be configurations. Let K be a collection of
configurations. Then c− c′ and

⋃
K are also configurations.

Proof. Easy consequence of elementary set theory.

Definition 2.9. Let c be a configuration. The set of labels of c, denoted
by t(c) is defined as

t(c) = {(η, ζ) | α : (η, ζ) ∈ c or Rηζ ∈ c or R̄ηζ ∈ c}

2.1.1 The consequence relation `COOL

The consequence relation `COOL is defined in terms of a relation R, which
will be defined next.

R, is defined as the union of four other relations. We call those four
relations (i) the Propositional relation, (ii) the OL relation, (iii) the First
order relation, and (iv) the Splitting relation. We treat those four relations
separately below, and then we define R, and eventually `COOL .

Convention and Notation When we want to talk about the items in a
configuration, we just call them formulas. When we want to explicitly say
that a configuration c contains formulas φ0, ...φn, we write c(φ0, ..., φn).

7

The Propositional Relation Let c be any configuration and c′ a config-
uration as specified. Let χ by any declarative unit or any R-formula. Then
(c, c′) ∈ RP if one of the following conditions hold

(i) c((α ∧ β) : (x, y)) and c′ = c ∪ {α : (x, y), β : (x, y)}

(ii) c(¬¬α : (x, y)) and c′ = c ∪ {α : (x, y)}

(iii) c(⊥COOL), for any c′

(iv) c(χ,¬χ) and c′ = c ∪{(⊥COOL)}. �

The OL Relation Let c be any configuration and c′ a configuration as
specified. Let n be a constant of the first sort. Then (c, c′) ∈ RO if one of
the following conditions hold

(i) c(Bα : (x, y), Rny), and c′ = c ∪ {α : (n, y)}

(ii) c(Nα : (x, y), R̄ny), and c′ = c ∪ {α : (n, y)}

(iii) c(Oα : (x, y)), and c′ = c ∪ {Bα : (x, y), N¬α : (x, y)}

(iv) c(¬Bα : (x, y)), and c′ = c ∪ {(Rfα(y)y, ¬α : (fα(y), y)}

(v) c(¬Nα : (x, y)), and c′ = c ∪ {R̄gα(y)y, ¬α : (gα(y), y)}

The First Order Relation Let c be any configuration and c′ a configu-
ration as specified. Let n be a constant of the first sort. Let φ be either ±R
or ±R̄. Then (c, c′) ∈ RF if

(i) c(¬Rny) and c′ = c ∪ {R̄ny}

(ii) c(Rny) and c′ = c ∪ {¬R̄ny}

(iii) c(¬R̄ny) and c′ = c ∪ {Rny}

(iv) c(R̄ny) and c′ = c ∪ {¬Rny}

(v) c(∃xφ(x, y)) and c′ = c ∪ {φ(n, y)} for some constant n such that
(n, y) 6∈ t(c).

(vi) c(∀xφ(x, y), α : (n, y)) and c′ = c ∪ {φ(n, y)}.

8

The Splitting Relation Let c be any configuration and c′ a configuration
as specified. Let n be a constant of the first sort. Then (c, c′) ∈ RS if one
of the following conditions hold

(i) if c(¬(α ∧ β) : (x, y)) and c′ = c ∪ {¬α : (x, y)} or c′ = c ∪ {¬β : (x, y)}

(ii) if c(¬Oα : (x, y)) and c′ = c ∪ {¬Bα : (x, y)} or c′ = c ∪ {¬N¬α : (x, y)}

(iii) if c(α : (x, y)) for some α : (x, y) and c′ = c ∪ {Rxy} or c′ = c ∪ {R̄xy}

(iv) if c′ = c ∪ {∃xRxy} or c′ = c ∪ {∀xR̄xy}

(v) if c′ = c ∪ {∃xR̄xy} or c′ = c ∪ {∀xRxy}

Definition 2.10. R is the subset of C × C such that (c, c′) ∈ R iff

(c, c′) is an element in RP ,RO,RF or RS

Definition 2.11. A finite R-path from a configuration c to a configuration
c′ is a sequence (c0, ..., cn) such that c0 = c, for all i < n Rcici+1, and
cn = c′. An infinite R-path is an infinite sequence {ci}i≥0 such that Rci−1ci

for each i > 0. We will say that c′ is reachable from c if there is a finite
R-path from c to c′.

Definition 2.12. Let p(c) be a path from a configuration c, and let ∪p(c)
be the configuration that is the union of the configurations in p(c).

(i) If p(c) contains a configuration that contains ⊥COOL, or simply if
⊥COOL ∈ ∪p(c), then p(c) is said to be closed.

(ii) If p(c) is not closed, it is said to be open.

(iii) If p(c) is open and if

∀c′(c′ ∈ C → (R(∪p(c))c′ → c′ ⊆ (∪p(c)))),

then p(c) is said to be saturated.

Saturation means informally that no R-rule that is applicable to a con-
figuration c results in a formula that is not already in c, as stated in defini-
tion 2.12.

The next definition provides our view on proof trees. A proof tree is a set
of branches. Since the relation R cumulates the configurations in a path,
the union of a finite path is the same as its last element. Also, as noted

9

earlier, the union of a path (a collection of configurations) is itself a config-
uration. We will use this dual view on branches in our proof trees: when it
is convenient we see them as sequences of configurations, and otherwise we
see them as the unions of such sequences. We define proof tree though to
be a set of configurations.

Definition 2.13. Let c be a configuration and let p(c) denote a path from
c. Then we define the set P (c) as

P (c) = {∪p(c) | p(c) is a path from c}

.

The elements of P (c) will sometimes be called branches. If all elements
of P (c) are closed, P (c) is said to be closed. Otherwise it is said to be open.

Definition 2.14. Let c be a configuration and χ a declarative unit or an
R-formula. We say that there is a COOL-proof of χ from c if and only if all
elements in P (c ∪{¬χ}) contain ⊥COOL. When there is a COOL-proof of χ
from c we write c`COOL χ.

Lemma 2.15. Let c be a configuration. There is a systematic and fair
procedure for constructing the proof tree P (c) such that every branch in P (c)
is either closed or saturated.

We omit the proof of the lemma and describe the procedure informally.
Given a configuration c, we define an order O on the elements in c. The

proof tree P (c) is systematically built in stages, by keeping track of the set
Λ of current configurations (the leaves of the tree, i.e., the branches), so that
in the i-th stage the i-th formula in the order O is processed and where each
branch of P (c) (element of Λ) is processed in each stage. The procedure
starts with processing the first formula χ0 in the order by computing its
consequences by applying the rules in R on χ0. In each subsequent stage,
stage i say, the i-th formula χi of the order is added to each branch b and
the consequences of χi and of all the formulas in b are computed. The
consequences that are not already in b are then added to the branch (with
splits where appropriate) to form the next configuration. The number of
branches is always finite and the set of formulas to process in each stage
stays finite because each formula has only finitely many consequences, so
each stage always terminates.

The procedure is fair because the set of formulas to process in each stage
is finite, so each formula in c will eventually be processed.

10

The proof of the lemma rests upon the facts that (i) each formula in
the configuration c has only finitely many consequences, (ii) any proof tree
contains finitely many branches, (iii) branches in finite configurations gets
closed or saturated in finitely many steps, (iv) we can apply rules to the
formulas in c in a specific order and the elements of the set (which is finite
as already said) of consequences to the application of the rules to any formula
in c can be inserted in the beginning of that order, and (v) we don’t insert
an inferred formula into the order if it is already there.

In the following we assume that all proof trees P (c) for some configura-
tion c are constructed according to the systematic and fair procedure.

2.1.2 Completing the definition of COOL

We have now defined the labelled deductive system. It remains to turn it
into a compiled labelled deductive system.

Definition 2.16. The extended labelling signature τ+ is obtained by adding,
for each OL-formula α, a two-place relation symbol [α]∗ of the sort S1 × S2

to the signature of A.

Definition 2.17. The extended labelling theory A+ is a τ+-theory that
includesA and an infinite number of axioms given by the following schemata.

1. ∀x∀y(¬[α]∗(x, y) ∨ ¬[¬α]∗(x, y))

2. ∀x∀y([¬¬α]∗(x, y) → [α]∗(x, y))

3. ∀x∀y([α ∧ β]∗(x, y) → [α]∗(x, y) ∧ [β]∗(x, y))

4. ∀x∀y([¬(α ∧ β)]∗(x, y) → [¬α]∗(x, y) ∨ [¬β]∗(x, y))

5. ∀x∀y([Bα]∗(x, y) → ∀z(Rzy → [α]∗(z, y)))

6. ∀x∀y([¬Bα]∗(x, y) → Rfα(y)y ∧ [¬α]∗(fα(y), y))

7. ∀x∀y([Nα]∗(x, y) → ∀z(R̄zy → [α]∗(z, y)))

8. ∀x∀y([¬Nα]∗(x, y) → R̄gα(y)y ∧ [¬α]∗(gα(y), y))

9. ∀x∀y([Oα]∗(x, y) → [Bα]∗(x, y) ∧ [N¬α]∗(x, y))

10. ∀x∀y([¬Oα]∗(x, y) → [¬Bα]∗(x, y) ∨ [¬N¬α]∗(x, y))

11

Theorem 2.18. Let α : (x, y) be a declarative unit, and A a τ+-structure
such that A |=FOLA+. Then

(i) A |=FOL∀x∀y([α]∗(x, y) → ¬[¬α]∗(x, y))

(ii) A |=FOL∀x∀y([¬α]∗(x, y) → ¬[α]∗(x, y))

Proof. Follows immediately from the first item in the definition of A+.

Definition 2.19. A first order theory T with the same signature as A+ is
said to be a first order translation of a configuration c if it is the smallest
set such that the following holds.

(i) if ⊥COOL ∈ c, then ⊥FOL ∈ T

(ii) for each declarative unit (α, λ) in c, T contains the formula [α]∗(λ)

(iii) the subset D of R-formulas of c is also a subset of T . �

The first order translation of a configuration c is denoted by F (c).

Notation When writing [π]∗ or π∗ for some π that is a declarative unit,
or an R-formula, we mean the single element x in the first order transla-
tion of the configuration consisting of only π. R-formulas are translated to
themselves, so often we will omit the star in, for example, Rxy∗.

2.2 Cool-Semantic

Definition 2.20. A configuration c is said to entail a declarative unit (α, λ)
iff F (c) ∪ A+ |=FOL [α]∗(λ). We write c |=COOL α :λ if c entails (α, λ). �

Definition 2.21. A configuration c is said to entail an R-formula ρ iff
F (c) ∪ A+ |=FOL ρ. We write c |=COOL ρ if c entails ρ. �

Instead of writing F (c) ∪ A+ |=FOL χ∗, we write F (c) |=A+ χ∗

3 Properties of configurations

The specification of COOL is now complete. COOL is the triple

((L,LL),A+, `COOL)

as defined in the last section. In this section we make some essential defini-
tions.

12

Definition 3.1. If a first order formula φ is first order derivable from a first
order theory Γ and A+, we write

Γ`A+ φ

Definition 3.2. A configuration c is said to be inconsistent if its first order
translation is first order inconsistent, F (c) `A+ ⊥FOL. If a configuration is
not inconsistent, it is said to be consistent.

The following result isn’t needed in the rest of the paper, but it is quite
neat.

Theorem 3.3. If a configuration c is inconsistent, there is a finite subset
c′ of c that is inconsistent.

Proof. Assume that c is an inconsistent configuration, and that c is infinite.
(If c is finite, we are done.) Then F (c) is first order inconsistent by definition.
So by compactness of first order logic there is a finite subset Σ of F (c) that
is inconsistent. let ∆ = Σ \ A+. Then ∆ is finite.

Take c′ to be a configuration such that F (c′) = ∆ (This is OK since
any subset of a configuration also must be a configuration, according to the
definition of configurations). Since ∆ is finite, so is c′, by the definition of
first order translation. Now, ∆∪A+ = F (c′) is inconsistent, so by definition
of consistent configurations, c′ is inconsistent.

4 Soundness and Completeness

In the first subsection we show soundness of the relation `COOL with respect
to the COOL-semantics, and in the second subsection we show completeness.

4.1 Soundness

We need a few lemmas for the proof of soundness.

Lemma 4.1. If c 6`COOL⊥COOL, then there is an open element in P (c).

Proof. We show the contrapositive. Assume that P (c) contains only closed
branches. Then for any branch b ∈ P (c), ⊥COOL ∈ b. Then P (c∪{¬⊥COOL})
contains only closed branches. Thus, c`COOL⊥COOL by definition.

Lemma 4.2. Let c and c′ be configurations and let R− be R \RS

(i) If R−cc′ then F (c)`A+ F (c′)

13

(ii) Let π and π′ be a pair of formulas such that (c, c ∪ {π}) ∈ RS and
(c, c ∪ {π′}) ∈ RS by the same application of a RS-rule. Then at least
one of c ∪ {π} and c ∪ {π′} is consistent if c is consistent.

Proof. We start with the first part of the lemma. We show by cases (cor-
responding to the cases in the definition of R) that if R−cc′ holds, then
F (c)`A+ F (c′).

Assume in each of the following cases that R−cc′ holds.

1. Assume that c((α ∧ β) : (x, y)) and c′ = c ∪ {α : (x, y), β : (x, y)}.
Then F (c) contains [α ∧ β]∗(x, y). Then the A+(3) gives F (c) `A+

[α]∗(x, y) ∧ [β]∗(x, y). So by first order derivability, F (c) `A+ F (c) ∪
{[α]∗(x, y), [β]∗(x, y)}. But this is to say that F (c)`A+ F (c′).

2. Assume that c(¬¬α : (x, y)) and c′ = c ∪ {α : (x, y)}.
Immediate from A+(2).

3. Assume that c(⊥COOL) and that c′ is any configuration.

Since ⊥FOLthen is an element of F (c), anything can be deduced from
F (c), in particular all elements of F (c′).

4. Assume that c(χ,¬χ) for some COOL-formula χ, and that c′ = c ∪
{⊥COOL}.
Then [χ]∗(x, y), [¬χ]∗(x, y) ∈ F (c). By theorem 2.18, F (c)`A+ ¬[χ]∗(x, y).
By first order logic, F (c)`A+ [χ]∗(x, y) ∧ ¬[χ]∗(x, y), and so F (c)`A+

⊥FOL. Hence F (c)`A+ F (c′).

5. Assume that c(Bα : (x, y), Rny), and c′ = c ∪ {α : (n, y)}.
Then F (c) contains [Bα]∗(x, y) and Rny. By A+(5) and F (c) `A+

[Bα]∗(x, y), we have F (c) `A+ ∀z(Rzy → [α]∗(z, y)). Hence F (c) `A+

F (c′) follows by ∀-elimination and modus ponens.

6. Assume that c(Nα : (x, y), R̄ny), and c′ = c ∪ {α : (n, y)}.
Proved in a way similar to the previous case.

7. Assume that c(Oα : (x, y)), and c′ = c ∪ {Bα : (x, y), N¬α : (x, y)}.
Immediate from A+(9).

14

8. Assume that c(¬Bα : (x, y)), and c′ = c ∪ {Rfα(y)y, ¬α : (fα(y), y)}.
F (c) then contains [¬Bα]∗(x, y). Hence, using A+(6), we get F (c)`A+

Rfα(y)y ∧ [¬α]∗(fα(y), y). So F (c)`A+ F (c′).

9. Assume that c(¬Nα : (x, y)), and c′ = c ∪ {R̄gα(y)y, ¬α : (gα(y), y)}.
Similar proof again.

10. Assume that c(¬Rny) and c′ = c ∪ {R̄ny} for some n.

F (c) then contains ¬Rny. This gives us immediately F (c)`A+ R̄ny by
A. So F (c)`A+ F (c′).

The three cases with (i) c(¬R̄ny), c′ = c ∪{R̄ny}, (ii) c(Rny) and
c′ = c∪{¬R̄ny}, and (iii) c(R̄ny) and c′ = c∪{¬Rny} for some n are
all shown in the same way.

11. the cases for (i) c(∃xφ(x, y)) and c′ = c ∪ {φ(n, y)} for some term
(n, y), respectively (ii) c(∀xφ(x, y)) and c′ = c∪{φ(n, y)} for all terms
(n, y) in t(c), where φ is either R or R̄, follow immediately.

To prove the second part, let c, c′, and c′′ be configurations such that
that RScc′ and RScc′′. Assume that c is consistent. Recall that this means
that A+ ∪F (c) is first order consistent. We show that at least one of c′ and
c′′ is consistent.

1. Assume that c contains ¬(α ∧ β) : (x, y), and that c′ = c ∪ {¬α :
(x, y)} and c′′ = c ∪ {¬β : (x, y)}. Assume that both c′ and c′′ are
inconsistent. By first order logic, since F (c′) = F (c) ∪ {[¬α]∗(x, y)}
and F (c′′) = F (c) ∪ {[¬β]∗(x, y)}, we have F (c)`A+ ¬[¬α]∗(x, y) and
F (c)`A+ ¬[¬β]∗(x, y). So F (c)`A+ ¬[¬α]∗(x, y) ∧ ¬[¬β]∗(x, y), which
gives F (c)`A+ ¬([¬α]∗(x, y) ∨ [¬β]∗(x, y)). But F (c) contains [¬(α ∧
β)]∗(x, y), so by A+(4) F (c)`A+ [¬α]∗(x, y)∨¬[¬β]∗(x, y), which gives
a contradiction since we had assumed that c was consistent. Hence at
least one of c′ and c′′ is consistent.

2. Assume that c(¬Oα : (x, y)), c′ = c∪{¬Bα : (x, y)} and c′′ = c∪{¬N¬α :
(x, y)}. Assume that both c′ and c′′ are inconsistent. Then a sim-
ilar argument to that above gives that F (c) `A+ ¬([¬Bα]∗(x, y) ∨
[¬N¬α]∗(x, y)). By [¬Oα]∗(x, y) ∈ F (c) and A+(10) we get a con-
tradiction. Hence, at least one of c′ and c′′ is consistent.

15

3. Assume that c′ = c∪{Rny} and c′′ = c∪{R̄ny} for some (n, y) ∈ t(c).
Assume that both c′ and c′′ are inconsistent. Then by the inconsis-
tency of c′ we get F (c)`A+ ¬Rny, and by the inconsistency of c′′ we get
F (c)`A+ ¬R̄ny. From A and F (c)`A+ ¬Rny we have F (c)`A+ R̄ny,
so c is inconsistent which contradicts the assumption that c was con-
sistent.

4. Assume that c′ = c ∪ {∃xRxy} and c′′ = c ∪ {∀xR̄xy} Assume that
both c′ and c′′ are inconsistent. Then F (c)`A+ ¬∃xRxy and F (c)`A+

¬∀xR̄xy. Then F (c) `A+ ∀x¬Rxy which is equivalent to F (c) `A+

∀xR̄xy. This contradict the assumption that c was consistent. Hence
at least one of c′ and c′′ is consistent.

5. Assume that c′ = c ∪ {∃xR̄xy} and c′′ = c ∪ {∀xRxy}. Then a sim-
ilar argument to that above proves that at least one of c′ and c′′ is
consistent.

In the proof below we make extensive use of the dual view on branches
in P (c). We treat them as sequences or configurations without warning.

Lemma 4.3. Let c be a configuration. If F (c) 6`A+⊥ then there is a branch
b in P (c) such that F (b) 6`A+⊥.

Proof. We use induction on the structure of the ‘proof tree’. Assume first
that P (c) contains only one branch b = {ci}i≥0, with c = c0. Then R−ci−1ci

for all i > 0. (Otherwise P (c) would have contained at least two branches.)
Assume F (b)`A+⊥ for contradiction. Then for some ck ∈ b, F (ck)`A+⊥.

But `A+ is transitive and by lemma 4.2, F (ci−1) `A+ F (ci) for all i > 0.
Hence, F (c0) `A+ F (ck), so since F (ck) `A+ ⊥ we have F (c0) `A+ ⊥ or
equivalently F (c) `A+ ⊥. Contradiction, so F (b) 6`A+ ⊥. Then there is a
branch b in P (c) such that F (b) 6`A+⊥.

Assume now that P (c) contains k branches and that there is a branch
b ∈ P (c) such that F (b) 6`A+⊥. Assume without loss of generality that b is
the only such branch. We show that if P (c)′ containing k + 1 branches is
obtained from P (c) by applying a split rule on b, then also P (c)′ contains
at least one consistent branch. P (c)′ = (P (c) \ {b}) ∪ {b + c′, b + c′′}, where
‘+’ is a concatenation operation.

Now, by lemma 4.2, since F (b) 6`A+⊥, at least one of b + c′ and b + c′′ is
consistent, or in other words, F (b + c′) 6`A+⊥ or F (b + c′′) 6`A+⊥.

16

Theorem 4.4. Let c be a configuration. Then

c`COOL⊥ ⇒ F (c)`A+⊥

Proof. Assume F (c) 6`A+⊥. By lemma 4.3, we then have that P (c) contains
at least one branch b such that F (b) 6`A+ ⊥. In particular, this means that
⊥ 6∈ b, so there is an open branch in P (c) by definition. Again by definition,
this means that c 6`COOL⊥.

Corollary 4.5 (Soundness). Let c be a configuration.

If c`COOL⊥, then c |=COOL⊥

Proof. Assume c `COOL ⊥. By Theorem 4.4 we have F (c) `A+ ⊥, which
implies F (c) |=A+ ⊥ by first order soundness. By the definition of semantic
entailment, we then have c |=COOL⊥.

4.2 Completeness

In the following proof, we assume that P (c ∪{¬⊥}) is constructed with the
systematic and fair proof procedure from lemma 2.15.

Theorem 4.6 (Completeness). Let c be a configuration. Then

c |=COOL⊥ ⇒ c`COOL⊥

Proof. We show the contrapositive. Assume c 6`COOL ⊥. Then there is an
open branch in P (c ∪{¬⊥}). By lemma 2.15 there is then a saturated open
branch b ∈ P (c ∪{¬⊥}).

Recall the definition of |=COOL . To show that c 6|=COOL ⊥, we have to
show that A+ ∪ F (c) 6|=FOL⊥. In essence, that A+ ∪ F (c) is satisfiable.

Consider now the first order translation F (b) of b. We first show that
F (b) is a Hintikka set and thus has a model M. Then we show that M also
is a model for A+. Observe that by the definition of first order translation,
χ∗ ∈ F (b) ↔ χ ∈ b. We now consider the elements of F (b).

(i) Observe that for declarative units α : (x, y) in b, [α]∗(x, y) is always
positive in F (b), by the definition of first order translation. Hence, if
[α]∗(x, y) ∈ F (b) then ¬[α]∗(x, y) 6∈ F (b).

17

(ii) Assume that Rxy ∈ F (b). Then Rxy ∈ b. Since b is open, ¬Rxy 6∈
b, and hence ¬Rxy 6∈ F (b). Same argument for the cases where (i)
¬Rxy ∈ F (b), (ii) R̄xy ∈ F (b), and (iii) ¬R̄xy ∈ F (b).

(iii) Let φ(x) ∈ {Rxy,¬Rxy, R̄xy,¬R̄xy}. Assume ∃xφ(x) ∈ F (b).
Then ∃xφ(x) ∈ b. Then by RF -rules and saturation of b, φ(a) ∈ b for
some constant a. Hence, then φ(a) ∈ F (b) by definition of first order
translation.

(iv) Let φ(x) ∈ {Rxy,¬Rxy, R̄xy,¬R̄xy}. Assume ¬∃xφ(x) ∈ F (b).
Then ¬∃xφ(x) ∈ b, so by RF -rules and saturation of b, φ(a) ∈ b for
all constant a in t(b). But then φ(a) ∈ F (b) for all constants a in t(b).

Observe now that formulas of no other form than those listed above will
ever be elements of the first order translation of an open branch. This shows
that F (b) is indeed a Hintikka set, and thus, as we know from model theory,
has a model M. We restrict M so that for literals φ, M|=FOL φ iff φ ∈ F (b).

It now remains to show that M|=FOLA+. We need to consider all the
axiom schemata in A+ and the single axiom that is in A but not in A+.

(i) ∀x∀y(¬[α]∗(x, y) ∨ ¬[¬α]∗(x, y))

Assume thatM6|=FOL¬[α]∗(x, y). ThenM|=FOL [α]∗(x, y). So [α]∗(x, y) ∈
F (b), and thereby α : (x, y) ∈ b. Since b is open we have ¬α :
(x, y) 6∈ b, so [¬α]∗(x, y) 6∈ F (b). Then by the restriction on M,
M6|=FOL [¬α]∗(x, y), and thus M|=FOL¬[¬α]∗(x, y).
Assuming instead that M 6|=FOL ¬[¬α]∗(x, y), we arrive at M |=FOL

¬[α]∗(x, y) by a similar argument.

(ii) ∀x∀y([¬¬α]∗(x, y) → [α]∗(x, y))

Assume that M|=FOL [¬¬α]∗(x, y). Then ¬¬α : (x, y) ∈ b. Since b is
saturated, b also contains α : (x, y), so M|=FOL [α]∗(x, y).

(iii) ∀x∀y([α ∧ β]∗(x, y) → [α]∗(x, y) ∧ [β]∗(x, y))

Assume that M|=FOL [α ∧ β]∗(x, y). Then [α ∧ β]∗(x, y) ∈ F (b). Since
b is saturated, also [α]∗(x, y) and [β]∗(x, y) are in F (b). But then
M|=FOL [α]∗(x, y) and M|=FOL [β]∗(x, y).

(iv) ∀x∀y([¬(α ∧ β)]∗(x, y) → [¬α]∗(x, y) ∨ [¬β]∗(x, y))

Assume thatM|=FOL [¬(α∧β)]∗(x, y). Then [¬(α∧β)]∗(x, y) ∈ F (b) so
at least one of [¬α]∗(x, y) and [¬β]∗(x, y) is also in F (b) by saturation
and openness of b. The axiom follows.

18

(v) ∀x∀y([Bα]∗(x, y) → ∀z(Rzy → [α]∗(z, y)))

Assume M|=FOL [Bα]∗(x, y). Assume for some n that M|=FOL Rny.
Then Bα : (x, y) ∈ b and Rny ∈ b. Then by saturation also α : (n, y) ∈ b,
so [α]∗(n, y) ∈ F (b). n was chosen arbitrarily, so M|=FOL ∀z(Rzy →
[α]∗(z, y)). The axiom follows.

(vi) ∀x∀y([Nα]∗(x, y) → ∀z(R̄zy → [α]∗(z, y)))

Proved similarly to the previous case.

(vii) ∀x∀y([¬Bα]∗(x, y) → Rfα(y)y ∧ [¬α]∗(fα(y), y))

Assume M|=FOL [¬Bα]∗(x, y). Then ¬Bα : (x, y) ∈ b. So by saturation
of b, both Rfα(y)y and ¬α : (fα(y), y) ∈ b. But then both Rfα(y)y
and [¬α]∗(fα(y), y)) are in F (b), and so M|=FOL Rfα(y)y and M|=FOL

[¬α]∗(fα(y), y).

(viii) ∀x∀y([¬Nα]∗(x, y) → R̄gα(y)y ∧ [¬α]∗(gα(y), y))

Proved similarly to the previous case.

(ix) ∀x∀y([Oα]∗(x, y) → [Bα]∗(x, y) ∧ [N¬α]∗(x, y))

AssumeM|=FOL [Oα]∗(x, y). Then Oα : (x, y) ∈ b, so also Bα : (x, y) ∈ b
and N¬α : (x, y) ∈ b by saturation of b. Hence, M|=FOL [Bα]∗(x, y) and
M|=FOL [N¬α]∗(x, y).

(x) ∀x∀y([¬Oα]∗(x, y) → [¬Bα]∗(x, y) ∨ [¬N¬α]∗(x, y))

Assume that M |=FOL [¬Oα]∗(x, y). Then [¬Oα]∗(x, y) ∈ F (b). So
¬Oα : (x, y) ∈ b. Then by saturation, at least one of ¬Bα : (x, y)
and ¬N¬α : (x, y) is in b. Hence M is a model for at least one of
[¬Bα]∗(x, y) and [¬N¬α]∗(x, y).

(xi) The A-axiom: ∀x∀y(¬Rxy ↔ R̄xy)

We have that M|=FOL Rxy iff Rxy ∈ b iff ¬R̄xy ∈ b iff M|=FOL¬R̄xy.

In conclusion, M is a model both for F (b) and A+, and in particular for
F (c), since F (c) ⊆ F (b). But then M|=FOL F (c) ∪ A+, so we have indeed
F (c) ∪ A+ 6|=FOL⊥, which by definition is

c 6|=COOL⊥

19

5 Future Work

We have devised a sound an complete proof system for a logic we call COOL,
for Compiled Only Knowing, with the intension to simulate Levesque’s logic
of only knowing (OL). Therefore, the first future task is to prove that COOL
indeed corresponds to OL. We formulate the theorem here.

Theorem α is a theorem in OL if, and only if, α : (0, y) is a theorem in
COOL for some constant 0.

The second task is to implement a theorem prover for COOL. Work
on this has already begun and a few tests have been conducted in Ot-
ter [McCun94]. See appendix for an example script. Further, we have as
an objective to generalise OL to incorporate reasoning with varying sizes of
the set of worlds M in the OL-structures (x,M). The work we have done
with COOL so far might provide a platform for that task. Lastly, it would
be interesting to extend COOL to simulate the full language version of only
knowing.

References

[Lev90] Levesque, H. J., All I Know: A Study in Autoepistemic Logic. Ar-
tificial Intelligence, North Holland, 42, 1990, pp. 263-309.

[Ru96] Russo, A., Modal Logics as Labelled Deductive Systems. PhD. Thesis,
Department of Computing, Imperial College, London, 1996.

[BrGaRu00] Broda, K., Gabbay D., Russo, A. A Unified Compilation Style
Labelled Deductive System for Modal, Substructural, and Fuzzy Logics.
in Discovering the World with Fuzzy Logic: Perspectives and Approaches
to Formalization of Human-Consistent Logical Systems. Editors: Vilem
Novak, Irina Perfilieva. Springer Verlag, 2000.

[Gab96] Gabbay, D., Labelled Deductive Systems, Volume 1 - Foundations.
Oxford University Press, 1996.

[McCun94] McCune W., Otter 3.0 Reference Manual and Guide. Argonne
National Laboratory, Argonne, Illinois 60439-4801 1994.

[Che80] B.F. Chellas Modal Logic, Cambridge University Press, Cambridge,
UK, 1980

20

Appendix

A A Sample Proof in COOL

(1) O(Bp ∨ ¬p) : (0, y) (data)
(2) ¬B¬p : (0, y) (data)
(3) ¬p : (1, y) (p is not >)
(4) B(Bp ∨ ¬p) : (0, y) (defn. of O)
(5) N(¬Bp ∧ p) : (0, y) (similarly)
(6) {p : (f¬p, y), R(f¬p, y)} (2)
(7) (Bp ∨ ¬p) : (f¬p, y) (4)
(8) Bp : (f¬p, y) (Split-1a (7))
(9) R(1, y) (Split-2a)
(10) p : (1, y) (8,9)
(11) ⊥ : (1, y) (3,10)
(12) R(1, y) (Split-2b)
(13) (¬Bp ∧ p) : (1, y) (5,12)
(14) ¬Bp : (1, y) (13)
(15) p : (1, y) (13)
(16) ⊥ : (1, y) (3,15)
(17) ¬p : (f¬p, y) (Split-1b)
(18) ⊥ : (f¬p, y) (17,6)

B A Sample Script from Otter

INPUT: set(hyper_res). set(prolog_style_variables). list(sos).
p1(0). %p1 represents [O(Bp or ~p)]
p3(1). %p2 represents [~B~p]
p2(0). %p3 represents [~p]
end_of_list. list(usable).
- p1(X) | p4(X). %p4 represents [B(Bp or ~p)]
- p1(X) | p5(X). %p5 represents [N(~(Bp or ~p))]
- p2(X) | p9(f). %p9 represents [~~p]
- p2(X) | R1(f). %R1 represents R and R2 represents R-bar
- p9(X) | p(X). - p3(X) | - p(X).
- p4(X) | - R1(Y) | p6(Y). %p6 represents [Bp or ~p]
- p5(X) | - R2(Y) | p10(Y). %p10 represents [~(Bp or ~p)]

21

- p6(X) | p7(X) | p3(X). %p7 represents [Bp]
- p7(X) | - R1(Y) | p(Y).
- p10(X) | p8(X). %p8 represents [~Bp] (don’t need the schema)
- p10(X) | p9(X). R1(X) | R2(X). end_of_list.

OUTPUT:

1 [] p1(0). 2 [] p3(1). 3 [] p2(0). 4 [] -p1(X) | p4(X).
5 [] -p1(X) | p5(X). 6 [] -p2(X) | p9(f). 7 [] -p2(X) | R1(f).
8 [] -p9(X) | p(X). 9 [] -p3(X) | -p(X). 10 [] -p4(X) | -R1(Y) |
p6(Y). 11 [] -p5(X) | -R2(Y) | p10(Y). 12 [] -p6(X)
|p7(X) | p3(X). 13 [] -p7(X) | -R1(Y) | p(Y). 15 [] -p10(X) | p9(X).
16 [] R1(X) | R2(X). 17 [hyper,1,5] p5(0). 18
[hyper,1,4] p4(0). 19 [hyper,3,7] R1(f). 20 [hyper,3,6] p9(f).
21 [hyper,17,11,16] p10(A) | R1(A). 23 [hyper,19,10,18]
p6(f). 24 [hyper,20,8] p(f). 25 [hyper,23,12] p7(f) | p3(f).
32 [hyper,25,9,24] p7(f). 33 [hyper,32,13,21] p(A) |
p10(A). 41 [hyper,33,9,2] p10(1). 42 [hyper,41,15] p9(1).
44 [hyper,42,8] p(1). 45 [hyper,44,9,2] .

22

