
 1

SIMPLIFICATION OF TELEO-REACTIVE SEQUENCES

Seyed R. Mousavi, Krysia Broda
Computing Department, Imperial College
180 Queen’s Gate, London SW7 2BZ,UK

{bsm99,kb}@doc.ic.ac.uk

Abstract
A Teleo-Reactive (TR) sequence is a sequence of <situation! action> rules. The output of a TR
sequence is the action part of the first rule in the sequence whose situation part evaluates to true. In
this paper, we present an algorithm for simplification of TR sequences, by which we mean to obtain
another TR sequence, if any, that is smaller but semantically equal to the given one. The simplification
algorithm can also be applied to decision lists, because a decision list is a special case of a TR
sequence in that the only actions are true (1) and false (0). We will also discuss that the algorithm can
be extended in order to simplify multivariable decision trees. We then extend the use of the
simplification algorithm to simplifying classification rules.

Keywords: TR programs, Classification rules, Rule induction, Order-dependent rules,
Simplification.

1. Introduction

A Teleo-Reactive (TR) sequence is a sequence of <s!a> rules, where s denotes a conjunction of
binary literals, and a denotes an action [1,2]:

s1!a1
s2!a2
…
sn!an

TR sequences were introduced in the context of robot control programs to provide easily-understood
and robust control programs for robots involved in dynamic and unpredictable environments. The
following example gives an informal idea about what a TR sequence is and how it works. A formal
definition of TR sequences will be presented in the next section.

Example 1. Suppose there are a ball and a robot that can perform three actions: rotate, move-forward,
and kick (the ball). Let these actions be denoted, respectively, by r, m, and k. Also suppose the robot
can perceive, using its sensors, if it is facing the ball, denoted by f, and if it is at the ball, i.e. ready to
kick it, denoted by a. The task that the robot is going to perform is to kick the ball. Table 1 shows two
possible TR sequences, t1 and t2, that can be used as the control program in the robot to complete the
task.
 Table 1

 t1 t2

 a!k
¬a ∧ f !m
¬a ∧ ¬f!r

a!k
f!m
T!r

The robot uses such a TR sequence as follows. Continually, it evaluates the situations from top to
bottom, as in production systems, based on what it perceives using its sensors. The robot will take the

 2

action that corresponds to the First True Situation (FTS). It will continue performing the action until
the FTS changes. So, at anytime, the robot will be performing the action that corresponds to the current
FTS.

Let us see how t1 or t2 can be used to complete the task. The first rule, either in t1 or in t2, tells the robot
to kick the ball if at it. The second rule makes the robot perform the “move forward” action if the robot
is not at the ball but is facing it. And the third rule makes the robot rotate if the robot is neither at the
ball nor facing it.

Fig. 1 shows a possible scenario. First the robot is neither at the ball nor facing it. So the third rule is
fired. Therefore, the robot rotates which will eventually make it -in normal conditions- face the ball,
resulting in making the situation of the second rule the FTS. Then, the robot will move forward toward
the ball while facing it. Therefore, in normal conditions, it will get to the ball meaning that the
situation of the first rule will be the next FTS. So the robot will eventually kick the ball.

Fig. 1.

Note that both t1 and t2 suggest exactly the same actions at anytime, i.e. they are equivalent. However
t2 is more compact than t1 in that it consists of fewer literals, resulting in less memory and probably
higher speed in evaluating the situations. This illustrates the need for simplifying TR sequences, i.e. to
convert them to more compact and still equivalent versions.

Although TR sequences were initially introduced to provide robot control programs, they can also be
used as classification rules [3,4,5]. The only issue in using a TR sequence instead of a set of
classification rules is that the rules would be order-dependent, i.e. they must be scanned sequentially
from top to bottom. So, a TR sequence provides a sequence, rather than a set, of classification rules,
and it may also be called ordered classification rules. Note that a set of classification rules is a special
case of a TR sequence in which the situations are disjoint.

As an example, consider the following set of classification rules:

a!X
¬a ∧ b!Y
¬a ∧ ¬b ∧ c!Z
¬a ∧ ¬b ∧ ¬c!W

Clearly, the rules are order-independent. The following TR sequence can replace this set of
classification rules:

a!X
b!Y
c!Z
T!W

 3

The advantage of using a TR sequence instead of order-independent classification rules is that the rules
would normally be more compact and possibly more readable. However, the disadvantage is that the
rules must be scanned from top to bottom. In other words, it is not possible to refer to a rule in the
middle without checking the rules at the above of it. So, the use of a TR sequence as classification
rules could be beneficial at-least for the applications in which the top-to-bottom scan of the rules does
not impose any additional cost.

Although producing smaller classification rules have been considered in the literature, taking
advantage of order of the rules to do so has not been addresses in the literature, which is what this
paper presents. In this paper, we present two algorithms, Remove-Rules and Remove-Literals, to
simplify a given TR sequence. They remove, respectively, redundant rules and redundant literals, if
any, from the given TR sequence. The main simplification algorithm will be a combination of these
algorithms. As a set of classification rules is also a TR sequence, the simplification algorithm can be
used in order to convert a set of classification rules to a TR sequence.

The rest of this paper is organised as follows. In Section 2, we provide the basic definitions and define
the problem. Section 3 presents a simplification algorithm to remove redundant rules from a TR
sequence. In section 4, another algorithm is presented that removes redundant literals. The main
simplification algorithm is provided in section 5. Section 6 discusses that the algorithms can be used
for simplification of decision lists and that they can be extended in order to simplify multivariable
decision trees as well; Section 7 concludes the paper.

2. Basic Definitions

Definition 1. A situation is a conjunction of Binary literals.

Two special situations are the constant atoms denoted by T and F that, respectively, always evaluate to
true and false. In this paper, we use “.”, in addition to ∧ , “+”, in addition to ∨ , and “′ “ to denote,
respectively, conjunction, disjunction, and negation.

Definition 2. Let A ={a1, a2, …an} denote a set of possible classes (or actions). A Teleo-Reactive (TR)
rule, or simply a rule, is a pair of <s,a>, where s is a situation and a is an element in A.

In this paper, we use r to denote a rule and s!a instead of <s,a>.

Definition 3. A TR sequence is a sequence of rules.

So if t is a TR sequence, t=<r1, r2,…,rn>, where ri denotes the ith rule in the sequence. The most
common way to represent such a TR sequence, however, is the following:

s1!a1
s2!a2
…
sn!an

where si!ai denotes the ith rule, ri.

Definition 4. Let t=<r1,r2,…,rn> be a TR sequence. t is called complete if the disjunction of all the

situations in it is a tautology, i.e. Tsk

n

k
≡∨

=1
.

Example 2. t1 and t2 in Table 1 are both complete TR sequences because:

For t1: a+ a′ +f +a′ +f′ ≡T, and for t2: a+f+T ≡T

 4

Definition 5. Let t=<r1,r2,…,rn> be a TR sequence. The First True Situation (FTS) in t is the first
situation, i.e. the situation with the lowest index, that evaluates to true; that is sk=FTS iff (sk=T) and
∀ sj, j<k⇒ sj=F.

Note that “=” here means “evaluates to” rather then “is equivalent to”, which is denoted by “ ≡ ”.

Definition 6. Let t be a TR sequence. By the output of t, denoted by t(), we mean the action part of the
rule whose situation is the FTS, that is t()=ak iff sk=FTS.

Clearly, if t is complete then the output of t will always be defined, because the FTS always exists. For
this reason, a complete TR sequence may be used in a robot as the control program, i.e. to determine
the action to take at a given time. However, if the TR sequence is not complete, no action can be
determined when none of the situations evaluates to true.

Example 3. Consider t2 in Table 1 and the scenario shown in Fig. 1. Since the robot is neither at the
ball nor facing it, only the third situation, T, evaluates to true; so FTS=T and t2()=”rotate”. And
performing this action, in normal conditions, makes the robot face the ball, in which case the FTS and
the output of the TR sequence will be, respectively, f and “move-forward”. Similarly, performing
“move-forward” will, in normal conditions, make the robot get to the ball, which means the next FTS
will be a, and the robot will then kick the ball.

Definition 7. Let t1 and t2 be TR sequences. We say t1 and t2 are equivalent, and write t1 =&&& t2 or t2 =&&& t1 if,
at anytime, having the same values for the atoms used in the situations, the output of t1 is the same as
the output of t2, i.e. either none of the outputs is defined or both of them are defined and are the same.

Definition 8. Let s be a situation in a TR sequence. The length of s, denoted by l(s), is the number of
literals in s. The length of T and F are both defined as 0.

Definition 9. Let t be a TR sequence. The length of t is defined as l(t)= ∑

t in situationa is s

sl)(.

The simplification problem. Let t be a TR sequence. By simplifying t we mean to obtain another TR
sequence, say ts, if any, such that ts =&&& t and l(ts)< l(t). Ideally, ts would be the most simplified form of
the TR sequence, which means it cannot be simplified anymore, i.e. for every t1, (t1 =&&& t)⇒ l(ts) ≤ l(t1).
The algorithms we present in this paper, however, do not guarantee to provide the most simplified
form of a given TR sequence.

The purpose of simplifying a TR sequence is to have a smaller one that still is semantically equal to the
given TR sequence. It can result in both less required storage and possibly more readable TR sequence.
In the case of robot control, it may also result in faster processing and therefore faster responses to
input stimuli.

Example 4. t1 and t2 in Table 1 are equivalent, but t1 is smaller than t2 because:

l(t1)=l(a)+ l(a′.f) + l(f)=4 and l(t2)=l(a)+ l(f) + l(T)=2

So t2 is a simplified version of t1.

During the rest of the paper, we assume that the input TR sequence is the following:

s1!a1
s2!a2
…
sn!an

 5

3. Removing Redundant Rules

In this section, we provide an algorithm that removes all the redundant rules, if any, from a given TR
sequence. A special case of redundant rules is a never-executed rule. We first present an algorithm to
remove never-executed rules and then extend it to remove any redundant rules.

Definition 10. A never-executed rule is a rule whose situation will never be the FTS.

Example 5. Consider TR sequence t1 in Table 2.a. The second rule, a.b.d! a2, is a never executed rule
because if the situation of the second rule is true, the situation of the first rule will also be true, i.e.
a.b.d⇒ a.d, and therefore the situation of the second rule can never be the FTS.

The fourth rule, b.c.d!a4, is also a never-executed rule because if the situation of the fourth rule is
true, at least one of the situations of the third or the first rules will also be true and therefore the
situation of the fourth rule can never be the FTS. That is because b.c.d⇒ a′.c.d + a.d. So t2 shown in
Table 2.b will be a simplified version of t1.

 Table 2.

 (a) t1 (b) t2 (c) t3 (d) t4

a.d!a1
a.b.d! a2
a′.c.d! a3
b.c.d! a4
d′.e ! a5
c! a3
c′.d.e! a6

a.d! a1
a′.c.d! a3
d′.e ! a5
c! a3
c′.d.e! a6

a.d! a1
d′.e ! a5
c! a3
c′.d.e! a6

a.d! a1
d′.e ! a5
c! a3
e! a6

A never-executed rule is in fact a rule whose situation will not be true unless the situation of another
rule of a higher order, i.e. a lower index, is true, i.e.:

 ri (i>1) is a never-executed rule iff si
ij<≤

∨⇒
1

sj

Therefore, the following algorithm can be used in order to remove never-executed rules:

Algorithm Remove_never-executed_rules:

For all rules, ri, from r2 to rn do
 Make Labove,i=

ij<≤
∨

1
sj

 If si ⇒ Labove,i then //if si can never be the FTS
 Delete ri
End For

End

Theorem. (a) If rk is a rule that algorithm Remove_never-executed_rules deletes, rk is a never-executed
rule. (b) If rk is a never-executed rule, then the algorithm will delete it.

Proof.
(a). The algorithm deletes rule rk only when the If condition evaluates to true. So if rk is removed by
the algorithm, then sk ⇒ Labove,k, which means sk

kj<≤
∨⇒

1
sj, that is rk is a never-executed rule.

(b). It is clear that if rk is a never-executed rule at the time i=k in the algorithm, then the algorithm will
remove it. So we only need to see whether rk will still be a never-executed rule if a higher rule is

 6

removed. Let assume that rm, m<k was a never-executed rule and removed. We would like to see if rk
is still a never-executed rule. In other words, we have:

sm
mj<≤

∨⇒
1

sj

sk
kj<≤

∨⇒
1

sj

 and we would like to see if sk

mj
ij

≠
<≤

∨⇒
1

sj

(sk⇒
kj<≤

∨
1

sj)

 ≡ (sk⇒
mj

ij
≠

<≤
∨

1
sj ∨ sm)

Hence (sk⇒
mj

ij
≠

<≤
∨

1
sj ∨ (

mj<≤
∨

1
sj)) , because we have sm

mj<≤
∨⇒

1
sj

 ≡ (sk⇒
mj

ij
≠

<≤
∨

1
sj)

So, if sk is a never-executed rule, it will still be so even if a higher never executed rule is removed.

In addition to never-executed rules, there might be other rules that are also redundant. Such rules may
fire in some circumstances as they are not never-executed rules. However, in a such a circumstance,
another rule with the same action will be fired if the rule is removed from the TR sequence. Now, we
generalise the discussion and derive an algorithm that removes any redundant rules.

Definition 11. A redundant rule is a rule whose removal from the underlined TR sequence does not
affect the output of the TR sequence.

Example 6. The second rule in TR sequence t2 (Table 2.b) is a redundant rule although it is not a
never-executed rule. To see why it is redundant, remove it from the TR sequence. Then t3 (Table 2.c)
will result. That rule could be fired, in t2, only if a=F, c=T, and d=T, in which case the second rule in
t3 would fail and the fourth rule would be fired resulting in taking the same action, a3, as the action of
the removed rule. This means that even if the rule is removed from the TR sequence, the output of the
TR sequence remains the same.

Now, let us see when a rule is redundant. Let t=<r1,…rk-1,rk,rk+1,…,rn> be a TR sequence, where ri
denote si!ai. Then the TR sequence resulting from removing rk from t will be tS=<r1,… rk-

1,rk+1,…,rn>. Obviously rk in t is a redundant rule iff t =&&& ts, which means (rk is redundant) ≡ (t()=ts()).
It is clear that the right hand side of the equation will hold in the case that FTS in t is one the situations
above sk or one of the situations below it. So the only remaining case is when the FTS in t is sk. In other
words, rk is redundant in t if and only if (sk=FTS ⇒ t()= ts()) or simply (sk=FTS ⇒ ts()=ak).

One circumstance that this condition holds is when sk cannot be the FTS, i.e. when rk is a never-
executed rule, which was discussed before. Clearly, if sk=FTS in t, then none of the situations si, i<k
can be the FTS in ts. So the FTS in ts must be a si such that i>k. therefore, we can write:

(rk is redundant) ≡ (sk=FTS in t ⇒ ∃ sj, j>k, aj=ak, sj=FTS in ts)
 ≡ ((

ki<≤
∨

1
sj)′ ∧ sk)⇒ ∃ sj, j>k, aj=ak, (

km
jm

≠
<≤

∨
1

sm)′ ∧ sj)

 ≡ ((
ki<≤

∨
1

sj)′ ∧ sk)⇒ ∃ sj, j>k, aj=ak, ((
km<≤

∨
1

sm) ∨ (
jmk <<

∨ sm))′ ∧ sj)

 ≡ ((
ki<≤

∨
1

sj)′ ∧ sk)⇒ ∃ sj, j>k, aj=ak, (
km<≤

∨
1

sm)′ ∧ (
jmk <<

∨ sm)′ ∧ sj)

Note rk does not exist in ts. Now, let us define:

Labove,k=

ki<≤
∨

1
sj

 7

and
Lbelow,k,j=(

jmk <<
∨ sm)′ ∧ sj)

Then we will have:

(rk is redundant) ≡ ((Labove,k)′ ∧ sk)⇒ ∃ sj, j>k, aj=ak, (Labove,k)′ ∧ Lbelow,k,j
 ≡ ((Labove,k)′ ∧ sk)⇒ ∃ sj, j>k, aj=ak, Lbelow,k,j

Now, let us define

kakbelowA ,, =
kj aa

kj
=

>
∨ Lbelow,k,j. Note that if there is no operand for the ∨ operator, we

will assume that the expression evaluates to false. Then we will have:

(rk is redundant) ≡ ((Labove,k)′ ∧ sk)⇒
kakbelowA ,,

 ≡ ((Labove,k)′ ∧ sk)′ ∨
kakbelowA ,,

 ≡ ((Labove,k) ∨ sk′ ∨
kakbelowA ,,

and finally

(rk is redundant) ≡ (sk⇒ Labove,k ∨

kakbelowA ,,) (Eq.1)

Now, we present the algorithm that removes redundant rules, including never-executed rules:

Algorithm Remove_Rules:

For all rules, ri, from r1 to rn do
 a. Let Ltotal,i=Labove,i ∨

iaibelowA ,,

 b. If si ⇒ Ltotal,i then // if si is either a never-executed rule or not a never-executed rule but
 still redundant
 Delete ri
End For

 End

Theorem. (a) If rk is a rule that algorithm Remove_Rules deletes, rk is a redundant rule. (b) If rk is a
redundant rule, then algorithm will delete it unless it is used to delete a higher redundant rule.

Proof.
(a). The algorithm deletes rule rk only when the condition si ⇒ Labove,k + Abelow,i,ak evaluates to true,
which means rk is a redundant rule.

(b). It is clear that if rk is a redundant rule when i=k in the algorithm, then it will be removed. So we
only need to see it will still be a redundant rule if a higher rule is removed, unless it is used to remove
that rule. Let assume that rm, m<k was a redundant rule and removed. We have the following
assumptions:

(1) sm⇒ Labove,m ∨
mambelowA ,,

(2) sk⇒ Labove,k ∨
kakbelowA ,,

 (3) (rk has not been used in removing rm)

and we would like to show that rk will still be redundant after removing rm, i.e.:

 (sk⇒

mj
ij

≠
<≤

∨
1

sj ∨
kakbelowA ,,)

Based on assumption (1), we have:

(sm⇒ Labove,m ∨
mambelowA ,,)

 ≡ (sm⇒
mj<≤

∨
1

sj ∨ (∃ rq, m<q, aq=am, Lbelow,m,q)

 8

Because of assumption (3), q cannot be equal to k, and the above expression will be equivalent to:

 (sm⇒

mj<≤
∨

1
sj ∨ (∃ rq, (m<q<k or k<q), aq=am,Lbelow,m,q) (4)

On the other hand we have:

Assumption (2) implies (sk⇒

mj
kj

≠
<≤

∨
1

sj ∨ sm ∨
kakbelowA ,,)

Then using (4):

Assumption (2) implies (sk⇒

mj
kj

≠
<≤

∨
1

sj ∨
mj<≤

∨
1

sj ∨ (∃ rq, (m<q<k or k<q), Lbelow,m,q) ∨
kakbelowA ,,)

Which implies (sk⇒ (
mj

kj
≠

<≤
∨

1
sj) ∨

kakbelowA ,, ∨ (∃ rq, (m<q<k or k<q), Lbelow,m,q) (5)

Now, let us define:

X=(∃ rq, m<q<k, aq=am, Lbelow,m,q)
Y=(∃ rq, k<q, aq=am, Lbelow,m,q)

Then we have:

X⇒ ∃ rq, m<q<k, qq=am,(

mjq <<
∨ sj)′ ∧ sq)

 ⇒ ∃ rq, q<k, sq
 ⇒ (

mj
kj

≠
<≤

∨
1

sj)

and

Y⇒ ∃ rq,k<q<n, qq=am,(

mjq <<
∨ sj)′ ∧ sq)

 ⇒ ∃ rq,k<q,(
mjq <<

∨ sj)′)

 ⇒ sk′

Therefore:

 (5)⇒ (sk⇒ (

mj
ij

≠
<≤

∨
1

sj) ∨
kakbelowA ,, ∨ X ∨ Y)

 ⇒ (sk⇒ (
mj

ij
≠

<≤
∨

1
sj) ∨

kakbelowA ,, ∨ (
mj

kj
≠

<≤
∨

1
sj) ∨ sk′

 ⇒ (sk⇒
mj

ij
≠

<≤
∨

1
sj ∨

kakbelowA ,,)

and the proof is complete. So, if rk has not been used in removing rm, then it will still be redundant
after removal of rm.

4. Removing Redundant Literals

Redundant literals in a given TR sequence are literals whose removal does not affect the output of the
TR sequence.

Example 7. Consider t3 in Table 2.c. Literal c in the last rule, c′.d.e! a6, is redundant because if
neither of its above situations is FTS, then c will certainly be false, because if c is true and the first and
the second situations are not FTS, then the third situation will be the FTS. Literal d in the last rule is
also redundant, because it can never be false unless e=F (otherwise the second rule would be fired) in

 9

which case the rule would not fire. So whether or not it is in the situation does not affect when the rule
is fired. Therefore t3 is equivalent to t4 shown in Table 2.d.

Now, let us see when a literal is redundant. Let t=<r1,…,rk,,…,rn> be a TR sequence where ri denote

si!ai, and sk=
p

r 1=
∧ lr where lr is a literal. Then let ts denote the TR sequence resulted by removing ld

from sk. t= is exactly the same as t except that sk=
p

r 1=
∧ lr in t but sk=

p

dp
r

≠
=
∧

1
lr in ts. Obviously ld is a

redundant literal iff t=ts, which means (ld is redundant) ≡ (t()=tS()) It is clear that the right hand side
of the equation will hold when FTS in ts is one the situations above sk or one of the situations below it.
So the only remaining case is when the FTS in ts is sk. In other words, rk is redundant in t if and only if
(sk=FTS in ts⇒ t()=ts()) or simply (sk=FTS in ts ⇒ ts()=ak..

Obviously, one circumstance that this condition holds is when sk cannot be FTS, which is what
discussed under never-executed rules. So here we assume that sk can be the FTS in t, and we would
like to see under which conditions the condition holds. If sk=FTS in tS, then none of the situations si,
i<k can be the FTS in t. So the FTS in t must be an si such that i ≥ k. So, we have:

(ld is redundant) ≡ (sk=FTS in ts ⇒ sk=FTS in t) ∨ (∃ sj, j>k, aj=ak, sj=FTS in ts)
 ≡ (sk=FTS in ts ⇒ sk=FTS in t) ∨ (sk=FTS in ts ⇒ ∃ sj, j>k, aj=ak, sj=FTS in t)

 (Eq.II)

The left operand of the ∨ operator in this equation is equivalent to the following:

(sk=FTS in tS ⇒ sk=FTS in t)

 ≡ ((
ki<≤

∨
1

sj)′ ∧
p

dp
r

≠
=
∧

1
lr) ⇒ (

ki<≤
∨

1
sj)′ ∧

p

r 1=
∧ lr

 ≡ ((Labove,k)′ ∧
p

dp
r

≠
=
∧

1
lr)⇒ (Labove,k)′ ∧

p

dp
r

≠
=
∧

1
lr ∧ ld

Now, let us define

dlkliteralsL ,, =
d

k
ll

 sin literal a is l
≠

∧ l. Then this expression will be equivalent to:

 (Labove,k)′ ∧
dlkliteralsL ,, ⇒ (Labove,k)′ ∧ Lliterals,k,ld ∧ ld

 ≡ (Labove,k)′ ∧

dlkliteralsL ,, ⇒ ld

 ≡ Labove,k ∨ (
dlkliteralsL ,,)′ ∨ ld

On the other hand, the right operand of the ∨ operator in Eq. II will similarly be simplified:

(sk=FTS in ts ⇒ ∃ sj, j>k, aj=ak, sj=FTS in t)
 ≡ ((

ki<≤
∨

1
sj)′ ∧ l1….ld-1.ld+1….lp⇒ ∃ sj, j>k, aj=ak, (

jm<≤
∨

1
sm)′ ∧ sj)

≡ (Labove,k)′ ∧
dlkliteralsL ,, ⇒ ∃ sj, j>k, aj=ak, ((

km<≤
∨

1
sm) ∨ (

jmk <<
∨ sm))′ ∧ sj)

≡ (Labove,k)′ ∧
dlkliteralsL ,, ⇒ ∃ sj, j>k, aj=ak, (

km<≤
∨

1
sm)′ ∧ (

jmk <<
∨ sm)′ ∧ sj)

≡ (Labove,k)′ ∧

dlkliteralsL ,, ⇒ ∃ sj, j>k, aj=ak, (Labove,k)′ ∧ Lbelow,k,j

≡ (Labove,k)′ ∧
dlkliteralsL ,, ⇒ ∃ sj, j>k, aj=ak, Lbelow,k,j

 ≡ (Labove,k)′ ∧

dlkliteralsL ,, ⇒ Abelow,k,ak

 ≡ Labove,k ∨ (
dlkliteralsL ,,)′ ∨ Abelow,k,ak

 10

So ld is redundant ≡ (Labove,k ∨ (
dlkliteralsL ,,)′ ∨ ld) ∨ (Labove,k ∨ (

dlkliteralsL ,,)′ ∨
kakbelowA ,,)

 ≡ Labove,k ∨ (
dlkliteralsL ,,)′ ∨ ld ∨

kakbelowA ,,

 ≡ (ld′ ⇒ Labove,k ∨ (
dlkliteralsL ,,)′ ∨

kakbelowA ,,) (Eq. III)

Now, we present the algorithm that removes redundant literals, including never-executed rules:

Algorithm Remove_Literals:
 For all the rules, ri, from r1 to rn do

a. Build Labove,i and Abelow,i,ai

b. For each literal l in si do
 Build Lliterals,i,l
 Let Ltotal,i,l = Labove,i + (Lliterals,i,l)′+

iaibelowA ,,

 If l′ ⇒ Ltotal,i,l then remove l from ri
 End For
 End For
End

Theorem 3. Let ld be a literal in situation sk. (a) If algorithm Remove_Literal deletes ld from sk, then ld
is a redundant literal. (b) If ld is a redundant literal, then the algorithm will delete it from sk.

Proof.
(a). The algorithm deletes literal ld only when the condition of If, i.e. ld′ ⇒ dlktotalL ,, , evaluates to true.
Therefore if ld is removed by the algorithm, we will have:

 (ld′ ⇒ Ltotal,k,ld)
 ≡ (ld′ ⇒ Labove,k + (

dlkliteralsL ,,)′+
kakbelowA ,,)

 ≡ (ld is redundant), because of Eq. III.

(b). It is clear that if ld is a redundant literal when i=k in the algorithm, then it will be removed. So we
only need to see whether it will still be a redundant literal if a literal in a higher rule is removed. Let
assume that literal lc in rm, m<k was a redundant literal and removed. We have:

ld′ ⇒ Labove,k + (
dlkliteralsL ,,)′ +

kakbelowA ,,

Clearly, removing lc from sm will only affect Labove,k and does not change Lliterals,k,ld and

kakbelowA ,, . Let
Lbefore and Lafter denote respectively Labove,k before and after the removal of lc from sm. Then we have:

ld′ ⇒ Lbefore + (
dlkliteralsL ,,)′+

kakbelowA ,,

Also, let sm

before and sm
after denote respectively sm before and after the removal of lc. Then we will have:

ld′ ⇒ (
mj

kj
≠

<≤
∨

1
sj ∨ sm

before) + (
dlkliteralsL ,,)′+

kakbelowA ,,

On the other have we have:

 sm

before ≡ sm
after ∧ lc.

So, we will have:

(ld′ ⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after ∧ lc) + (
dlkliteralsL ,,)′+

kakbelowA ,,)

⇒ (ld′ ⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after) + (
dlkliteralsL ,,)′d +

kakbelowA ,,)

 11

⇒ (ld′ ⇒ Lafter + (
dlkliteralsL ,,)′+

kakbelowA ,,)

which means that literal ld is still a redundant literal in sk after the removal of lc.

Example 8. Consider Example 1. Simplifying t1 will result in t2.

Example 9. Consider t8 and t9 defined in Table. 3. Simplifying t8 will result in t9.

 Table 3

 t8 t9

a.b′ ! a1
a′.b! a2
a! a1
a′.b′.c! a3
b.c! a5
a.d′! a3
a′.b′.c′! a4

a! a1
b! a2
c! a3
T! a4

For instance, consider rule b.c! a5 in t8. This rule is a never-executed rule, because if b.c=T then one
of the higher situations will be true. That is because b.c⇒ a′.b′.c + a+ a′.b+a.b′. So this rule does not
exist in t9. Now let us see how Algorithm Remove_Rules removes this rule from t8. When i=5 in the
loop, the algorithm proceeds as follows: In step (a) it generates the following sets:

 Labove,5 =
51 <≤

∨
j

sj =a.b′ + a′.b+a+a′.b′.c=a+b+c

5,5, abelowA =
5

5
=

>
∨
ja

j
 Lbelow,j =F

Ltotal,5 = Labove,5 +
5,5, abelowA =a+b+c

Then, in step (b) of the algorithm s5 ⇒ Ltotal,5 evaluates to true because:

 (s5 ⇒ Ltotal,5) ≡ (b.c⇒ a+b+c) ≡ T.

So r5, b.c!5, is removed from the TR sequence.

Now, consider the first rule in t8. Literal b′ is redundant because even if b is true, i.e. a.b=T, the same
action, a1, will be the output, because in this case the second rule will fail and the third rule will be
fired. The algorithm, Remove_Literals, removes the literal as follows: When i=1 in the outer loop, it
generates the following sets during step (a):

 Labove,1 =
51 <≤

∨
j

sj =F

1,1, abelowA =

1
1
=

>
∨
ja

j
 Lbelow,1,j= Lbelow,1,3=(

31 <<
∨
m

sm)′ ∧ s3=(s2)′ ∧ s3= (a′.b)′ ∧ a=a

Then, in part (b), when l=b′, (b′)′ ⇒ Labove,1 evaluates to false, and the following are generated, in the
else branch of the if condition:

 Lliterals,1,l=a
 Ltotal,1,l = Labove,1 + (Lliterals,1,l)′+

1,1, abelowA = F + a′ + a=T

Next, b⇒ Ltotal,1,l evaluates to T, and finally b′ is removed from r1.

 12

5. The Main Simplification Algorithm

The main simplification algorithm, Remove_Rules_and_Literals, is an algorithm that combines the
above algorithms, Rmeove_Rules and Remove_Literals. The reason why it is not simply a call of
Remove_Rules followed by a call of Remove_Literals is that removing literals can result in making a
rule redundant. On the other hand, it cannot be a call of Remove_Literals followed by a call of
Remove_Rules because removing a literal from a never-executed rule can make it a non-redundant
rule. So, we have used a special combination of the two algorithms to devise algorithm
Remove_Rules_and_Literals.

Algorithm Remove_Rules_and_Literals:

For all rules, ri, from r1 to rn do
 a. Build Labove,i, and

iaibelowA ,,

 b. If si ⇒ Labove,i + iaibelowA ,, then // if ri is a redundant rule
 Delete ri
 Else
 . For each literal l in si do
 Build Lliterals,i,l
 If l′ ⇒ Labove,i + (Lliterals,i,l)′+ iaibelowA ,, then remove l from ri

 End For
 End If

End For
 End

Theorem 3. (a) If rk is a rule that algorithm Remove_Rules_and_Literals deletes, rk will be a redundant
rule. (b) If rk is a redundant rule then the algorithm will delete it unless it is used to delete a higher
redundant rule. (c) Let ld be a literal in situation sk. Then If the algorithm deletes ld from sk, then ld is a
redundant literal.

Proof.
(a). The algorithm deletes rule rk only when the condition si ⇒ Labove,k + Abelow,i,ak evaluates to true,
which means rk is a redundant rule.

(b). It is clear that if rk is a redundant rule when i=k in the algorithm, then it will be removed. So we
only need to see it will still be a redundant rule if (1) a higher rule is removed, unless it is used to
remove the rule or (2) a literal in a higher rule is removed. Case (1) has already been shown in
theorem2; so we here prove case (2).

Let assume that literal lc in rm, m<k was a redundant literal and removed. We would like to see if rk is
still redundant. Clearly, removing lc from sm will only affect Labove,k and does not change

kakbelowA ,, .
Let Lbefore and Lafter denote respectively Labove,k before and after the removal of lc from sm. Then, since rk
is redundant before removing lc, we have:

 sk⇒ Lbefore ∨

kakbelowA ,,

Also, let sm

before and sm
after denote respectively sm before and after the removal of lc. Then we will have:

 sk⇒ (
mj

kj
≠

<≤
∨

1
sj ∨ sm

before) ∨
kakbelowA ,,

On the other have we have:

 sm

before ≡ sm
after ∧ lc.

So, we will have:

 13

 sk⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after ∧ lc) ∨
kakbelowA ,,

 ⇒ (sk⇒
mj

kj
≠

<≤
∨

1
sj ∨ (sm

after) ∨
kakbelowA ,,)

 ⇒ (sk⇒ Lafter ∨
kakbelowA ,,)

which means that rk is still redundant, after the removal of lc.

 (c). The algorithm deletes literal ld only in two cases: (1) when (ld′ ⇒ Labove,k) in part b-1. and (2)
when (ld′ ⇒ Ltotal,k,ld) in part b-2. So if ld is removed by the algorithm, then:

(ld′ ⇒ Labove,k) ∨ (ld′ ⇒ Ltotal,k,ld)
≡ ld′ ⇒ Labove,k ∨ Ltotal,,k,ld
≡ ld′ ⇒ Labove,k ∨ (

dlkliteralsL ,,)′ ∨
kakbelowA ,,

≡ (ld is redundant), because of Eq. III.

Note that if ld is a redundant literal, we cannot say that the algorithm will delete it from sk. That is
because a literal may be redundant before the removal of a rule but not after it. For example consider
the following TR sequence:

a.b!a1
a′.b!a2
b!a1

The first rule is redundant because if a and b are both true then the second rule will fail and the third
rule will fire resulting in the same action. If the first rule is not removed, literal a′ in the second rule
will be redundant. But if it is removed, the literal will no longer be redundant. So, this algorithm
prioritises deletion of redundant rules over deletion of redundant literals.

6. Simplifying Decision Lists and Multivariable Decision Trees

A decision list is a list of (fi,vi) pairs where fi is a conjunction of literals and vi is either true (1) or false
(0) [6]:

(f1,v1)
…
(fn,vn)

fn, i.e. that last fi, is the constant Boolean function T that is always true. A decision list L defines a
boolean function L(X) where X is the input vector. For any input X, L(X) is defined to be equal to vi
where i is the least index such that fi(X)=T. A decision list may be thought of as an extended “if-then-
elseif-…else- ” instruction. We borrow the following example from [6]:

Example 10. Consider the following decision list L:

 (x1.x3′,0)
 (x1′.x2.x5,1)
 (x3′.x4′,1)
 (T,0)

L defines a Boolean function over binary variable x1,x2,x3,x4, and x5. Fig. 2 shows the Karnaugh map
for L. In fact, L is equivalent to binary function f= x1′.x2.x5 + x1′.x3′.x4′.

 14

x1 x2
x3 x4 x5

00

01

000

11

10

001 011 010 110 101 111 100

1 1

1 1 1 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 Fig. 2.

Obviously, a decision list can be viewed of as a special type of a TR sequence in that the only actions
are “0” and “1” [2]. Therefore, the presented simplification algorithms are applicable to decision lists
as well. Consider, for instance, decision list L in example 10. Algorithm Remove-Rules does not affect
L as there is no redundant rule in it, but algorithm Remove_Literals removes literal x3′ from the first
rule and then x′ from the second rule resulting in the following decision list:
 (x1,0)
 (x2,x5,1)
 (x3′.x4′,1)
 (T,0)

On the other hand, a TR sequence is a special type of a binary multivariable decision tree. In such a
decision tree, each node corresponds to a conjunction of some binary literals, and therefore evaluates
to either true or false. The simplification algorithms, therefore, can be viewed of as special cases of
more general algorithms that can be used to simplify general binary multivariable decision trees. Fig. 3
shows, as an example, a possible sub-tree of a binary multivariable decision tree and its simplified
version.

a.b

 c

 d′

Y

X

X

1

1

1 0

0

a.b

c.d

a.d′

Y

X

X

1

1

1 0

0

 (a) before simplification (b) after simplification

 Fig. 3.

However, it is important to note that there will be no need for simplification if the algorithm used to
construct such a tree has already generated the tree with no redundancy, which is highly probable.

7. Simplifying Classification Rules

In this section we focus on the case that we are given a set of order-independent classification rules,
rather than a TR sequence, which we would like to simplify. We assume that each attribute is discrete
and has a finite set of possible values, e.g. {1, 2, 3}. Such a set of rules could be the output of a rule
induction algorithm such as ID3 [7]. In a very special case it could also be the samples itself. We
would like to extend the use of the simplification algorithm to simplifying such rules.

 15

The first issue in simplifying a given set of classification rules is that the resulting rules will not be
order-independent anymore. Therefore, it is not possible to refer to a rule in the middle of sequence
and consider it as an independent rule. On the contrary, when referring to rule in the sequence, one
must bear in mind that neither of the above rules was fired. This could be a big issue in some
applications, while acceptable in some other applications in which the rules are scanned from top to
bottom. In order to reduce this shortcoming, we suggest that we sort the input rules over the classes so
that all the rules having the same output are listed together followed by another set of rules of the same
output, so on. This method of ordering the rules has two advantages: (1) when referring to a rule in the
middle there is no need to assume that the above rules of the same class has not been fired and (2) the
only assumption to make when referring directly to a rule is that the output class cannot be a class
appeared on the above. So great improvement can be gained by sorting the rules. Moreover, this type
of sorting speeds up the simplification algorithm. So we sort the rules before simplifying them.

As the simplification algorithm has been presented to simplify TR sequences, it assumes that the
attributes are Binary. Therefore the next issue in applying the simplification algorithm is how to
convert the given rules into binary-attribute rules. Two possible ways for such a conversion are what
we call Binary and Unique encoding. The former uses a binary code to represent possible values of
each attribute. For instance if attribute a has three possible values of 1,2, and 3, then they could be
represented, respectively, by 00, 01, and 1x. In Unique encoding, however, more bits are used, one per
value. Unique encoding represents each attribute a having k possible values: v1, v2, …vk, in terms of a
bit string of length k such that a 1 in the jth position of the bit string means that the value of a is vj. For
instance, attribute a could be 100 for 1, 010, for 2, and 001 for 3.

Although Binary encoding uses fewer bits than Unique encoding, a potential disadvantage with it
could be that it allows more than one rules to be represented as a single rule. For instance if attribute a
can be either 1, 2, or 3, represent respectively by 00, 01, and 1x, then value 0x for a would mean if a=1
or a=2, which is in fact the combination of two rules (recall that each situation is a conjunction-not
disjunction-of literals). Values like 0x may occur as a result of simplification or the application of a
rule induction algorithm. So we are mainly interested in Unique encoding in this report.

A possible approach to simplifying the given rules is to assume that the rules are samples and perform
the following steps:

(1) encode the rules
(2) run a rule induction algorithm, such as (Binary) ID3 to extract the rules
(3) run the simplification algorithm
(4) decode the rules(optional)

However, when the given rules are not samples but the output of a rule induction algorithm, we are not
interested in this approach, because if such an approach is used directly on the real samples it will
usually result in a fewer induced rules, e.g. a smaller ID3 tree, compared to the case in which it is used
on the rules. The reason why is that the given rules usually cover more cases than the samples,
therefore a rule induction algorithm have more “freedom” to work on the samples rather than to work
on the rules. Consequently, the induced rules –at least before simplification- will be fewer if samples
rather than the rules are used. The only case when such an approach could be beneficial is when the
coverage of the given rules is really good, and we want to keep that coverage.

The second approach is simply the application of the simplification algorithm along with encoding and
decoding:

(1) encode the rules
(2) run the simplification algorithm
(3) decode the rules(optional)

However, unique encoding is not suitable for this approach, despite the previous one, because it results
in having many don’t cares. Having don’t cares was not a problem with the previous approach as a rule
induction algorithm, such as ID3, uses them to produce a better result, e.g. a smaller ID3 tree. It
however is a problem with this approach, because simplification does not use them, as it is supposes
not to change the coverage. Therefore we introduce another type of encoding , we call x encoding,
which is similar to unique encoding except that x is used instead of 0.

 16

Example 11. Suppose that an attribute can have three values: 1, 2, or 3. Using unique encoding we will
have 100 for 1, 010 for 2, and 001 for 3. So we will have 23-3=5 don’t cares that are: 000, 011, 101,
110, 111. If an attribute have k possible values, the number of don’t cares will be 2k-k. Now using x-
encoding, we will have 1xx for 1, x1x for 2, and xx1 for 3. So the only don’t care is 000.

One feature of x-encoding is that each attribute in the resulting rules will be mentioned at most once.
For instance if attribute a can be 1, 2, or 3, there will be either a=1, a=2, or a=3 condition in a rule.
However, using unique code a rule can contain conditions like a ≠ 1 And a ≠ 3 in the same rule.

In order to use the remaining don’t cares in x-encoding, we add some dummy rules at the top of the
given rules before applying the simplification and remove them afterward. This allows the
simplification algorithm to take the advantage of the don’t cares in order to result in a more simplified
output. Let us assume that the don’t care resulted by applying x-encoding to an attribute a with k
possible values corresponds to a special “virtual” value denoted by xa. Clearly attribute a can never
take value xa. For instance, xa for attribute a in Example 11 will be coded to 000, although it can never
be a possible value for a. Then we use the following steps:

(1) Add the dummy rules at the top:
For each attribute a, do:
 Add (a=xa)!”dummy” at the top

(2) Apply x-encoding
(3) Run the simplification algorithm
(4) Remove the dummy rules:

For each rule r, whose action is “dummy” do
 Remove r

(5) Decode the rules into the original format

8. Experimental Results

To test the simplification algorithm, we applied it to two problems: Car Evaluation and Monk’s first
problem[8]. The datasets and the description of these problems can be found at the UCI machine
learning repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). Since the simplification
algorithm is applicable to Binary domain only, we had to code the values in the datasets into binary
string. We tested the algorithm for both binary and unique encoding. Since the simplification algorithm
is order-dependent, we ran it three times each with a random order. Table 4 shows the results. Note
that the simplification algorithm does not change the accuracy of the rules.

 Table 4.

Problem

#rules
#attributes
in samples

#rules(#tests)
before
simplification-
accuracy%

#rules(#tests)
after
simplification
run 1

#rules(#tests)
after
simplification
run 2

#rules(#tests)
after
simplification
run 3

#rules(#tests)
average-
reduction%

Car
Evaluation
(Unique)

1728
6

79(776)
100%

47(304)

54(321)

60(371)

53.67(332)
32.1% (57.2%)

Car
Evaluation
problem
(Binary)

1728
6

127(1105)
100%

35(104)

50(162)

48(148)

44.3(138)
65.1% (87.5%)

Monk’s
first
(Unique)

124
6

21(142)
92.59%

15(57)

17(40)

12(40)

14.67(45.67)
30.2% (67.8%)

Monk’s
first
(Binary)

124
6

34(203)
87.73%

31(80)

27(79)

25(82)

27.67(80.33)
18.6% (60.4%)

This table shows that simplification could be useful in reducing the size of a given set of rules. Better
results are gained if the input rules are complete and the last rules are all of the same output and

 17

preferably as more as possible. The reason why is that all of such rules will be replaced with T!the
class, by the simplification algorithm. However, if the given rules are so, then it would be more fair to
compare the output of simplification with a modified version of the rules that has the default to major
rule (T!major class as the last rule)[9]. Table 5 provides this comparison for both Car Evaluation and
Monk’s first problems. Note that the output of binary ID3, despite the non-binary one, is necessarily
complete.

 Table 5.

Problem

Before
simplification

Using
T! Major
before Simp.

Using
T! Major
after Simp.

Car
Evaluation
(Unique)

79(776)
100%

44(413)

36(225)

Car
Evaluation
problem
(Binary)

127(1105)
100%

68(572)

34(173)

Monk’s
first
(Unique)

21(142)
92.59%

10(62)

10(50)

Monk’s
first
(Binary)

34(203)
87.73%

16(92)

16(75)

 In the next series of experiments, we used the inducer software [9] to receive the classification rules
for Monk’s first problem using both the standard ID3 and Prism algorithms [10]. Then we applied x-
encoding followed by the simplification algorithm to simplify the induced rules. We performed the
experiment for both with and without the default to major rule cases. Table 6 shows the number of
rules and literals in different cases.

 Table 6.

Problem

Before simplification

After Simp.
Without using
Dummy rules

After Simp.
With using
Dummy rules

Monk’s first- not
complete
(ID3)

52(226)
76.6% correct
10.4% not covered

50(199)

37(130)

Monk’s first-
complete using
T!Major class
(ID3)

27(110)
85.9%
0% not covered

22(89)

22(85)

Monk’s first- not
complete
(Prism)

25(75)
87% correct
13% not covered

21(60)

15(35)

Monk’s first-
complete using
T!Major class
(Prism)

6(10)
100%
0% not covered

5(7)

5(7)

Comparing Table 4 and Table 6, on the Monk’s problem, another interesting results is seen, which is
independent of the simplification issue. It can be seen that using unique encoding along with (Binary)
ID3 has the following advantages over using just the standard ID3:

• Higher percentage
• Providing complete rules set, i.e. no missing link in the ID3 tree
• Smaller size, e.g. fewer rules and literals

These advantages could be due to the fact that unique encoding provides us with more expressability.
Because of these advantages the following method could be a possible useful replacement for the
standard ID3:

 18

(1) Apply unique coding to the samples
(2) Apply (Binary) ID3 to the coded samples and derive the rules
(3) Decode the rules

However, the main limitation with this approach is that it is not practical if the underlying problem
involves attributes with many possible values, including as continuous-values attributes.

9. Conclusion

In this paper, we presented two algorithms to remove redundant rules and literals from a given TR
sequence. Then we draw the main simplification algorithm by combining the algorithms. The
simplification algorithm can also be applied to decision lists, as a decision list is a special case of a TR
sequence. The algorithms may also be used in order to reduce the size of a set of classification rules by
converting it to a sequence of (ordered) classification rules. Such a conversion extends the use of the
simplification algorithm from the context of robotics to data mining context.

Although the algorithms remove redundant rules and literals from a given TR sequence, the do not try
to achieve a more simplified version through re ordering the rules. Moreover, the algorithms are not
efficient in terms of complexity. So it is desired to enhance it to become both rules’ order-independent
and more efficient.

References

[1] N.J. Nilsson, "Teleo-Reactive Programs for Agent Control," Journal of Artificial Intelligence
Research, 1, 1994, pp. 139-158.

[2] N.J. Nilsson, Learning Strategies for Mid-Level Robot Control: Some Preliminary Considerations
and Results, Robotics Laboratory, Department of Computer Science, Stanford University, May 2000

[3] M. Sahami, "Learning Classification Rules Using Lattices," Proceedings of the Eighth European
Conference on Machine Learning (ECML-95), Springer-Verlag, Berlin, Germany, 1995, pp. 343-346.

[4] M.A. Bramer, "Using J-Pruning to Reduce Overfitting in Classification Trees," Research and
Development in Intelligent Systems XVIII Springer-Verlag, 2000, pp. 25-38.

[5] M.A. Bramer, (ed.), Special Issue of Knowledge Based Systems Journal, vol. 15, Issues 5-6,
Elsevier, 2002.

[6] L.R., Rivest, "Learning Decision lists," Machine Learning 2,3, 1987, pp. 229-246.

[7] J.R. Quinlan, "Induction of Decision Trees," Machine Learning, 1, 1986, pp. 81-106.

[8] S.B. Thrun et al., The MONK’s Problems-A Performance Comparison of Different Learning
Algorithms, tech. report CMU-CS-91-197, Carnegie Mellon University, 1991.

[9] M.A. Bramer, "Inducer: a Rule Induction Workbench for Data Mining," Proceedings of the 16th
IFIP World Computer Congress Conference on Intelligent Information Processing (eds. Z.Shi,
B.Faltings and M.Musen), Publishing House of Electronics Industry (Beijing), 2000, pp. 499-506.

[10] M.A.Bramer, "Automatic Induction of Classification Rules from Examples Using N-Prism,"
Research and Development in Intelligent Systems XVI. Springer-Verlag, 2000, pp. 99-121.

