
 1

 
 

SIMPLIFICATION OF TELEO-REACTIVE SEQUENCES 
 
 

Seyed R. Mousavi, Krysia Broda 
Computing Department, Imperial College 
180 Queen’s Gate, London SW7 2BZ,UK 

{bsm99,kb}@doc.ic.ac.uk 
 

 
 
Abstract 
A Teleo-Reactive (TR) sequence is a sequence of <situation! action> rules. The output of a TR 
sequence is the action part of the first rule in the sequence whose situation part evaluates to true. In 
this paper, we present an algorithm for simplification of TR sequences, by which we mean to obtain 
another TR sequence, if any, that is smaller but semantically equal to the given one. The simplification 
algorithm can also be applied to decision lists, because a decision list is a special case of a TR 
sequence in that the only actions are true (1) and false (0). We will also discuss that the algorithm can 
be extended in order to simplify multivariable decision trees. We then extend the use of the 
simplification algorithm to simplifying classification rules. 
 
Keywords: TR programs, Classification rules, Rule induction, Order-dependent rules, 
Simplification. 
 
1. Introduction 
 
A Teleo-Reactive (TR) sequence is a sequence of <s!a> rules, where s denotes a conjunction of 
binary literals, and a denotes an action [1,2]: 
  

s1!a1 
s2!a2 
… 
sn!an 

 
TR sequences were introduced in the context of robot control programs to provide easily-understood 
and robust control programs for robots involved in dynamic and unpredictable environments. The 
following example gives an informal idea about what a TR sequence is and how it works. A formal 
definition of TR sequences will be presented in the next section. 
 
Example 1. Suppose there are a ball and a robot that can perform three actions: rotate, move-forward, 
and kick (the ball). Let these actions be denoted, respectively, by r, m, and k. Also suppose the robot 
can perceive, using its sensors, if it is facing the ball, denoted by f, and if it is at the ball, i.e. ready to 
kick it, denoted by a. The task that the robot is going to perform is to kick the ball. Table 1 shows two 
possible TR sequences, t1 and t2, that can be used as the control program in the robot to complete the 
task.  
                                              Table 1 
 

            t1            t2 
 

          a!k 
¬a ∧ f !m 
¬a ∧ ¬f!r 

 

 
a!k 
f!m 
T!r 

 
     
 
The robot uses such a TR sequence as follows. Continually, it evaluates the situations from top to 
bottom, as in production systems, based on what it perceives using its sensors. The robot will take the 
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action that corresponds to the First True Situation (FTS). It will continue performing the action until 
the FTS changes. So, at anytime, the robot will be performing the action that corresponds to the current 
FTS. 
 
Let us see how t1 or t2 can be used to complete the task. The first rule, either in t1 or in t2, tells the robot 
to kick the ball if at it. The second rule makes the robot perform the “move forward” action if the robot 
is not at the ball but is facing it. And the third rule makes the robot rotate if the robot is neither at the 
ball nor facing it. 
 
Fig. 1 shows a possible scenario. First the robot is neither at the ball nor facing it. So the third rule is 
fired. Therefore, the robot rotates which will eventually make it -in normal conditions- face the ball, 
resulting in making the situation of the second rule the FTS. Then, the robot will move forward toward 
the ball while facing it. Therefore, in normal conditions, it will get to the ball meaning that the 
situation of the first rule will be the next FTS. So the robot will eventually kick the ball. 
 
 

 
Fig. 1. 

 
 
 
Note that both t1 and t2 suggest exactly the same actions at anytime, i.e. they are equivalent. However 
t2 is more compact than t1 in that it consists of fewer literals, resulting in less memory and probably 
higher speed in evaluating the situations. This illustrates the need for simplifying TR sequences, i.e. to 
convert them to more compact and still equivalent versions. 
 
Although TR sequences were initially introduced to provide robot control programs, they can also be 
used as classification rules [3,4,5]. The only issue in using a TR sequence instead of a set of 
classification rules is that the rules would be order-dependent, i.e. they must be scanned sequentially 
from top to bottom. So, a TR sequence provides a sequence, rather than a set, of classification rules, 
and it may also be called ordered classification rules. Note that a set of classification rules is a special 
case of a TR sequence in which the situations are disjoint. 
 
As an example, consider the following set of classification rules: 
 

a!X 
¬a ∧ b!Y 
¬a ∧ ¬b ∧ c!Z 
¬a ∧ ¬b ∧ ¬c!W 

 
Clearly, the rules are order-independent. The following TR sequence can replace this set of 
classification rules: 
 

a!X 
b!Y 
c!Z 
T!W 
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The advantage of using a TR sequence instead of order-independent classification rules is that the rules 
would normally be more compact and possibly more readable. However, the disadvantage is that the 
rules must be scanned from top to bottom. In other words, it is not possible to refer to a rule in the 
middle without checking the rules at the above of it. So, the use of a TR sequence as classification 
rules could be beneficial at-least for the applications in which the top-to-bottom scan of the rules does 
not impose any additional cost. 
 
Although producing smaller classification rules have been considered in the literature, taking 
advantage of order of the rules to do so has not been addresses in the literature, which is what this 
paper presents. In this paper, we present two algorithms, Remove-Rules and Remove-Literals, to 
simplify a given TR sequence. They remove, respectively, redundant rules and redundant literals, if 
any, from the given TR sequence. The main simplification algorithm will be a combination of these 
algorithms. As a set of classification rules is also a TR sequence, the simplification algorithm can be 
used in order to convert a set of classification rules to a TR sequence. 
 
The rest of this paper is organised as follows. In Section 2, we provide the basic definitions and define 
the problem. Section 3 presents a simplification algorithm to remove redundant rules from a TR 
sequence. In section 4, another algorithm is presented that removes redundant literals. The main 
simplification algorithm is provided in section 5. Section 6 discusses that the algorithms can be used 
for simplification of decision lists and that they can be extended in order to simplify multivariable 
decision trees as well; Section 7 concludes the paper.  
 
 
2. Basic Definitions 
 
Definition 1. A situation is a conjunction of Binary literals.  
 
Two special situations are the constant atoms denoted by T and F that, respectively, always evaluate to 
true and false. In this paper, we use “.”, in addition to ∧ , “+”, in addition to ∨ , and “′ “ to denote, 
respectively, conjunction, disjunction, and negation. 
 
Definition 2. Let A ={a1, a2, …an} denote a set of possible classes (or actions). A Teleo-Reactive (TR) 
rule, or simply a rule, is a pair of <s,a>, where s is a situation and a is an element in A.  
 
In this paper, we use r to denote a rule and s!a instead of <s,a>. 
 
Definition 3. A TR sequence is a sequence of rules. 
 
So if t is a TR sequence, t=<r1, r2,…,rn>, where ri denotes the ith rule in the sequence. The most 
common way to represent such a TR sequence, however, is the following: 
  

s1!a1 
s2!a2 
… 
sn!an 

 
where si!ai denotes the ith rule, ri. 
 
Definition 4. Let t=<r1,r2,…,rn> be a TR sequence. t is called complete if the disjunction of all the 

situations in it is a tautology, i.e. Tsk

n

k
≡∨

=1
. 

 
Example 2. t1 and t2 in Table 1 are both complete TR sequences because: 
 

For t1: a+ a′ +f +a′ +f′ ≡T, and  for t2: a+f+T ≡T 
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Definition 5. Let t=<r1,r2,…,rn> be a TR sequence. The First True Situation (FTS) in t is the first 
situation, i.e. the situation with the lowest index, that evaluates to true; that is sk=FTS iff (sk=T) and 
∀ sj, j<k⇒ sj=F. 
 
Note that “=” here means “evaluates to” rather then “is equivalent to”, which is denoted by “ ≡ ”.  
 
Definition 6. Let t be a TR sequence. By the output of t, denoted by t( ), we mean the action part of the 
rule whose situation is the FTS, that is t( )=ak iff sk=FTS. 
  
Clearly, if t is complete then the output of t will always be defined, because the FTS always exists. For 
this reason, a complete TR sequence may be used in a robot as the control program, i.e. to determine 
the action to take at a given time. However, if the TR sequence is not complete, no action can be 
determined when none of the situations evaluates to true. 
 
Example 3. Consider t2 in Table 1 and the scenario shown in Fig. 1. Since the robot is neither at the 
ball nor facing it, only the third situation, T, evaluates to true; so FTS=T and t2( )=”rotate”. And 
performing this action, in normal conditions, makes the robot face the ball, in which case the FTS and 
the output of the TR sequence will be, respectively, f and “move-forward”. Similarly, performing 
“move-forward” will, in normal conditions, make the robot get to the ball, which means the next FTS 
will be a, and the robot will then kick the ball. 
 
Definition 7. Let t1 and t2 be TR sequences. We say t1 and t2 are equivalent, and write t1 =&&& t2 or t2 =&&& t1 if, 
at anytime, having the same values for the atoms used in the situations, the output of t1 is the same as 
the output of t2, i.e. either none of the outputs is defined or both of them are defined and are the same. 
 
Definition 8. Let s be a situation in a TR sequence. The length of s, denoted by l(s), is the number of 
literals in s. The length of T and F are both defined as 0. 
 
Definition 9. Let t be a TR sequence. The length of t is defined as l(t)= ∑

t in  situationa is s

sl )( .  

 
The simplification problem. Let t be a TR sequence. By simplifying t we mean to obtain another TR 
sequence, say ts, if any, such that ts =&&& t and l(ts)< l(t). Ideally, ts would be the most simplified form of 
the TR sequence, which means it cannot be simplified anymore, i.e. for every t1, (t1 =&&& t)⇒  l(ts) ≤ l(t1). 
The algorithms we present in this paper, however, do not guarantee to provide the most simplified 
form of a given TR sequence. 
 
The purpose of simplifying a TR sequence is to have a smaller one that still is semantically equal to the 
given TR sequence. It can result in both less required storage and possibly more readable TR sequence. 
In the case of robot control, it may also result in faster processing and therefore faster responses to 
input stimuli. 
 
Example 4. t1 and t2 in Table 1 are equivalent, but t1 is smaller than t2 because: 
 

l(t1)=l(a)+ l(a′.f) + l(f)=4 and l(t2)=l(a)+ l(f) + l(T)=2 
 
So t2 is a simplified version of t1. 
 
 
During the rest of the paper, we assume that the input TR sequence is the following: 
 

s1!a1 
s2!a2 
… 
sn!an 
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3. Removing Redundant Rules 
 
In this section, we provide an algorithm that removes all the redundant rules, if any, from a given TR 
sequence. A special case of redundant rules is a never-executed rule. We first present an algorithm to 
remove never-executed rules and then  extend it to remove any redundant rules. 
 
Definition 10. A never-executed rule is a rule whose situation will never be the FTS. 
 
Example 5. Consider TR sequence t1 in Table 2.a. The second rule, a.b.d! a2, is a never executed rule 
because if the situation of the second rule is true, the situation of the first rule will also be true, i.e. 
a.b.d⇒ a.d, and therefore the situation of the second rule can never be the FTS. 
 
The fourth rule, b.c.d!a4, is also a never-executed rule because if the situation of the fourth rule is 
true, at least one of the situations of the third or the first rules will also be true and therefore the 
situation of the fourth rule can never be the FTS. That is because b.c.d⇒ a′.c.d + a.d. So t2 shown in 
Table 2.b will be a simplified version of t1. 
 
                                                        Table 2. 
 

       (a) t1        (b) t2        (c) t3        (d) t4 
 
a.d!a1 
a.b.d! a2 
a′.c.d! a3 
b.c.d! a4 
d′.e ! a5 
c! a3 
c′.d.e! a6 
 

 
a.d! a1 
a′.c.d! a3 
d′.e ! a5 
c! a3 
c′.d.e! a6 

 
a.d! a1 
d′.e ! a5 
c! a3 
c′.d.e! a6 
 

 
a.d! a1 
d′.e ! a5 
c! a3 
e! a6 
 

 
 
A never-executed rule is in fact a rule whose situation will not be true unless the situation of another 
rule of a higher order, i.e. a lower index, is true, i.e.: 
 

 ri (i>1) is a never-executed rule iff si
ij<≤

∨⇒
1

sj  

 
Therefore, the following algorithm can be used in order to remove never-executed rules: 
 

Algorithm Remove_never-executed_rules: 
 
For all rules, ri, from r2 to rn do 
    Make Labove,i=

ij<≤
∨

1
sj 

    If  si ⇒  Labove,i then   //if si can never be the FTS 
      Delete ri 
End For 

End 
 
Theorem. (a) If rk is a rule that algorithm Remove_never-executed_rules deletes, rk is a never-executed 
rule. (b) If rk is a never-executed rule, then the algorithm will delete it.  
 
Proof. 
(a). The algorithm deletes rule rk only when the If condition evaluates to true. So if rk is removed by 
the algorithm, then sk ⇒  Labove,k, which means sk

kj<≤
∨⇒

1
sj, that is rk is a never-executed rule. 

  
(b). It is clear that if rk is a never-executed rule at the time i=k in the algorithm, then the algorithm will 
remove it. So we only need to see whether rk will still be a never-executed rule if a higher rule is 
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removed. Let assume that rm, m<k was a never-executed rule and removed. We would like to see if rk 
is still a never-executed rule. In other words, we have: 
 

sm
mj<≤

∨⇒
1

sj 

sk
kj<≤

∨⇒
1

sj 

 
 and we would like to see if sk

mj 
ij

≠
<≤

∨⇒
1

sj 

(sk⇒
kj<≤

∨
1

sj) 

       ≡  (sk⇒
mj 

ij
≠

<≤
∨

1
sj ∨ sm) 

Hence  (sk⇒
mj 

ij
≠

<≤
∨

1
sj ∨ (

mj<≤
∨

1
sj))  , because we have sm

mj<≤
∨⇒

1
sj 

       ≡  (sk⇒
mj 

ij
≠

<≤
∨

1
sj ) 

 
So, if sk is a never-executed rule, it will still be so even if a higher never executed rule is removed. 
 
In addition to never-executed rules, there might be other rules that are also redundant. Such rules may 
fire in some circumstances as they are not never-executed rules. However, in a such a circumstance, 
another rule with the same action will be fired if the rule is removed from the TR sequence. Now, we 
generalise the discussion and derive an algorithm that removes any redundant rules. 
 
Definition 11. A redundant rule is a rule whose removal from the underlined TR sequence does not 
affect the output of the TR sequence. 
 
Example 6. The second rule in TR sequence t2 (Table 2.b) is a redundant rule although it is not a 
never-executed rule. To see why it is redundant, remove it from the TR sequence. Then t3 (Table 2.c) 
will result. That rule could be fired, in t2, only if a=F, c=T, and d=T, in which case the second rule in 
t3 would fail and the fourth rule would be fired resulting in taking the same action, a3, as the action of 
the removed rule. This means that even if the rule is removed from the TR sequence, the output of the 
TR sequence remains the same. 
 
Now, let us see when a rule is redundant. Let t=<r1,…rk-1,rk,rk+1,…,rn> be a TR sequence, where ri 
denote si!ai. Then the TR sequence resulting from removing rk from t will be tS=<r1,… rk-

1,rk+1,…,rn>. Obviously rk in t is a redundant rule iff t =&&& ts, which means (rk is redundant) ≡ ( t( )=ts( )). 
It is clear that the right hand side of the equation will hold in the case that FTS in t is one the situations 
above sk or one of the situations below it. So the only remaining case is when the FTS in t is sk. In other 
words, rk is redundant in t if and only if  (sk=FTS ⇒  t( )= ts( )) or simply (sk=FTS ⇒ ts( )=ak). 
 
One circumstance that this condition holds is when sk cannot be the FTS, i.e. when rk is a never-
executed rule, which was discussed before.  Clearly, if sk=FTS in t, then none of the situations si, i<k 
can be the FTS in ts. So the FTS in ts must be a si such that i>k. therefore, we can write: 
 
(rk is redundant) ≡  (sk=FTS in t ⇒  ∃ sj, j>k, aj=ak, sj=FTS in ts) 
                             ≡  ((

ki<≤
∨

1
sj)′ ∧  sk)⇒  ∃ sj, j>k, aj=ak, (

km  
jm

≠
<≤

∨
1

sm )′ ∧  sj ) 

                     ≡ ((
ki<≤

∨
1

sj )′ ∧ sk)⇒  ∃ sj, j>k, aj=ak, ((
km<≤

∨
1

sm ) ∨ (
jmk <<

∨ sm))′ ∧ sj ) 

                     ≡ ((
ki<≤

∨
1

sj )′ ∧ sk)⇒  ∃ sj, j>k, aj=ak, (
km<≤

∨
1

sm )′ ∧ (
jmk <<

∨ sm)′ ∧ sj ) 

 
Note rk does not exist in ts. Now, let us define: 

 
Labove,k=

ki<≤
∨

1
sj 
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and  
Lbelow,k,j=(

jmk <<
∨ sm)′ ∧ sj) 

 
Then we will have: 

 
(rk is redundant) ≡ ((Labove,k)′ ∧ sk)⇒  ∃ sj, j>k, aj=ak, (Labove,k)′ ∧  Lbelow,k,j 
                           ≡ ((Labove,k)′ ∧ sk)⇒  ∃ sj, j>k, aj=ak, Lbelow,k,j 
 
Now, let us define 

kakbelowA ,, = 
kj aa

kj
=

>
∨  Lbelow,k,j. Note that if there is no operand for the ∨  operator, we 

will assume that the expression evaluates to false. Then we will have: 
 

(rk is redundant) ≡ ((Labove,k)′ ∧ sk)⇒  
kakbelowA ,,  

                          ≡ ((Labove,k)′ ∧ sk)′ ∨
kakbelowA ,,  

                          ≡ ((Labove,k) ∨ sk′ ∨
kakbelowA ,,  

and finally 
 
(rk is redundant) ≡  (sk⇒  Labove,k ∨

kakbelowA ,, )                (Eq.1) 
  
Now, we present the algorithm that removes redundant rules, including never-executed rules: 
  
Algorithm Remove_Rules: 

For all rules, ri, from r1 to rn do 
   a. Let Ltotal,i=Labove,i ∨

iaibelowA ,,  
 
   b. If  si ⇒  Ltotal,i then  // if si is either a never-executed rule or not a never-executed rule but  
                                            still redundant 
      Delete ri 
End For 

  End 
 
Theorem. (a) If rk is a rule that algorithm Remove_Rules deletes, rk is a redundant rule. (b) If rk is a 
redundant rule, then algorithm will delete it unless it is used to delete a higher redundant rule. 
 
Proof. 
(a). The algorithm deletes rule rk only when the condition si ⇒  Labove,k + Abelow,i,ak evaluates to true, 
which means rk is a redundant rule. 
  
(b). It is clear that if rk is a redundant rule when i=k in the algorithm, then it will be removed. So we 
only need to see it will still be a redundant rule if a higher rule is removed, unless it is used to remove 
that rule. Let assume that rm, m<k was a redundant rule and removed. We have the following 
assumptions: 

(1) sm⇒ Labove,m ∨
mambelowA ,,  

(2) sk⇒ Labove,k ∨
kakbelowA ,,  

        (3) (rk has not been used in removing rm ) 
 
and we would like to show that rk will still be redundant after removing rm, i.e.: 
 
        (sk⇒

mj 
ij

≠
<≤

∨
1

sj  ∨
kakbelowA ,, ) 

Based on assumption (1), we have: 
 

(sm⇒ Labove,m ∨
mambelowA ,, ) 

     ≡  (sm⇒
mj<≤

∨
1

sj ∨ ( ∃ rq, m<q, aq=am, Lbelow,m,q) 
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Because of  assumption (3), q cannot be equal to k, and the above expression will be equivalent to: 
 
        (sm⇒

mj<≤
∨

1
sj ∨ ( ∃ rq, (m<q<k or k<q), aq=am,Lbelow,m,q)        (4) 

 
On the other hand we have: 

 
Assumption (2) implies (sk⇒

mj 
kj

≠
<≤

∨
1

sj ∨ sm ∨
kakbelowA ,, ) 

Then using (4): 
 
Assumption (2) implies (sk⇒

mj 
kj

≠
<≤

∨
1

sj ∨
mj<≤

∨
1

sj ∨ ( ∃ rq, (m<q<k or k<q), Lbelow,m,q ) ∨
kakbelowA ,, ) 

Which implies (sk⇒ (
mj 

kj
≠

<≤
∨

1
sj ) ∨

kakbelowA ,, ∨ ( ∃ rq, (m<q<k or k<q), Lbelow,m,q )         (5) 

Now, let us define: 
 
X=( ∃ rq, m<q<k, aq=am, Lbelow,m,q) 
Y=( ∃ rq, k<q, aq=am, Lbelow,m,q) 
 

Then we have: 
 
X⇒ ∃ rq, m<q<k, qq=am,(

mjq <<
∨ sj)′ ∧ sq) 

  ⇒ ∃ rq, q<k, sq 
  ⇒ (

mj 
kj

≠
<≤

∨
1

sj ) 

and 
 
Y⇒ ∃ rq,k<q<n, qq=am,(

mjq <<
∨ sj)′ ∧ sq) 

  ⇒ ∃ rq,k<q,(
mjq <<

∨ sj)′) 

  ⇒ sk′ 
 

Therefore: 
 
   (5)⇒ (sk⇒ (

mj 
ij

≠
<≤

∨
1

sj ) ∨
kakbelowA ,, ∨  X ∨  Y ) 

        ⇒ (sk⇒ (
mj 

ij
≠

<≤
∨

1
sj ) ∨

kakbelowA ,, ∨  (
mj 

kj
≠

<≤
∨

1
sj ) ∨  sk′ 

        ⇒ (sk⇒
mj 

ij
≠

<≤
∨

1
sj  ∨

kakbelowA ,, ) 

 
and the proof is complete. So, if rk has not been used in removing rm, then it will still be redundant 
after removal of rm. 
 
 
4. Removing Redundant Literals 
 
Redundant literals in a given TR sequence are literals whose removal does not affect the output of the 
TR sequence.  
 
Example 7. Consider t3 in Table 2.c. Literal c in the last rule, c′.d.e! a6, is redundant because if 
neither of its above situations is FTS, then c will certainly be false, because if c is true and the first and 
the second situations are not FTS, then the third situation will be the FTS. Literal d in the last rule is 
also redundant, because it can never be false unless e=F (otherwise the second rule would be fired) in 
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which case the rule would not fire. So whether or not it is in the situation does not affect when the rule 
is fired. Therefore t3 is equivalent to t4 shown in Table 2.d. 
 
Now, let us see when a literal is redundant. Let t=<r1,…,rk,,…,rn> be a TR sequence where ri denote 

si!ai, and sk= 
p

r 1=
∧ lr where lr is a literal. Then let ts denote the TR sequence resulted by removing ld 

from sk. t= is exactly the same as t except that sk=
p

r 1=
∧ lr in t but sk=

p

dp
r

≠
=
∧

1
lr in ts. Obviously ld is a 

redundant literal iff t=ts, which means (ld is redundant ) ≡ ( t( )=tS( ) ) It is clear that the right hand side 
of the equation will hold when FTS in ts is one the situations above sk or one of the situations below it. 
So the only remaining case is when the FTS in ts is sk. In other words, rk is redundant in t if and only if 
(sk=FTS in ts⇒  t( )=ts( )) or simply (sk=FTS in ts ⇒ ts( )=ak.. 
 
Obviously, one circumstance that this condition holds is when sk cannot be FTS, which is what 
discussed under never-executed rules. So here we assume that sk can be the FTS in t, and we would 
like to see under which conditions the condition holds. If sk=FTS in tS, then none of the situations si, 
i<k can be the FTS in t. So the FTS in t must be an si such that i ≥ k. So, we have: 
 
(ld is redundant) ≡  (sk=FTS in ts ⇒  sk=FTS in t) ∨  ( ∃ sj, j>k, aj=ak, sj=FTS in ts)  
                           ≡  (sk=FTS in ts ⇒  sk=FTS in t) ∨  ( sk=FTS in ts ⇒ ∃ sj, j>k, aj=ak, sj=FTS in t) 
                                                                                                                                                                                                       
                                                                                                                        (Eq.II) 
 
The left operand of the ∨  operator in this equation is equivalent to the following: 
 
(sk=FTS in tS ⇒  sk=FTS in t)  

         ≡ ((
ki<≤

∨
1

sj )′ ∧
p

dp
r

≠
=
∧

1
lr) ⇒  (

ki<≤
∨

1
sj)′ ∧

p

r 1=
∧ lr 

         ≡ ((Labove,k)′ ∧
p

dp
r

≠
=
∧

1
lr)⇒  (Labove,k)′ ∧  

p

dp
r

≠
=
∧

1
lr ∧ ld 

 
Now, let us define 

dlkliteralsL ,, = 
d

k
ll         

 sin literal a is l
≠

∧ l. Then this expression will be equivalent to: 

  (Labove,k)′ ∧
dlkliteralsL ,, ⇒  (Labove,k)′ ∧ Lliterals,k,ld ∧ ld 

 
         ≡ (Labove,k)′ ∧

dlkliteralsL ,, ⇒  ld 

         ≡ Labove,k ∨ (
dlkliteralsL ,, )′ ∨  ld 

 
On the other hand, the right operand of the ∨  operator in Eq. II will similarly be simplified: 
 
(sk=FTS in ts ⇒ ∃ sj, j>k, aj=ak, sj=FTS in t) 
       ≡  ((

ki<≤
∨

1
sj )′ ∧ l1….ld-1.ld+1….lp⇒ ∃ sj, j>k, aj=ak, (

jm<≤
∨

1
sm)′ ∧ sj) 

≡  (Labove,k)′ ∧
dlkliteralsL ,,  ⇒ ∃ sj, j>k, aj=ak, ((

km<≤
∨

1
sm ) ∨ (

jmk <<
∨ sm))′ ∧ sj ) 

≡  (Labove,k)′ ∧
dlkliteralsL ,,  ⇒ ∃ sj, j>k, aj=ak, (

km<≤
∨

1
sm )′ ∧ (

jmk <<
∨ sm)′ ∧ sj ) 

 
≡  (Labove,k)′ ∧

dlkliteralsL ,,  ⇒ ∃ sj, j>k, aj=ak, (Labove,k)′ ∧  Lbelow,k,j 
 

≡  (Labove,k)′ ∧
dlkliteralsL ,,  ⇒ ∃ sj, j>k, aj=ak, Lbelow,k,j 

 
        ≡        (Labove,k)′ ∧

dlkliteralsL ,,  ⇒  Abelow,k,ak 

        ≡        Labove,k ∨ (
dlkliteralsL ,, )′ ∨  Abelow,k,ak 
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So ld is redundant ≡  (Labove,k ∨ (
dlkliteralsL ,, )′ ∨  ld) ∨  (Labove,k ∨ (

dlkliteralsL ,, )′ ∨
kakbelowA ,, ) 

                                ≡  Labove,k ∨ (
dlkliteralsL ,, )′ ∨  ld ∨

kakbelowA ,,  

                                ≡  ( ld′ ⇒ Labove,k ∨ (
dlkliteralsL ,, )′ ∨  

kakbelowA ,, )      (Eq. III) 
 
Now, we present the algorithm that removes redundant literals, including never-executed rules: 
 
Algorithm Remove_Literals: 
   For all the rules, ri, from r1 to rn do 

a. Build Labove,i and Abelow,i,ai  
 
b. For each literal l in si do 
       Build  Lliterals,i,l 
       Let Ltotal,i,l = Labove,i + (Lliterals,i,l )′+ 

iaibelowA ,,    

       If l′ ⇒  Ltotal,i,l then remove l from ri  
           End For 
    End For    
End 
 
Theorem 3. Let ld be a literal in situation sk. (a) If algorithm Remove_Literal deletes ld from sk, then ld 
is a redundant literal. (b) If ld is a redundant literal, then the algorithm will delete it from sk.  
 
Proof. 
(a). The algorithm deletes literal ld only when the condition of If, i.e. ld′ ⇒ dlktotalL ,, , evaluates to true. 
Therefore if ld is removed by the algorithm, we will have: 
 
     ( ld′ ⇒  Ltotal,k,ld) 
     ≡  ( ld′ ⇒  Labove,k + (

dlkliteralsL ,, )′+ 
kakbelowA ,, ) 

    ≡  (ld is redundant), because of Eq. III. 
  
(b). It is clear that if ld is a redundant literal when i=k in the algorithm, then it will be removed. So we 
only need to see whether it will still be a redundant literal if a literal in a higher rule is removed. Let 
assume that literal lc in rm, m<k was a redundant literal and removed. We have: 
 

ld′ ⇒  Labove,k + (
dlkliteralsL ,, )′ + 

kakbelowA ,,  
 
Clearly, removing lc from sm will only affect Labove,k  and does not change Lliterals,k,ld and 

kakbelowA ,, . Let 
Lbefore and Lafter denote respectively Labove,k before and after the removal of lc from sm. Then we have: 
 

ld′ ⇒  Lbefore + (
dlkliteralsL ,, )′+ 

kakbelowA ,,  
 
Also, let sm

before and sm
after denote respectively sm before and after the removal of lc. Then we will have: 

 

ld′ ⇒ (
mj

kj
≠

<≤
∨

1
sj ∨ sm

before) + (
dlkliteralsL ,, )′+ 

kakbelowA ,,  

On the other have we have:  
 
        sm

before ≡ sm
after ∧ lc.  

 
So, we will have: 
 

(ld′ ⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after ∧ lc) + (
dlkliteralsL ,, )′+ 

kakbelowA ,, ) 

⇒ ( ld′ ⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after) + (
dlkliteralsL ,, )′d + 

kakbelowA ,, ) 



 11

⇒ ( ld′ ⇒  Lafter + (
dlkliteralsL ,, )′+ 

kakbelowA ,, ) 
 
which means that literal ld is still a redundant literal in sk after the removal of lc. 
 
Example 8. Consider Example 1. Simplifying t1 will result in t2. 
 
Example 9. Consider t8 and t9 defined in Table. 3. Simplifying t8 will result in t9. 
 
                                        Table 3 
 

 t8 t9 
 
a.b′ ! a1 
a′.b! a2 
a! a1 
a′.b′.c! a3 
b.c! a5 
a.d′! a3 
a′.b′.c′! a4 
 

 
a! a1 
b! a2 
c! a3 
T! a4 

 
 
For instance, consider rule b.c! a5 in t8. This rule is a never-executed rule, because if b.c=T then one 
of the higher situations will be true. That is because b.c⇒ a′.b′.c + a+ a′.b+a.b′. So this rule does not 
exist in t9. Now let us see how Algorithm Remove_Rules removes this rule from t8. When i=5 in the 
loop, the algorithm proceeds as follows: In step (a) it generates the following sets: 
 

    Labove,5 = 
51 <≤

∨
j

sj =a.b′ + a′.b+a+a′.b′.c=a+b+c        

5,5, abelowA = 
5

5
=

>
∨
ja

j
 Lbelow,j =F 

Ltotal,5 = Labove,5 + 
5,5, abelowA  =a+b+c 

 
Then, in step (b) of the algorithm s5 ⇒  Ltotal,5 evaluates to true because: 
 

 (s5 ⇒  Ltotal,5  ) ≡  (b.c⇒  a+b+c) ≡  T. 
 
So r5, b.c!5, is removed from the TR sequence. 
 

Now, consider the first rule in t8. Literal b′ is redundant because even if b is true, i.e. a.b=T, the same 
action, a1, will be the output, because in this case the second rule will fail and the third rule will be 
fired. The algorithm, Remove_Literals, removes the literal as follows: When i=1 in the outer loop, it 
generates the following sets during step (a): 
 

    Labove,1 = 
51 <≤

∨
j

sj =F 

    
1,1, abelowA = 

1
1
=

>
∨
ja

j
 Lbelow,1,j= Lbelow,1,3=(

31 <<
∨
m

sm)′ ∧ s3=(s2)′ ∧ s3= (a′.b)′ ∧ a=a 

 

Then, in part (b), when l=b′, (b′)′ ⇒  Labove,1  evaluates to false, and the following are generated, in the 
else branch of the if condition: 
 

          Lliterals,1,l=a 
          Ltotal,1,l = Labove,1 + (Lliterals,1,l )′+ 

1,1, abelowA  = F + a′ + a=T 
 
Next, b⇒  Ltotal,1,l evaluates to T, and finally b′ is removed from r1. 
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5. The Main Simplification Algorithm 
 
The main simplification algorithm, Remove_Rules_and_Literals, is an algorithm that combines the 
above algorithms, Rmeove_Rules and Remove_Literals. The reason why it is not simply a call of 
Remove_Rules followed by a call of Remove_Literals is that removing literals can result in making a 
rule redundant. On the other hand, it cannot be a call of Remove_Literals followed by a call of 
Remove_Rules because removing a literal from a never-executed rule can make it a non-redundant 
rule. So, we have used a special combination of the two algorithms to devise algorithm 
Remove_Rules_and_Literals. 
 
Algorithm Remove_Rules_and_Literals: 

For all rules, ri, from r1 to rn do 
    a. Build Labove,i, and 

iaibelowA ,,   
 
   b. If  si ⇒  Labove,i + iaibelowA ,, then // if ri is a redundant rule 
            Delete ri 
       Else 
         . For each literal l in si do 
               Build  Lliterals,i,l 
               If l′ ⇒  Labove,i + (Lliterals,i,l )′+ iaibelowA ,,  then remove l from ri  

                   End For 
             End If 

End For 
  End 
 
Theorem 3. (a) If rk is a rule that algorithm Remove_Rules_and_Literals deletes, rk will be a redundant 
rule. (b) If rk is a redundant rule then the algorithm will delete it unless it is used to delete a higher 
redundant rule. (c) Let ld be a literal in situation sk. Then If the algorithm deletes ld from sk, then ld is a 
redundant literal.  
 
Proof. 
(a). The algorithm deletes rule rk only when the condition si ⇒  Labove,k + Abelow,i,ak evaluates to true, 
which means rk is a redundant rule. 
  
(b). It is clear that if rk is a redundant rule when i=k in the algorithm, then it will be removed. So we 
only need to see it will still be a redundant rule if (1) a higher rule is removed, unless it is used to 
remove the rule or (2) a literal in a higher rule is removed. Case (1) has already been shown in 
theorem2; so we here prove case (2).  
 
Let assume that literal lc in rm, m<k was a redundant literal and removed. We would like to see if rk is 
still redundant. Clearly, removing lc from sm will only affect Labove,k  and does not change 

kakbelowA ,, . 
Let Lbefore and Lafter denote respectively Labove,k before and after the removal of lc from sm. Then, since rk 
is redundant before removing lc, we have: 
 
       sk⇒ Lbefore ∨

kakbelowA ,,  
 
Also, let sm

before and sm
after denote respectively sm before and after the removal of lc. Then we will have: 

 

       sk⇒ (
mj

kj
≠

<≤
∨

1
sj ∨ sm

before) ∨
kakbelowA ,,  

 
On the other have we have:  
 
        sm

before ≡ sm
after ∧ lc.  

 
So, we will have: 
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       sk⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after ∧ lc) ∨
kakbelowA ,,  

   ⇒ ( sk⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after) ∨
kakbelowA ,, ) 

   ⇒ ( sk⇒ Lafter ∨
kakbelowA ,, ) 

 
which means that rk is still redundant, after the removal of lc. 
 
 (c). The algorithm deletes literal ld only in two cases: (1) when (ld′ ⇒  Labove,k) in part b-1. and (2) 
when ( ld′ ⇒  Ltotal,k,ld) in part b-2. So if ld is removed by the algorithm, then: 
 
(ld′ ⇒  Labove,k) ∨ ( ld′ ⇒  Ltotal,k,ld) 
≡ ld′ ⇒  Labove,k ∨ Ltotal,,k,ld  
≡ ld′ ⇒ Labove,k ∨ (

dlkliteralsL ,, )′ ∨  
kakbelowA ,,   

≡ (ld is redundant), because of Eq. III. 
  
Note that if ld is a redundant literal, we cannot say that the algorithm will delete it from sk. That is 
because a literal may be redundant before the removal of a rule but not after it. For example consider 
the following TR sequence: 

a.b!a1 
a′.b!a2 
b!a1 

 
The first rule is redundant because if a and b are both true then the second rule will fail and the third 
rule will fire resulting in the same action. If the first rule is not removed, literal a′  in the second rule 
will be redundant. But if it is removed, the literal will no longer be redundant. So, this algorithm 
prioritises deletion of redundant rules over deletion of redundant literals. 
 
 
6. Simplifying Decision Lists and Multivariable Decision Trees 
 
A decision list is a list of (fi,vi) pairs where fi is a conjunction of literals and vi is either true (1) or false 
(0) [6]: 

(f1,v1) 
… 
(fn,vn) 

 
fn,  i.e. that last fi, is the constant Boolean function T that is always true. A decision list L defines a 
boolean function L(X) where X is the input vector. For any input X, L(X) is defined to be equal to vi 
where i is the least index such that fi(X)=T. A decision list may be thought of as an extended “if-then-
elseif-…else- ” instruction. We borrow the following example from [6]: 
 
Example 10. Consider the following decision list L: 
 
     (x1.x3′,0) 
     (x1′.x2.x5,1) 
     (x3′.x4′,1) 
     (T,0) 
 
L defines a Boolean function over binary variable x1,x2,x3,x4, and x5. Fig. 2 shows the Karnaugh map 
for L. In fact, L is equivalent to binary function f= x1′.x2.x5 + x1′.x3′.x4′.  
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x1 x2 
x3 x4 x5 

00 

01 

000 

11 

10 

001 011 010 110 101 111 100 

1 1 

1 1 1 0 0 1 1 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
                                                  Fig. 2. 
 
Obviously, a decision list can be viewed of as a special type of a TR sequence in that the only actions 
are “0” and “1” [2]. Therefore, the presented simplification algorithms are applicable to decision lists 
as well. Consider, for instance, decision list L in example 10. Algorithm Remove-Rules does not affect 
L as there is no redundant rule in it, but algorithm Remove_Literals removes literal x3′ from the first 
rule and then x′ from the second rule resulting in the following decision list: 
     (x1,0) 
     (x2,x5,1) 
     (x3′.x4′,1) 
     (T,0) 
 
On the other hand, a TR sequence is a special type of a binary multivariable decision tree. In such a 
decision tree, each node corresponds to a conjunction of some binary literals, and therefore evaluates 
to either true or false. The simplification algorithms, therefore, can be viewed of as special cases of 
more general algorithms that can be used to simplify general binary multivariable decision trees. Fig. 3 
shows, as an example, a possible sub-tree of a binary multivariable decision tree and its simplified 
version. 

a.b 

 c 

 d′ 

Y 

X 

X 

1 

1 

1 0 

0 

a.b 

c.d 

a.d′ 

Y 

X 

X 

1 

1 

1 0 

0 

 
 
    (a) before simplification                          (b) after simplification 
 
                                                 Fig. 3.  
 
However, it is important to note that there will be no need for simplification if the algorithm used to 
construct such a tree has already generated  the tree with no redundancy, which is highly probable. 
 
 
7. Simplifying Classification Rules 
 
In this section we focus on the case that we are given a set of order-independent classification rules, 
rather than a TR sequence, which we would like to simplify. We assume that each attribute is discrete 
and has a finite set of possible values, e.g. {1, 2, 3}. Such a set of rules could be the output of a rule 
induction algorithm such as ID3 [7]. In a very special case it could also be the samples itself. We 
would like to extend the use of the simplification algorithm to simplifying such rules. 
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The first issue in simplifying a given set of classification rules is that the resulting rules will not be 
order-independent anymore. Therefore, it is not possible to refer to a rule in the middle of sequence 
and consider it as an independent rule. On the contrary, when referring to rule in the sequence, one 
must bear in mind that neither of the above rules was fired. This could be a big issue in some 
applications, while acceptable in some other applications in which the rules are scanned from top to 
bottom. In order to reduce this shortcoming, we suggest that we sort the input rules over the classes so 
that all the rules having the same output are listed together followed by another set of rules of the same 
output, so on.  This method of ordering the rules has two advantages: (1) when referring to a rule in the 
middle there is no need to assume that the above rules of the same class has not been fired and (2) the 
only assumption to make when referring directly to a rule is that the output class cannot be a class 
appeared on the above. So great improvement can be gained by sorting the rules. Moreover, this type 
of sorting speeds up the simplification algorithm. So we sort the rules before simplifying them. 
 
As the simplification algorithm has been presented to simplify TR sequences, it assumes that the 
attributes are Binary. Therefore the next issue in applying the simplification algorithm is how to 
convert the given rules into binary-attribute rules. Two possible ways for such a conversion are what 
we call Binary and Unique encoding. The former uses a binary code to represent possible values of 
each attribute. For instance if attribute a has three possible values of 1,2, and 3, then they could be 
represented, respectively, by 00, 01, and 1x. In Unique encoding, however, more bits are used, one per 
value. Unique encoding represents each attribute a having k possible values: v1, v2, …vk, in terms of a 
bit string of length k such that a 1 in the jth position of the bit string means that the value of a is vj. For 
instance, attribute a could be 100 for 1, 010, for 2, and 001 for 3. 
 
Although Binary encoding uses fewer bits than Unique encoding, a potential disadvantage with it 
could be that it allows more than one rules to be represented as a single rule. For instance if attribute a 
can be either 1, 2, or 3, represent respectively by 00, 01, and 1x, then value 0x for a would mean if a=1 
or a=2, which is in fact the combination of two rules (recall that each situation is a conjunction-not 
disjunction-of literals). Values like 0x may occur as a result of simplification or the application of a 
rule induction algorithm. So we are mainly interested in Unique encoding in this report. 
 
A possible approach to simplifying the given rules is to assume that the rules are samples and perform 
the following steps: 

(1) encode the rules 
(2) run a rule induction algorithm, such as (Binary) ID3 to extract the rules 
(3) run the simplification algorithm 
(4) decode the rules(optional) 

 
However, when the given rules are not samples but the output of a rule induction algorithm, we are not 
interested in this approach, because if such an approach is used directly on the real samples it will 
usually result in a fewer induced rules, e.g. a smaller ID3 tree, compared to the case in which it is used 
on the rules. The reason why is that the given rules usually cover more cases than the samples, 
therefore a rule induction algorithm have more “freedom” to work on the samples rather than to work 
on the rules. Consequently, the induced rules –at least before simplification- will be fewer if samples 
rather than the rules are used. The only case when such an approach could be beneficial is when the 
coverage of the given rules is really good, and we want to keep that coverage. 
  
The second approach is simply the application of the simplification algorithm along with encoding and 
decoding: 

(1) encode the rules 
(2) run the simplification algorithm 
(3) decode the rules(optional) 

 
However, unique encoding is not suitable for this approach, despite the previous one, because it results 
in having many don’t cares. Having don’t cares was not a problem with the previous approach as a rule 
induction algorithm, such as ID3, uses them to produce a better result, e.g. a smaller ID3 tree. It 
however is a problem with this approach, because simplification does not use them, as it is supposes 
not to change the coverage. Therefore we introduce another type of encoding , we call x encoding, 
which is similar to unique encoding except that x is used instead of 0. 
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Example 11. Suppose that an attribute can have three values: 1, 2, or 3. Using unique encoding we will 
have 100 for 1, 010 for 2, and 001 for 3. So we will have 23-3=5 don’t cares that are: 000, 011, 101, 
110, 111. If an attribute have k possible values, the number of don’t cares will be 2k-k. Now using x-
encoding, we will have 1xx for 1, x1x for 2, and xx1 for 3. So the only don’t care is 000. 
 
 
One feature of x-encoding is that each attribute in the resulting rules will be mentioned at most once. 
For instance if attribute a can be 1, 2, or 3, there will be either a=1, a=2, or a=3 condition in a rule. 
However, using unique code a rule can contain conditions like a ≠ 1 And a ≠ 3 in the same rule. 
 
In order to use the remaining don’t cares in x-encoding, we add some dummy rules at the top of the 
given rules before applying the simplification and remove them afterward. This allows the 
simplification algorithm to take the advantage of the don’t cares in order to result in a more simplified 
output. Let us assume that the don’t care resulted by applying x-encoding to an attribute a with k 
possible values corresponds to a special “virtual” value denoted by xa. Clearly attribute a can never 
take value xa. For instance, xa for attribute a in Example 11 will be coded to 000, although it can never 
be a possible value for a. Then we use the following steps: 
 

(1) Add the dummy rules at the top: 
For each attribute a, do: 
    Add (a=xa)!”dummy” at the top 
 

(2) Apply x-encoding 
(3) Run the simplification algorithm 
(4) Remove the dummy rules: 

For each rule r, whose action is “dummy” do 
    Remove r 
 

(5) Decode the rules into the original format 
 
 
8. Experimental Results 
 
To test the simplification algorithm, we applied it to two problems: Car Evaluation and Monk’s first 
problem[8]. The datasets and the description of these problems can be found at the UCI machine 
learning repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). Since the simplification 
algorithm is applicable to Binary domain only, we had to code the values in the datasets into binary 
string. We tested the algorithm for both binary and unique encoding. Since the simplification algorithm 
is order-dependent, we ran it three times each with a random order.  Table 4 shows the results. Note 
that the simplification algorithm does not change the accuracy of the rules.  
 
                                                                        Table 4. 
 
 
Problem 

#rules 
#attributes 
in samples 

#rules(#tests)  
before 
simplification- 
accuracy% 

#rules(#tests) 
after 
simplification 
run 1 

#rules(#tests) 
after 
simplification 
run 2 

#rules(#tests) 
after 
simplification 
run 3 

#rules(#tests) 
average- 
reduction% 

Car 
Evaluation  
(Unique) 

 
1728 
6 

 
79(776) 
100% 

 
47(304) 

 
54(321) 

 
60(371) 

 
53.67(332) 
32.1% (57.2%) 

Car 
Evaluation 
problem 
(Binary) 

 
1728 
6 

 
127(1105) 
100% 

 
35(104) 

 
50(162) 

 
48(148) 

 
44.3(138) 
65.1% (87.5%) 

Monk’s 
first 
(Unique) 

 
124  
6 

 
21(142) 
92.59% 

 
15(57) 

 
17(40) 

 
12(40) 

 
14.67(45.67) 
30.2% (67.8%) 

Monk’s 
first 
(Binary) 

 
124 
6 

 
34(203) 
87.73% 

 
31(80) 

 
27(79) 

 
25(82) 

 
27.67(80.33) 
18.6% (60.4%) 

 
 
This table shows that simplification could be useful in reducing the size of a given set of rules. Better 
results are gained if the input rules are complete and the last rules are all of the same output and 



 17

preferably as more as possible. The reason why is that all of such rules will be replaced with T!the 
class, by the simplification algorithm. However, if the given rules are so, then it would be more fair to 
compare the output of simplification with a modified version of the rules that has the default to major 
rule (T!major class as the last rule)[9]. Table 5 provides this comparison for both Car Evaluation and 
Monk’s first problems. Note that the output of binary ID3, despite the non-binary one, is necessarily 
complete. 
 
 
                                                                            Table 5. 
 

 
Problem 

 
Before 
simplification 

Using 
T! Major  
before Simp. 

Using 
T! Major  
after Simp. 

Car 
Evaluation  
(Unique) 

 
79(776) 
100% 

 
44(413) 

 
36(225) 
 

Car 
Evaluation 
problem 
(Binary) 

 
127(1105) 
100% 

 
68(572) 

 
34(173) 

Monk’s 
first 
(Unique) 

 
21(142) 
92.59% 

 
10(62) 

 
10(50) 

Monk’s 
first 
(Binary) 

 
34(203) 
87.73% 

 
16(92) 

 
16(75) 

 
 
 
 In the next series of experiments, we used the inducer software [9] to receive the classification rules 
for Monk’s first problem using both the standard ID3 and Prism algorithms [10]. Then we applied x-
encoding followed by the simplification algorithm to simplify the induced rules. We performed the 
experiment for both with and without the default to major rule cases. Table 6 shows the number of 
rules and literals in different cases. 
 
                                                                            Table 6. 
 

 
Problem 

 
Before simplification 

After Simp. 
Without using 
Dummy rules 

After Simp. 
With using 
Dummy rules 

Monk’s first- not 
complete 
(ID3) 

52(226) 
76.6% correct 
10.4% not covered 

 
50(199) 

 
37(130) 

Monk’s first-
complete using 
T!Major class 
(ID3) 

27(110) 
85.9% 
0% not covered 

 
22(89) 

 
22(85) 

Monk’s first- not 
complete 
(Prism) 

25(75) 
87% correct 
13% not covered 

 
21(60) 

 
15(35) 

Monk’s first-
complete using 
T!Major class 
(Prism) 

6(10) 
100% 
0% not covered 

 
5(7) 

 
5(7) 

 
 
Comparing Table 4 and Table 6, on the Monk’s problem, another interesting results is seen, which is 
independent of the simplification issue. It can be seen that using unique encoding along with (Binary) 
ID3 has the following advantages over using just the standard ID3: 
 

• Higher percentage 
• Providing complete rules set, i.e. no missing link in the ID3 tree 
• Smaller size, e.g. fewer rules and literals 

 
These advantages could be due to the fact that unique encoding provides us with more expressability. 
Because of these advantages the following method could be a possible useful replacement for the 
standard ID3: 
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(1) Apply unique coding to the samples 
(2) Apply (Binary) ID3 to the coded samples and derive the rules 
(3) Decode the rules  

 
However, the main limitation with this approach is that it is not practical if the underlying problem 
involves attributes with many possible values, including as continuous-values attributes. 
 
 
9. Conclusion 
 
In this paper, we presented two algorithms to remove redundant rules and literals from a given TR 
sequence. Then we draw the main simplification algorithm by combining the algorithms.  The 
simplification algorithm can also be applied to decision lists, as a decision list is a special case of a TR 
sequence. The algorithms may also be used in order to reduce the size of a set of classification rules by 
converting it to a sequence of (ordered) classification rules. Such a conversion extends the use of the 
simplification algorithm from the context of robotics to data mining context. 
 
Although the algorithms remove redundant rules and literals from a given TR sequence, the do not try 
to achieve a more simplified version through re ordering the rules. Moreover, the algorithms are not 
efficient in terms of complexity. So it is desired to enhance it to become both rules’ order-independent 
and more efficient. 
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