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Abstract 

Bayesian networks are constructed under a conditional independency assumption. This 
assumption however does not necessarily hold in practice and may lead to loss of 
accuracy. We previously proposed a hidden node methodology whereby Bayesian 
networks are adapted by the addition of hidden nodes to model the data dependencies 
more accurately. Empirical results in a computer vision application to classify and count 
the neural cell automatically showed that a modified network with two hidden nodes 
achieved significantly better performance with an average prediction accuracy of 83.9% 
compared to 59.31% achieved by the original network. In this paper we justify the 
improvement of performance by examining the changes in network accuracy using four 
network accuracy measurements; the Euclidean accuracy, the Cosine accuracy, the 
Jensen-Shannon accuracy and the MDL score. Our results consistently show that the 
network accuracy improves by introducing hidden nodes. Consequently, we were able to 
verify that the hidden node methodology helps to improve network accuracy and 
contribute to the improvement of prediction accuracy.  

 
 
 

1 Introduction 
 
Bayesian Networks employ both probabilistic reasoning and graphical modelling to represent the 
relationships of variables in a given domain based on the assumption of conditional independence 
[Pearl, 1988]. However, in practice the variables may contain a certain degree of dependence and 
as a result the validity of a network can be questioned. 
  
Pearl proposed a star-structure methodology to overcome the dependency problem by introducing 
a hidden node when any two nodes have strong conditional dependency given a common parent 
[Pearl, 1986][Verma and Pearl, 1991]. Pearl’s idea was to simulate the common cause between 
two nodes by introducing a hidden node, though he did not provide a mechanism for determining 
the parameters of a discrete node. Since a subjective approach to introduce a hidden node may not 
be effective due to lack of sufficient information about the common cause, one could use a 
systematic objective approach to introduce a hidden node in a network and estimate the number of 
states and the link matrices statistically. In neural networks, hidden nodes have been widely used 
to discover symmetries or replicated structures. In particular, Boltzmann machine learning and 
backward propagation training have been proposed to determine hidden nodes [Ackley and 
Hinton, 1985]. 
 
Friedman proposed a technique called the Model Selection Expectation-Maximization (MS-EM) to 
update a network by discovering a hidden node. This approach, however, required defining the 
size of the hidden node prior to certain processes being carried out [Friedman, 1998]. 
 
Bang and Gillies extended Kwoh and Gillies’ idea [Kwoh and Gillies, 1996] by proposing a 
diagonal propagation method to form a symmetric propagation scheme that compensated for the 
weakness of forward propagation in the gradient descent process [Bang and Gillies, 2002-1]. This  
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method utilized gradient descent to update the conditional probabilities of the matrices linking a 
hidden node to its parent’s and children. Experiments in neural cell morphology showed 
significant improvement in performance [Bang and Gillies, 2002-2]. The results showed that a 
modified network with two hidden nodes achieved 41.4% improvement in performance. 
 
In this paper, we examine the hidden node methodology in terms of the network accuracy, in order 
to justify the performance improvement; in particular, we show that the introduction of a hidden 
node results in the improvement of network accuracy and thus the improvement of prediction 
accuracy. 
 

2 Hidden Node Methodology 

2.1 General Concepts 
 
Hidden nodes are introduced to a network (BNH) by first identifying a triple (A, B, C in Figure 
2.1) where the child nodes have high conditional dependency given some states of the parent node 
in the original network (BNO). Once the hidden node is introduced into the network, its states and 
conditional probabilities are set to make B and C conditionally independent given A (BNH). This 
requires the use of a representative data set with values for A, B and C. 
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 Figure 2.1 Introducing a hidden node in a Bayesian network 
 
 
Having inserted the hidden node H, three conditional probability matrices (CPTs) linked to the 
hidden node are also created. Empirical results showed that the optimal number of states of a 
hidden node lies between the largest numbers of states among the other nodes (A, B and C) and 
two times the largest states [Bang and Gillies, 2002-1]. 
 
To obtain the CPTs, we compute the derivative of the error cost function E with respect to each 
component of the vector p

r
 containing all the conditional probabilities. The vector derivative, 
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where |A| is the number of values of A, ax is the xth value, and the vector p
r  contains, as its 

elements, all the unknown conditional probabilities in the link matrices. )xa(P′  is the posterior 
probability of the parent node A and is calculated by instantiating the children and propagating 
these values through the hidden node.  is the desired value of the parent node originally 
from the data.  

)( xaD

 
An exact gradient solution is only available in the linear cases. We, therefore, need to expand the 
equations to derive discrete operating equations. 
 

2.2 Operating Equations for Gradient Descent in Bayesian Networks  
The operating equations for gradient descent are derived using the chain rule to differentiate the 
error function. The equations for diagonal propagation are summarized. 
 
In right-to-left propagation we instantiate root node A and child node C simultaneously. The 
information from the instantiated nodes propagates through hidden node H until it reaches node B. 
We need to determine the derivative of the error cost function E(p) with respect to the three link 
matrix elements. For example consider )|()( tj hbPpE ∂∂ . The derivative is expanded using a 
chain rule as 
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The first term on the right side of the above equation is the derivative of the sum of square error 
cost function E(p) with respect to P′(by). Differentiating E(p) with respected to P′(by) yields 
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The second term of the equation is the derivative of the posterior probabilities of a target node 
P′(by) with respect to π(bj). Initially the posterior probabilities are denoted as the product of the 
evidence of the hidden node H and the prior probability distribution of target node B, respectively. 
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The last term is the derivative of π(bj) with respect to P(bj | ht). Initially we have 
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Other elements are derived similarly as follows 
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where ε is a posterior probability of hidden node H. 
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The operating equations for right-to-left propagation are found simply by swapping b and c in the 
above equations. Further details on the formalism and the updating process can be found in Bang and 
Gillies [Bang, 2002]. 
 

3 Network Accuracy in Hidden Node Methodology 

3.1 Network Accuracy 
 
In essence, a Bayesian network is a construct that represents a joint probability distribution, and 
can be used to model the distribution specified by a given data set. The principal idea is the 
explicit representation of independencies in the joint probability distribution, which are exploited 
to reduce the number of parameters required to characterize the distribution. 
In such a case, an important characteristic of a Bayesian network is the degree to which the 
network models the distribution specified by the given data set accurately; the accuracy of a 
Bayesian network with respect to a data set. 
 
Apparently, the prediction accuracy of a Bayesian network is influenced by the network accuracy. 
The accuracy of a Bayesian network can be determined precisely by evaluating the degree to 
which the distribution represented by the Bayesian network matches the distribution specified by 
the data set. 
 
Recent work [Pappas, 2003] employs the Euclidean distance, the Cosine distance and the Jensen-
Shannon divergence as measures of distributional similarity to derive different models for the 
accuracy of a Bayesian network. The Euclidean distance and the Cosine distance are geometric 
similarity measures that treat distributions as objects in multi-dimensional space and compare 
them using geometrically-motivated functions, while the Jensen-Shannon divergence is a 
information-theoretic similarity measure that compares distributions in terms of the information 
they incorporate. 
The Euclidean inaccuracy is the geometrical distance between the points in multi-dimensional 
space corresponding to the distribution represented by the Bayesian network and the distribution 
specified by the data set. 

∑ −= 2)( DBN PPEuclidean  

The Cosine inaccuracy is the angular separation of the vectors in multi-dimensional space 
corresponding to the distribution represented by the Bayesian network and the distribution 
specified by the data set. 
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The Jensen-Shannon inaccuracy of a Bayesian network is the divergence of the average of the 
information of the distribution represented by the Bayesian network and the information of the 
distribution specified by the data set over the information of their average distribution. 
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The accuracy of a Bayesian network can also be determined indirectly by examining alternative 
characteristics of the network that reflect the accuracy. 
 
Such a model is the Minimum Description Length formalism, which models the accuracy of a 
Bayesian network as the likelihood of the data set given the Bayesian network, and provides the 
MDL score – ignoring the complexity term – as a precise measure of accuracy [Rissanen, 
1978][Grunwald 1998]. The MDL formalism is based on the principle that, according to Ockham’s 
razor, the most accurate Bayesian network with respect to a given data set is the network whose 
distribution is most likely to model accurately the distribution specified by the data set. The MDL 
formalism is a generalization of the maximum likelihood principle, and the notion of likelihood is 
a fundamental, objective and intuitively attractive criterion. The MDL score is an information-
theoretic measure, which reflects the number of bits required to encode the data set given the 
Bayesian network. 

[ ]∑
∈
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Dd

BN dPMDL )(log 2  

Another such model, which has been developed recently [Pappas and Gillies, 2002], is the NCIMI 
framework, which models the accuracy of a Bayesian network as the accuracy of the conditional 
independencies implied by the structure of the network. 
The NCIMI framework identifies as a principal feature of a Bayesian network the conditional 
independencies implied by the structure of the network, which are identified either by using the 
definition of the Bayesian network [Neapolitan, 1990] or by visual inspection employing d-
separation [Pearl, 1986]. The conditional independencies implied by the structure of the network 
reflect the conditional independencies of the distribution represented by the network, and provide 
information about the network accuracy. 
 
According to the NCIMI framework, and in particular the NCI Theorem, a Bayesian network is 
accurate with respect to a data set, and thus the distribution of the network matches the 
distribution of the data set, if and only if, the conditional independencies implied by the structure 
of the network are conditional independencies of the distribution specified by the data set. 
In the general case, the structure of a Bayesian network implies conditional independencies that 
are not necessarily accurate, and thus the network does not necessarily model the distribution of 
the data set accurately. 
 
The NCIMI framework is not just an indirect model for the accuracy of a Bayesian network, but 
indeed a framework that can be used in an extended context and thus applied to many areas of the 
field of Bayesian Networks. The NCIMI framework can supply a theoretical rationale to the 
process of the introduction of a hidden node within the structure of a Bayesian network and the 
effects of such an action. 
 

3.2 Network Accuracy with a Hidden Node 
 
The introduction of a hidden node attempts to amend the structure of the Bayesian network, so that 
the network no longer makes unrealistic assumptions, and thus models the dependencies 
accurately. 
 
In essence, the introduction of a hidden node in the structure of a Bayesian network aims to 
increase the network accuracy by withdrawing the implied conditional independencies that violate 
the independence assumption. 
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In reality, the introduction of a hidden node does indeed remove inaccurate conditional 
independencies, but also asserts superfluous conditional independencies in connection with the 
introduced hidden node. 
 
Let us consider Figure 2.1. The original structure (BNO) implies the conditional independence of 
the children nodes B and C given the parent node A, indicated as BC|A. Thus, the network 
accuracy depends on the accuracy of that conditional independence; whether the children nodes 
are indeed independent given the parent node, according to the data set. 
The introduction of a hidden node remove the implied conditional independence BC|A, and results 
in a modified structure (BNH) that no longer implies that the children nodes B and C are 
independent given the parent node A. 
 
However, the modified structure asserts a set of conditional independencies in connection with the 
introduced hidden node; in particular, the modified structure implies the conditional 
independencies AB|H, AC|H and BC|H. 
 
The introduction of a hidden node does not necessarily result in a Bayesian network that is more 
accurate; the training of the hidden node and the assignment of values for the conditional 
probability matrices H|A, B|H and C|H should be done in such a way as to minimize the 
inaccuracy of the new conditional independencies implied by the modified network structure. 
 
The accuracy for both the original Bayesian network (BNO) and the modified Bayesian network 
(BNH) can be determined precisely, by employing one of the models of accuracy mentioned in the 
previous section. Since the accuracy is determined with respect to the distribution of the data set, 
which includes only the variables A, B, and C, the hidden node is not considered in the calculation 
of the network accuracy. Therefore, the accuracy of the original Bayesian network (BNO) is 
determined using the distribution of the data set (PD) and the distribution of the original network 
(PBN0), while the accuracy of the modified Bayesian network (BNH) is determined using the 
distribution of the data set (PD) and the distribution of the modified network over the non-hidden 
variables A, B and C (P′BNH). 
 
The distribution specified by the data set is: 

),|()|()(),,( BACPABPAPCBAPP DDDDD =≡  
The distribution represented by the original Bayesian network is: 
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The distribution represented by the modified Bayesian network is: 
)|()|()|()(),,,( HCPHBPAHPAPHCBAPP DBNBN HH

=≡ . 
The distribution – over variables A, B and C – represented by the modified Bayesian network is: 
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4 Case Study: Neural Cell Morphology 
 
Developmental biologists are frequently interested in classifying the development of cells in culture. In 
this way they can determine the effects of pollutants (or other reagents) on growth. Oligodendrocytes 
are a class of cell that is frequently studied. They provide the myelin sheath needed for nervous impulse 
conduction. Failure of these cells to develop leads to the disease multiple sclerosis. In studies, 
biologists view culture dishes under a microscope and attempt to count the cells using a small number 
of classes, for example, progenitors, immature type 1, immature type 2 and differentiated. This is a 
difficult, inaccurate and subjective method that could be greatly improved by using computer vision. 
 
Our data was taken from studies in which the cultures were photographed using a Photonic Science 
microscope camera. Biologists classified the cells in the pictures into four developmental classes. One 
data set had 12 progenitor cells, 24 immature type 1, 15 immature type 2 and 9 fully differentiated 
cells. The images were then processed to extract several features, of which five proved to have good 
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discriminant properties [Kim and Gillies, 1998]. These were called the Scholl coefficient [Sholl, 1953], 
the fractal dimension [Flook, 1978], the 2nd moment [Wechsler, 1990], the total length and the profile 
count. 
  
We conducted a series of tests using the cell class (index no 6: neuron type) as a hypothesis node, and 
the five measured features (index no 1: Sholl coefficient, index no 2: Fractal dimension, index no 3: 
profile count, index no 4: Total length and index no 5: 2nd Moment) as variables. Our results with two 
hidden nodes (case 156 and 236) showed significantly better performance with an average prediction 
accuracy of 83.9% compared to 59.31% achieved by the original network. 
 
In addition to the prediction accuracy, the Euclidean, the Cosine and the Jensen-Shannon 
inaccuracy, along with the MDL score are determined for each of the Bayesian networks employed 
in the experiments as shown in Figure 4.1. Figure 4.1 shows the improvement ratio of prediction 
accuracy (far left of each case) and the improvement ratio of four network accuracy measures for 
five single hidden node cases. For example, case 126 represents a hidden node is introduced 
between node index 1 and 2 given root node 6. 
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Figure 4.1 Comparison between improvement of 
prediction accuracy and network accuracy measures in 
single hidden node cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Subsequently, the improvement in the network accuracy achieved due to the introduction of a 
hidden node is also determined. The experimental results demonstrate that the introduction of a 
hidden node to a Bayesian network consistently improves the network accuracy. This is due to the 
proper training of the hidden node, which results in a modified Bayesian network that does not 
violate the independence assumptions to such an extreme degree as the original Bayesian network. 
 
The experimental demonstration of the improvement of network accuracy due to the introduction 
of a hidden node confirms the previous theoretical claims, and illustrates the potential benefits of 
the hidden node methodology in terms of the network accuracy. 
 

5 Discussion and Conclusion 
 
In this paper, we have provided a theoretical rationale to the effects of the introduction of a hidden 
node within the structure of a Bayesian network. In particular, we have clarified the effects of such 
an action with regards to the network accuracy. 
The introduction of a hidden node amends the set of conditional independencies implied by the 
structure of the Bayesian network. This is done an attempt to improve the network accuracy by 
withdrawing the implied conditional independencies that violate the independence assumption. 
 
The experimental results demonstrate the improvement of network accuracy due to the 
introduction of a hidden node and its proper training. Furthermore, the experimental results 
demonstrate that the improvement of network accuracy results in the improvement of prediction 
accuracy. 
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Therefore, we have provided a theoretical and experimental justification to the empirically 
observed fact that the prediction accuracy improves when employing the hidden node 
methodology. 
 
In our previous work, we were able to verify correlation between the improvement ratio of 
prediction accuracy and the degree of conditional dependency [Bang and Gillies, 2002-2]. Our 
current results, however, show less correlation between the improvement ratio of prediction 
accuracy and the improvement ratio of network accuracy. This may due to the small number of 
tests or qualify of the network accuracy measures. We will extend our study further in 
investigating the relationships between prediction accuracy and network accuracy with hidden 
node in the future. 
 
Other immediate study plan for a real world domain is related to bioinformatics. Lately in 
bioinformatics, there have been several attempts to model metabolic pathway [Angelopoulos and 
Muggleton, 2002]. Metabolic pathway represents the functionality of biochemical reactions within 
the organism and helps to understand others such as predictive toxicology. Examples of metabolic 
pathway can be found in KEGG (http://www.genome.ad.jp/kegg) for bioinformaticians to allow 
cross-reference knowledge such as the location and sequence of known genes, protein products 
and ligands with known reaction pathway in metabolism. One example is the aromatic amino acid 
pathway of yeast [Bryant et al., 2001]. However even one of the simplest pathways contains 
incomplete and incorrect information and as a result causes uncertainty. In addition metabolite(s) 
and enzyme(s) given a generated metabolite(s) tends to be strongly correlated and thus strongly 
conditionally dependent. Since each pathway is series of metabolite(s) and enzyme(s), the 
prediction accuracy of a network can be questionable due to the violation of conditional 
independence assumption. 
 
Our hidden node methodology can be a suitable candidate to directly apply to deal with possible 
conditional dependency problems in metabolic networks. In addition, once a hidden node learned, 
it could be compared with non-counted variables to identify any unknown intermediate variable by 
mapping methods. Our future work will examine the possibility of the modeling of metabolic 
networks with introduction of hidden node methodology in Bayesian networks and identifying any 
unknown intermediate states. 
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