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Abstract

Cardelli and Gordon’s calculus of Mobile Ambients has attracted widespread interest
as a model of mobile computation. The standard calculus is quite rich, with a variety
of operators, together with capabilities for entering, leaving and dissolving ambi-
ents. The question arises of what is a minimal Turing-complete set of constructs.
Previous work has established that Turing completeness can be achieved without
using communication or restriction. We show that it can be achieved merely using
movement capabilities (and not dissolution). We also show that certain smaller sets
of constructs are either terminating or have decidable termination.
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1 Introduction

Since its introduction in 1998, Cardelli and Gordon’s calculus of Mobile Am-
bients (MA) [6,7] has attracted widespread interest as a model of mobile com-
putation. An ambient is a vessel containing running processes. Ambients can
move, carrying their contents with them. The standard calculus is quite rich,
with a variety of operators, together with capabilities for entering, leaving
and dissolving ambients. Subsequent researchers have increased this variety
by proposing alternative movement capabilities. We may mention Mobile Safe
Ambients (SA) [14,15], Robust Ambients (ROAM) [11], Safe Ambients with
Passwords (SAP) [17], the Push and Pull Ambient Calculus (PAC) [21], Con-
trolled Ambients (CA) [26], and the version of Boxed Ambients (BA) [2] with
passwords (NBA) [3]. We shall use the term Ambient Calculus (AC) to refer
to all of these variants.

1 A shorter version of this report appeared in EXPRESS 2003 [16].
2 Email: {maffeis,iccp}@doc.imperial.ac.uk
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The question arises of what is a minimal set of constructs which gives the
computational power of Turing machines, i.e. is Turing-complete. One way to
tackle this is to encode into the Ambient Calculus some other process calculus
which is known to be Turing-complete. Cardelli and Gordon showed how to
encode the asynchronous π-calculus into MA [7]. The encoding makes use of
MA’s communication primitives. However Cardelli and Gordon also encoded
Turing machines directly into pure MA, where there is no communication.
(Incidentally, Zimmer [27] subsequently encoded the synchronous π-calculus
without choice into pure SA.)

Busi and Zavattaro [4,5] showed how to encode counter machines into pure
public MA (where by“public”we mean lacking the restriction operator). Inde-
pendently, Hirschkoff, Lozes and Sangiorgi [12] encoded Turing machines into
the same sub-calculus. In this paper we follow up this work and investigate
whether even smaller fragments of AC can be Turing-complete. We concen-
trate entirely on pure AC. Our work is very much inspired by that of Busi
and Zavattaro; we follow them in using counter machines rather than Turing
machines.

The major question left open by previous work is whether pure AC with-
out the open capability which dissolves ambients can be Turing-complete.
This question is of particular interest in view of the decision which Bugliesi,
Castagna and Crafa took to dispense with ambient opening when proposing
their calculus of Boxed Ambients (BA) [2,18,3,8]. They advocate communi-
cation between ambients where one is contained in the other, rather than the
same-ambient communication of MA. A similar model of communication is
employed in [20].

We give an encoding of counter machines into pure public MA without the
open capability (Theorem 3.9), showing that this fragment is Turing-complete.
The encoding also demonstrates that both termination and the observation
of weak barbs are undecidable problems. As far as we are aware, Turing
completeness has not previously been shown for any pure ambient calculus
without the capability to dissolve ambients (although we note that an encoding
of π-calculus into BA with communication is given in [2]).

Two different kinds of ambient movement were identified by Cardelli and
Gordon [7]: subjective and objective. Subjective movement is where an ambi-
ent moves itself; objective movement is where it is moved by another ambient.
For instance, if m[P ] (an ambient named m containing process P ) is to enter
another ambient n[Q ], then control can reside in P or in Q. The standard
calculus MA opts for subjective movement, while objective movement (so-
called “push and pull”) has been studied in [21]. We shall show that counter
machines can be encoded into the pure push and pull calculus (PAC) without
the open capability.

A number of calculi are hybrids between subjective and objective move-
ment: when handling the entry of m[P ] into n[Q ], they require P and Q to
synchronise. In Mobile Safe Ambients (SA) [15], an ambient must explicitly
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allow itself to be entered by means of a co-capability. It is straightforward to
encode standard MA into SA by equipping each ambient with the necessary
co-capabilities. Therefore Turing completeness results for MA, such as that
mentioned above, will extend to SA, but not the other way round.

Robust Ambients (ROAM) [11] is another calculus where ambients must
synchronise to perform an entry. Form[P ] to enter n[Q ], P must name n and
Q must name m, which is a symmetrical blending of subjective and objective
movement. Turing completeness results for either MA or PAC will extend to
ROAM (since our encodings use only a finite set of names).

As remarked above, MA and PAC are less synchronised between ambients
than SA or ROAM. Movement can be made less synchronous within ambients
if we require that movement capabilities have no continuations, so that ifm[P ]
enters n[Q ] then neither P nor Q can rely on when this has happened in the
rest of their code. This may be called asynchronous movement. We show
that both subjective and objective calculi with asynchronous movement (and
without restriction) are Turing-complete—there is enough power in processes
being able to synchronise on dissolving ambients.

As far as infinite behaviour is concerned, ambients are usually endowed
with the replication operator. Busi and Zavattaro have also shown that the
strikingly simple sub-calculus having only the open capability and empty am-
bients, but with restriction and recursion, is Turing-complete. We show that
the same is true for a calculus having only the push capability of PAC. Un-
like in the π-calculus case, where recursion or replication are inter-definable,
having one or the other in the ambient calculus has a significant impact.

We are interested in finding minimal Turing-complete fragments of AC.
This entails showing that smaller fragments are too weak to be Turing-complete.
Busi and Zavattaro have shown that in the fragment of pure MA with the open

capability, but without movement capabilities, it is decidable whether a given
process has a non-terminating computation [5]. We show the same decidabil-
ity property for public fragments with capabilities allowing movement in one
direction only (either entering or exiting). We also show that in certain smaller
fragments (where replication is only allowed on capabilities) every computa-
tion terminates.

Figure 1 illustrates the main results of this paper for MA and BA. The
arrows represent inclusions.

Figure 2 illustrates the main results of this paper for PAC.

The paper is organised as follows. In Section 2 we recall various operators
and capabilities of the Ambient Calculus, together with their associated no-
tions of reduction. In Section 3 we discuss various Turing-complete languages,
with and without the open capability. In Section 4 we show that certain frag-
ments of AC with replication are in fact terminating. In Section 5 we show
that certain other fragments of AC have decidable termination. Finally we
draw some conclusions.
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PSfrag replacements

pure MA
in, out, open,restriction
Turing-complete [7]

BA
Turing-complete [2]

pure public MA
in, out, open

Turing-complete [5]

pure public BA
in, out

Turing-complete (Theorem 3.9)

in
Termination decidable
(Theorem 5.34)

out
Termination decidable
(Theorem 5.21)

Fig. 1. Main results for MA and BA

PSfrag replacements PAC
Turing-complete [21]

pure public boxed PAC
pull, push

Turing-complete (Theorem 3.12)

pull
Termination decidable
(Theorem 5.36)

push
Termination decidable
(Theorem 5.21)

Fig. 2. Main results for PAC

1.1 Related Work

In independent work, Boneva and Talbot [1] present an encoding of two-
counter machines (a Turing-complete formalism) into pure public BA. The
fragment of MA we consider in Theorem 3.9 is similar to theirs, but they
allow replication on arbitrary processes, while we only allow replication on
capabilities. They show that reachability and name convergence (the obser-
vation of weak barbs) are both undecidable problems. As their encoding can
take“wrong turnings”and is divergent, they have left the Turing completeness
of their fragment of MA as an open question. We show Turing completeness
for our fragment, and as a corollary we obtain the undecidability of termina-
tion and of name convergence. Our methods do not show that reachability is
undecidable, while their methods do not show that termination is undecidable.

The focus of our work is different from that of Boneva and Talbot, in that
we concentrate on Turing completeness and termination, while they concen-
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trate on reachability and model-checking in the ambient logic.

2 Operators and Capabilities

We will investigate a variety of operators and capabilities of pure Mobile Am-
bients (MA) [7] and variants thereof. We let P,Q, . . . range over (process)
terms andM, . . . over capabilities which can be exercised by ambients. We as-
sume a set N of names, ranged over by m,n, . . ., and a set of process variables
(used for recursion), ranged over by X, . . ..

First we state a “portmanteau” language of (process) terms which contains
all the operators which we shall consider.

P ::= 0 | n[P ] | P | Q | M.P | νn P | !P | X | rec X.P

Here as usual 0 denotes the inactive process. We shall feel free to omit trailing
0s and write empty ambients as n[ ] rather than n[0 ]. The term n[P ] is
an ambient named n containing term P . The term P | Q is the parallel
composition of P and Q. We write P i for the parallel composition of i copies
of P (the laws of structural congruence stated below will ensure that parallel
composition is associative). The term M.P performs capability M and then
continues with P . The term νnP is term P with name n restricted. As usual,
restriction is a name-binding operator. We denote the set of free names of a
term P by fn(P ). The term !P is a replicated term which can spin off copies
of P as required. The term rec X.P is a recursion in which X is a bound
process variable. We shall call terms with no free process variables “processes”
(the closed terms). We shall refer to “terms” when we mean terms possibly
with free process variables (i.e. open terms). Recursion is unboxed [23,5] if in
recX.P any occurrence of X within P is not inside an ambient. We shall only
require unboxed recursion. If recursion is available then !P can be simulated
by recX.(X | P ), and so we shall never require both replication and recursion.

Here is the set of all capabilities we shall consider:

M ::= open n | open n | in n | in n | out n | out n | push n | pull n

The first capability openn is used to dissolve an ambient named n. Sometimes
we consider the “safe” version [15] where the ambient being opened performs
“co-capability” openn. The remaining capabilities all relate to movement. We
can distinguish between subjective and objective moves: The capabilities in n
and out n enable an ambient to enter or leave an ambient named n. This is
subjective movement. Again, sometimes we consider the “safe” versions of the
capabilities where the ambient being entered or left performs “co-capabilities”
in n or out n. By contrast, objective movement is where ambients are moved
by fellow ambients. We consider the so-called “push” and “pull” capabilities
of PAC [21]. An ambient containing another ambient named n can use the
capability push n to push the other ambient out. Similarly pull n can be used
to pull in an ambient named n.

Capabilities act as “guards”, in the sense that given a term M.P , capa-
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bility M must be consumed before P becomes active. We shall say that an
occurrence of P in Q is guarded if P is a subterm of some subterm M.R of Q.

Structural congruence ≡ equates terms which are the same up to structural
rearrangement. It is defined to be the least congruence satisfying the following
rules:

0 | P ≡ P νn 0 ≡ 0

P | Q ≡ Q | P νm νn P ≡ νn νm P

(P | Q) | R ≡ P | (Q | R) !P ≡ P | !P

νn (P | Q) ≡ (νn P ) | Q if n /∈ fn(Q) rec X.P ≡ P{rec X.P/X}

νn m[P ] ≡ m[ νn P ] if m 6= n

On several occasions we shall make use of commutative-associative structural
congruence ≡ca, which is the least congruence satisfying the laws:

P | Q ≡ca Q | P (P | Q) | R ≡ca P | (Q | R)

This has the property that for any term P the set {Q : Q ≡ca P} is finite.

The reduction relation → between processes describes how one process
can evolve to another in a single step. We start by defining the reductions
associated with the capabilities.

(Open) open n.P | n[Q ] → P | Q

(In) n[ in m.P | Q ] | m[R ] → m[n[P | Q ] | R ]

(Out) m[n[ out m.P | Q ] | R ] → n[P | Q ] | m[R ]

(SafeOpen) open n.P | n[ open n.Q | R ] → P | Q | R

(SafeIn) n[ in m.P | Q ] | m[ in m.R | S ] → m[n[P | Q ] | R | S ]

(SafeOut) m[n[ out m.P | Q ] | out m.R | S ] → n[P | Q ] | m[R | S ]

(Pull) n[ pull m.P | Q ] | m[R ] → n[P | Q | m[R ] ]

(Push) n[m[P ] | push m.Q | R ] → n[Q | R ] | m[P ]

We shall be considering languages which only possess a subset of the full set of
capabilities. When we consider languages with capability open, we shall always
have capability open as well, and we shall adopt rule (SafeOpen) and not rule
(Open). Clearly, if a language has capabilities open, open and replication
on these capabilities, then the effect of rule (Open) can be simulated: every
ambient can be made perfectly receptive to being opened by converting n[P ]
into n[ ! openn | P ]. Similar considerations apply to capabilities in and in, out

and out.
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The remaining rules for reduction are

(Amb)
P → P ′

n[P ]→ n[P ′ ]
(Par)

P → P ′

P | Q→ P ′ | Q

(Res)
P → P ′

νn P → νn P ′
(Str)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

We write ⇒ for the reflexive and transitive closure of →.

A language is a pair (L,→) consisting of a set of processes L together with
a reduction relation →. We shall write (L,→) as L for short. We let L, . . .
range over languages. We shall define a language by giving the set of processes.
The reduction relation (and structural congruence) for the language will be
tacitly assumed to be given by the set of all the rules in this section which are
applicable to the available operators and capabilities, except as noted above for
the “safe” and standard versions of the in and out capabilities. A computation
is a maximal sequence of reductions P0 → P1 → · · ·.

The most basic observation that can be made of a process is the presence
of top-level ambients (i.e. unguarded ambients which are not contained in
other ambients) [7]. We say that n is a strong barb of P (P ↓ n) iff P ≡
νm1 . . .mk (n[Q ] | R) for some Q and R (where n 6= m1, . . . ,mk), and n is a
weak barb of P (P ⇓ n) iff P ⇒↓ n.

3 Turing-complete Fragments of AC

A basic measure of the computational strength of a process language is whether
Turing machines, or some other Turing-complete formalism, can be encoded
in the language. Cardelli and Gordon [7] established that pure MA can encode
Turing machines. Busi and Zavattaro [5] improved this result by showing that
counter machines (CMs) can be encoded in pure public MA.

We shall show that CMs can be encoded in pure public MA without open,
which can be called pure public BA. We shall also encode CMs in a version
of MA with asynchronous movement (i.e. no continuations after capabilities),
but with the open capability.

A Counter Machine (CM) is a finite set of registers R0, . . . , Rb (b ∈ N).
Each Rj contains a natural number. We write Rj(k) for Rj together with its
contents k. Initially the registers hold the input values. The CM executes a
numbered list of instructions I0, . . . , Ia (a ∈ N), where Ii is of two forms:

• i : Inc(j) adds one to the contents of Rj, after which control moves to Ii+1.

• i : DecJump(j, i′) subtracts one from the contents of Rj, after which control
moves to Ii+1, unless the contents are zero, in which case Rj is unchanged
and the CM jumps to instruction i′.

The CM starts with instruction I0, and executes instructions in sequence in-
definitely, until control moves to an invalid instruction number (which we can
take to be a + 1), at which point the CM terminates, and the output is held
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in the first register.

CMs as defined above are basically the Unlimited Register Machines of
[25]. They use a set of instructions which is minimal while retaining Turing
completeness [19]. (In fact CMs with just two registers are already Turing-
complete.)

3.1 Criteria for Turing Completeness

It is best to make clear what criterion for Turing completeness we shall use
in this paper. Let CM be a CM (program plus registers with their contents).
Let [[CM ]] be the encoding of CM in a target fragment of AC. We shall require
the following:

Criterion 3.1 • If CM terminates then every computation of [[CM ]] com-
pletes successfully, meaning that it signals completion in some manner, ob-
tains the correct result and makes the result of the computation (i.e. the
contents of the first register) available in usable form to potential subse-
quent computations to be performed by other processes.

• If CM does not terminate, then no computation of [[CM ]] signals comple-
tion.

In our encodings, completion will be signalled by the appearance of a particular
ambient at the top level. So we can deduce from the undecidability of the
halting problem for CMs that for the target fragment it is undecidable in
general for a process P and name n whether P ⇓ n.

Furthermore, our encodings will actually satisfy both Criterion 3.1 and the
following additional property:

Criterion 3.2 • If CM terminates then every computation of [[CM ]] termi-
nates.

• If CM does not terminate, then no computation of [[CM ]] terminates.

We can therefore deduce that it is undecidable whether a process has an infinite
computation. (In fact, this can still be deduced if the second item is weakened
to: if CM does not terminate, then [[CM ]] has an infinite computation.)

However, since Criterion 3.2 is not required for Turing completeness, we
cannot deduce that a language fails to be Turing-complete simply because
termination is decidable. There could still be an encoding of CMs into the
target language where all computations of encoded CMs are infinite. When
the CM terminates, the encoded CM reports a result in a finite time before
diverging. Despite this, it is possible to achieve separation results by showing
Criterion 3.2 for one fragment and decidability of termination for another
fragment.

Many encodings satisfy the following one-step preservation property: if
CM moves in one step to CM ′ then [[CM ]]⇒ [[CM ′]]. While one-step preser-
vation is useful, we contend that it is needlessly strong for Turing complete-
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ness. Consider for instance a Turing machine (TM) which is non-erasing in
the following sense: at each step it copies the tape contents to the next un-
used part of the tape and then makes the change required by the instruction.
Such a machine is clearly as powerful as a normal TM. However we cannot
encode TMs into non-erasing TMs and satisfy the one-step preservation prop-
erty, since the non-erasing TM has extra information. (Note that reachability
of configurations is decidable for non-erasing TMs, since the tape contents
keep on increasing in size, so that Turing completeness does not imply that
reachability is undecidable.)

This is relevant to our concerns, since in our encodings we accumulate
inert garbage. Just as with non-erasing TMs, this is no barrier to Turing
completeness.

Remark 3.3 Hirschkoff, Lozes and Sangiorgi [12] give an encoding of TMs
into a fragment of MA which satisfies one-step preservation, but where the en-
coding may take a “wrong turning”. Such wrong turnings are strictly limited,
in that the process will halt immediately in a state which cannot be mistaken
for successful termination. This is sufficient for them to claim Turing com-
pleteness, but we shall require that computations cannot take unintended paths.

3.2 Existing Work

Busi and Zavattaro gave encodings of CMs into two fragments of pure AC.
The first fragment, which we shall call Lop

ν , is defined by

P ::= 0 | n[ ] | P | Q | open n.P | νn P | X | rec X.P

Theorem 3.4 ([5]) Lop
ν is Turing-complete.

It is striking that empty ambients with no movement capabilities are enough.
There is an essential use of restriction to obtain the effect of mutual recursion.
We shall show that a similar result holds when we substitute push for open

(Section 3.3).

Busi and Zavattaro’s second encoding of CMs is into the following language,
which we shall call Lop

io :

P ::= 0 | n[P ] | P | Q | open n.P | in n.P | out n.P | !P

Notice that Lop

io does not require restriction, and uses replication rather than
recursion. Clearly, Lop

io is exactly pure public MA.

Theorem 3.5 ([5]) Lop

io is Turing-complete.

Independently, Hirschkoff, Lozes and Sangiorgi [12] have encoded Turing ma-
chines into Lop

io , with the additional syntactic constraint that the continuation
of a capability must be finite, that is, must not involve replication. As stated
above (Remark 3.3), this establishes a form of Turing completeness which does
not accord with Criterion 3.1.

We shall show that Theorem 3.5 can be improved in two ways: the con-
tinuations of in and out can be removed (Section 3.4), or the open capability
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can be removed (Section 3.5).

3.3 Recursion and push

Let Lrp be the following language (a fragment of PAC [21], except that we use
recursion instead of replication):

P ::= 0 | n[P ] | P | Q | push n.P | νn P | X | rec X.P

Theorem 3.6 Lrp is Turing-complete.

Proof. (Sketch) Let inert contexts be defined as

C ::= n[ • ] | C | n[ ] | νn C .

We define Ln[ rp ] as the set of terms C{P} where P is a term of Lrp with all
ambients empty and C{•} is an inert context. The purpose of C{•} is to make
sure that the push operations in P can be executed, by placing P inside an
enclosing ambient. Apart from this consideration, contexts cannot perform
any reduction at all. We have that Ln[ rp ] is closed under reductions.

Consider the encoding from Lop
ν to Lrp which is homomorphic on all terms

except for [[open n.P ]] = push n.[[P ]]. For all P in Lop
ν , we have that:

(i) for all n, if P → Q then either
(a) n[ [[P ]] ]→ n[ [[Q]] ] | m[ ], for some m; or
(b) there are Q′ ∈ Lop

ν and m 6= n such that Q ≡ νm Q′ and n[ [[P ]] ] →
νm (n[ [[Q′]] ] | m[ ]);

(ii) for all inert contexts C{•} and R ∈ Ln[ rp ], if C{[[P ]]} → R then there
are C ′{•}, Q,Q′ ∈ Lop

ν and m such that P → Q, Q ≡ νm Q′ and R ≡
C ′{[[Q′]]}.

Point (i) shows that there is an effective way to simulate a reduction of Lop
ν

in Ln[ rp ] (up to losing an outermost restriction, in case (b)). Point (ii) guar-
antees that every reduction of a term of Ln[ rp ] in the image of the encoding
corresponds to a reduction of the original term in Lop

ν (again up to outermost
restriction). The outermost restriction around Q′ can be disposed of without
altering the behaviour of the term because the resulting term is not composed
with any other terms. Both (i) and (ii) follow from induction on the derivation
of →. 2

3.4 “Asynchronous” Languages with open

In this subsection we show that there are Turing-complete AC languages even
when we don’t allow continuations after movement capabilities. We show
this both for objective movement (Theorem 3.7) and for subjective movement
(Theorem 3.8).

Let Lop
ppa be the following language (a fragment of PAC):

P ::= 0 | n[P ] | P | Q | open n.P | push n.0 | pull n.0 | ! open n.P
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Note that push and pull have no continuation. We might refer to this as
asynchronous movement. Also, replication is only used with open.

Theorem 3.7 Lop
ppa is Turing-complete.

Proof. We describe an encoding of CMs into Lop
ppa. A CM will be encoded as a

system consisting of processes encoding the registers in parallel with processes
for each instruction.

We consider a particular CM called CM , with instructions I0, . . . , Ia and
registers R0, . . . , Rb. Let CM(i : k0, . . . , kb) represent CM when it is about
to execute instruction Ii and storing kj in register j (j ≤ b). Let the (unique)
finite or infinite computation of CM = CM0 be CM0, CM1, . . . , CMl, . . .,
where CMl = CM(il : k0l, . . . , kbl).

First we describe the registers. Rj(k) is encoded as rj[ k ], where the nu-
meral process k is defined by

0
df
= z[ ] k + 1

df
= s[ k ]

Thus registers are distinguished by their outermost ambient.

In describing the encoding of the instructions, we must take into account
the fact that the decrement/jump instructions will accumulate garbage each
time they are used, as the code for either decrement or jump is left unused.
We therefore parametrise our encoding by the index l of the stage we have
reached in the computation. Let dec(i, l) (resp. jump(i, l)) be the number of
decrements (resp. jumps) performed by instruction i during the computation
of CM up to, but not including, stage l.

We denote the encoding of instruction Ii at stage l by [[Ii]]l, defined as
follows:

[[i : Inc(j)]]l
df
= ! open sti.rj[ pull rj |

s[ pull rj | open rj.sti+1[ ] | push sti+1 ] | push sti+1 ]

[[i : DecJump(j, i′)]]l
df
= ! open sti.ci[ pull rj | open rj.(Sij | Ziji′) ] |

! open di | ! open d′i | (ci[Ziji′ ])
dec(i,l) | (ci[Sij ])

jump(i,l)

Sij
df
= di[ pull s | rj[ pull s | open s.(ei[ ] | push ei) ] | push ei | sti+1[ ] ] |

open ei.push di

Ziji′
df
= open z.(d′i[ rj[ 0 ] | sti′ [ ] ] | push d′i)

Notice that the continuations of all occurrences of open are finite (the same
condition as used in [12] and mentioned in Section 3.2).

We define:

[[CM(i : k0, . . . , kb)]]l
df
= sti[ ] | [[I0]]l | · · · | [[Ia]]l | r0[ k0 ] | · · · | rb[ kb ]

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The instructions start without any

garbage. The encoded CM will go through successive stages [[CMl]]l. We show
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that for each non-terminal stage l, [[CMl]]l ⇒ [[CMl+1]]l+1, and that [[CMl]]l is
guaranteed to reach [[CMl+1]]l+1.

An instruction process [[Ii]]l is triggered by the presence of sti at the top
level; the instruction starts by consuming sti. The execution of [[Ii]]l finishes by
unleashing the sti ambient corresponding to the next instruction. Throughout
the computation, at most one sti ambient is present. The encoded machine
terminates if and when the ambient sta+1 appears at the top level. There are
various cases depending on the nature of the instruction Ii.

An instruction process of the form [[i : Inc(j)]]l creates a new register
rj[ s[ ] ], which already contains the successor ambient needed to perform the
increment. The new register pulls the existing rj into its core, and strips off
the outer casing. The instruction then signals completion by pushing out the
trigger for the next instruction. Computation is entirely deterministic. We
have:

. . . sti[ ] | [[i : Inc(j)]]l | rj[ k ] . . .⇒ . . . sti+1[ ] | [[i : Inc(j)]]l+1 | rj[ k + 1 ] . . .

An instruction process of the form [[i : DecJump(j, i′)]]l creates a new am-
bient ci, pulls in register rj and strips off its outer layer, leaving the numeral.
This numeral has outermost ambient either s or z depending on whether the
numeral is zero or a successor.

• If the numeral is a successor it is pulled inside ambient di and then inside a
new register ambient rj where it is decremented. The ambient di, containing
the new incremented register along with the trigger sti+1, is then pushed out
of ci, and opened to unleash the trigger. We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj[ k + 1 ] . . .

⇒ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l | ci[Ziji′ ] | rj[ k ] . . .

≡ . . . sti+1[ ] | [[i : DecJump(j, i′)]]l+1 | rj[ k ] . . .

The execution of the decrement leaves ci[Ziji′ ] behind as garbage, which
does not take any further part in the computation. Again, computation is
entirely deterministic.

• If the numeral is zero, this is detected by open z, and a new ambient di,
containing rj[ 0 ] along with the trigger sti′ , is then pushed out of ci, and
opened to unleash the trigger. We have:

. . . sti[ ] | [[i : DecJump(j, i′)]]l | rj[ 0 ] . . .

⇒ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l | ci[Sij ] | rj[ 0 ] . . .

≡ . . . sti′ [ ] | [[i : DecJump(j, i′)]]l+1 | rj[ 0 ] . . .

Again, computation is entirely deterministic.

Finally, we see that if CML is terminal (so that iL = a+1) then [[CML]]L has
no reductions. [[CML]]L displays barb sta+1 to indicate termination. The result
of the computation, stored in register 0, is usable by subsequent computations.

12
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On the other hand, if CM does not terminate, then neither does [[CM ]], and
the barb sta+1 will never appear. There are no “bad” computations, i.e. ones
which halt in a non-final state, diverge, or produce unintended behaviour. We
have a encoding which shows Turing completeness, and also undecidability of
termination and of weak barbs. 2

We can achieve exactly the same asynchrony for subjective movement,
though the encoding is more elaborate. Let Lop

ioa be the following language:

P ::= 0 | n[P ] | P | Q | open n.P | in n.0 | out n.0 | ! open n.P

Theorem 3.8 Lop

ioa is Turing-complete. (Proof: see Appendix A.)

This result improves Theorem 3.5. Moreover, just as with Theorem 3.7, CMs
are encoded in such a way that the continuations of all occurrences of open

are finite.

3.5 Languages without open

In this subsection we encode CMs into a language with just the standard
movement capabilities, namely in and out.

Let Lio be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P

Clearly Lio is a sublanguage of L
op

io as defined earlier. The major difference is
that Lio does not have the open capability. Also, replication is only applied
to the capabilities. We shall see in Sections 4 and 5 that the computational
strength of a language can depend on whether replication is applied to capa-
bilities or to ambients.

Theorem 3.9 Lio is Turing-complete.

Proof. We sketch the encoding of CMs in Lio here; see Appendix B for the
details. One problem we encountered was in dealing with instructions. Since
each instruction Ii has to be used indefinitely many times, one might encode
it as ! pi[Pi ], where each time the instruction is needed a new copy of pi[Pi ] is
spun off. But then the previously used copies may interfere with the current
copy, so that for instance acknowledgements may get misdirected to old pi
ambients still present. This issue would not arise if we could destroy unwanted
ambients using the open capability.

Registers consist of a series of double skins s[ t[ . . . ] ] with z[ ] at the core.
We use a double skin rather than the more obvious s[ s[ z[ ] ] ] style. This is
to help with decrementing, which is done by stripping off the outermost s and
then in a separate operation stripping off the t ambient now exposed.

We follow Busi and Zavattaro in carrying out the increment of a register
by adding a new s[ t[ ] ] immediately surrounding the central core z[ ]. This
seems preferable to adding a new double skin on the outside, since it keeps
the increment code and decrement code from interfering with each other.

13
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The basic idea is that each instruction Ii is triggered by entering a sti
ambient. All the other instructions and all the registers enter as well—a
monitor process checks that this has happened before Ii is allowed to execute.
So the computation goes down a level every time an instruction is executed.
When an instruction finishes, it unleashes the sti ambient to trigger the next
instruction. If and when the computation finishes, the first register is sent up
to the top level, where it can serve as input for possible further computations.

Therefore we have Turing completeness. Our encoding furthermore es-
tablishes that the weak barb relation is undecidable, and that having a non-
terminating computation is undecidable.

As the computation proceeds, inert garbage accumulates in both the in-
structions and the registers. We handle this much as in the proof of Theo-
rem 3.7, letting the encodings of the instructions and the registers be para-
metrised with the current step in the computation.

The computation is largely deterministic; the exceptions are that, between
executions of instructions, the instructions and registers make their way down
a level in an indeterminate order, and there is also some limited concurrency
in the increment. 2

Remark 3.10 We shall prove that if we remove out from Lio the resulting lan-
guage is terminating (Theorem 4.8), and similarly if we remove in the resulting
language is terminating (Theorem 4.14). Since terminating languages cannot
be Turing-complete, this will establish that Lio is a minimal Turing-complete
language.

Remark 3.11 In independent work, Boneva and Talbot [1] have encoded two-
counter machines into the following language:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | !P

(Notice that this language differs slightly from Lio, in that it allows repli-
cation of arbitrary processes, including ambients.) However, their encoding
can diverge and take wrong turnings into error states, which means that they
do not claim Turing completeness. Nevertheless because they establish one-
step preservation, they can show that it is undecidable whether one process is
reachable from another, and also whether P ⇓ n for an arbitrary process P
and name n.

It is an open question whether reachability for arbitrary processes in Lio is
decidable. Even if reachability were decidable for Lio, this would not contradict
Turing completeness (see Section 3.1).

We have just encoded CMs into language Lio with the standard subjective
movement capabilities (and without open). We can also encode CMs in the
following language Lpp with objective moves:

P ::= 0 | n[P ] | P | Q | push n.P | pull n.P | ! push n.P | ! pull n.P

Theorem 3.12 Lpp is Turing-complete. (Proof: see Appendix C.)
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Remark 3.13 We shall prove that if we remove push from Lpp the resulting
language is terminating (Theorem 4.8), and if we remove pull then termination
is decidable for the resulting language (Theorem 5.21).

4 Terminating Fragments of AC

We would like to know whether the language Lio of Section 3.5 is a minimal
Turing-complete language. As a partial answer to this question, we shall show
in this section that if we remove one of the movement capabilities (either in or
out) then the resulting language is in fact terminating, i.e. every computation
terminates.

Definition 4.1 A language (L,→) is terminating if every computation is fi-
nite.

In our proofs in this section we shall use a well-founded ordering on multisets.
A multiset over a set A is a function S : A → N, where S(a) represents the
multiplicity of a in S. A multiset is finite if S(i) = 0 for all but finitely many
i ∈ N. Let FMS(A) denote the finite multisets over A.

Definition 4.2 Suppose that A is partially ordered by <. We define Â to
be the transitive closure of the relation between multisets over A where one
multiset is obtained from another by replacing an element by any finite number
(including zero) of smaller elements.

An ordering is well-founded if it has no infinite decreasing chain.

Proposition 4.3 ([9]) If (A,<) is a well-founded partial ordering, then so is
(FMS(A),≺).

We shall apply this proposition with A as the natural numbers N with the
standard ordering.

4.1 Termination with in

Let Līip be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | in n.P | pull n.P

| ! in n.P | ! in n.P | ! pull n.P | νn P

Notice that Līip is got from Lio by removing the out capability and (in order to

sharpen the next theorem) adding the co-capability in of SA, the pull of PAC,
and restriction. We shall prove that Līip is terminating (Theorem 4.8 below).

We start by eliminating restriction and pull. Let m ∈ N be a single
designated name. Let Lm

īi
be the following language:

P ::= 0 | m[P ] | P | Q | in m.P | in m.P | ! in m.P | ! in m.P
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We define an encoding [[−]] from Līip to L
m
īi
as follows:

[[0]]
df
= 0 [[pull n.P ]]

df
= in m.[[P ]]

[[n[P ]]]
df
= m[ ! in m | [[P ]] ] [[ ! in n.P ]]

df
= ! in m.[[P ]]

[[P | Q]]
df
= [[P ]] | [[Q]] [[ ! in n.P ]]

df
= ! in m.[[P ]]

[[in n.P ]]
df
= in m.[[P ]] [[ ! pull n.P ]]

df
= ! in m.[[P ]]

[[in n.P ]]
df
= in m.[[P ]] [[νn P ]]

df
= [[P ]]

The idea of the encoding is that if we eliminate all restrictions then all existing
reductions can still occur (as well as potentially some new ones). Also, making
all names the same can only increase the possibility of reductions. Finally,
since Lm

īi
has only one name, we can simulate pull by in , provided we equip

each ambient with ! in m; this again cannot remove any potential reductions,
and may well add new ones.

Lemma 4.4 Let P,Q ∈ Līip.

(i) If P ≡ Q then [[P ]] ≡ [[Q]].

(ii) If P → Q then [[P ]]→ [[Q]].

Proof. Straightforward and omitted. 2

It follows that in order to show that Līip is terminating, it is enough to show
that Lm

īi
is terminating.

We first define the capability nesting depth (cnd) of an Lm
īi
process:

cnd(0)
df
= 0 cnd(in m.P )

df
= cnd(P ) + 1

cnd(m[P ])
df
= cnd(P ) cnd( ! in m.P )

df
= cnd(P ) + 1

cnd(P | Q)
df
= max(cnd(P ), cnd(Q)) cnd( ! in m.P )

df
= cnd(P ) + 1

cnd(in m.P )
df
= cnd(P ) + 1

Note that if P ≡ Q then cnd(P ) = cnd(Q).

We next define the capability degree (abbreviated to cd, or simply degree)
of an ambient m[P ]. This is the cnd of the capability component of P , defined
as follows. Any process P is structurally congruent to P cap | P amb, where the
capability component P cap is the parallel composition of processes prefixed
by capabilities or replicated capabilities, and the ambient component P amb

is the parallel composition of ambients. An empty parallel composition is of

course the nil process. We let cd(m[P ])
df
= cnd(P cap). This is well-defined

with respect to structural congruence. Notice that the degree of an ambient
can reduce during a computation, as a result of it entering another ambient.
It can never increase. We shall refer to the initial degree of an ambient, which
is its degree when it first becomes unguarded during a computation. Note
also that the degree of an ambient is unaffected by other ambients entering of
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whatever degree.

During a computation an ambient can produce “children” inside itself, as
it enters other ambients. For instance, m[ ! in m.m[ ] ] can produce a series of
new m[ ] ambients. These children will have strictly lower capability degrees.
For a given ambient m[P ] there is a fixed finite bound on the number of
children which can be produced by a single reduction.

Strictly speaking, keeping track of an ambient during a computation relies
on labelling ambients. This can be done straightforwardly; we avoid mention-
ing it further, in order to improve readability.

Proposition 4.5 Lm
īi
is terminating.

Proof. We give two proofs of termination: the first relies on assuming a
minimal infinite computation and then showing that there must be a smaller
one, while in the second proof we restrict attention to a “top-level” reduction
strategy, assign multisets to the processes in a computation and show that
they are decreasing in a particular well-founded ordering.

Method 1. Suppose that P0 → · · · → Pi → . . . is an infinite computa-
tion. Let D0 be the maximum of the degrees of the unguarded ambients in
P0. During the computation new ambients are created as children of existing
ambients. They will all have initial degree less than their parents, and thus
< D0. Since the computation is infinite, infinitely many children must be
created (with finitely many ambients computations must be finite, since no
pair of ambients can enter each other more than once). Let D < D0 be the
maximum degree at which infinitely many children are created. In the whole
computation there are only finitely many ambients with initial degree > D.
At least one of these must be infinitely productive, that is, produce infinitely
many children. Now let c > 0 be the number of infinitely productive ambients
of initial degree > D.

We have shown how to assign a value (D, c) (D ≥ 0, c ≥ 1) to each infinite
computation. Now let C : P0 → · · · be an infinite computation with a minimal
value of (D, c) in the well-founded lexicographic ordering

(D, c) < (D′, c′) iff D < D′ or (D = D′ and c < c′) .

We shall obtain a contradiction by showing that there is another infinite com-
putation with a smaller value.

Choose any infinitely productive ambient of initial degree > D. We can
assume that it is available at the start of C, by removing a finite initial segment
of C if necessary (this might reduce D0, but does not change D and c). Each
process Pi of C is of the form C{m[C | A ]}, where we display the outer context
and inner contents of our chosen ambient, with C the capability component,
and A the ambient component. There are four types of reduction:

(i) An outer reduction involving the context alone produces C ′{m[C | A ]}.

(ii) An inner reduction involving the contents alone produces C ′{m[C | B ]},
where A→ B.
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(iii) The chosen ambient can enter an ambient in the context, producing chil-
dren A′ and resulting in C ′{m[C ′ | A | A′ ]}.

(iv) The chosen ambient can be entered by an ambient m[R ] in the context,
producing children A′ and resulting in C ′{m[C ′ | A | A′ | m[R ] ]}.

Since the ambient is infinitely productive, there must be infinitely many re-
ductions of types (iii) or (iv).

We shall alter C in two ways. First we remove all type (ii) reductions.
This does not affect any of the other reductions, since type (i) reductions
are independent of the ambient contents, and type (iii) or (iv) reductions
only depend on the capability component C, which is unaffected by type
(ii) reductions. We get a new computation C′ : P ′0 → · · · → P ′i → · · ·, with
P ′0 = P0. It must be infinite, since it still has all the type (iii) or (iv) reductions
of C. Let the value of C′ be (D′, c′). Any ambients in C′ must have already
been in C. Hence (D′, c′) ≤ (D, c).

Now let us alter C′ by making the chosen ambient totally unproductive,
as follows: Suppose that P0 = P ′0 = C0{m[C0 | A0 ]}. We translate C0 to C

′
0

by replacing any ambient m[R ] by the nil process (and translating all other
operators homomorphically). All the reductions of C′ can still proceed, since
type (i), (iii) or (iv) reductions do not depend on the ambient component of the
chosen ambient, and the same capabilities are exercised by the chosen ambient,
even though no children are produced. We get a new infinite computation
C′′ : P ′′0 → · · · → P ′′i → · · ·.

Let the value of C′′ be (D′′, c′′). Any ambients in C′′ must have already been
in C′. Hence (D′′, c′′) ≤ (D′, c′). Also we have made an infinitely productive
ambient of degree > D ≥ D′ into one which is totally unproductive. We
may or may not have reduced the degree of the chosen ambient, but this does
not matter. We have certainly reduced the number of infinitely productive
ambients of degree > D′. So either D′′ < D′ or c′′ < c′. Hence (D′′, c′′) <
(D′, c′) ≤ (D, c). This contradicts the minimality of C. 2

Before giving the second method we need some further definitions and
lemmas.

Any reduction P → Q is either“top-level”(i.e. one top-level ambient enters
another), or else“lower-level”(the reduction occurs inside a top-level ambient).
In formal terms, the difference is that rule (Amb) (Section 2) is used in the
latter case but not in the former. Let us write P →top Q for a top-level
reduction and P →lower Q for a lower-level reduction. The reflexive and
transitive closures are denoted by ⇒top, ⇒lower respectively.

Lemma 4.6 Let P,Q be Lm
īi
processes. If P ⇒lower→top Q then P →top⇒lower

Q.

Proof. Straightforward and omitted. 2

Let us write P ↘ Q if P ≡ m[Q ] | R for some R.

18



Maffeis and Phillips

Lemma 4.7 Let P be a Lm
īi
process. Suppose that P has an infinite compu-

tation P →ω. Then P ⇒top↘→
ω.

Proof. The computation P →ω will have finitely many →top reductions. Us-
ing Lemma 4.6 we can transform it into another infinite computation with all
→top reductions carried out at the beginning: P ⇒top P ′ →ω

lower. Then P ′

must have at least one top-level ambient, and there must be an infinite com-
putation inside one of these top-level ambients m[Q ]. So P ⇒top P

′ ↘ Q→ω

as required. 2

Proof of Proposition 4.5, Method 2. Let P be an Lm
īi
process. From

Lemma 4.7, we see that if P has an infinite → computation then P has an
infinite ⇒top↘ computation. To show that infinite ⇒top↘ computations are
impossible, we assign multisets to processes and define an ordering on these
multisets which is well-founded and strictly decreasing with respect to⇒top↘.

For a completely formal proof we would have to develop an apparatus
for labelling ambients and members of multisets in order to make precise the
correspondence between the two. We have suppressed all of this in the interests
of readability.

Let P0, . . . , Pi, . . . be an infinite ⇒top↘ computation (i.e. Pi →top Pi+1 or
Pi ↘ Pi+1, and there are infinitely many i for which Pi ↘ Pi+1). We assign to
each Pi a finite multiset Si. Its elements will be ordered pairs (d, T ) consisting
of a natural number d and a finite multiset T of natural numbers. The multiset
Si will satisfy the following:

(i) For each (d, T ) ∈ Si, and for each d
′ ∈ T we have d′ < d.

(ii) The numbers in Si are precisely all degrees of unguarded ambients in Pi:
there is a bijective correspondence which maps each unguarded ambient
m[Q ] of Pi to d ≥ cd(m[Q ]) in Si, either as the left-hand component of
some (d, T ) ∈ Si or as some d ∈ T where (d′, T ) ∈ Si.

(iii) If m[Q ] occurs at the top level in Pi, then m[Q ] corresponds to d in
some (d, T ) in Si.

(iv) If m[R ] corresponds to d′ ∈ T for some (d, T ) in Si, then m[R ] is un-
guarded inside some m[Q ] corresponding to d.

We create S0 as follows: For each unguarded ambient m[P
′ ] of degree d

contained in P0, we add the pair (d, ∅) to S0. Plainly properties (i–iv) are
established.

In the computation there are two kinds of reductions: →top and ↘. Sup-
pose that Pi →top Pi+1. A →top reduction consists of an ambient m[Q1 ] of
degree d1 entering an ambient m[Q2 ] of degree d2. To these ambients there
correspond elements (d′1, T1) and (d

′
2, T2) in Si, with d1 ≤ d′1 and d2 ≤ d′2.

(Since we are doing a top-level reduction the two ambients are represented in
the first elements of the pairs of Si, by (iii).) The→top reduction will produce
children of m[Q1 ] of degree < d1; we add their degrees to T1. The reduction
will also produce children of m[Q2 ] of degree < d2; we add their degrees to
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T2. In this way we create Si+1. It is easy to check that properties (i–iv) are
established for Si+1.

Now suppose that Pi ↘ Pi+1. The↘ reduction selects a top-level ambient
m[Pi+1 ], and keeps Pi+1 while discarding its enclosing ambient and any other
top-level processes in parallel withm[Pi+1 ]. Suppose thatm[Pi+1 ] is of degree
d0 and corresponds to the element (d

′
0, T0) of Si. First we remove from Si all

pairs corresponding to the discarded top-level processes and their contents.
Note that by (iii) and (iv), if any member of some (d, T ) is to be removed,
then so are all the remaining members. Now we remove (d′0, T0) from Si, and
for each d ∈ T0 we add (d, ∅) to Si. Note that each d < d0 ≤ d′0. In this way
we create Si+1.

Properties (i), (ii) and (iv) are clearly established for Si+1. As to (iii),
suppose that m[R ] is a top-level ambient in Pi+1. Suppose that m[R ] cor-
responds to d′ ∈ T for some (d, T ) in Si+1. Then this (d, T ) was already in
Si. Therefore by (iv) for Si, m[R ] was inside some m[Q ] corresponding to d.
The only way that m[R ] can be top-level in Pi+1 is for m[Q ] to be m[Pi+1 ],
which means that m[R ] corresponds to d′ in some (d′, ∅) in Si+1. Thus we
have established (iii).

Recall the well-founded ordering on multisets of Definition 4.2 and Propo-
sition 4.3. If we consider just the first members of the pairs in the multisets Si

we see that a →top reduction leaves the set unchanged, while a ↘ reduction
removes one element and replaces it with a finite set of smaller elements (it
also removes zero or more elements completely, corresponding to the discarded
top-level processes). So each ⇒top↘ reduction takes us down in the Â order-
ing. By well-foundedness of Â there is no infinite ⇒top↘ computation, and
thus no infinite → computation. 2

Theorem 4.8 Līip is terminating.

Proof. By Lemma 4.4 and Proposition 4.5. 2

4.2 Termination with out

It is also the case that a language with out as its only capability is terminating.
Let Lo be the following language:

P ::= 0 | n[P ] | P | Q | out n.P | ! out n.P | νn P

Notice that Lo is got from Lio (Section 3.5) by removing the in capability and
(in order to sharpen the next theorem) adding restriction. We shall show that
Lo is terminating (Theorem 4.14 below).

The strategy we adopt is as follows: Firstly, as with Theorem 4.8, it suffices
to show that the sublanguage without restriction, and where all names are
identified, is terminating. We associate a finite multiset of natural numbers
with each process and show that each reduction produces a smaller multiset
in the well-founded ordering Â of Definition 4.2. As the multiset is sensitive
to the number of nil processes and unfoldings of replications, we have to use
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a non-standard notion of reduction.

We start by eliminating restriction. Let m ∈ N be a single designated
name. Let Lm

o be the following language:

P ::= 0 | m[P ] | P | Q | out m.P | ! out m.P

We define an encoding [[−]] from Lo to L
m
o as follows:

[[0]]
df
= 0 [[out n.P ]]

df
= out m.[[P ]]

[[n[P ]]]
df
= m[ [[P ]] ] [[ ! out n.P ]]

df
= ! out m.[[P ]]

[[P | Q]]
df
= [[P ]] | [[Q]] [[νn P ]]

df
= [[P ]]

Lemma 4.9 Let P,Q ∈ Lo.

(i) If P ≡ Q then [[P ]] ≡ [[Q]].

(ii) If P → Q then [[P ]]→ [[Q]].

Proof. Straightforward and omitted. 2

We associate a finite multiset of natural numbers with each process of Lm
o .

Each element in the multiset measures the number of ambients working from
an occurrence of 0 outwards.

ms(0)
df
= {0} ms(out m.P )

df
= ms(P )

ms(m[P ])
df
= {k + 1 : k ∈ ms(P )} ms( ! out m.P )

df
= ms(P )

ms(P | Q)
df
= ms(P ) ∪ms(Q)

Notice that this definition will produce different multisets for processes which
are structurally congruent. For instance, ms(m[0 ]) = {1}, while ms(m[0 |
0 ]) = {1, 1}. Also, ms( ! outm.0) = {0}, while ms(outm.0 | ! outm.0) = {0, 0}.
We therefore replace ≡ by commutative-associative structural congruence ≡ca

(Section 2), where the rules 0 | P ≡ P and P ≡ P | !P are disallowed.

Having adjusted structural congruence, we also need to change to a non-
standard reduction relation →′. We replace the usual rule (Out) by the fol-
lowing:

(Out1) m[m[ out m.P | Q ] | R ] →′ m[P | Q ] | m[R ]

(RepOut) m[m[ ! out m.P | Q ] | R ] →′ m[P | ! out m.P | Q ] | m[R ]

The rule (RepOut) ensures that replication is only unfolded as needed. Since
we no longer can add nil processes using structural congruence, the two new
rules also come with variants where Q is not present, and where R is not
present (and we write 0 instead of R in the derivative). The remaining rules
are:

P →′ P ′

n[P ]→′ n[P ′ ]

P →′ P ′

P | Q→′ P ′ | Q

P ≡ca P
′ P ′ →′ Q′ Q′ ≡ca Q

P →′ Q
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We next show that we have not removed any possibilities for computation by
changing the reduction relation.

Lemma 4.10 Let P,Q be Lm
o processes.

(i) If P ≡→′ Q then P →′≡ Q.

(ii) If P → Q then P →′≡ Q.

Proof. Lengthy and omitted. It is similar to [24, Lemma 1.4.15] and [5,
Propositions 4.11, 4.12], but in those cases a labelled transition system was
being related to an unlabelled one, whereas here we are relating two unlabelled
transition systems. 2

Lemma 4.11 Let P be an Lm
o process. If P has an infinite → computation,

then P has an infinite →′ computation.

Proof. Suppose that there is an infinite computation

P = P0 → · · · → Pi → · · · .

We create an infinite computation P = P ′0 →
′ · · · →′ P ′i →

′ · · · , with Pi ≡ P ′i
(all i), defining P ′i by induction as follows. Suppose that P = P ′0 →

′ · · · →′ P ′i
with P ′i ≡ Pi. We have Pi → Pi+1. Hence by Lemma 4.10(ii) there is Q such
that Pi →

′ Q ≡ Pi+1. Therefore P
′
i ≡ Pi →

′ Q. By Lemma 4.10(i) there is
P ′i+1 such that P

′
i →

′ P ′i+1 ≡ Q. Clearly P ′i+1 ≡ Pi+1, and P
′
i+1 is as required.2

Now we establish that →′ reductions take us down in the ≺ multiset ordering
of Definition 4.2.

Lemma 4.12 Let P,Q be Lm
o processes, and let C{•} be an L

m
o context.

(i) If ms(P ) = ms(Q) then ms(C{P}) = ms(C{Q}).

(ii) If ms(P ) Â ms(Q) then ms(C{P}) Â ms(C{Q}).

(iii) If P ≡ca Q then ms(P ) = ms(Q).

(iv) If P →′ Q then ms(P ) Â ms(Q).

Proof. (i) and (ii) are by structural induction on contexts. (iii) uses (i), and
is straightforward. (iv) uses (ii) and (iii), and is by induction on the derivation
of P →′ Q. As an example, consider the rule (RepOut) in the case where Q
and R are omitted:

m[m[ ! out m.P ] ]→′ m[P | ! out m.P ] | m[0 ]

We have

ms(m[m[ ! out m.P ] ]) = {k + 2 : k ∈ ms(P )}

ms(m[P | ! out m.P ] | m[0 ]) = {k + 1 : k ∈ ms(P ) ∪ms(P )} ∪ {1}

Clearly {k + 2 : k ∈ ms(P )} Â {k + 1 : k ∈ ms(P ) ∪ ms(P )} ∪ {1}. We omit
further details. 2

Proposition 4.13 (i) (Lm
o ,→

′) is terminating.
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(ii) (Lm
o ,→) is terminating.

Proof.

(i) This follows from Lemma 4.12 and the well-foundedness of Â (Proposi-
tion 4.3).

(ii) This follows from (i) and Lemma 4.11.

2

Our main result now follows:

Theorem 4.14 Lo is terminating.

Proof. This follows from Proposition 4.13(ii) and Lemma 4.9(ii). 2

Remark 4.15 From the proof of Lemma 4.12(iv) we see that a single reduc-
tion P →′ Q leads to at most 3 smaller items being substituted for each element
≥ 2 of ms(P ). An example is

m[m[ ! out m.0 ] ]→′ m[0 | ! out m.0 ] | m[0 ] ,

where {2} becomes {1, 1, 1}. Thus if an Lm
o process has ≤ k 0s and ≤ k

ambients, its multiset will be bounded by {k, . . . , k} (k copies of k), and the
maximum length of a computation will be bounded by k.3k−1. This upper bound
also applies to (Lm

o ,→) computations by the proof of Lemma 4.11, and to
(Lo,→) computations by Lemma 4.9. We obtain that if an Lo process has ≤ k
operators then any computation has length bounded by k.3k−1. This bound can
no doubt be considerably improved.

Notice that we can have infinite computations in the language where we
add co-capability out to Lo, in view of the counterexample

n[n[ out n ] | ! out n.n[ out n ] ] .

This is equally the case when the co-capability is located at the upper level [17]:

n[n[ out n ] ] | ! out n.n[n[ out n ] ]

With “push” as the only capability we can have infinite computations, e.g.

n[n[ ] | ! push n.n[ ] ] .

Remark 4.16 If we combine replication with the open capability we can create
non-terminating processes such as n[ ] | ! open n.n[ ]. Busi and Zavattaro [5]
showed that termination is decidable for processes built with replication and
open (see Theorem 5.21 in Section 5).

5 Fragments of AC with Decidable Termination

We have seen (Theorem 3.9) that pure Boxed Ambients is Turing-complete.
In the previous section we saw that the fragments with just one movement
capability (either in or out), and replication just applied to that capability, are
terminating. In this section we look at the same fragments, but extended with
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full replication. We shall show that termination is decidable in the fragments
with in (respectively out) and full replication. In the case of out, we shall
be able to go further and show that the fragment with out, open and full
(unboxed) recursion has decidable termination. In the next subsection we
start with this result, which builds on the work of Busi and Zavattaro.

Definition 5.1 We shall say that termination is decidable in a language
(L,→) if, given any process P of L, it is decidable whether P has an infi-
nite computation.

Remark 5.2 We saw in Section 3.1 that having decidable termination does
not per se imply that a language is Turing-incomplete. Nevertheless, whenever
we showed that a language was Turing-complete, it was also the case that
termination was undecidable. This enables us to achieve a separation between
such languages and the ones discussed in this section. See Remark 5.22 below.

5.1 Decidability for out and open

Recall that Busi and Zavattaro [5] showed that pure MA, with no movement
capabilities and with (unboxed) recursion rather than replication, is Turing-
complete (Theorem 3.4). They also showed that if one replaces recursion by
what they call unrestricted recursion then termination is decidable. (Recursion
is said to be unrestricted if, for each process recX.P , no free occurrence of X
in P occurs inside a subprocess of the form νn Q.) Their language, which we
shall call Lop

ν,ur , is defined by

P ::= 0 | n[P ] | P | Q | open n.P | νn P | X | rec X.P

where recursion is unboxed and unrestricted.

Theorem 5.3 ([5]) Termination is decidable for Lop
ν,ur.

In particular, termination is decidable both in the sublanguage with open,
restriction and replication, and in the sublanguage with open and recursion
(but not restriction).

The proof of Theorem 5.3 depends on the theory of well-quasi-orderings
and well-structured transition systems [10]. We briefly review the relevant
definitions and results.

Definition 5.4 A quasi-ordering (qo) is a reflexive and transitive binary re-
lation. A well-quasi-ordering (wqo) is a qo (X,≤) such that for every infinite
sequence x0, . . . , xi, . . . of members of X, there exist i, j ∈ N such that i < j
and xi ≤ xj.

Definition 5.5 A transition system (S,→) is a set of states S together with

a transition relation→. For s ∈ S let Succ(s)
df
= {t : s→ t} and let Deriv(s)

df
=

{t : s⇒ t}. (S,→) is finite-branching if for all s ∈ S, Succ(s) is finite.

Definition 5.6 A structure (S,→,≤) is a well-structured transition system

24



Maffeis and Phillips

(with strong compatibility) if

• (S,→) is a transition system, and

• ≤ is a wqo on S, and

• ≤ is upwards compatible with →, meaning that if s → t and s ≤ s′ then
there exists t′ such that s′ → t′ and t ≤ t′.

Theorem 5.7 (Special case of [10, Theorem 4.6]) Let (S,→,≤) be a well-
structured transition system (with strong compatibility) where ≤ is decidable
and Succ(s) is finite and computable in s. Then it is decidable, given s ∈ S,
whether there is an infinite → computation starting from s.

In order to apply this theorem to Lop
ν,ur, Busi and Zavattaro firstly need to

show that Succ(P ) is computable. The problem is that the standard reduc-
tion relation is not finite-branching, since it allows recursions to be unfolded
without limit (using structural congruence). They therefore define a differ-
ent reduction relation using a labelled transition system, which only allows
unfolding as required to perform a reduction.

Next they define a multiset-style ordering ¹ on processes, under which,
for example, P ¹ P | Q. In showing that ¹ is a wqo, the essential ingredients
are:

(i) Bounded depth: there is a bound on the depth of all derivatives of a
process (in terms of nesting of ambients and restrictions), and

(ii) Finite name-space: the set of names used in all derivatives of a process
is finite.

The bounded depth property comes straightforwardly from the facts that re-
cursion is unboxed and that there are no movement capabilities. The finite
name-space property comes from the fact that recursion is unrestricted, so that
it is never necessary to extrude the scope of a restriction, with the renaming
that this entails.

We wish to extend Busi and Zavattaro’s work by applying it to a fragment
with the out capability. The starting point is to note that an out reduction
can never increase depth. Therefore we can fulfil the bounded depth prop-
erty. In order to fulfil the finite name-space property we find it necessary to
disallow restriction. The reason is that with ambient movement it becomes
essential to extrude scopes, and so we may need to create unboundedly many
new names during a computation to avoid clashes. This is true even if we
reduce the language by replacing unrestricted recursion with replication (any
replication can be seen as an unrestricted recursion, but not, of course, vice
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versa). Consider for example

m[ ! νn (n[ out m ] | n[ ]) ]

→ νn1 (n1[ ] | m[n1[ ] | ! νn (n[ out m ] | n[ ]) ])

→ νn1n2 (n1[ ] | n2[ ] | m[n1[ ] | n2[ ] | ! νn (n[ out m ] | n[ ]) ])

. . .

There is no way to make the scopes of n1, n2, . . . disjoint, and so the compu-
tation uses infinitely many names.

We shall show that termination is decidable for the following language,
which we call Lop

o :

P ::= 0 | n[P ] | P | Q | open n.P | open n.P

| out n.P | out n.P | push n.P | X | rec X.P

(Recursion is unboxed in Lop
o .) The rest of this subsection is devoted to proving

this result (Theorem 5.21 below).

First we need to change from standard reduction to one which is finite-
branching. With ambient movement it is problematic to use labelled tran-
sition systems (as did Busi and Zavattaro). Therefore we go directly to a
finite-branching notion of reduction. We shall define what we call unfolding
reduction, which means that we unfold each recursion exactly once for each
reduction.

Looking at the rules for → given in Section 2, we see that the infinite
branching comes from the following two rules of structural congruence:

0 | P ≡ P rec X.P ≡ P{rec X.P/X}

The first allows indefinitely many nil processes to accumulate, while the sec-
ond allows us to unfold recursions indefinitely many times, even for a single
reduction. We therefore remove these rules from structural congruence, and
use commutative-associative structural congruence ≡ca (Section 2). Notice
that this is exactly what we used in Section 4.2 when proving that Lo is ter-
minating. In fact, the non-standard notion of reduction we defined there is
finitely branching, though we did not require that for the proof.

Next we define a non-standard notion of reduction →ca for L
op
o . This has

the same rules as normal reduction, with two changes:

(i) Much as when we defined a non-standard reduction in Section 4.2, we
include variants of the rules (SafeOpen), (SafeOut) and (Push) which
allow for the possible absence of processes in parallel with capabilities.
This is unnecessary with standard reduction where the law 0 | P ≡ P is
available.

(ii) We replace ≡ by ≡ca in rule (Str):

P ≡ca P
′ P ′ →ca Q

′ Q′ ≡ca Q

P →ca Q
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Since we have removed the rule of structural congruence which allows unfolding
of recursions, before performing a reduction we unfold each recursion exactly
once, producing what we call the unfolding of a process.

Definition 5.8 The (single) unfolding unf(P ) of an Lop
o term P is defined as

follows:

unf(rec X.P )
df
= unf(P ){rec X.P/X} ,

with unf(P ) being defined homomorphically for all other operators of Lop
o .

As an example, let

P
df
= out n.(X | rec Y.Q) Q

df
= X | Y | n[ ]

Then unf(rec X.P ) = out n.(rec X.P | (rec X.P | rec Y.Q | n[ ])).

The unfolding of a process allows every possible immediate reduction to go
ahead. The fact that a single unfolding is enough depends on the particular op-
erators of Lop

o . If we were dealing with in, then for instance recX.(X | m[ in m ])
needs to be unfolded twice to expose the redex. The difference between in and
out is that an in-redex involves two operators of the same kind (namely, ambi-
ents) at the same depth. Although an out-redex involves two ambients, they
are at different levels (one being inside the other). Since recursion is unboxed,
if an out-redex is exposed by a second unfolding, it (or an essentially identical
redex) must have been exposed by the first unfolding.

Definition 5.9 (Unfolding Reduction) P →u Q iff unf(P )→ca Q.

We must show that →u is finite-branching, and that a process has an infinite
→-computation iff it has an infinite →u-computation. First we prove some
lemmas. It is convenient to split structural congruence ≡ into two component
notions:

Definition 5.10 (i) Let ≡nca be the least congruence on L
op
o terms generated

by the following laws:

0 | P ≡nca P P | Q ≡nca Q | P (P | Q) | R ≡nca P | (Q | R)

(ii) Let . be the least precongruence on Lop
o terms generated by

rec X.P . P{rec X.P/X}

Thus ≡nca is ≡ca with the law for the nil process added. We get . by treating
the law recX.P ≡ P{recX.P/X} as a rewrite rule. Any derivation of P ≡ Q
is a chain of instances of ≡nca and . and its inverse /.

Lemma 5.11 Let P,Q,R, S be Lop
o terms and X a process variable.

(i) If P ≡nca Q and R ≡nca S then P{R/X} ≡nca Q{S/X}.

(ii) If P . Q and R . S then P{R/X} . Q{S/X}.

Proof. Straightforward and omitted. 2

Lemma 5.12 Let P be an Lop
o term. Then P . unf(P ).
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Proof. By structural induction on terms. All cases are immediate except
for recursion. So suppose that P . unf(P ). We must show that rec X.P .
unf(rec X.P ). Now rec X.P . P{rec X.P/X} and

unf(rec X.P ) = unf(P ){rec X.P/X} .

So the result follows from Lemma 5.11. 2

Lemma 5.13 Let P,Q be Lop
o terms.

(i) If P ≡nca Q then unf(P ) ≡nca unf(Q).

(ii) If P . Q then unf(P ) . unf(Q).

Proof.

(i) Structural induction on terms for each of the three laws of ≡nca, using
Lemma 5.11.

(ii) By induction on the derivation of P . Q. The only case which is not
immediate is recursion. Suppose that P = rec X.P ′ and P . Q is got by
a single unfolding. There are two possibilities for Q. Either Q is got by
unfolding the outermost recursion, or it is got by unfolding some recursion
inside P ′. In the first case we have Q = P ′{P/X}. Then unf(P ) =
unf(P ′){P/X} and unf(Q) = unf(P ′){unf(P )/X}. So unf(P ) . unf(Q)
by Lemma 5.11. In the second case we have Q = rec X.Q′ with P ′ . Q′

in one step. Then unf(Q) = unf(Q′){Q/X}. By inductive hypothesis,
unf(P ′) . unf(Q′), and unf(P ) . unf(Q) by Lemma 5.11.

2

Lemma 5.14 Let P,Q be Lop
o processes.

(i) If P ≡nca→ca Q then P →ca≡nca Q.

(ii) If P /→ca Q then P →ca / Q.

(iii) If P .→u Q then P →u≡ Q.

(iv) If P ≡→u Q then P →u≡ Q.

(v) P → Q iff P →u≡ Q.

Proof.

(i) Straightforward and omitted.

(ii) Suppose that P / P ′ in a single step. Then there is a context C{•} such
that P ′ = C{rec X.R} and P = C{R{rec X.R/X}}. Suppose P ′ →ca Q.
Then Q = C ′{rec X.R} for some C ′{•}. Furthermore P →ca Q′ where
Q′ = C ′{R{rec X.R/X}}. Clearly Q′ / Q as required.

(iii) Notice that the converse of (ii) does not hold: it is not the case that
if P .→ca Q then P →ca . Q, since in general unfolding recursions can
create new redexes.
The idea is that if a recursion has already been unfolded once, unfolding

a second time does not give any new redexes.
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Suppose that P . P ′ in a single step and unf(P ′)→ca Q. Then there is
a context C{•} such that P = C{R}, with R = recX.R1, and P

′ = C{R′},
with R′ = R1{R/X}.
Now unf(C{R}) = σR(C

′{unf(R)}) for some context C ′{•}, where σR
assigns recursive terms to any variables bound by recursion in C{•}. Also
unf(C{R′}) = σR′(C ′{unf(R′)}), where we have σR(Y ) . σR′(Y ) for any
variables bound by recursion in C{•}.

As a simple example, let C{•}
df
= rec Y.(Y | •). Then unf(C{R}) =

σR(Y | unf(R)), where σR(Y ) = C{R}, and unf(C{R′}) = σR′(Y |
unf(R′)), where σR′(Y ) = C{R′}.
We have unf(R1) ≡ca X i | Ra | Rc | Rr | Rn , where i ≥ 0, Ra is

the parallel composition of ambient terms, Rc is the parallel composition
of capability terms of the form M.P , Rr is the parallel composition of
recursive terms, and Rn is the parallel composition of nil processes. To
be precise, any or all of Ra , Rc , Rr , Rn may be absent from unf(R1).
Note that X does not occur free in Ra , since recursion is unboxed. Hence:

unf(R) = unf(R1){R/X}

≡ca R
i | Ra | Rc{R/X} | Rr{R/X} | Rn

unf(R′) = unf(R1{R/X})

= unf(R1){unf(R)/X}

≡ca (unf(R))i | Ra | Rc{unf(R)/X} | Rr{unf(R)/X} | Rn

Notice that in unf(R′) there are now i+ 1 copies of Ra. Also there are i
copies of Rc{R/X}.
Now we look at how the reduction unf(P ′) = σR′(C ′{unf(R′)}) →ca Q

can arise. Inspection of the redexes for open, out and push shows that
within unf(R′) at most one ambient and one capability can be involved.
Also the only possible movement is of an ambient term, which does not
involve unf(R). The subtlety is that the capability involved may come
from either Rc{R/X} or Rc{unf(R)/X}. Working up to ≡, we can as-
sume that the ambient term used is the rightmost one. Also, if the
capability term used is a Rc{R/X}, we can replace it by Rc{unf(R)/X}
and get a result equivalent under ≡, using the fact that R ≡ unf(R) by
Lemma 5.12. Hence

unf(P ′)→ca σR′(C ′′{unf(R)}) ≡ Q ,

for some context C ′′{•}. This reduction can be mimicked by

unf(P )→ca σR(C
′′{R}) .

Now σR′(C ′′{unf(R)}) ≡ σR(C
′′{R}). Hence P →u≡ Q as required.

(iv) Follows from (i), (ii) and (iii), using Lemma 5.13.

(v) (⇒) By induction on the derivation of P → Q, using (iv).
(⇐) Suppose P →u≡ Q. Then by Lemma 5.12 and the definition of →u,
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P .→ca≡ Q. Hence P → Q.

2

Lemma 5.15 Let P be an Lop
o process. Then P has an infinite→-computation

iff P has an infinite →u-computation.

Proof. (⇒) Much the same as Lemma 4.11, using Lemma 5.14.
(⇐) If there is an infinite→u-computation P →u P1 →u · · · , then P → P1 →
· · · is an infinite →-computation, by Lemma 5.14(v). 2

Lemma 5.16 (i) For any Lop
o term P , {Q : P ≡ca Q} is finite.

(ii) →u is finite-branching, and Succ(P ) is computable in P .

Proof. By structural induction on processes. Omitted. 2

Now we follow Busi and Zavattaro and define an ordering ¹ on processes,
which will be a wqo:

Definition 5.17 (cf. [5, Definition 4.17]) Let P,Q be Lop
o processes. Let P ¹

Q iff

(i) Q ≡ca P | R for some R, or

(ii) P ≡ca P1 | n[P2 ] and Q ≡ca Q1 | n[Q2 ], with P1 ¹ Q1 and P2 ¹ Q2.

Definition 5.18 The ambient nesting depth of an Lop
o term is defined as

follows:

and(0)
df
= 0 and(M.P )

df
= and(P )

and(n[P ])
df
= 1 + and(P ) and(X)

df
= 0

and(P | Q)
df
= max(and(P ), and(Q)) and(rec X.P )

df
= and(P )

Reductions do not increase depth:

Lemma 5.19 (i) Let P,Q be Lop
o terms. If P ≡ Q then and(P ) = and(Q).

(ii) Let P,Q be Lop
o processes. If P →u Q then and(P ) ≥ and(Q).

Proof. Straightforward and omitted. Note that the proof depends on recur-
sion being unboxed. 2

Proposition 5.20 Let P be an Lop
o process. Then (Deriv(P ),→u,¹) is a

well-structured transition system with decidable ¹ and computable Succ(−).

Proof. (Sketch) We show that ¹ is a decidable wqo on Deriv(P ) (using
Lemma 5.19, which gives us the Bounded Depth property), and that it is
upwards compatible with →u. We omit the details, referring the reader to
the proof of [5, Theorem 4.29]. We know from Lemma 5.16 that Succ(−) is
computable. 2

We can now prove the main theorem of this subsection:

Theorem 5.21 Termination is decidable for Lop
o .
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Proof. Termination of→u-computations is decidable for L
op
o by Theorem 5.7

and Proposition 5.20. Therefore by Lemma 5.15 termination of→-computations
is decidable for Lop

o . 2

Remark 5.22 We know that termination is undecidable for Lio (see proof of
Theorem 3.9). It follows from Theorem 5.21 that there can be no embedding
[[−]] from Lio into Lop

o which respects termination, in the sense that for any
process P of Lio, P has a non-terminating computation iff [[P ]] has a non-
terminating computation.

5.2 Decidability for in

We now turn to showing that termination is decidable for a language with the
in capability and full replication (rather than replication on capabilities, as
considered in Section 4). We start by noting that even such a simple process
as !n[ in n ] can have a computation with unbounded ambient nesting depth.
The proof method of Theorem 5.21 is therefore not available.

Let Lin be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | !P

We shall show that termination is decidable for Lin (Theorem 5.34 below).
Our strategy is first to remove all replications except those on capabilities and
ambients. Next we define a non-standard notion of reduction which detects
any possible divergence and terminates the computation immediately.

Let L′in be the following language:

P ::= 0 | n[P ] | P | Q | in n.P | !n[P ] | ! in n.P

We see that L′in is the sublanguage of Lin got by requiring that replication can
only be applied to ambients and in. Note that if P is a process of L′in and
P → Q then Q is also a process of L′in.

Define an encoding [[−]] from Lin to L
′
in homomorphically except for repli-

cation, where we let

[[ !0]]
df
= 0 [[ ! (P | Q)]]

df
= ! [[P ]] | ! [[Q]] [[ ! !P ]]

df
= ! [[P ]]

[[ !n[P ]]]
df
= !n[ [[P ]] ] [[ ! in n.P ]]

df
= ! in n.[[P ]]

We next define a non-standard notion of structural congruence ≡ ! on Lin.
It is the least congruence generated by the usual laws of standard structural
congruence appropriate for the operators of Lin (Section 2), together with the
following:

!0 ≡ ! 0 ! !P ≡ ! !P ! (P | Q) ≡ ! !P | !Q

These laws are to be found in for instance [12].

Lemma 5.23 For any Lin process P , P ≡
! [[P ]].

Proof. By structural induction on Lin processes. Omitted. 2
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Lemma 5.24 For any Lin processes P,Q, if P ≡
!→ Q then P →≡ ! Q.

Proof. By induction on the derivation of ≡ ! . Omitted. 2

Lemma 5.25 Let P be an Lin process. Then P has an infinite computation
iff [[P ]] has an infinite computation.

Proof. Follows immediately from Lemma 5.23 and Lemma 5.24. 2

To decide whether a process P of L′in has a non-terminating computation,
we shall define a non-standard reduction relation→D which is finite-branching
and which traps non-termination finitely, so that every computation termi-
nates.

As in Section 5.1, in order to achieve finite branching we use commutative-
associative structural congruence ≡ca instead of standard structural congru-
ence ≡. Since we omit the rules for nil and replication we compensate with
extra reduction rules, much as in Section 4.2. These ensure that replications
are unfolded once as needed:

(In1) n[ in m.P | Q ] | m[R ] →D m[n[P | Q ] | R ]

(In2) n[ ! in m.P | Q ] | m[R ] →D m[n[P | ! in m.P | Q ] | R ]

(In3) n[ in m.P | Q ] | !m[R ] →D m[n[P | Q ] | R ] | !m[R ]

(In4) n[ ! in m.P | Q ] | !m[R ] →D m[n[P | ! in m.P | Q ] | R ] | !m[R ]

Also, because we cannot add in nil using structural congruence to match a
redex, for each of the above four rules there is another rule which is the same
except that Q is not composed in parallel. We omit these rules.

(Amb)
P →D P ′

n[P ]→D n[P ′ ]
(Str)

P ≡ca P
′ P ′ →D Q′ Q′ ≡ca Q

P →D Q

(Par)
P →D P ′

P | Q→D P ′ | Q

We introduce a new constant DIV which represents divergence, and which can
occur only on the right-hand side of→D. Thus→D⊆ L′in× (L

′
in ∪{DIV}). We

add the following rules which trap divergence caused by replicated ambients
being able to perform repeated ins:

(InDiv1) !n[ in m.P | Q ] | m[R ] →D DIV

(InDiv2) !n[ ! in m.P | Q ] | m[R ] →D DIV

(InDiv3) !n[ in m.P | Q ] | !m[R ] →D DIV

(InDiv4) !n[ ! in m.P | Q ] | !m[R ] →D DIV

(InDiv5) !n[ in n.P | Q ] →D DIV

(InDiv6) !n[ ! in n.P | Q ] →D DIV

As previously, there are another six rules like the above but with Q missing.
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Another form of divergence associated with replicated ambients is trapped by
the next rule:

(AmbDiv)
P →D P ′

!n[P ]→D DIV

Finally we add four rules to propagate derivations of DIV:

(DivAmb)
P →D DIV

n[P ]→D DIV
(DivRep)

P →D DIV

!n[P ]→D DIV

(DivPar)
P →D DIV

P | Q→D DIV
(DivStr)

P ≡ca P
′ P ′ →D DIV

P →D DIV

Notice that DIV has no reductions. We complete the definition of →D by
stipulating that DIV takes priority over any derivative in L′in:

• If P →D DIV then P 6→D Q for all Q ∈ L′in.

We need this condition, because otherwise we could have infinite →D compu-

tations, which we wish to avoid. An example is P
df
= m[ in m ] | !m[ in m ]. We

have P →D DIV, but without the priority condition we would also have the
infinite computation P →D m[m[ ] | in m ] | !m[ in m ]→D · · · .

Lemma 5.26 (L′in,→
D) is finite-branching and, given P ∈ L′in, we can effec-

tively compute its successors under →D.

Proof. Straightforward and omitted. 2

We now establish the relationship between → and →D:

Lemma 5.27 Let P,Q be L′in processes.

(i) If P →D Q then P → Q.

(ii) If P →D DIV then P →ω.

(iii) If P ≡→D DIV then P →D DIV.

(iv) If P ≡→D Q then P →D≡ Q.

(v) If P → Q then either P →D≡ Q or P →D DIV.

Proof.

(i) Straightforward and omitted.

(ii) Any reduction P →D DIV must arise from one of the twelve (InDiv)
rules, or from (AmbDiv). In each case it is easy to construct an infinite
→-computation.

(iii) By induction on the derivation of ≡. The idea is that the derivation of
DIV is unaffected by whether replications are folded or unfolded, since
the various rules for DIV work directly on replicated processes. We omit
the details.

(iv) By induction on the derivation of ≡. Much as in the previous item, there
is no need to unfold replications in order to obtain reductions, since we
have rules (In2)-(In4) as well as the standard (In1). We omit the details.
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(v) By induction on the derivation of P → Q, using (iii) and (iv).

2

Having obtained the desired finite-branching transition system →D, we now
complete the proof that termination for (L′in,→) is decidable by showing that
(L′in,→

D) is terminating. We adapt Method 2 for showing that Lm
īi
is termi-

nating (Section 4.1).

As in Section 4.1, let us write P →D
top Q for a top-level reduction (one

that does not use the rule (Amb)) and P →D
lower Q for a lower-level reduction

(one that does use (Amb)). We do not make this distinction for P →D DIV

reductions. The next lemma is similar to Lemma 4.6.

Lemma 5.28 Let P,Q be L′in processes. If P ⇒
D
lower→

D
top Q then P →

D
top⇒

D
lower

Q.

Proof. Straightforward and omitted. 2

Lemma 5.29 (L′in,→
D
top) is terminating.

Proof. Take any L′in process P . We have

P ≡ca P
cap |

∏

i∈I

mi[Qi ] |
∏

j∈J

!nj[Rj ] |
∏

k∈K

0 ,

where P cap is the capability component of P (see Section 4.1). Any →D
top

computation starting from P will be finite; in fact, it can have no more than
|I| reductions. This is because each mi[Qi ] can perform at most one top-level
in; also at no stage in the computation can we have any top-level reduction
where an ambient spun-off from some !nj[Rj ] enters another ambient (as this
would imply P →D DIV, which would prevent any →D

top reductions). 2

As in Section 4.1, let us write P ↘ Q if P ≡ m[Q ] | R for some R. The next
lemma is similar to Lemma 4.7.

Lemma 5.30 Let P be a L′in process. Suppose that P has an infinite compu-
tation P (→D)ω. Then P ⇒D

top↘ (→D)ω.

Proof. The proof is on the lines of that of Lemma 4.7. Suppose P (→D)ω.
By Lemma 5.29 the computation P (→D)ω will have finitely many →D

top re-
ductions. Using Lemma 5.28 we can transform P (→D)ω into another in-
finite computation with all →D

top reductions carried out at the beginning:
P ⇒D

top P
′(→D

lower)
ω. Then P ′ must have at least one top-level (unreplicated)

ambient, and there must be an infinite computation inside one of these top-
level ambients r[P ′′ ]. So P ⇒D

top P
′ ↘ P ′′(→D)ω as required. 2

Recall that in Section 4.1 we defined the capability degree of an ambient.
We need to adapt that definition to the present language L′in, where we have
replicated ambients. First we define the capability and replicated ambient depth
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of a process:

crad(0)
df
= 0 crad(in n.P )

df
= crad(P ) + 1

crad(n[P ])
df
= crad(P ) crad( !n[P ])

df
= crad(P ) + 1

crad(P | Q)
df
= max(crad(P ), crad(Q)) crad( ! in n.P )

df
= crad(P ) + 1

Note that this definition increases depth for capabilities and replicated ambi-
ents. Next we define the degree of an ambient or replicated ambient:

degree(n[P ])
df
= crad(P cap) degree( !n[P ])

df
= crad( !n[P ])

The idea is that the degree of an ambient is unaffected by other ambients
entering. Also, if an ambient unleashes “child” ambients or replicated ambi-
ents inside itself as a result of entering another ambient, such children will
have lower degree. Moreover, if a replicated ambient !n[P ] spins off n[P ]
then n[P ] and all unguarded ambients and replicated ambients inside n[P ]
will have lower degree than !n[P ]. Note that the degree of an ambient can
decrease as a result of that ambient performing an in.

Lemma 5.31 (L′in,→
D) is terminating.

Proof. Let P be an L′in process. From Lemma 5.30, we see that if P has
an infinite →D computation then P has an infinite ⇒D

top↘ computation. To
show that infinite⇒D

top↘ computations are impossible, we assign multisets to
processes and define an ordering on these multisets which is well-founded and
strictly decreasing with respect to ⇒D

top↘.

As when using Method 2 to show that Lm
īi
is terminating, for a completely

formal proof we would have to develop an apparatus for labelling ambients and
members of multisets in order to make precise the correspondence between the
two. We would also have to keep track of which ambients are spun off from
which occurrences of replicated ambients. Again we have suppressed all of this
in the interests of readability.

Let P0, . . . , Pi, . . . be an infinite ⇒
D
top↘ computation (i.e. Pi →

D
top Pi+1 or

Pi ↘ Pi+1, and there are infinitely many i for which Pi ↘ Pi+1). We assign to
each Pi a finite multiset Si. Its elements will be ordered pairs (d, T ) consisting
of a natural number d and a finite multiset T of natural numbers. Let us
say that an ambient (or replicated ambient) is IR-guarded if it occurs inside
the scope of an in (or ! in), or inside a replicated ambient. The negation of
IR-guarded is IR-unguarded. The multiset Si will satisfy the following:

(i) For each (d, T ) ∈ Si, and for each d
′ ∈ T we have d′ < d.

(ii) The numbers in Si are precisely all degrees of IR-unguarded ambients
and IR-unguarded replicated ambients in Pi: there is a bijective corre-
spondence which
(a) maps each IR-unguarded ambient m[Q ] of Pi to d ≥ degree(m[Q ])

in Si, and
(b) maps each IR-unguarded replicated ambient !m[Q ] of Pi to number
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d = degree( !m[Q ]) in Si,
either as the left-hand component of some (d, T ) ∈ Si or as some d ∈ T
where (d′, T ) ∈ Si.

(iii) (a) If m[Q ] occurs at the top level in Pi, and m[Q ] was not spun off
from some top-level replicated ambient, then m[Q ] corresponds to d
in some (d, T ) in Si.

(b) If !m[Q ] occurs at the top level in Pi, then !m[Q ] corresponds to
d in some (d, T ) in Si.

(iv) If m[R ] (resp. !m[R ]) corresponds to d′ ∈ T for some (d, T ) in Si, then
m[R ] (resp. !m[R ]) is IR-unguarded inside some m[Q ] corresponding
to d, or else d corresponds to a top-level IR-unguarded replicated ambient.

We create S0 as follows: For each IR-unguarded ambient m[Q ] of degree d
contained in P0, we add the ordered pair (d, ∅) to S0. Similarly, for each IR-
unguarded replicated ambient !m[Q ] of degree d contained in P0, we add the
ordered pair (d, ∅) to S0. Plainly properties (i–iv) are established.

In the computation there are two kinds of reductions: →D
top and ↘. Sup-

pose that Pi →
D
top Pi+1. There are two kinds of →

D
top reduction:

• An ambient m1[Q1 ] of degree d1 enters an ambient m2[Q2 ], using rules
(In1) or (In2).

• An ambient m1[Q1 ] of degree d1 enters an ambient m2[Q2 ] spun off from
!m2[Q2 ] of degree d2, using rules (In3) or (In4).

In both cases, by (iii), m1[Q1 ] corresponds to d
′
1 in (d

′
1, T1), with d1 ≤ d′1.

The reduction may produce children within m1[Q1 ], and we add their degrees
(which are less than d1) to T1. In the second case, by (iii), !m2[Q2 ] corre-
sponds to d2 in (d2, T2). We have new IR-unguarded ambients and replicated
ambients produced by spinning off m2[Q2 ]; we add their degrees (which are
less than d2) to T2. In this way we create Si+1. It is easy to check that
properties (i–iv) are established for Si+1.

Now suppose that Pi ↘ Pi+1. The ↘ reduction selects a top-level ambi-
ent m[Pi+1 ], and keeps Pi+1 while discarding its enclosing ambient and any
other top-level processes in parallel with m[Pi+1 ]. To create Si+1, first we re-
move each top-level replicated ambient, and remove from Si the corresponding
(d, T ), replacing it by (d′, ∅) for each d′ ∈ T . Call this new set S ′i. Suppose
that m[Pi+1 ] is of degree d0. By (iiia) and the construction it corresponds
to an element (d′0, T0) of S

′
i. Secondly we remove all other top-level ambients

together with their contents. We remove the corresponding entries in S ′i. Note
that by (iii), (iv) and the construction, if any member of some (d, T ) is to be
removed, then so are all the remaining members. Thirdly we remove (d′0, T0)
from S ′i, and for each d ∈ T0 we add (d, ∅) to S

′
i. Note that each d < d0 ≤ d′0.

Only this third stage is guaranteed to take us down in the multiset ordering.
In this way we create Si+1.

Properties (i), (ii) and (iv) are clearly established for Si+1. As to (iii),
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suppose that ( ! )m[R ] is a top-level ambient or replicated ambient in Pi+1

which corresponds to d′ ∈ T for some (d, T ) in Si+1. Then this (d, T ) was
already in Si. Therefore by (iv) for Si and the construction of Si+1, ( ! )m[R ]
was inside some m[Q ] corresponding to d. The only way that ( ! )m[R ] can
be top-level in Pi+1 is for m[Q ] to be m[Pi+1 ], which means that ( ! )m[R ]
corresponds to d′ in some (d′, ∅) in Si+1. Thus we have established (iii).

Recall the well-founded ordering on multisets of Definition 4.2 and Propo-
sition 4.3. If we consider just the first members of the pairs in the multisets Si,
we see that a →D

top reduction leaves the set unchanged, while a ↘ reduction
removes one element and replaces it with a finite set of smaller elements (it
also removes zero or more elements completely, corresponding to the discarded
top-level processes). So each ⇒D

top↘ reduction takes us down in the Â order-
ing. By well-foundedness of Â there is no infinite ⇒D

top↘ computation, and
thus no infinite →D computation. 2

Lemma 5.32 Let P be an L′in process. Then P has an infinite→-computation
iff P ⇒D DIV.

Proof. (⇒) Suppose P = P0 → · · · → Pi → · · · is an infinite computation.
Assume for a contradiction that it is not the case that P ⇒D DIV. We
shall construct by induction an infinite →D-computation, which contradicts
Lemma 5.31. Let P ′0 = P0. Suppose that we have P

′
0 →

D · · · →D P ′i with
P ′j ≡ Pj for all j ≤ i. Since P ′i ≡ Pi → Pi+1, we have P

′
i → Pi+1, and by

Lemma 5.27(v) there exists P ′i+1 such that P
′
i →

D P ′i+1 and P
′
i+1 ≡ Pi+1, since

P ′i →
D DIV is impossible by assumption.

(⇐) Suppose P ⇒D DIV. Then P →ω by Lemma 5.27(i,ii). 2

Lemma 5.33 Termination is decidable for (L′in,→).

Proof. To decide whether P has an infinite computation, by Lemma 5.32 we
need only check whether P ⇒D DIV. We do this by computing the entire
computation tree of P under →D (of course, we can stop if and when DIV is
encountered). This is possible by Lemma 5.26 and Lemma 5.31. 2

We can now state our main theorem:

Theorem 5.34 Termination is decidable for Lin.

Proof. By Lemma 5.25 and Lemma 5.33. 2

Remark 5.35 It is an open question whether termination is decidable when
Lin is extended with safe in as in SA. The proof method used for Theorem 5.34
appears not to work, since it relies on defining a non-standard reduction rela-
tion which is terminating. The difficulty is to find such a relation for which
there can be no infinite top-level computation (as shown for (L′in,→

D
top) in

Lemma 5.29). Here is an example to show the extra complications that arise
with SA:

m[ in m1 ] | !m1[ in m1.in m2 ] | !m2[ in m2.in m3 ] | · · · | !mk[ in mk.in m1 ]
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Here m[ inm1 ] acts as a catalyst to set in motion a cycle of k top-level reduc-
tions, which can repeat without end. This divergence can only be detected by
consideration of all k + 1 processes.

5.3 Decidability for pull

Let Lpull be the following language:

P ::= 0 | n[P ] | P | Q | pull n.P | !P

Theorem 5.36 Termination is decidable for Lpull.

In proving the theorem we follow the same strategy as for Theorem 5.34. We
first change from Lpull with full replication to L

′
pull with replication just on pull

and ambients. Next we define a non-standard reduction relation →D which
traps divergence finitely. We then show that (L′pull,→

D) is terminating, which
gives us a decision procedure. As the development is very similar to that of
Section 5.2, we omit most details and just mention a few points.

The rules for →D are as in Section 5.2, except that we replace rules (In1)-
(In4) by five variants of (Pull), and (InDiv1)-(InDiv6) by:

(PullDiv1) n[ ! pull m.P | Q ] | !m[R ] →D DIV

(PullDiv2) !n[ pull m.P | Q ] | !m[R ] →D DIV

(PullDiv3) !n[ ! pull m.P | Q ] | !m[R ] →D DIV

(PullDiv4) !n[ pull n.P | Q ] →D DIV

(PullDiv5) !n[ ! pull n.P | Q ] →D DIV

Matters proceed as in Section 5.2 until we reach the analogue of Lemma 5.29,
which is proved rather differently:

Lemma 5.37 (L′pull,→
D
top) is terminating.

Proof. Take P0 in L′pull, and suppose that there is an infinite computation
P0 →

D
top · · · →

D
top Pi →

D
top · · ·. Then either (i) at least one top-level ambient

performs infinitely many pulls, or (ii) at least one top-level replicated ambient
performs infinitely many pulls.

If a single ambient performs infinitely many pulls, it can only do so because
of a replicated capability ! pull n. Also, P0 must have a top-level !n[Q ].
Suppose that ! pull n is first enabled in Pi. Then we have Pi →

D DIV by
(PullDiv1), and so Pi 6→

D
top.

Suppose that a single replicated ambient, say !m[P ], performs infinitely
many pulls. There must be some name n for which !m[P ] performs pull n
infinitely often. But this is only possible if P0 has a top-level !n[Q ] (which
may of course be the same as !m[P ]). This means that P0 →

D DIV, using
one of rules (PullDiv2)-(PullDiv5). Hence P0 6→

D
top. 2
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As far as the analogue of Lemma 5.31 is concerned, the proof is much the
same, though we note that there is a difference when it comes to analysing
→D

top reductions. With L′in, a spun-off ambient could not perform an in, and
hence could not have children. By contrast, with L′pull spun-off ambients can
pull in other ambients, and so can have children. If the spun-off ambient
corresponds to d′ ∈ T , where (d, T ) ∈ Si, we can add the degrees of its
children to T , since we know that they are less than d′ < d.

6 Conclusions and Future Work

The main contribution of this paper is to show that the open capability is not
needed to obtain Turing completeness for pure Ambient Calculi. This implies
that pure Boxed Ambients is Turing-complete.

We have sought to establish the minimality of the language Lio by show-
ing that removing either in or out capabilities leads to a failure of Turing
completeness in a rather dramatic fashion: every computation terminates.

A language very like Lio is studied in [22]. There it is shown that this
language admits symmetric electoral systems, and also that any fragment of
MA with this property must possess both in and out capabilities. It follows
that there can be no encoding satisfying certain conditions of reasonableness
from Lio into any fragment of MA not including both in and out capabilities.

We summarise our main contributions to understanding the computational
strength of MA dialects in Figure 3 below. In the diagram we label each node
with a language and with its strength. The languages all have full replication
(where not stated otherwise) and are identified by the capabilities reported
on the node. For example, open, in, out is pure public MA. A similar diagram
holds for the results on PAC, with one exception: the language with push alone
and replication just on push is not terminating (see Section 4.2), and so has
decidable termination. In addition, a similar diagram holds for the results on
SA, with two exceptions: (1) the language with out, out alone and replication
just on out, out is not terminating (see Section 4.2), and so has decidable
termination; and (2) it is an open question whether the language with in, in

and full replication has decidable termination (see Remark 5.35).

We briefly mention some open questions/future work:

• As far as the study of the computational strength of fragments of pure
Ambient Calculi is concerned, the major open question is the strength of
the fragment with in and open capabilities (but not out).

• The present work leads us to ask what might be a set of minimal constructs
of AC capable of encoding regular expressions or context-free grammars.

• We have found interesting links between our Method 2 in the proof of The-
orem 4.8 and the proof of Theorem 2 of [13]: exploring this relation might
lead to the discovery of interesting links with proof theory and independence
results for Peano Arithmetic.

39



Maffeis and Phillips

open, in

open, out

in, out

in, !M Thm.4.8

in, out, !M Th.3.9

open, !M

Lop

ioa Thm.3.8

open, in, out [5]

open, out, rec . Thm.5.21

out

out, !M Thm.4.14

in Thm.5.34
open

Turing Complete

Open problem

Termination Decidable

Terminating

!M = replication on capabilities

Fig. 3. Computational strength of some Ambient Calculi
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A Encoding of CMs into Lop

ioa

We present an encoding of CMs into the language Lop

ioa defined in Section 3.4:

P ::= 0 | n[P ] | P | Q | open n.P | in n.0 | out n.0 | ! open n.P

Theorem 3.8 Lop

ioa is Turing-complete.

Proof. The proof of Turing completeness follows the structure of that of The-
orem 3.7.

42



Maffeis and Phillips

Numerals contain movement capabilities to interact with the instruction for
decrement/jump, and each register contains a capability that will allow it to
interact with both instructions:

0
df
= z[ in jz ]

k + 1
df
= s[ k | in ds ]

[[Rj(k)]]
df
= rj[ in rj | k ]

The encoding is completely deterministic, since at each step only one reduction
is possible. We define the encoding at the lth stage of an arbitrary configura-
tion of CM :

[[CM(i : k0, . . . , kb)]]l
df
= sti[ ] |

∏

i≤a

[[Ii]]l |
∏

j≤b

[[Rj(kj)]]

We now describe the encoding of the instructions. To increment a register rj,
we first make it enter in a dummy copy of itself which, once it acknowledges
the presence of the register, moves into a skeleton containing the additional
successor ambient to add. Once this dummy rj is inside s, it is opened, the
numeral is released inside the new s, and an acknowledgement ambient b is
recognised both by the enclosing rj, which creates its new capability in rj, and
successively (ambient c) by the environment which releases the incremented
register in the top level, along with the token for the continuation sti+1.

[[i : Inc(j)]]l
df
=

! open sti.(rj[ open rj.(in u | in rj | in s) ]

| u[ rj[ open b.in rj | s[ in ds | open rj.b[ out s | c[ out rj | out u ] ] ] ] ]

| open c.open u.sti+1[ ])

Notice that the encoding of i : Inc(j) does not in fact depend on the step l
of the computation, since there is no garbage (there will be garbage when we
come to decrement/jump). The encoding satisfies:

sti[ ] | [[i : Inc(j)]]l | [[Rj(k)]]⇒ sti+1[ ] | [[i : Inc(j)]]l+1 | [[Rj(k + 1)]]

The instruction for decrement/jump is complicated by the need to dispose
of the jump branch if a decrement is executed, or the decrement branch if the
register contains 0.

[[i : DecJump(j, i′)]]l
df
= ! open sti.rj[ open rj.(DS(i) | JZ(i) | F (i) | in rj) ]

| CLR(i, ds) | CLR(i, jz)

| GRB(i, ds, jump(i, l)) | GRB(i, jz, dec(i, l))

The strategy consists in opening the instruction trigger (sti), inviting the
register inside a dummy copy where it is opened and then having the numeral
itself selecting either the DS(i) or the JZ(i) term according to its value. The
selected term must make sure that the other one is disposed and processes

43



Maffeis and Phillips

CLR(i, ds), CLR(i, jz) make sure (interacting with F (i)) that all the garbage
is collected, and trigger the appropriate continuation.

Below, x and y are complementary syntactic macros, such that if x = jz
in a term, then y = ds (and vice versa).

DS(i)
df
= ds[ open s.DISP1(i, jz) | in ddsi | in b ]

JZ(i)
df
= jz[ open z.(DISP1(i, ds) | z[ in jz ]) | in djzi | in b ]

F (i)
df
= open a.open end.open djzi.open ddsi.open b

CLR(i, x)
df
= ! open dxi.a[ in rj | DISP2(i, y) ]

GRB(i, ds, n)
df
= (b[ open s.DISP1(i, jz) ])n

GRB(i, jz, n)
df
= (b[ open z.(DISP1(i, ds) | z[ in jz ]) ])n

DISP1(i, x)
df
= dxi[ out y | b[ open x.c[ out b ] ] | open c.out rj ]

DISP2(i, x)
df
= dxi[ b[ open x.end[ out b | out dxi | dyi[ ] ] | ST (x) ] ]

ST (ds)
df
= sti+1[ out rj ]

ST (jz)
df
= sti′ [ out rj ]

We follow step by step an example where decrement takes place. The case
for jump is almost symmetric. The initial state is

. . . | sti[ ] | [[i : DecJump(j, i′)]]l | [[Rj(k + 1)]] | . . . .

After the first three steps we reach

. . . | rj[ s[ k | in ds ] | DS(i) | JZ(i) | F (i) | in rj ] | . . . .

Now s enters ds, it is opened, and djzi exits ds:

. . . | rj[ ds[ k | in ddsi | in b ]

| djzi[ b[ open jz.c[ out b ] ] | open c.out rj ] | . . . ] | . . .

Ambient jz enters djzi and b, gets opened, c leaves b, gets opened, and djzi
leaves rj.

. . . | rj[ ds[ . . . ] | F (i) | in rj ] | djzi[ b[ open z.(. . .) ] ] | CLR(i, jz) | . . .

Now djzi is opened by CLR(i, jz), a enters rj and gets opened by F (i) re-
leasing DISP2(i, ds) in rj.

. . . | rj[ ds[ . . . ] | open end.(. . .) | in rj | DISP2(i, ds) ] | GRB(i, jz, 1) | . . .

Ambient ds now enters ddsi and b, gets opened, and ambient end exits to the
top level in rj.

. . . | rj[ ddsi[ b[ k | ST (ds) ] ] | open end.(. . .) | in rj | end[ djzi[ ] ] ] | . . .

Now end is opened, followed by djzi, then ddsi, and finally b is opened, re-
leasing the continuation, which exits rj. Assuming that dec(i, l) = m, we
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have

. . . | sti+i[ ] | rj[ k | in rj ] | GRB(i, jz, 1) | GRB(i, jz,m) | . . .

By definition, we have thatGRB(i, jz, 1) | GRB(i, jz,m) = GRB(i, jz,m+ 1),
and since a decrement has been executed dec(i, l+1) = m+1, and we conclude
with

. . . | sti+i[ ] | [[i : DecJump(j, k)]]l+1 | [[Rj(k)]] | . . .

2

B Encoding of CMs into Lio

We present an encoding of CMs into the language Lio defined in Section 3.5:

P ::= 0 | n[P ] | P | Q | in n.P | out n.P | ! in n.P | ! out n.P

Theorem 3.9 Lio is Turing-complete.

Proof. (See first the sketch in Section 3.5.) We consider a particular CM
called CM , with instructions I0, . . . , Ia and registers R0, . . . , Rb. Let CM(i :
k0, . . . , kb) represent CM when it is about to execute instruction i and storing
kj in register j (j ≤ b). Let the (unique) finite or infinite computation of
CM = CM0 be CM0, CM1, . . . , CMl, . . ., where CMl = CM(il : k0l, . . . , kbl).

Each register Rj (j ≤ b) is encoded as an rj ambient enclosing a numeral
process k encoding the stored natural number k. Let the instructions Ii be
numbered from 0 to a. The outer rj ambient has the task of entering any sti
ambient (i ≤ a). The first register R0 is additionally allowed to enter sta+1.
This will allow R0 to be conveyed back up to the top level to give the result
of the computation.

In describing the encoding of the register and instructions, we must take
into account the fact that the both the increment and the decrement/jump
instructions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the index l of the stage we have reached in the
computation. Let

• inc(i, l) be the number of increments

• dec(i, l) be the number of decrements

• decs(i, l) be the number of decrements leaving the register contents non-zero

• decz(i, l) be the number of decrements leaving the register contents zero

• jump(i, l) be the number of jumps

performed by instruction i during the computation of CM up to, but not
including, stage l. Clearly, dec(i, l) = decs(i, l) + decz(i, l).

[[R0(k)]]l
df
= r0[ k l |

∏
i≤a+1 ! in sti ]

[[Rj(k)]]l
df
= rj[ k l |

∏
i≤a ! in sti ] (1 ≤ j ≤ b)
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Register 0 has special treatment to deal with finishing off the computation
and making the contents available to any further computation. The numeral
processes are defined as follows:

0 l
df
= z[ IZ | Dt | (increq[ ! in s.in t ])

inc(i,l) ]

IZ
df
= ! in s.in t

Dt
df
= ! in dect′.out dect′.out t.out dect

Here IZ helps with increment, and Dt helps with decrement. The increq
ambients build up as garbage inside 0 l with each increment.

k + 1
l

df
= s[DS | Dt | t[DT | Ds | k l ] ]

DS
df
= in decs

DT
df
= in dect

Ds
df
= in decs′.out decs′.out s.out decs

The processes inside s and t help with decrement.

It is convenient to have a monitor process Mon which checks that all the
registers and instructions have entered the sti ambient to reach the current
level.

Mon
df
= m[

∏
i≤a ! in sti.Mi ]

Mi
df
= in p0.out p0. · · · in pa.out pa.in r0.out r0. · · · .in rb.out rb.mi[ out m ]

Once the monitor has finished checking, it unleashes ambient mi and instruc-
tion i is free to go ahead. Once sti appears, the instructions and registers
reach the next level in an indeterminate order. However, once the monitor has
finished its check, the computation proceeds deterministically until execution
of Ii is complete (except for a limited concurrency in the increment, noted
below).

We now describe the encoding of the CM instructions. The process corre-
sponding to instruction Ii (i ≤ a) is of the form

[[Ii]]l
df
= pi[ (

∏

i′≤a

! in sti′) | ! in mi.out mi.Pi | Gil ]

where Pi carries out the instruction, which is either increment or test and
decrement or jump, and Gil is the garbage which accumulates during the
computation up to stage l. The process Pi will first exit pi and then enter the
appropriate register rj.

Once the computation is complete, the sta+1 ambient conveys R0 back up
to the top level using the following process:

Fa+1
df
= check[ in r0.out r0.out sta+1 ] | in check.out check.(

∏

i≤a

! out sti)

Thus sta+1[Fa+1 ] first checks whether R0 has entered, and then moves up to
the top level. The check ambient is left behind as garbage. For i ≤ a, the sti
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ambient does nothing further once it has appeared at the current level; it is

convenient to define Fi
df
= 0 (i ≤ a).

Before giving the instruction and garbage processes Pi, Gil in detail, we
complete the encoding of the CM. We capture the way that the computation
moves down successive levels by the following contexts:

C0{•}
df
= •

Cl+1{•}
df
= Cl{stil [mil [ ] | • ]}

where il is the instruction performed at the lth stage. The overall encoding of
the CM is:

[[CM(i : k0, . . . , kb)]]l
df
=

Cl{sti[ ! out t.out s | Fi ] |Mon | (
∏

i≤a[[Ii]]l) | (
∏

j≤b[[Rj(kj)]]l)}

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The encoded CM will go through

successive stages [[CMl]]l. We show that for each non-terminal stage l, [[CMl]]l ⇒
[[CMl+1]]l+1, and that [[CMl]]l is guaranteed to reach [[CMl+1]]l+1. There are
various cases according to whether we are dealing with increment, decrement
or jump.

The increment instruction i : Inc(j) is carried out by an ambient increq
which leaves pi and then penetrates to the core of the register rj (inside z).
Then sti+1 is unleashed, and leaves increq and z. The new s[ t[ ] ] then leaves
sti+1. Now z can enter s followed by t. We need to check that z has reached the
core. So sti+1 enters s, t and finally z. Note that there is limited concurrency
at this point between z entering s, t and sti+1 entering s, t. This does not
cause a problem, as there is synchronisation when sti+1 enters z. Now the
increment is complete, and sti+1 makes its way back out of rj. At this point
the next instruction is triggered.

Pi
df
= increq[ out pi.in rj.( ! in s.in t | in z.IST ) ]

IST
df
= sti+1[ out increq.out z.(s[ out sti+1.(DS | Dt | t[DT | Ds ]) ] | IA) ]

IA
df
= in s.in t.in z.out z.( ! out t.out s | out rj.Fi+1)

Note that increq[ ! in s.in t ] is left as garbage at the core of the register inside

z. There is no garbage inside pi, and so we define Gil
df
= 0.

In order to implement the instruction i : DecJump(j, i′), we must test for
whether the register Rj is zero or nonzero. This is done by the following
process:

Pi
df
= test[ out pi.in rj.(Qz | Qs) ]

Qz
df
= in z.out z.out rj.in pi.sti′ [ out test.out pi.Fi′ ]

Qs
df
= in s.out s.out rj.in pi.P

′
i
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The test ambient enters rj. If it detects z it leaves the register, re-enters pi
and unleashes instruction i′. The process test[Qs ] remains as garbage inside
pi. Otherwise test detects s, leaves the register, re-enters pi and unleashes
process P ′i , which performs the decrement of the register before proceeding to
instruction i+ 1. The process test[Qz ] remains as garbage inside pi.

Decrement is performed in two stages: first strip off the outermost s, and
then strip off t.

P ′i
df
= decs[ out test.out pi.in rj.(decs

′[ in s ] | in t.out t.out rj.in pi.P
′′
i ) ]

To start with, decs goes to the top level inside rj. Suppose the register contains
k + 1

l
. The portion of interest of the CM process is:

. . . rj[ decs[ decs
′[ in s ] | in t.(. . .) ] | s[DS | Dt | t[DT | Ds | k l ] ] ] . . .

Then the whole contents of the register enter using DS. Then decs′ enters s,
which activates Ds, leading to t going to the top level inside rj.

. . . rj[ decs[ in t.(. . .) | s[ decs
′[ ] | Dt ] ] | t[DT | k l ] ] . . .

This is detected by decs, which exits rj, enters pi and unleashes P
′′
i . The

first stage is completed. The process decs[ s[Dt | decs
′[ ] ] ] remains as garbage

inside pi.

Now we must strip off the outermost t to complete the decrement. The
procedure is roughly the same, with s and t swapped.

P ′′i
df
= dect[ out decs.out pi.in rj.(dect

′[ in t ] | Q′s | Q
′
z) ]

Q′s
df
= in z.out z.P ′′′i

Q′z
df
= in s.out s.P ′′′i

P ′′′i
df
= out rj.in pi.sti+1[ out dect.out pi.( ! out t.out s | Fi+1) ]

The ambient dect enters the register:

. . . rj[ dect[ dect
′[ in t ] | Q′s | Q

′
z | t[DT | k l ] ] ] . . .

Now t enters dect, and dect′ enters t:

. . . rj[ dect[Q
′
s | Q

′
z | t[ dect

′[ ] | k l ] ] ] . . .

The numeral k l uses Dt to exit t and dect:

. . . rj[ dect[Q
′
s | Q

′
z | t[ dect

′[ ] ] ] | k l ] . . .

The end of the decrement is signalled by sti+1 appearing at the level of pi
and rj. Depending on whether the decremented register is zero or non-zero,
we have either dect[Q′s | t[ dect

′[ ] ] ] or dect[Q′z | t[ dect
′[ ] ] ] as extra garbage

inside pi. We therefore define Gil to be

(test[Qs ])
jump(i,l) | (test[Qz ] | decs[ s[Dt | decs

′[ ] ] ])dec(i,l) |

(dect[Q′z | t[ dect
′[ ] ] ])decs(i,l) | (dect[Q′s | t[ dect

′[ ] ] ])decz(i,l)

It can be verified that all garbage can take no further part in the computation.
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At the end of the computation (if it terminates) a sta+1 ambient is un-
leashed (recall that the last valid instruction number is a). This ambient
then appears at the top level containing R0. Thus the CM terminates iff
[[CM ]] ⇓ sta+1. This establishes that the weak barb relation is undecidable,
and that having a non-terminating computation is undecidable.

To fulfil Criterion 3.1 we must ensure that R0 is able to be used as input
by further computations. The problem is that the encoding of the register
makes explicit use of the list of instructions in order to allow it to enter sti
(i ≤ a+ 1). We resolve this problem by starting any subsequent computation
by first transferring R0 into a new first register which is suited to the new
instruction list. This can be done by three CM instructions, as follows.

Let the new CM be CM ′. With appropriate renumbering, its program
proper uses registers numbered 1, 2, . . . b′ (with the result being placed in reg-
ister 1) and its instructions are numbered a+1, . . . , a′, with a+1, a+2, a+3
copying the contents of register 0 into register 1, and a + 4 being the index
of the first true instruction of CM ′. We also assume a register Rb′+1 with
contents set to 0 (this is used in instruction Ia+3).

a+ 1 : DecJump(0, a+ 4)

a+ 2 : Inc(1)

a+ 3 : DecJump(b′ + 1, a+ 1)

a+ 4 : Start of CM ′ proper

We adjust the definition of R0 in CM so that it can take part in instructions
Ia+1, Ia+2 and Ia+3:

[[R0(k)]]l
df
= r0[ k l |

∏

i≤a+3

! in sti ]

We define the monitor process Mon of CM ′ in such a way that the old R0 is
not expected to travel beyond instruction a+ 3; we omit the details.

Strictly speaking, we should have taken all this into account in our defini-
tions of the encoding, but it seemed clearer not to do this.

One can adapt the above encoding to ensure that there are no continuations
after the “out” capabilities. An essential difference is that it is not clear how
to adapt the monitor process, which is therefore dispensed with. Thus there
will be concurrency, in that the registers and instructions will make their
way downwards at different rates, but this does not lead to any erroneous
computations. Similar considerations apply to the increment: the process
has to be changed to a more nondeterministic one, though again without any
erroneous computations. 2
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C Encoding of CMs into Lpp

We present an encoding of CMs into the language Lpp defined in Section 3.5:

P ::= 0 | n[P ] | P | Q | push n.P | pull n.P | ! push n.P | ! pull n.P

Theorem 3.12 Lpp is Turing-complete.

Proof. We consider a particular CM called CM , with instructions I0, . . . , Ia
and registers R0, . . . , Rb. Let CM(i : k0, . . . , kb) represent CM when it is
about to execute instruction i and storing kj in register j (j ≤ b). Let the
(unique) finite or infinite computation of CM = CM0 be CM0, . . . , CMl, . . .,
where CMl = CM(il : k0l, . . . , kbl).

We shall describe how registers are encoded, followed by the same for in-
structions. Then we shall describe how the encoded CM operates in detail.
In describing the encoding of the register and instructions, we must take into
account the fact that the both the increment and the decrement/jump in-
structions will accumulate garbage each time they are used. We therefore
parametrise our encoding by the index l of the stage we have reached in the
computation. Let

• inc(i, l) be the number of increments

• decs(i, l) be the number of decrements leaving the register contents non-zero

• decz(i, l) be the number of decrements leaving the register contents zero

• jump(i, l) be the number of jumps

performed by instruction i during the computation of CM up to, but not
including, stage l.

Zero and successor registers with their contents are encoded as follows:

[[Rj(0)]]l
df
= zj[ (increqj[ ])

inc(i,l) | ! pull increqj.

(push sj | sj[SZj | SDj | Ij | tj[TZj | TDj | Ij ] ]) ]

[[Rj(k + 1)]]l
df
= sj[SDj | Ij | tj[TDj | Ij | [[Rj(k)]]l ] ]

Thus incrementing a register by 1 involves adding two new surrounding am-
bients sj, tj. These will actually be added to the core of the register process,
immediately round the central zj ambient, when a request is received (an
increqj ambient is detected). The auxiliary tj ambients are introduced to help
in handling decrements.

SZj
df
= pull zj.push incackj

TZj
df
= pull zj.(push incackj | incackj[ ])

The Ij process pulls increqj[ ] inwards towards the core, and pushes the ac-
knowledgement incackj[ ] out towards the top level:

Ij
df
= ! pull increqj.push incackj
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The SDj and TDj processes help in decrementing a nonzero register:

SDj
df
= pull uj.push tj

TDj
df
= pull decreqj.(TDSj | TDZj)

TDSj
df
= push sj.(push decackj | decackj[ ])

TDZj
df
= push zj.(push decackj | decackj[ ])

We now turn to the instructions. The ith instruction is activated when a sti[ ]
ambient appears at the top level.

(i) Increment. The encoded instruction [[i : Inc(j)]]l is:

pi[ ! pull sti.(increqj[ ] | push increqj.pull incackj.(push sti+1 | sti+1[ ]))

| (GIij)
inc(i,l) ]

where GIij
df
= sti[ ] | incackj[ ] is the garbage which accumulates with

each increment.

(ii) Test and decrement or jump. [[i : DecJump(j, i′)]]l is:

pi[ ! pull sti.(push test | test[Testzj | Testsj ]) | !FZji′ | !FSij

| (GJij)
jump(i,l) | (GDSij)

decs(i,l) | (GDZij)
decz(i,l) ]

where

Testzj
df
= pull zj.push zj.(push tested | tested[Testedzj ])

Testsj
df
= pull sj.push sj.(push tested | tested[Testedsj ])

Testedzj
df
= pull test.(push donezj | donezj[ ])

Testedsj
df
= pull test.(push donesj | donesj[ ])

FZji′
df
= pull donezj.pull tested.(push sti′ | sti′ [ ])

FSij
df
= pull donesj.pull tested.(FDij | decreqj[DRj ])

FDij
df
= push decreqj.pull decackj.pull tj.(push sti+1 | sti+1[ ])

DRj
df
= uj[ ] | pull sj.push tj

Garbage can accumulate in three different ways, depending on whether
the register contents are zero (giving a jump), or nonzero (giving a decre-
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ment where the new contents may be either zero or a successor):

GJij
df
= sti[ ] | donezj[ ] | tested[ test[Testsj ] ]

GDZij
df
= sti[ ] | donesj[ ] | tested[ test[Testzj ] ]

| decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDSj | Ij ]

GDSij
df
= sti[ ] | donesj[ ] | tested[ test[Testzj ] ]

| decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDZj | Ij ]

We define:

[[CM(i : k0, . . . , kb)]]l
df
= sti[ ] | (

∏

i≤a

[[Ii]]l) | (
∏

j≤b

[[Rj(kj)]]l)

The encoding of CM is [[CM ]]
df
= [[CM0]]0. The encoded CM will go through

successive stages [[CMl]]l. We show that for each non-terminal stage l, [[CMl]]l ⇒
[[CMl+1]]l+1, and that [[CMl]]l is guaranteed to reach [[CMl+1]]l+1. Computa-
tion is entirely deterministic. There are various cases, depending on the kind
of instruction.

First consider the execution of [[i : Inc(j)]]l. Starting from

sti[ ] | [[i : Inc(j)]]l | [[Rj(k)]]l

the instruction is activated (ambient pi), and the increqj[ ] ambient is pushed
to the top level:

[[i : Inc(j)]]l | pi[ sti[ ] | pull incackj.(. . .) | . . . ] | increqj[ ] | [[Rj(k)]]l

Then the increqj[ ] ambient is pulled into the core of the register process,
where it is added to the accumulated garbage. This leads to an sj ambient
being pushed out of zj.

. . . zj[ (increqj[ ])
inc(i,l+1) | ! pull increqj.(. . .) ] | sj[SZj | . . . ] . . .

Then zj is pulled into sj followed by tj, so that the register is incremented.

. . . sj[ push incackj | SDj | Ij

| tj[ push incackj | incackj[ ] | Ij | zj[ . . . ] ] ] . . .

The acknowledgement incackj[ ] is then pushed out to the top level, where it
is pulled in by pi, which then activates the next instruction by pushing out
sti+1[ ]. The garbage sti[ ] | incackj[ ] (i.e. GIij) is left inside pi, where it is
added to the accumulated garbage. We now have

sti+1[ ] | [[i : Inc(j)]]l+1 | [[Rj(k + 1)]]l+1

We now consider the execution of [[i : DecJump(j, i′)]]l. Starting from

sti[ ] | [[i : DecJump(j, i′)]]l | [[Rj(k)]]l

the instruction is activated (ambient pi), and the test ambient is sent out to
test whether k is zero or non-zero.

. . . pi[ sti[ ] | !FZji′ | !FSij | . . . ] | test[Testzj | Testsj ] | [[Rj(k)]]l
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Once it has done the test it produces ambient tested, which signals the result
to Pi by producing either donezj or donesj, depending on whether k is zero
or nonzero. There are now two possibilities, depending on whether k is zero
or nonzero.

1. k is zero. Then FZji′ enables pi to pull in testzj and tested.

pi[ sti[ ] | donezj[ ] | tested[ test[Testsj ] ] | push sti′ | sti′ [ ] | . . . ]

Then pi pushes out ambient sti′ to trigger the next instruction. (In the case
that i′ = i there is a choice of ambients to push out, but this does not affect
the determinism of the computation in any significant way.) The process

sti[ ] | donezj[ ] | tested[ test[Testsj ] ]

(i.e. GJij) is added to the accumulated garbage. We are left with

sti′ [ ] | [[i : DecJump(j, i′)]]l+1 | [[Rj(k)]]l+1 .

2. k is nonzero. Then FSij enables pi to pull in testsj and tested.

pi[ sti[ ] | donesj[ ] | tested[ test[Testzj ] ] | FDij | decreqj[DRj ] | . . . ]

Then pi pushes out ambient decreqj to carry out the decrement. Then decreqj
pulls in sj (the entire register).

pi[ sti[ ] | donesj[ ] | tested[ test[Testzj ] ] | pull decackj.(. . .) | . . . ]

| decreqj[uj[ ] | push tj | sj[SDj | Ij | tj[TDj | Ij | [[Rj(k − 1)]]l ] ] ]

Now sj can pull in uj and push out tj. Then decreqj pushes tj out to the top
level, which enables tj to detect it is at the top level by pulling in decreqj.

pi[ sti[ ] | donesj[ ] | tested[ test[Testzj ] ] | pull decackj.(. . .) | . . . ]

| tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDSj | TDZj | Ij | [[Rj(k − 1)]]l ]

Now tj pushes out the decremented register—with outermost ambient either
sj or zj, depending on the the value of k—and then signals completion of the
decrement by pushing out decackj[ ]. We illustrate the case when k − 1 > 0:

pi[ sti[ ] | donesj[ ] | tested[ test[Testzj ] ] | pull decackj.(. . .) | . . . ]

| decackj[ ] | tj[ decreqj[ sj[uj[ ] | Ij ] ] | TDZj | Ij ] | [[Rj(k − 1)]]l

Then decackj is detected by pi, which pulls in the left-over tj, and activates the
next instruction i + 1. The garbage accumulates as either GDSij or GDZij.
We are left with

sti+1[ ] | [[i : DecJump(j, i′)]]l+1 | [[Rj(k − 1)]]l+1 .

Finally, we see that if CML is terminal (so iL = a+1) then [[CML]]L has no
reductions. [[CML]]L displays barb sta+1 to indicate termination. The result of
the computation, stored in register 0, is usable by subsequent computations.
On the other hand, if CM does not terminate, then neither does [[CM ]], and
the barb sta+1 will never appear. There are no “bad” computations, i.e. ones
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which halt in a non-final state, diverge, or produce unintended behaviour. We
have a encoding which shows Turing completeness, and also undecidability of
termination and of weak barbs. 2
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