

RATIONAL AGENTS
AND

THE PROCESSES AND
STATES OF NEGOTIATION

SHAMIMABI PAUROBALLY

BEIT SCIENTIFIC RESEARCH FELLOW

A thesis submitted for the degree of

Doctor of Philosophy of the University of London and for the

Diploma of Membership of the Imperial College,

September 2002

Department of Computing
Imperial College London

Abstract

This thesis shows how a verified and unambiguous theory of a protocol with known

properties enables rational agents to interact in a negotiation process and to finally

satisfy their goals using strategies and plans. This is achieved through an application

of an extended form of propositional dynamic logic in the verification, validation and

reasoning about interaction protocols in a multi-agent system.

Agent interaction, as a key aspect in multi-agent systems and automated negotiation,

has lead to a number of proposed agent communication languages and protocols. In

contrast to a language, a rational agent can reason about a protocol to strategically

plan possible courses of action in a bid to achieve its goals. Existing techniques for

specifying protocols have resulted in faulty and ambiguous interaction protocols,

leading to contradictory beliefs between agents. There remains a need for formally

specifying and validating sharable interaction protocols with desirable properties.

This thesis specifies, verifies and analyses protocols for automated negotiation

through the application of Artificial Intelligence techniques.

To this end, a meta-language called ANML is specified as an extension of

propositional dynamic logic. The syntax and the semantics of ANML, including

axioms and inference rules that hold in this normal modal system, are defined.

Interaction protocols between agents can be concisely and completely specified in

ANML allowing representation and reasoning about the states and processes of a

negotiation. Examples of protocols for various types of negotiation are given as

logical theories in ANML.

This thesis verifies interaction protocols proposed in statecharts and AUML, [Odell

and al. 2000], and show the inadequacy of these notations for specifying

communication in multi-agent systems. For each verified protocol, its correct version

is given in ANML. In addition to correctness, a protocol may exhibit safety, liveness

or game theoretic properties. Axioms in ANML for a range of safety and liveness

2

 3

properties in an interaction protocol are defined. As an example, these properties are

proved for a given bilateral protocol. This methodology can be used for designing or

choosing between protocols with required properties.

Another benefit of the ANML meta-language allows the problem of ensuring

consistency between different participant’s beliefs to be addressed. This thesis

provides and proves the conditions for preventing contradictory beliefs and

knowledge between agents about a negotiation protocol and state – even in an

imperfect communication medium.

Finally bilateral protocols and strategies for evaluating and generating sets of issues

negotiated over are combined as a vehicle for simulation. The performance of each

strategy is analysed from test results. Paths towards a goal state may be derived from

such protocols and strategies, engendering a planning capacity in an agent.

ANML is found to be expressive enough to specify dynamic m-n agent interactions.

Further developments are possible for applying our methodology in a wider scope of

agent interaction. In addition, the expressiveness of ANML could be increased and

the properties of the formalism analysed.

Acknowledgements

First of all, I thank my supervisor Jim Cunningham for the inspirational ideas in this

thesis and his support throughout my postgraduate years at Imperial College. His

understanding and witticism have constituted an encouragement for me. I also thank

the examiners Frank Dignum and Stefan Poslad for their feedback to improve the

thesis. Many thanks to my second supervisor Keith Clark, my colleagues in the

Communicating Agents Group and in the Computing Department at Imperial College.

In particular, I have appreciated the interesting discussions with Lloyd Kamara,

Jeremy Forth, Iain Stewart, Alexander Yip, Miguel Leith and Athanassios Diacakis. I

would like to also thank Nick Jennings and Phillip Turner at Southampton University.

Thanks Phillip for helping me during the last few days before submission. I spare a

thought for the friends that I have acquired throughout my studies in UK. I send my

special regards to Yasseen for his endless support and encouragement to keep on

working.

I thank the Beit Fellowship and the ORS Committee for the financial funding during

three years of this Ph.D. I acknowledge the support of the OSM project during the

first year. This project has introduced me to the area of electronic commerce and

negotiation.

Most of all, I would like to thank my parents and my family in Mauritius for their love

and care during all my life. My mother and father have always patiently awaited my

visits and have never ceased to be a source of inspiration. I also thank Sayed Saheb

for always being there for me and for attending my birthdays. Undoubtedly, this

thesis and any accomplishments would not have been possible without the help from

Allah and his messenger Muhammad (peace be upon him).

 4

Contents

Abstract..2

Contents ...5

Figures..10

1 Introduction...13

1.1 Negotiation in Agent Mediated Electronic Commerce................................13

1.2 Motivation and Aims ...15

1.3 Thesis Outline ..24

1.4 Background and Related Research ..26

1.5 Statement of Contribution..31

2 Agents for Negotiation..32

2.1 Introduction..32

2.2 Characteristics of Agents ...32

2.3 Non-logic Based Agents: Reactive Agents..33

2.4 Hybrid Agents..35

2.5 Logics Based Agents..35

2.6 Agent Design Concepts..41

2.7 Multi-Agent Systems ...43

2.8 Agent Mediated Electronic Commerce..45

2.9 Automated Negotiation..48

2.10 Summary ..57

3 ANML – Agent Negotiation Meta-Language ...58

3.1 Introduction..58

3.2 Motivation for ANML ...59

 5

3.3 Possible Logics for ANML..60

3.4 ANML as Extended PDL...67

3.5 Syntax of ANML ...69

3.6 Semantics of ANML ..71

3.7 Axioms and Inference Rules in ANML...81

3.8 D, T, B, 4 and 5 Properties in ANML ..88

3.9 Axioms on ANML Connectives ..90

3.10 The state of a process-like negotiation between agents93

3.11 Further Work on ANML..96

3.12 Conclusion ...97

4 Representing Protocols in ANML ...98

4.1 Introduction..98

4.2 A Bilateral Protocol ...100

4.3 Bilateral Negotiation Expanded...108

4.4 Multi-lateral Protocol...114

4.5 Scenario for Multilateral Negotiation ..119

4.6 Promissory Negotiation ...121

4.7 Scenario for Promissory negotiation..123

4.8 Auction Protocols...125

4.9 Fish-Market Auction..131

4.10 Summary ..134

5 Verification of Protocols...135

5.1 Introduction..135

5.2 Bilateral Protocol ...136

5.3 Representing Protocols in AUML ...143

5.4 AUML and FIPA IPs ...145

5.5 FIPA Request Interaction Protocol ..148

5.6 FIPA Request-When Interaction Protocol ..153

5.7 FIPA Iterated Contract Net Interaction Protocol.......................................155

5.8 FIPA English Auction Interaction Protocol ...163

5.9 FIPA Recruiting Interaction Protocol..170

5.10 Translating Bilateral negotiation from ANML to AUML175

 6

5.11 What is wrong with AUML? ...177

5.12 Petri Nets for Interaction Protocols..181

5.13 Translating from Petri Nets to ANML...185

5.14 Issues about Petri Nets ...195

5.15 Summary ..199

6 The Properties of a Protocol ..200

6.1 Introduction ..200

6.2 Safety and Liveness properties – A survey ..201

6.3 Some General Properties of Protocols..202

6.4 Definition of Properties ..204

6.5 Proving the Properties of the Bilateral Protocol...214

6.6 Termination ..215

6.7 Strong Termination...221

6.8 Liveness ..221

6.9 Soundness ...225

6.10 Serial..228

6.11 Ordered..230

6.12 Not Serialisable ...230

6.13 Complexity ..232

6.14 Security..232

6.15 Non-Consecutive Property ..233

6.16 Reliability ..233

6.17 Consistency ...234

6.18 A Discussion about Equivalency between Protocols236

6.19 Summary ...243

7 Reasoning about a Group’s Beliefs ...245

7.1 Introduction..245

7.2 The Theory of Joint Intentions...245

7.3 Knowledge and Belief Systems ...247

7.4 Knowledge and Belief in a negotiation..248

7.5 The Properties of a Theory ..251

7.6 Common, Individual and Joint Theory ..253

 7

7.7 Consistency of the Joint Theory ..256

7.8 Beliefs about Negotiation State in a Fallible Communication Medium260

7.9 Contribution to Communication and Interaction264

7.10 An Interaction Group’s Beliefs ..268

7.11 Definitions and Assumptions...272

7.12 Guaranteed Receipt of Messages ...276

7.13 Proof of Safety of Protocol R..279

7.14 Non-Guaranteed Receipt of Messages...281

7.15 Repeated Messaging and Timeouts ...284

7.16 Pragmatics of Synchronisation ..285

7.17 Fragment of Bilateral Negotiation ...286

7.13 Generic Scenario of a Negotiation...287

7.14 Summary ..291

8 Practical Agents ..293

8.1 Introduction..293

8.2 Strategies for Single Actions ...294

8.3 Strategies for a Bilateral Negotiation...301

8.4 Responsive Decision Making in a Bilateral Negotiation...........................302

8.5 Deliberative Decision Making in a Bilateral Negotiation..........................310

8.6 Implementation of a Bilateral Negotiation ..327

8.7 Performance Analysis ..334

8.8 Planning Agents ...345

8.9 Finding Paths and Assinging Utilities..350

8.10 Summary ..357

9 Conclusion and Further Work ..358

9.1 Summary ..358

9.2 Further Research ..360

Appendix A – Normal Modal System..363

A.1 Syntax of Modal Logic ..363

A.2 Semantics of Modal Languages ...364

 8

 9

A.3 Axioms for Normal Systems of Modal Logic..365

A.4 Rules of Inference in a modal system ..366

A.5 Rules and Axioms for <a> ..368

Appendix B - Electronic Commerce and its Architectures..................................370

B.1 Introduction...370

B.2 The Evolution of Electronic Commerce ...370

B.3 Different Aspects of Electronic Commerce ..372

B.4 Prioritising Requirements for Electronic Commerce..................................374

B.5 Business Transactions...376

B.6 Conclusions on Requirements for E-Commerce...378

B.7 Object Management Architecture ...378

B.8 CORBA...379

B.9 Java and Distributed objects ...382

B.10 CORBA Services ..382

B.11 CORBA Facilities ...383

B.12 Higher Level Frameworks: The Business Object Facility..........................383

B.13 Advantages of CORBA...384

B.14 Shortcomings of CORBA ...385

B.15 EC Architectures - The Task/Session Facility ...387

B.16 Open Service Model Reference Architecture ...387

B.17 Negotiation Facility Specification ..389

B.18 Summary ...391

References..392

Glossary ...416

Figures

Figure 2.1 Brook’s Subsumption Architecture ..34

Figure 2.2 PRS BDI Agent Architecture ...38

Figure 2.3 Structure of an ARCHON Community ..44

Figure 3.1 Process Sequencing with 3 sub-processes, [a; b; m] A3..............................78

Figure 4.1 State transition diagram for bilateral protocol..101

Figure 4.2 JSD of business to business transaction ...110

Figure 4.3 Richer bilateral protocol ...111

Figure 4.4 Original version of multi-lateral protocol, [OSM Saarl 1998]115

Figure 4.5 Showing compound transitions in multi-lateral protocol116

Figure 4.6 The call transition ...116

Figure 4.7 Original version of promissory negotiation..121

Figure 4.8 Promissory diagram showing compound transitions................................122

Figure 4.9 Statechart of an English Auction..126

Figure 4.10 Dutch Auction state diagram..129

Figure 4.11 State diagram for Sealed Bid Auctioning protocol.................................130

Figure 4.12 FishMarket Auction Protocol ...132

Figure 5.1 Original Bilateral Protocol ..137

Figure 5.2 Version 2 of state transition diagram for bilateral negotiation.................140

Figure 5.3 Extensions supporting concurrent threads..144

Figure 5.4 A generic IP expressed as a template package, [Odell and al. 2001].......145

Figure 5.5 FIPA Request Interaction Protocol, [FIPA 2001b]...................................149

Figure 5.6 Suggested AUML and statechart diagram for Request IP........................152

 10

Figure 5.7 FIPA Request-When Interaction Protocol, [FIPA 2001c]153

Figure 5.8 FIPA Iterated Contract Net IP, [FIPA 2001e, Odell and al. 2000]..........156

Figure 5.9 English Auction IP, [FIPA 2001h], [Odell and al 2001]164

Figure 5.10 FIPA Recruiting Interaction Protocol, [FIPA 2001g]............................171

Figure 5.11 Bilateral Protocol in AUML...176

Figure 5.12 Example of a Petri net ..182

Figure 5.13 Example of a transition (firing) rule...183

Figure 5.14 A simplified Petri net of a communication protocol185

Figure 5.15 Simple Petri Net ...185

Figure 5.16 Merging of processes..187

Figure 5.17 Splitting of Processes ...188

Figure 5.18 Petri net request conversation (Initiator Role)..190

Figure 5.19 Petri net request conversation (Participant Role)190

Figure 5.20 Contract Net conversation with 3 contractors ..192

Figure 5.21 Pair-wise negotiation process for a MAS...193

Figure 5.22 KQML Register ..195

Figure 5.23 Example of an initial Petri net ..196

Figure 5.24 Piece of Petri net to add..196

Figure 5.25 Resulting Petri net ..197

Figure 7.1 An agent’s individual knowledge...255

Figure 7.2 Common theory T0 and individual theories T1 and T2255

Figure 7.3 Joint Theory..256

Figure 7.4 Various Protocols ...262

Figure 7.5 Synchronisation Protocol R ...276

Figure 7.6 Termination with shared beliefs ...280

Figure 7.7 Protocols T and (R+T) for non-guaranteed receipt of messages............281

Figure 7.8 A generic scenario in state chart...287

Figure 8.1 Iso curves...298

Figure 8.2 Shopping process between a retailer and a customer in JSD346

Figure 8.3 First Level State Transition Diagram of the Shopping Process348

 11

 12

Figure B.1: The OMA Reference Model ..379

Figure B.2: CORBA Architecture.…………………………………………………..379

Figure B.3 OSM Reference Architecture..388

Figure B.4 Negotiation Facility Framework...389

1 Introduction

Latin proverb: ‘quid pro quo. clara pacta, boni amici’.

 ‘Something for something. Clear agreements, good friends.’

1.1 Negotiation in Agent Mediated Electronic Commerce

Information and communication technologies facilitate online trading by allowing

participants to deal in commercial transactions at reduced costs, regardless of

geographical constraints, and to access virtual markets containing up-to-date

information 24 hours a day. There has been substantial research in security and

payment systems, [Wang and al. 1998], allowing most online trading sites to provide

encrypted and secure electronic payment options. However, current electronic

commerce applications do not exploit the full potential of the Internet. Electronic

commerce may be defined as performing commercial transactions via the Internet,

which involves more than just shopping malls. Most online shopping sites belong to

the first generation of e-commerce applications with client and server software.

Humans are still involved at either end, adding to transaction costs. Once the issues

of user acceptance and trust of online trading systems are resolved, there is scope for

complex interactive online transactions. Such interaction could be in the form of

automated negotiation, matching suppliers’ services to customers’ requirements,

electronic shopping assistants, aggregation of services from various sources,

automated authentication to establish credentials and automated logistic systems to

ensure supply and delivery.

13

Introduction

A tenet of this thesis is that for electronic commerce to proliferate at this higher level,

there must be an open architecture that allows participants to communicate and

coordinate irrespective of differences in location and platform. Several distributed

object architectures have been proposed for satisfying the interactive aspects of

electronic commerce, [OSM 1997]. Although there is considerable industrial interest

in the development of interoperable distributed object-oriented software, some

concern has arisen amongst academic software engineers over the inherent complexity

of systems built this way, [Martin and al. 1999b; Webster 1995]. Higher level

architectures on top of object frameworks begin to come in the realm of agent

oriented systems, which are at a natural higher level of abstraction and inherit from

object frameworks to allow automation of online services.

Agent research is one of the fastest growing fields in Information Technology. An

agent can briefly be described as a processing entity which, when situated in an

environment, senses the environment and acts autonomously upon it. It can use stored

knowledge to act without the intervention of its owner in a dynamic environment,

responding to changes in the environment, interacting with other agents and taking

initiative where appropriate. Software agents that are personalised and continuously

running may be used to reduce costs and to automate time-consuming tasks. For

example, in online auctions extending over weeks, such as Ebay, [Ebay 2002], an

agent knowing the preferences of its owner may act as an auctioneer, a seller or watch

out for interesting auctions and strategically bid no further than its reserve price. It

can take on several roles and participate in multiple transactions or be designed

towards one task. One or more specialised agents can support different steps during a

transaction, from searching and filtering large unstructured online information to

brokering, negotiation and payment. New software architectures based on

autonomous, “intelligent” software agents promise elegant and evolutionary solutions

to electronic commerce, but they have yet to be proven.

Negotiation is an important aspect of commerce, [Cunningham, Paurobally and al.

1998]. It is a form of decision-making where two or more parties jointly search a

space of possible solutions with the goal of reaching a consensus. Negotiation is part

of those wider dynamic processes whereby commercial goals are achieved by the

parties to a contract. Overt negotiation, as deal making, is often suppressed by agreed

 14

Introduction

rules of encounter, but it is rarely absent altogether. Examples of negotiation in real

life can be observed in daily conversations, auction houses and commerce. A

protagonist does not have to decide on an exact offer and can negotiate a dynamic

deal that takes into account features other than price. In electronic negotiation,

participants interact for mutual gain through an electronic commerce framework.

However all parties have to be physically present in a manned electronic negotiation,

which may extend over a long period of time, leading to increased transaction costs.

Online auctions such as Ebay and Amazon remove the constraint of all participants

being co-located but still require users to manage their negotiation. Automated

negotiation has the potential to save both time and management costs. There are at

least anecdotal reports that electronic agents may be able to find better deals in

strategically complex environments without the drawbacks of human ego and

prejudices, [Paurobally and Cunningham 2002]. Software agents can participate in

parallel and complex negotiations and monitor these over long time periods, which

would be difficult for a single human. Automated negotiation is perhaps the most

fundamental and powerful mechanism for managing inter-agent dependencies at run-

time, [Jennings and al 2000]. It is useful in both cooperative and competitive

situations for achieving an agent's goal.

1.2 Motivation and Aims

A motivation for this thesis is to help electronic commerce flourish by expediting

negotiation. To do so, a framework is provided with a meta-language for representing

and reasoning about negotiation, for its automation or partial automation as a step

towards agreement resolution. The meta-language is an extension of propositional

dynamic logic and is used to formally specify and reason about multi-agent protocols

for negotiation.

Research in automated negotiation has gained impetus in the last decade. Inexpensive

communication infrastructure and the rise of virtual enterprises favour negotiation.

The contract-net protocol, [Smith 1980], is one of the first instances of protocols for

electronic negotiation. Past applications were quite basic, typically focusing on a

single issue and on price. Current forms of commercial online negotiation concentrate

on auctions where the parameters and the domains are well defined. Examples of

 15

Introduction

online auctions are QXL, [QXL 2002], Ebay, [Ebay 2002], Amazon, [Amazon 2002],

Last-minute, [Last-minute 2002], and travel companies such as Lufthansa and

Nouvelles-frontieres, [Nouvelles-frontieres 2002]. More advanced negotiation is

possible involving greater flexibility in interaction between participants. Different

users may have different preferences and many are interested in not only price but

also other value-added aspects of a purchase, such as quality and delivery.

Applications need practical agents that negotiate over a variety of issues, find an

agreement that satisfies all the parties, and prepare contracts on behalf of their owners.

See [Chavez and Maes 1996; Sandholm 1999; Wurman 1998] for research on various

types of auctions, applications and strategies and [Kraus and al. 1998; Rosenschein

and Zlotkin 1998; Sierra and al. 1998] for argumentation and game theoretic

techniques.

A key aspect in real or automated negotiation is the rich, often implicit, interaction

between (human or agent) parties, using languages and protocols. Setting up a

negotiation involves deciding on a common language, ontology and choosing a

common protocol. A common language establishes acts for communication that are

known by all participants. A common ontology ensures messages have the same

meaning for all of the agents in that context. In real life, people communicate

verbally with a common language and share a common ontology to avoid

misunderstandings. The same requirements apply to interaction in multi-agent

systems where agent communication languages may be used, but deciding on a

common ontology is a major problem in its own, [Huhns and Singh 1997].

Having a standardised communication language removes the need for agents to design

a common language for interaction but there have been some criticisms about the lack

of formalisation and ambiguous nature of existing agent communication languages,

[Labrou 2001; Pitt and Mamdani 1999]. As such it is probable that more than one

agent communication language, (ACL), will emerge. Among the number of agent

communication languages proposed in the last decade, KQML, [Finin and al. 1993],

and FIPA ACL, [FIPA 1997], both based on speech act theory [Austin 1962; Searle

1969], are the most prevalent and commonly used. FIPA agent communication

language, (FIPA ACL), emerged after criticisms about the lack of formalisation in

KQML and included the semantic language, SL, as a formal language for defining the

 16

Introduction

semantics of FIPA ACL. However, SL itself has to be precisely defined and its

intentional semantics are overly complex. There remain several issues that need to be

resolved in KQML and FIPA ACL for practical use, [Labrou 2001; Pitt and Mamdani

1999; Wooldridge 1998]. Some of these issues are low-level, for example,

interoperation between agent systems for the success of agent deployment on the

Internet. Other issues concern registration and facilitation primitives. The theory

behind FIPA ACL and KQML are based on propositional attitudes, but both have the

disadvantage of allowing ambiguities in the mental states of an agent. The choice and

meaning of performatives are still unclear and KQML and FIPA ACL do not cover

the exchange of more complex contents such as shared plans, goals or strategies.

These issues are important because to be adopted for standardisation, an ACL needs

to consider both the theoretical and the pragmatic approaches.

The embedded content in an agent’s message is expressed using an ontology,

corresponding to a specific domain, and a content language. Typically an agent will

know one or more ontologies. A logic content language can be used to specify an

agent's mental model of the world (e.g. beliefs, desires, intentions). KIF, (Knowledge

Interchange Format), is a language proposed in the KQML specification to support

content languages in ACL messages. FIPA ACL does not commit to a particular

content language. Content languages for knowledge representation for WWW content

include DAML+OIL, [DAML] and RuleML, [RuleML].

Another requirement for negotiation is a common protocol. Agents often do more

than send a single message in a conversation. Rather they engage in task-oriented,

shared sequences of messages to which all of them comply, in order to achieve

specific tasks, such as a negotiation. Conversations and protocols are a shift from

individual messages to sequences of messages. When an agent sends a message, it

can expect a receiver’s response to be among a set of messages indicated by the

conversation structure and history. These expectations derive from a higher-level

structure such as a protocol. A protocol or conversation policy defines a sequence of

message exchanges that agents engage in order to perform certain tasks. Two or more

agents agree to follow this sequence in communication with one another. A

conversation lends context to the messages exchanged and facilitates interpretation of

the meaning of a message, [Labrou 2001]. A protocol can be regarded as public rules

 17

Introduction

or a norm advocating the conduct of an agent towards other agents when carrying out

some negotiation. A common protocol ensures that all participants following it will

coordinate meaningfully and can expect certain responses from others. A protocol

can be application or domain specific, but as long as all the participants know and

follow it, a conversation can be carried out, which may eventually end up in a

terminal state. The protocol to be complied with may be pre-arranged upon entering a

negotiation and in some cases can be considered common knowledge. Flexible, non-

fixed protocols are also possible. Common knowledge of a protocol in a group means

that every agent knows the protocol and everyone knows that everyone knows the

protocol and so forth. One way to ensure that all agents learn about a protocol and its

meaning is to have a public repository of protocols and their semantics. There are a

number of well-known protocols that can be used in electronic negotiation such as

English, Dutch and sealed-bid auctions. The KQML specification suggested an

implicit sequencing of messages in agent interactions. Both protocols and ACLs aim

to facilitate agent communication. A protocol guides how messages from a library of

ACLs are sequenced. Some researchers have taken a protocol-oriented approach

towards ACL semantics in order to standardise agent communication.

However there are cases where existing languages, domain ontologies and protocols

are not suitable for a negotiation. It is inefficient or unfeasible to derive new

protocols and languages for all imaginable cases and the participants themselves may

not have the expertise to do so. Although protocols have become part of many multi-

agent infrastructures, there is still a lack of methodologies for formalised protocol

specification and implementation. Traditionally, deterministic finite state machines

have been used to specify protocols. Early work on implementing and expressing

conversations can be found in [Winograd and Flores 1986]. The COOL system,

[Barbuceanu and Fox 1995], describes agent conversations through detailed finite

state machine models, but two different agents must use different automata to engage

in the same conversation. Other research on protocols using finite state machines are

found in [Kuwabara and al. 1995] (Agentalk), [Wagner and al. 1999] and [Elio and

Haddadi 1999] (COSY). [Nodine and Unruh 1997] (InfoSleuth) and [Pitt and

Mamdani 1999] use deterministic finite state automata to specify protocols for BDI

agents. Other approaches for developing protocols include Petri nets, [Cost and al.

 18

Introduction

1999], state charts, [Moore 1999], Dooley Graphs, [Parunak1996] and AUML, [Odell

and al. 2000].

Most of these methodologies are diagrammatic notations that are unsuitable for fully

expressing multi-agent interactions. Protocols expressed in them are prone to errors

and ambiguities, as shown in chapters 4 and 5. Thus more research is needed on the

formal aspect of specifying protocols to facilitate the sharing and use of conversation

policies by agents. Sophisticated and unambiguous interactions need formalisms

with more support for concurrency and verification, defining the roles of involved

agents along with the constraints between messages. This thesis aims to fulfil this

requirement for tools for conversation specification, verification and sharing. The

main objective of this thesis is to show that our framework can be used for specifying,

verifying and reasoning about protocols with desirable properties in a negotiation

involving rational and goal-oriented agents. The thesis answers the following need:

firstly how can protocols be best defined for agents to understand them and each other

without the risk of inconsistency between their mental states. Secondly how can an

agent use a specification standard to define the protocols it is willing to engage in and

to learn about other agents’ protocols and their properties. Thirdly, an approach of

how to extend existing protocols through creation of new and more detailed versions

or by combining protocols in a new compound protocol.

As part of a set of specification tools, the ANML meta-language is proposed which

can be used to build and reason about protocols and provide an abstract theory of a

conversation. The meta-language is based on propositional dynamic logic so as to

provide intuitive theories for negotiation. ANML – Agent Negotiation Meta-

Language – supports the concise and full specification of protocols such that they can

be shared and they encapsulate desirable and testable properties. Well-defined

protocols expressed in ANML can be used to coordinate agents in their goal seeking

activities. Such coordination entails interaction with specific properties.

Communicatives in existing agent languages may be passed as parameters in ANML.

An ANML protocol specifies the structure of and sequence in a conversation, while

individual messages can be in ACLs like KQML or FIPA ACL. As an analogy to real

life conversations, ANML may be considered as a tool to construct and verify the

 19

Introduction

grammar in a conversation where the words being communicated are in English (or

ACL).

1.2.1 Contributions to Automated Negotiation

This thesis aims to satisfy the need for a formal specification notation for representing

protocols and checking their properties. It is argued that ANML concisely specifies

protocols in a more formal and precise way than finite state machines or AUML and

easily supports the representation of constraints. An abstract analysis to define

axioms for a number of properties is provided and it is proved how an example

protocol in ANML can exhibit correctness, safety and liveness properties. The

existence of a joint theory between negotiating agents is assumed, accompanied with a

discussion of how to maintain its consistency. The contribution of this thesis to the

field of automated negotiation is fivefold as follows:

The first contribution lies in a meta-language (ANML – Agent Negotiation Meta-

Language) to represent and reason about the states and processes of negotiation. It is

difficult to find a notation where processes and states are given equal status, let alone

form the basis for a simple and rational calculus for an executable system. Traditional

imperative programming languages, such a C and Pascal leave reasoning about

programs to external axiomatisations which impose complexity and are prone to

incompleteness, [Waldinger and Levitt 1974]. Object oriented languages provide

otherwise missing capacity for data abstraction, but without solving the problems of

the need for a rational calculus. Dynamic logic, [Pratt 1976], is rare in providing

reasoning about the effect of processes on states of affairs, but in its primitive form it

lacks process abstraction, and has no seriously executable form as a programming

system. Thus there is no established notation to even represent both the states and

processes of an active agent, let alone a calculus for deciding why a particular

negotiation should achieve the mutual goals. The application of ANML in specifying

a protocol yields an intuitive logical theory of a negotiation in terms of its states and

processes. The syntax of ANML is given in a program logic similar to that used in

[Goldblatt 1987] and is an extension of propositional dynamic logic. A meta-

language is defined as a language in which to discuss the truth of statements in

another language. Communicative acts in an agent communication language can be

passed in ANML and the state of common and joint beliefs in a group of agents

 20

Introduction

analysed. This meta-reasoning capability justifies why ANML is a meta-language.

The semantics of ANML constructs are defined using Kripke structures, [Chellas

1980], together with an axiomatisation of ANML as a normal system. One important

notion that arises is the state of a negotiation. The state of a negotiation exists by

virtue of being shared belief in a group of agents engaged in that negotiation process.

The second contribution consists of building interaction protocols and verifying

protocols proposed in finite state machines, statecharts and AUML. A protocol is

expressed as a logical theory with axioms for relations between states and processes.

ANML provides a sufficient level of abstraction for reuse of protocol fragments in

various types of negotiation. This logical approach is especially suitable for

verification purposes. Ambiguities and errors may be discovered and removed by

expressing existing and new protocols in ANML. This is an important benefit, since a

negotiation may become inconsistent or reach an undefined state because its protocol

is misunderstood and ambiguous, thereby causing conflicts between participants.

ANML ensures that any ambiguities are ironed out to yield complete and clear

sharable theories as protocols. This thesis shows that statecharts and AUML

protocols contain errors and are unsuitable for expressing multi-agent interactions.

ANML has enough expressiveness for specifying m-n agent interactions. For each

verified protocol, its corrected version is given in ANML and when possible in their

original notation.

A major problem in agent communication is obtaining a common ontology for all

parties. A shared ontology implies that a group of agents share the same semantics

for what they are communicating about in a given context. Even in real life

conversations where humans have inherent knowledge about languages and cultures,

misunderstandings arise because of different ontologies. A compromise solution

involves establishing domain ontologies, [Farquar and al. 1996]. Likewise, if two

agents have different protocols, there must be a way to establish an equivalence

between these protocols or to derive or extend them to a common protocol. ANML is

a step towards finding similarities between individual protocol theories for a common

protocol. Techniques such as theorem proving may be used for deriving a common

theory from logical representations of individual protocols in ANML.

 21

Introduction

The third contribution lies in determining the properties of a protocol or extending it

to exhibit required properties. Because ANML yields the logical theory of a protocol,

this sets a precedent as it enables us to analyse the properties of that protocol.

Protocols may be chosen according to their properties. This thesis specifies axioms

for safety, liveness and related properties for a protocol in ANML. Compared to

temporal logics systems, our framework provides a relatively easy method for

checking properties such as termination, safety, completeness and liveness in a

protocol.

The fourth contribution is the capability for ensuring that the joint knowledge and

beliefs in a group about a negotiation remains consistent. For example, consider two

agents negotiating according to a common protocol expressed in ANML. An agent

can customise the common protocol privately for its purposes. Each agent has their

individual knowledge and beliefs for that negotiation and there is a joint mental state,

which is the combination of their individual mental states. Agents realistically do not

know the joint knowledge and so inconsistency may arise in the joint knowledge even

though their individual knowledge are consistent on their own. The same

requirements apply for consistent joint beliefs in a group about a negotiation state.

For example, one agent may believe that the state of negotiation is agreed while

another believes that the state is requested. Even though their individual beliefs are

consistent, the consequent of the union of their private beliefs is inconsistent leading

to an overall inconsistent negotiation. This thesis gives the conditions for respectively

maintaining and attaining consistency between the individual knowledge and beliefs

of a group of agents, where their individual knowledge are extensions of a common

knowledge. This thesis also provides rules and assumptions for synchronous state

transitions in the beliefs of a group of agents in an imperfect communication medium.

The fifth contribution is the planning capability of agents using ANML. Contrary to

ACLs, protocols allow for the planning of sequences of actions. ANML fits naturally

with dynamic logics of action and multi-modal logics to represent the states and

processes of a negotiation. Possible paths, consisting of actions or sub-processes,

leading to a goal state may be derived from the theory of a protocol. A reasoning

system is thereby obtained, which can relate processes to goal states. This engenders

a planning capability in an agent for deriving a partially ordered set of possible paths

 22

Introduction

to a goal. An agent may use decision making mechanisms for one step evaluation and

generation of a set of issues, as in [Faratin and al. 1999], and planning mechanisms

such as path-finding, pruning out the worst paths and choosing between possible paths

for sequence of actions.

As an analogy consider real world interactions, where Jacques, from France, and

Julio, from Spain, who both speak their local language and English, want to converse.

To understand each other, they need a suite of established methodologies amongst

which are a common language, protocol and ontology and their semantics. Jacques

and Julio’s common language is English. If they did not have a common language

then they could use gestures but this is difficult to translate to the agent world and

represents another problem. A common language between two agents could be FIPA

or KQML. If Jacques says “hello”, Julio may reply with a similar greeting like

“hello” and when Jacques asks a question, then Julio might answer that question. It

would be erroneous if Jacques says “hello” and Julio responds with “yes, I accept

your offer for a car”. Jacques did not ask a question and there is also an issue of

semantics and ontology involved in the conversation. They both follow an implicit

protocol of conversation, deriving from their cultural knowledge, in order to share or

achieve something. We specify this protocol explicitly in the world of agents. The

contribution of this thesis lies in a methodology to build that protocol and obtain an

intuitive theory of their interaction. In addition, ANML may be used for verifying

that the theory (i.e. protocol) is error-free and clear, irrespective of the language used.

There should be no misunderstandings between Jacques and Julio on the responses to

a valid message and how to conduct a conversation. Therefore, agents Jacques and

Julio are supplied with a framework for building an unambiguous protocol with

verified properties and for reasoning about the states and processes of their

conversation in order to plan for a goal, for example an agreement. In effect, Jacques

and Julio are given a tool for constructing and verifying the grammar of their

conversation in any language of their choice. Since they are from different cultures,

Jacques and Julio may have different ways of interacting with people. They can agree

on a norm that they both understand by specifying the structure of sentences so as to

achieve a meaningful conversation for mutual gain. A common theory can be derived

from their individual knowledge as ANML is independent of culture and language

differences.

 23

Introduction

This thesis describes how an agent can build and verify a theory for a protocol and its

properties and thus a negotiation and how it can use this theory to reason about the

states and processes of negotiation towards planning for achieving its goal. These

facilities are offered through the specification of a meta-language allowing an agent to

derive an abstract theory of negotiation.

1.3 Thesis Outline

Chapter 2 situates this thesis in the field of agent research. It contains a critical

analysis of various agent-oriented concepts and systems, for example logic-based,

multi agent systems, intentional and reactive architectures. It includes a survey of the

state of the art in agent mediated electronic commerce, agent negotiation and its

requirements.

Chapter 3 justifies the need for ANML for constructing theories of a negotiation, with

respect to existing methodologies. It surveys possible logics for specifying ANML.

The meta-language derives from dynamic and multi-modal logic and inherits their

axioms and inference rules. The semantics of ANML is specified both informally and

formally using standard models for possible worlds. In giving the axioms and

standard proof rules for a normal ANML modal system, it is shown that the S5

properties do not apply in ANML.

Chapter 4 presents applications of ANML using explanatory scenarios. Protocols

between groups of agents are expressed as statecharts and in ANML. The example

protocols covered include those for negotiation between many parties through raising

and voting on motions, for making promises and calling on them, for different forms

of bilateral protocol and auction protocols.

Chapter 5 discusses and illustrates protocol verification. The first case study is that of

negotiation between two agents (a bilateral negotiation), describing how errors and

ambiguities can be found and corrected in the original state transition diagram.

Additional case studies include various interaction protocols in AUML proposed by

FIPA. Corrected versions of all the verified protocols are specified in ANML.

 24

Introduction

Having obtained a logical theory of a protocol in ANML, the properties of that

protocol can be derived. Chapter 6 defines properties in ANML for liveness,

termination, safety and soundness, serialisability, complexity, security, reliability,

consistency, decidability and fairness. The bilateral protocol is used as an example to

prove such properties. The issue of deciding on the equivalency between protocols

(in a bid to share, extend or derive a common protocol) is discussed.

Chapter 7 addresses the problem of maintaining the joint consistency of a group’s

knowledge and beliefs. To solve this problem, possible formal properties of a theory

such as completeness, consistency, satisfiability are defined. Conditions that a

common theory (protocol) and all agents’ individual knowledge have to satisfy are

declared to ensure that the joint knowledge remains consistent. This chapter also

addresses the problem of attaining consistency in a group’s joint beliefs about a

negotiation state, even when the underlying communication medium is imperfect. In

order to solve this problem at the communication level, assumptions and rules are

provided for ensuring synchronisation in belief revision about the negotiation state.

Chapter 8 considers strategies as addition to protocols for rational decision making.

Strategies for decision making without looking ahead, called one-step strategies, can

be found in [Matos and al. 1998]. This chapter describes an implementation of a

negotiation between two agents following a bilateral protocol and using one-step

strategies from [Faratin and al. 1999]. The performance, efficiency and stability of

the simulation in achieving a reasonable agreement are analysed. Protocols expressed

in ANML can be further used to derive a set of possible paths to a goal state. An

agent can then plan ahead using search strategies, path-finding, prediction, risk

assessment, game theoretic and AI techniques, engendering partial, full planning or

re-planning capabilities in an agent.

Chapter 9 summarises the achievements and conclusions from our work. This thesis

shows that automated negotiation between rational and planning agents can be

facilitated through our framework for representing and reasoning about protocols and

their properties. Improvements and further research in this area are included.

 25

Introduction

Appendix A gives in more detail the semantics of multi-modal languages, the

inference rules and axioms that apply to the normal system that is ANML. Appendix

B provides a critical analysis of electronic commerce and object oriented frameworks.

Findings from a case study are used to prioritise the requirements for e-commerce and

describe the steps in a business transaction. The second part of appendix B presents a

number of object based electronic commerce architectures with focus on OMG

frameworks, including a proposed OMG negotiation facility.

1.4 Background and Related Research

This section references past and current research in agent negotiation in electronic

commerce. The related work is divided under four headings: multi-agent systems

(MASs), electronic commerce (EC), automated negotiation and decision making

mechanisms. Automated negotiation occurs in the context of MASs and EC and is

enabled through protocols and strategies.

1.4.1 Background: Multi-Agent Systems (MAS)

In practice, agents do not function in isolation from their environment which may

contain other agents. In order to manage the complexities and dynamics of such

systems, agents may be endowed with characteristics of coordination, [Gasser 1992;

Malone 1986], cooperation, [Tennenholtz 2001], and social behaviour, [Sergot 1999].

“Multi-agent systems are social in character; there are properties of DAI systems

which will not be derivable or representable solely on the basis of properties of their

component agents”, [Gasser 1998]. Social agency, [Conte and Castelfranchi 1995],

involves abstractions from sociology and organisational theory to model societies of

agents. Agents do not have complete and accurate information, which makes it

difficult for groups to attain coherent global behaviour. However, agents can mitigate

this by coordinating their actions and share knowledge through communication. Such

inter-agent communication helps an agent to better achieve its goals or those of the

society/system in which it exists – especially when resources are limited, [Huhns and

Stephens 1999].

The limited horizons of agents in MASs require dynamic collaboration for distributed

problem-solving, facilitated by an agent’s local autonomy. This gives rise to dynamic

 26

Introduction

organisational structures such as virtual enterprises or teams. Organisations are

heterogeneous, complex and dynamic systems that are comprised of multiple agents

joining together to achieve, for example, higher performance, [Gasser 1998].

Mathematical and computational methods have been used to study human and agent

organisations, [Galbraith 1973; Lendaris 1964; Manning 1977] and a large number of

models have resulted, each focussing on specific aspects of an organisation [Cohen

and al. 1972; Corkill 1983; Pentland 1995]. For example, teams may be defined as

groups of agents that are restricted to having a common goal within the team. See

[Grosz and Kraus 1996; Rich and Sidner 1997; Tambe 1997] for research in modeling

teamwork. Groups of agents may also adopt joint intentions for cooperation, [Cohen

and Levesque 1991], where involvement in a joint task requires informing others in

the group of relevant commitments and/or de-commitments. Agents may as well

achieve cooperation by learning and communicating about each other’s abilities,

[Huhns and Weiss 1998; Sen 1996 and 1998; Weiss 1998].

Formal modelling of multi-agent systems

Formal methods are useful for reasoning at a higher level than the implementation

level and provide correctness of programs. Formalisation techniques are generally

used in language specification, verification of programs, for reasoning about

knowledge and action or as meta-languages to specify behavioural properties of

agents, [Singh, Rao and Georgeff 1999]. Classical logic and other forms of modal

logic may be used to represent information about an agent and its environment. For

example, deontic logics, [Prakken and Sergot 1997], help when reasoning about

agent’s mental states such as knowledge, beliefs, desires, goals and intentions. AI

research has become interested in reasoning about knowledge and beliefs as in

epistemic logic and doxastic logic, [Meyer and Van der Hoek 1995; Fagin and al.

1995].

1.4.2 Agent Mediated Electronic Commerce and Markets

Statistics in June 2001, [Cox 2001], show that about 100.2 million people in the U.S.

or nearly half of the adult population there with access to the web have made a

purchase online at one time or another. Research is being performed on a range of

associated issues in electronic commerce such as: brokering, [Decker and al. 1997],

security, [Tahara and al. 2001], trust, [Marsh 1994; Robles and al. 2001], negotiation,

 27

Introduction

[Jennings and Wooldrigdge 1997; Rosenschein and Zlotkin 1998; Sandholm and

Lesser 1995], ontologies [Farquhar and al. 1996; Huhns and Singh 1997], multimedia,

law, [Bench-Capon 2001], and payment, [Wang and al. 1998].

Real world economics and market strategies can help in agent electronic commerce to

analyse protocols and strategies. Economics concepts may be embedded in designing

algorithms for economic transactions. [Wellman 1998] presents a market model for

distributed design, where market mechanisms and social constructs are used to

analyse complex computational systems. There have been various other efforts to

exploit market economics for distributed electronic commerce frameworks,

[Clearwater 1995; Sandholm and Suri 2001; Wellman 1995].

1.4.3 Automated Negotiation

Negotiation is a form of decision-making where two or more parties jointly search a

space of possible solutions with the goal of reaching a consensus. Through

negotiation, computational agents are able to find better deals in strategically complex

environments possibly containing parallel transactions. A negotiation can be

competitive or collaborative and can occur in a closed or open marketplace. In

competitive negotiation, the parties are self-interested and have conflicts of interest.

Collaborative negotiation involves agents co-operating to achieve their goals. In a

closed marketplace, users enrol in the marketplace, agree to a certain set of rules and

the set of users is predefined. In an open marketplace, agents can enter and exit at any

time and do not need to agree to rules.

The contract-net protocol, [Smith 1980], embodies the first attempts at automated

negotiation. Kasbah, [Chavez and Maes 1996], Auctionbot, [Wurman 1998], the

FishMarket Project, [Rodriguez and al. 1998a], and Tete-a-Tete, [Chavez and Maes

1996], are trading agents that in addition to brokering perform some basic negotiation,

but they are semi-autonomous and concentrate on price. More advanced forms of

negotiation include multi-issue and flexible interactions. This section references

research on the features and mechanisms for automated negotiation. Contracting and

commitment are the last stages of a negotiation and are addressed in [Sandholm and

al. 1999b; Kraus 1996].

 28

Introduction

For agents to interact meaningfully in negotiations, common languages, ontologies

and protocols are required regardless of an agent’s private strategy. Protocols are

used to coordinate the activities of a group of agents to satisfy an agent’s goal and the

group’s goal. A negotiation protocol is essentially a (possibly) pre-determined

sequence of messages to form a conversation. It is a pattern of message exchanges

that two or more agents agree to follow in communicating with one another. The

need for protocols for interaction in a group is increasingly recognised, [Labrou and

Finin 1997b]. Interaction protocols have to be formally specified and implemented,

yet relatively little work has been done so far on these two issues. This thesis answers

the need for well-defined and sharable conversation protocols, with testable and

desirable properties, that can be used to coordinate agents in accomplishing specific

tasks. [Sandholm 1996] and [Rosenschein and Zlotkin 1998] survey protocols and

discusses the constraints and game theoretic properties of protocols for multi-agent

systems.

There are various types of negotiation protocols: auction, bilateral, multilateral,

contract and argumentation amongst others. Combinatorial auctions, [Lehman and al.

1999], allow a bidder to submit bids for a combination of items. Several researchers

have been trying to develop optimisation algorithms for combinatorial auctions,

[Hunsberger and Grosz 2000; Rothkopf and al. 1998]. Negotiation by argumentation,

[Kraus 2001a; Parsons and al. 1998], as another type of interaction, involves

exchanging proposals that are backed by arguments that summarise the reasons why

the proposal should be accepted. Threats and promises are the most common forms of

arguments used in a human negotiation, [Boster and Mongeau 1984]. In its electronic

counterpart, an argument aims to alter the mental state of a receiving agent and

usually serves to modify the persuadee’s set of intentions. Most of the argumentation

frameworks are based on logical models of the mental states of the agents

representing their beliefs, desires, intentions and goals.

Another requirement for agent interaction is an agent communication language, which

is often a collection of messages consisting of speech-acts and the semantics of that

language. There have been efforts for standardising agent languages for

communication, [Labrou 2001; Poslad and Charlton 2001]. However formalising the

semantics of communications has proved to be a longstanding challenge because more

 29

Introduction

than one view is possible. An ontology provides a shared concept of the world that

can serve as the basis for communication and helps to build an understanding of the

content in a message. Examples of multi-agent architectures including an ontology

can be found in [Dowell and al. 1997; Farquar and al. 1996; FIPA 1997].

1.4.4 Strategies and Planning

While ontologies, protocols and languages are commonly known in a group of agents,

an agent can choose its strategy privately for evaluating, generating and deciding on

its next best course of action. It is similar to a decision process which an agent uses to

determine its positions, concessions and criteria for agreement. A self-interested

agent will choose the best strategy for itself. One step decision-making algorithms

may be reused or extrapolated towards plan formation. Search algorithms help to

solve path-finding problems, [Pearl 1984], constraint satisfaction problems, [Tsang

1993] and in game trees, [Shannon 1950]. [Yokoo and Ishida 1999] surveys such

algorithms for problem solving and planning by agents. Distributed planning

concerns distributing the process of planning among agents, each of which contributes

pieces to the plan, until an overarching plan is created. [Durfee 1999] studies

distributed planning, post- and pre-plan coordination and plan merging.

Game theory is useful in devising strategies and coalition formation, where which

coalitions to be formed depend on maximising the overall utility of a group, [O’

Shehory and Kraus 1999; Sandholm and Lesser 1997]. [Rosenschein and Zlotkin

1998] adopt a game-theoretic approach to analyse a negotiation in different domains

and decide on a strategy on the basis of utility assignments to goals. They study

equilibrium theory for maintaining stability in games, which is important for

agreements and commitments. In comparison, Sycara’s model, [Sycara 1990], uses

case-based reasoning and optimisation of multi-attribute utilities. [Faratin and al.

1998; Rodriguez and al. 1998a] describe one-step decision making algorithms based

on utility functions, trade-offs, imitative tactics and constraints on resources.

[Sandholm and Lesser 1995] study automated negotiations with bounded rationality,

in the context of the contract-net framework. However traditional game theory

models are not suitable for competitive scenarios, because they assume full rationality

and complete knowledge about the goals and strategies of one’s opponents.

 30

Introduction

 31

1.5 Statement of Contribution

A meta-language, ANML, is provided as a methodology for specifying and reasoning

about negotiation protocols and their properties. It allows verifiable protocols to be

expressed as intuitive and concise logical theories so that they can be understood and

shared by goal-seeking, rational negotiating agents. Thus agents will be able to

advertise the protocols they are willing to engage in or to adopt from other agents.

An analysis of existing agent systems, electronic commerce architectures and

automated negotiation has led us to recognise the importance of common languages,

ontologies and protocols for automated negotiation. Having identified the need for

tools for formalising, sharing and extending protocols for interactions, we define

(syntactically and semantically) a framework consisting of a meta-language, ANML,

for supporting automated negotiation through AI techniques. ANML, as an extension

of propositional dynamic logic, is a meta-language for specifying abstract theories of

negotiation and for validating conversation protocols. Expressing a protocol as a

logical theory in ANML enables an agent to find equivalence between different

protocols and enable protocol extension and composition by agents. The protocols

represented can also be made to exhibit safety and liveness properties in addition to

correctness. Safety and liveness axioms are specified in ANML and demonstrated

using a bilateral protocol as example.

In addition, this thesis gives the conditions for attaining consistent joint knowledge

and beliefs, even in a fallible communication medium. in a group while each agent

has individual mental states. Last but not least, the logical essence of our framework

allows reasoning about the processes and states of a negotiation towards goal states by

agents equipped with planning capacities to facilitate the combination of planning

with other DAI research on strategic decision making.

Our approach is compared with methodologies such as statecharts and AUML and

shows errors in protocols expressed in these notations. Existing protocols, as case

studies, are verified and their corrected versions are specified in ANML. It is shown

that the meta-language ANML has enough expressiveness to specify dynamic

multilateral m-n negotiations.

2 Agents for Negotiation

2.1 Introduction

Object-oriented frameworks are not particularly suitable for supporting strategic

decision making in unpredictable environments as in automated negotiations. (See

Appendix B and [Cunningham, Paurobally and al. 1998] for a critical analysis of

electronic commerce and object oriented frameworks). New software architectures

based on autonomous and intelligent software agents promise more elegant and

evolutionary techniques for supporting and enabling electronic commerce than object

architectures. The software agent paradigm grew from AI and distributed problem

solving systems and there are a variety of proposed definitions of what an agent is,

without a commonly agreed one. Essentially, an agent is situated in an environment,

senses its environment and acts autonomously and proactively upon it, continuously

over some period of time [Jennings and Woodridge 1997]. They respond to changes

in environment, interact with other agents and take initiative where appropriate.

Agents can reason about stored knowledge to act without the intervention of a user in

a dynamic environment.

This chapter describes the characteristics of agents including non-logic, logic-based

and hybrid agents. Hybrid agents are built out of two or more types of agents. This

chapter surveys various agent design concepts, agent architectures and applications,

more specifically those in electronic commerce and automated negotiation.

2.2 Characteristics of Agents

[Wooldridge and Jennings 1995b] define an agent as being both autonomous and

flexible in some environment. Agent sense and act over a possibly dynamic

32

Agents and Automated Negotiation

environment using their own initiative. Examples of environments in which agents

may be situated include the physical world, a user, a society of agents or the Internet.

In addition to autonomy, agents need to respond in time to changes, that is be

responsive. The four basic attributes of an agent according to [Wooldridge and

Jennings 1995b] are autonomy, responsiveness, proactiveness and social awareness.

Proactiveness means anticipating events and taking initiative where appropriate.

Social agents are able to interact with other agents via an agent communication

language to complete their goals or to help others with their activities. The autonomy

and proactivenss capabilities of agents render them more suitable for problem solving

and strategic decision making in complex business domains.

Other optional characteristics of an agent include learning, sincerity, mobility,

opportunistic, deliberation, reactivity, intentionality, rationality, benevolence,

truthfulness or co-operation. Learning involves an agent being adaptive and changing

its behaviour based on its previous experience or observations. Sincerity, truthfulness

and benevolence behaviours entail an agent does not lie and is not malicious. Mobile

agents are capable of moving around networks. Opportunistic behaviour in an agent

shows seizing environmental opportunities for satisfying its goal. A deliberative

agent has an explicitly represented, symbolic model of the world, and decisions are

made via logical reasoning and symbolic manipulation. However deliberative agents

find it unfeasible and slow to achieve complete knowledge of the world. Reactive

agents have no symbolic reasoning and do not plan ahead. Intentional agents have

beliefs, desires and intentions and act according to their intentions. A rational agent

acts in a goal-directed way to satisfy its goals according to its internal states. Co-

operative agents collaborate with other agents for satisfying the group’s goals.

2.3 Non-logic Based Agents: Reactive Agents

A reactive agent does not have a central symbolic world model and does not use

symbolic reasoning. Such agents do not plan ahead and their actions depend on what

happens at that time. Reactive agents tend to operate on representations which are

close to raw sensor data. [Brooks 1990] supports that representations should be

grounded in the physical world so that the world is its own best model obviating the

need for symbolic representations. A typical architecture consists of parallel and

 33

Agents and Automated Negotiation

independent modules that are responsible for specific tasks, and which all interface to

the world rather than interface to each other. Communication between the modules is

minimised and of a low-level nature. Reactive agents act/respond in a stimulus-

response manner to the present state of the environment in which they are embedded,

[Brook 1991]. Complex patterns of behaviour and a global behaviour are supposed to

emerge from interactions with the environment when the ensemble of agents is

viewed globally. The complexity of an agent society and its behaviour is a

consequence of their interaction with the environment, not due to the complexity of

the agents themselves.

2.3.1 Brook’s Subsumption Architecture

Brooks proposes the subsumption architecture for reactive agents, [Brook 1991]. It is

composed of a hierarchy of parallel task-accomplishing layers where each layer

competes with the other layers to exercise control over the robot. Lower layers show

primitive kinds of behaviour, such as avoiding obstacles and have precedence over

higher layers.

S
E
N
S
I
N
G

•

•

Explore

Wander

Avoid Obstacles

A
C
T
I
N
G

Figure 2.1 Brook’s Subsumption Architecture

Each layer shows a particular behaviour and pursues a purpose by interacting with the

world. The layers must decide when to act for themselves. This approach gives an

incremental behaviour from simple systems to complex systems. A small piece is

built and interfaced to an existing working complete system. The advantages of this

architecture lie in the speed of reactions and robustness. There are no complex

representations to maintain and reason about, reducing latency. Some layers may still

be functioning while others are incapacitated.

However to explore the world blindly is not an intelligent search and can be costly

and time consuming. A solution is to use partial models of the world where

individual layers extract only aspects of the world relevant to their task. Other open

 34

Agents and Automated Negotiation

issues concern the scalability of the system while keeping complexity reasonable and

how complex are partial representations of the model. Higher layers can be endowed

with learning capabilities. There are questions about how the different layers rely and

interface/interfere with each other, the interaction between multiple robots and the

emergence of complex behaviours.

2.4 Hybrid Agents

Hybrid agents are built out of two or more types of agent architectures, for example

deliberative and reactive. The benefits from combining architectures are possibly

greater than that obtained from a single type of agent. Often, the reactive component

is given some precedence over the deliberative one for action, so as to provide a rapid

response to important environmental events. Hybrid agent architectures are usually

layered e.g. TouringMachines, [Ferguson 1992], and InteRRap, [Müller 1996].

Higher layers deal with information at increasing levels of abstraction. For example,

the lowest layer might output actions directly on obtaining raw sensor data, while the

uppermost layer deals with long-term goals. The three asynchronous layers in the

InteRRap deliberative-reactive architecture are divided in three categories: behaviour-

based, local planning and co-operative planning. The reactive part, consisting of

situation-action rules, is implemented in the behaviour-based component and supports

efficiency, reactivity and robustness. This layer has to provide fast situation

recognition to react to time-critical situations. The other two components for planning

allow for more deliberation.

The drawback with hybrid architectures concerns combining different types of

interacting subsystems cleanly, in a well-motivated control framework. Existing

applications remain domain specific.

2.5 Logics Based Agents

Logics can help to conceptualise and develop agent systems: it helps in formalising

the knowledge, beliefs and goals of an agent, the perception of its environment, its

reasoning component, the construction of plans, the generation of timely and

appropriate reactions and the process of negotiation and communication amongst

agents. Formal methods are useful for reasoning at a higher level than the

 35

Agents and Automated Negotiation

implementation level and providing correctness of design. Such methods may be used

in specifying a language for reasoning about knowledge and action or for specifying

behavioural properties through meta-languages.

One of the main contributions in this area is the BDI architecture, [Rao and Georgeff

1995], which consists of an interpreter and deliberating and planning modules.

Another type of logic-based architecture contains deliberative agents. A deliberative

agent has a symbolic model of the world and develops plans and decisions via logical

reasoning, pattern matching and symbolic manipulation. However deliberative agents

encounter the transduction problem, which is how to translate the real world with

complex processes into an accurate, adequate symbolic description, in time for that

description to be useful, [Wooldridge and Jennings 1995a].

An agent in a group has to consider both its knowledge and beliefs and, if it is a social

agent, what others may know or believe. Such reasoning can become complicated,

but common knowledge is important in a group in order to achieve a consensus,

[Fagin and al 1995]. Reasoning about knowledge and common knowledge may be

performed through epistemic logic, [Meyer and Van der Hoek 1995] and [Fagin and

al 1995], where an agent’s beliefs can be characterised as a set of possible worlds and

epistemic alternatives describe the possible worlds given its beliefs. A proposition

holding in all the epistemic alternatives of an agent’s world is believed by it. Logic-

based agent systems may alternatively use event calculus, [Kowalski and Sergot

1986], inductive logic programming, [Muggleton 1999] and abduction, [Kakas and al.

1992], for reasoning. Below we describe three well-known logic-based architectures.

2.5.1 Shoham’s Agent-Oriented Programming

In Shoham’s agent-oriented programming (AOP) framework, [Shoham 1993], an

agent’s state consists of mental components such as beliefs, capabilities, choices and

commitments. Shoham’s AOP system consists of three primary components:

• A formal language for describing mental states through modalities.

• An interpreted programming language to define and program agents with

primitive communication commands.

 36

Agents and Automated Negotiation

• An agentifier to convert neutral devices into programmable agents.

Shoham [1991] defines a language for beliefs, obligations and capabilities, called

Agent0. Several properties about the modalities are given e.g. beliefs and obligations

are internally consistent, agents are aware of their obligations and the persistence of

mental states. Agent0 has two basic mental categories, beliefs and commitments. The

actions of an agent are determined by its decisions or choices. An agent’s decisions

depend on its beliefs referring to the state of the world, on the mental state of other

agents, on prior decisions, on its capabilities and other agents’ capabilities.

Each agent is controlled by its private program. An agent’s program consists of a

definition of its capabilities and initial beliefs, fixing the time grain and a sequence of

commitment rules. An agent’s program also contains primitive operations and IO

instructions for communicating with other agents. The initialisation part of an Agent0

program defines the capabilities of that agent, its initial beliefs and commitments.

Commitment rules determine how commitments are added over time according to the

current mental state and incoming messages. Actions to which an agent is committed

always refer to a particular future point in time. An interpreter verifies whether a

requested action is in the agent’s capabilities and checks that contradictory prior

commitments are absent. The interpreter reads the current message and updates the

mental state, then execute the commitments at the current time, possibly resulting in

further belief change.

In agent0, agents are naïve and accept any information, retracting previous beliefs if

necessary. An agent’s beliefs database contains private and common beliefs. The

result of informing is common belief between the informer and the agent. Beliefs

change can remove capabilities. Restrictions such as naïve belief-revision must be

relaxed and update of mental state should be able to last less than some fixed time

grain. Agents are also unable to plan and communicate requests for action via high-

level goals. The framework could be extended to deal with more mental categories,

with agent societies and to support persistence of mental states. The notion of mental

state has to be enriched by adding intentions.

 37

Agents and Automated Negotiation

2.5.2 BDI agents

As stated earlier, Rao and Georgeff [1991] developed a logical framework for an

agent theory based on three primitive modalities: beliefs (B), desires (D) and

intentions (I). These three attitudes are represented with three dynamic data structures

in their architecture.

The beliefs database contains an agent’s knowledge about the state of the world, its

own internal state, other agents and their mental states. An agent’s desires correspond

to the tasks allocated to it. Goals are conditions for an agent to achieve, test, maintain

and wait for. An agent will not in general be able to achieve all its desires and must

therefore decide on some subset of its desires and commit resources to achieving

them. An agent’s intentions represent the chosen desires that it has committed to

achieving. There are compatibility functions, such as belief-compatible, which are

critical in enforcing formalised constraints upon an agent’s mental attitudes. The

abstract data structures for beliefs, desires and intentions can be updated and queried.

Another component in the BDI architecture is a plan library. This is a set of plans

specifying courses of actions that an agent may follow to achieve its intentions. Each

plan consists of an invocation condition, which specifies upon which events the plan

should be triggered, a context condition which specifies under what situations the plan

applies and a body which describes the steps of the plan, [Rao and Georgeff 1995].

Agent/User
INTERFACE

SENSORS

ENVIRONMENT

EFFECTORS

INTERPRETER
(Reasoner)

BELIEF
(Fact)

DATABASE

PLAN
LIBRARY

DESIRES
(Goals)

INTENTION
STRUCTURE

Figure 2.2 PRS BDI Agent Architecture

 38

Agents and Automated Negotiation

In Figure 2.2, the interpreter performs belief updates from observations made of the

world and generates new desires. Changes in the system’s goals and beliefs invoke a

set of possible plans, some of which are chosen and placed in the intention structure.

The interpreter then selects an action to perform on the basis of its agent’s current

intentions and knowledge. This can result in establishment of a new sub-goal or

belief. These newly established goals and beliefs trigger new plans to be selected and

placed in the intention structure.

An option generator in the interpreter deduces the possible actions of an agent.

Reducing the options generated by the option generator yields various notions of

commitment and results in different behaviours of an agent. A blindly-committed

agent is one that maintains its intentions until it believes that it has achieved them. A

blindly-committed agent will eventually come to believe it has achieved its intentions

no matter with what information it is supplied or it discovers. Single-minded

commitment allows an agent to maintain its intentions as long as it believes that they

are still options. A single-minded agent will not drop its intentions as long as it

believes its intentions are still achievable. A single-minded agent is committed to its

goals but is open to changes in its beliefs. An open-minded agent is one that is

prepared to change its goals as well as its beliefs but otherwise maintains its intentions

as long as these intentions are still part of its goals, [Rao and Georgeff 1995].

2.5.3 Computational Tree Logic (BDI CTL*)

The logics of CTL and CTL*, (Computational Tree Logic) [Clarke and Emerson

1981], extend the possible worlds model, [Kripke 1963], to address temporal aspects.

CTL comprises of state and path formulae but is not expressive enough for expressing

the relation between a state formula and a path formula. CTL*, [Emerson 1990],

extends CTL by making a state formula an admissible path formula.

In CTL*, the world is modeled as a time tree with a branching future and a single

past. A particular time point in a particular world is called a situation. Events

transform one time point to another. Compound events map to non-adjacent time

points, so allowing the modeling of partial plans.

 39

Agents and Automated Negotiation

BDICTL* theory is an extension of CTL* by combining branching time logic with

conventional modal operators for beliefs, desires and intentions, applied to rational

agents. BDICTL* is two dimensional; a dimension of possible worlds with Bel, Des

and Intend modalities and a dimension of time along which the temporal formulae are

evaluated. A situation is an ordered pair consisting of a world and a state. Every

situation is associated with a set of belief-accessible worlds that are time trees which

an agent believes to be possible. An agent believes the actual world to be one of its

belief-accessible worlds. Multiple belief-accessible worlds result from an agent’s lack

of knowledge about the state of the world. The branching future represents the choice

of actions available to an agent.

For each belief-accessible world, w, at a given moment, t, there must be a goal-

accessible world that is a sub-world of, w, at time, t. A goal-accessible world

represents a possible world if the agent’s goals were satisfied. Desires can be

inconsistent with one another while goals are specified to be consistent. Goals are

chosen desires of an agent that are consistent and are believed to be achievable.

Intentions are represented by sets of intention-accessible worlds that the agent has

committed to attempt to realise. For each goal-accessible world, w, there must be an

intention-accessible world that is a sub-world of w at time t. An agent can only intend

some course of action if it is one of its goals. Intention-accessible worlds must be

compatible with goal-accessible worlds.

Two problems in the possible worlds semantics of CTL* are that of knowing all valid

formulae and of knowledge/belief being closed under logical consequence, known as

the logical omniscience problem, [Reichgelt 1989]. Levesque [1984] proposes

making a distinction between explicit and implicit beliefs as a solution to the logical

omniscience problem, where an agent has a relatively small set of explicit beliefs, and

a very much larger (infinite) set of implicit beliefs, which includes the logical

consequences of the explicit beliefs. However his solution does not allow for nested

beliefs and quantification. The side effect problem in the goal-accessible world

approach predicts an agent has a goal out of the logical consequences of its goals. A

popular example is that an agent might have a goal of going to the dentist, so the

necessary consequence is suffering pain but it does not have as goal to suffer pain.

 40

Agents and Automated Negotiation

2.6 Agent Design Concepts

2.6.1 Mobile Agents

Mobile agents are processes that are capable of moving around networks such as the

WWW, interact with foreign hosts to gather information, transact on behalf of their

owners, access remote resources or cooperate with other agents and then return to

their owners. They can encapsulate scripts and be dispatched on demand. In

migration, a mobile agent moves between nodes and uses collected information to

adjust its behaviour and progressively accomplish its task. Mobile agents reduce

communication costs, which would otherwise have been time-consuming and would

have caused traffic on the networks. They are useful when the local resources such as

processing power and storage on the local machine are limited. They allow

asynchronous computing and support electronic commerce with their distributed

architecture.

Telescript applications, [White 1994], consist of mobile agents operating within a

world or cyberspace of places. Telescript however requires the programmer to learn

and work with a complex object-oriented language and a complex security model.

Significant issues to be addressed, when agents are mobile, remain authentication,

privacy and security of the hosts and agents. It is not obvious that mobile agents

consume less bandwidth since it may involve transferring complex code. Either the

mobile agent is complex and heavy, requiring more bandwidth, or it has limited

capabilities.

2.6.2 Learning agents

Learning technology initially consisted of standalone architectures and then evolved

to neural nets and machine learning. The area of learning in multi-agent systems has

received increased interest, [Huhns and Weiss 1998; Sen1996; Weiss 1998]. Agents

may learn to cooperate by learning and communicating about each other’s abilities.

Learning can be viewed as a method to reduce communication, although

communication may be used to continue or refine learning, [Sen and Weiss 1999].

 41

Agents and Automated Negotiation

There exist different approaches to learning for the purpose of coordination: re-

inforcement learning, [Kaelbling and al. 1996], Q-learning, [Watkins 1989], isolated

learners, [Sen and al. 1994], interactive learning, [Weiss 1993], or machine learning,

[Mitchell 1997].

[Mitchell 1997] defines machine learning as the study of computer programs that

improve through experience their performance at a certain class of tasks, as measured

by a given performance metric. A machine learning system aims at determining a

description of a given concept from a set of concept examples provided by the teacher

and from the background knowledge. Learning from an incomplete set of examples is

called inductive learning. Inductive learning is based on an inductive learning

hypothesis where any hypothesis found to approximate the concept well over a

sufficiently large set of training examples will also approximate the concept over

other unobserved examples, [Mitchell 1997]. A learning algorithm may use positive

and negative examples of a concept and examples of several concepts, depending on

the aim of learning. In supervised learning, examples are annotated with their

corresponding concept, while in unsupervised learning the data is provided along with

the definition of a language which has to be used to represent it.

In reinforcement learning, an agent adapts its decision process based on

environmental feedback from its choice of actions. Reinforcement learning includes

techniques such as Q-learning and relational reinforcement learning, [Kaelbling

1996]. In Q-learning, an agent’s decision procedure is specified by a policy π that

maps states into actions. A reward function deals with environmental feedback to

maps states into numerical rewards. The goal of Q-learning is to compute an optimal

policy π* that maximises the reward that an agent receives. Storing all Q values can

lead to memory space problems and a neural net may be used as a function

approximation. However this can lead to more complex update mechanisms. In some

domains, it may be difficult to specify a numerical reward function. Relational

reinforcement learning combines reinforcement learning with relational learning or

inductive logic programming.

 42

Agents and Automated Negotiation

2.6.3 Interface and Information Agents

An interface agent, [Lieberman 1997], is a program that employs reasoning to provide

assistance to a user dealing with a particular application e.g. an operating system or an

auction applet. It acts as an autonomous personal assistant collaborating with the user

in accomplishing some task in the same environment. An interface agent observes

and monitors actions taken by a user via an interface, adapts over time to a user’s

preferences and habits and suggests improvements in performing the task. It learns

through observing and imitating its user, obtaining feedback, instruction forms and

asking other agents for advice. However, cooperation with other agents is usually

limited to asking for advice without negotiating. Learning modes are typically by rote

or parametric though there can be evolutionary learning.

An information agent accesses one or more distributed information sources for

information search and retrieval. They manage, collate and manipulate obtained

information in order to answer user queries. Information agents manage the current

growth of information on the Internet, helping in information management and

avoiding information overload.

2.7 Multi-Agent Systems

Multi-agent systems, (MAS), contain two or more agents which may or may not

collaborate. MAS address problems that are too complex for a centralised single

agent with limited resources. They can analyse distributed information sources and

expertise for distributed problem solving, e.g. air-traffic control or distributed sensor

networks. MAS encourage modularity, reusability, flexibility, reliability and

increased speed through parallelism. However issues such as interconnecting,

interoperation, co-operation of multiple systems including legacy systems and

understanding interaction among human societies still remain to be resolved.

A heterogeneous agent system contains at least two or more different types of agents,

including hybrid agents. The agents may handle their own co-ordination or groups of

agents may rely on a control program to achieve co-ordination. In the federated

approach, agents communicate only through intermediaries called facilitators or

mediators. It resembles brokering whereby facilitators locate other agents on the

 43

Agents and Automated Negotiation

network capable of providing various services. Facilitators establish connection

across networks and ensure correct interaction amongst agents.

2.7.1 ARCHON Architecture

The ARCHON (ARchitecture for Cooperative Heterogeneous ON-line systems)

architecture, [Cockburn and Jennings 1995], supports decentralised and co-operating

communities of problem-solving, loosely coupled, semi-autonomous agents. Partial

sub-systems can be integrated into a larger coherent community.

ARCHON Layer (AL)
AL-IS interface
Intelligent System (IS)

ARCHON Layer (AL)
AL-IS interface
Intelligent System (IS)

Intelligent System (IS)
AL-IS interface
ARCHON Layer (AL)

Intelligent System (IS)
AL-IS interface
ARCHON Layer (AL)

Messages

Agent

Communication
Link

Figure 2.3 Structure of an ARCHON Community

An agent in ARCHON is able to control its own problem solving and to interact with

other community members for co-orporation to solve the overall problem. Each agent

consists of a communication module called an ARCHON layer, (AL), a reasoning

module named an Intelligent System (IS) and an interface between the two

components. Each agent controls its own IS and mediates its own interactions with

other agents, controlled by the AL. An ARCHON layer allows agents to interact with

each other through a standardised agent interface e.g. asking for information and

requesting services. The system’s overall objective is expressed in the separate local

goals of each community member.

An AL invokes functions on the IS. An IS layer incorporates the planning and

decision-making capabilities of the agent. The ISs can be heterogeneous - in terms of

programming language, individual control algorithm, problem solving paradigms and

platform. The differences are masked by a standard AL-IS interface. An ARCHON

layer is made up of four modules, each of which is responsible for one aspect of the

functional architecture. A monitor module is responsible for controlling the local IS.

A planning and coordination module performs reasoning about the agent’s role in the

 44

Agents and Automated Negotiation

wider co-operating community, deciding which actions should be taken in order to

exploit interactions with others whilst ensuring that the agent contributes to the

community’s overall well being. An agent information management model is a

distributed object management system providing information management services to

co-operating agents. A communication module allows agents to communicate with

one another using services based on the TCP/IP protocol.

2.8 Agent Mediated Electronic Commerce

Agents can help to overcome the barriers that stop consumers using the Internet for

sophisticated means by making the Internet more reliable and easier to use. Personal

user agents can customise an application for an individual user, making it more

effective and productive, and therefore a better trading medium. Within the bounds of

security requirements, an information agent can retrieve, analyse and make use of

information available on internal networks, commercial data sources and WANs.

Agents can be used in data mining, data analysis and intelligent decision-support

tools. In the longer term of 4G telecommunication networks, agents may be delivered

through new terminal devices and embedded in intelligent equipment. Agent

capabilities for strategic reasoning can help in business to business trading for a long-

term benefit between intelligent, communicative software agents, the information

market and electronic commerce.

Industrial research is carried out on customisation of information content and

enhancement of interaction, services and data analysis through agents. A customer in

an agent-oriented market may be divided into three groups: individual, corporate and

developer. Individual users employ personal agents for information retrieval and

customised value-added services. Corporate users use co-operative agent technology

in information retrieval, data mining, problem solving and decision-support tools.

Developers use agent architectures to support agents across distributed systems.

There are a number of factors that need to be considered for agent mediated electronic

commerce:

The performance problems that agents aim to reduce may worsen instead and

prevent the use of agent-based services. User agents must be easy-to-use.

•

 45

Agents and Automated Negotiation

Electronic commerce agents need to reassure potential customers that they are

secure, trustworthy and respect the privacy of the personal information they hold.

The W3 Consortium, the Electronic Frontier Foundation and CommerceNet have

set up the E-Trust to develop a branding system that will enable Web applications

to advertise that they comply with the consortium's standards for respecting the

privacy of an individual's transactions and interactions.

•

•

•

In both the individual and corporate sectors, the complexity of distributed agent

systems brings its own problems. Such systems may be difficult to design,

develop, deliver and maintain.

Electronic commerce, and the agents that support it, are prone to several high-

level risks such as technological failures and commercial failures - leading to a

collapse of the market, failure of agent technology and misuse of agents.

2.8.1 The ADEPT Agent Architecture

Multi-agent systems can support business processes because the domain involves

inherent distribution of data, the autonomy of components, sophisticated interactions

and uncertainty in the solution. Since agents are autonomous there are no control

dependencies between them, therefore if an agent requires a service from another

agent, they must come to a mutually acceptable agreement about the terms and

conditions under which the desired service will be performed. In [Jennings and al.

1996], such contracts are called service level agreements (SLAs). The parties become

involved in a joint decision making process by verbalising their demands and moving

towards agreements through concessions or searching for new alternatives. Client and

server agents negotiate about a service until they come to a mutually acceptable SLA.

An agent must keep track of its context since new agreements require that an agent

reschedules its resources or currently scheduled services may fail and require an agent

to replan its execution strategy.

There are three components in the ADEPT negotiation model – a protocol, service

level agreements and a reasoning model. The protocol is based on speech-act

performatives. It covers a phase of finding out services, a provisioning phase of

coming to an agreement and a management phase of invoking the agreement. Models

guide the negotiation behaviour by supporting the process of generating initial offers,

evaluating offers, and counter proposing if offers are unacceptable.

 46

Agents and Automated Negotiation

The ADEPT architecture, [Jennings and al. 1996], defines an agent head, which is

responsible for managing the agent’s activities and interaction and an agency for

representing an agent’s domain problem solving resources. The agency can contain

atomic tasks or other agents, thus allowing a nested agent system. The coupling

between an agent and its agency is tight whereas the coupling between and agent and

its peer is loose. An agent head has communication, service execution, situation

assessment and interaction management modules. A communication module routes

messages between an agent and its agency and between peer agents. An interaction

management module enables the provision of services through negotiation. A

situation assessment module helps assess and monitor the agent’s ability to meet

agreements. A service execution module allows management of services throughout

their execution. Acquaintance models store agreed SLAs with other agents and lists

of peers which can provide services of interest. The self-model of an agent stores

SLAs committed to, descriptions of the services the agent can provide, run time

information and generic domain information.

2.8.2 Middleware Agents

A preference encapsulates the types of information a requester is interested in. A

capability defines the types of requests performed by a provider. The connection

problem involves finding other agents on the market, which might have relevant

information, preferences or capabilities. This problem is addressed through middle

agents that match suppliers’ services to customers’ requirements while allowing the

participants in a transaction to preserve their anonymity. They may act as trusted

third parties to ensure that a transaction is carried out as agreed. There are a number

of situations arising between a middle agent, a requester and a provider depending on

what information is advertised, [Decker and al. 1997].

A blackboard agent is a middle-agent that keeps track of requests posted by requesters

(or customers). Providers then query the blackboard agent for events they are capable

of handling. A broker is a middle-agent that protects the privacy of both a requester

and provider. A broker routes requests and replies appropriately without the requester

or the provider knowing about each other. In a pure brokered organisation, brokers

are generally known to all the agents. A matchmaker or yellow-pages agent is a

 47

Agents and Automated Negotiation

middle-agent that stores capabilities advertised by providers. The requesters can then

query, choose and contact any provider they wish directly, with the possibility of

subscribing for repeated queries.

Broker organisations include centralised economic markets where the privacy of both

requester and provider are protected. Dynamic entry and exit of agents can be

handled and provide an easy way for load balancing. However such organisations

suffer from the need of agents to have static knowledge of the brokers. Also this can

lead to a communication bottleneck since all requests and replies need to go through

the brokers, which form a single point of failure that cannot be resolved through local

caching.

Different types of middle-agent can be combined to form hybrid organisations. In a

hybrid and brokered organisation, a matchmaker is used to find an appropriate broker.

Providers query a matchmaker to find a broker with whom to advertise. Matchmaker

organisations can become decentralised markets with the proper caching mechanisms.

They offer preference privacy to requesters, who keep total control over their own

decisions. Any change in preferences or capabilities can be acted on instantaneously.

With local caching, this type of organisation is robust and degrades rather gracefully.

A hybrid system consisting of matchmakers and brokers allows capitalising on the

lower overhead and efficient load balancing of a brokered system while retaining the

dynamic capabilities and greater robustness of a matchmaker system. In case of

broker failure, a hybrid system can continue to function by trading off privacy.

2.9 Automated Negotiation

Most online commercial sites belong to the first generation of e-commerce

applications with client and server software; humans are still involved at both ends.

In current online trading sites, the price and other aspects of a transaction are usually

fixed, except in auctions. Negotiation is an important aspect of commerce. Two or

more parties multilaterally bargain resources for mutual intended gain, using the tools

and techniques of negotiation. In real life, we see examples of negotiation in auction

houses and in bargaining. Online auctions such as Ebay and Amazon remove the

constraint of all participants being co-located but still require users to manage their

 48

Agents and Automated Negotiation

negotiation. To reduce transaction costs and to automate time-consuming tasks,

software agents that are personalised and continuously running may be used.

Automated negotiation saves time and computational agents are able to find better

deals in strategically complex environments.

The contract-net protocol, [Smith 1980], embodies the first attempts at automated

negotiation through calls for proposal between contractors and manager nodes.

Auctionbot, [Wurman and al 1998], the FishMarket framework, [Rodriguez and al

1998a], Kasbah, [Chavez and Maes 1996] and Tete-a-Tete, [Maes and al 1999], are

advanced trading agents that in addition to product and merchant brokering perform

some basic negotiation. Auctionbot and the FishMarket framework are concerned

only with auctions and users have to encode their own bidding strategies. Kasbah is a

web-based multi-agent electronic marketplace where users create buying and selling

agents for transaction. A user wanting to buy or sell a good creates an agent, gives it

some strategic direction, and sends it off into a centralised agent marketplace. Each

agent’s goal is to make the "best deal" possible, subject to a set of user-specified

preferences such as a desired price, reservation prices, and a deadline. Negotiation

between buying and selling semi-autonomous agents in Kasbah is bilateral. After

buying agents and selling agents are matched, buying agents offer a bid to sellers.

All of the above applications focus on price. Negotiation may involve more that just

interacting over price. Different users may have different preferences and many are

interested in qualitative and quantitative aspects, other than price of a purchase.

Agents should be able to negotiate over a variety of issues, find an agreement that

satisfies all the parties and prepare contracts on behalf of their owners.

Inexpensive communication infrastructure and the rise of virtual enterprises favour

automated negotiation. Standardised protocols and methods are needed for the

automation or partial automation of negotiation as a step towards agreement

resolution. Negotiation support systems are software programs for helping human

make better decisions and negotiate more effectively. An agent has a set of tasks and

resources. However, these systems require near-constant human input for both initial

problem setup and final decisions. Although some agents may be taught strategies

 49

Agents and Automated Negotiation

through machine learning or genetic algorithms, humans are still required to delineate

environment rules for optimal agent strategies to follow.

2.9.1 Requirements for Negotiations

An architecture supporting negotiation needs agents that clearly and rationally

represent interests and information within each party’s bargaining platform. Learning

and training an agent to learn user preferences and strategies are useful to achieve its

goals. A party may even create several agents with the same bargaining agenda to

negotiate with several other parties simultaneously. Agent communication languages,

ontologies and protocols enable agents to interact meaningfully in negotiations. For

an agent to find the best deal, it needs negotiation protocols, strategies and plans.

Contracting and commitment as the last stages of a negotiation are described in

[Sandholm and Lesser 1995; Kraus 1996]. Sandholm and al., [Sandholm and al.

1999b] developed a framework where an agent can unilaterally decommit to a

contract by paying a predetermined penalty.

An ontology is a representation of some part of the world. It provides a shared

concept of the world that can serve as the basis for communication and helps to build

an understanding of the content in a message. Ontologies are included in several

multi-agent architectures, [FIPA 1997; Farquar and al 1996; Dowell and al. 1997].

The proper formulation of negotiation involves translating human preferences and

issues into terms that can be meaningfully analysed, communicated and bargained.

Buyer and seller preferences may be mapped into coherent utility functions. For that,

a clear and unambiguous ontology is needed for example using KIF, [Finin and al

1993] and Ontolingua, [Farquar and al. 1996]. Both a seller and a buyer must regard a

message and the item under negotiation as essentially the same. Conflicts within

requests and preferences must be detected and resolved.

The problem of ethical issues has to be resolved for the adoption of agent applications

in commercial transactions. An agent needs to maintain privacy when acting on the

behalf of an owner who wishes to remain anonymous. In addition, agents should be

reliable and discouraged to act badly towards other agents. An agents should follow

some etiquette when in a society of agents such as identifying itself, moderating the

pace and frequency of its requests to a server, sharing information with others,

 50

Agents and Automated Negotiation

respecting the server’s authority, being accurate and truthful and not seeking to harm

the server. Another problem is unpredictable behaviour of an agent from interactions.

Shared protocols and ontologies may regulate the behaviour of an agent.

2.9.2 Agent Communication Languages

Agents need to communicate in a negotiation and this requires that they understand

each other with a common language and protocol. They have to agree on how they

send and receive messages, what the messages mean and how the conversation is

structured between agents. In an agent communication language, the terms and the

mechanisms used are at a high level of communication for interaction and co-

operation. The contents of a communication are meaningful statements about the

agents’ environment, knowledge or actions. KQML, [Finin and al. 1993] and FIPA

ACL, [FIPA 1997], characterise an agent as possessing mental attitudes such as

beliefs, a set of propositions considered as true and uncertainty, a set of propositions

accepted as not known. Agents have intentions, denoting a choice or set of properties

of the world which the agent desires to hold and which are not currently believed to

be true.

KQML (Knowledge Query and Manipulation Language), [Finin and al. 1993], is used

to communicate attitudes about information such as querying, stating, believing,

requiring, achieving, subscribing and offering. A KQML message is called a

performative in that the message is intended to perform some action by virtue of being

sent. Each agent appears on the outside as if it manages a knowledge base (KB).

Communication with an agent is with regard to its KB e.g. questions and statements

about what a KB contains, requests to add or delete statements from the KB, or

requests to use knowledge in the KB to route messages to other agents. Performatives

are grouped in discourse, conversation, networking and facilitation performatives. A

message structure may optionally contain the message sender’s name, a recipient’s

name, the content of the message (to express propositions, objects and actions), reply

information, a content language and the ontology of the content. In each domain of

KQML-compliant agents there is at least one agent with a special status called

facilitator that can handle networking and facilitation performatives. Agents advertise

to their facilitator, that is they send advertise messages to their facilitators to announce

the messages that they are committed to accepting and processing. Network and

 51

Agents and Automated Negotiation

facilitation performatives allow agents to find other agents that can process their

queries as facilitators can advertise messages community-wide. The KQML

specification has been under much criticism in that many of its performatives are

redundant, ambiguous and overlap in their functions. A formalisation of the KQML

specification appeared in a later version, [Labrou and Finin 1997], to give the

semantics of the performatives and to clarify their functions.

As a remedy to KQML, FIPA (Foundation for Intelligent Physical Agents), [FIPA

1997], has proposed two kinds of specification:

- normative specifications that guide the behaviour of an agent and support

interoperability with other FIPA-specified systems

- informative specifications of applications for guidance to industry on the use of

FIPA technologies.

The normative part contains specifications for agent management, agent

communication language and agent/software integration. The FIPA Agent

Communication Language (ACL) is based on speech act theory, [Searle 1969].

Messages are actions or communicative acts which can influence the actions of other

agents. Every communicative act is described in both a narrative form and through

formal semantics based on modal logic. The semantics are intended to give a deeper

understanding of the meaning of the language and to be an unambiguous reference

point. FIPA has also defined a number of protocols for patterns of conversations

through an extension of UML called AUML, [Bauer and al 2001]. These range from

simple requests for performing an action and querying, to setting up contracts and

exchanging messages in auctions. Despite the semantics provided in the FIPA

framework, communicative acts are still ambiguous and can lead to unexpected

effects. Some researches, [Wooldridge 1998], deems communicative acts to be

specific and internal to the agents in a group. There have been substantial efforts for

standardising FIPA ACL for communication, [Poslad and Charlton 2001].

2.9.3 Negotiation Protocols

Negotiation protocols specify sequences of messages, possibly known to all the

parties in a negotiation, that are to be followed in order to progress and to achieve a

consensus. A negotiation protocol is a (possibly) pre-determined sequence of

 52

Agents and Automated Negotiation

messages to form a conversation. It is a pattern of message exchange that two or

more agents agree to follow in communicating with one another. Protocols are used

to coordinate the activities of a group of agents to satisfy an agent’s goal and the

group’s goal. Protocols for cooperation, [Huhns and Stephens 1999], define ways to

decompose and distribute tasks among agents. Although protocols need to be

specified, verified, implemented and shared, relatively little formal work has been

accomplished so far on these issues.

The contract net protocol is one of the earliest online protocols for agent interaction.

It has been developed to specify problem-solving communication and control for

nodes in a distributed problem solver, [Smith 1980]. The contract net protocol is a

high level protocol for communication among the nodes to facilitate co-operative

task-sharing. A collection of nodes is referred to as a contract net and a contract

between two nodes enables the execution of a task. A low-level communication

protocol allows reliable and efficient communication of bit streams between nodes.

Task distribution is carried out by a negotiation process, stressing the utility of

negotiation as an interaction mechanism. The contract net protocol addresses the

connection problem where nodes with tasks to be executed must find appropriate idle

nodes to execute those tasks, or vice versa. Solving the connection problem increases

performance and affects resource allocation. A contractor may further partition a task

and award contracts to other nodes. Control is distributed, as every node is capable of

accepting and assigning tasks. A contract net is able to configure itself dynamically

according to the positions of the nodes and the ease of establishing communication.

However the contract-net protocol does not allow bidders to counter-propose better

options, modify any of the service agreement parameters and a task manager has to

devise a complete specification.

Rosenschein and Zlotkin [1998] apply game theoretic techniques to analyse the

protocols governing the high-level behaviour of multi-agent systems. Protocols and

strategies are analysed in three types of domain depending on the representation of an

agent’s goals. Their work shows that adjusting the protocols can influence an agent’s

private strategy and can encourage desired behaviours such as deception-free,

efficiency and stability.

 53

Agents and Automated Negotiation

Negotiation by argumentation involves exchanging proposals that are backed by

arguments that summarise the reasons why the proposal should be accepted. Threats

and promises are the most common form of arguments used in human negotiations,

[Boster and Mongeau 1984]. An argument aims to alter the mental state of a

receiving agent and usually serves to modify the persuadee’s set of intentions. Most

of these frameworks are based on logical models of the mental states of the agents

representing their beliefs, desires, intentions and goals, [Kraus 2001]. [Parsons and al.

1998] draws upon a logic of argumentation and implemented a form of dialectic

negotiation.

2.9.4 Decision Making and Strategic Planning

In multi-agent systems, an interaction protocol may be public, but each agent chooses

its own strategy. An agent’s negotiation strategy chooses for the agent its next action.

It is similar to a decision process which an agent uses to determine its positions,

concessions and criteria for agreement. A self-interested agent will choose the best

strategy for itself. Rosenschein and Zlotkin, [1998], examine a game-theoretic

approach to analyse a situation and decide on a strategy by studying utility division in

different domains. Sycara’s model, [Sycara 1990], uses case-based reasoning and

optimisation of multi-attribute utilities. [Faratin and al. 1998; Rodriguez and al.

1998a] describe various one-step algorithms for negotiation strategies, based on utility

functions and constraints on resources. Also, coalition formation may be studied in an

abstract setting like game theory, where which coalitions to be formed depend on

maximising the overall utility of the group, [O’ Shehory and Kraus 1999]. Some

solutions however overlook communication costs and computation time. Tradeoffs

have to be made between allocated computation, negotiation benefits and risk

assessment. Traditional game theory models assume that all players are fully rational,

have complete knowledge of details of the game and can reproduce equilibrium

calculations of other agents. Evolutionary game theory, [Samuelson 1998], allows an

agent to choose its strategies through a trial-and-error learning process.

Instead of one-step decision making, an agent may look ahead and use planning

mechanisms for planning and predicting future paths to a goal state. Search

algorithms address path-finding problems, [Pearl 1984], constraint satisfaction

problems, [Tsang 1993] and game trees, [Shannon 1950]. These search algorithms

 54

Agents and Automated Negotiation

can be used for problem solving by agents and for constructing plans, [Yokoo and

Ishida 1999]. Formulating a complex plan may require collaboration between a

variety of cooperative planning agents. The process of planning can thus be

distributed among agents, each of which contributes pieces to the plan, until an

overarching plan is created, [Durfee 1999]. The latter explores strategies for task-

sharing and result-sharing in heterogeneous systems. Distributed planning where

either the plans or the planning can be centralised or distributed and post- and pre-

plan coordination and plan merging are possible.

2.9.5 Auctions

Auctions represent a type of negotiation. With the increase in online auction sites

such as Ebay, [Ebay 2001], a number of electronic transactions are conducted through

auctions. Auctions often involve a set of pre-determined parameters and are therefore

simpler to implement. Bargaining is restricted to price and the item for sale may be

displayed with inspection facilities. Customers are usually capable of offering and

counter-offering bids. A seller’s strategy to assign awards is often made known. In

an automated auction, an agent has to evaluate the trade-offs and implications of the

variables. Well-known auctioning protocols include English auction or Dutch

auction. [Sandholm 1996] surveys auction protocols and discusses the limitations of

these protocols for multi-agent systems.

In English auctions, items are sold to the highest bidders and sometimes at the price of

the second-highest bidder for equilibrium purposes. This prevents bidders from

guessing each other’s preferences and encourages them to bid their real valuation. A

customer views current bids and can submit a bid. If his/her bid is surpassed, the

customer can revise the bid and resubmit until the closing of the auction. Information

is available to bidders and they can learn the valuation of other bidders. In a Dutch

auction, an auctioneer starts with the highest price and lowers it until a buyer bids. In

a first-price sealed bid auction, bidders submit a single irrevocable sealed bid. The

bids are opened simultaneously and the winner is the highest bidder. Here less

information is given to the bidder and he/she cannot dynamically update his/hers

reservation price or base his bid on the bids of the others.

 55

Agents and Automated Negotiation

There can be hybrid auctions e.g. consisting of the English and the first-price sealed

bid auctions. At first, such an auction is open, continuous and ascending as in an

English auction. For the last few minutes when the bidder cannot be sure his/her bid

will be received on time, the auction becomes a first-price sealed-bid auction. This

kind of auction is advantageous to a seller since in the first phase, information is

available and this raises the expected revenue. In the second phase, the optimal

strategy is to bid one’s own valuation when there are a large number of bidders.

Buyers and sellers have reservation prices, the maximum and minimum prices at

which they will buy or sell respectively. A bidder wants to maximise the difference

between the price paid and his/her valuation of the item. In the English auction, a

bidder’s optimal strategy is to bid up to his/her revised reservation price and then drop

out of the bidding. In sealed bid auction, the strategy is to shade one’s bid by some

amount. A seller must optimise the number of items sold over a period of time, given

holding costs and bidders distribution and strategies. As long as the holding cost is

not too high, a seller would want to spread the items out as much as possible, selling

fewer items at each auction and selling to the highest bidders possible. Information

systems can keep track of bidding dynamics and detect profitable sessions. A seller

can also kick-start an auction by placing phantom bids for prices above the highest

current bid.

AuctionBot, [Wurman and al 1998], is an Internet auction server that allows anybody

on the Internet to run an online auction. The users create new auctions to buy or sell

products by choosing from a selection of auction types and specifying parameters

(e.g., clearing times, method for resolving bidding ties, the number of sellers

permitted, etc.). A seller specifies a reservation price after creating an auction and let

AuctionBot manage and enforce buyer bidding according to the auction protocols and

parameters. This partly resembles auctions at Ebay and Amazon.

Combinatorial auctions, [Lehman and al 1999], are cases when a bidder may submit

bids for a combination of items. See [Hunsberger and Grosz 2000] and [Rothkopf

1998] for optimisation algorithms for combinatorial auctions.

 56

Agents and Automated Negotiation

 57

2.10 Summary

Currently there are only basic forms of commercial automated negotiation that

concentrate on price. Richer and more flexible negotiation applications, more

scalable techniques for sharing information between heterogeneous agents, more

elaborate resource management within agents and more flexible service scheduling

algorithms are needed.

Shared languages, protocols and ontologies facilitate heterogeneous applications to

attain a common understanding among themselves. A common protocol ensures that

all participants following it will coordinate meaningfully and can expect certain

responses from others. We acknowledge the importance of protocols in addition to an

ACL in a negotiation since a protocol allows rational behaviour for deriving paths of

actions towards a goal. Although conversations have become part of many multi-

agent architectures, formalised conversation specification and implementation are

needed for verification, goal-oriented reasoning and analysis of properties of a

protocol and hence a negotiation. The semantics of a specification methodology have

to meet these requirements. It is desirable to use formalisms with more support for

concurrency and verification for sophisticated interactions. Our research aims to fulfil

this need for tools for conversation specification, verification and sharing by

proposing a meta-language for expressing protocols and abstract theories of a

negotiation.

3 ANML – Agent Negotiation Meta-

Language

3.1 Introduction

ANML (Agent Negotiation Meta-Language), is a meta-language for representing and

reasoning about the states and processes of negotiation. ANML can be used to

construct and validate properties of interaction protocols. Existing communication

languages such as KQML and FIPA ACL focus on performative or communicative

acts and their semantics. We recognise that in addition to standardised agent

languages, shared protocols and conversations facilitate the interoperation of

heterogeneous agents so that they can attain a common understanding among

themselves. [Pitt and Mamdani 1999] argue that compared to the intentional

semantics in FIPA ACL, use of common protocols reduces complexity, improves

interoperability between components, supports reuse of recurrent protocols and

facilitates verification of compliance with a standard. This thesis considers agent

communication and negotiation through interaction protocols expressed in ANML.

This chapter specifies the syntax of ANML, its semantics using Kripke structures,

[Chellas 1980] and gives production rules and axiom schemata applicable to

negotiation. First the need and contribution of ANML in specifying protocols are

discussed, followed by a critical analysis of various formalisms that could have been

used in specifying ANML. Finally ANML is specified as an extension of

propositional dynamic logic, accompanied by an axiomatisation.

58

ANML – Agent Negotiation Meta-Language

3.2 Motivation for ANML

There are a number of proposed frameworks for designing communication protocols.

Many of them use finite state machines to do so, [Winograd and Flores 1986;

Barbuceanu and Fox 1995; Kuwabara et al 1995; Wagner et al 1999; Elio and

Haddadi 1999]. [Nodine and Unruh 1997; Pitt and Mamdani 1999; Martin et al.

1999; Lin et al.1999] use deterministic finite state automata to specify protocols.

Other approaches for developing protocols include state charts, [Moore 1999] and

Dooley Graphs, [Parunak1996]. Koning and Huget [2001] adopt a component-based

approach and define a textual language to consider a protocol as an aggregation of

micro-protocols. They show that Petri nets, [Cost et al. 1999] are not suitable for

nesting and reuse of protocols. Noriega and Sierra [1996] use an extension of

concurrent dynamic logic (CDDL) to specify multi-agent systems. An agent has a

layered architecture and is represented in CDDL as a collection of formal theories in

potentially different languages. In their multi-agent system, exchanges between

agents are performed according to a dialogical framework. The latter determines the

set of illocutions and predicates that can be used between the agents. Bridge rules

model the translation between different communication languages and ontologies of

agents. As an example of their framework, the Spanish Fish market auction is

specified in CDDL. Chapter 4 specifies the protocol for a Spanish Fish market

auction in ANML. FIPA AUML, [Odell and al. 2000], uses UML sequence diagrams

to represent protocols.

Existing methodologies for specifying protocols are mostly diagrammatic or semi-

formal. Most of them adopt finite state machines and automata as methodologies for

reasoning about actions. However state transition diagrams lack expressiveness in

representing constraints for transitions typed with an agent and are prone to

ambiguity. Chapters 4 and 5 show the limitations of such informal notations as

statecharts and AUML, leading to incorrect, incomplete and ambiguous protocols.

Thus there remains a need for formal specification tools for protocols to facilitate the

use and sharing of conversations between agents. A formal method supports

verification and validation and addresses concurrency in interactions. This enables

agents to define, in a shared methodology, the protocols they are willing to engage in,

allow them to learn about other agents’ protocols and to determine equivalency

 59

ANML – Agent Negotiation Meta-Language

between protocols. Existing protocols may be extended into new and more detailed

versions or various protocols may be combined.

3.3 Possible Logics for ANML

It is difficult to find notation where processes and states are given equal status, let

alone form the basis for a simple and rational calculus for an executable system.

Traditional imperative programming languages, such a C and Pascal leave reasoning

about programs to external axiomizations which impose complexity and

incompleteness. Object oriented languages provide otherwise missing capacity for

data abstraction, but without solving the problems of the need for a rational calculus.

Process calculi like CCS [Milner 1989] do not consider state, while specification

languages like Z, [Spivey 1988], are removed from executable systems. Hennessy-

Milner Logic is impractical as it includes only primitive programs. It does not allow

sequencing programs, iteration, recursion and if-then-else guards. In logic

programming, we see demonstration of the practical capacity of predicate logic to

define and combine data to give more abstract properties through which one can

reason about machine state, but at some cost in confusing state transition processes

with inference itself (difference between marked transition and inferred transition).

Dynamic logic, [Pratt 1976], is rare in providing reasoning about the effect of

programs on states of affairs, but in its primitive form it lacks process abstraction, and

has no seriously executable form as a programming system. Fischer and Ladner,

[Fischer and Ladner 1979], extend Hennessy-Milner Logic to propositional dynamic

logic, PDL.

Extending state-based methods with temporal logic and replacing predicate calculus

has suffered from lack of expressiveness or increased logical complexity. [Pnueli

1979] introduced a temporal logic for reasoning about concurrent programs with

single modality “forever” but which is not expressive enough to completely describe

programs. More expressive logics emerged e.g. “next”, “until”, “since”. [Lamport

1994] introduces a temporal logic of actions for reasoning about algorithms and

actions rather than about the temporal system. They consider verification of a

program and its properties like safety, liveness and fairness using proof lattices,

[Owicki and Lamport 1982]. While their logic is adequate for describing and proving

 60

ANML – Agent Negotiation Meta-Language

simple safety and liveness properties of a single program, there are useful properties

that it cannot express. It does not support proofs that one program implements

another and it does not permit a simple compositional semantics of programs,

[Lamport 1994]. [Baldoni et al. 1998] propose a modal approach for reasoning about

dynamic domains with a logic programming setting. They however do not define

operators for sequential composition, non-deterministic choice and iteration of

actions.

3.3.1 Situation Calculus

The basic concepts in situation calculus, [McCarthy and Hayes 1969], are situations

and actions. A situation is a period of time during which a certain set of properties or

list of propositions hold. McCarthy defines a situation as the complete state of affairs

at some instant of time. Actions cause state transitions. Situation calculus is often

used for describing how actions and other events affect the world. For example, a

robot’s state of mind may be regarded as a component of a situation and how mental

events give rise to new situations are described. If an action A occurs in a situation S,

a new situation result(A, S) becomes valid. The fluent Holds(P, S) means that

proposition P is true in situation S. The fluents initiates(A,S,P) and terminates(A,S,P)

respectively denote that action A in situation S initiates or terminates the property or

proposition P. Frame axioms for these fluents, and others such as occurs, changes,

succeeds, happens, elaborates are given in [McCarthy and Hayes 1969]. Situation

calculus gives rise to the frame problem. There is a need to enforce that during an

action, all fluents that the action does not affect should stay the same after the action.

Thus a large number of axioms have to be added to the theory. mµn axioms are

needed for m actions and approximately n fluents. This requirement for a large

number of frame axioms in order to prove that most things stay the same as actions

are performed is known as the frame problem.

The frame problem has been interpreted in a variety of ways yielding related

problems such as the persistence problem, the qualification problem and the

ramification problem. See [Shahanan 1997a] for a description of these problems.

Monotonic solutions by Davis [1990] and Reiter [1991] allow known concurrent

events but depend on strong assumptions. Such monotonic approaches do not solve

the frame problem because they still use frame axioms. In nonmonotonic logics, in

 61

ANML – Agent Negotiation Meta-Language

contrast to classical logic, a conclusion may be retracted from the set of conclusions

as new information or assumptions are gained or made. Circumscription, [McCarthy

1980], is a form of nonmonotonic logic where the extension of a predicate is restricted

as much as possible. McCarthy proposes that if a fluent holds in a particular situation

and an event occurs that is not abnormal with respect to this fluent, then the fluent

will still be true in the situation resulting from performing that event. A maximum of

facts will persist when minimising abnormality. McCarthy’s solution does not work

for concurrent actions and succumbs to the Yale Shooting Problem, [Hanks and

McDermott 1986]. Solutions that aim to solve the frame problem by only considering

the situation calculus are flawed because they focus on a specific version of the

problem. The situation calculus has strong assumptions, such as lack of concurrent

actions, where concurrency contributes to the ramification problem. McCarthy and

Costello [1998] describe a new version of the situation calculus which allows

concurrent events and information update through narratives. Events are explicitly

dealt with through narratives. However this does not remove the need for frame

axioms and an action may unexpectedly be undone by another action, as in the Yale

shooting problem. Thus, in situation calculus, it is hard to express non-determinism

and that no other events have occurred that might cause a precondition of an event in

the narrative to fail.

The protocol for a negotiation does not involve knowledge about the rest of the world

so a finite number of axioms are needed for specifying the states and actions in a

negotiation. A protocol can use the relation between states and sub-states to ensure

that only the current state of a negotiation is true while all other non-parent states are

false.

3.3.2 Event Calculus

Another approach is the event calculus, [Kowalski and Sergot 1986; Kakas and Miller

1997], where time is explicitly represented for reasoning about actions. The event

calculus models how the truth-value of a predicate changes because of events that

occur at certain times, where time is either discrete or continuous. The event calculus

is based on a temporal representation and does not adapt to other situation-calculus

like systems. Planning in the situation calculus can be done by a constructive proof of

the existence of a situation, whereas in the event calculus the planning can be

 62

ANML – Agent Negotiation Meta-Language

performed inductively or abductively. Two criticisms of the event calculus are its

linear time formalism and semi-decidability. No point in time has two alternative

successor states which are temporally unrelated to each other and the future never

evolves into two different paths. Branching time assumes the potential evolution of

time forms in a tree-like structure where the vertices of such a tree can be called states

or points in time.

3.3.3 Modal Logic

Modal logic is the logic of necessity and possibility. Kripke models, used in the

semantics of modal logic, are essentially relational structures where the worlds or

states are nodes, propositions are unary relations and modalities are binary relations

between states. Necessity is what is true at every possible world and possibility is

what is true at some possible world. The syntax of propositional modal logic is as

follows:

Atomic formulae: p e φ

Formulae: A e Fma(φ)

 A ::= p | ^ | A1 → A2 | �A

Let φ be a denumerable set of atomic formulae with typical member propositions,

denoted by p. The set of all propositional formulae generated from φ is obtained from

the function Fma(φ). The formula �A indicates necessity in that the formula A holds

in all possible worlds. Other connectives include the propositional logic operators

(negation, disjunction, conjunction, equivalence, True) and ‡. The formula ‡A is

equivalent to ¬ �¬A. If the formula A is possible, then it is not the case that ¬A holds

in all accessible worlds.

A Kripke model M is a triple (W, {Ra | a ∈ MOD}, V), where W is a non-empty set

of states or worlds, Ra is a binary relation on W with modality a, and V is a valuation

function with the set of propositions as domain and range the powerset of W. V

indicates at which states each propositional symbol is true. Propositional modal

representations are computable while first-order logic is undecidable.

 63

ANML – Agent Negotiation Meta-Language

The main defect of Kripke modal systems is the inability to explicitly access

individual worlds using modal syntax. Although the semantics allow reference to

individual worlds, the world’s individuality is lost on the syntactical side. [Blackburn

2000] shows the asymmetry in modal logic and provides an overview of hybrid logic

as a remedy. He argues that because of the inability to express individual states,

modal logic is not an adequate representation formalism and it is difficult to devise

usable modal reasoning systems. For example the notation Hold(P,i) in interval logic,

[Allen 1984], meaning the property P holds at the interval i, is not represented in the

modal logic of intervals, [Halpern and Shoham 1991]. The consequence is the

existence of semantically equivalent Kripke models which are not isomorphic, since

identity of states is not guaranteed. Some domains need to deal with states explicitly,

to name them, reason about their identity and reason about the transitions that are

possible between them.

3.3.4 Multi-Modal Logic - Propositional Dynamic Logic (PDL)

Dynamic logic, [Pratt 1976], defines formal systems for reasoning about actions, from

a before and after point of view. Dynamic logic associates each command α of a

programming language with a modal connective [α] and the formula [α]A is read as

“A holds after α terminates”. This yields a multi-modal language with a set of modal

connectives indexed by the set of programs. (See Golblatt [1992] for the full

specification and properties of PDL).

PDL allows the properties of complex programs to be expressed in terms of their

constituent programs through modal connectives. Let φ be a denumerable set of

atomic formulae with typical member propositions, denoted by p. The set of all

propositional formulae generated from φ is obtained from the function Fma(φ). A

non-atomic formula includes logical connectives. Let P be a set of atomic programs

from which other programs can be generated. Programs can be expressed in the same

way as formulae. The types and syntax of PDL formulas and programs are as follows:

Atomic formulae: p e φ

Atomic programs: π ∈ P

Formulae: A e Fma(φ, P)

 64

ANML – Agent Negotiation Meta-Language

Programs: a ∈ Prog(φ, P)

A ::= p | ^ | A1 → A2 | [a] A

a ::= π | a1 ; a2 | a1 » a2 | a* | A?

The program a1; a2 means do program α1 and then α2. The program a1 » a2 is read

as do either a1 or a2 non-deterministically. The program a* means repeat a some

finite number of times. The program A? tests A and continues if A is true, otherwise

fails.

3.3.5 Hybrid Logics

Hybrid logic, [Passy and Tinchev 1991, Blackburn 2000] enriches the syntax of

modal logic to fit its semantics by incorporating reference to states. Hybrid logic

restricts propositional variables to be interpreted as true at exactly one state, obtaining

equality between states. Each name nominates exactly one state and each state has at

least one name.

Passy and Tinchev [1991] specify CPDL (combinatory PDL) and add a new type to

modal logic for names, forming a 4-tuple model: (W, R, c, V). They define 3

countable infinite and pairwise disjoint alphabets - Σ denotes the set of names, f0

denotes the set of atomic propositions and P0 denotes the set of atomic programs. The

set Σ » f contain formulas. The model for CPDL is M = (W, R, c, V). W is a non-

empty set of states or worlds. R: P → P(W2) is the accessibility relationship

according to the modality P. The valuation function V has as domain formulae

(including names) and range the power set of W. c is a surjective function with

domain Σ and range W. V(c) = {c(c) }, c ∈ Σ. c(c) returns the unique world where

the state c is true. The separability of V(¬c) from V(c) enables syntactic treatment of a

world’s identity. See [Passy and Tinchev 1991] for axioms and rules of CPDL,

extensions to it and analysis of its soundness, determinism, completeness and

expressivenees.

Another approach for hybrid logic is by Blackburn [2000] who associates names to

states by introducing nominals as a type of atomic formula. Nominals are true at

exactly one point in any model. Thus a world or state is unique by virtue of its

 65

ANML – Agent Negotiation Meta-Language

nominal. For any nominal i, the symbol sequence @i is a satisfaction operator. Well-

formed formulae can be propositions, modal formulae or @i a where a is a formulae.

@i a is interpreted as a is satisfied at the unique point where i is true. Blackburn

defines a hybrid model to be a triple, (W, {Ra | a ∈ MOD}, V). V is a hybrid

valuation function with domain propositions and nominals and range powerset of W.

V(i) is a singleton subset of W and the unique state in V(i) is called the denotation of i.

A world is identified by its unique state and named states can be reasoned about

instead of only the current state.

Nominals i ∈ NOM

M, w B i iff V(i) = {w}, i ∈ NOM

M, w B @i ϕ iff M, w1 B ϕ and w1 is the denotation of i

Nominals are atomic formulas and satisfaction operators are treated as normal modal

operators. @i j asserts that the states named by nominals i and j are identical. @i Rπ j

indicates that the state named by j is an Rπ-successor of the state named by i.

Hybrid logics are termed hybrid because they incorporate concepts of identity and

reference from classical logic into modal logic. Modal logic and hybrid logic can be

translated into classical logic. Areces, Blackburn and Marx [1999] show hybrid

logics are of polynomial complexity and not more complex than multimodal logic.

[Blackburn 2000] describes a system for hybrid logic by giving the rules, axioms and

theorems in hybrid reasoning and its completeness. Examples are illustrated through

tableaux systems. Quantified hybrid logic contain special notation for binding

nominals to the current state, acting like $ and " quantifiers, [Blackburn and Marx

2002]. This yields a hybrid logic with first-order expressivity. However this binding

produces an undecidable satisfaction problem, [Areces et al 1999b].

3.3.6 Logics of Concurrency

Modal approaches for modeling actions can be found in [Giordano et al. 1997;

Giacomo and Lenzerini 1995] with emphasis on concurrent actions. An example of a

logic of concurrency is the µ-calculus, [Kozen 1983]. Propositional µ-calculus

extends normal propositional modal logic through fixed-point operators. If α is a

 66

ANML – Agent Negotiation Meta-Language

formula and X is a variable, then µX. α and νX. α are formulae. If M is a Kripke

structure, then M, s ╞ µX.α iff s is a member of the least fixed point of a certain

function f: 2s → 2s. Similarly, M, s ╞ νX.α iff s is a member of the greatest fixed

point of f. Recursion can then be expressed by these two fixed-point operators. The

termination of two concurrent programs, a and β, can be expressed as <a> true ⁄

<β>true. Propositional µ-calculus covers the full expressive power of PDL with the

same computational complexity and strictly subsumes CTL*, [Emmerson 1990].

Schild [2000] shows that two- dimensional BDICTL* can be collapsed into a single

dimension and on certain conditions encoded as a conventional one-dimensional

Kripke structure. He also proves that propositional µ-calculus with R-seriality is

stronger in expressive power than BDLCTL* and proposes a complete axiomatisation

for the BDI theory using µ-calculus. Process logics and the µ-calculus reuse

principles from propositional dynamic logic.

3.4 ANML as Extended PDL

Specifying a negotiation protocol involves specifying possible transitions from

different states. There is no established notation to represent both the states and

processes of an active agent, let alone a calculus for deciding why a particular

negotiation should achieve the mutual goals. Hybrid logic and propositional dynamic

logic seem better suited to represent theories for agent negotiation and their protocols.

PDL provides reasoning about the effect of programs on states of affairs, allowing the

relating of processes to goal states and fits naturally with a multi-modal theory of

agent beliefs, goals and intentions. We have considered hybrid logics to represent

protocols and negotiation so as to explicitly deal with states. However we found that

unique states were not necessary for negotiation and therefore multi-modal logics are

sufficient for representing protocols. For the scope of this thesis, extending PDL

allows to deal with the explored issues of negotiation. For more expressiveness,

ANML may be extended to incorporate the capabilities of hybrid logic.

Therefore we shall conceptually treat an agent as capable of atomic actions, each

constituting a primitive process which may be combined in more complex ones. A

suitably rich logic with action terms and variables appears capable of a practical

reasoning system which can relate processes to goal states. The semantics for actions

 67

ANML – Agent Negotiation Meta-Language

and state transitions can be modelled through accessibility relations between possible

worlds. Kripke semantics, [Kripke 1963], is applicable to a framework reasoning

both about mental attitudes and time. Worlds can be viewed as program states and

accessibility relations as non-deterministic programs for state transitions.

ANML, (Agent Negotiation Meta-Language), is proposed as a meta-language for

building and validating interaction protocols and providing an abstract logical theory

of a conversation, and thus negotiation. New or existing protocols can be expressed,

verified and extended in ANML so as to analyse protocol properties. ANML is based

on multi-modal logic; more precisely, it extends propositional dynamic logic (PDL) to

express multi-agent interactions. ANML allows representation of complex actions

and to reason about computational aspects such as properties of protocols. Programs

in PDL are referred as processes in ANML. Representation of the states of nested

negotiation processes is also supported. For example, the state s1 holding after

process α1 is different from the state s1 holding after execution of a different process

α2 (where α1 possibly spawns α2).

3.4.1 ANML for Specifying Protocols

The meta-language, ANML, aims to better represent protocols and constraints for

state transitions than finite state machines. This chapter specifies the syntax and

semantics for ANML, without needing to specify the semantics of any particular

conversation, ACL, ontology or content language used. A protocol defines the

structure of a conversation, that is the allowable sequence of exchanged messages.

The messages themselves can be in any agent communication language. Thus,

communicative acts in existing agent languages may be passed in ANML. It remains

hard to standardise the semantics of the content of a conversation as

misunderstandings and misinterpretations about them easily arise between agents.

ANML thus maintains compatibility with ongoing standardisation efforts for an ACL.

It addresses what can be standardised seamlessly without the danger of semantics

mismatch in language and ontology between different agents.

ANML supports the specification of protocols such that they can be sharable and, in

addition, exhibit testable and desirable properties. Well-defined ANML protocols can

be used to help agents in reasoning about their goal seeking activities. In effect this

 68

ANML – Agent Negotiation Meta-Language

thesis provides a framework for representing, verifying and reasoning about

negotiation. One of the main components of the framework is the ANML meta-

language. The contributions of the framework may be enumerated as follows:

• specifying intuitive logical theories for agent protocols.

• verifying new and existing agent protocols.

• a meta-language for an agent to represent, reason and plan about the states and

processes of negotiation, in the pursuit of its goal.

• proving safety and liveness properties and correctness of protocols.

• analysing consistency of common and joint beliefs in a MAS

This thesis applies and extends work on multi-modal logic and action logics to

facilitate automated negotiation through interaction protocols.

3.5 Syntax of ANML

The syntax of ANML is an adaptation of the program logic described in [Pratt 1976].

ANML is specified in the same way as propositional dynamic logic in [Golblatt

1987]. ANML is defined over propositions, atomic processes and agents. Classical

logic Boolean operators, list and set notations apply to ANML formulas e.g. ⁄, ¤, →,

↔, {}, [], ¬, ^, T, » and …. The types in ANML are as follows:

Propositions: p ∈ φ

Atomic processes: ϖ ∈ w

An Agent: agent ∈ Agents

Formulae: A ∈ Fma(φ, w, Agents)

Processes: a ∈ Proc(φ, w, Agents)

Let φ be a denumerable set of propositions, with typical member denoted by p. w is a

set of atomic processes (actions), ϖ is an atomic process and is a member of w. The

set Agents is a set of all agents, with typical member agent as an agent. The set

Proc(φ, w, Agents) is the set of all complex processes that can be generated from

propositions, atomic processes and agents through ANML connectors. A typical

 69

ANML – Agent Negotiation Meta-Language

process is a, which is a member of Proc(φ, w, Agents). The set Fma(φ, w, Agents) is

the set of all formulae which can be generated from atomic processes, propositions

and agents. A formula, A, represents the relation between propositions, processes and

agents. Proc and Fma are functions from which processes and formulae can be

generated respectively.

The syntax and constructors of ANML is specified in Backus Naur Form, (BNF),

[Naur 1960]. ‘::=’ means “is defined as” in production rules and ‘|’ means “or”.

ANML is defined over the above types as follows:

An agent: oneAg ::= agent | agent: role

Sets of agents: A_group ::= { } | {oneAg} | A_group1 » A_group2

Groups of agents: Agent_group ::= oneAg | A_group

Set of states: State-set ::= {A} | A » State-set 1

Formulae:

A ::= p | ^ | ® | A1 ⁄ A2 | A1 ¤ A2 | ¬A | A1 → A2 | A1 ↔ A2 | A(Agent_group) | [a] A

| <a> A | a1 :: a2 | none-of (State-set) | one-of(State-set)

Processes

a ::= ϖ | a1 ; a2 | a1 » a2 | a* | A? | α? | Agent_group . a | null | abort

An agent group, Agent_group, is one agent or a set of agents, where an agent may be

typed with a role. An agent’s name and its role identify a particular agent. A role is

an informal classification for agents where an agent may be taken as an instance of a

role. An example of a group of two agents is ({roger:retailer} » {bill:buyer}), where

roger and bill are agent identifiers and retailer and buyer are role identifiers

respectively. The process ({roger:retailer , bill:buyer}).transacting denotes the two

agents involved in the transacting process. Therefore this is a two-level naming

structure for an agent.

The state of a process is a formula over propositions, processes and agents. A state

can be parameterised by an agent group as in the formula A(Agent_group) e.g.

offered({roger , bill}). A formula may give a hierarchical relation between states.

 70

ANML – Agent Negotiation Meta-Language

For example requested → open means that requested is a sub-state of open. The

formula A holding after executing a process a is represented as the formula [a]A e.g.

[offer]offered. A negotiation state is considered as the propositions holding in that

world. The formula (a1 :: a2) denotes that process α1 is constrained to be of the same

type as α2. That is, all the states and transitions allowed in process α1 can also be

inferred from α2 (e.g. E-bay-auction :: English-auction). The process α1 is an instance

of the same class of process as α2, but involving a different group of agents and

subject of interaction.

A complex process such as negotiation may be expressed in terms of its sub-processes

using the composition operator “;” or PDL connectors. For example, a negotiation

process can be decomposed into the sub-processes of browsing, bargaining and

paying. The state of a process depends on which of its sub-processes has been

executed. In addition to testing atomic states (PDL allows tests on atomic states

only), the process A? also applies when A is a compound formula and therefore in

ANML, the test operator is used in its full generality over formulae. The executor of

a process and that process are separated with a full stop (e.g. r:retailer.display means

retailer r executes the display process). A null process represents no execution while

an abort process results in a failed state.

3.6 Semantics of ANML

An agent is associated with processes by prefixing a process with an agent in the same

way an object is suffixed by its methods. Usually the agent type is omitted and a joint

process between two parties is denoted by the set of the two parties performing the

process as in ({c, r}).shopping. A process may be decomposed into a sequence of

sub-processes each possibly coupled with the agent or agents executing that sub-

process. An action is an atomic process. The process denoted by a;b is composed of

a followed by b in sequence, a* denotes zero or more iterations of process a and a+,

one or more iterations of process a. For example, a shopping process between two

agents r and c is composed of a sequence of sub-processes executed by the two

agents: {r,c}. shopping = r:retailer.display; c:buyer.browse+; c:buyer.choose*. A

state test operator ‘?’ allows sequential composition to follow only if successful. For

 71

ANML – Agent Negotiation Meta-Language

example c.browse?; c.choose is the process c.choose if c.browse succeeds, otherwise it

fails. We remark at this stage that conventional program-like if … then…, repeat …

until … commands could be more intuitive than the primitive test, union and iteration

operators, ?, », *, +, borrowed from dynamic logic for task composition, but there are

tougher criteria in relating successful task composition to the goals and constraints of

the agents.

3.6.1 Standard Models for ANML

Execution of an atomic or complex process in an initial world validates some

resulting formula in an accessible world. A state transition is a change of state

through performing a process. In multi-modal logic, each modal connective is

expressed as an accessibility relation in a model. See Appendix A for a description on

specifying the semantics of modal, multi-modal and propositional dynamic logic

using standard Kripke models.

In ANML, a binary accessibility relation, Ra, applies to a set of worlds for a process

a. The relation Ra reflects the intended meanings of the execution of a process a. In

a model M = (W, Ra, V), the accessibility relation Ra is defined as the set Ra Œ (W µ

W) i.e. Ra is an accessibility relation between w1 and w2, expressed as w1 Ra w2,

where w2 and w1 are worlds in W. w2 is reached from the world w1 via the execution of

process a.

A Kripke model for ANML is M = (W, {Ra: a ∈ Proc(f, w, Agents)}, V)

M = (W, {Rϖ, Rnull, Rabort, Ra;b , Ra»b , Ra ? , Ra
+ , RA?, RAg_group. a}, V)

where ϖ ∈ w, a ∈ Proc(f, w, Agents), b ∈ Proc(f, w, Agents), A ∈ Fma(f, w,

Agents), Γ ∈ protocols, Ag_group : Agent_group

W is the set of worlds in model M. V is an evaluation function with domain

propositions and range the powerset of worlds.

V: f → 2Worlds

The function V represents an assignment of sets of possible worlds to propositions. It

tells us at which worlds (if any) a proposition is true. V(p) is the set of worlds where

 72

ANML – Agent Negotiation Meta-Language

atomic formula p holds, as an interpretation of the atoms in the model. The Boolean

connectives in propositional logic, ⁄, ¤, ¬, ↔, →, apply in ANML formulae:

M, w B p iff w ∈ V(p) , p ∈ f

M, w B A ⁄ B iff M, w B A and M, w B B

M, w B A ¤ B iff M, w B A or M, w B B

M, w B A → B iff M, w H A or M, w B B

M, w B ¬A iff M, w H A

M, w B A ↔ B iff M, w B A → B and M, w B B → A

ANML Modalities

The modal operators in ANML are as those in PDL, [a] and <a>, which respectively

mean true in all accessible worlds after execution of a and possibly true in an

accessible world after performing a. In ANML, the modality [a]A is read as the

formula [a]A is valid in w1 iff after executing process a, the formula A holds in every

world accessible to w1. The formula <a>A is read as valid in w1 iff after executing

process a, the formula A holds in some world accessible to w1. In w1, the

consequence of executing process a is known. The modality associated with a is true

in w1 if and only if the results of carrying out a holds in a set of worlds (depending on

the modality) accessible to w1.

M, w B [a] A iff "w1 (w Ra w1 implies that M, w1 B A)

M, w B <a> A iff $w1 (w Ra w1 and M, w1 B A)

where w, w1 ∈ W, a ∈ Proc(f, w, Agents), A ∈ Fma(φ, w, Agents)

3.6.2 Formulas

Well-formed formulas in ANML are made up of propositions, processes, agents,

Boolean and ANML connectors. The evaluation function in a Kripke model for

ANML is an assertion of the propositions that are true at a world. Proposition p is

true in model M and world w iff w is an element of the set of worlds where p holds,

given by V(p).

 73

ANML – Agent Negotiation Meta-Language

M, w B p iff w ∈ V(p) , p ∈ f

The state, A, of a process is the set of worlds where A holds. The state, A, of a process

such as negotiation is the set of worlds where A holds and all participants in the

negotiation believes the formulae in A to be true.

State of a process parameterised with an agent or a group of agents

Execution of a process by an agent or a group of agents renders a resulting formula to

be true in a world. The actions or messages between a group trigger successive states

in a negotiation process. The formula A(Agent_group) is read as the formula A

parameterised with a group of agents Agent_group. For example, from a protocol and

the state offered(Agent_Smith), it can be inferred that Agent_Smith previously

successfully performed a process that rendered offered(Agent_Smith) true. The

meaning of a state parameterised by an agent depends on the rules and

parameterisation of the protocol it occurs in. For example, the parameterisation of

state A2 in a protocol may be A1(Y) →[X.α]A2(X).

M, w B A(X) iff M, w B A and X ∈ Agent_group

ANML inherits the axioms of a normal modal system and the underlying modal logics

are decidable. In addition, we have the axiom (A(X) →A) (e.g. offered(X) → offered).

We assume that groups of agents in an interaction are finite sets and therefore our

formalism does not embody mixed quantification.

States and sub-states

The state of a process is given by the truth-value of a formula. The relation between

states is inferred from the theory of a protocol. The relation between states is

expressed as a hierarchy using Boolean operators. The formula A1 → A2 can be read

as A1 is a sub-state of A2 or A2 is a parent state of A1. For example, in the formula

auctioned(X) → posted(X), the state auctioned(X) is a sub-state of posted(X). In an

auction, this formula implies that an item cannot be auctioned(X) without being

posted(X). All actions that are possible from an auctioned(X) state are also possible

 74

ANML – Agent Negotiation Meta-Language

from the posted(X) state. However an item can be posted without being auctioned.

There may be a process possible from posted(X) without being so from auctioned(X).

The formula A1 ↔ A2 is read as a process cannot be in the state A1 without being in

state A2 and vice versa. Equivalencies enforce that a process cannot be in a sub-state

without being in its parent state and vice versa. In this way it is expressed that a

negotiation can only be in some sub-state. For example, the formula closed ↔

(agreed ¤ rejected) ⁄ ¬(agreed ⁄ rejected) implies that the states agreed and rejected

are sub-states of closed. The state of a process cannot be closed without being in

either agreed or rejected (but not both) and it cannot be agreed or rejected without

being closed. Equivalency between states ensures that all actions possible from a sub-

state are also possible from its parent state and vice versa.

Knowing only the truth-value of a parent state reflects partial information about the

state of a process e.g. knowing that a negotiation is closed without knowing if it is

agreed or rejected.

none-of and one-of

The operators none-of and one-of are used to express exclusivity between states. For

example a process cannot be open and closed at the same time. The predicate none-of

takes a set of formulae and returns true if all its elements are false. The predicate one-

of returns true if exactly one of the elements in its given set is true.

M, w B none-of(State-set) iff "A (A∈ State-set implies M, w H A)

M, w B one-of(State-set) iff $A1 (A1 ∈ State-set1 and M, w B A1 and

¬$ A2 (A2 ∈ State-set1 and M, w B A2 and ¬ (A1 ↔A2)))

For example none-of ({ A, B, C }) ¨ ¬A ⁄ ¬B ⁄ ¬C, while one-of ({ A, B, C}) ¨ (A

⁄ ¬B ⁄ ¬C) ¤ (¬A ⁄ B ⁄ ¬C) ¤ (¬A ⁄ ¬B ⁄ C). The formula closed ↔ (agreed ¤

rejected) ⁄ ¬(agreed ⁄ rejected) can now be written as closed ↔ one-of ({agreed,

rejected}).

 75

ANML – Agent Negotiation Meta-Language

State transitions

A protocol expresses the actions leading to changes of state. In ANML, state

transitions are represented as the formula A1 ↔ [a]A2 ¤ [r]A3. The initial state is A1

in world w1 and execution of process a leads to A2 holding in all worlds accessible to

w1 through the accessibility relation Ra. Execution of process ρ leads to A3 holding in

all worlds accessible to w1 through the accessibility relation Rr. The relation between

states in a protocol expresses whether states A1, A2 and A3 can co-exist. Hence, the

formula A1 ↔ [a]A2 represents a state transition from state A1 to state A2 via execution

of process a. A1 is the previous state of A2 and A2 is viewed as the next state of A1. If

a is the null process, then the equivalency is a relation between parent and sub-states.

Process Instances

The semantics of (α1 :: α2) is given by:

M, w B (α1 :: α2) iff 21 αα RR ⊆

All the worlds obtained through execution of process α1 are elements of the set of

worlds possible through performing α2.

3.6.3 Processes

Atomic Process

A binary relation, Rϖ, is assigned to each atomic process ϖ, where ϖ ∈ w. The

mapping of relation Rϖ from world w1 to world w2, (w1, w2 ∈ W), is given the same

meaning as executing atomic process ϖ in world w1 resulting in the world w2. From

w1Rϖ w2 and w2, w1 ∈ W, it can be inferred that w2 is accessible to w1 via Rϖ and the

result of executing ϖ holds in w2.

Complex Process

A complex process is executed by performing its sub-processes until its atomic sub-

processes are executed. Execution of an atomic or complex process has a mapping

from an initial world to a final world where the consequence of its execution is true.

The binary relation Ra is a relation on worlds W for the process a, Ra: (W µ W).

Process a is executed in w1 ∈ W to give rise to another w2 ∈ W where the results of

 76

ANML – Agent Negotiation Meta-Language

the execution hold. The world w2 is possible relative to w1 and the accessibility

relationship between these two worlds is the relation Ra.

For a complex process, possible paths through intermediate worlds lie between an

initial and a final world. These paths represent partial execution of that process. The

relation Rα reflects the intended meaning of the process α and is inductively defined

in terms of its sub-relations, which are partial paths. A model M for ANML is

standard if it satisfies the conditions of defining Rα in terms of its sub-relations –

composition, alternation, etc. ANML has a number of constructs, which resemble

those of PDL, for process management. In this way, a uniquely determined standard

model for ANML is obtained by inductively defining relation Ra for non-atomic

processes a, in terms of binary relations, Rβ, where β are the sub-processes of a.

An agent executing a process

An agent or a group of agents, Agent_group, performing a process, a, is represented

by prefixing that process with the agent group as in Agent_group.a. The relation

RAgent_group.α maps world w1 to world w2 through agent or group Agent_group

executing process α. The set of worlds in the image of relation RAgent_group.α is a subset

of the set of worlds in the image of Rα

 RAgent_group.α ⊆ Rα

In the case of two processes executed by two groups of agents, i.e. Agent_group1.α

and Agent_group2.α, where Agent_group1 ⊂ Agent_group2, if the process α is the

same instance when being executed by the two groups, then RAgent_group1.α =

RAgent_group2.α. Since Agent_group1 is sufficient to perform that instance of α, the

results of that process would be the same regardless of the additional agents in

Agent_group2. On the other hand, if the two groups are performing different

instances of process α, then no relation between the two processes Agent_group1.α

and Agent_group2.α are derivable before execution.

Process Composition

 77

ANML – Agent Negotiation Meta-Language

An overall complex process is the execution of all its sub-processes. A process P may

consist of a sequence of sub-processes, where performing P involves performing its

sub-processes sequentially. The process a1;a2 is composed of two sub-processes –

process a1 followed by process a2. For example, the complex process

agent_smith.offer; agent_neo.reject is read as after agent_smith makes an offer,

agent_neo performs a rejection. The relation Ra;b for a sequential process (a; b) can

be inductively defined as relational composition of the relations for each sub-process

a and b.

Ra; b = Ra È Rb = {(s, t) ∈ Worlds: ∃u(s Rau & u Rb t)}

[a; b] C ↔ [a][b]C

where C ∈ Fma(φ, w, Agents) and a, b ∈ Proc(f, w, Agents),

A sequential process execution is a path along the worlds where intermediary states

hold after each sub-process. a; b is a path from the source world before executing a

to the final world after executing b.
 [a; b; m] A3 = [a] [b] [m] A3

 Ra; b Ra; b; m

 Ra Rb Rm

 Rb; m

 [a; b; m] A3 [b; m] A3 [m] A3 A3

w1

w2

w3

w4

Figure 3.1 Process Sequencing with 3 sub-processes, [a; b; m] A3

In figure Figure 3.1, processes a, b and m (relations Ra, Rb and Rm) can themselves be

expressed in terms of their sub-processes (relations).

Example: Two agents X and Y are engaged in the complex process bargain with a

resulting state agreed(Y) if successful.

[{X,Y}.bargain] agreed(Y) ≡ [X.request; Y.request;X.offer;Y.agree] agreed(Y)

 78

ANML – Agent Negotiation Meta-Language

After the sub-processes X.request, Y.request, X.offer and Y.agree, the states

requested(X), requested(Y), offered(Y) and agreed(Y) hold respectively. The state

requested(X) is the source state for the process Y.request.

Process Alternation

The process a1 » a2 denotes executing either of the two processes non-

deterministically, with the same resulting formula. This gives non-deterministic

choice between a number of processes. The corresponding accessibility relation Ra»b

is equal to the union of the sub-process relations.

Ra»b = Ra » Rb

[a » b] A = [a] A ⁄ [b] A, A e Fma(φ, w, Agents)

Example: Agent Neo can execute the process eat_meal with resulting state

not_hungry. The eat_meal process consists of either eating an Indian or Chinese

meal.

[Neo.eat_meal] not_hungry(Neo) ≡

 [Neo.eat_chinese » Neo.eat_indian] not_hungry(Neo) ≡

 [Neo.eat_chinese] not_hungry (Neo) ⁄ [Neo.eat_indian] not_hungry(Neo)

Testing a Formula

Testing a state, A?, is treated as a process. A formula can be tested to see if it holds in

a world. Such a test may be necessary before carrying on with another process, e.g.

the state offered triggered by an offer must be tested before agreeing to the offer. It

can be checked that intermediate states hold before executing a sub-process by the

state test A?. Testing a state may be used as a condition and combined with iteration

constructs to define loops. Testing a formula in a world returns the same world where

that formula is true or false depending on the success of the test.

RA? = {(w, w) : M, w ╞ A}

 79

ANML – Agent Negotiation Meta-Language

Example: The door must be open for agent X to go to the dining room. There are two

processes here: 1) testing the door is open followed by, 2) agent X going to the dining

room.

X.dine = open?; X.goto_diningroom

Testing the success of a process

The success of a process execution is tested by checking whether its consequential

end state holds.

Ra? = {(w1, w2) : (w1, w2) ∈ Ra },

In relation w1 Ra? w2, the process a? succeeds if the process a succeeds.

Example: agent X must open the door in order to go to the dining room. On the

condition that the door is successfully opened, that agent will be able to eat.

X.dine = X.open?; X.eat

Process Iteration

A process can be repeatedly executed, such as when polling for a resource. Iteration

can be combined with testing to construct while and repeat-until loops. A relation for

representing repetition of a process zero or more times is defined in terms of relational

composition. The process a* is zero or more iterations of the process a, whereas

the process an signifies process a is repeated n times where n ¥ 0. The process a+ is

read as iteration of process α one or more times. The ‘+’ construct can be expressed in

terms of the ‘* ’ construct.

Ra* = Ra ; a* = (Ra)*

a*;g ↔ g ¤ a;g ¤ (a*); g

[a*] A ↔ [a][a*] A

Example: Agent Morpheus repeatedly executes the process of shopping if the shop is

open.

 80

ANML – Agent Negotiation Meta-Language

(open?; Morpheus.shopping)* =

(open?; Morpheus.shopping) ; (open?; Morpheus.shopping)*

The process a+ captures the condition of do-while loops. It is a variant of the above

iteration.

Ra+= Ra; a* = Ra È Ra* = Ra È (Ra)*

[a+] A= [a]; [a*] A

Iteration of a process can also be bounded with inequalities or made finite if

superscripted with a positive integer.

Example: a2= a; a

 a<3= null » a » a;a

Agent Morpheus eats zero or more times is represented as Morpheus.eat*

Agent Morpheus eats at least once is represented as Morpheus.eat+

Agent Morpheus eats 10 times sequentially is Morpheus.eat10

Agent Morpheus.eat10 = Morpheus.eat; (Morpheus.eat)9

Agent Morpheus eats at least 3 times is represented as Morpheus.eat¥3

Agent Morpheus eats less than 7 times is represented as Morpheus.eat< 7

The null process

The null process does not change the world. Rnull is the identity relation.

null is ®?

 Rnull = {(w,w): w : W}

The abort process

abort is an abnormal process that leads to an inconsistent and failed state.

abort is ^? where Rabort is the null set f.

3.7 Axioms and Inference Rules in ANML

Let S be a normal logic system in Fma(φ, w, Agents). The axioms and inference rules

of classical propositional logic and propositional dynamic logic hold in ANML,

giving a Hilbert-style deductive system for ANML. As shown in section 3.7.3, both

the modal axiom DfÌ and rule of inference RK, [Chellas 1980], hold in ANML.

Because ANML is an extension of PDL and hence multi-modal logic, all the axioms

 81

ANML – Agent Negotiation Meta-Language

and inference rules of a normal system in modal logic hold in ANML. See Appendix

A for axioms and rules for a normal modal system. This section and section 3.9

provide the additional axioms and rules that apply to ANML due to its extensions and

additional connectives.

3.7.1 Precedence of ANML Operators

The operators between processes have higher precedence than the operators between

formulae. The precedence of the operators in ANML in increasing order is as

follows:

⁄, ¤, →, ↔ least binding

; , …, »

>>

*, + , ?,

¬

.

: most binding

Table 3.1 Precedence of ANML operators

3.7.2 Constructs from ANML Connectives

The formula an+1 signifies executing process a sequentially n+1 times, that is

carrying out the process a, n times and one more time.

an+1 = (a n; a) = (a ; a n).

a0 is the null process. Literally it means performing process a zero times, which is

not at all.

There is an intermediate state when executing two processes sequentially.

 [a; b] C ↔ ([a]B ⁄ (B→ [b] C)) ↔ ([a]; B?; [b] C) ↔ [a][b]C

There are other constructs that can be derived from ANML operators such as if then

else, while or repeat-until loops. These procedural constructs do not contribute a

significant degree of conciseness from what is already defined and are not particularly

useful in expressing the logical theory of a protocol.

 82

ANML – Agent Negotiation Meta-Language

PDL Axioms, valid also in ANML

Composition [a;r] A ↔ [a][r] A

Alternation [a » r] A ↔ [a] A ⁄ [r] A

 Mix [a*] A → A ⁄ [a][a*] A

 Ind. [a*] (A → [a]A) → (A →[a*] A)

 State Test [A?]B ↔ (A→ B)

Additional axioms with respect to ANML connectors are:

 Mix over + [a+] A → [a][a*] A

 Ind. over + [a+] (A → [a]A) → ([a]A →[a+] A)

 Process Test a?B ↔ [a]B

Process Imp. Test [a?]B ↔ ([a]A ⁄ A→ B)

 Null Process [null]A ↔ A

 Abort Process [abort] ^

3.7.3 Axioms and Inference rules in ANML

Provided below are inference rules in ANML over Fma(φ, w, Agents), in addition to

those in appendix A for a normal system of modal logic. Let formulae A, B ∈ Fma(φ,

w, Agents), processes a, β, ρ ∈ Proc(φ, w, Agents) and S be a normal logic system in

Fma(φ, w, Agents).

• Modal axiom DfÌ (definition of Ì)

DfÌ <a>A ↔ ¬([a]¬A)

The formula ¬([a] ¬A) is read as it is not the case that in every possible world, the

formula ¬A holds after executing process a. If a consists of sub-processes, then

<a>A means there is a possible path a to a world where A holds. There is a possible

path to state A after the execution of a iff not all executions of a lead to ¬A.

• Rule of Inference RK

RK
AAA

AAA

n

n

][)][...]([
)...(

1

1

ααα →∧∧
→∧∧

 (n r 0)

 83

ANML – Agent Negotiation Meta-Language

The formula ((A1 ⁄ …. ⁄ An) → A) implies that the states A1 to An are sub-states of A

and all have to be valid in the same world for A to hold. This takes care of the

situation where an action am may undo another ap, since all the sub-states 1 to n must

hold. If process a triggers all the sub-states of A, it brings about A too. In ANML,

the rule of inference RK is weak since it assumes that a can trigger states A1 to An. A

stronger rule would include ([a1] A1 ⁄ …. ⁄ [an] An) in the conclusion, which would

need processes a1 to an to be concurrent.

• RK-1

RK-1
AAA

AAA

n

n

→∧∧
→∧∧

)...(
][)][...]([

1

1 ααα
 (n r 0)

The inference rule RK-1 indicates that if process a triggers states (A1 to An) and state A,

then it can be inferred that (A1 to An) are sub-states of A. Again this rule may be

extended to concurrent processes by substituting for α as different processes i.e. ([a1]

A1 ⁄ …. ⁄ [an] An).

• Variant RK

A variant of RK is if states A1 to An are disjunctive sub-states of A i.e. if any one of the

sub-states is true then the parent state A also holds. Then any processes, (a1 …. an),

triggering a sub-state also triggers the parent state A.

Variant RK
AAA

AAA

np

n

][)][...]([
)...(

11

1

ααα →∨∨
→∨∨

(n, p r 0) and (a1» …. »ap = a)

• Sequential RK

Let states A1 to An be all mutually exclusive sub-states of A i.e. A1 to An hold in parallel

and are not sub-states of each other. The formula [ai]Ai ⁄ [aj] Aj → ([ai ;aj] (Ai ⁄ Aj))

implies that process ai does not undo the results of process aj or vice versa. If these

formulae hold then processes a1 to an can be executed sequentially (and in any order)

with the parent state A holding.

Sequential RK

 84

ANML – Agent Negotiation Meta-Language

AAA
AAAAAAA

nn

jiijiijijiin

][)][...]([
)....](;....;[][...][,)...(

11

1

ααα
αααα

→∧∧

∧∧→∧∧→∧∧ +++

(n r 0), (nr i+j, k+m r i,k r 0 and (ak; …. ;ak+m = a)

• Variant RK-1

If processes a1 to an triggers states A1 to An respectively and all the processes triggers

A, then A1 to An are sub-states of A.

Variant RK-1

AAA
AAA

n

nn

→∨∨
→∨∨

)...(
][)][...]([

1

11 ααα

(n r 0) and (a1» …. »an = a)

3.7.4 Examples of negotiation through multi-modal axioms and rules

The rules RN, RM, RR and RE follow from RK for n = 0, 1, 2 and applying

equivalency respectively. See Appendix A for the rules of inference RN, RM, RR and

RE in ANML. See also Appendix A for the ANML version of modal axioms N, M, C,

R and K and their proofs. Here are some examples of how these rules and axioms are

useful for reasoning about a negotiation.

RN: The inference rule RN states that if A is a tautology then A holds in all the worlds

after the execution of any process a.

RM: If A implies B and process a triggers A, then, from RM, process a triggers B.

RR: If A and B are sub-states of C, then from rule RR a process a that triggers A and B

also triggers the parent state C.

Example for rule RM: If a protocol allows the formulae proposed → offered and

[propose]proposed, where the state proposed is triggered from making a proposal.

Then making a proposal also triggers its parent state offered.

From RM, [propose] proposed → [propose] offered and thus [propose] offered can be

inferred from the protocol.

 85

ANML – Agent Negotiation Meta-Language

Example for rule RR: Let a protocol contain the formula (open ⁄ bidded) →

auctioning, where open and bidded are sub-states of auctioning. Then if a process

triggers either of the sub-states as in [bid]open ⁄ [bid]bidded, then that process (bid)

also triggers the parent state (auctioning) i.e. [bid]auctioning.

RE is the rule of inference between equivalent states and infers that the same process

triggers equivalent states.

Example: Let A be the state open and B be its only sub-state offered according to a

protocol, where offered ↔ open. If a process e.g. offer triggers the offered state as in

[offer]offered, that process also triggers the open state, i.e. [offer]open and vice versa.

For states A and B to hold in the same world (as in M, w B(A ⁄ B)), either one state is

a sub-state of the other or they are mutually exclusive states that can be valid at the

same time. Axioms M and C (see appendix A) entails that a process that triggers a

conjunction of states, triggers each state and vice versa.

Axiom K: If after executing process a, state A is a sub-state of B, then if process a

triggers the state A, it also triggers its parent state B.

Example: ([offer] (offered → open)) → ([offer]offered → [offer] open)

Making an offer yields both an offered state and its parent state open.

3.7.5 Rules and Axioms for <a>

Appendix A gives the rules and axioms underlying the possibility modality <a>

holding in a normal system for ANML. By the schema DfÌ <a>A is ¬([a] ¬A).

<a>A has the modal meaning of possible worlds i.e. <a>A holds in world w1 if after

executing a, there is some world(s) accessible to w1 where A holds. In the context of

a graph or a negotiation, <a>A can be read as the possible path a to a goal state A.

• RKÌ, RNÌ, RMÌ, RRÌand RE Ì

RKÌ
)...(

)...(

1

1

n

n

AAA
AAA

><∨∨><→><
∨∨→

ααα
 (n r 0)

 86

ANML – Agent Negotiation Meta-Language

Rule RKÌ expresses that if there is a path to a sub-state, then there is a possible path

to at least one of its parent states.

Inference rules RNÌ, RMÌ, RRÌ follow from rule RKÌ for n = 0, 1, and 2

respectively. See appendix A for formal definitions of inference rules RNÌ, RMÌ,

RRÌ and REÌ.

Rule RNÌ: If ¬A is a tautology then there is no possible path to A.

Rule RMÌ: A possible path to a sub-state is a possible path to its parent state too.

Rule RRÌ: A possible path to a sub-state with 2 parent states is a possible path to at

least one of the parent states.

Rule RE Ì: If A and B are mutually dependent sub-state and parent state (or are the

same state), then a possible path to A implies a path to B and vice versa.

• Df É

 Df Ñ [a] A ↔ ¬ (<a>¬ A)

 Proof: using PL, Df Ì and RE, similar to DfÑ for modal logic.

If all paths lead to A then it is not possible to get to a world where ¬A holds. This

axiom is useful when analysing the properties of a protocol e.g. termination or

agreement.

• Axioms NÌ, MÌ,CÌand RÌ

See appendix A for axioms NÌ, MÌ, CÌand RÌ that apply in ANML.

• Axiom KÌ

KÌ (¬(<a> A) ⁄ <a>B) → <a> (¬A ⁄B)

Proof From B → (A ¤(¬A ⁄ B)) and RRÌ, similar to KÌ for modal

logic.

If process a does not lead to state A but possibly to state B, then executing process a

yields a possible world with (¬A ⁄B).

 87

ANML – Agent Negotiation Meta-Language

3.8 D, T, B, 4 and 5 Properties in ANML

A theory in ANML is characterised by the smallest normal system of modal logic K.

The properties of D, T, B, 4 and 5 – serial, reflexive, symmetric, transitive and

euclidean respectively – are analysed to see if they apply when applying ANML for

negotiation. Let M = (W, {Ra: a ∈ Proc(f, w, Agents), V) be a model in ANML.

This section shows that the relation Ra is not serial, reflexive, symmetric, transitive or

euclidean in the domain of negotiation. Therefore we do not need ANML to exhibit

any of the D, T, B, 4 and 5 properties. Let w, w1, w2, …wn be worlds in W.

D. Ra is serial iff "w $w1 (w Ra w1) does not hold in ANML

T. Ra is reflexive iff "w (w Ra w) does not hold in ANML

B. Ra is symmetric iff "w, w1 (w Ra w1 → w1 Ra w)

does not hold in ANML

 4. Ra is transitive iff "w1, w2 ,w3 (w1 Ra w2 & w2 Ra w3 → w1 Ra w3)

 does not hold in ANML

5. Ra is euclidean iff "w1, w2 ,w3 (w1 Ra w2 & w1 Ra w3 → w2 Ra w3)

 does not hold in ANML

• Serial

D. Ra is serial iff "w $w1 (w Ra w1) does not hold in ANML

([a] A)→ (<a> A)

The serial property implies that there is always an accessible world and the system

does not get into a false state. In ANML, an abort process is possible leading to a

failed state. If a process is aborted, there is no accessible world. ANML is therefore

not serial.

• Reflexive

T. Ra is reflexive iff "w (w Ra w) does not hold in ANML

A → [a] A

Counter-example: Let the negotiation state offered and the formulae [agree]agreed

and open ↔ one-of({offered, agreed}) hold in the world w1. Executing the process

 88

ANML – Agent Negotiation Meta-Language

agree leads to an agreed and ¬offered state in all worlds accessible to w1. The state

agreed does not hold in the world w1 where the state is offered and ¬agreed, but

neither does the state [agree] offered hold in w1 even if offered holds.

• Symmetric

B. Ra is symmetric iff "w, w1 (w Ra w1 → w1 Ra w) does not hold in ANML

([a]A → [a][a]A)

Counter-example: Let a protocol include the rules proposed → open, agreed →

closed, proposed → [agree] agreed. Let the state proposed hold in world w1. In all

worlds w2 accessible to w1, the state agreed holds from executing an agree process in

w1. The protocol allows no possible path from w2 to w1 or from w2 to a world where

proposed holds i.e. from agreed to proposed. Symmetry does not hold in ANML,

especially with irreversible states such as terminal states. The formula [a]A →

[a][a]A does not hold since executing a process a leads to another world with a

different state where A may not hold and where there may not be a possible path to a

world where A holds.

• Transitivity of Rl

4. Ra is transitive iff w1Rl w2 & w2Rl w3 → w1Rl w3 does not hold in ANML

([a]A ∧ [a][a]B) → [a]B

Counterexample: If the state in world w1 is requested and l is the process offer. Then

let offered hold in w2 from making an offer in w1. In w2, making an offer leads to w3

where the state is agreed. agreed is triggered from the state offered. However from

w1 and requested, Rl as an offer process does not directly lead to w3 and agreed. The

relation mappings (requested Roffer offered) & (offered Roffer agreed) does not imply

(requested Roffer agreed). From a requested state, only executions of the process offer

twice leads to the agreed state. One offer leads to an offered state and two offers lead

to an agreement.

• Euclidean

 89

ANML – Agent Negotiation Meta-Language

5. Ra is euclidean iff "w1, w2 ,w3 (w1 Ra w2 & w1 Ra w3 → w2 Ra w3)

 does not hold in ANML

([a]A ∧ [a]B→ [a][a]B)

Similarly because the relation Ra is not symmetric, ANML is not euclidean where

executing process r in world w1 may change the state at all the worlds accessible to

w1.

Counterexample: Let the state requested and the formulae requested→ <offer>offered

and requested→ <offer>rejected hold in w1. However this does not imply that from

offered, an offer leads to a rejected state or vice versa i.e. offered→ <offer>rejected

cannot be inferred.

3.9 Axioms on ANML Connectives

This section gives axioms and inference rules in ANML that are useful for reasoning

about a negotiation and planning towards a goal. For each axiom and rule, an

example of the application of the rule to a negotiation process is given. Let a1 …an ∈

Proc(f, w, Agents), A ∈ Fma(φ, w, Agents) , Agx ∈ Agent_group, Agy ∈ Agent_group,

ϖ ∈w. ϖ is an atomic process.

3.9.1 State Axioms

The parameterised sub-state axiom: If state A(X) holds, then the un-parameterised

state A also holds. For example, when the state offered(X) is true, the state offered is

true in that world.

 Parameterised sub-state A(X) → A

Factorisation [a]A1 ⁄ [a]A2 ⁄ ….⁄ [a]An ↔ [a] (A1 ⁄ A2 ⁄ ….⁄ An)

If a process triggers a conjunction of states, then it triggers each state.

Example of Factorisation axiom: [X.offer]offered(X) ⁄ [X.offer]open ⁄

[X.offer]negotiating ↔ [X.offer](offered(X) ⁄ open ⁄ negotiating). The process

offer triggers the state offered(X) and its parent states from a protocol.

Disjunctive Factorisation [a1]A1 ¤ ….¤ [an]An → [a] (A1 ¤ ….¤ An)

 90

ANML – Agent Negotiation Meta-Language

where a = (a1 » … » an)

Disjunctive Factorisation is a weaker axiom that allows non-determinism in a process

when any state in a disjunctive formula suffices.

Example of Disjunctive Factorisation: [X.offer]offered(X) ¤ [X.request]requested(X)

¤ [X.propose]proposed(X) → [X.offer » X.request» X.propose] (offered(X) ¤

requested(X) ¤ proposed(X)).

Intermediate state [a; b] stateb ↔ [a]; statea?; [b] stateb ↔ [a][b] stateb

There is an intermediate state that holds between two (or more) processes in a

sequence. The intermediate state is the result of executing the first process and is the

precondition state for executing the second process. For example, a transaction

process consists of the sequence of processes buy;pay with result paid. [buy;pay]paid.

The intermediate state is bought and is the source state for the pay process.

3.9.2 Inference Rules and Axioms over Processes

Let a1 …an ∈ Proc(f, w, Agents), A ∈ Fma(φ, w, Agents) , Agx ∈ Agent_group, Agy

∈ Agent_group

Distributive α; (β » δ) ↔ (α ; β) » (α ; δ)

The sequential operator “;”distributes over the alternation operator “»”. Process

alternation does not distribute over “;”. Doing a process α following by either process

β or δ is equivalent to executing α followed by β or process α followed by δ. For

example in an auction, auctioneer. post;(auctioneer.withdraw » bidder.bid) is

equivalent to (auctioneer.post;auctioneer. withdraw) » (auctioneer. post ;bidder.bid)

Decomposition
pn

pn

δδαα
δδαααα

;...;;...;
;...;;;...;;

11

1010

=

=

Example of Decomposition: browsing; choosing; negotiating;paying = browsing;

shopping; delivering can derive choosing; negotiating; paying = shopping; delivering

 91

ANML – Agent Negotiation Meta-Language

Multiple Alternation
321

3121

αααα
ααααα

∪∪=
∪=∪=

Example of M. Alternation: shopping = auctioning » bidding = negotiating » voting

» contracting, then shopping = auctioning » bidding » negotiating » voting »

contracting. This rule allows representing all choices in one formula.

 Multiple Iteration n

n

λα
λααα

=

=

*
;*; 11

Example of M. Iteration: display; browse* = display; request>10 , then browse* =

request>10.

 Similar Processes
32

3121

::
::,

αα
αααα =

If two processes α1 and α2 are similar and given that one process α1 is subsumed by

α3 then α2 is constrained by α3.

For example, the declaration shopping = bidding where bidding::English-Auction

allows us to infer that the shopping process follows an English auction

i.e. shopping :: English-Auction.

 Alternation over instances (α::α1 ⁄ β::β1 ⁄ [a » β] A) ↔

[a] A ⁄ [β] A

The Alternation over instances axiom is the same as the Alternation axiom with the

addition that a process instance is constrained. For example, (shopping::bilateral-

negotiation ⁄ auction::Dutch-Auction ⁄ [shopping » auction] sold) ↔

[shopping]sold ⁄ [auction] sold. The two types of processes lead to the same end

state.

 Sequencing over protocols (α::α1 ⁄ β::β1 ⁄ [a; β] A) ↔ [a] [β] A

The above axiom concerns the sequencing of processes, typed with another process,

towards a state given intermediate states.

 92

ANML – Agent Negotiation Meta-Language

Example: Given (negotiating::sealed-bid-auction ⁄ pay::SSL-web ⁄ posted ↔

[negotiating]sold ⁄ sold ↔[pay]paid), then [negotiating][pay]paid) and [negotiating;

pay]paid can be inferred from the source state posted.

 Alternation over an agent [Agx.a » Agy.β] A ↔ [Agx.a] A ⁄ [Agy.β] A

 Sequencing over an agent [Agx.a ; Agy.β] A ↔ [Agx.a] [Agy.β] A

The above two axioms allow to infer alternation and sequencing axioms over

processes typed with the agents performing a process.

Process Type α :: α1 ⁄ [a] B ↔ ([α1]C A [a]B)

If a process α is constrained by another process α1, then the states and state transitions

allowed in process α can be inferred from the process execution α1.

State of a tested process α? A ↔ [α]A

The state after testing a process is its state after its execution since testing the success

of a process involves its execution.

3.10 The state of a process-like negotiation between agents

A negotiation between a group of agents is an abstract process and the state of a

negotiation exists only because of the beliefs shared by the agents. The state of an

agent is distinguished from what an agent believes to be the state of a negotiation.

The state of a negotiation changes depending on the actions of the agents in a group.

Changes in the state of a negotiation become part of the individual beliefs of an agent

on sending or receiving messages and are eventually propagated to the shared beliefs

between the agents as the interaction progresses. The group knows a common

protocol and should be aware of the current state of a negotiation and of possible

successor actions and states, given by the protocol. On the other hand, the state of an

agent differs from the state of a negotiation and remains private to that agent. For

example, in a shopping scenario a retailer displays and transacts about goods and may

be aware (but not necessarily) of the state of their goods and of own state. A retailer

 93

ANML – Agent Negotiation Meta-Language

is not aware of the customers browsing online unless they start interacting. A

customer would not know the state at the retailer's side and whether the latter is

dealing with other customers. Each agent has its individual and private beliefs useful

for strategic reasoning in competitive scenarios.

The state of a negotiation has a hierarchical structure in that a state may contain sub-

states. When a state holds, it is necessary that its parent states also holds e.g. when

offered is true, then open is also true if offered is a sub-state of open. However it is

not necessary for a sub-state to be true while its parent state holds. A state conveys

information about a negotiation. Partial information is available when it is known that

a parent state holds e.g. from knowing the negotiation is closed, it is not known in

what sub-state of closed out of rejected, agreed or timedout. More specific

information is obtained by knowing which sub-state is true. A current state means that

state which is true while other non-parent states are false, as defined by a protocol for

the relation between states.

At this point it becomes useful to discuss the concept of a negotiation process and its

state. A negotiation process is not as tangible a process as painting or eating.

Believing the state of negotiation entails more than just believing a proposition. In

modeling the real world and a multi-agent system, a number of propositions can be

expressed as holding in that world which are independent of the actions of an agent.

For example, the formulae that a duck is a bird, the apple is red or the weather is rainy

are not brought about by agents. Even truth formulas such as the door is open, the

picture is nailed on the wall, the wall is blue may not be explicitly related to an agent

performing a process. These formulae may reflect the state of the world independent

of a multi-agent system. In contrast, a negotiation and its state between a group of

agents exist because of the agents in that group, their beliefs and actions and reside in

the mental states of the participants. A negotiation does not exist before or after the

group of agents become involved in it. The states and process of negotiation depends

on the existence of the involved group. A negotiation process and its state are as

abstract notions.

The protocol of a negotiation is assumed to be commonly known by all the

participating agents. Joint (implicit) commitment by these agents to a protocol entails

 94

ANML – Agent Negotiation Meta-Language

complying to that protocol while executing a negotiation process. Non-compliant

agents are ignored but compliance benefits an agent or a group of agents for

meaningful interaction towards achieving a goal. A negotiation protocol is

represented as a logical theory in ANML with relation between states and with

condition-action rules. A protocol may be commonly known by a group of agents

through for example learning about it, a public repository or via another negotiation.

The state or status of a negotiation is considered to be the formulae that are rendered

true by message exchange between involved agents. A complete protocol in ANML

specifies the initial status of a negotiation - that is, what are the truth values of the

formulae with respect to a negotiation process before its start. A protocol also

specifies which new state of the negotiation is triggered after an agent sends a

message. In a complete protocol, transitions would render some formulae true and

others false.

Therefore, a negotiation process can be considered as a sequence of messages being

exchanged because a group of agents has agreed to follow a protocol. A negotiation

is a temporary process that exists only as long as the agents are committed to that

protocol. A negotiation state exists only because the participants all have beliefs

about the propositions (concerning that negotiation) that hold in the world at that

instance. We say that the state of a negotiation is S, if all the participating agents

believe the formula S to hold in that world. For example the state of a negotiation is

offered if all the participants believe that proposition offered holds in the world. An

agent is capable of introspection. The truth-values of the formulae and propositions

are determined by a process and the protocol. There is the question of relating

common beliefs to the negotiation state, for example an agent believing other agents

believe the state and so forth. (Chapter 7 further discusses agents modeling other

participants’ beliefs).

Before a negotiation, in world w0, involved agents believe the initial state, s0, of a

negotiation process, p. When an initiator sends the first message, m, there is a new set

of formulae, s1, that holds because m leads to the world w1. When beliefs about s1

being true become shared by all the agents, then the state of the negotiation has

changed from s0 to s1. s0 and s1 are the states holding in the worlds w0 and w1

respectively. During a negotiation, the state of the negotiation changes according to

 95

ANML – Agent Negotiation Meta-Language

the messages being exchanged. On receiving a message, n, in world wn, an agent X

changes its belief about the set of propositions holding in the new world, wn+1,

according to the protocol being followed. The new set of propositions entails that an

agent believes the negotiation state to be sn+1. All agents eventually share the same

beliefs that the negotiation state is sn+1 in world wn+1. Beliefs about the negotiation

state change after each process or message and processes enable state transitions

concerning a negotiation instance. Finally a terminal action in a protocol is regarded

as being the final process. A negotiation ends in a terminal state when all agents have

the same beliefs about the last formulae holding.

A negotiation process is thus abstract and temporary since once the agents know that

the terminal state of a negotiation holds, the negotiation process resides in their

history. The negotiation, as a series of messages being exchanged, has only meaning

within that group. The result of a negotiation may give rise to consequences and

contracts. No agent has a view of the whole negotiation process since each agent has

its own private beliefs about the negotiation. Only an omniscient agent having an

overall view of the negotiation is able to infer when the current state of negotiation

comes to be wholly shared.

An agent’s modeling of other agents depends on the history and prediction of their

interaction according to the protocol. An agent partially believes how a process may

affect its opponents’ beliefs and behaviour. A rational agent models the environment

and the behaviour of other agents so as to minimise its uncertainty about reaching its

goal. Uncertainty because of fallible communication and of recent events and states

fade with progress of a negotiation. (See chapter 7 for further discussion on reasoning

about the consistency between the beliefs of agents in a group given uncertainties and

failures in the underlying communication medium.)

3.11 Further Work on ANML

The meta-language ANML is suitable for expressing agent negotiations and protocols

for them, since it is an intuitively computational form. More work can be carried out

on ANML through automated reasoning and specifying the semantics of protocols.

The meta-language ANML may inherit from the properties of PDL such as soundness

 96

ANML – Agent Negotiation Meta-Language

 97

and completeness. The completeness proof for PDL inherits from the Quasi-Henkin

completeness proof for modal logics, [Ben-Ari et al 1982]. See Goldblatt [1992] for

the properties of PDL. Further work includes analysing how the properties of PDL

reflect into ANML.

ANML allows non-deterministic choice as it permits more than one choice of next

move at some step in a computation. For example in a bilateral negotiation there are

several possible transitions from a requested state. ANML allows s1→ [α » β] S2

where either process α or β may be performed from state s1.

3.12 Conclusion

This chapter surveys various logics for specifying negotiation processes and

protocols. A multi-modal language such as propositional dynamic logic is extended

to specify a meta-language called ANML. This chapter gives the syntax, semantics,

inference rules and axioms in ANML. Like PDL, ANML is a normal modal system.

Such a language can be applied to represent an abstract process like negotiation

among a group of agents following a protocol. The current state of a negotiation

resides in the shared beliefs of the group.

The meta-language ANML is an application of theoretical work on logic languages to

expressing a negotiation between agents. The rest of this thesis describes how to

apply ANML for representing, verifying and reasoning about protocols for

negotiation, with testable properties. The next chapter provides several examples of

expressing various negotiation protocols in ANML.

4 Representing Protocols in ANML

4.1 Introduction

An interaction protocol specifies a pattern of message exchange that two or more

agents may follow in communicating with one another. It may be regarded as the set

of public rules or guidelines indicating the conduct of an agent towards other agents

when carrying out some negotiation. A commonly known protocol ensures that all

participants following it will coordinate meaningfully and can expect certain

responses from others. A protocol can be application or domain specific, but as long

as all the participants know and follow it, a conversation can be carried out, which

may eventually end up in a terminal state. We adopt the approach of a protocol being

commonly known to all participants. Possible scenarios where a group of agents may

learn a protocol include:

• A public repository of standardised protocols and their semantics where agents

can decide which protocol to use and share.

• One or more of the agents advertise that they are willing to negotiate using a

particular protocol.

• The negotiation is performed in the framework of an electronic institution,

which publishes the protocols it supports.

• There is a pre-negotiation phase between a group of agents to agree on the

protocol to follow for the following negotiation about a service.

The previous chapter specified a normal modal system for ANML as an extension of

propositional dynamic logic. This chapter shows the application of the meta-language

to represent interaction protocols, [Paurobally and Cunningham 2000a]. Protocols are

98

Representing Protocols in ANML

expressed in statecharts and ANML. Statecharts provide an initial illustration of the

protocols. ANML is used for a complete and unambiguous specification of the

protocol.

Statecharts, [Harel and Namad 1996], are a graphical method to illustrate reactive

behaviour over time and are an extension of conventional finite-state machines and

state transition diagrams. The statecharts presented in this chapter show the

relationships between the states of a negotiation process and permitted transitions

between the states, so implicitly define a negotiation protocol (which is made explicit

in its ANML logical theory). These protocols can form the basis for further

customisation for application or domain specific interactions, however, even after

augmenting a statechart to type an action with the agent executing it, it is shown that

the statechart of a realistic protocol is often not complete and is prone to a number of

errors. Statecharts typed with agents do not correctly capture features such as

synchronisation between two agents, parameterisation of processes with agents and

iterative processes.

Studied protocols are explained through multi-agent scenarios showing the progress

of a corresponding negotiation. As described in the previous chapter, we refer to state

is short for the state of a negotiation by virtue of being believed by all agents in a

group and does not mean the state of individual agents. The group also knows the

protocol they all mean to comply with. Agents in a group follow a protocol to

negotiate on a subject of negotiation such as a service. The negotiation subject may

consist of an aggregation of various issues. The knowledge of a group of agents

includes a protocol and the beliefs include the current state of a negotiation and a

negotiation subject.

In practice, an agent may be involved in several concurrent negotiations and often

needs authorisation to become a member of a group or join in any negotiation. Each

negotiation process is associated with its participants, a subject of negotiation, a state

and a protocol. A negotiation subject may be a tuple or list of issues and is passed as

a parameter in exchanged messages. A message may be in the form of a

communicative act including a performative or process such as offer and a subject

content (such as car, £2000, etc.). An agent is able to distinguish between multiple

 99

Representing Protocols in ANML

negotiations so that it can relate a process to its state and choose an appropriate action.

Implicitly each negotiation state is characterised with a tuple (negotiation instance,

participants, protocol, subject) and each negotiation action is implicitly associated

with another tuple (negotiation instance, perpetrator of that action, protocol, subject).

4.2 A Bilateral Protocol

A bilateral protocol defines a protocol of conversation between two parties looking

for an agreement over a negotiation subject. The initial version of the bilateral

protocol studied here is expressed as a state transition diagram in [OSM SARL 1998].

This section describes the corrected version of this bilateral protocol, (the original

protocol is presented in chapter 5), and illustrates three scenarios where two agents

negotiate by complying to that protocol. Its statechart is given in Figure 4.1 and its

ANML is codified as Theory 4.1.

According to Figure 4.1, entry in a bilateral negotiation is through either an initial-

request, initial-offer or initial-propose message leading to an open state and more

precisely to a requested, offered or proposed state respectively. The process

X.initial_request means that agent X sent an initial_request leading to a requested(X)

state. The state requested(X) is read as agent X has triggered the state requested.

Each state may be interpreted as conveying a level of commitment towards an

agreement. For example an agreed state entails more commitment than a requested

state. A reject action or timeout event can occur at any time. From a requested state,

both agents can continuously make suggest actions to remain in that state while

modifying the subject of negotiation until one of them wants to move to a higher level

of commitment through an offer or propose. The proposed state is a sub-state of

offered and both of these states allow an agreement to follow in the next action

leading to an agreed state. The difference between offered and proposed is that from

the former state, an agent can only agree or reject whereas from the proposed state, an

agent may agree, reject or return to a requested state through a request.

Figure 4.1 does not show full parameterisation of states since it does not reflect the

fact that agents X or Y making a suggest depends on which agent triggered the last

 100

Representing Protocols in ANML

state. It is hard to express parameterisation of states and actions in a statechart when

there are both non-iterative and iterative processes leading to the same state.

 X.agree

 reject

 timeout

negotiating

X.suggest
 Y.offer

 Y.propose

 X.request
 open

proposed(Y)

timedout

agreed(X)

rejected

offered(Y)
requested(X)

closed

X.initial_request Y.initial_offer Y.initial_propose

Figure 4.1 State transition diagram for bilateral protocol

¬negotiating ↔ [{X,Y}.bilateral_processb] closed (1)

negotiating ↔ one-of ({ open, closed }) (2)

open ↔ one-of ({ requested, offered }) (3)

closed ↔ one-of ({ agreed, rejected, timeout }) (4)

proposed(X) → offered(X) (5)

¬negotiating ↔ none-of ({ open, closed }) (6)

¬open ↔ none-of ({ requested, offered }) (7)

¬closed ↔ none-of ({ agreed, rejected, timeout }) (8)

¬negotiating ↔ [X.initial_request]requested(X) ¤ [X.initial_offer] (offered(X)

⁄ ¬proposed(X)) ¤ [X.initial_propose] proposed(X) (9)

requested(X)↔ [Y.offer] (offered(Y) ⁄ ¬proposed(X)) ¤ [Y.propose] proposed(Y)

¤ [Y.suggest] requested(Y) ⁄ Ÿ(X= Y). (10)

offered(X) ↔ [Y.agree] agreed(Y) ⁄ Ÿ(X= Y). (11)

proposed(X)) ↔ [Y.request] requested(Y)⁄ Ÿ(X=Y). (12)

open ↔ ([X.reject] rejected ¤ [timeout]timedout ¤ [offered(X))?; Y.agree]

agreed(Y)) ⁄ Ÿ(X=Y). (13)

Theory 4.1 Bilateral Negotiation Protocol in ANML

 101

Representing Protocols in ANML

Rule (1) defines process bilateral_processb as an instance of a joint negotiation

between agents X and Y, following a bilateral protocol with initial state ¬negotiating.

After executing the process bilateral_processb, the state is closed.

Axioms (2) to (8) give the relation between state and sub-states. The overall parent

state is negotiating. The states open and closed are sub-states of negotiating. A

negotiation can be either open or closed but not in both states simultaneously, making

the two sub-states mutually exclusive. The double implication in axiom (2) ensures

that the negotiating parent state does not hold without being in one of its sub-states.

Likewise, open and closed themselves consist of mutually exclusive sub-states. If the

state is open then either requested or offered, but not both, holds and vice versa. A

single implication in axiom (5) implies that proposed is a sub-state of offered, but

offered does not depend on its sub-state. A negotiation state can be offered without

being proposed.

Axioms (2)-(4) ensure that only the current state triggered by a process is true while

other non-parent states are false. Axioms (6)-(8) do not allow any sub-states to hold

when their parent states do not hold in a world. When a parent state does not hold,

axiom (6)-(8) ensure that it is not because two or more of its sub-states hold.

Axiom (9) specifies the three entry actions when a negotiation has not started i.e.

when the overall parent state, negotiating, does not hold. Axioms (10) to (13) are

action-condition rules representing the effect of processes on states. Contrary to the

statechart in Figure 4.1, the ANML protocol fully parameterises the processes and the

states with the agents performing a process. Axiom (13) defines the possible actions

to terminate a negotiation from an open to a closed state. To do so, either agent can

reject, a timeout can occur or an agent agrees to the other agent’s offer.

4.2.1 Buying a pizza online (Business to Consumer)

The first scenario for explaining the bilateral protocol involves John buying a pizza

online from Lorenzo’s Pizzeria. The latter has a web page where any buyer can

browse through a catalogue of Italian food and delivery services. Lorenzo’s Pizzeria

has an agent, called lorenzo that acts as a seller and John’s agent, called john, acts as a

buyer on his behalf. Both agents join in a negotiation according to the above bilateral

protocol with ¬negotiating as initial state. The catalogue lists that Lorenzo’s Pizzeria

 102

Representing Protocols in ANML

offers a medium pizza with two toppings and free delivery for £7.00. The issues in

the negotiation subject are (size, name of product, number of toppings, price, delivery)

and the negotiation is started with an initial-offer from lorenzo. From axiom (9) in

Theory 4.1, the process lorenzo.initial-offer triggers a transition of the negotiation

state from ¬negotiating to (offered(lorenzo) ⁄ ¬proposed(lorenzo)). According to the

bilateral protocol, the following two action-condition rules can fire from a

(offered(lorenzo) ⁄ ¬proposed(lorenzo)) state.

offered(lorenzo) ↔ [john.agree] agreed(john) ⁄ Ÿ(john = lorenzo).

open ↔ [john.reject ∪ lorenzo.reject] rejected, [timeout]timedout,

[offered(lorenzo))?; john.agree] agreed(john) ⁄ Ÿ(lorenzo=john).

John can only agree to or reject lorenzo’s offer or the negotiation may timeout. In this

scenario, the negotiation terminates successfully with john agreeing to lorenzo’s offer.

The action john.agree changes the state from offered(lorenzo) to agreed(john).

Scenario 4.1 shows the interaction between lorenzo and john and changes in the

negotiation sub-state after each message.

Step

number

Agent performing

action

Action Resulting negotiation

state

 ¬negotiating

1 Agent lorenzo from

Lorenzo’s Pizzeria

initial_offer

medium, pizza, two

toppings, £7:00, free

delivery

offered(lorenzo)

medium, pizza, two

toppings, £7:00, free

delivery

2 Agent john for

client John

john.agree

medium pizza, two

toppings, £7:00, free

delivery

agreed(john)

Agreement: Lorenzo

delivers a medium

pizza, two toppings for

£7:00 to John

Scenario 4.1 John buying a pizza from Lorenzo’s Pizzeria

 103

Representing Protocols in ANML

4.2.2 Buying telecommunication bandwidth (Business to Business)

The second scenario describes trading bandwidth against insurance services between

two companies, Imperial telecom and Leicester Co. Imperial telecom provides

bandwidth for different types and number of connection. It can also provide portal

and mobile facilities. Leicester Co. provides insurance for a number of employees

with an upper limit on their salaries. The subject of negotiation consists of the

amount of bandwidth and insurance to be exchanged according to the bilateral

protocol. The interaction starts with the agent from Leicester Co., leicester, making

an initial_request for bandwidth covering 40 PCs against a group insurance for 15

people. After several proposals, suggestions and requests, leicester makes an offer to

provide insurance for 20 people at 70% of their salary with a maximum of £2500 per

month against obtaining bandwidth for 40 ISDN connections at 64-128 kps and portal

and mobile facilities from Imperial telecom. The latter terminates the negotiation

with a rejection. This scenario differs from the usual consumer provider interaction in

that it involves two businesses exchanging non-tangible services where price is not an

issue.

Agent doing

action

Action Resulting negotiation state

Leicester Co. leicester.initial_request

bandwidth for business, 40 PC

against group insurance for 15

people.

requested(leicester)

bandwidth for business, 40 PC

against group insurance for 15

people

Imperial telecom imperial.propose

40 modem connections <56kps or

30 ISDN <128 kps or 20

connections for ADSL lines <8

Mbps against group insurance for

15 people

proposed(imperial)

40 connections for Modem

<56kps or 30 ISDN <128 kps or

20 connections for ADSL lines <8

Mbps against group insurance for

15 people

Leicester Co. leicester.request

40 ISDN connections at 64-128

kps against group insurance for 20

people

requested(leicester)

40 ISDN connections at 64-128

kps against group insurance for 20

people

 104

Representing Protocols in ANML

Imperial telecom imperial.propose

40 ISDN 64-128 kps against

group insurance for 20 people

with disability benefits

proposed(imperial)

40 ISDN 64-128 kps against

group insurance for 20 people

with disability benefits

Leicester Co. leicester.request

40 ISDN connections at 64-128

kps against group insurance for 20

people with first day

hospitalisation coverage.

requested(leicester)

40 ISDN connections at 64-128

kps against group insurance for 20

people with first day

hospitalisation coverage.

Imperial telecom imperial.suggest

40 ASDL connections at 0.5-8

Mbps against group insurance for

40 people with first day

hospitalisation coverage

requested(imperial)

40 ASDL connections at 0.5-8

Mbps against group insurance for

40 people with first day

hospitalisation coverage

Leicester Co. leicester.suggest

40 ASDL 0.5-8 Mbps against

group insurance for 25 people,

disability benefits, 70% of salary

requested(leicester)

40 ASDL 0.5-8 Mbps against

group insurance for 25 people,

disability benefits, 70% of salary

Imperial telecom imperial.suggest

30 ASDL 0.5-8 Mbps against

group insurance for 25 people,

disability benefits, 70% of salary

requested(imperial)

30 ASDL 0.5-8 Mbps against

group insurance for 25 people,

disability benefits, 70% of salary

Leicester Co. leicester.propose

40 ISDN 64-128 kps against

group insurance for 20 people,

59% of salary and employee

compensation wages

proposed(leicester)

40 ISDN 64-128 kps against

group insurance for 20 people,

59% of salary and employee

compensation wages

Imperial telecom imperial.request

40 ISDN 64-128 kps + mobile

facilities against group insurance

for 20 people, 70% of salary and

employee compensation wages

requested(imperial)

40 ISDN 64-128 kps + mobile

facilities against group insurance

for 20 people, 70% of salary and

employee compensation wages

Leicester Co. leicester.propose proposed(leicester)

 105

Representing Protocols in ANML

40 ISDN 64-128 + mobile

facilities against group insurance

for 20 people, 70% of salary and

maximum salary £2000 per month

40 ISDN 64-128 + mobile

facilities against group insurance

for 20 people, 70% of salary and

maximum salary £2000 per month

Imperial telecom Imperial.request

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £3000

per month

requested(imperial)

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £3000

per month

Leicester Co. Leicester.offer

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £2500

per month

offered(leicester)

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £2500

per month

Imperial telecom Imperial.reject

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £2500

per month

rejected

40 ISDN 64-128 + mobile

facilities +portal against group

insurance for 20 people, 70% of

salary and maximum salary £2500

per month

Scenario 4.2 Exchange of bandwidth and insurance between 2 companies

4.2.3 Holiday (Business to Consumer)

Oliver wants to buy a package holiday to Mauritius from the travel agent Beach Hols.

Their two agents, oliver and beach, negotiate on the holiday package according to a

bilateral protocol and Oliver aims to fly to Mauritius in August for a fortnight. The

subject of negotiation is a holiday package to Mauritius for a certain number of days

during peak season. Oliver starts the interaction with an initial_request for a holiday

to Mauritius for 2 weeks. The negotiation ends with an agreement between Oliver

and the travel agent for a holiday to Mauritius between 10th to 24th August, flights and

hotel accommodation included at £1600.

 106

Representing Protocols in ANML

Agent performing action Action Resulting Negotiation state

Oliver oliver.initial_request

Package holiday to

Mauritius for 2 weeks

initial_request(oliver)

Package holiday to

Mauritius for 2 weeks

Beach Hols beach.propose

H = holiday to Mauritius,

14 days, July, flights +

hotel, £1200

proposed(beach)

H

Oliver oliver.request

H1= holiday to Mauritius,

August, 14 days, flights +

hotel, £1200

requested(oliver)

H1

Beach Hols beach.suggest

H2 = holiday to Mauritius,

August, 14 days, flights +

3* hotel, £2000

requested(beach)

H2

Oliver oliver.suggest

H3 = holiday to Mauritius,

10/08- 24/08, flights + hotel

<£1500

requested(oliver)

H3

Beach Hols beach.suggest

H4 = holiday to Mauritius,

10/08- 24/08, flights + 2*

hotel +car hire, £1800

requested(beach)

H4

Oliver oliver.propose

H5 = holiday to Mauritius,

10/08- 24/08, flights + 2*

hotel , £1600

proposed(oliver)

H5

Beach Hols beach.agree

holiday to Mauritius, 10/08-

24/08, flights + 2* hotel,

£1600

agreed(beach)

Beach Hols sells holiday to

Mauritius, 10/08- 24/08,

flights + 2* hotel, £1600 to

Oliver

 107

Representing Protocols in ANML

Scenario 4.3 Oliver and Beach Hols negotiating for a package holiday

4.3 Bilateral Negotiation Expanded

In current electronic commerce scenarios, the interaction between a consumer and a

business is usually straightforward with phases for information collection, agreement

and execution of service in a transaction. A consumer finds it easier to trust an agent

to shop online for him when any possible loss incurred will be small. When the risk is

large or when a substantial amount of money or goods are involved in a transaction,

the owners would prefer their agent to be semi-autonomous and to report to them

before any commitment. Trust and acceptance of and between autonomous agents are

issues needing to be resolved for large-scale agent deployment. Delegating tasks to

agents are more likely to occur first in business to business transactions, where

complex and parallel trading are executed over long period of times or in the space of

seconds. Business agents should be capable of coping with parallel decision making

in automated negotiation and brokerage. Scenario 4.2 showed a business to business

negotiation between a telecom and an insurance company. Such a bilateral

negotiation, Theory 4.1, can be expanded for richer interactions.

For example consider a simple business to business negotiation between two agents

belonging to a web page designer and to Sam Company, which wants a web site. Sam

Company’s agent, called Sam, has initially consulted a broker agent to get a list of

suitable web designers. Sam chooses a web designer called Cool Pages for further

transaction. Sam may either contact the agent from Cool Pages directly or use the

broker agent as intermediary. Here, direct interaction is considered between Sam and

the web designer’s agent called Pages. Agent Pages offers a number of features in

designing web pages like clickable maps, multimedia plug-ins, secure online

transactions, etc. in addition to after-sales maintenance and updates. Agent Sam

contacts agent Pages with vague requirements for a web site and agent Pages suggests

various designs that might interest his customer. The two agents negotiate on a

number of issues such as price, quality of service, number of web pages and after-

sales facilities. The agents may follow the bilateral protocol in Theory 4.1, but it may

prove to be too constrained and not offer enquiry and argumentation capabilities.

Since agent Sam is not an expert in web designing, he may not understand a proposal

 108

Representing Protocols in ANML

or the worth associated to the features on a web page. Sam can ask agent Pages for

advice and explanation. Both agents can interact in a dialogue style in order to

augment their beliefs about the domain and each other and to reach a mutually

suitable solution. Sam gradually refines its requirements for a web page given its

needs and Agent Pages can advice and persuade Sam to what would be a solution

beneficial to both of them. An agreement may be sealed with a contract, in which the

policies for secure payment and delivery are drafted. Since the web pages need to be

maintained and updated in the future, agent Pages offers after-sales services which

may be part of the initial package or need ad-hoc negotiations. This scenario shows a

case when a protocol for a negotiation must allow for richer dialogues and

explanations. A JSD diagram [Jackson 1975], is first given and then a state-chart for

a protocol that supports richer interactions than Theory 4.1. These two diagrams are

easier to understand at first glance, followed by a corresponding logical theory.

4.3.1 Expanded Bilateral protocol in JSD

The JSD diagram in Figure 4.2 shows a sequence of tasks in a business to business

transaction as that described in the above scenario. An online transaction consists of

an agent, AgentX, finding a partner through a broker. Then AgentX and its partner

engages in a joint task, make transaction.

online trading*

find partner make transaction+

contact
broker

get list* Browse* choose partner

negotiation* execute
service

pay aftersales* set contract

rejectorequest* agreeoquestion*

explain* propose*
sign engage negotiation*

(policies)

make payment authenticate

make
transation*

AgentX partner joint either agent

part_reject*

offer§1

 109

Representing Protocols in ANML

Figure 4.2 JSD of business to business transaction

AgentX obtains a list of partners (providers or customers) through its broker. It

browses through the list, chooses a suitable partner and enters in a transaction one or

more times with its partner. The joint task make-transaction consists of a sequence of

tasks – joint negotiation, joint contract, executing a service, payment and joint after-

sales activities. A joint negotiation may follow an expanded bilateral protocol

allowing questions and explanations. If a sub-task fails, the participants can restart

the parent task or the overall transaction. Figure 4.2 does not explicitly represent an

interaction protocol but the paths of process execution in a trading scenario. The

sequence of tasks in Figure 4.2 is expressed as a path in ANML.

online_trading = (AgentX.find_partner?;{AgentX, Partner}.make_transaction+)*

AgentX. find_partner = AgentX.contact_broker ; AgentX.get_list*;

AgentX.browse*; AgentX.choose_partner

After finding a partner, AgentX and its partner enters in a transaction:

{AgentX, Partner}.make_transaction =

{ AgentX, Partner }.(negotiation* ; agreed?; set_contract; execute_service ; pay;

after_sales*

{ AgentX, Partner}.negotiation =

(AgentX.(request » propose » question » explain » part_reject); Partner.(

request » propose » question » explain » part_reject))* ; ((AgentX. offer;

one-of({Partner.reject, Partner.accept})) » (Partner. offer; one-

of({AgentX.reject, AgentX.accept})))

When negotiating, either agent can send requests, proposals, ask questions and give

explanations. An agent is able to partly reject the issues in a proposal or request and

its opponent then knows not to suggest or propose these issues. Such dialogues may

lead a group to concessions that are beneficial to all agents or bring about a more

optimal solution than when using a restricted protocol. After iterations of requests,

proposals, questions and explanations, the agents converge to a vector of mutually

satisfying values. The negotiation is terminated with a total rejection or an agreement.

 110

Representing Protocols in ANML

{AgentX, Partner }.set_contract = { AgentX, Partner } .((negotiation?)*;

engage; sign)

If both agents have reached an agreement, a contract is drafted. They negotiate on the

policies to support the contract such as payment method, security, delivery, notary

services and signatures. Bilateral protocols may be used for agreeing upon these

policies, after which the two agents jointly engage into and sign the contract.

c.pay = c.authenticate; c.make_payment

Both agents can execute the terms of a contract through payment and delivery with

suitable security mechanisms like identification, authentication and non-repudiation

steps.

{AgentX , Partner}.after_sales = {AgentX , Partner}.make_transaction

If the contract does not already contain terms for after-sales services, both agents may

start a transaction about maintenance or updates in the future, similar to the

make_transaction process. The next section first gives an expanded bilateral protocol

as a state-chart then in ANML.

4.3.2 State-chart and ANML theory for expanded bilateral protocol

Figure 4.3 illustrates expanding the bilateral protocol in Theory 4.1 for richer

interactions than request, propose, suggest, offer, agree and reject messages.

partly
rejected

requested

proposed

offered
agreed

rejected

timedout

open

negotiating

pending

closed

investigating

questioned

explained

sub_negotiable

requested closed

o
t
h
e
r

n
e
g
o
t
i
a
t
i
o
n

t
h
r
e
a
d
s

i.request
suggest

i.offer

i.proposeoffer

propose

agree

reject

timeout

continue

delay

continue

reject
part

question

explainquestion

subnegotiate

i.question

request

reject part

deliberating

Figure 4.3 Richer bilateral protocol

The open state of the bilateral protocol in Figure 4.1 resembles the deliberating state

in Figure 4.3. Figure 4.3 includes deliberating, investigating and sub-negotiating as

 111

Representing Protocols in ANML

sub-states of open. In the investigating state, each agent may ask questions and give

explanations. The investigating state co-exists with the deliberating and

sub_negotiating states e.g. both requested and questioned may hold. Exiting from an

investigating state resumes a negotiation into an open state. An agent can partly-

reject issues it dislikes but can still continue negotiating, with both parties keeping in

mind not to use the rejected issues.

The states sub_negotiating, other negotiation threads and pending support nesting of

protocols, concurrency and delays respectively. An agent may fork into sub-

negotiations, whose states can influence the parent negotiation. This allows the

nesting of protocols and the ability to abstract from a parent process into sub-

processes for dealing with sub-goals. A negotiation process may be suspended by

triggering the pending state and later to be continued in its latest open state.

Concurrent processes are possible between two agents, where they are involved in

several parallel negotiations with each other. Both agents can use the proceedings of

other negotiations to influence their decisions. Figure 4.3 does not show all the earlier

discussed features in an expanded protocol e.g. returning to latest states after pending

or investigating. All the possible actions in the logical theory of the expanded

bilateral protocol are captured below.

The overall parent state is negotiating consisting of open or closed. An open state can

be in deliberating, investigating, pending or sub_negotiating sub-states.

negotiating ↔ one-of({open, closed})

closed ↔ one-of({agreed , rejected , timedout})

open ↔ (deliberating ¤ investigating ¤ pending ¤ sub_negotiating)

deliberating ↔ one-of({ requested, partly_rejected, offered})

investigating ↔ one-of({ questioned, explained})

proposed(Y) → offered(Y)

on-hold ↔ pending ¤ investigating ¤ sub_negotiating

¬ negotiating ↔ none-of({open, closed})

¬ closed ↔ none-of({agreed, rejected, timedout})

¬ deliberating ↔ none-of({ requested , partly_rejected, offered})

 112

Representing Protocols in ANML

¬ investigating ↔ none-of({ questioned, explained})

As for the bilateral protocol, the negotiating state is entered by an initial_request,

initial_offer or initial_propose and terminates in a closed state. An agent may also

start a negotiation with an initial_question.

¬negotiating ↔ [{X,Y}.expanded_bilateral_processb] closed

¬negotiating ↔ [X.initial_request]requested(X) ¤ [X.initial_offer] (offered(X) ⁄

¬proposed(X)) ¤ [X.initial_propose] proposed(X) ¤ [Y.initial_question]

questioned(Y)

A question may be asked from both requested and offered states or issues might be

rejected from requested or proposed states. An open negotiation can be suspended in

the pending state.

(requested(X) ⁄ ¬on-hold) ↔ [Y.offer] (offered(Y) ⁄ ¬proposed(X)) ¤

[Y.propose] proposed(Y) ¤ [Y.suggest] requested(Y) ¤ [Y.reject_part]

partly_rejected(Y) ¤ [Y.question] (questioned(Y) ⁄ requested(Y)) ⁄ Ÿ(X= Y).

(offered(X) ⁄ ¬on-hold) ↔ [Y.agree] agreed(Y) ¤ [Y.question] (questioned(Y) ⁄

offered(Y)) ⁄ Ÿ(X= Y).

(proposed(X) ⁄ ¬on-hold) ↔ [Y.request] requested(Y) ¤ [Y.reject_part]

partly_rejected(Y) ¤ [Y.question] (questioned(Y) ⁄ proposed(Y)) ⁄ Ÿ(X=Y).

open ↔ ([X.reject] rejected ¤ [timeout]timedout ¤ [(offered(X) ⁄ ¬on-hold)?;

Y.agree] agreed(Y)) ¤ [StateX ?; (X.delay ∪Y.delay)] (pending ⁄ StateX) ¤

[StateX?; {X, Y}.subnegotiate] (sub_negotiating ⁄ StateX) ⁄ Ÿ(X=Y).

A parent negotiation may continue after performing a sub-negotiation, returning back

to its previous state before entering the sub-process.

 113

Representing Protocols in ANML

(sub_negotiating ⁄ StateX) ↔ [X.continue ∪Y.continue] (StateX ⁄

¬sub_negotiating)

Any agent may continue a negotiation from the suspended or partly_rejected state.

partly_rejected(X) ↔ [Y.propose] proposed(Y) ¤ [Y.request] requested(Y)

(pending ⁄ StateX) ↔ [X.continue ∪Y.continue] (StateX ⁄ ¬pending)

In the investigating state, questions and explanations may be successively exchanged

between agents. From the investigating state, a continue action resumes the

negotiation to the latest sub-state of open, which is either requested or proposed.

questioned(X)↔[Y.explain]explained(Y) ⁄ Ÿ(X=Y).

explained(X) ↔ [Y.question]questioned(Y) ⁄ Ÿ(X=Y).

(investigating ⁄ requested(X)) ↔ [X.continue ∪Y.continue] (requested(X) ⁄

¬investigating)

(investigating ⁄ proposed(X)) ↔ [X.continue ∪Y.continue] (proposed(X) ⁄

¬investigating)

4.4 Multi-lateral Protocol

The OMG EC digital architecture specification [OSM Saarl 1998] defines state

transition diagrams for multi-lateral (Figure 4.4) and promissory negotiation (Figure

4.7).

 114

Representing Protocols in ANML

 count

timeout

withdraw

multilateral encounter

Motioned amend

 second vote

call

closed

withdrawn

rejected

agreed
votingsecondedpending

motion

Figure 4.4 Original version of multi-lateral protocol, [OSM Saarl 1998]

The multilateral transition diagrams in Figure 4.4 and Figure 4.5 specifies a protocol

relevant for submitting motions in a quorum, for seconding and amending these

motions, and for subsequent voting within a community of two or more agents. An

agent initiates the multilateral process into a pending state by raising a motion on a

subject. The initiator can withdraw its motion or the motion may time out leading to a

withdrawn state. Otherwise from a pending state, a seconded state is triggered by

another participant seconding the motion. In the seconded state, a countdown to a

vote timeout is activated. Any user may invoke the amend transition in the seconded

state to change the subject of negotiation or may call a transition to the voting state. If

the amend transition fails, then the state remains seconded without any change in

subject of negotiation, otherwise if the amend succeeds, then the seconded state is

entered again with a new subject of negotiation and the countdown to voting

reinitialised. If the call to voting fails, the current state remains seconded. In the

voting state, vote processes are followed by counting until the time for voting is over

or all the participants have voted. If the number of yes votes is greater than the

ceiling, then the protocol terminates successfully in an agreed state otherwise the

motion is rejected. There are other protocols for multilateral negotiation which

provide interaction between one to many parties and many-to-many parties, as in

protocols for communication in channels.

 115

Representing Protocols in ANML

Figure 4.4 shows the state transition diagram proposed in [OSM Saarl 1998] for

multi-lateral negotiation. However it does not illustrate a number of features e.g. the

particulars of the compound transitions amend, call and vote, that can succeed or fail.

There is no information about which agent can perform which action, so an agent can

raise a motion and second its own motion and call a vote. Figure 4.4 is corrected in

order to show compound transitions, which are an instance of a protocol given in a

circle near that transition. Figure 4.5 defines a more complete protocol than the

original version in Figure 4.4.

 count
 #votes ≥ ½

 count, #votes < ½

 timeout
withdraw

multilateral_encounter

motion

motioned
 call

 second vote

 amend

closed

withdrawn

rejected

agreed

pending

voting

seconded

 call ≥ 2/3

 <1/3

closed

voting

rejected

agreed

motion

 ≥ 1/2

 <1/2

 timeout
withdraw

multilateral encounter

motioned
 call

 second vote

 amend

closed

withdrawn

rejected

agreed

secondedpending

multilateral

Figure 4.5 Showing compound transitions in multi-lateral protocol

The negotiation process launched at a compound amend message follows a multi-

lateral protocol where the new subject of negotiation is whether to amend the motion

that has been raised in the parent negotiation. Figure 4.6 shows the states and

transitions that occur at the call transition. If at least two third of the group of agents

agree to call a vote, then the call transition in Figure 4.6 succeeds.

 calling

#votes ≥ 2/3
 call

#votes <1/3

closed
l d

voting

rejected

agreed

Figure 4.6 The call transition

 116

Representing Protocols in ANML

In Figure 4.5, a motion is accepted if the total numbers of votes counted exceeds at

least half the number of participants. Even though Figure 4.5 is an improvement on

the original protocol in portraying compound transitions, it contains a number of

ambiguities. Representing sub-negotiations in state transition diagrams as above may

lead to cluttered figures. Conditions like #votes < ½ need to be clarified. Re-

initialisation of countdown to voting after successful amendment and how the voting

state depends on the success of a call are not shown. Thus the resulting state and

effect of a sub-process on exiting are not illustrated in the above diagrams. The multi-

lateral protocol is represented in ANML to capture all the possible actions and states.

Relation between states and sub-states

A multi-lateral encounter is either motioned or closed. A closed state is in agreed,

rejected or withdrawn. The sub-states of motioned are pending, seconded and voting.

multilateral_encounter ¨ one-of({motioned , closed})

closed ¨ one-of({agreed , rejected , withdrawn})

motioned ¨ one-of({pending, seconded, voting})

¬ multilateral_encounter ¨ none-of({motioned , closed})

¬ closed ¨ none-of({agreed , rejected , withdrawn})

 ¬ motioned ¨ none-of({pending, seconded, voting})

A multilateral process, m, between a set of agents, G, terminates in a closed state.

 ¬ multilateral_encounter ¨ [G.multilateral_negotiationm] closed

Raising a motion m starts a multi-lateral encounter in the motioned state, followed by

steps for adopting or withdrawing the motion.

¬multilateral_encounter ¨ [X.motionm] pendingm(X)

The initiator can withdraw its motion m or the motion may time out leading to a

withdrawn state. Otherwise from a pending state, a seconded state is triggered by

another participant seconding the motion m.

 117

Representing Protocols in ANML

pendingm(X) ¨ [Y.secondm] secondedm(Y) ¤ [timeout]withdrawnm ¤

[X.withdrawm]withdrawnm ∧ ¬(X=Y)

Y ∈ G ↔ (Y.amendm1 :: G.multilateral_negotiationm3)

Y ∈ G ↔ (Y.call m2 :: G.multilateral_negotiationm2)

Proper representation of the multi-lateral protocol requires correctly specifying

compound transitions and their conditions. The above two axioms define the

processes amendm1 and callm2 as complex processes each launching a new

multilateral_negotiation, involving group G with motions m3 (for an amendment of m

with m1) and m2 (for a call to vote).

Three transitions are possible from a seconded state – a vote event, an amend of the

negotiation subject or a call to vote.

secondedm(X) ↔ ([timeout; G.votem] votingm(G) ¤

([Y.amendm1; agreedm3?; reinitialise] secondedm1(Y)) ¤ (

[Y.callm2; agreedm2?; G.votem]votingm(G))) ∧ ¬(X=Y)

In the secondedm state, when the countdown to voting has elapsed, the group votes on

the motion m in the state votingm(G).

If agent Y wants to amend the subject to replace the motion m with m1, a multi-lateral

sub-process with motion m3 is launched. If the sub-process Y.amendm1 ::

G.multilateral_negotiationm3 terminates in an agreedm3 state, the subject of

negotiation and time are re-initialised in a new secondedm1(Y) state, otherwise there is

no change of state i.e. secondedm(Y).

In the secondedm state, if agent Y calls for a vote, then a sub-process call is forked

between G following a Y.callm2 :: G.multilateral_negotiationm2 process. The motion

m2 is whether to vote immediately on the motion m.

 118

Representing Protocols in ANML

In a votingm state, when the time for voting is over or all the participants have voted, a

count process checks whether the number of yes votes is greater than the required

ceiling and if so the motion is agreed.

votingm(G) ↔ [count; (#votes ≥ 1/2)?] agreedm ∨ [count; (#votes <1/2)?]

rejectedm

4.5 Scenario for Multilateral Negotiation

Consider a scenario between agents representing people on a management board as an

example of applying the above multi-lateral protocol. The management board of

Hexa-Decimal company are discussing their company’s expansion. The agents in the

group are Ann, Betty, Chris, Duncan, Ed, Frank, Greg, John, Ken, Lily, Mary and

Perry. The subject of negotiation is the company’s expansion project.

Agent Duncan starts the negotiation by raising a motion, mot, with the subject X being

the building a new branch for the company. Mary seconds Duncan’s motion and the

state is secondedmot(Mary) with a countdown to the votingmot state. Chris calls for a

vote but his call fails and the state remains motioned and secondedmot(Mary). Perry

then proposes an amendment to the current motion with subject, mot1: to renovate and

expand their current headquarters. This leads to a sub-negotiation complying to a

multilateral protocol and the subject mot3 is replacing mot by mot1. The multilateral

sub-negotiation results in an agreedmot3 state, the amendment, mot1, is accepted as the

new motion and countdown to a vote is re-initialised. When the countdown is over,

an internal vote event triggers the votingmot1 state. Participants either vote no, yes or

abstain. With seven yes votes, three no votes and two abstain, the motion, mot1, is

accepted to renovate and expand Hexa-Decimal Company’s headquarters.

Agent Action/event Resulting Negotiation state

Duncan Duncan.motionmot

Duncan raises a motion, mot, with subject to

build a new branch of the company

pendingmot(Duncan)

The state is pending on

subject mot

Mary Mary.secondmot

Mary seconds Duncan’s motion on the current

secondedmot(Mary)

The countdown is started to

 119

Representing Protocols in ANML

subject. 5 minutes before voting.

Chris Chris.callmot

Chris calls for a vote. This is a compound

transition, which launches a vote for whether

voting on the motion, mot, can start without

waiting for the end of the countdown. Only 4

persons are in favour of the call which is less

than the required 2/3. The call fails.

secondedmot(Mary)

The call compound

transition yields a rejected

state and the state of the

multi-lateral negotiation

remains secondedmot(Mary)

as before.

Perry Perry.amendmot1

Perry proposes an amendment to the subject of

the motion, mot, to a new motion, mot1: to

renovate and expand current headquarters.

amendmot1 is a compound transition that

launches a multilateral negotiation, with

subject, mot3: to replace mot with mot1 from

Perry. Ann seconds the motion mot3. The state

of the sub-encounter is secondedmot3(Ann).

After 5 minutes countdown to a vote, a voting

takes place on whether to accept mot3. The

state of the sub-process is votingmot3. Ten

agents vote yes and mot3 is agreed upon.

The sub-negotiation for the

amendment is agreedmot3

and the motion in the main

negotiation is changed to

mot1 and the countdown re-

initialised.

The state after a successful

compound amend transition

is secondedmot1(Perry).

Group votemot1

Voting on the motion mot1 is started after the

countdown is over with the vote transition.

Participants can either vote yes, no or abstain.

votingmot1(G)

The current state is voting.

The

compound

transition

count

count

The number of votes regarding adopting the

motion is counted. The motion is accepted if

the number of yes votes exceeds half the

number of agents, otherwise it fails. There are

7 yes votes, 3 no votes, and 2 abstain.

agreed on mot1

More than the required ½ of

the board has agreed to

mot1. A quorum has been

reached and the motion: to

renovate and expand current

headquarters is accepted.

Scenario 4.4 A multilateral negotiation for the expansion of a company

 120

Representing Protocols in ANML

4.6 Promissory Negotiation

The protocol for a promissory negotiation shown in Figure 4.7 specifies how promises

are made and fulfilled between two agents. Although the protocol is explained in

terms of two agents, X and Y, each agent can be considered as a group of agents. X

and Y may also be agents in a larger group involved in the negotiation. A promissory

negotiation is entered by an agent, X, making either a promise or a commitment to

agent Y about a subject. The agent Y has a right to call on X’s promise before Y’s

right expires. Agent X then has an obligation to fulfil its promise or commitment and

until it does so, it is regarded as a pending obligation on X. From the pending state,

either X fulfils its obligation through a fulfil compound transition or the pending state

times out leading to an overdue sub-state. fulfil is a compound transition that spawns

a bilateral sub-negotiation between agent X and Y with proposed as initial state. The

result of the bilateral sub-negotiation determines the end state of its parent promissory

process. An agreed bilateral sub-process terminates the promissory negotiation in a

fulfilled state, otherwise the promissory interaction is rejected. An agent may invoke

a waive compound transition, which launches a bilateral negotiation.

 expire

 timeout

request

fulfill
 fulfil

right

pending

expired

rejected

fulfilled

waived

overdue

commit

promise

promised

obligation
waive

Figure 4.7 Original version of promissory negotiation

A promissory negotiation can be used in contract execution where an agent promises

or commits to supplying a service and is called upon to fulfil its obligations. The

initial version of a promissory protocol in Figure 4.7, [OSM Saarl 1998], does not

illustrate that fulfil and waive are compound transitions forking bilateral negotiations.

Parameterisation of a process with agents and explicit closed states are not shown.

 121

Representing Protocols in ANML

expired

X.promise

right

fulfilled

rejected

waived

pending
X.commit

timeout

{X∪Y}.
waive

overdue

obligation

Y.request

X.fulfil

closed

expire

 ag ree

 rejec t

 timeout

neg o tiating

s ugg es t
 o ffer

 propo s e

 re ques t
 o pe n

pro pos ed(X)

agreed

re je cte d

time do ut

offered(X)
re que s ted

c los ed

initial_re ques t
initial_
o ffer initial_propo s e

bilateral

 agree

 reject

 timeout

negotiating

sugges t
 offer

 propose

 reques t
 open

proposed(X)

agreed

rejected

timedout

offered(X)
reques ted

closed

initial_reques t
initial_
offer initial_propose

bilateral

promised

Figure 4.8 Promissory diagram showing compound transitions

Figure 4.8 portrays an improved state transition diagram showing the missing

features. However, Figure 4.8 does not express the relation between the state of a

sub-process and the state of its parent process. For example, a rejected or timedout

bilateral sub-negotiation forces fulfil into a rejected state. It is hard to show

parameterisation of the states in a statechart when there are several processes leading

to the same state. For example in Figure 4.8, Y can make a request to trigger the

pending(Y) state, but either agent X or Y can enter the negotiation with a commit

yielding pending(Y) or pending(X) state. In addition, since it is not realistic to invoke

a waive from a closed state, a waive should not be possible from a promised state.

Therefore the states right and pending are added as sub-states of open, from which

waive is possible.

The initial state of a promissory negotiation is ¬promised and the end state is closed.

An example of a path in a promissory process between X and Y is Y.promise;

X.request; Y.fulfil - Y makes a promise that X requests Y to fulfil. Another path may

be X.commit; X.fulfil - X makes a commitment and fulfils it. A successful promissory

negotiation results in a fulfilled state. The ANML theory Theory 4.2 disregards the

obligation state in Figure 4.8 as it is redundant.

 122

Representing Protocols in ANML

promised ¨ one-of({open, closed})

open ↔ one-of({right, pending})

closed ¨ one-of({expired , fulfilled, rejected , waived})

overdue(X) Ø pending(X)

¬promised ¨ none-of({open, closed})

¬open ↔ none-of({right, pending})

¬closed ¨ none-of({expired , fulfilled, rejected , waived})

¬promised ↔ [{X, Y}.promissory-negotiationp] closed

¬promised ↔ [X.promisep] rightp(X) ∨ [X.commitp] (pendingp(X) ∧ ¬overdue)

rightp(X) ↔ ([expire] expired ¤ [Y.requestp] (pendingp(X) ∧ ¬overdue))

 ∧ ¬(X =Y)

X.waivep :: {X,Y}.bilateral_processp1

Y.fulfilp :: {X,Y}.bilateral_processp2

open ¨ [X.waivep ; agreedp1?] waivedp ∧ ¬(X = Y)

pendingp(Y) ↔ [timeout] overdue(Y) ¤ [Y.fulfilp; agreedp2?] fulfilledp ¤

[(rejectedp2 ¤ timedoutp2)?] rejectedp

 Theory 4.2 Promissory protocol in ANML

Let process p be an instance of a promissory negotiation between two agents X and Y

starting in a ¬promised state and terminating in a closed state. The negotiation is

entered by agent X making either a promise or a commit. From the rightp(X) state, Y

makes a requestp for fulfilment triggering pendingp(Y) or the negotiation can expire.

If an agent Y does not fulfil its obligation in the pendingp(Y) state before a timeout,

then the negotiation becomes overdue(Y). Y.fulfilp is a compound transition launching

a bilateral negotiation between X and Y with subject p2 to fulfil p. Similarly, a waivep

transition engages both agents in a bilateral negotiation with subject p1 to waive p.

4.7 Scenario for Promissory negotiation

Two scenarios of negotiations complying to a promissory protocol are presented.

Both of them implicitly include concepts in fulfilling a contract.

 123

Representing Protocols in ANML

4.7.1 Redeeming a voucher

The first scenario involves the agents Oliver and Beach Hols. Oliver won a

competition awarding £500 off a holiday with the travel agent Beach Hols. Both

agents engage in a promissory negotiation with subject, voucher (£500 off a holiday,

before November, flights and hotel). Beach Hols starts the negotiation with a promise

to execute the subject voucher. Oliver requests for his prize and Beach Hols fulfils

the contract by launching a bilateral negotiation such as in Scenario 4.3 with initial

state proposed(beach) on subject voucher. The promissory negotiation ends in a

fulfilled state with Oliver obtaining his holiday.

Agent

belonging to

Action Resulting Negotiation state

Beach Hols beach.promisevoucher

Subject voucher: £500 off holiday,

before November

rightvoucher(beach)

Oliver has a right to ask £500 off a

holiday before November

Oliver oliver.requestvoucher

Subject voucher: £500 off holiday to

Mauritius before November

pendingvoucher(beach)

The state becomes pending waiting

for execution of the subject voucher.

Beach Hols beach.fulfilvoucher

This launches a subsidiary bilateral

negotiation with subject voucher,

which successfully terminates with

an agreement S1.

fulfilledvoucher

S1= Beach Hols sells holiday to

Mauritius, 10/08- 24/08, flights +

hotel, £1600 (£500 off included) to

Oliver.

Scenario 4.5 Promissory negotiation for redeeming a voucher

4.7.2 Fulfilling a Commitment

The second scenario involves Cindy’s agent requesting Lake College to fulfil its

obligation to provide her with accommodation. The two agents involved are Cindy

and Lake and the negotiation subject is college accommodation for Cindy. They

negotiate according to a promissory protocol, started in a pending state through Lake

making a commitment on the negotiation subject. When the pending state times out,

the negotiation becomes overdue until finally Lake fulfils its obligation. The bilateral

 124

Representing Protocols in ANML

sub-process spawned by fulfil terminates with a rejection from Cindy, leading to a

rejected promissory negotiation.

Agent Action/event Resulting Negotiation state

Lake Lake.commitS

Subject S: provide accommodation to

Cindy

pendingS(Lake)

Subject: S

event timeout

A timeout occurs after 2 weeks.

overdue

Subject: S

Lake College has an overdue

commitment.

Lake Lake.fulfilS

The fulfil transition launches a

bilateral negotiation, with initial state

proposed(Lake) and subject S1: a

double room 1 mile from college

The state of the subsidiary bilateral

negotiation is proposed(Lake) with S1.

The state of the promissory negotiation

is overdue(Lake)

Cindy

in sub-

process

Cindy makes a request with S2: single

room at least 100m from college

The bilateral negotiation’s state is

requested(Cindy) with S2. The state of

the promissory negotiation is

overdue(Lake)

Lake in

sub-

process

Lake sends an offer with S3: single

room, 1 hour from college

The bilateral negotiation’s state is

offered(Lake) with S3

Cindy

in sub-

process

Cindy sends a reject ending the

bilateral negotiation in a rejectedS1

state. Control returns to the parent

promissory negotiation.

Both the bilateral negotiation and

promissory negotiation unsuccessfully

terminate in a rejected state.

Scenario 4.6 Promissory negotiation for college accommodation

4.8 Auction Protocols

Auctions are a popular type of negotiation. There are various forms of auctions with

different protocols for bidding and disclosure such as English, Dutch, sealed bid and

 125

Representing Protocols in ANML

Vickrey auctions. In some auctions, the strategies of the parties are known and the

subject involves price. Bargaining is usually restricted to price and the seller’s

strategy to assign awards is made known. Auctions are thus usually simpler to

implement than more interactive protocols. There are currently automated, semi-

automated and manual auctions online.

4.8.1 English Auction

In a typical English auction, an auctioneer posts an item that he wants to sell to the

highest bidder. The bidders bid against themselves and after each bid, the auctioneer

calls for higher bids at most thrice. If after calling for three times, there are no more

bids, then the item is sold to the last bidder. Figure 4.9 is a statechart for an English

auction and its ANML theory is given in Theory 4.3. Figure 4.9 contains an error in

that it allows an auctioneer to perform a going3rd without going2nd.
 auctioneer.post

 auctioneer.quit

 bidder.bid

auctioneer.
going1st timeout

 bidder.bid
 bidder.bid

 auctioneer
 .sell

 auctioneer.going3rd
 open closed

notsold

timedout

sold
gone3rdgone

bidden

posted

auctioning

auctioneer.
going2nd

Figure 4.9 Statechart of an English Auction

 auctioning ↔ one-of({open , closed})

 open ↔ one-of({posted, bidden, gone, gone2nd, gone3rd]

 closed ↔ one-of({notsold, timedout, sold})

¬auctioning ↔ none-of({open , closed})

 ¬open ↔ none-of({posted, bidden, gone, gone2nd, gone3rd]

 ¬closed ↔ none-of({notsold, timedout, sold})

¬auctioning ↔ [({Auctioneer:auctioneer} ∪ Group: bidders).english-auctione]

closed

 ¬auctioning ↔ [Auctioneer:auctioneer. post] posted(Auctioneer)

 126

Representing Protocols in ANML

posted(Auctioneer) ↔ [Auctioneer.quit]notsold ∨ [Bidder: bidder. bid]

((Bidder ∈ Group) → bidden(Bidder))

bidden(Bidder) ↔ [Auctioneer:auctioneer.going1st]gone(Bidder) ∨ [Bidder2:

bidder.bid] ((Bidder2 ∈ Group: bidders) → bidden(Bidder2))

gone(Bidder) ↔ [Auctioneer:auctioneer.going2nd]gone2nd(Bidder) ∨ [Bidder2:

bidder.bid] ((Bidder2 ∈ Group: bidders) → bidden(Bidder2))

gone2nd(Bidder) ↔ [Auctioneer:auctioneer.going3rd]gone3rd(Bidder) ∨

[Bidder2: bidder.bid] ((Bidder2 ∈ Group: bidders) → bidden(Bidder2))

gone3rd(Bidder) ↔ [Auctioneer:auctioneer.sell] sold ∨ [Bidder2: bidder.bid]

((Bidder2 ∈ Group: bidders) → bidden(Bidder2))

auctioning ↔ [timeout]timedout ∨ [gone3rd(Bidder)?;

Auctioneer:auctioneer. sell] sold

Theory 4.3 English Auction in ANML

4.8.2 Scenario of an English Auction

Scenario 4.7 is an English auction between an auctioneer called Louvres and

registered bidders Tate, Pompidou, Orsay, Christie, Sotheby, National-UK, Uffizi,

Washington-art, Ontario-art, Pushkin-gallery, Museo-prado, Sistine, Mary, Ned,

Oscar and Perry. The subject of the auction is the sale of the Mona Lisa painting.

The auctioneer starts the auction by posting the painting at 1 billion pounds.

Agent Action/event Resulting Negotiation state

Louvres Louvres.post

Subject S: Mona-Lisa painting starting

price 1 billion

posted(Louvres)

The Mona-Lisa painting posted at 1

billion.

Christie Christie.bid

Subject: Mona-Lisa at 10 billion

bidden(Christie)

Subject: Mona-Lisa at 10 billion

The countdown to going1st transition

is started.

Sotheby Sotheby.bid

Subject: Mona-Lisa at 12 billion

bidden(Sotheby)

Subject: Mona-Lisa at 12 billion

The countdown to going1st is restarted

 127

Representing Protocols in ANML

Pushkin Pushkin.bid

Subject: Mona-Lisa at 50 billion

bidden(Pushkin)

Subject: Mona-Lisa at 50 billion

Countdown to going1st is restarted.

Louvres Louvres.going1st

Subject: Mona-Lisa at 50 billion

The countdown to going1st ends and

the auctioneer calls for another bid for

the first time.

gone(Pushkin)

Subject: Mona-Lisa at 50 billion

The countdown to going2nd is started.

Louvres Louvres.going2nd

Subject: Mona-Lisa at 50 billion

The countdown to going2nd ends and

the auctioneer calls for a bid for the

second time.

gone2nd(Pushkin)

Subject: Mona-Lisa at 50 billion

The countdown to going3rd is started.

Louvres Louvres.going3rd

Subject: Mona-Lisa at 50 billion

The countdown to going3rd ends and

the auctioneer calls for a bid for the

third time.

gone3rd(Pushkin)

Subject: Mona-Lisa at 50 billion

The countdown to being sold is

started.

Uffizi Uffizi.bid

Subject: Mona-Lisa at 100 billion

Uffizi makes a bid at 100 billion

pounds leading back to bidden

bidden(Uffizi)

Subject: Mona-Lisa at 100 billion

The countdown to going1st is started

… … …

Louvres Louvres.going3rd

Subject: Mona-Lisa at 500 billion

The countdown to going3rd ends and

the auctioneer calls for a bid for the

third time.

gone3rd(Tate)

Subject: Mona-Lisa at 500 billion

The countdown to being sold is

started.

Louvres Louvres.sold

The countdown to sold ends and the

auctioneer sells the painting to Tate.

sold

Scenario 4.7 English Auction for the sale of a painting

 128

Representing Protocols in ANML

4.8.3 Dutch Auction

In a Dutch auction, the auctioneer starts the auction at a high price and progressively

lowers the price until either a participant bids or the auctioneer quits. An auctioneer

usually has a reserve price and he withdraws from the auction if there are no bids at

that limit. The item is sold to the first bidder. Dutch auctions are used to sell

quantities of flowers in Holland. A Dutch auction protocol can avoid contention

amongst buyers by accepting the first bid and disregarding other bids.

 auctioneer.post

 auctioneer.quit

 timeout

 auctioneer.quit

 open closed

 bidder.bid

 auctioneer.lower

 bidder.bid

notsold

timedout

sold

posted

auctioning

lowered

Figure 4.10 Dutch Auction state diagram

Theory 4.4 expresses the protocol for a Dutch auction in ANML.

auctioning ↔ one-of({open, closed})

open ↔ one-of({posted, lowered})

closed ↔ one-of({notsold, timedout, sold})

¬auctioning ↔ none-of({open, closed})

¬open ↔ none-of({posted, lowered})

¬closed ↔ none-of({notsold, timedout, sold})

¬auctioning ↔ [({Auctioneer:auctioneer} ∪ Group: bidders). dutch-auctiond]

closed

¬auctioning ↔ [Auctioneer:auctioneer . post] posted(Auctioneer)

 129

Representing Protocols in ANML

(posted(Auctioneer) ¤ lowered(Auctioneer)) ↔ [Auctioneer.quit] notsold ¤

[Auctioneer.lower]lowered(Auctioneer) ¤ [Bidder: bidder. bid]

((Bidder∈Group: bidders)→ sold)

open ↔ [timeout]timedout ¤ [Auctioneer: auctioneer.quit] notsold ¤ [Bidder:

bidder.bid] ((Bidder ∈ Group: bidders) → sold)

Theory 4.4 ANML Protocol for Dutch Auction

4.8.4 Sealed Bid Auction

In a sealed bid auction, an auctioneer advertises a service to a group of bidders. The

bidders send their bids to the auctioneer who decides which bid to accept. The

auctioneer can quit the auction if there are no bids or if he refuses all bids.

 auctioneer.advertise

 auctioneer.quit

 timeout

 open closed

 auctioneer.quit

 X.bid
 Y.bid

 auctioneer.award

notsold

timedout

sold

posted

auctioning

bidden

Figure 4.11 State diagram for Sealed Bid Auctioning protocol

auctioning ↔ one-of({open, closed})

closed ↔ one-of({notsold, timedout, sold})

open ↔ one-of({posted, bidden})

¬auctioning ↔ none-of({open, closed})

¬closed ↔ none-of({notsold, timedout, sold})

¬open ↔ none-of({posted, bidden})

¬auctioning ↔ [({Auctioneer:auctioneer} ∪ Group: bidders). sealed-bid-

auctionsb] closed

 130

Representing Protocols in ANML

¬auctioning ↔ [Auctioneer:auctioneer.advertise] posted(Auctioneer)

posted(Auctioneer) ↔ [BidderX: bidder.bid] ((BidderX ∈ Group: bidders) →

bidden) ¤ [Auctioneer.quit] notsold

bidden ↔ [BidderY: bidder.bid] ((BidderY ∈ Group: bidders) → bidden) ¤

[Auctioneer:auctioneer.award] sold ¤ [Auctioneer:auctioneer.quit] notsold

open ↔ [timeout]timedout ¤ [Auctioneer:auctioneer.quit] notsold ¤ [bidden?;

Auctioneer:auctioneer.award] sold

Theory 4.5 A sealed-bid auction in ANML

4.9 Fish-Market Auction

Rodriguez and al. [1998a] provide mechanisms for negotiation in the context of a

fish-market auction. In a market in Barcelona, boxes of fish are sold in a fish-market

auction. The market acts as an institution that enforces the rules between buyers and

sellers in an auction. It establishes conventions for the types of goods sold,

interactions between participants, their rights and obligations. Several scenes occur

simultaneously at different locations. Before an auction, the fishermen deliver fish to

the market at the sellers’ admission scene while the buyers register at the buyers’

admission scene. In the online Fish-Market platform, seller agents register their

goods with a seller admitter agent and buyers register with a buyer admitter agent.

The auction follows a downward bidding protocol, where buyers bid for boxes of fish

that are presented by an auctioneer who calls prices in descending order. After an

auction in the Barcelona market, a successful bidder collects its box of fish through a

buyer’s settlement scene and a seller collects its payments for its lot at a sellers’

settlement scene. In the online version, seller agents obtain their payment from a

seller manager and buyer agents pay through a credit line that is managed by a seller

manager. Figure 4.12 illustrates the Fish Market protocol as a statechart but it

contains some errors since it does not show an auctioneer raising the price during a

collision. One cannot deduce that the delivered and registered states can coexist.

Similarly committing should be a sub-state of sold since the box of fish remains sold

when committing or paying for it. Parameterisation of states with an agent is not

shown because of problems mentioned earlier when several processes lead to the

 131

Representing Protocols in ANML

same state. In addition, it is difficult to show the case of colliding bids as two

simultaneous events occurring in one state.

d e
li v

er
ed

pa
id

sold

not_soldbidden

posted

trading

delivered

registered

admission open_auction closed

seller.deliver

buyer.login

auctioneer.
post

bu
ye

r.
bi

d

auctioneer.lower

bu
ye

r.
re

f u
se

bi
ds

 c
ol

lid
e

timeout

au
ct

io
ne

er
.r

em
ov

e

au
ct

io
ne

er
.a

w
ar

d

bu
ye

r.
pa

y

se
ll e

r.
de

l iv
er

committing

Figure 4.12 FishMarket Auction Protocol

The Fish-Market protocol can be expressed as an ANML theory. Negotiation where

bidders, sellers and auctioneer engage in an auction constitutes the interesting aspect.

trading ↔ one-of({admission, open_auction, closed, sold})

admission ↔ delivered ¤ registered

closed ↔ one-of({ended, not-sold})

committing ↔ one-of({paid, collected})

sold ↔ one-of({awarded, committing})

open_auction ↔ one-of({posted, bidden, simultaneously_bidden})

¬trading ↔ none-of({admission, open_auction, closed, sold})

¬ closed ↔ none-of({ended, not-sold})

¬ committing ↔ none-of({paid, collected})

¬sold ↔ none-of({awarded, committing})

¬open_auction ↔ none-of({posted, bidden, simultaneously_bidden})

¬trading ↔ [Group-of-agents: participants. FishMarketf] closed

The admission phase to the Fish market is given by entry to the admission state.

 132

Representing Protocols in ANML

¬trading ↔ [Seller:seller.deliver] delivered(Seller) ¤ [Buyer:buyer.login]

registered(Buyer)

A committing phase is enabled by a sale from an open auction. A closed state is

triggered by a timeout, an auctioneer’s withdrawal or the end of a commitment. If at

least two different bidders bid simultaneously then the state triggers to

simultaneously_bidden.

 delivered(Seller) ↔ [Auctioneer:auctioneer.post] posted(Auctioneer).

posted(Auctioneer) ↔ [Autioneer.quit] not-sold ¤ [Autioneer.lower]

posted(Auctioneer) ¤ ([Group: buyers.bid] ((Buyer1:buyer∈ Group:buyers

⁄ Buyer2:buyer ∈ Group:buyers) → simultaneously_bidden(Group)) ¤

[Buyer1:buyer.bid ⁄ ¬Buyer2:buyer.bid] bidden(Buyer1) ⁄

¬(Buyer1=Buyer2).

 bidden(Buyer1) ↔ [Auctioneer:auctioneer.award] awarded(Buyer1)

From a simultaneously_bidden(Group) state, either there is a tie-break process where

one agent wins or a collision message from the auctioneer and the price is

incremented.

simultaneously_bidden(Group) ↔ [({Auctioneer:auctioneer} » Group).

tie_break] bidden(BuyerX) ¤ [Auctioneer:auctioneer.collision;

Auctioneer.increase-price]posted(Auctioneer).

open_auction ↔ [timeout » Auctioneer:auctioneer.quit]not_sold ¤

[bidden(Buyer1)? Auctioneer:auctioneer.award] awarded(Buyer1)

In a sold state, a successful bidder respects its commitments by paying for the bought

boxes of fish and the seller can collect its money.

awarded (Buyer1)↔ [Buyer1.pay] paid(Buyer1) ¤ [Seller:seller.collect]

collected(Seller)

 paid(Buyer1) ↔ [Seller:seller.collect] ended

 133

Representing Protocols in ANML

 134

 collected(Seller) ↔ [Buyer:buyer.pay] ended

4.10 Summary

This chapter has shown the application of ANML in representing protocols for

negotiation. In addition, these protocols are expressed in statecharts and illustrated

through scenarios. Expanding a statechart to include compound transactions yields

complex and cluttered diagrams. For example, the expanded bilateral negotiation

statechart in Figure 4.3 is not easy to understand. A statechart of a protocol may also

contain errors and ambiguities. In a statechart that consists of both non-iterative and

iterative processes leading to the same state, parameterisation of states and actions

with agents cannot be correctly expressed. This is also the case when there are

several processes leading to the same state. Expressing a protocol in ANML

concisely and intuitively captures all possible transitions and states including

launching subsidiary protocols. ANML facilitates the detection and controls infinite

regression of sub-negotiations. The history of a negotiation can be accessed by

analysing the paths and states that have occurred until the current state. The protocols

in this chapter can be extended or other protocols similarly constructed using ANML

e.g. mixed many party negotiations (one-to-many/many-to-many channels). There

have been several iterations in designing these protocols by repeatedly fixing the

errors that come to light when expressing the statecharts in ANML. The next chapter

shows the verification aspect of our framework by applying it to expressing existing

protocols.

5 Verification of Protocols

5.1 Introduction

This chapter verifies existing protocols for interaction between agents and presents

corrected versions in ANML. Agents involved in the same negotiation comply with a

common protocol to coordinate meaningfully with each other. Ambiguities and errors

in a protocol can lead to misunderstandings between the agents about the history, the

current state and possible future actions in a negotiation. A correct and clear protocol,

with all states well-defined, allows all agents in a group to share the same public

beliefs about a conversation.

The original specification of the bilateral protocol [OSM Saarl 1998], introduced in

the last chapter, is checked for errors and imprecision leading to undefined states of

negotiation, and corrected. The corrections show how to obtain a bilateral protocol in

ANML where all states are defined at all times. Similar verifications are performed

on several interaction protocols proposed in AUML, [Odell and al 2000]. By

translating an AUML protocol into a path in ANML, errors are highlighted, (some

inherent to the original modeling language), [Paurobally and Cunningham 2002a].

For each verified AUML protocol, its corresponding ANML theory is specified as a

more complete protocol. Then we compare Petri-Nets with ANML. First a survey of

Petri-nets and its properties are discussed [Murata 1989]. We then analyse agent

protocols in Petri-Nets, [Petri 1966], and coloured Petri-nets. The Petri net approach

is compared to ANML for modeling agent interaction protocols.

135

Verification of Protocols

A protocol can be computationally interpreted from a state transition, a statechart, an

AUML diagram or an ANML theory. The agents may be encoded with some but not

complete knowledge about real life interactions. However as shown in the previous

chapter, a state transition diagram or statechart cannot fully capture multi-agent

interactions. Likewise, diagrammatic representations such as AUML depends on our

understanding of real life conversations and thus assumes an agent to have some

implicit beliefs about interactions. Such informal specification methods easily give

rise to unexpected states and contradictions about the negotiation state between

participants’ beliefs, especially so when the participants differ in culture. On the other

hand, a protocol expressed as a logical theory removes ambiguity, allows verification,

ensures completeness and is better suited for reasoning and planning using AI

techniques. The penultimate section of this chapter argues why AUML is inadequate

as a language for representing protocols between agents, thereby adding to the

justification of ANML as an alternative for providing less ambiguity and more formal

method.

5.2 Bilateral Protocol

Figure 5.1 shows the initial version of a bilateral protocol as a state transition diagram

taken from [OSM SARL 1998]. Detailed explanation of this protocol can be found in

the previous chapter. A group of agents involved in a bilateral negotiation can invoke

state transitions to achieve goal states such as an agreement. On reaching an

agreement, an engagement process may be launched for drawing up a commitment

and for setting up contracts between the agents.

When verifying the bilateral protocol, a number of errors are found. The steps by

which the bilateral protocol is corrected through repetitive representation, verification

and correction in ANML are shown below.

 136

Verification of Protocols

 agree

 reject

 timeout

negotiating

suggest
offer

 propose

 request
 open

proposed

agreed

rejected

timeout

offered
requested

closed

request offer propose

Figure 5.1 Original Bilateral Protocol

5.2.1 Errors in the Original Bilateral Protocol

Analysing Figure 5.1 gives rise to a number of questions: Can a negotiation be closed

but not rejected, timedout or agreed? Similarly, can the current state be open without

being in a requested or offered state. The relations between a parent and its sub-states

are explicitly not explained in a state transition diagram, without analysing all

possible transitions. Theory 5.1 is an initial version of the protocol expressing both

the relation between states and state transitions rules.

negotiating → open ¤ closed

open → requested ¤ offered

closed → agreed ¤ rejected ¤ timeout

proposed → offered

[request] requested

[offer] offered

[propose] proposed

offered Ø [agree] agreed

requested Ø [offer] offered ¤ [propose] proposed ¤ [suggest] requested

proposed Ø [request] requested

open → [reject] rejected ¤ [timeout] timedout

 137

Verification of Protocols

Theory 5.1 Bilateral Protocol Version 1

Incompleteness in the protocol is detected by analysing the truth-values of the states

in Theory 5.1. From Theory 5.1, it cannot be inferred that some parent states can only

hold if at least one of its sub-states holds. For example, open must only be true if

either of its sub-state is true. A single implication between two states means that if a

negotiation is in a sub-state then it is in its parent state. A double implication is

stronger and should be used to express the dependency of a parent state on its sub-

states. (Read as a parent state holds only if its sub-states hold and vice versa). In the

case of proposed and offered, the parent state offered can be true without being in

proposed.

Theory 5.1 allows both requested and offered to hold at the same time or the closed

state to be in all three agreed and timedout and rejected sub-states. The bilateral

protocol needs mutually exclusive sibling states. That is, only one sibling state to be

true and all other non-parent states false. In Theory 5.1, an agent can perform more

than one action from a given state e.g. from requested, an agent may send 3 messages

– an offer, a proposal and a suggest or from offered an agent may send both agree and

reject messages. The execution of a process from a source to a target state must be

clearly defined along with the constraints for them to fire, specially when more than

one action is possible from a state. The one-of predicate (see chapter 3) is used to

return true if and only if exactly one of the states in its given list is true, or false

otherwise.

5.2.2 Theory of Bilateral Negotiation – Corrected Version

Theory 5.2 takes into consideration the above remarks and adds double implications

and one-of operators to the rules.

negotiating ↔ one-of ({ open, closed })

open ↔ one-of ({ requested, offered })

closed ↔ one-of ({ agreed, rejected, timeout })

proposed → offered

[request] requested

 138

Verification of Protocols

[offer] offered

[propose] proposed

offered → [agree] agreed

requested→ [offer] offered ¤ [propose] proposed ¤ [suggest] requested

proposed → [request] requested

open → [reject] rejected ¤ [timeout] timedout

Theory 5.2 Bilateral Protocol - Version 2

The last seven rules show the entry points and allowed state transitions in a bilateral

negotiation. A requested state becomes valid after a request to enter the negotiation,

after a request from a proposed state or after a suggest from a requested state. In

addition, double implications should be used in state transitions to express those

processes that are possible from a source state and none others. For example, only a

suggest, offer or propose are possible from a requested state in addition to those

processes that are possible from its parent state. Double implications in state

transitions can also be used to infer the previous states from executing a process and

henceforth the history of a negotiation. For example, if the current state is proposed

then it can be deduced that either there was a propose from a requested state or the

negotiation was started via a propose. Theory 5.3 gives revised rules for state

transitions with double implications.

[request] requested

[offer] offered

[propose] proposed

offered ↔[agree] agreed

requested ↔ one-of ({[offer] offered , [propose] proposed, [suggest] requested}).

proposed ↔[request] requested

open ↔ one-of ({[reject] rejected, [timeout] timedout, [offered ?agree] agreed}).

Theory 5.3 Bilateral Protocol – Version 3

There remain ambiguities in the protocol that can be detected in Theory 5.3, but

which are not obvious from the corresponding transition diagram. In the current

protocol, a negotiation can be started and restarted with a request, offer and propose.

During a negotiation, there are no conditions from preventing an agent from restarting

 139

Verification of Protocols

the process by performing one of the entry actions. [request]requested is true in all

worlds making request possible at all states and likewise for offer and propose. An

agent cannot differentiate between request, offer or propose being entry actions and

being state transitions from an open sub-state. To remedy this, the names of the three

entry actions are changed to initial_request, initial_offer and initial_propose. Instead

of being undefined, the initial state before entering in a negotiation is made to be

¬negotiating.

Conditions about which agent can perform a state transition and who triggered the

previous state have to be expressed, for example to prevent an agent agreeing to its

own offer. This is done through parameterisation of the processes and states with

agents. An initiator is an agent that triggered the current state and a respondent is an

agent that can respond. Because of the iterations in the bilateral protocol, a state

transition diagram cannot correctly show the parameterisation. For example, if agent

X performs a request, the state is requested(X) from which Y can make a suggest or

propose. If Y makes a suggest, then the state should be requested(Y) from which X

can suggest or propose. It is not possible to show both requested(Y) and requested(X)

on the same state transition diagram. The same problem applies when different

processes can lead to the same state. ANML allows specification that the respondent

is not the initiator through parameterisation and negation. The changes that are

possible to Figure 5.1 are given in Figure 5.2, although the ANML theory should be

referred to for a correct and complete protocol.

 Y.agree

 reject

 timeout

negotiating

Y.suggest
 Y.offer

 Y.propose

 Y.request
 open

proposed(X)

timedout

agreed(Y)

rejected

offered(X)
requested(X)

closed

X.initial_request X.initial_offer X.initial_propose

Figure 5.2 Version 2 of state transition diagram for bilateral negotiation

 140

Verification of Protocols

negotiating ↔ one-of ({ open, closed })

open ↔ one-of ({ requested(X), offered(X) })

closed ↔ one-of ({ agreed(Y), rejected, timeout })

proposed(X) → offered(X)

¬negotiating ↔ one-of ({ [X.initial_request]requested(X), [X.initial_offer]

offered(X) , [X.initial_propose] proposed(X) }) . (5.4.1)

offered(X) ↔ [Y.agree] agreed(Y) ⁄ Ÿ(X= Y).

requested(X)↔ one-of ({ [Y.offer] offered(Y), [Y.propose] proposed(Y),

[Y.suggest] requested(Y)}) ⁄ Ÿ(X= Y). (5.4.2)

proposed(X)) ↔ [Y.request] requested(Y) ⁄ Ÿ(X=Y).

open ↔ one-of({ [X.reject] rejected, [timeout]timedout, [offered(X))?Y.agree]

agreed(Y) }) ⁄ Ÿ(X=Y).

Theory 5.4 Bilateral Negotiation Theory, Version 4

5.2.3 Errors in sub-states

The state proposed is a sub-state of offered and a negotiation can be offered without

being proposed. When proposed is true, offered must be true but not vice versa.

Suppose that X enters a negotiation with an initial_offer triggering offered(X).

According to the protocol, proposed(X) is undefined and could be either true or false.

In fact, whenever offered(X) is triggered by an offer or initial_offer, proposed(X) is

undefined because the theory of the protocol is not complete yet. The condition that

proposed is false after an offer or an initial_offer is added. If a protocol includes a

parent state that can exist without being in one of its sub-states, the value of the sub-

states have to be explicitly defined when triggering only the parent state. Rules

(5.4.1) and (5.4.2) are replaced with the following two rules (additions in bold):

¬negotiating ↔ one-of ({ [X.initial_request]requested(X), [X.initial_offer]

(offered(X) Ÿ ¬proposed(X)), [X.initial_propose] proposed(X) }) .

requested(X)↔ one-of ({ [Y.offer] (offered(Y) Ÿ ¬proposed(X)), [Y.propose]

proposed(Y), [Y.suggest] requested(Y)}).

 141

Verification of Protocols

Another problem is that the predicate one-of returns false if two or more states in its

list are true. The state ¬negotiating is true when one-of({open, closed}) is false. This

implies that the states open and closed could both be true before entering a

negotiation. State ¬negotiating must be true when one-of({open, closed}) is false,

and in addition both open and closed must be false. Likewise the formula one-

of({agreed, rejected, timedout}) and the state closed may be false because out of the

three states, at least two of them are true. Thus the states agreed and rejected and

open may all hold when the state is ¬closed. A one-of predicate in a state transition

ensures that at least one action is performed. Yet two actions must not be able to

occur simultaneously from the same source state, if not explicitly allowed. For

example, agree and reject. When a parent state is false, none of its sub-states should

be true. The following additional rules use a none-of predicate which returns true if

no elements in its given list are true.

¬negotiating ↔ none-of ({ open, closed })

¬open ↔ none-of ({ requested(X), offered(X) })

¬closed ↔ none-of ({ agreed(Y), rejected, timeout })

The one-of predicate can be eliminated in state transitions since this constraint is

entailed by the rules about parent and sub-states. Parameterisation are also removed

from the relation between states because of the axiom A(X) → A in ANML, where A

is a state and X is an agent or a group.

Theory 5.5 expresses a bilateral protocol between agents X and Y. It can be seen that

the corresponding Figure 5.2 contains errors regarding the parameterisation of actions

and states, which cannot be amended in the figure.

Relation between states:

negotiating ↔ one-of ({ open, closed })

open ↔ one-of ({ requested, offered })

closed ↔ one-of ({ agreed, rejected, timeout })

proposed(X) → offered(X)

¬negotiating ↔ none-of ({ open, closed })

 142

Verification of Protocols

¬open ↔ none-of ({ requested, offered })

¬closed ↔ none-of ({ agreed, rejected, timeout })

State transitions:

¬negotiating ↔ [X.initial_request]requested(X) ¤ [X.initial_offer] (offered(X)

⁄ ¬proposed(X)) ¤ [X.initial_propose] proposed(X) .

requested(X)↔ [Y.offer] (offered(Y) ⁄ ¬proposed(X)) ¤ [Y.propose] proposed(Y)

¤ [Y.suggest] requested(Y) ⁄ Ÿ(X= Y).

offered(X) ↔ [Y.agree] agreed(Y) ⁄ Ÿ(X= Y).

proposed(X)) ↔ [Y.request] requested(Y) ⁄ Ÿ(X=Y).

open ↔ ([X.reject] rejected ¤ [timeout] timedout ¤ [offered(X))?Y.agree]

agreed(Y)) ⁄ Ÿ(X=Y).

Theory 5.5 Final Version of Bilateral Protocol in ANML

5.3 Representing Protocols in AUML

The FIPA agent communication domain, [FIPA 2001], contains specifications about

interaction protocols, communicative acts and content languages. FIPA agent

communication language (ACL), defined in the communicative act library, is based

on speech act theory where messages are actions or communicative acts. Each

communicative act is described in both a narrative form and in formal semantics

based on modal logic. FIPA uses AUML (Agent Unified Modeling Language),

[Odell and al. 2000, FIPA 2001a] to specify interaction protocols between agents.

FIPA interaction protocols (IP) range from simple requests for performing or querying

an action to setting up contracts and exchanging messages in various types of

auctions.

AUML, [Odell and al. 2000; Bauer and al. 2001], is an extension of UML to express

agent interaction protocols through UML sequence diagrams. It is a specification

technique for interaction protocols with formal and intuitive intended semantics and a

user-friendly graphical notation, [Bauer and al. 2001]. However no formal semantics

are found in the AUML library specification, [FIPA 2001a]. OCL (Object Constraint

Language), [Warmer and Kleppe 1999], can be used as a constraint language but OCL

is not a formal method, [Richters and Gogolla 1998] and is designed for object

 143

Verification of Protocols

modeling through UML. FIPA interaction protocols in AUML rely partly on FIPA

ACL and its semantics by using a subset of the FIPA communicative acts.

AUML specifies an Interaction Protocol (IP) in the form of a UML sequence diagram

with extensions. Agents belong to classes and are assigned roles. An IP (interaction

protocol) diagram shows interactions between agents along a timeline.

Figure 5.3 Extensions supporting concurrent threads

AUML supports concurrent threads of interaction for sending more than one

communicative act. An asynchronous and unnested message is drawn with a stick

arrowhead. It shows the sending of a message without yielding control. Figure 5.3

shows three ways of expressing multiple threads. Figure 5.3(a) indicates an and

communication where all threads CA-1 to CA-n are sent concurrently. Figure 5.3(b)

shows a decision box where zero or more CAs (Communicative Acts) may be sent. It

indicates an inclusive or communication. Figure 5.3(c) indicates an exclusive or

communication, so that exactly one CA may be sent.

Figure 5.4 is a FIPA AUML IP for the contract net protocol, [Smith 1980]. The name

of a protocol is given at the top left of its sequence chart. There are two roles in this

protocol: initiator or participant. An initiator sends a call-for-proposal to participants

in the contract net process. A participant can respond to the initiator before a given

deadline with: a proposal, a refusal, or indicating that it did not understand. In the

case of a proposal, an initiator can either accept or reject the proposal. A participant

who has received a proposal acceptance eventually informs the initiator about the

proposal’s execution. A tabbed folder at the upper left indicates that a protocol is a

package that can be customized for analogous problem domains. A dashed box on the

upper right-hand corner declares a protocol as a template specification that contains

unbound entities, which are bound on instantiation. The rest of this chapter verifies

 144

Verification of Protocols

and shows that protocols in AUML, including Figure 5.4, are vague, contain errors

and do not scale to multi-agent interactions.

Figure 5.4 A generic IP expressed as a template package, [Odell and al. 2001]

5.4 AUML and FIPA IPs

Half of the interaction protocols proposed by FIPA in AUML are illustrations of the

use of a FIPA communicative act such as request, request-when, query and propose

and how an agent responds to that communicative act. Even simple FIPA protocols,

with only a few exchanged messages, contain a number of errors and imprecision.

Some of these errors are inherent to the AUML notation and are present in all AUML

protocols. A protocol has to be clear and complete because an agent may not have

built-in experience about real life interactions or two or more agents may have

 145

Verification of Protocols

different intuitions, if any, about interactions. FIPA IPs and AUML tend to leave

some actions and conditions implicit and dependent on the intuition of a developer.

This section 5.4 points out errors recurrent in all the AUML specifications proposed

by FIPA. Section 5.11 discusses the drawbacks of using AUML as a specification

language, thereby justifying the need of a logic-based language like ANML.

Undefined conditions and guards

In most FIPA IPs, conditions and guards are not declared, initialised, set or reset

anywhere in a protocol, for example the condition agreed in Figure 5.5. Conditions

and guards, that are tested at a decision point, usually have to be related to previous

messages. Undefined conditions wrongly regulate the message sequence. This

problem is accentuated in realistic interaction protocols which are complex and

involve more than a couple of messages being sent and one condition checked. They

may contain iterations and nested protocols where guards (or conditions) must be set

and reset. AUML overlooks these situations and adopts a simplistic view dependent

on a developer’s intuitive understanding of a condition and the message it seems to be

related to. In ANML, the initialisation of conditions is explicitly defined and states

are related to the processes that trigger them.

This problem is heightened when abbreviating and merging threads to occur along the

same lifeline. Careless use of guards leads to confusion about which message

triggered which condition. For example, in Figure 5.7 even though a participant

responds with a refuse or not-understood message to a request from an initiator, the

participant can still later send an inform that it has executed the initiator’s request.

Such errors occur in most of the FIPA IPs.

Any-time messages – timeouts and rejections

AUML does not support time management. In AUML, it is also difficult to represent

a protocol that allows any participant to send a particular message at any time e.g. any

agent can reject, send a failure or a timeout can occur at any point in an active

negotiation. In order to show those messages that are possible at all times, each

interaction thread in an AUML diagram must represent these messages at all the

decision points. For example, an AUML diagram must show all agents checking that

the interaction has not timed-out before sending any message and if not, then allow a

 146

Verification of Protocols

timeout to be sent. This leads to a cluttered diagram. On the other hand, it is easy to

represent all-time valid actions like failure, reject and timeout messages in a statechart

or in ANML. In ANML, only one rule is needed to allow a timeout to be executed

from a parent state such as open.

Terminal states and processes, paths of actions

By abbreviating threads to one timeline, in AUML diagrams, it is not usually obvious

what are the terminal actions and points. In some protocols, a not-understood or

failure message terminate an interaction, while in other protocols proposals can still

be sent after a failure. This is the case in Figure 5.8, where it is not clear where an

interaction has ended and what is the result at the end. Similarly, possible sequences

of messages are not clear when using one timeline.

Anonymous States

States are not explicitly shown in AUML. A message between agents ends in a

vertical rectangle, which implicitly represent the point and state of the interaction.

However such unnamed rectangles do not allow us to refer to the propositions that

hold in a world or the beliefs of the participants at a particular point of an interaction.

The state of an interaction before, during or after its execution cannot be referred to.

States must be named because execution at an interaction thread usually depends on

the current state of the interaction and on previous messages.

Raw values and deadlines

Raw values for time or deadlines or relative to the start of an interaction, are not

prevented from being passed in AUML protocols. This produces errors and

unattainable deadlines in case of iterative processes.

Imperfect communication layer

AUML assumes perfect communication in that messages are sent in the correct order

and do not get lost. This is not realistic. There is no reasoning about the beliefs of a

group of agents on the current state or point in the timeline. How does an agent send

consecutive messages if it does not know whether its previous messages have been

received and acted upon?

 147

Verification of Protocols

Executing decision points concurrently

Because states are not explicit and conditions and guards are used loosely in an

AUML diagrams, decision points can be executed concurrently. This means that

instead of sending a sequence of messages as in a conversation, all agents can send all

their messages at one point in the communication. For example, in the protocol in

Figure 5.4 an initiator can simultaneously send a call for proposal and an accept-

proposal without waiting for responses from participants.

Roles and Instantiation

Roles are an interesting notion for modeling multi-agent systems. However, AUML

and all FIPA IPs do not define the situation if more than one agent takes on an

initiating role or if there are no participants. For example, what happens if there are

no participants in Figure 5.4? AUML currently does not address the binding of roles

or cardinalities to an agent’s identity in case of deterministic decisions. It is hard to

translate an AUML protocol to an executable since each agent would have n instances

of the interaction for n participants. This issue is discussed in later sections of this

chapter.

Figure 5.5 shows a Request Interaction Protocol (IP) proposed by FIPA, [FIPA

2001b], which consists of at most three messages being exchanged. We show that

errors exist in even such a simple protocol. These errors originate from the

specification of AUML and FIPA’s use of AUML and are present in most of the FIPA

IPs. The other FIPA protocols, analysed in sections 5.6 to 5.9, contain errors similar

to those in Figure 5.5 and only additional errors in them are discussed.

5.5 FIPA Request Interaction Protocol

Figure 5.5 is a protocol in AUML for specifying sending and replying to a request.

An initiator sends a request to a participant, who refuses, replies that it does not

understand or agrees to satisfy the request and later reports on its success. This

protocol can be represented as a path in ANML and a number of errors in it pointed

out. These errors lead to an ambiguous and inconsistent interaction and wrong

 148

Verification of Protocols

beliefs. (Corrected versions of the protocol in both ANML and AUML are given later

in this section.)

Figure 5.5 FIPA Request Interaction Protocol, [FIPA 2001b]

A literal translation of the Request protocol in Figure 5.5 along its timeline from

AUML to an ANML path results in the following path of execution:

{Initiator:initiator , Participant:participant}. FIPA-Request-Protocol = Initiator.

request; (one-of [Participant.not-understood, Participant. refuse,

Participant.agree] ⁄ (agreed → one-of ({Participant.failure,

Participant.inform-done, Participant.inform-ref})))

5.5.1 Errors in AUML Request Protocol

As remarked before, the condition agreed at point B in Figure 5.5 has no meaning for

an agent and is not shown to be related to the previous agree message. The condition

[agreed] is not defined, initialised, set or reset anywhere. Even though a participant

sends not-understood or refuse after a request, it may still send inform-done or failure

or inform-ref later. It is thus not obvious that not-understood and refuse messages lead

to terminal states. In ANML, agreed can be treated as a state which is initialised to

false and set to true when a participant sends an agree message.

 149

Verification of Protocols

In the AUML diagram, the request protocol is a path from a request to success or

failure messages. The pre-conditions and post-conditions for an action are not well-

defined and there are no constraints to stop an agent restarting a negotiation through a

new request while in the middle of following the protocol. There is no facility for an

agent to refer to a point in an interaction and to the effects of messages. All actions

end up in anonymous points. What is the difference in the world between sending a

not-understood, refuse or agree message since the state of the world or the effects of

these actions are not given? How does an agent refer to the result of an interaction or

differ between possible worlds as messages are sent? AUML protocols depend on the

semantics of the FIPA ACL performatives.

According to the AUML notation, in Figure 5.5 there is no constraint against threads

at A and B being executed concurrently. This leads to a number of contradictions with

realistic interactions. A participant can send an agree or not-understood message

while at the same time sending a failure or inform-done. Logically a participant

should not be able to simultaneously send an agreement at point A and a failure at

point B. In practice, [agreed] is initially false and depends on the decision at A. When

messages at A and B are sent concurrently, even if a participant sends an agree, the

condition [agreed] has no time to change from false and point B is not executed. Thus

a participant does not execute a request even after agreeing to it and an initiator waits

in vain for the result of an agreement. An agent may often need time to complete a

task after agreeing to it and cannot execute A and B with success concurrently.

5.5.2 Corrections of the Request Protocol

The states of a negotiation are defined after each possible message by assuming that

an (agent’s) action triggers a corresponding state e.g. an agree action triggers an

agreed state. The states after request, refuse, inform-done, not-understood, agree,

failure, inform-ref actions are requested, refused, informed-done, not-understood,

agreed, failed and informed-ref respectively. A protocol is ambiguous if any of the

states are undefined at any point. It is incorrect if a state that becomes true is not as

required by the semantics of the protocol, e.g. in an auction a bid triggers the rejected

state. A complete protocol is sought where all states are well-defined at all instances

by analysing the truth values of the states. The set of states is finite and bounded by

 150

Verification of Protocols

the request protocol since it does not contain any iteration. Before a negotiation, all

the above states are initialised to false. To prevent an agent from restarting a

negotiation whilst in the middle of one, the interaction state is introduced as the

parent of all states; ¬interaction is true at the start of a negotiation and is the

precondition for sending a request. Points A and B are also expressed as a sequential

path.

Theory 5.6 is an axiomatisation in ANML of the request protocol by giving the

relation between parent and sub-states and action-condition rules for state transitions.

Worlds can be differentiated between by referring to the current state of a negotiation.

The state and result of a negotiation can be identified at any point. Two more states

open and closed are specified, as sub-states of interaction, to explicitly convey non-

terminal and terminal states respectively. A timeout event is also allowed to occur at

any time, leading to a timedout state. It can be proved that the final protocol, given by

Theory 5.5, leads to well-defined states at all times. These corrections can be

incorporated for a new AUML diagram and extended statecharts of the request

protocol, given in Figure 5.6. Let P denote a participant, I denote an initiator and X as

any agent.

interaction ↔ one-of ({open, closed})

open ↔ one-of ({requested, agreed})

closed ↔ one-of ({not-understood, refused, failed, informed-done, informed-ref,

timedout})

¬interaction ↔ none-of ({open, closed})

¬open ↔ none-of ({requested, agreed})

¬closed ↔ none-of ({not-understood, refused, failed, informed-done, informed-

ref, timedout})

¬interaction ↔ [I:initiator.request] requested(I)

requested(I) ↔ [P:participant. not-understood]not-understood(P) ¤

[P:participant.refuse] refused(P) ¤ [P:participant.agree] agreed(P)

agreed(P) ↔ [P.failure]failed(P) ¤ [P.inform-done] inform-done(P) ¤ [P.inform-

ref] informed-ref(P)

 151

Verification of Protocols

open ↔ [timeout] timedout

Theory 5.6 Logical Theory of Request Protocol

Because the Request IP is such a simple protocol with at most 3 messages being sent

out in a whole conversation, it is possible to represent corrected versions of the

protocol in both AUML and statecharts notation, see Figure 5.6. The corrected

AUML diagram explicitly contains which states hold and which states do not hold

before and after both a decision point and sending a message. Showing states is not

part of AUML, but this annotation of the AUML diagram is suggested in order to

solve the problems in the original AUML request protocol. The annotation with states

allows to define and set guards, to refer to what holds at a world during an interaction

and not to execute all decision points concurrently. The protocol in Figure 5.6 shows

timeouts as an optional message for each agent. In addition, to explicitly showing

terminal points, the timelines in the AUML diagram must be split for each message

received. The splitting of the timelines in Figure 5.6 is not shown so as not to clutter

the diagram.

Figure 5.6 Suggested AUML and statechart diagram for Request IP

 152

Verification of Protocols

5.6 FIPA Request-When Interaction Protocol

The FIPA Request-When IP, [FIPA 2001c], illustrates the use of the FIPA ACL

request-when communicative act. An initiator sends a request-when message to

request that a participant do some action once a precondition becomes true. If the

participant understands the request and does not refuse, it will agree and wait until the

precondition occurs. Then, it will attempt to perform the action and notify the

requester of success or failure. The participant can send a refuse-2 message to the

initiator, if it is no longer able to perform the action after agreeing.

1.A

1.C

1.B

Figure 5.7 FIPA Request-When Interaction Protocol, [FIPA 2001c]

The translation of this protocol to a path in ANML is:

{Initiator:initiator , Participant:participant }.FIPA-Requestwhen-Protocol =

Initiator.request; one-of ({Participant.not-understood, Participant.refuse-1,

Participant.agree}) ; (precondition → one-of ({Participant.refuse-2,

Participant.failure, Participant.inform-done, Participant.inform-ref}))

 153

Verification of Protocols

5.6.1 Errors in Request-When IP

The condition [precondition holds]

The errors described in section 5.5.1 for the FIPA request IP apply here too since

Figure 5.5 and Figure 5.7 specify nearly the same protocol. As for the condition

[agreed] in the request protocol, here too the condition [precondition holds], at point

1.C, has no syntax or semantic meaning. It is not declared, initialised and reset

anywhere in the template specification. It is assumed that the semantics of some of

the messages bear resemblance to some communicative acts in FIPA ACL. We

assume that precondition is passed as a parameter in the request-when message from

an initiator. The AUML diagram does not show the relation between the guard

conditions and the request-when message. Any participant can send an inform-done

irrespective of previous responses.

The condition agreed

Even a condition agreed is not shown at points 1.B or 1.C. Even if a Participant sends

a refuse or not-understood message to a request-when message, the protocol allows it

to progress along the lifeline and send inform-done, inform-ref or failure messages.

The request-when protocol with a single lifeline, where terminal states are not clear,

yields an undefined result at point 1.C.

Deadlines

There are no deadlines for replying to a request-when or sending any other replies and

no possibility of timeout events or cancelling whenever an agent wishes.

Redundancy at decision points

It is redundant to show points 1.B and 1.C as two different decision points. They can

be merged as just one exclusive-or interaction threads with branches refuse-2, failure,

inform-done and inform-ref and conditions along the branches.

5.6.2 Corrected Request-When IP in ANML

Theory 5.7 gives the Request-When Interaction Protocol in ANML. Rule (1) in

Theory 5.7 allows initiator I to send a request-when message with condition cond1,

 154

Verification of Protocols

leading to the appropriate state change. Rule (2) enforces that the precondition cond1

holds before a participant can respond.

interaction ↔ one-of ({open, closed})

open ↔ one-of ({requested, agreed})

closed ↔ one-of ({not-understood, refused-1, refused-2, failed, informed-done,

informed-ref, rejected, timedout})

 ¬interaction ↔ none-of ({open, closed})

¬open ↔ none-of ({requested, agreed})

¬closed ↔ none-of ({not-understood, refused-1, refused-2, failed, informed-

done, informed-ref, rejected, timedout})

¬interaction↔[I:initiator.request-when(cond1)](requested(I)⁄precon(cond1)) (1)

(requested(I) ⁄ precon(cond1)) ↔ ([P:participant. not-understood]not-

understood(P) ¤ [P:participant.refuse-1] refused-1(P) ¤

[P:participant.agree] (agreed(P) ⁄ precon(cond1)))

(agreed(P) ⁄ precon(cond1)) ↔ ([P.refuse-2] refused-2(P) ¤ (cond1 →

[P.failure]failed(P) ¤ [P.inform-done]inform-done(P) ¤ [P.inform-

ref]informed-ref(P))) (2)

open ↔ [reject] rejected ¤ [timeout] timedout

Theory 5.7 Request-When Interaction Protocol in ANML

5.7 FIPA Iterated Contract Net Interaction Protocol

Having analysed two simple protocols in AUML, more realistic but relatively

straightforward protocols are verified. It is found that their representation in AUML

is incorrect and that in fact, AUML cannot completely express multi-agent protocols.

In the FIPA contract net protocol [Odell and al. 2000], a manager solicits proposals

from other agents by issuing a call for proposals (cfp). Potential contractors receiving

a cfp may reply with propose, not-understood or refuse-1 before a deadline. After the

 155

Verification of Protocols

deadline, the manager sends an accept-proposal to selected agents and a reject-

proposal to others. When a contractor has completed its task, it sends a completion

message to the manager. The FIPA iterated contract net IP, [Fipa 2001e], is an

extension of the contract net protocol to allow multi-round iterative bidding. After a

first call for proposals, a manager may accept one or more of the bids, rejecting the

others, or may repeat the process by issuing a revised cfp and rejecting all the

proposals. The process terminates when the manager refuses all proposals and does

not issue a new cfp or accepts one or more of the bids or the contractors all refuse to

bid and the manager does not issue a new cfp.

Figure 5.8 FIPA Iterated Contract Net IP, [FIPA 2001e, Odell and al. 2000]

The obvious error in Figure 5.8 is the participant’s missing timeline. The protocol in

Figure 5.8 is translated along its timelines into rules for a path in ANML. Let P

denote a Participant and I an Initiator.

{I:Initiator:initiator, P:Participant:participant }.FIPA-IteratedContractNet-

Protocol = I.cfp; {I , P}. contractNetProtocol

 156

Verification of Protocols

{I:Initiator , P:Participant}.contractNetProtocol = (deadline ↔ one-of ({P.not-

understood, P.refuse-1, P.propose})) ; one-of({I.reject-proposal-1, {I, P}.

accepting, (I.reject-proposal-2 ⁄ (I.cfp-2;{I , P}.contractNetProtocol) })

{I:Initiator , P:Participant }.accepting = I.accept-proposal; one-of({P.failure,

P.inform})

Theory 5.8 Path of Iterated Contract Net IP

5.7.1 Errors in Iterated Contract Net Protocol in AUML

Most of the errors mentioned in the previous sections also occur in the Iterated

Contract Net protocol, Figure 5.8. Assuming that they are resolved, additional errors

and rectifications are discussed here, while mentioning in brackets which rules in the

ANML Theory 5.9 correct that error. Points A1, B1, C1 and D1 are referred to in

Figure 5.8 in the following discussion of errors in the Iterated Contract Net IP. For

example, a recurrent error is the lack of conditions or their incorrect setting at decision

points. In Figure 5.8, even after a participant responds with a not-understood or

refuse-1 message at A1 after a cfp, the interaction can continue and an initiator can

send an accept-proposal at B1. The threads of interaction for both agents lying along

one timeline require conditions at the decision points A1, B1 and C1. Theory 5.9

gives a logical theory for this protocol after several revisions for ensuring that all

states are well-defined and as expected.

Deadlines

In Theory 5.8 and Figure 5.8, a participant must wait for the deadline (at point A1) to

occur in order to respond to a cfp. For example, if the deadline is set to 4 minutes then

at exactly 4 minutes and 0 seconds, all agents must send their responses. This is not

feasible and in practice, a participant is allowed to respond before a deadline.

Deadlines that are given a ground value such as 9:00 am become unattainable when

reiterating cfps. Figure 5.8 also does not cover the case where a deadline passes

without any participant sending any messages. Rules (26) and (20), in the

corresponding ANML Theory 5.9, respectively specify a timeout event and the

possible actions before a deadline.

 157

Verification of Protocols

Incompleteness

Point B1 has no deadline or timeout for a manager to accept or reject proposals,

neither does a participant have any deadline or timeout at C1. In fact, a number of

events specified in the prose of the protocol are not portrayed in Figure 5.8. The case

when all the contractors refuse to bid and the initiator does not issue a new cfp is not

shown. Rules (10) and (22) capture this. The negotiation may also not terminate,

ending up in infinite call for proposals, even if all agents send a refusal.

Scaling to multi-agent systems

The contract net protocol is a multi-agent interaction. Figure 5.8 shows an interaction

between two roles, which is a concise way of portraying multi-agent interaction.

However in a conversation, an agent may need to be deterministic and access

information about a particular participant. The roles and cardinalities in an AUML

diagram must be bound to the agent identities. For example, to show the winners of

the contract net protocol in AUML, n roles for n winners are needed, leading to

unreadable diagrams. Therefore to show a particular agent in AUML, a role has to be

created for it. In the worst case scenario, this could escalate to showing as many roles

as participants. The AUML notation needs to insert users in its specification.

The AUML notation does not show how an interaction in a multi-system depends on

the responses of specific agents and their dynamic roles. How does an agent infer at

point B, whether only one agent or a number of agents is sent an acceptance e.g.

agents X, Y, Z, are to be sent acceptances? For example after A1 in Figure 5.8, out of

n agents, m agents send a proposal and p agents send a refusal. What is the relation

between an agent among these m agents and one from the p agents? The identity of

these m and (n-m) agents must be known so that each agent receives and sends the

appropriate message. Only those agents whose proposals have been accepted should

be able to send the results of executing a cfp at C1. There is a lack of guards and lack

of information about which agent can perform which action. Figure 5.8 does not

associate the identity of an agent to the messages being sent and it is not known which

agents’ proposals are accepted and which ones are rejected.

Figure 5.8 shows only two timelines. Illustrating a complete and reasonable

interaction between more than 2 or 3 roles in AUML would be hard and would result

 158

Verification of Protocols

in an illegible diagram. In addition, AUML does not keep a parameter to record

which agent sent which message to whom. What if participants wish to send

messages between themselves as in a forum instead of just between an initiator and a

participant? AUML cannot show voting-like protocols. When using roles, an agent X

cannot base its decision on sending a message to agent A if it has sent or will send a

message to agent B. It is hard to portray sequence of messages and decisions based on

a sequence.

For m-n interactions in AUML, one would need to show all the timelines of all the

agents in all their roles. This has to be specified beforehand and the number of agents

fixed, preventing open interactions. Auctions are popular forms of negotiation

allowing dynamic entries and thus cannot be realistically specified in AUML.

Therefore AUML does not capture correctly multi-agent and dynamic negotiations

with an agent changing roles dynamically.

Even if a group of (n+1) agents follows Figure 5.8 as a protocol, an initiator must

keep n instances of the same negotiation for n participants, giving rise to complexity,

concurrency and coordination problems. In an online auction, an auctioneer following

an AUML protocol would need an auction instance for each (registered) participant,

instead of only keeping track of the state of the auction with the bidders. If

participants are allowed to know how the initiator responds to others, then each

participant would need n instances of the interaction for each other participant. If an

interaction allows communication between participants, then the n instances are

related to each other leading to a complexity of mn for m states.

In ANML the actions and states related to an agent are annotated with it. Finite set

theory is used to manage groups of agents and parameterise actions and states with a

group of agents. The sets of agents in each state are initialised to empty and an agent

is added to an appropriate set according to the message exchange and the resulting

state. For example, just after a cfp, not-understood({}) means that no agent has sent a

not-understood message. When agents ann and bob send a not-understood, they are

added to the set to give not-understood({ann,bob}).

 159

Verification of Protocols

Iterating call for proposals (cfps)

After a participant responds with a refuse-1 or a not-understood at A1, it is unclear in

Figure 5.8 whether that participant is sent further cfps or it is written off for the rest of

the interaction. In practice all agents should be sent revised cfps, since an agent which

previously sent a refusal may later be able to execute a revised cfp. Figure 5.8

presupposes that only those participants that previously sent a proposal are eventually

sent a revised cfp, as the interaction thread D1 is a response to propose. In rules (7)

and (9), a sub-state of open called on-hold is declared for those agents which sent a

refusal or not-understood in response to a cfp. Rules (22) and (24) allow revised cfps

to be sent to all agents and reinitialise the set of agents in the on-hold state.

Point D1 is a concurrent interaction thread where an initiator simultaneously rejects

the proposals of a number of agents and sends a new cfp to them. Confusion may arise

when several messages are sent or received simultaneously. A participant may

receive a revised cfp followed by a rejection because of delays in the communication

channel. In this case, the participant’s beliefs become inconsistent with the other

agents. An initiator may also have difficulty in distinguishing between delayed

proposals from previous cfps. D1 should not be a concurrent thread and an initiator

should first send a reject-proposal-2 to some agents followed by a cfp-2 to all agents.

The conditions, states and sets of agents have to be re-initialised when reiterating a cfp

as in rules (22) and (24) and the rules between states. It is unclear how to do this

initialisation in AUML, even if guarding conditions were given. The first cfp is an

entry point into a negotiation and must be distinguished from revised cfps. (rule 19).

Making Proposals

The AUML protocol supposes that as soon as an initiator receives a proposal, it

cannot accept other messages and must perform the decisions at point B1. This

behaviour is at odds with the English definition of the protocol where an initiator

waits for a number of proposals before deciding on which ones to accept. Rule (8)

solves this by making proposed(Y) be a sub-state of cfped(X).

In Figure 5.8, in order to proceed to point B1, at least one participant must send a

proposal. An initiator cannot send a revised call for proposal unless he/she has

received at least one proposal. This can lead to a deadlock because all participants

 160

Verification of Protocols

may refuse to bid and an initiator cannot revise its cfp from the protocol. The

interaction does not terminate when no participants make a proposal. Rule (22)

allows a timeout and sending a revised cfp in case of no proposals.

Terminal states

In AUML diagrams, abbreviating different threads of interaction onto a single

timeline obscures the terminal actions and points for where a negotiation can end. It

is not obvious in Figure 5.8 that an interaction ends when an initiator refuses all

proposals and does not issue a new cfp. Contrary to Figure 5.5, in Figure 5.8 a

negotiation is not closed if some agents send not-understood or refuse-1 messages,

since there can be revised cfps. In ANML, both open and closed states, their sub-

states and the processes leading to them are obvious. States failed(F) and informed(E)

may both be true at a point since some participants will send a successful completion

while others a failure.

5.7.2 A logical theory of the Iterated Contract Net Protocol

Theory 5.9 is the ANML logical theory for an iterated contract net protocol after

several iterations to ensure that the states of a negotiation are well-defined and as

expected from valid actions. A multi-agent interaction is specified between an

Initiator, I, and n other participants. Let I, P and X denote single agents and Y, Z, A, B,

C, D, E, and F denote sets of agents. Rules (4) to (13) represent the relation between

states and sub-states. Rules (14) to (18) ensure that messages are sent to the right

agents or group of agents, so that an agent does not receive contradictory or

unintended messages. Rules (19) to (26) are action-condition rules for state

transitions.

interaction ↔ one-of ({open, closed}) (4)

open ↔ one-of ({cfped, pending-accomplishment}) (5)

pending-accomplishment(Y)↔ (rejected-proposal-1(C)¤proposal-accepted(Y-C))

(6)

on-hold → cfped (7)

proposed → cfped (8)

on-hold ↔ not-understood ¤ refused-1 (9)

 161

Verification of Protocols

closed↔ one-of({(failed ¤ informed), rejected, timedout, rejected-proposal-2] (10)

 ¬interaction ↔ none-of ({open, closed}) (11)

¬open ↔ none-of ({cfped, pending-accomplishment }) (12)

¬closed↔ none-of({failed, informed, rejected, timedout, rejected-proposal-2})

(13)

(not-understood(A)⁄refused-1(B)⁄proposed(Y)) →A∩B∩Y={} (14)

(rejected-proposal-1(C) ⁄ proposal-accepted(Z) ⁄ proposed(Y)) → ((Z = Y - C)

 ⁄ C ∩ Z = {}) (15)

failed(E) ⁄ informed(F) ⁄ proposal-accepted(Z)→ (F=Z - E) (16)

failed(E) ⁄ informed(F) → (F ∩ E = {}) (17)

rejected-proposal-2(C) → proposed(C) (18)

¬interaction ↔ [I:initiator.initial-cfp] (cfped(I) ⁄ not-understood({}) ⁄ refused-

1({})) (19)

(cfped(I) ⁄ not-understood(A) ⁄ refused-1(B) ⁄ ¬proposed(Y)) ↔ one-of ({

[P:participant. not-understood]not-understood(A ∪ {P}) , [P:participant.

refuse-1] refused-1(B ∪ {P}), [P:participant.propose] proposed({P})}) (20)

(cfped(I) ⁄ not-understood(A) ⁄ refused-1(B) ⁄ proposed(Y)) ↔ one-of({

[P:participant. not-understood]not-understood(A ∪ {P}), [P:participant.

refuse-1] refused-1(B∪{P}), [P:participant.propose]proposed(Y∪{P})]})

(21)

(on-hold ⁄ ¬proposed(Y) ⁄ cfped(I)) ↔ [timeout ; I.cfp] (cfped(I) ⁄

 not-understood({}) ⁄ refused-1({})) (22)

proposed(Y) ↔ ([I:initiator.reject-proposal-1] rejected-proposal-1(C) ⁄

[I:initiator.accept-proposal] proposal-accepted(Z) ⁄ Z= Y-C) ¤

([I:initiator.reject-proposal-2]rejected-proposal-2(Y) (23)

rejected-proposal-2(Y) ↔ [I:initiator.cfp] (cfped(I) ⁄not-understood({})⁄

refused-1({})) (24)

 162

Verification of Protocols

proposal-accepted(Z) ↔ [P:participant.inform]informed(E)¤ [P:initiator.failure]

failed(F) ⁄ E= Z-F (25)

open → [reject] rejected ¤ [timeout] timedout (26)

Theory 5.9 Iterated Contract Net Protocol in ANML

5.8 FIPA English Auction Interaction Protocol

Figure 5.9 shows an English Auction Interaction Protocol (IP), [Odell and al 2001], in

AUML. An auctioneer initially proposes a price for a posted item and then raises the

price when receiving a bid. The auctioneer waits for a proposal to his cfp and as soon

as a buyer indicates that it will accept the price, the auctioneer issues a new call for

bids with an incremented price. The auction continues until no buyers are prepared to

pay the proposed price. The good is sold to the last buyer who made a proposal or it

is not sold at all depending on the strategy of the auctioneer. This is different from

the usual English auction, in which a bidder raises the price. Here the auctioneer is

given more power and decides on how much to increase the price and can decide to

withdraw from the auction if its reservation price is not met.

 163

Verification of Protocols

2.B

2.A

2.C

2.D

2.E

Figure 5.9 English Auction IP, [FIPA 2001h], [Odell and al 2001]

The translation of the AUML English Auction protocol into an ANML path is:

{I:Initiator , P:Participant}.FIPA-EnglishAuction-Protocol = I.inform-start-of-

auction; I.cfp; {I , P}.English-auction

{I:Initiator , P:Participant}.English-auction = one-of ([P.not-understood,

(P.propose; {I , P}.after-propose)})

{I :Initiator , P:Participant }.after-propose = one-of ([I.reject-proposal, I

.accept-proposal}); one-of ({(I.cfp-2; {I , P}.English-auction), (I.inform ⁄

I.request)})

5.8.1 Errors in English Auction IP in AUML

Binding Roles

At the end of the protocol, an inform message is sent to n agents and a request to 1

agent. One can guess that the inform messages are to let n agents know that their

proposal has been rejected and the request message is to tell 1 agent that its proposal

 164

Verification of Protocols

is accepted and to request completion of the proposal. However, the AUML protocol

does not embed this information. The protocol could be interpreted as sending an

inform to n agents to tell them that their proposals have been accepted. The AUML

protocol does not specify to which participants, an initiator should send inform and

request communicative acts. There is no relation in the AUML diagram between

points 2.C and 2.E, i.e. between proposers and those who are sent inform and request

messages.

As in the Iterated Contract Net IP, there is no concept of an agent’s identity in the n

(or m) agents in Figure 5.9. If m agents send a not-understood message and the

initiator send an accept to n agents, then where does the protocol ensure that any of

the m agents are not part of the n agents? The problem is how are the numbers m and

n related to the progress of an interaction and the agents sending a particular message.

Error in mathematics in the use of numbers m and n

The protocol is not open and allows only n participants being sent an inform-start-of-

auction and any message. Even then, the numbers m and n are used carelessly

throughout the AUML Figure 5.9, leading to incorrect messages being sent.

– At point 2.E, 1 agent (the winner) is sent a request and n (all participants)

agents are sent an inform-2. The winner thus gets both an inform-2 of rejection

and a request to satisfy its proposal.

– Given that AUML represents interactions through roles, then it is incorrect to

show m and n cardinalities at a participant’s role at point 2.A. It could be

interpreted as a participant sending m not-understood messages, instead of one.

For this, the AUML notation must be changed to show that it is an initiator

who receives m not-understood messages.

– The AUML protocol specifies that n agents are present initially, m out of n

agents reply with a not-understood to an initial cfp and just 1 agent proposes.

Therefore, at the end at point 2.E, the initiator should send an inform message

of rejection to at most (n-m-1) agents instead of to every n agents. In the

AUML protocol, those who sent a not-understood or did not reply to a cfp are

informed that their proposals are rejected.

 165

Verification of Protocols

Storing the last highest bidder before a revised cfp

In the AUML Figure 5.9, an auctioneer rejects agent’s A's proposal and sends a new

cfp, then it accepts A's old proposal later when its revised cfp has failed. Agent A

receives a rejection then an acceptance and would be confused as to the auctioneer's

intentions. Similarly after an agent B receives an accept-proposal, the auctioneer may

receive another better proposal from another agent after a revised cfp. Agent B then

receives then an inform of rejection after its proposal had been accepted.

Figure 5.9 specifies that after a proposal, the auctioneer there and then decides

whether to accept or reject the proposal, defeating the purpose of a revised cfp. Points

2.C and 2.E are wrongly ordered with respect to each other.

A fragment of what the protocol should allow according to the requirements is: if

agent X proposes, a cfp is immediately sent. Then if agent Y proposes, a reject is sent

to X and another cfp is sent and the whole process is repeated. An agent’s proposal is

accepted if there are not further proposals after a cfp. The path in ANML between

initiator I and participants X and Y is:

(X.propose; I.send-cfp; Y.propose; (I.reject-to-X ; I.send-cfp))*

This path is repeated until there are no more proposals to a revised cfp and then the

last proposal before the revised cfp is accepted.

Therefore, the auctioneer needs to first store the last proposal it obtained (from say X)

before sending a revised cfp, then store Y as the new proposer and finally send a

rejection to X. AUML notation does not allow storing the history of an interaction

and therefore there is no way to portray storing previous proposals and to correctly

show even a simple protocol like the English auction.

What happens to those agents who did not respond?

The AUML protocol assumes that all agents reply to a cfp, implying that all agents

who do not send an not-understood message should send a proposal. This is enforced

by the cardinality n at point 2.A. Given that the number of agents not responding is

unknown, then the number of informs to be sent at point 2.E cannot be specified, (at

most n-m-1).

 166

Verification of Protocols

Agents sending a not-understood are not sent any revised cfp-2

Even if it is the initiator’s mistake in the original cfp, those who sent a not-understood

message are written off the interaction forever. This is given by the not-understood

timeline tailing off to the end of the diagram. There is a contradiction when a revised

cfp at point 2.D are sent to all n agents.

Concurrent threads 2.C and 2.E

According to Figure 5.9, points 2.C and 2.E can be performed concurrently when they

must be sequential. This allows an initiator to reject proposals and perform cfps and

informs all simultaneously.

Deadlines

In real life and online auctions, there are deadlines for bidding after a cfp and for

accepting a proposal. The AUML Figure 5.9 does not show any deadlines at points

2.A, 2.C and 2.E.

Incompleteness

The AUML diagram does not give all termination actions. It does not show that the

auction terminates if no buyers send a proposal and the auctioneer no longer sends

cfps or if the auctioneer rejects all proposals and does not sell the item.

No conditions

Conditions before performing the different threads of interaction are not given e.g.

there has to be a proposal before accepting or rejecting a proposal or before

performing a second cfp, an inform or a request. The protocol does not show that an

auctioneer sends a new cfp as soon as there is a bid from a participant.

Non-terminating if no proposals

An auctioneer must receive a proposal before he can do any accept or reject of

previous proposals or send a revised cfp. If no agents propose, the interaction hangs

and does not terminate.

 167

Verification of Protocols

Redundancy in AUML protocol

There is no need to perform the inform and request messages at point 2.E if an

auctioneer has already sent an accept-proposal or a reject-proposal before to a

participant. Instead, these two messages can be taken as informing the participants

about the end of the auction.

5.8.2 Corrected English Auction IP in ANML

The ANML theory of the FIPA English auction is given below and is closer to its

requirements than Figure 5.9.

interaction ↔ one-of ({open, closed})

open ↔ one-of ({informed-started, first-cfped, just-proposed, accepted-

proposal})

not-understood → open

closed ↔ one-of ({ (informed ¤ requested), withdrawn, timedout, rejected})

just-proposed(X) ↔ one-of ({proposed(X) , iterated-cfp(I)})

rejected-proposal → proposed

¬interaction ↔ none-of ({open, closed})

¬open ↔ none-of ({informed-started, first-cfped, just-proposed, accepted-

proposal})

¬closed ↔ none-of ({ informed, requested, withdrawn, timedout})

¬just-proposed(X) ↔ none-of ({proposed(X), iterated-cfp(I)})

proposed(Y) ⁄ not-understood(C) → (C … Y = {})

¬interaction ↔ [I:initiator.inform-start-of-auction] informed-started(I)

 informed-started(I) ↔ [I.cfp] (first-cfped(I) ⁄ not-understood({}))

(first-cfped(I) ⁄ not-understood(A)) ↔ [P:participant. not-understood] not-

understood(A » {P}) ¤ [P:participant.propose] proposed(P)]

¤ [timeout; I.cfp] (first-cfped(I) ⁄ not-understood({}))

 168

Verification of Protocols

proposed(P:participant) ↔ [I:initiator.cfp] (iterated-cfped({I , P}) ⁄ not-

understood({}))

iterated-cfped({I:initiator , P:participant }) ⁄ not-understood(A) ↔ one-of ({

[X. not-understood]not-understood(A » {X}) ,

[G: participant.propose; ({I, P}. reject-proposal)] (proposed(G) ⁄ rejected-

proposal(P)) ,

[timeout; ({I, P}. accept-proposal)]accepted-proposal(P),

[timeout; ({I, P}. reject-proposal)] rejected })

{I:initiator , P:participant }. accept-proposal = I.accept-proposal

{I :initiator , P:participant }. reject-proposal = I.reject-proposal

accepted-proposal(P:participant) ↔ [I:initiator.request] requested(P) ⁄

[I:initiator.inform]informed(X)

open → [I:initiator.withdraw] withdrawn

open ⁄ ¬(first-cfped(I) ¤ iterated-cfped({I ,P})) → [timeout] timedout

5.8.3 Dutch Auction IP

In the FIPA Dutch Auction Interaction Protocol (IP), [FIPA 2001i], an auctioneer

starts the bidding at a price much higher than the expected market value, then

progressively reduces the price until one of the buyers accepts the price. If the price

reaches the reserve price without any bids, then the auction terminates. The protocol

allows for a bid to be rejected in the case of multiple, competing and simultaneous

bids. Many of the errors in the AUML Dutch auction diagram, [FIPA 2001i],

resemble those of the English auction AUML Figure 5.9 e.g. cardinalities m and n

denoting a number of agents in both protocols are not defined and are wrongly

assigned to the messages being sent. Deadlines and conditions for sending bids and

accepting them are undefined. There are ambiguities with concurrent actions and

exclusive-or actions. Further errors applying only to the FIPA Dutch Auction

protocol are:

• Lack of declaration and setting for shown conditions e.g. no-bids

 169

Verification of Protocols

• It is possible for an auctioneer to accept a proposal then send another call for

proposal when in practice a Dutch auction is stopped once the auctioneer accepts a

proposal.

• Again termination conditions are absent or unclear e.g. when there are no bidders

or the auctioneer rejects all proposals.

• There are issues about concurrency such as an auctioneer can simultaneously

accept a proposal and send a cfp.

5.9 FIPA Recruiting Interaction Protocol

In the FIPA brokering protocol, [FIPA 2001f], an initiator requests a broker to find

one or more agents who can satisfy a query. The broker then determines a set of

appropriate agents to which to forward the query, sends the query to those agents and

relays their answers back to the original requestor. The FIPA Recruiting Interaction

Protocol (IP), [FIPA 2001g], is similar to the brokering protocol except that results of

a query from selected server agents may be sent directly to the original requestor or

some designated receiver agent instead of via the broker. This section discusses the

FIPA recruiting protocol and most of the remarks apply to its brokering protocol too.

 170

Verification of Protocols

 171

Figure 5.10 FIPA Recruiting Interaction Protocol, [FIPA 2001g]

ANML initial theory by literal translation of Figure 5.10:

{I:Initiator , R:Recruiter , D:Destinator }.FIPA-Recruiting-Protocol =

I.proxy(proxied-communicative-act, agent-spec, action); one-of ({R.not-

understood, R.refuse(reason-1), R.agree}) ; ((agreed ⁄ cannot find target

agents) → R.failure-no-match) ; ((agreed ⁄ can find target agents)→ launch-

sub-protocol ⁄ one-of({R.failure-proxy, R.inform-done-proxy2 }) ; result-out-

of-subprotocol

3.B

3.A

3.D

3.C

3.F

3.E

Verification of Protocols

result-out-of-subprotocol = one-of ({ one-of ({ failure-sub-protocol, inform-

done-protocol, inform-result-subprotocol}), (reply-to destinator → one-of

[failure-sub-protocol(D), inform-done-protocol(D), inform-result-

subprotocol(D)})]

Theory 5.10 An Initial Theory for the Recruitment protocol in ANML

5.9.1 Some Errors in AUML Recruitment IP

Undefined terms and conditions

Terms and conditions are used throughout the protocol without being defined

anywhere. For example, in the message proxy(proxied-communicative-act, agent-

spec, action), only the parameter proxied-communicative-act is declared in the

template. Similarly, undefined conditions are [agreed, can/not find any target

agents], [:reply-to destinator], [sub-protocol proceed], [agreed, find any target

agents], [action-condition]. What are the conditions for launching a sub-protocol?

The AUML protocol does not relate these conditions to previous messages.

Concurrent Actions

In Figure 5.10, all the actions along the timeline at 3.A can be executed concurrently.

According to the AUML protocol, after receiving a request from an Initiator, a

recruiter may send an agreement, a failure of finding a server agent or inform-done

and launch a sub-protocol all simultaneously. In practice, these messages are

sequential, allowing guards to be set before being tested.

Nesting of Protocols, missing roles and inadequate information

What is the empty rectangle sub-protocol and how does a recruiter know what to

perform when launching sub-protocol? The role of a server is missing from Figure

5.10.

It is unclear whether the AUML protocol in Figure 5.10 is meant to be a shared

protocol or the protocol known by only the recruiter. In either case, there is not

enough information for the participants about allowed actions. It is not enough for a

recruiter to be given a link to an unspecified sub-protocol as in Figure 5.10.

 172

Verification of Protocols

On the other hand, an initiator does not need to know about the recruiter internally

launching a sub-protocol or sending a message to a destinator. It is not in the concern

of an initiator how the recruiter gains results to a query. Therefore Figure 5.10 does

not show enough information for a recruiter or a server, but shows too much

information for the initiator and destinator. If Figure 5.10 is a shared protocol, then

all interactions between the four roles – server, initiator, recruiter and destinator have

to be completely defined.

ANML adopts the view that a shared protocol is known by all the agents, and each

one of them may adapt the protocol to their own purpose.

Point 3.E executed in all cases

Because the conditions at point 3.E are incomplete, the actions at this point are always

executed. Thus, a server informs an initiator or destinator of the results of a query

even if the recruiter previously replied that it did not understand a message, that it

failed to find an appropriate server or that the server failed.

Cannot send whether-succeeded and results together

Point 3.D and 3.F are exclusive-or decision points. A server performs either failure-

sub-protocol, inform-done-sub-protocol or inform-result-sub-protocol, but not all

three. So a server can tell an initiator or destinator that its request has successfully

been achieved but cannot inform it of the results.

The condition inform-result-sub-protocol is an example of the confusion arising when

using textual conditions. Does a server inform an initiator the results of its request or

the results of launching a sub-protocol?

When there is no destinator

The message Inform-done-proxy at pint 3.B is sent both to the initiator and to the

destinator. This leaves a dangling inform-done-proxy at point 3.B when there is no

destinator.

 173

Verification of Protocols

5.9.2 ANML Theory for Recruiting Protocol

The logical theory for a recruiting protocol in ANML aims to solve the above errors

between agents I:initiator, R:recruiter, D:destinator and Servers: server.

interaction ↔ one-of [open, closed]

open ↔ one-of [proxied, agreed, informed-done, replied-to-who, informed-done-

destinator, waiting]

closed ↔ one-of [not-understood, refused, failed-no-match, failed-server-

communication, failed-query-results, request-succeeded]

¬interaction ↔ none-of [open, closed]

¬open ↔ none-of [proxied, agreed, informed-done, replied-to-who, ¬informed-

done-destinator, waiting]

¬closed ↔ none-of [not-understood, refused, failed-no-match, failed-server-

communication, failed-query-results, request-succeeded]

¬interaction ↔ [I:initiator.proxy] proxied(I)

proxied(I) ↔ [R:recruiter.not-understood] not-understood ¤ [R:recruiter.refuse]

refused ¤ [R:recruiter.agree] agreed(R)

agreed(R) ↔ [R.failure-no-match] failed-no-match ¤ [R.failure-communication]

failed-server-communication ¤ [R.inform-done-proxy]server-sub-

contracted(R)

server-sub-contracted(R) ↔ [I:initiator.reply-to-who(D:destinator)] replied-to-

who({I, D})

replied-to-who({I:initiator , D:destinator }) ↔ (¬(I=D) → [R:recruiter.inform-

done-destinator] server-sub-contracted-Destinator({R, D})) ¤ ((I=D) →

[I.wait]waiting(I))

 174

Verification of Protocols

server-sub-contracted-Destinator({R:recruiter, D:destinator }) ↔

[D.wait]waiting(D)

waiting(D) ↔ [S: server.server-failure-query(D)] failed-query-results ¤ [S:

server.server-done-query(D); S: server.server-results-query(D)] request-

succeeded

Theory 5.11 Theory for Recruiting Protocol

5.10 Translating Bilateral negotiation from ANML to AUML

The above sections show representing AUML diagrams in ANML after verifying

them. The reverse process is now carried out by converting the ANML theory of the

bilateral protocol, Theory 5.5, into an AUML interaction diagram. Let the bilateral

protocol consist of two roles, Agent1 and Agent2. Already the distinction between

these two roles is not clear. Figure 5.11 shows the bilateral protocol as an AUML

diagram.

 175

Verification of Protocols

Figure 5.11 Bilateral Protocol in AUML

As can be seen, a representation in AUML of a simple theory like the bilateral

protocol produces a complicated diagram, especially with timeout events and reject

actions.

In the AUML diagrams in the above sections, it is rare to find decision points with

more than one non-terminal message. All messages, apart from one thread, end the

interaction e.g. not-understood, fail or refuse. This is why the threads of interaction

could be abbreviated to a single timeline in AUML. However, in the bilateral

protocol, there are several non-terminating messages that can be sent at a decision

 176

Verification of Protocols

point. Therefore threads of interaction at the decision points cannot be abbreviated to

a single timeline as the consequent events differ substantially depending on the

messages being sent.

Dynamic roles in the bilateral protocol are another reason for the complexity of Figure

5.11. The roles of the agents are not fixed since they are not identified as being an

initiator or participant and any of the two involved agents can perform an action

depending on the last state. In AUML, this introduces inevitable redundancy on each

agent’s timeline since a decision point is needed for each condition requested,

proposed or offered for each role.

5.11 What is wrong with AUML?

Most of the FIPA proposals for interaction protocols illustrate the use of a FIPA

communicative act. There are no protocols involving bargaining or dialogues, which

are found difficult to represent correctly in AUML.

Undefined conditions

Because an AUML diagram does not show the relation between states and processes,

the conditions at decision points are informal, are not declared and cannot be related

to previous messages.

No binding of roles or cardinalities

Roles are useful for portraying multi-agent interaction, but are not sufficient on their

own. An agent may need to be deterministic and access information about a particular

participant. It needs to know which agents have been sent which messages or to

which agents should a response be sent. Variables such as m and n are used

extensively but wrongly in AUML.

We must be able to bind the roles and cardinalities in an AUML diagram to the agent

identities. For example, to show the winners of the contract net protocol, n roles are

needed for n winners. Therefore a role would have to be created for each agent to be

identified. In the worst case scenario, this could escalate to showing as many roles as

participants. The AUML notation needs to insert users in its specification. AUML

 177

Verification of Protocols

cannot show voting-like protocols and cannot illustrate an agent sending a message to

specific participants, e.g. accepting only 2 or 3 proposals from and to known agents.

Cardinalities denoted at the wrong role

Given that AUML represents interactions through roles, cardinalities are specified at

the wrong role. There is confusion about whether a participant sends m messages or

m participants send one message. The AUML notation must distinguish between

these two cases and instead show an initiator receiving m messages.

Cannot represent n-m interactions

Illustrating a complete and reasonable interaction in AUML between more than 2 or 3

agents would be hard and would result in an illegible diagram. There is currently no

legible way to show participants sending messages between themselves as in a forum

instead of just between an initiator and a participant. For a multilateral IP in AUML

involving more than two roles, one would need to show all the timelines of all the

agents.

Dynamic Interactions

Showing dynamic interactions like the bilateral protocol results in an illegible diagram

because AUML deals only with roles. In AUML, all the decision points possible at

each state will have to be shown on each agent’s timelines, i.e. decision points at

requested, offered, proposed will have to be shown n times for n negotiating agents.

Open Interactions

It is not possible to specify open interactions in AUML where agents can join

dynamically in a negotiation. This is because cardinalities are used at each interaction

thread as in the protocol for the English auction, Figure 5.9. Cardinalities are also

inappropriate when there are agents who do not respond to a message as in an auction.

Instances of AUML protocols

It is currently not possible to translate an AUML protocol into an executable. In

addition to needing to insert users, each agent needs n instances of the protocol for n

participants. This leads to complexity and coordination problems.

 178

Verification of Protocols

No time management

AUML cannot represent time-dependent actions or ubiquitous messages. For

example, in order to represent a ubiquitous message like reject or an event such as

timeout, an AUML diagram has to show these as possible at each thread of

interaction. In addition an AUML protocol has to show testing that the interaction is

still open whenever a message can be sent.

No notion of history

An agent X cannot base its decision on sending a message to agent A if it has sent or

will send a message to agent B. It is hard to portray sequence of messages and

decisions based on a sequence or conditional behaviour. As found in the English

auction, AUML diagrams cannot store information about previous messages and who

sent them. AUML loses also the advantage of providing planning capabilities that

would otherwise be possible in a formal methodology.

Too specific for standardisation

AUML and FIPA Interaction Protocols are too specific for standardisation. They

depend on agents adopting roles and sending FIPA-like messages. Instead, they may

act as a repository of templates for protocols, which are instantiated for a negotiation.

The agents still must use state and activity diagrams for their reasoning. “AUML is

an agent-centric view on specifying protocols which emphases an agent and its roles

first and the interaction second”, [Bauer and al. 2001]. Are constraints embedded in

the roles? This causes problems in interactions where the roles of an agent do not

matter and they can take on each other’s roles.

OCL – Object Constraint Language

There has been mention of using OCL as a constraint language, but OCL is not

formal, [Richters and Gogolla 1998], and addresses just pre- and post-conditions in

object oriented UML.

More than one non-terminal message as a decision point

In the analysed AUML diagrams, it is rare to find decision points with more than one

non-terminal message. All messages, apart from one thread, end the interaction e.g.

not-understood, fail or refuse. This is why the threads of interaction could be

 179

Verification of Protocols

abbreviated to a single timeline. However, in realistic protocols, there are several

non-terminating messages that can be sent at a decision point. Then, threads of

interaction cannot be abbreviated to a single timeline and for each message a new

timeline for the same role is needed.

Deadlines

In addition to not addressing cancellation, timeout, inputs and crash events happening

at any point in an interaction, AUML does not show how to deal with unexpected

messages or delayed messages through communication problems. Deadlines are

ambiguous and do not have the intended meaning. It is not shown what happens to

the interaction if a deadline is not met. Deadlines given raw values become

unattainable in cases of iteration.

Ambiguities with using one timeline

Terminal messages and points are not obvious when using a single timeline. Most of

the FIPA IPs do not check the conditions for continuing an interaction that may have

already terminated earlier. In addition all the messages along a timeline can be sent

concurrently, in spite of a decision depending on previous messages.

5.11.1 Propositions for Extended AUML

EAUML (Extended AUML), [Koning and al. 2001], is based on AUML with

simplifications and modifications for control threads. Connectors in EAUML allow

sending messages n times (broadcast), synchronisation (waiting for several messages

to arrive), message triggering and causality. In message triggering, internal events

trigger the message sending. Message causality indicates a causal relationship

between two messages. Different versions of UML for agent interactions have been

proposed but all of them are essentially AUML-like. The problems mentioned in the

above sections for AUML still remain to be resolved.

Similar to the corrections in Figure 5.6 for the AUML diagram of the request

protocol, the AUML notation should increase its expressiveness by annotating its

protocols with states from messages being exchanged. In this way, states can be

referred to as conditions and would solve some of the problems in AUML. Instead of

 180

Verification of Protocols

conditions occurring at only decision points, each message can be accompanied with

its own condition or state.

The AUML notation may be enhanced by inserting users in the process and binding

roles and including time and history management capabilities. AUML protocols may

be validated through model checking techniques after being translated into promela,

[Holzmann 1997], or Petri Nets. However at present there is no obvious and readable

output from Spin, [Holzmann 1997], since it is not possible to translate the AUML

protocol to an executable.

5.12 Petri Nets for Interaction Protocols

Petri nets [Petri 1966] is a graphical and mathematical modeling tool for describing

and analysing information processing systems. Tokens are used to simulate and

synchronise dynamic and concurrent activities. Algebraic equations can be derived

from Petri nets. Petri nets are used in a variety of applications – e.g. communication

networks, performance evaluation, manufacturing systems analysis and control, task

planning, business process management and hardware design.

However a weakness of Petri nets is the complexity problem i.e. Petri-nets-based

models tend to become too large for analysis even for a modest-size system [Murata

1989]. In applying Petri nets, it often necessary to add special modifications or

restrictions suited to the particular application. Most Petri-net research groups have

their own software packages and tools to assist the drawing, analysis and simulation

of applications, [Feldbrugge and Jensen 1987].

5.12.1 Petri Nets Graphs

A Petri net is a directed graph with an initial state with two types of nodes: places

(circles) and transitions (bars or boxes) with arcs (which may be weighed) between a

place and a transition and vice versa. A marking assigns to each place a non-negative

integer denoting the number of tokens. Places represent conditions, transitions

represent events and tokens at a place represent the truth of the condition associated

with the place. A transition has a number of input and output places. The dynamics

 181

Verification of Protocols

of a Petri net is a sequence of transition firing where tokens are taken away from input

places to output places.

Synchronisation is needed when resources and information are shared among several

processors and such synchronisation can be achieved through Petri nets such as

mutual exclusion, readers-writers and producers-consumers problems.

Synchronisation is needed when there is more than one input places. For example, in

order for a transition to fire it has to wait for all the tokens to be present in the input

places and then the transition is enabled. Transitions are active components that

model activities which change the state of the system.

Figure 5.12 Example of a Petri net

For example in Figure 5.12, transition t1 is fired when both places p1 and p2 are

enabled. On firing, 1 token is removed from each p1 and p2 and 1 token added to p3.

Transition t2 is fired when p3 is enabled and transfers a token from place p3 to place

p2.

Petri nets can be defined through set theory with tuples representing places, transitions

and the relations between them (flow relations) (See [Murata 1989] and [Reisig

1985]).

5.12.2 Marked Petri Nets

Sometimes, k tokens indicate k data items or resources are available. A transition

without input place is called a source transition and one without any output place is

called a sink transition. For example, the chemical reaction 2H2 + O2 → 2H2O can be

modeled as the following Petri net.

 182

Verification of Protocols

Figure 5.13 Example of a transition (firing) rule

Two tokens in each input place in Figure 5.13(a) show that two units of H2 and O2 are

available, and the transition t is enabled. After firing t, the marking changes to the

Petri net shown in Figure 5.13(b), where the transition t is no longer enabled. Usually

there is a maximum to the number of tokens that each place can hold before/after a

transition firing.

A state machine can be considered as an ordinary Petri net such that each transition

has exactly one input and one output place. A marked graph has exactly one input

transition and one out transition (thus no conflicts). In a free-choice net, every arc

from a place is either a unique outgoing arc or a unique incoming arc to a transition

(no confusion). There are extended free-choice net and asymmetric choice net. In

contrast to a Petri net, a state machine does not have synchronisation.

5.12.3 Properties of Petri Nets

It is not obvious when conflicts will arise in Petri nets from just looking at a diagram

and tools have been developed to detect such conflicts as deadlocks and other

properties as liveness, performance evaluation and invariance satisfaction. Events that

can occur concurrently may be mutually exclusive and are called conflicting events

causing confusion situations. [Murata 1989] divides the properties of Petri Nets into

two categories – those depending on the initial marking (marking-dependent or

behavioural properties) and those that do not (structural properties). Example

properties are:

 183

Verification of Protocols

• Reachability.

A place p2 is reachable from another place p1 if there exists a sequence of

firings leading from p1 to p2.

• Boundedness (or k-boundedness)

The number of tokens in each place does not exceed a finite number k for any

reachable marking.

• Safe

A safe Petri net is said to be 1-bounded.

• Liveness

Complete absence of deadlock. Although an important property, it may be

costly to verify liveness in large systems. Thus liveness is relaxed to different

levels of liveness.

• Reversibility

The initial marking M0 is reachable from any marking.

• Coverability, Persistence (for any two transitions, the firing of one transition

will not disable the other) and fairness.

Methods for analysing Petri Nets may be classified into 1) the coverability

(reachability) tree method (enumeration of all reachable markings – limited to simple

nets due to the complexity of state-space explosion) 2) the matrix-equation approach

and 3) reduction or decomposition techniques [Murata 1989]. The last two techniques

are applicable to special subclasses of Petri nets in special situations.

A stochastic Petri net is a Petri net where each transition is associated with an

exponentially distributed random variable that expresses the delay from the enabling

to the firing of the transition. In case several transitions are simultaneously enabled,

the transition that has the shortest delay will fire first. Such types of nets allow

performance modeling.

5.12.4 Communication Protocols in Petri Nets

Petri nets can be used to represent and validate communication protocols [Billington

and al. 1999]. The liveness and safeness properties of a Petri net are often used as

correctness criteria in communication protocols.

 184

Verification of Protocols

Figure 5.14 A simplified Petri net of a communication protocol [taken from

Nowostawksi and al. 2001]

Figure 5.14 shows a simple communication protocol between two processes. Process

1 shows the sequence of actions of a message sender and receipt of an

acknowledgment. Process 2 shows the sequence on the part of a message receiver and

sending an acknowledgement. A buffer exists between processes 1 and 2. The Petri

net is Figure 5.14 has been simplified but expressing richer or more detailed protocols

in Petri nets would result in complicated diagrams.

5.13 Translating from Petri Nets to ANML

Figure 5.15 Simple Petri Net

Petri Net Entity ANML Operator

Place State

Transition (Intermediate) state

Arc Sub-process

The places and transitions in a Petri net can be regarded as states in ANML and the

arcs between places and transitions are read as sub-processes. For example the Petri

 185

Verification of Protocols

net in Figure 5.15, p1, t1 and p2 are states. Let the whole Petri net represent the

process browse. The sub-processes from p1 to t1 is browse-1 and the sub-process t1 to

p3 is browse-2. Therefore the Petri net in Figure 5.15 is expressed in ANML as:

p1 ↔ [browse] p3

p1 ↔ [browse-1] t1

t1 ↔ [browse-2] p3

As can be seen, in Petri nets sub-processes are not explicit because the arrows

(analogous to a sub-process) are not labelled by the name of a process. Rather in

some Petri nets, the arrows are labelled with the number of tokens that fire a

transition. It is possible to instead consider the transitions in a Petri net as processes

e.g. in Figure 5.14, the transitions “send message”, “receive ack.”, “receive message”

could be regarded as processes. However we can see that even places may be taken as

processes i.e. places “ready to send” or “wait for ack”. Moreover, processes can be

synchronised at places e.g. in Figure 5.13 at p1 and p2 for transition t1. In the Petri net

in Figure 5.14, we do not find a clear distinction between the states and the processes

apart from guessing from the names given to the places and transitions.

One feature of Petri nets lacking in statecharts is the synchronisation of processes

through tokens before firing a transition. In ANML, this feature can be captured by

extending ANML to deal with concurrency. In addition, synchronisation between

different processes can be translated in ANML by different names assigned to

different process instances. That is we can have different process instances in ANML

through subscripts, for example multi-lateralm1 and multi-lateralm2 are two instances

of a multi-lateral process – one with motion m1 and the other with motion m2). This is

achieved by the ANML operator “::” i.e. α1 ::α2 which is read as process instance α1

is constrained by process α2. In this way, we associate sub-processes to their parent

process. That is, a process may consist forking and merging of sub-processes where

two or more processes are spawned by a parent process or two or more parent

processes are joint to give a single process. It should be possible to retrace the roots

of a child’s process to its parent process(es). We capture the semantics of splitting

and merging that occur in synchronised transitions firing through naming of sub-

process threads. This may involve the creation of new processes (either through

merging or splitting) which can be identified with their parent process through naming

 186

Verification of Protocols

mechanisms in ANML. Spurred by the remarks of the examiner, a more powerful

ANML is discussed so as to embrace the synchronisation capabilities of Petri nets.

5.13.1 Merging of Processes

Figure 5.16 Merging of processes

Figure 5.16 includes the synchronisation and merging of two processes, from P and Q

for transition R to fire. We can extend the ANML notation by dealing with

synchronisation through an operator for concurrency borrowed from concurrent PDL

[Goldblatt 1987]. Also, we use subscripts to name and associate the parent and

children processes as they split or merge. More specifically, Figure 5.16 is expressed

in ANML as:

Px → [ax]Rx

Qx → [bx]Rx

(Px ⁄ Qy) ↔ [ax … by]Rx+y

Concurrent and synchronised execution

Merging of
instances scripted
with x and y

The process ax … by denotes concurrent execution of processes ax and by and the

semantics of the … operator are given in [Goldblatt 1987] for concurrent PDL.

Moreover ax and by are process instances of processes a and b and associated source

states are Px and Qy. Rx+y denotes a named state of R and also denotes that state Rx+y

emerges from source processes a and b (from the Petri net or ANML condition rule),

more particularly the instances ax and by (from x+ y) and from the states Px and Qy.

 187

Verification of Protocols

5.13.2 Splitting of processes

Figure 5.17 Splitting of Processes

After transition R is fired from Px becoming enabled, two processes are created.

These two process instances and the states they eventually lead to have to be related

back to the parent process instance and source state Pz. For example in a multi-lateral

negotiation, Px may represent the state with motion x “to travel by train” and the

process following this motion subsequently forks into two process instances c “walk

to train station” and d “buy train ticket”. The process instances c and d are related

back to the motion x through subscripting them with x. In addition the states they lead

to are explicitly named as having been triggered simultaneously from the same

process instance ax and state Px. More specifically, Figure 5.17 shows that Sx •1 and

Sx•2 are two branches emerging from the same parent process and are valid at the same

time. Therefore the Petri net in Figure 5.17 is expressed in ANML as:

 Px ↔ [ax]Rx

Rx → [cx] Sx•1
 Rx → [dx] Sx•2

The state Sx•1 denotes that it is one branch from th

and state subscripted with x. The state Sx•2 denot

same source process (ax) and state (Rx) as Sx•1, b

The merging and splitting Figure 5.16 can now be

Px → [ax]Rx

 188
Forking into two
processes and states
e source process ax, child process cx

es that it is another branch from the

ut with a different child process dx.

 expressed as below in ANML:

Verification of Protocols

Qx → [bx]Rx

(Px ⁄ Qy) ↔ [ax … by]Rx+y

Rx+y → [c(x+y)] S(x+y) •1

Rx+y → [d(x+y)] T(x+y) •2

However Petri nets are not able to express alternative execution of processes as

ANML does through the “»” operator. That is, R ↔ [c]S » [d]T cannot be shown in

Petri nets notation. Similarly the above Petri nets do not show 1) the agents executing

a process or 2) the roles of an agent, both which are needed for modeling agent

interactions. Coloured Petri nets have been used in [Cost and al. 1999] for modeling

agent conversations, as discussed in section 5.13.4.

5.13.3 Coloured Petri Nets

Coloured Petri nets is a class of Petri nets and allows synchronisation and resource

sharing. It has been applied to model communication protocols. See [Jensen 1994,

Jensen 1996] for an introduction to coloured Petri nets. As for the above (low-level)

Petri nets, coloured Petri nets contain places, transitions, tokens and arcs describing

the state changes. In coloured Petri nets, tokens carry data values which belong to a

given type. Therefore tokens are distinguishable. Arbitrary complex data types can

be also used as colour sets. Tokens that carry complex data values e.g. a list of many

thousand records involving fields of different types. Colour set is treated as a type

and token colour associated to token value. For a transition to fire, there must be

sufficient tokens on its input places and these tokens must have token values that

match the arc expressions.

Industrial applications of coloured Petri nets usually have 10-200 subnets with a total

of 50-1,000 places and transitions and 10-200 types, [Jensen 1994]. Automatic

verifications (such as model checking and invariants) and simulations (Design CPN

[Jensen 1996}) of coloured Petri nets exist and can be used to investigate performance

of a system.

 189

Verification of Protocols

5.13.4 Request Interaction Protocol in Petri Nets

Figure 5.18 Petri net request conversation (Initiator Role), [taken from Purvis

and al. 2002]

Figure 5.19 Petri net request conversation (Participant Role) [taken from Purvis

and al. 2002]

Figure 5.19 and Figure 5.20 model the FIPA request IP [FIPA. 2001b], see section

5.5. There are two Petri nets – Figure 5.18 shows the initiator role and Figure 5.19 is

used by a Participant. The collection of individual Petri nets associated with all the

roles represents the entire interaction protocol [Purvis and al. 2002]. If there are more

than 2 roles, then this can lead to issues about how the Petri nets are merged. In

particular, it can be found that separating the Petri nets (Figure 5.18 and Figure 5.19)

 190

Verification of Protocols

for an initiator and participant yields two Petri nets that have similar (introducing

redundancy) features that become implicit in the AUML or ANML joint protocol.

Therefore translating from the AUML or ANML protocol requires added efforts for

separating the nets and for replication of parts of a Petri net. There are a couple of

notable issues in the above Petri nets for the Request protocol:

• As mentioned above, the separation of Petri nets for each role increases the

complexity of a protocol which is supposed to be a joint series of actions.

Compared to its AUML (Figure 5.5) or ANML (Theory 5.6) counterparts,

Figure 5.18 and Figure 5.19 are more complex diagrams and harder to

understand.

• The “In” place in the Initiator Petri net is unreachable in Figure 5.18 according

to the Petri net notation. However the authors explain the “In” place to be a

shared place common to two or more nets. This raises the issue of consistency

of the “In” place, mutually exclusive access to it and whether it is necessary to

separate the Petri nets. Still, a joint Petri could produce a complex and hard to

read diagram as in Figure 5.20 for a Contract net protocol.

• In both Figure 5.18 and Figure 5.19, the Petri nets notation specifies that the

places connected to a transition are all enabled after that transition fire. That

is, there are only AND-communication messages. Hence in Figure 5.18, the

“Agree” and “Refuse” places are both enabled implying that an agent both

agrees and refuses after a “Process answer” transition. The same applies to an

agent sending fail, done and request after a “Receive request result” transition.

• Similarly in Figure 5.19, the Petri net does not allow to express that after a

“Fulfill request” transition, “Result” and “Done” places or processes are

enabled/executed together or sequentially while “Fail” should only happen if

“Result” and “Done” are not enabled.

• In Figure 5.19, after a “Send agree” transition, there should not be an arc

leading to the “Out” place since this allows a premature end of the interaction.

 191

Verification of Protocols

5.13.5 Contract Net Interaction Protocol in Petri Nets

Figure 5.20 Contract Net conversation with 3 contractors [taken from

Nowostawksi and al. 2001]

Figure 5.20 is a Petri net of a modified version of the FIPA Iterated contract net

protocol in Figure 5.8. The Petri net does not include participants sending not-

understood and refuse-1 messages after receiving a cfp (a call for proposal). The Petri

net has a timeout transition but this transition is not given any input and its output

place is a proposal instead of an end place. The issues in Figure 5.20 are:

• The protocol ends in “Process Failure” and “Process Success” transitions

rather than in terminal places.

• Showing 3 contractors in Figure 5.20 results in repeatedly expressing the same

sequence of transitions and places three times for each contractor. This means

redundancy in the Petri net and a significant increase in the degree of clutter to

the Petri net compared to the AUML or ANML notation.

• The above point raises the issue that Petri nets are not scalable to richer

protocols or for interaction between more agents. For example, adding the

 192

Verification of Protocols

understood and refuse-1 messages of Figure 5.8 would render the Petri net

illegible.

• The same point as in the Request Petri nets apply here in that all the places

resulting a transition are enabled and the notation cannot show exclusive-or or

alternative actions e.g. an accepted, terminate and new call for proposals all at

the same time after a “Process proposals” transition.

5.13.6 A Pair-wise Negotiation Protocol in Coloured Petri Net

Figure 5.21 Pair-wise negotiation process for a MAS [Cost and al. 1999]

The coloured Petri net in Figure 5.21 presents a simple pair-wise negotiation protocol

for two functional agents bargaining for goods, based on the FIPA ACL performatives

set. There are 3 places: Inactive, Waiting and Thinking, which reflect the states of the

agents. The buyer agent begins the negotiation (left hand side of Figure 5.21) and has

the responsibility of handling message failures. Both agents are initially waiting in

the Inactive places. The buyer initiates the negotiation process by sending a call for

proposals (CFP) to some seller, and its state changes from Inactive to Waiting. The

buyer is waiting for a response (proposal, accept-proposal, reject-proposal or

terminate). On receipt, its state changes from Inactive to Thinking, at which point it

must determine how it should reply. Once it replies, completing the cycle, it returns to

the Inactive state.

 193

Verification of Protocols

• First there is no notion of a buyer or a seller executing an action or a process.

Although Figure 5.21 is supposed to show the buyer and seller roles, it does

not explicitly express which transitions and places belong to which roles.

• The labels AGENT and MES are given to some places but with no semantics

of how these are related.

• It is not obvious where the protocol starts and ends.

• The protocol shows how an OS type messages are sent and received but it

does not show the ACL performatives being sent and therefore does not

represent an agent interaction protocol. The latter protocol is given in the

English description but not in the Petri net in Figure 5.21.

• Figure 5.21 is essentially a flowchart with synchronisation between the

transitions firing.

• The Petri net does not show that a buyer returns to an Inactive state once it

replies as said in the informal specification. Moreover, it is not obvious where

the cycle starts for (as claimed) the cycle to be completed.

As such, despite the above issues and no definition of the location of the token, we

can express Figure 5.21 in ANML.

negotiating ↔ one-of({open, timedout})

open ↔ sent ¤ waiting ¤ inactive ¤ thinking

¬negotiating ↔ none-of({open, timedout})

¬negotiating ↔ [B:buyer.send-message] (waiting(B) ⁄ sent(B))

sent(X) ↔ [timeout]timedout ¤ [S:seller.receive]thinking(S) ¤

thinking(S) ↔ [S:Seller.send-response] (sent(S)⁄ inactive(S))

thinking(B) ⁄ inactive(B) ↔ [B:Buyer.send-messagem … B:Buyer.delayd]

(sentm(B) ⁄ waitingm(B) ⁄ timedoutd)

inactive(S) ⁄ sent(B) ↔ [S:seller.receive]thinking(S)

waiting(B) ⁄ sent(B) ↔ [B:buyer.receive-response](thinking(B) ⁄ inactive(B)) ¤

timedout ⁄ waiting(B) ↔ [B.throw-exception] thinking(B)

Theory 5.12ANML Theory for Pair-wise Negotiation

 194

Verification of Protocols

5.13.7 KQML Register in Petri Net

Figure 5.22 KQML Register

Figure 5.22 illustrates how the complexity of a Petri net can escalate from increasing

the richness of a protocol. The figure shows the Petri net for a conversation for the

KQML register performative. The places “Register” and “Done” serve as receipt

locations for messages, after processing by the transitions T1 and T2. A sender agent

sends a message to a receiver with intermediate places to assure that the agents and ID

fields in the response are in the correct correspondence to the initial messages. Figure

5.22 shows a Register conversation in coloured Petri net notation. A register consists

of an initial “register” with no positive acknowledgement but a possible “error” or

“sorry” reply. This registration may be followed by an unacknowledged “unregister”.

See [Cost and al. 1999] for discussion about the coloured Petri net protocol in Figure

5.22. Here we introduce this diagram to show the complexity of a Petri net

conversation centred around one KQML performative.

5.14 Issues about Petri Nets

5.14.1 Reachability Problem in Petri Nets

The reachability problem is one of the most important problems for Petri net analysis.

It is also open to a large amount of variation in definition. Basically four related

 195

Verification of Protocols

reachability problems have been posed: 1) The reachability Problem 2) The

submarking reachability problem [Wanatabe and al. 1989]. 3) The Zero-Reachability

Problem (if the specific marking with zero tokens in all places is reachable). (4) The

Single-Place Zero-Reachability Problem (if it is possible to empty all the tokens out of

a particular place).

It has been shown that the reachability problem is decidable although it takes at least

exponential space and time to verify in the general case. [Kosaraju 1982] and [Mayr

1984]. Reachability is an important problem, but not the only remaining problem for

Petri nets. Liveness (related to deadlock) has received much attention in the Petri net

literature.

5.14.2 Sub-Protocols

Figure 5.23 Example of an initial Petri net [Koning and Huget 2001]

Figure 5.24 Piece of Petri net to add [Koning and Huget 2001]

 196

Verification of Protocols

Figure 5.25 Resulting Petri net [Koning and Huget 2001]

Koning and Huget [2001] argue that Petri nets do not allow replacing a piece of

protocol by another and thus are not suitable for reusability of protocols. For

replacing of sub-protocols, Petri nets requires searching for the beginning and end of

the parts to be replaced. They also claim that it is difficult to identify the exact

semantics of these protocol parts. “For instance, in a high-level Petri net it is

necessary to search for the place to be modified and to take the token into account

since one cannot readily replace a portion of it by another. This poses some problems

for firing transitions.” [Koning and Huget 2001].

Combining protocols thus amounts to linking the output of one component to the

input of the next one. Concatenating a high-level Petri net to another one imposes to

take into account and probably modify the marking (the way tokens are placed) in

order to prevent some transitions from becoming not fireable. For example, if an

initial Petri net only bears m tokens whereas n are awaited (n>m), it becomes

impossible to cross such transition. The problem is the same with colored Petri nets

where variable names must be altered. [Koning and Huget 2001].

An example is given in Figure 5.23, Figure 5.24 and Figure 5.25. For the Petri net

representation of a protocol given in Figure 5.23, replacing the doted area by the

portion given on Figure 5.24 requires to modify the variables’ name and change the

tokens in order to produce the protocol shown in Figure 5.25. On the other hand, for a

same interaction protocol defined in ANML, the hierarchy between states can allow

abstraction of the state and easy replacement of a state.

 197

Verification of Protocols

5.14.3 Conclusions about Petri Nets for Interaction Protocols

The above analysis shows that Petri nets (including high-level or coloured) are not

ideal for representing agent interaction protocols. The notation does not express

hierarchy of states and thus does not facilitate reuse, abstraction or modification of

protocols and sub-protocols as discussed in [Koning and Huget 2001].

Petri nets are found not to be scalable as can be seen in Figure 5.21 and Figure 5.22.

Compared to the AUML or ANML specification of the Request protocol, its Petri net

specification is more complicated. There is an issue of whether to separate the Petri

nets according to the roles in the interaction leading to repeated specification of

similar parts of a protocol. The issue also arises about shared places.

Processes are not explicit in Petri nets, but rather have to be deduced and named from

the arcs between places and transitions. States and processes are not given equal

status in Petri net notation and we cannot reason about the state of a negotiation as

what the agents believe to hold at an instance of a negotiation. It is easier to

understand states and processes than places that represent both.

As such the Petri nets have to be extended to the agents domain to show them

performing processes, firing a transition or enabling a place. In [Cost and al. 1999],

Figure 5.21, agents are represented vaguely as places, but without binding the agent to

a particular instance or role.

Alternation or exclusion between executing processes are not captured with Petri nets

notation. For example execution of either one of two or more transitions (process

alternation) leading to the same state. In another case, Petri nets cannot show that an

agent can only choose and execute one process among several possible ones.

Section 5.13 shows how synchronisation between processes as possible in Petri nets

are captured in an extension of ANML. The processes that merge or fork are related

to the parent processes.

 198

Verification of Protocols

 199

A class of problems arises from optimisation considerations for Petri nets. If a Petri

net exhibits a certain behaviour, as indicated by its set of transition firing sequences

and its reachability set, can the Petri net be changed (optimised) without affecting its

behaviour? This may involve deleting dead transitions (which can never be fired) and

dead places (which can never be marked) or perhaps the redefinition of some

transitions and has led to a number of related work.

5.15 Summary

In this chapter, existing protocols are verified and their corrected versions represented

in ANML. It is found that the AUML notation is an error-prone, informal and

ambiguous methodology for representing protocols. The complexity of AUML IPs

increases drastically for even simple protocols like the bilateral protocol. AUML is

not suitable for representing n-m interactions with time and history management in a

multi-agent system. The corresponding protocols given in the ANML meta-language

has been subject to a number of verification cycles for correctness. Then protocols in

Petri nets notation are analysed and compared with ANML protocols. There is no

doubt that there are other effective notations like Petri nets, but we do not follow them

because they are far from the logical work of interest in this thesis.

In addition to functional correctness, a logical theory for a protocol enables us to

address properties such as termination, fairness, safety and liveness. The next chapter

analyses protocols for these latter properties.

6 The Properties of a Protocol

6.1 Introduction

As shown in the previous chapter protocols must be verified for correctness. In

addition, interaction protocols can be designed and analysed for other desirable

properties such as safety and liveness. A safe and sound interaction allows no

unpredictable states and transitions, and negotiation states that become valid are those

that are defined by the protocol and none other. A liveness property asserts that a

process eventually enters a desirable state and that there are no deadlocks. There is a

relationship between liveness, termination, soundness and safety properties. A safety

property asserts that nothing bad happens and termination asserts that something

happens so both can be used to partly derive liveness.

Expressing a protocol as a logical theory enables the proof of its correctness and its

properties. This chapter focuses on specifying and proving safety and liveness

properties of negotiation protocols expressed in ANML, [Paurobally and Cunningham

2002b]. The properties of a protocol are expressed as axioms in ANML, enabling to

check whether a property holds in the logical theory of a protocol. Axioms are

defined for termination, soundness, liveness, serialisability, completeness, security,

reliability, fairness, decidability and stability properties. These properties can be used

to choose between protocols or a protocol amended to exhibit given properties.

Termination and soundness are sub-features of the safety property. Possible

sequences of actions are analysed in order to prove liveness. A negotiation terminates

if it can be proved that all paths in a protocol lead to a terminal state without getting

stuck in an infinite loop. A safe and sound negotiation contains no unpredictable

states and actions and states that become valid are those that are defined by the

200

The Properties of a Protocol

protocol and none other. Liveness and termination properties cover the absence of

deadlock and livelock. As an example, the properties of the bilateral protocol,

specified in previous chapters, are proved through mostly structural induction, though

other methods such as invariants and proof lattices may also be used, [Keller, 1876;

Lamport, 1980; Sistla 1994].

6.2 Safety and Liveness properties – A survey

Safety and liveness properties, [Lamport 1977], have been extensively studied in the

verification of concurrent programs. A safety property asserts that something bad

never happens, i.e. the program never enters an unacceptable state. A liveness

property expresses that something will eventually happen i.e. the program eventually

enters a desirable state. Other properties may be classified into safety and liveness

properties, which allows for choosing a suitable proof method to show that a program

exhibits a particular property. Alpern and Schneider, [Alpern and Schneider 1985],

give a formal definition of both safety and liveness properties, where a decomposition

theorem proves that every property can be represented as the conjunction of a safety

and a liveness property. Safety properties include partial correctness, mutual

exclusion and absence of deadlock. Partial correctness states that from a true

precondition a process never terminates with a false post-condition, [Owicki and

Lamport, 1982]. Partial correctness may be the only safety property that is required in

sequential programs. Mutual exclusion means that two different processes are never

both in their critical section where only one process can be. A liveness property

includes program termination which is usually proved through induction. Liveness

may also mean absence of livelock or the existence of cyclically recurring states.

Fairness is an important aspect of liveness in concurrent processes. It implies that

every process gets a chance to make progress. Sistla, [Sistla 1994], introduces the

notions of strong safety and absolute liveness. Strong safety indicates a safety

property which is closed under stuttering i.e. the property is insensitive to successive

repetition of any state of a sequence. [Chang and al. 1992], propose a classification as

a hierarchy of properties where the higher levels provide the finer distinction of

different liveness properties. Their approach is motivated by the different techniques

for proving the properties at the different levels, [Kindler 1994].

 201

The Properties of a Protocol

Different techniques are used to prove safety and liveness. Owicki and Lamport,

[Owicki and Lamport, 1982], use proof lattices or well-founded induction to prove

liveness properties. Methods based on global invariants have been used to prove

safety properties, [Manna and Pnueli, 1995]. Temporal logics has been proposed by

Pnueli, [Manna and Pnueli, 1995; Pnueli, 1977], for the specification and verification

of concurrent programs since it provides a convenient language for expressing

properties of reactive systems. A safety property may be expressed by a formula such

as �p, [Manna and Pnueli 1995], i.e. p is true at every accessible state of the system.

This has been followed by several versions of temporal logics in the field, [Burstal,

1974; Lichtenstein and al. 1985; Manna and Sipma, 1998; Sistla and Clarke, 1985].

Other verification techniques for proving properties include deductive verification,

[Gordon and Melham, 1993], verification diagrams, [Bjorner and al. 1999], model

checking and abstraction, [Bjorner and al. 1999; Shostak, 1984]. Model checking

tools can verify properties of finite-state systems while deductive tools verify infinite

state systems. Verification rules or model checking may use theorem-proving and

invariants to prove temporal properties. Abstraction allows proving properties over

an abstract system and then inferring the validity of a related property over a larger or

more complex concrete system, [Bjorner and al 1999].

6.3 Some General Properties of Protocols

In transition systems, a state is an interpretation of system variables and a transition is

a function mapping a state into a set of successor states. A computation is an infinite

sequence of states. Computational methods are used for proving a protocol’s

properties.

6.3.1 Safety

One or more safety properties must be proved in order to prove a liveness property.

Proofs by induction or invariants are mostly used, though other methods may be used,

[Lamport 1980a, Keller 1976, Sistla 1994]. Any assertion that describes a superset of

the reachable states of a system may be an invariant. To prove an invariant, which is

a condition or state of affairs, it can be shown that at state s1, the invariant is true and

execution of an atomic action from s1 leaves the invariant true. This chapter adopts

such an approach for proving some of the properties of a protocol. Work on

 202

The Properties of a Protocol

generating invariants can be found in [German and Wegbreit 1975]. A property

expressed as the formula �p is an invariant if p is an assertion.

In ANML, a safety property is defined as P → [a]Q, where P and Q are assertions

about the state of the system or negotiation and Q is the invariant. If the negotiation

starts with P being true, then Q is always true after any action. Proving that Q is an

invariant requires reasoning about programs. This can be proved inductively by

proving that the invariant Q holds initially and is preserved by every atomic action

and hence transition in the ANML protocol. Executing a single atomic action yields

a new state in which either the invariant is true or the safety property does not hold. If

N is the entire negotiation, then I → [N] I means that I is an invariant that is true

before and after the negotiation.

6.3.2 Partial Correctness

Partial correctness means that if an interaction starts with a precondition being true, it

can never terminate with a false postcondition. In an ANML protocol, the initial state

before starting a negotiation is ¬(outermost parent state of the negotiation). e.g. The

overall parent state a bilateral negotiation is negotiating which contains open and

closed as sub-states. The parent state of all states in a multilateral negotiation is

multi-lateral. The postcondition for a negotiation usually consists (not entirely) of

ending in a terminal state e.g. closed.

In ANML, partial correctness then allows statement of: ¬(parent state) ↔ [Agent-

group. negotiation-process] terminal state. For example, in a promissory negotiation

p between agents X and Y, partial correctness would be ¬promised ↔ [{X,Y}.(p:

promissory-negotiation(¬promised)] p>>closed.

6.3.3 Liveness

In order to exhibit liveness, a negotiation must either eventually terminate after a

process or the entire negotiation halts in a state in which execution of a finite number

of actions complete the negotiation. Liveness can be inductively proved by assuming

that atomic actions always terminate and that after executing a process, it is always

possible to complete the execution of a negotiation. Liveness entails that if a

 203

The Properties of a Protocol

negotiation reaches a certain state, then any atomic action executable from that state

can eventually be performed and terminated. The states and actions are defined in the

protocol.

6.4 Definition of Properties

This section defines properties that may be useful in choosing between protocols by

analysing how transitions between states satisfy or violate such properties. Ten

possible properties of a protocol are presented: termination, safety and soundness,

liveness, serialisability, complexity, completeness, security, reliability, consistency

and decidability. The list is by no means complete and protocol designers may

specify and prove other properties for their protocols.

An ANML protocol may be represented as a graph with states as nodes, atomic

processes as edges and a compositional process as a path. An ANML protocol is

analogous to a directed graph of possible states and transitions towards a terminal

state. An execution of a negotiation process may follow a subset of those paths given

by its protocol. Given the theory of a protocol, the possible states and paths can be

logically derived.

6.4.4 Preliminary Definitions

This section provides preliminary definitions of sets of states and transitions that are

used for specifying and proving properties of protocols. From the syntax of ANML in

chapter 3, let the following notations hold:

The set φ denotes the set of all propositions, w denotes the set of all atomic processes

and Agents denote the set of all agents. (See chapter 3 for the syntactic definitions of

these sets.) A ∈ Fma(φ, w, Agents), a ∈ Proc(φ, w, Agents) where Fma(φ, w, Agents)

is the set of formulae and Proc(φ, w, Agents) is the set of processes. Agents denoted

by X, Y, Xi, Yi are of type Agent_group.

Let ε denote the set of all negotiation states A given by the function Fma(φ, w,

Agents) and let ψ represent the set of all processes a given by Proc(f, w, Agents).

That is let ε = Fma(φ, w, Agents) and ψ = Proc(f, w, Agents). Let µ represent the

theory of a protocol in ANML.

 204

The Properties of a Protocol

state-set = {s,s1: ε | µ ((s ¤ (s1→ s) ¤ (s → s1)) • s }

action-set = {s, s1:state-set, t: w | µ (s →[t] s1) • t}

path-set = {s, s1:state-set, p:ψ | µ (s →[p] s1) • p}

sub-path(p1, p2) ↔(∃ p3 , p4∈path-set (p4; p1; p3 = p2))

The notation ASet = {x, x1, …: Type | cond • x } is read as ASet is a set where if x, x1,

… are of type Type (e.g. real numbers) and the condition cond is true, then the

elements of ASet are x.

The set state-set denotes the set of negotiation states possible in protocol µ, containing

parent or sub-states. The set action-set denotes the set of atomic transitions defined in

the protocol µ. A process is a path containing allowed transitions. The set path-set

denotes the set of possible paths in protocol µ. The set of paths, path-set, consists of

the processes in action-set related with ANML connectors through the function

Proc(state-set, action-set, Agents). It is useful to define the function sub-path which

returns true if p1 is a sub-path of p2. The above definitions are used in the rest of this

chapter for defining properties that can be exhibited by a protocol.

The following predicates are defined since they also are useful for specifying and

proving the properties of a protocol. The predicate terminating(st) returns true if st is

a terminal state, i.e. no actions are possible from state st.

 terminating(st) ↔ (¬∃ p: path-set, si: state-set ((st → [p]si) ⁄ ¬(st ↔ si))

 where si, st ∈ state-set

The formula (¬∃ p: path-set, si: state-set ((st → [p]si) ⁄ ¬(st ↔ si)) states that no

actions are possible from the terminal state st. There does not exist a path p that leads

from state st to si.

The predicate outermost (s0) returns true if the state s0 is the overall parent state.

 (outermost(s0) iff ∀s ∈ state-set µ (s → s0))

 205

The Properties of a Protocol

An entry process, pe, in a protocol µ can only be performed when the outermost state

is false. The predicate entry(pe) returns true if pe is an entry process.

 ∀s0, ∃s1∈ state-set, pe ∈ path-set (µ

 (outermost(s0) ∧ ¬s0 → [pe]s1) → entry(pe))

6.4.5 Termination Property

Termination analysis, [Codish and Taboc, 1999], attempts to determine whether

evaluation of a given expression will definitely terminate. The evaluations of a

constant or of a non-recursive function terminate, in the case where their sub-

procedures terminate. A recursive function can be shown to terminate if it can be

proved that there is a base case that will inevitably be executed. Termination analysis

gives either a program "definitely terminates" or "don't know". There has been

increasing work in the automatic termination analysis of logic programs, such as

transforming a consistent logic program into a term rewriting system and proving

termination for the latter, [Ganzinger and Waldmann, 1993; Ohlebusch 1999].

Herein, a protocol terminates if it can be proved that a negotiation process complying

with that protocol can eventually reach a terminal state. To do so, it is proved that not

only there is a path leading to a terminal state from all states in a protocol, but also the

stronger requirement that all possible paths lead to a terminal state. A terminal state

may be the sub-state of a parent terminal state e.g. the state rejected is a sub-state of

closed. Therefore all paths must lead to the parent terminal state in a terminating

protocol. The predicate terminal-parent(spt) returns true if spt is the overall parent

terminal state i.e. closed in some protocols.

terminal-parent(spt) ↔ (terminating(spt) ⁄ ∀s: state-set (terminating(s) →

(s → spt))

The predicate terminal-parent(spt) returns true when the state spt is a terminal state and

all other terminal states are sub-states of spt.

Termination Property for protocol µ:

 µ ∀s, spt: state-set ∃ pt :path-set ((terminal-parent(spt)) → (s → [pt] spt))

 206

The Properties of a Protocol

The termination property states that from all states s in a protocol µ, all possible paths

ps lead to a parent terminal state spt, by following ps with pt. It is assumed that an

atomic transition in an action-condition rule terminates by nature of being atomic.

A stronger termination property specifies that all executions reach a parent terminal

state, without getting stuck in an infinite communication loop. The strong termination

property holds if the above termination property holds and no states is revisited

infinitely.

Strong Termination Property for protocol µ:

 µ ∀s, s1: state-set ¬∃ p :path-set (s → [p>1] s1)

 where si, st ∈ state-set

6.4.6 Soundness

A safety property asserts that a program never enters an unacceptable state.

Soundness can be considered as a sub-property of safety and implies that a process

terminates properly and there are no references to undefined states. A safe and sound

negotiation is defined as containing no unpredictable states or actions and the

negotiation states that become valid are those that are defined by the protocol and

none other. Valid negotiation states mean the current states of negotiation which are

true at that point and are known by all participants to be true. All states other than the

current state and its parent states are false. All states and allowed actions are well-

defined and as expected at all instances. For example, if there is a model that gives

blue and red pens, then the soundness property states that only red and blue pens are

obtained and no others.

Soundness property for protocol µ: ∀ A: ε ((µ A) → (µ A))

If the protocol µ is sound, then a negotiation instance δ does not yield any states,

processes or transitions other than those defined by µ.

 207

The Properties of a Protocol

The proof sequence (µ A) defines a possible state or state transition inferred in a

negotiation instance and this is valid only if it is entailed by the model of the protocol

µ. A process p in a state transition A could be a null process in which case the

formula A defines a relation between states and sub-states.

The soundness property between a protocol, µ, and a process, δ, which is an instance

of µ, can be clarified as below:

 µ (s0 ↔ ([a1]s1 ¤….¤ [an] sn)) → ¬(δ (s0 →([az] sz))

 where z > n)

 for all states s0 to sn ∈ state-set, a1 to an ∈ path-set, sz: ε and az: Ψ

Soundness ensures that only the actions defined by a protocol may be executed and

none other. The rule s0 ↔ ([a1]s1 ¤ ….¤ [an]sn gives the possible state transitions

from state s0. The implication ¬(δ (s0 → ([az]sz)) where (z > n) ensures that no

transitions other than those defined by the protocol µ are possible in process δ. An

example of a protocol not being sound is if it asserts that rejected and agreed are

mutually exclusive states and yet a negotiation instance has both agreed and rejected

as true. A negotiation which is in the state xanadu where xanadu is undefined by its

logical theory may be due to an unsound protocol.

6.4.7 Liveness

A liveness property asserts that something eventually happens and that is there is no

deadlock. Safety properties describe allowed behaviour while liveness properties

describe required behaviour. A liveness property and termination ensure the absence

of deadlock and livelock. In a non-deadlocked process, after an action X, another

action Y can occur to change a non-terminal state. To prove liveness and the absence

of deadlock, the behaviour of an execution is defined and the possible sequences of

actions are analysed. In a protocol, an agent either starts the negotiation process or

responds to a previous action, both of which may possibly change the current state

and produce a deadlock. In case of deadlocks, ANML easily allows addition of the

occurrence of internal events such as timeout or overdue.

 208

The Properties of a Protocol

Liveness property for protocol µ: µ╞ ∀ si :state-set, ai :path-set (s0 ¨ [X1.a1]s1 ¤ …. ¤

[Xn.an]sn) → ¬∃ b: path-set (((Y.b ?;Xi .ai) ⁄ (X i.ai ?; Y.b)) ¤ [timeout]Z)

 where 0 ≤ i ≤ n , Y and Xi ∈ A_group

A liveness property asserts that it is not the case that an agent (or a group of agents) X

waits for another agent (or group of agents) Y to proceed while Y is waiting for X.

Otherwise there is deadlock and none of the agents are able to proceed in their

execution since they are waiting for each other. In the formula ((Y.b ?; Xi .ai) ⁄ (Xi.ai?

; Y.b)), to do process ai, agent Xi must wait for agent Y to perform process b. At the

same time, for agent Y to perform process b, it must in turn wait for agent Xi to

perform process ai. The only option would then be termination of the process through

a timeout event. A protocol µ satisfies the liveness property if the liveness property

applies for all possible states, St., and paths Pt. in that protocol where St. ∈ state-set,

Pt.∈ path-set. There can be additional constraints to deadlock avoidance when

defining the liveness property.

6.4.8 Serial, Ordered and Serialisable

The serialisability property originates from multi-user database transactions where

entire transactions are treated as single atomic units with respect to each other. The

atomicity of transactions is enforced by ensuring that interleaved execution of

concurrent transactions remains serialisable, [Eswaran and al. 1976]. A schedule S is

serial if, for every transaction T participating in the schedule, all of T's operations are

executed consecutively in the schedule; otherwise it is called non-serial. This is

equivalent to a path consisting of a sequence of sub-processes. A schedule S of n

transactions is serialisable if it is equivalent to some serial schedule of the same n

transactions.

Serial property for protocol µ:

 µ ∀ si :state-set, ai :path-set (s0 → [a1;…; an]sn ⁄ ¬sub_path(pi , pk))

 → ¬(si → [pi] sj ⁄ [pk]sk)

 where (0 § i, j, k § n)

 209

The Properties of a Protocol

for all states s0 ,s1, sp , sq ∈ state-set, and a1 to an , p1 to pn ∈ path-set.

A protocol is serial if all its derivable paths are executed sequentially and there are no

parallel executions.

A protocol is ordered if the sequential processes in a path cannot be out of order or in

parallel. If from state s, agent X executes a process followed by agent Y, then the

protocol is ordered if it is not permitted for Y to execute its process before or in

parallel with X.

There is a similarity between non-serialisable database transactions and ordered paths

in a negotiation. In both cases, there is a sequence of execution that needs to be

respected so as to safeguard the integrity of the overall process. The ordered property

is respected if none of the sequential processes can occur in parallel.

Ordered property for protocol µ:

 µ ∀ si :state-set, ai :path-set ((s0 → [a1;…; an]s1) → ¬ (s0 → [ai ; ….; aj] s1)

 where (0 § i,j § n) and i ..j is not equivalent to 1..n

 for all states s0 to s1 ∈ state-set, and a1 to an ∈ path-set.

The formula (s0 → [a1;…; an]s1) entails that the execution of the path p = (a1;…; an)

leads from state s0 to s1. The formula ¬(s0 → [ai ; ….; aj] s1) implies that the sub-

processes of the path p cannot be executed in any other order.

Serialisability may be considered as contrary to the ordered property since a path

(a1;…; an) is serialisable iff there exists another path equivalent to it but with (a1;…;

an) in a different order.

Serialisability property for protocol µ:

 µ ∀ si :state-set, ai :path-set ((s0 → [a1;…; an]s1) ↔ (s0 → [ai ; ….; aj] s1)

 where (0 § i,j § n) and at least one of the numbers in i..j is not equivalent to

its corresponding number in 1..n

 for all states s0 to s1 ∈ state-set, and a1 to an ∈ path-set.

 210

The Properties of a Protocol

6.4.9 Completeness

In software engineering, completeness defines the degree to which all the parts of a

software system or component are present and each of its parts is fully specified and

developed, [Boehm and al 1978]. In state automata, completeness depends on the

extent of possible inputs for which the output is defined. In practice, completeness of

a system is defined with respect to an application. An example is the case of a failure

detector. The failure detector satisfies a completeness property if it detects whenever

a process is faulty. There are cases of strong and weak completeness where strong

completeness means that eventually every process that crashes is permanently

suspected by all detectors. Weak completeness entails that eventually every process

that crashes is permanently suspected by some detector, [Panconesi 1997].

Completeness of a system A with respect to model B occurs if A can reach every

conclusion which is true in B. The dual to completeness is soundness. If a model

yields red and blue pens, the completeness property ensures that the model will give

both red and blue pens.

In an ANML theory of a protocol, the completeness property asserts that at any point

the truth value of a state and state transitions are either true or false and thus defined

at all times. If a protocol, µ, declares states or paths to be possible then in a

negotiation instance, g, the states and paths and their implications are possible.

Completeness property for protocol µ: ∀ A: ε (µ ╞ A → µ A)

Since it is not possible to have undefined states in a complete protocol, the formula ((s

¤ ¬s) ⁄ ((s → [p] s1) ¤ ¬(s → [p] s1)) would not hold, where s and s1 are states and p

is a process. If a protocol, µ, allows a formula to be valid, then it holds also in a

process, γ, i.e. (µ A) → (g A).

6.4.10 Non-Arbitrary Restart

Non-arbitrary restart is a sub-feature of the safety property. This property asserts that

a negotiation cannot be arbitrarily restarted. Therefore a protocol is secure if entry

processes can only be performed before starting a negotiation. Some protocols allow

 211

The Properties of a Protocol

restarting from a specific state. The outermost state of a process is always true once

the process has started and is false before starting a process. All other states in a

protocol are sub-states of the outermost state. The state s0 is the overall parent state if

outermost (s0). An entry process, pe, in a protocol µ is possible when the outermost

state is false. The predicate entry(pe) returns true if pe is an entry process.

Non-arbitrary restart Property for protocol µ:

 ¬∃si, sj∈state-set, ∀pe∈path-set(µ (entry(pe) ∧ ¬outermost(si) ∧ si → [pe] sj))

The above property asserts that it is not possible to execute the entry process pe from

the state si, where si is not the outermost parent state. Parameterisation of states

ensures that processes are executed by the required participant. For example, X

cannot agree to its own offer in a bilateral negotiation and this is enforced by a

protocol.

A protocol that never allows an agent to perform two consecutive actions without a

transition from another agent could include the following rule:

Non-consecutive property for protocol µ:

∀s, s0, s1∈ state-set, p, p0 ∈ path-set (µ (s0 → [Y.p0] s) ∧ (s → [X.p]s1) → ¬(X= Y))

6.4.11 Reliability

A system is reliable if it consistently produces the same results, preferably meeting or

exceeding its specifications. There are several approaches to classifying the reliability

properties of real-time systems e.g. ultra-reliable and fault-tolerant systems, hazard

analysis and system safety or the distinction between security and safety, [Rushby

1994]. In protocol design, reliability can be defined as an extension of safety, security

and liveness properties. A reliable protocol entails that a negotiation process g will

eventually achieve its goal. Therefore, in a reliable protocol, there is a possible path

to a goal state g, yielding reachability of the goal state.

Reliability Property for protocol µ:

 212

The Properties of a Protocol

 ∀s,g: state-set(µ ∃p:path-set (goal(g) → (s → <p>g)))

The predicate goal(g) means that state g is a goal state. The formula (s → <p>g) is

read as in the negotiation process, there is a possible path p to the goal g from any

state s. If ¬s is the state of a negotiation at the start, then all possible paths are equal

to or a subset of path p. If path p can lead to goal g, this implies that there is a

possible path leading to goal g.

6.4.12 Consistency

Consistency means that formulae A and ¬A cannot both be valid. A protocol is

consistent when for all states A, either A or ¬A is true and it is never the case that (A ⁄

¬A). A consistent protocol contains no contradiction or undefined states.

Consistency property for protocol µ: ∀ s ∈ state-set (¬ (µ (s ⁄ ¬s)).

6.4.13 Non-Concurrent Processes

A process is concurrent when two states that do not have the same direct parent can be

true simultaneously. A process is not concurrent if two states without the same direct

parent cannot be true simultaneously. For example, proposed and requested in a

bilateral negotiation cannot both be valid at the same step.

Non-concurrent property for protocol µ:

 ∀s0, s1, ... ,sn ∈ state-set (µ (s0 ↔ one-of({s1, …, sn})) ⁄ ¬(i = j) → ¬(si⁄sj)

) where 0 § i,j § n

The above property means that if the protocol µ has defined states s1 to sn not to have

a direct parent, then two or more of these sibling states cannot both be true.

6.4.14 Decidable

A decision problem is decidable if it can be solved by an algorithm that halts on all

inputs in a finite number of steps. Decidability is valid if there exists a computational

 213

The Properties of a Protocol

process that solves the problem in a finite number of steps. A protocol, µ, is

decidable if it exhibits both strong termination and liveness properties.

Decidable property for protocol µ: µ strong termination and liveness properties.

6.5 Proving the Properties of the Bilateral Protocol

The bilateral protocol, Theory 6.1, is used, as an example to show how the properties

of a protocol may be proved or the protocol designed to exhibit certain properties.

We analyse and prove whether each of the properties defined in section 6.4 hold in the

bilateral protocol. In most of the cases, a proof is provided using structural induction

over states and processes.

[{X , Y}.(b:bilateral-protocol(¬negotiating))] b>>closed

negotiating ↔ one-of ({ open, closed }) (1)

open ↔ one-of ({ requested, offered }) (2)

closed ↔ one-of ({ agreed, rejected, timeout }) (3)

proposed(X) → offered(X) (4)

¬negotiating ↔ none-of ({ open, closed }) (5)

¬open ↔ none-of ({ requested, offered }) (6)

¬closed ↔ none-of ({ agreed, rejected, timeout }) (7)

¬negotiating ↔ [X.initial_request]requested(X) ¤ [X.initial_offer]

(offered(X) ⁄ ¬proposed(X)) ¤ [X.initial_propose] proposed(X) (8)

requested(X)↔ [Y.offer] (offered(Y) ⁄ ¬proposed(X)) ¤ [Y.propose]

proposed(Y) ¤ [Y.suggest] requested(Y) ⁄ Ÿ(X= Y). (9)

offered(X) ↔ [Y.agree] agreed(Y) ⁄ Ÿ(X= Y). (10)

proposed(X)) ↔ [Y.request] requested(Y) ⁄ Ÿ(X=Y). (11)

open ↔ ([{X,Y}.reject] rejected ¤ [timeout]timedout ¤ [offered(X))?;

Y.agree] agreed(Y)) ⁄ Ÿ(X=Y). (12)

Theory 6.1 Logical Theory of Bilateral Protocol

In the bilateral protocol, the set of states, state-set = {negotiating, requested, offered,

proposed, closed, rejected, timedout, agreed, open}

 214

The Properties of a Protocol

The set of atomic transitions in the bilateral protocol is action-set = {initial_offer,

initial_request, initial_propose, offer, request, suggest, propose, agree, reject,

timeout}

The set of paths, path-set, consists of the processes in action-set related with ANML

connectors through the function Proc(state-set, action-set, {X,Y}).

6.6 Termination

Termination Property for protocol µ: µ ∀s, spt: state-set ∀ps:path-set ∃ pt :path-set (

 (terminal-parent(spt)) → (s → [ps ; pt] spt))

 where si, st ∈ state-set

In the bilateral protocol, the state closed is a terminal parent state. Termination of the

bilateral protocol is proved by showing that from any state all paths lead to the closed

state. The sub-paths from a given state to closed are first derived from the bilateral

protocol.

The simplest sub-paths to a successful or unsuccessful closed state consists of an

atomic transition and are given by {X,Y}.exit_paths = X.agree » X.reject » timeout.

The path {X,Y}.exit-paths represents the possible actions leading to the closed state in

a negotiation between agents X and Y. Either agent can agree, reject or a timeout can

occur. The sub-path to a closed and failed state is given by the process {X,Y}.

unsuccessful_exit = X.reject » timeout. Either agent can reject or a timeout can occur.

According to the protocol, unsuccessful_exit transitions may be chosen at any point in

a negotiation. The relation between the process exit_paths and the process

unsuccessful_exit is given by {X,Y}.exit_paths =X.agree » unsuccessful_exit. The

path {X,Y}.exit_paths terminates because it consists of atomic actions leading to the

closed state.

The logical theory of the bilateral protocol is analysed so as to derive the possible

paths to the closed state from all of its open states. The paths from_offered(X),

 215

The Properties of a Protocol

from_proposed(X), from_requested(X) lead to a closed state from the open states

offered(X), proposed(X) and requested(X) respectively.

from_offered(X) = offered(X)?; (Y.agree » X.reject » Y.reject » timeout)

= offered(X)?; exit_paths

from_proposed(X) = proposed(X)?; ((Y.request; from_requested(Y)) » Y.agree »

X.reject » Y.reject » timeout)

= proposed(X)?; ((Y.request; from_requested(Y)) » {X , Y}.exit_paths)

from_requested (X) = requested(X)?; ((Y.offer; from_offered(Y)) » (Y.propose;

from_proposed(Y)) » (Y.suggest;from_requested(Y)) » X.reject » Y.reject »

timeout)

The above 3 paths are the possible paths from an open sub-state to the closed state.

An abstract compositional path can now be deduced for a negotiation process by

following an entry to an open negotiation with all possible paths to a closed state i.e.

negotiation-paths = entry-actions; paths-to-closed. There are 3 entry actions as given

in the protocol and the paths-to-closed are given above. It is left to prove that

negotiation-paths terminates, thereby proving that all paths lead to the closed state

and that the bilateral protocol shows the termination property.

negotiation_paths = (X.initial_offer; from_offered(X)) » (X.initial_propose(X);

from_proposed(X)) » (X.initial_request;from_requested(X))

Each sub-path occurring after the entry actions in negotiation_paths is first expanded

and simplified for the purpose of expressing negotiation_paths in terms of entry and

exit paths.

In from_requested, the paths from_offered and from_proposed are replaced with their

sub-paths. The process (X.reject » Y.reject » timeout) is equivalent to unsuccessful

exiting i.e. unsuccessful_exit.

from_requested(X) = requested(X)?; (

 216

The Properties of a Protocol

(Y.offer; offered(Y)?; {X,Y}.exit_paths) »

(Y.propose; proposed(Y)?; ((X.request; from_requested(X))»

{X,Y}.exit_paths)) »

(Y.suggest;from_requested(Y)) » unsuccessful_exit)

Assuming all atomic actions terminate and that the corresponding state holds after an

atomic action i.e. the process X.doaction; doneaction? can be abbreviated to X.doaction.

For example, the process X.propose; proposed(X)?; Y.do_action is abbreviated to the

process X.propose;Y.do_action. The testing of proposed(X)? after X.propose can be

omitted because the test always succeeds by virtue of the preceding atomic action

X.propose terminating. Hence the tests that are successful, because of the previous

atomic action that precedes them, are removed from the process from_requested(X).

from_requested(X) = requested(X)?; (

(Y.offer; {X, Y}.exit_paths) »

(Y.propose; ((X.request ; from_requested(X)) » {X, Y}.exit_paths)) »

(Y.suggest; from_requested(Y)) » unsuccessful_exit)

Distributing Y.propose over the union operator in ((X.request; from_requested(X)) »

{X, Y}.exit_paths) gives

from_requested(X) = requested(X)?; (

(Y.offer; {X, Y}.exit_paths) »

(Y.propose; (X.request ; from_requested(X))) »

(Y.propose; {X, Y}.exit_paths) »

(Y.suggest;from_requested(Y)) » unsuccessful_exit)

The path from_requested is further simplified by distributing and grouping the terms

with exit_paths and from_requested along the set operators. For example

(Y.offer;{X, Y}.exit_paths) » (Y.propose;{X, Y}.exit_paths) is equivalent to

(Y.offer » Y.propose); {X, Y}.exit_paths

from_requested(X) = requested(X)?; (

((Y.offer » Y.propose); {X, Y}.exit_paths) »

 217

The Properties of a Protocol

(((Y.propose; X.request) » Y.suggest); from_requested(Z))

» unsuccessful_exit) (f_r1)

The path from_requested(X) has a nested from_requested path and is therefore an

iterative path set. Currently the path from_requested(X) is in the form m = r?; ((a »

b;m) » c) i.e. m = r?;(d » b;m) = r?; (d;b*). Using this equation, the termination of

from_requested(X) is explained.

The test r? denotes requested(X)? and terminates since it is just a logical test. The

process a denotes ((Y.offer » Y.propose); {X, Y}.exit_paths). The process a

terminates since both its atomic processes, Y.offer and Y.propose, terminate and are

followed by exit_paths. The process b denotes (Y.propose; X.request) » Y.suggest.

The process b terminates as its 3 sub-processes are atomic. The process c is

unsuccessful_exit and terminates being exit paths with atomic actions. Thus in the

expression m = r?; ((a » bm) » c), the paths a, b, c and r terminate.

The process m denotes from_requested and is a recursive path equation. Following

the earlier definition of termination for a recursive function, the base case is the

process d - ((Y.offer » Y.propose); {X, Y}.exit_paths) » unsucessful_exit. This base

case terminates as all its sub-paths terminate. The path m=r?; (d;b*) can be solved

using algebra and thus all paths in the process from_requested lead to a terminal state.

The termination property holds for the process from_requested.

The process negotiation_paths is similarly simplified by substituting for

from_proposed and from_offered with their sub-paths as follows:

negotiation_paths = (X.initial_offer; from_offered(X)) »

(X.initial_propose; from_proposed(X)) »

(X.initial_request;from_requested(X))

= (X.initial_offer; offered(X)?; exit_paths)

» (X.initial_propose; proposed(X)?; ((Y.request; from_requested(Y)) »

 {X, Y}.exit_paths))

 » (X.initial_request; from_requested(X))

 218

The Properties of a Protocol

Grouping terms over from_requested and exit_paths and removing redundant state

testing yields

negotiation_ paths = ((X.initial_offer » X.initial_propose) ; {X, Y}.exit_paths) »

((X.initial_request » (X.initial_propose; Y.request)); from_requested(Z))

The termination property has been shown to hold for the path from_requested(X). All

the other sub-paths in negotiation_paths terminate being atomic transitions or exit

paths. Therefore all paths in negotiation_paths lead to closed state. QED.

The expression negotiation_paths is further manipulated to show an interesting

representation in terms of entry and exit paths. Replacing the process from_requested

in negotiation_paths with its sub-paths from (f_r1) produces

negotiation_ paths = ((X.initial_offer » X.initial_propose) ; {X, Y}.exit_paths) »

((X.initial_request » (X.initial_propose; Y.request)); requested(X)?; (

((Y.offer » Y.propose); {X, Y}.exit_paths) »

(((Y.propose; X.request) » Y.suggest); from_requested(Z))

» {X, Y}. unsuccessful_exit))

Let one entry-point in a negotiation be called entry-point1 where entry_point1 =

X.initial_offer » X.initial_propose. Let the second entry-point to a negotiation into a

requested state be entry_to_requested where the path entry_to_requested =

X.initial_request » (X.initial_propose; Y.request). For clarity let {X, Y}.exit_paths be

abbreviated to the path exit_paths and the path {X,Y}.unsuccessful_exit be

unsuccessful_exit. Using these two entry points in a negotiation, removing any

redundant terms, testing in the expression negotiation_paths and distributing

entry_to_requested over the sub-paths of from-requested gives

negotiation_ paths =

entry_point1; exit_paths »

(entry_to_requested; (Y.offer » Y.propose) ; exit_paths) »

 219

The Properties of a Protocol

(entry_to_requested ; ((Y.propose; X.request) » Y.suggest);

from_requested(Z)) » (entry_to_requested ; unsucessful_exit)

Let paths to an offered state be denoted by to-offered where the offered state follows a

requested state. to-offered = entry_to_requested; (Y.offer » Y.propose)

Let to_requested denote the sequence for entering in a requested state, excluding

through an entry action, to_requested = ((Y.propose; X.request) » Y.suggest).

The process negotiation_paths can be further simplified as follows:

negotiation_ paths =

((entry_point1 » to-offered); exit_paths) »

(entry_to_requested ; ((to_requested; from_requested(Z)) »

unsuccessful_exit))

In the process negotiation_ paths, the path ((entry_point1 » to-offered); exit_paths)

terminates since ultimately exit_paths are followed and since both entry_point1 and

to-offered, containing no iteration, terminate. In the path

(entry_to_requested ;((to-requested; from_requested(Z)) » unsucessful_exit))

 the sub-paths entry_to_requested, to-requested, unsuccessful_exit all terminate

because they do not contain iteration. It has previously been shown all the paths in

from_requested, which is the recursive part of a negotiation, lead to a terminal state.

Hence all the sub-paths in negotiation_ paths lead to a terminal (closed) state, as

shown earlier.

On examining the latest expression for negotiation_paths, it can be seen that it

consists of direct termination via the offered state and a recursive path through the

requested state. The base case is ((entry_point1 » to-offered); exit_paths) showing

that a negotiation ultimately passes through the offered state for successful exit paths.

The recursive case concerns entering and iterating in the requested state via the

sequential path

(entry_to_requested; ((to_requested; from_requested(Z)) » unsuccessful_exit)).

Thus the bilateral protocol exhibits the termination property: from all states, all

possible paths may lead to a terminal state.

 220

The Properties of a Protocol

6.7 Strong Termination

Strong Termination Property for protocol µ: µ ∀s, spt: state-set ¬∃ pt :path-set (

terminal-parent(spt) ⁄(s → [pt*] spt))

 where si, st ∈ state-set

The strong termination property asserts that there is no iteration in a process. In the

path negotiation_ paths, where

negotiation_ paths =

((entry_point1 » to-offered); exit_paths) »

(entry_to_requested ; ((to_requested; from_requested(Z)) »

unsuccessful_exit))

The sub-process from_requested is recursive and therefore the bilateral protocol does

not satisfy the strong termination property.

6.8 Liveness

Liveness property for protocol µ: µ╞ ∀ si :state-set, ai :path-set (s0 ¨ [X1.a1]s1 ¤ …. ¤

[Xn.an]sn)

 → ¬∃ b: path-set (((Y.b ?;Xi .ai) ⁄ (X i.ai ?; Y.b)) ¤ [timeout]Z)

 where 0 ≤ i ≤ n , Y and Xi ∈ A_group

Liveness, asserted by the Liveness property, implies the absence of deadlock in a

negotiation where it is never the case that two or more agents wait for each other. The

liveness property holds in the bilateral protocol. This is proved by induction by

showing that any execution of an allowed path (i.e. process) does not yield a

deadlock. It is first proved that there is no deadlock in a base case and then assumed

that there is no deadlock in a general state, s. We finally prove that all possible

atomic actions from state s do not induce deadlock. Any new state after s contains no

deadlock. Thus, it is proved that there is never any deadlock at all states, nor are any

caused by possible transitions, atomic or composed. The rules in Theory 6.1 are used

for reasoning throughout the proof.

 221

The Properties of a Protocol

Base Case. A bilateral negotiation is started from a ¬negotiating state since the

overall parent state is negotiating (rule (1) in Theory 6.1). The base case is to prove

absence of deadlock in the state ¬negotiating. Rule (8) shows that the three actions to

start a negotiation are initial_request, initial_offer and initial_propose. Any of these

three actions is possible by any of the two agents, X and Y, since there has been no

previous interaction between them. Neither of them has to wait for the other in order

to do an entry action. Hence there is no deadlock at ¬negotiating for entering a

negotiation.

Induction hypothesis. Assuming that there is no deadlock at an arbitrary state, s0 in

the negotiation, any transitions from s0 to a successor state is possible. If s0 is a

terminal state, then null is the next possible action and does not cause deadlock. The

possible transitions from s0 may be given as s0 ¨ [X1.a1]s1 ¤ …. ¤ [Xn.an]sn where ai is

an atomic transition derived from the rules from Theory 6.1.

Induction proof. We prove that performing an action from s0 does not cause any

deadlock in the next state. Using the induction hypothesis, assumptions and proving

the absence of deadlocks at any state, si, succeeding s0 after an atomic transition ai, we

will have proved that there is no deadlock at any state in a bilateral negotiation, and

thus after any process. All sequences of execution from s0 are analysed by testing the

possible states after each atomic transition from s0. It is shown that there is no

deadlock in all the successor states of s0.

Induction proof, Case1: When s0 is offered(X). The possible atomic transition from s0

is offered(X) ¨ [Y.agree] agreed(X) ⁄ Ÿ(X= Y) given by rule (10). From the

induction hypothesis, there is no deadlock in offered(X). Y may agree and does not

depend on X. The agreed(Y) state contains no deadlock by virtue of being a terminal

state and none of the agents need to carry out any actions from there.

Induction proof, Case2: When s0 is requested(X). The possible atomic transitions are

Y.offer, Y.propose and Y.suggest, given in rule (9). By the induction hypothesis there

is no deadlock in s0, the requested(X) state. The possible actions are for Y to make an

offer or a propose or a suggest and none of them depend on X. It is proved below that

 222

The Properties of a Protocol

there are still no deadlocks after Y’s action resulting in either offered(Y), proposed(Y)

or requested(Y).

Induction proof, Case2a: s0 is requested(X), action is Y.offer, next state is offered(Y).

From offered(Y), X can agree. X waits for Y to make an offer to get to offered(Y)

while Y waits for X to make a request to get to requested(X) before Y offers. The

situation in s0 is the condition requested(X)?Y.offer ⁄ offered(Y)?X.agree. Obviously

this does not correspond to the condition for deadlock and represents a sequence of

offer and agree actions. From the induction hypothesis, there is no deadlock in s0,

requested(X), and therefore Y can make an offer. All atomic transitions terminate

rendering offered(Y) eventually true if Y makes an offer. X can then agree. There is

no deadlock in offered(Y).

Induction proof, Case2b: s0 is requested(X), action is Y.propose, next state is

proposed(Y). From proposed(Y), X can request or agree. The formula requested(X)?

Y.propose ⁄ proposed(Y)? (X.agree » X.request) holds at s0. As before, there is no

deadlock in requested(X) such that Y can make a propose which terminate. Therefore

state proposed(Y) comes to pass. X can then request or agree. The state proposed(Y)

is not deadlocked.

Induction proof, Case2c: s0 is requested(X), action is Y.suggest, next state is

requested(Y). From requested(Y), X can offer, propose or suggest. The formula

requested(X)? Y.suggest ⁄ requested(Y)? (X.offer » X.propose » X.suggest) holds at

s0. For the same reasons as above, requested(Y) becomes true. After that, X does not

depend on Y to make an offer, propose or suggest. Thus requested(Y) contains no

deadlocks.

Induction proof, Case3: When s0 is proposed(X). The possible actions from s0 are

Y.request and Y.agree. In case of the action agree, the condition,

proposed(X)?Y.agree, is true at s0 leading to agreed as successor state. By the

induction hypothesis there is no deadlock in proposed(X) and Y.agree terminates.

Since agreed is a terminal state, it has no deadlocks. If Y chooses to make a request

then proposed(X)?Y.request ⁄ requested(Y)?(X.offer » X.propose » X.suggest). By

the same arguments as before, requested(Y) becomes true and contains no deadlocks.

 223

The Properties of a Protocol

Induction proof, Case4: When the state s0 is open. The possible transitions are given

in rule (12): open ¨ ([X.reject] rejected ¤ [timeout] timedout ¤ [offered(X)?Y.agree]

agreed(Y)) ⁄ Ÿ(X=Y). There is no deadlock in the open state (Ind. Hypothesis) and

atomic transitions terminate rendering rejected and timedout possible. Neither agent

waits for the other to do a reject and a timeout event depends only on the time

elapsed. The states rejected and timedout are terminal states with no deadlock. The

test condition is now considered.

The interesting feature for this property occurs when there is a test condition in a rule

such as the test offered(X)?. This test checks whether agent X has made an offer.

Agent X makes an offer only when agent Y has enabled the requested(Y) state through

a request or an initial_request. Consider only Y.request for simplicity and since both

cases are similar. This yields in s0 the condition

(offered(X)?;Y.agree)⁄(requested(Y)?;X.offer), that is

(X.offer?;Y.agree)⁄(Y.request?;X.offer).

This condition does not unify with the condition for deadlock, (X.action2?; Y.action1)

⁄ (Y.action1?; X.action2). There is no deadlock since although agent X has to make

an offer before agent Y can agree, X is not waiting for Y to agree before X can make its

offer. In fact agent X is waiting for agent Y to do another action i.e. a request. In

order to make a request agent Y does not depend on X making an offer or itself to

agree - Y.request is not possible from an offered or agreed state.

In this sequence of atomic actions, two transitions do not depend mutually on each

other but rather occur sequentially. As shown before there is no deadlock in s0,

requested(Y), thus the process Y.request?;X.offer eventually happens enabling the

process X.offer?;Y.agree. The testing of offered(X) and the atomic action agree

terminates rendering agreed(Y) true. We have proved that X.offer?;Y.agree can occur

and it causes no deadlock in the terminal agreed state. Therefore there are no

deadlocks in the open state by the induction hypothesis and neither in its successor

states, being terminal states.

 224

The Properties of a Protocol

Induction proof, Case5: When s0 is closed, rejected, timedout or agreed(X). This is a

trivial case. These four states being terminal states, there are no transitions possible

from them. Deadlock is absent.

Induction proof, Case6: When the state s0 is ¬negotiating. The three possible entry

actions are initial_request, initial_offer, initial_propose. The induction hypothesis

(and base case) asserts that there is no deadlock at ¬negotiation and agent X can

perform one of these actions without waiting for agent Y as these are entry actions.

All the transitions are atomic and terminates making states requested(X),

(offered(X)⁄¬proposed(X)) or proposed(X) eventually true. None of these states

contain a deadlock as there are no actions possible before ¬negotiating. Agent Y does

not need to perform any action before X can make these entry actions.

Induction proof, Case7: When s0 is negotiating.

This state is dealt by analysing all of its sub-states in the above cases.

We have proved that for all possible states s0, all transitions from an arbitrary state s0

maintain liveness. QED. The bilateral protocol satisfies the liveness property.

6.9 Soundness

Soundness property for protocol µ: ∀ A: ε ((µ A) → (µ A))

The soundness property between a protocol, µ, and a process, δ, which is an instance

of µ can be clarified as below:

µ (s0 ↔ ([a1]s1 ¤….¤ [an]sn)) → ¬(δ (s0 →([az]sz))

 where ¬(0 § z § n)

 for all states s0 to sn ∈ state-set, a1 to an ∈ path-set, sz: ε and az: Ψ

All states, processes and transitions occurring in a negotiation instance δ, are only

those defined by the sound protocol, µ. If the protocol µ is sound, the process δ does

not yield any unexpected states. This property ensures the validity of negotiation

paths and states, e.g. an agree action cannot directly follow a request action nor can a

 225

The Properties of a Protocol

state be both agreed and rejected. There are no erroneous states or transitions. The

soundness property holding for the bilateral protocol is proved by induction by

showing that all possible transitions from any state preserve soundness.

The base case proves that the protocol is sound after one atomic transition. This case

is covered by the logical theory of the protocol. The induction hypothesis assumes

that the soundness property holds at an arbitrary state s1 after performing the path pd,

where pd ∈ path-set and may be a null process. We then prove the negotiation

remains sound when process pd is either followed or preceded by any valid atomic

action (that is an element of action-set). This implies a negotiation instance is sound

after the execution of any paths.

Base Case. The base case for proving the bilateral protocol is sound is given by the

action-condition rules in Theory 6.1. Atomic transitions in action-set lead from a

well-defined source state to a well-defined target state, both being in state-set. The

valid states and atomic transitions in state-set and action-set respectively can be

inferred from the protocol. From the ¬negotiating state, entry transitions lead to an

open state and are given by rule (8) in Theory 6.1. Likewise atomic transitions from

requested, offered, proposed and open are given by rules (9) to (12). Rules (1) to (7)

on the relation between states and sub-states ensure that the parent states of the

current sub-state are true and all other states are false as required.

For all atomic transitions p: action-set, there is a source state s1: state-set and a well-

defined target state s2:state-set. If p is equivalent to null then s1 and s2 are the same

state e.g. closed states are terminal states with no transitions. Theory 6.1 gives all the

possible atomic transitions.

Induction hypothesis. For an arbitrary state sn: state-set there is a path pd: path-set

that yields expected state sd: state-set given by both the protocol µ and the negotiation

instance δ. (µ sn → [pd]sd)).

 226

The Properties of a Protocol

Induction Proof. It is proved that soundness is maintained when the path pd is

followed or preceded by an atomic transition, a:action-set i.e. the path (pd ;a) or (a;

pd) preserves soundness.

Induction Proof, Case1. We first prove soundness for the case (pd ;a) by showing that

the transition sn → [pd ; a] sd+1 yields a well-defined state sd+1. From the composition

axiom in chapter 3, a complex path can be decomposed into the execution of its sub-

processes with an intermediate state holding after each sub-process.

[a; b] stateb ↔ ([a]statea ⁄ (statea → [b] stateb)) ↔ ([a] statea?; [b] stateb)

↔ [a][b] stateb where stateb , statea e ε

The formula sn ↔ [pd ; a] sd+1 is equivalent to sn ↔ [pd][a] sd+1

This means that there is an intermediary state, si: state-set, between executing the path

pd and the atomic transition a.

sn → [pd] si?; [a] sd+1

sn → [pd] si ⁄ si ↔ [a] sd+1

From the induction hypothesis, the formula sn → [pd] sd gives a sound negotiation and

a well-defined state sd. From the logical theory and the base case, the atomic

transition si → [a] sd+1 preserves soundness. The state sd is made equivalent to si i.e.

sd ↔ si. The state sd is known to be well-defined from the induction hypothesis and

therefore so is si, which is thus in state-set. The resulting two transitions are sn → [pd]

sd and sd → [a] sd+1. Since sd and si are in state-set and action a is in action-set, then

sd+1 is in state-set given by corresponding action-condition rules in the protocol. By

the induction hypothesis and the logical theory, both transitions yield a sound system.

The path (pd ; a) has sd as the intermediary state. Using Theory 6.1, sd may be

instantiated to an appropriate intermediate state by analysing which state after path pd

is the pre-condition to the execution of a. The transition sn → [pd ; a] sd+1 preserves

the soundness of the negotiation since its sub-paths pd and a do so. A negotiation in

the state sn is sound and remains sound at sd+1 after an atomic transition. Having

 227

The Properties of a Protocol

proved that an atomic transition in state-set preserves the soundness of a negotiation,

and assuming that a path pd preserves soundness, we have proved that the path

consisting of pd ;a also yields a sound negotiation.

Induction proof, Case2. The proof for soundness when preceding the path pd with an

action is similar. It is proved that sn-1 → [a; pd] sd maintains a sound negotiation for

a:action-set. From the base case, any atomic transition in action-set provides a sound

negotiation. The induction hypothesis asserts that a path pd preserves the soundness

property where sn → [pd] sd gives a well-defined state sd. We need to prove that the

path a; pd also yields a sound negotiation at all states.

By the definition of process composition in ANML, sn-1 → [a; pd] sd is equivalent to

sn-1 → [a] [pd] sd where there is an intermediate state, si, after executing atomic

transition a and before executing the process pd.

sn-1 → [a] si?; [pd] sd

sn-1 → [a] si ⁄ si ↔ [pd] sd

The state sn is made equivalent to the intermediary state si making thus si be in state-

set. The action, a, is in action-set, therefore from the logical theory and the base case,

sn-1 is in state-set and is well-defined. Since the path pd and the action a preserves

soundness giving sn-1 and sd to be in state-set, the path a; pd preserves the soundness

property as its sub-paths do so. QED

Having proved that an atomic transition gives a sound negotiation, and assuming that

a path pd preserves soundness, it has been shown that the paths a; pd and pd; a

maintain soundness. By induction, all paths in a bilateral negotiation will preserve the

soundness property. The theory of the bilateral protocol is sound.

6.10 Serial

serial property for protocol µ: µ ∀ si :state-set, ai :path-set (s0 → [a1;…; an]sn)

 → ¬(si → [pi] sj ⁄ [pk]sk)

 228

The Properties of a Protocol

 where (0 § i, j, k § n)

for all states s0 ,s1, sp , sq ∈ state-set, and a1 to an , p1 to pn ∈ path-set.

A protocol is serial if all its derivable paths are executed sequentially and there are no

parallel executions.

The rules in Theory 6.1 are used to analyse whether the bilateral protocol is serial.

The possible actions are analysed from all states in the bilateral protocol. According

to rule (12) in Theory 6.1, a reject or timeout event can occur from an open state

leading to a closed state, but these two actions cannot occur in parallel with each other

nor with other transitions as given by the bilateral protocol. From rule (3), the state

rejected and the state timedout cannot both be true at the same instant. We analyse

below whether any parallel actions are possible from all non-terminal states in a

bilateral negotiation.

• from ¬negotiating

The three actions possible from the state ¬negotiating are initial_request,

initial_offer and initial_propose leading to the states requested, offered and

proposed respectively. From rules (2) and (6), an initial_request cannot be in

parallel with an initial_offer as the states they trigger cannot co-exist. From rule

(8), by the condition (offered(X) ⁄ ¬ proposed(X)), an initial_offer cannot be

executed in parallel with an initial_propose. Hence, no parallel actions are

possible from the state ¬negotiating.

• from offered(X)

From rules (10) and (12), only an agreement, a rejection or a timeout can occur

from this state. From rules, (3) and (7), the states agreed, rejected and timedout

cannot co-exist. No parallel actions are possible from the state offered(X).

• from requested(X)

From rule (9), the successor states may be either offered(Y), requested(Y) or

proposed(Y). From rules (2) and (6), the states offered(Y) and requested(Y)

cannot both be true. From rule (9), the condition (offered(X) ⁄ ¬ proposed(X)

 229

The Properties of a Protocol

do not allow these two states to co-exist. Therefore no parallel actions are

possible from requested(X).

• from proposed(X)

The state proposed(X) is a sub-state of offered(X) and so has the same possible

transitions as from offered(X) with in addition the action Y.request. By rule

(10), the actions from offered(X) lead to a closed state. The action Y.request

leads to an open state. From rule (1), the states open and closed cannot both be

true.

Therefore there are no parallel processes according to a bilateral protocol and the

actions are performed sequentially. The bilateral protocol is serial.

6.11 Ordered

The ordered property is respected if none of the sequential processes can occur in

parallel and there is not a different order of actions leading to the same state.

Ordered property for protocol µ: µ ∀ si :state-set, ai :path-set ((s0 → [a1;…; an]s1)

 → ¬ (s0 → [ai ; ….; aj] s1)

 where (0 § i,j § n) and i ..j is not equivalent to 1..n

 for all states s0 to s1 ∈ state-set, and a1 to an ∈ path-set.

Counterexample from the two following possible paths with the same source and final

states:

requested(X) ↔ [Y.propose; X.request; Y.suggest; X.suggest] requested(X)

requested(X) ↔ [Y.suggest; X.suggest; Y.propose; X.request] requested(X)

The bilateral protocol is not ordered.

6.12 Not Serialisable

A path (a1;…; an) is serialisable iff there exists another path equivalent to it but with

(a1;…; an) in a different order.

 230

The Properties of a Protocol

Serialisability property for protocol µ: µ ∀ si :state-set, ai :path-set ((s0 → [a1;…;

an]s1) ↔ (s0 → [ai ; ….; aj] s1)

 where (0 § i,j § n) and at least one of the numbers in i..j is not equivalent to its

corresponding number in 1..n

 for all states s0 to s1 ∈ state-set, and a1 to an ∈ path-set.

Consider an arbitrary state s0 in the bilateral protocol and a general transition from

state s0, consisting of two sub-processes as in s0 → [pi ; qj] rj. There is an intermediate

state between processes pi and qj.

s0 → [pi] si ⁄ si → [qj] rj

The formula s0 → [pi ; qj] rj can be inferred from the following two rules in the

protocol:

s0 ↔ [p1] s1 ¤ ...¤ [pi] si …¤ [pm] sm

si ↔ [q1] r1¤ ...¤ [qj] rj …. ¤ [qn]rn

 where sx , rx : state-set and px and qx : path-set

But the re-ordering of the processes, pi and qj, giving formula s0 ↔ [qj ; pi] rj may not

hold in a protocol because:

1. The process qj may not be possible from state s0.

2. The sequential process (qj; pi) may not be possible because none of the

resulting states, rj, from process qj is a source state for process pi. The state rj

is not equivalent to any states, si, from s1 to sm.

3. The process pi does not trigger the state rj.

Counter-example to show bilateral protocol is not serialisable:

From the ¬negotiating state, using rules (8) and (9) the path

¬negotiating → [X.initial_request; Y.offer] offered(Y) can be derived.

The intermediate state is requested(X). It is not possible to re-order this path to make

an offer before an initial_request. The formula ¬negotiating → [X.offer; Y.

initial_request] offered(Y) does not hold in the bilateral protocol.

 231

The Properties of a Protocol

1. The double implication in rule (8), the action Y.offer is not valid from the state

¬negotiating.

2. The action X.initial_request cannot follow the action Y.offer.

3. The action X.initial_request does not trigger the state offered(Y).

Therefore, the bilateral negotiation protocol is not serialisable.

6.13 Complexity

If there are p loops with no nesting in a protocol and these iterations are performed n

times, then the complexity of the protocol is pµn, that is of order n2. The complexity

of protocols with nested loops is of the order nn. Nesting loops are loops that contain

loops and have increased complexity.

There are 2 iterations in the bilateral protocol: in the requested state through a suggest

action and between the requested and proposed states via a sequence of propose and

request actions.

The shortest path in a bilateral negotiation consists of 2 atomic actions, as in the

formula ¬negotiating → [X.initial_ offer; Y.agree] agreed(Y)

The worst case entails entering the negotiation and performing n times the action

suggest and m times the sequence (propose; request). The worst case of a bilateral

negotiation gives rise to the process (propose; request ;suggestn)m, followed by a

transition to the offered state and a terminal action to a closed state. The worst case

complexity of the bilateral protocol is thus nµ m actions, that is of the order n2.

6.14 Security

Security Property for protocol µ: ¬ ∃ si, sj∈ state-set, ∀ pe ∈ path-set

 (µ (entry(pe) ∧ ¬outermost(si) ∧ si → [pe] sj))

The security property asserts that it is not possible to execute the entry process pe

from a state si, where si is not the outermost parent state.

 232

The Properties of a Protocol

From rule (1), the outermost state in the bilateral protocol is negotiating. From rule

(8), the only entry actions in the bilateral protocol that are possible from ¬negotiating

are:

The set of entry actions = entry-actions ={initial_request, initial_propose,

initial_offer}

From the bilateral protocol the actions that are possible from negotiating are:

open-actions ={request, offer, suggest, propose, timeout, reject, agree}. These are the

actions possible once the negotiation has started.

The set entry-actions … open-actions = {}. Therefore, the bilateral protocol is secure.

There is no way for an agent to restart the negotiation once inside it, ensuring this

aspect of security.

6.15 Non-Consecutive Property

Non-consecutive property for protocol µ: ∀s, s0, s1∈ state-set, p, p0 ∈ path-set (µ

(s0 → [Y.p0] s) ∧ (s → [X.p]s1) → ¬ (X= Y))

The non-consecutive property never allows an agent to perform two consecutive

actions without a transition from another agent. Parameterisation of actions and states

with agents ensures that the processes are executed in the correct sequence.

Counterexample for bilateral protocol: An agent can reject after it has sent a request.

Therefore the bilateral protocol does not satisfy the non-consecutive property.

6.16 Reliability

A reliable protocol entails that a negotiation process g will eventually achieve its goal.

In a reliable protocol, there is a possible path to a goal state g, providing reachability

of goal. Let the predicate goal(g) return true if state g is a goal state.

Reliability Property for protocol µ: ∀s,g: state-set(µ ∃p:path-set (outermost(s) ⁄

goal(g) → (¬s → <p>g)))

 233

The Properties of a Protocol

The bilateral protocol is reliable if the property ¬negotiating → <p>g holds. It is

possible to reach any state ∈ state-set from the state ¬negotiating.

A goal state from the bilateral protocol is an element of the set state-set.

state-set = {negotiating, requested, offered, proposed, closed, rejected, timedout,

agreed, open}

We analyse whether each of these states are possible from the ¬negotiating state.

From rule (8) in Theory 6.1, the states negotiating, open, requested, offered, proposed

are reachable from the entry actions. From rules (1) and (12), the states closed,

rejected, timedout and agreed are possible through a sequence of an entry action

followed by an exit action. Hence, the reliability property holds in the bilateral

protocol.

6.17 Consistency

A protocol is consistent when for all states A, it is never the case that (A ⁄ ¬A). A

consistent protocol contains no contradiction in states.

Consistency property for protocol µ: ∀ s ∈ state-set (¬(µ (s ⁄ ¬s)).

The consistency of the bilateral protocol is proved by induction. For all states s∈

state-set, ¬(µ (s ⁄ ¬s)) is proved to hold for the bilateral protocol µ. The proof is

achieved by first proving that starting a negotiation does not produce inconsistency.

Then, assuming that there is no inconsistency at state s, it is proved that executing an

atomic action, a, maintains consistency.

Base case. In a bilateral protocol, performing the entry actions from the ¬negotiating

state maintains consistency. From rules (1) to (7) in Theory 6.1, all non-current states

are false. The protocol is shown to be consistent in the ¬negotiating state.

The entry actions are X.initial-request, X.initial-propose and X.initial-offer, triggering

the requested(X), (offered(X) ⁄ ¬proposed(X)) and proposed(X) states respectively.

 234

The Properties of a Protocol

Rules (1)-(7) implies that when state requested(X) is true, all other states except open

and negotiating are false. There is no inconsistency in the requested(X) state. By the

same argument, consistency is maintained for the states proposed(X) and offered(X).

Induction Hypothesis. Assuming that a bilateral negotiation is consistent at state

 s0 :state-set.

µ ├ ¬(s0 ⁄ ¬s0)

Induction Proof. We prove that consistency is still preserved after atomic transition,

a, from state s0. In other words we prove the transition (s0 → [a] s1) does not produce

any inconsistency in state s1, by proving from the bilateral protocol that consistency is

maintained after each atomic transition, a, from each state s0.

• s0 is ¬negotiating

Consistency after atomic transitions from ¬negotiating is already proved in the

base case.

• s0 is requested(X)

From rules (9) and (12) in Theory 6.1, the atomic transitions from s0 are Y.offer,

Y.propose, Y.suggest, timeout X.reject and Y.reject. The process Y.offer validates

the state (offered(Y) ⁄ ¬proposed(X)) and the axioms (1) – (7) between states

prove that only offered(X), open and negotiating are true. The rest of the states

are false. All the resulting states after Y.offer are consistent. Similarly from

Theory 6.1, the atomic transitions Y.propose and Y.suggest preserve consistency.

The terminal atomic transitions reject and timeout can also be proved to lead to

consistent terminal states.

• s0 is offered(X)

The atomic transition Y.agree triggers the state agreed(Y) from s0. Axioms (1) to

(7) in Theory 6.1 allow only the states agreed(Y), negotiating and closed to be

true and the rest false. The actions reject and timeout lead to consistent terminal

states.

 235

The Properties of a Protocol

• s0 is proposed(X)

From s0, either the atomic transition Y.agree triggers the state agreed(Y) or the

action Y.requested leads to the state requested(Y). The states resulting from both

actions can be shown to be consistent from the bilateral protocol.

• s0 is open

The possible atomic transitions are (X∪Y).reject to rejected state or timeout to

timedout state or if offered(X) then Y.agree to agreed(Y) state. These are terminal

states and the rules for the relation between closed and open state ensure

consistency.

Therefore in the transition (s0 → [a] s1), the bilateral protocol does not produce any

inconsistency in any state s1 from each possible state s0. The consistency property

holds for the bilateral protocol.

6.18 A Discussion about Equivalency between Protocols

“Informally, two programs are equivalent when no observations can distinguish them.

Further, two subprograms or program phrases are congruent if the result of placing

each of them in any program context yields two equivalent programs” [Hennessy and

Milner 1985]. Two protocols may be equivalent and both be used as the common

protocol in a negotiation. Each agent in a group may have its own individual

protocol, which is semantically and syntactically equivalent to the protocol that the

group is following. For example consider an English auction between a Dutch agent

and a French agent. Both agents have the same understanding of an English auction

but their representation of its protocol differs. It can be established that their

individual protocols are equivalent so that the agents can privately use their own

protocols. The Dutch agent does not need to learn or understand French and vice

versa.

6.18.1 Types of Equivalences between Protocols

A number of protocols can be proposed for interactions and equivalence between

these protocols ensures that they can be used for the same type of interactions. One

solution would be to assess various protocols against a particular set of properties.

 236

The Properties of a Protocol

Various protocols can be providing different functions or having equivalent locutions

with different names or conform to some specification that may be proposed as a

standard by an electronic institution.

 [McBurney and al. 2002] analyse similarity between protocols according to different

types of equivalences. This section adapts their work on dialogue games to

interaction protocols (given it is one of the rare papers in dealing with similarity

between agent dialogues). Dialogue games are different from interaction protocols

which are explicitly specified. In order to analyse the equivalence between interaction

protocols, an interaction protocol can be broken into various parts, mostly rules:

• Commencement rules for starting a negotiation.

• Locutions to indicate permitted speech-acts or messages e.g. propose, offer,

agree.

• Sequencing rules to define the context under which particular locutions are

permitted or obligatory or not. For example, only offer or propose after a

request.

• Commitments are rules that define the circumstances under which participants

commit to a negotiation e.g. agree to an offer or even make an offer.

• Termination rules that define the circumstances under which the negotiation

ends.

Given the above, interaction protocols may be classified according to the group’s or

agents’ goals – information-seeking, inquiry when participants collaborate for seeking

an answer, persuasion, negotiation involving bargaining or deliberative for

determining a course of action [Walton and Krabbe 1995]. Protocol instances can

include a mixture of the different types of protocols primitives. In addition protocols

can be classified under which simplest form of protocol they extend. For example,

the bilateral protocol may at its simplest only consist of alternative offers, then in the

next step move towards richer protocols that include proposals and counter-proposals.

After that, the bilateral protocol can be extended to Theory 6.1 which in turn can be

extended to richer forms included the one in chapter 4 called the Expanded Bilateral

 237

The Properties of a Protocol

protocol. All the different ramifications of the bilateral protocol have some parts that

are similar and can be classified under the family of bilateral negotiation protocols.

From the above classifications, various types of equivalence are possible between

agent interaction protocols adapted from [McBurney and al. 2002]:

• Syntactic equivalence

Two protocols are syntactically equivalent if their locutions, commencement,

combination, commitment and termination rules are the same for both

protocols. That is the syntax of the two protocols are the same. Protocols with

different names but with same semantics are classified as different in syntactic

equivalence.

• Bisimulation equivalence

This equivalence holds if any state transition achievable in one protocol is also

achievable in the other protocol.

• Operation equivalence

Two protocols are operationally equivalent if for any terminating interaction

path in one protocol, there is a similar terminating path in the other protocol

and vice versa. This equivalence ignores the length of the paths and therefore

the occurrence of iterative actions.

• Equal-length operational equivalence

Two protocols are equal-length operational equivalent if for any terminating

path of actions under one protocol, the same path with the same number of

actions terminates the other protocol and conversely.

• Similar-length operational equivalence

Two protocols are similar-length operational equivalent if for any terminating

path of actions in one protocol, there is a similar terminating paths of actions

in the other protocol with approximately the same number of utterances and

conversely.

 238

The Properties of a Protocol

[McBurney and al. 2002] also define T-similar operational equivalence between two

protocols with the same paths consisting of the same subsets of paths. They further

analyse the relationships between the various types of equivalence. They propose that

syntactic equivalence is a subset of bismulation equivalence and equal-length

operational equivalence is a subset of T-similar operational equivalence which is a

subset of operational equivalence. They also prove that bismulation equivalence is a

subset or equal to equal-length operational equivalence. However it is possible for

protocols to be equal-length operational equivalent but not bisimulation equivalent.

Finally relations between the equivalence types are ordered by set inclusion where

syntactic equivalence is a subset of bisimulation equivalence which is a subset of

equal-length operational equivalence which is a subset of T-similar operational

equivalence which is a subset of operational equivalence.

6.18.2 Related Work on Equivalence in Petri Nets

In recent years there has been much work on determining when two nets can be said

to be equivalent. A number of equivalences based on bisimulations have been

proposed [Reisig 1985]. [Haar and al. 2000] analyse equivalence and more

specifically observational equivalence in timed state automata and timed Petri nets

and define a translation between the two notations.

[Reisig 1985] calls two conditions and events nets equivalent if their places and

transitions correspond to each other according to isomorphism and bijective relations.

Equivalent Petri nets have the same number of events, places and steps. If two Petri

nets are equivalent, then if the liveness and the cyclic properties hold for one Petri net,

it also holds for the other. Two condition events systems (Petri nets) are said to be

equivalent if and only if their case graphs are isomorphic [Reisig 1985].

When comparing semantic equivalences for concurrency, it is common practice to

distinguish between linear time and branching time equivalences [Pnueli 1985].

Behaviour equivalence is to basically test if two concurrent system specifications as

Petri nets have the same behaviour. Bisimulation is a fundamental notion that

characterizes behavioural equivalence of concurrent systems. There has been a lot of

 239

The Properties of a Protocol

research on efficient algorithms for bisimulation checking e.g. can be based on

structural reduction rules. There are different types of equivalence for Petri nets:

• Trace equivalence

The standard example of a linear time equivalence is trace equivalence as

employed in [Hoare 1980]. This equivalence is based on analysing the

possible runs from Petri nets. Trace equivalence utilises linear time to

describe process algebra.

• Bisimulation equivalence

Bisimulation equivalence relation [Milner 1989], is defined in the context of

process algebras, and is a finer equivalence relation than trace equivalence and

distinguishes states based on branching properties. Bisimulation equivalence

utilises branching time.

• Observational equivalence

The standard example of a branching time equivalence is observation

equivalence or bisimulation equivalence as defined by [Milner 1980].

Observational equivalence is also called weak bisimulation equivalence and is

a refined notion of behavioural equivalence. Observation equivalence can be

too coarse in its identifications as illustrated by the problems that it may cause

in practical applications and analysis [Graf and Sifakis 1987]. See [Hennessy

and Milner 1985] for more on observational equivalence.

• Process equivalence

[Cherkasova and Kotov 1989] introduce the notion of process equivalence and

its axiomatisation for process algebra.

• Semantic equivalence

6.18.3 Equality Problem in Petri Nets

Determining the various equivalences becomes undecidable for the strong versions of

the equivalences for Petri nets (when all the labels carried by the transitions of the net

are assumed to be visible actions). One of the features in process algebra is that of

abstraction, providing with a mechanism to hide actions that are not observable, or not

interesting for any other reason. By abstraction, some of the actions in a process are

made invisible or silent. Consequently, any consecutive execution of hidden steps

 240

The Properties of a Protocol

cannot be recognized since they are not observed. The weak version of the

equivalence (which can be decidable) allows some transitions to be hidden and their

firing to be unobservable. [Jancar 1995] demonstrates high undecidability of weak

bisimilarity for Petri Nets.

The equality problem relates to showing that two different marked Petri nets with the

same number of transitions (but perhaps different numbers of places) will generate the

same sequence of transition firings or that two different marked Petri nets with the

same number of places (but perhaps different numbers of transitions) will generate the

same reachability set. This might allow to modify Petri nets to increase parallelism,

decrease the cost of implementation, or other optimisations (which can themselves be

intractable).

These cases are concerned with determining if two Petri nets are equivalent or if one

is a subset of the other. These problems require to define the notion of equivalence or

containment carefully. If equivalence is defined as equal reachability sets, then the

number of places cannot be changed. On the other hand, if equality of sets of

transition firing sequences is required, transitions may not be changeable. The

definition of the problem is therefore quite important. The equality problem that may

arise is undecidable i.e. there is no algorithm for determining if two sets of possible

firing sequences from an initial place are equal for any two Petri nets N and N’.

6.18.4 Equivalence in Protocols using ANML

There is a phase, before a negotiation, where the agents establish what protocol they

are all going to comply with. If the agents can determine that their individual

protocols are equivalent, this removes the onus of constructing a common protocol of

negotiation and making all the participants understand it. Learning a new protocol

would involve learning about issues such as language, culture and ontology.

Establishing equivalency between protocols encourages reuse, thereby reducing the

costs and misunderstandings with respect to new protocols. Representing a protocol

as a theory in the ANML meta-language allows using rules of logical inference and

deduction to prove equivalency between the theories. Such equivalence between

different protocols may be proved syntactically and semantically.

 241

The Properties of a Protocol

Two protocols with logical theories p1 and p2 are syntactically equivalent iff p1 ├ p2

and p2 ├ p1. Two protocols with logical theories p1 and p2 are semantically

equivalent iff p1 ╞ p2 and p2 ╞ p1. Both equivalences include checking that

redundant rules or locutions in one protocol still detect it as similar to another

protocol that does not consist of redundant rules.

A semantic proof pertains to an ongoing problem in agent communication about

obtaining common ontologies between agents. Regarding the scenario between the

Dutch and the French agents, the agents need to relate Dutch to French messages and

French to Dutch according to the context, rendering this a matter of the semantics of a

protocol and of translating between languages. Semantic equivalency between

protocols is not proved in this section and leads to an interesting avenue for further

work.

The syntactic equivalence between two protocols represented in ANML can be

established. Protocol1 is syntactically equivalent to Protocol2 if their logical theories

are syntactically equivalent. This is one of the advantages of expressing a protocol as

a theory, so that its properties can be logically verified.

A check for syntactic equivalence may be automated through a Prolog program. Let

the theory of a protocol be represented as a list of formulae i.e. action condition rules.

The predicate same_protocol returns true if every rule from Protocol1 can be derived

from Protocol2 and vice versa.

same_protocol(Protocol1, Protocol2) :- logical_theory(Protocol1, Log1),

logical_theory(Protocol2, Log2), same_theory(Log1, Log2),

same_theory(Log2, Log1).

same_theory([], []).

same_theory([Head1| Tail1], Log2) :- implies(Head1, Log2), !,

same_theory(Tail1, Log2).

The logical theory of Protocol1 is Log1 and Log2 is the logical theory of Protocol2.

The predicate same_theory(Log1, Log2) succeeds if each rule in the theory Log1 can be

derived from the theory Log2. The base case of the predicate same_theory asserts that

 242

The Properties of a Protocol

empty theories are equivalent. The predicate implies(Head1, Log2) returns true if the

rule Head1 can be derived from the logical theory Log2 i.e. Log2 ├ Head1.

6.18.5 Is a protocol a subset of another protocol

One protocol may be a subset of another protocol. Let agent X know protocol p1 and

agent Y know protocol p2. If protocol p1 is a subset of p2, then both agents can interact

according to p1. Agent Y knows a richer protocol, p2, but also knows all the states and

processes that are possible in p1. Agent Y knows protocols p2 and p1. The agents may

adopt p1 as the common protocol for their negotiation since all of them know p1.

If a protocol, p1, with logical theory Log1, is implied by another protocol, p2, with

logical theory Log2, then protocol p1 is a subset of protocol p2. (Log2 ├ Log1) → (p1

is a subset of p2) holds. In a prolog-like notation, the predicate sub_protocol (p1, p2)

returns true if protocol p1 is a subset of protocol p2.

sub_protocol (p1, p2) :- logical_theory(p1, Log1), logical_theory(p2, Log2),

sub_theory(Log1, Log2).

The predicate sub_theory(Log1, Log2) succeeds if all the rules in Log1 can be derived

from Log2. Let protocol p1 consist of the list of formulae [Head1| Tail1]. We check

whether each rule in p1 is implied by Log2.

sub_theory([], Log2) :- writenl(“ 1st protocol is a sub-protocol of 2nd one”).

sub_theory([Head1| Tail1], Log2) :- implies (Head1, Log2), !, sub_theory(Tail1,

Log2).

6.19 Summary

This chapter defines axioms in ANML for various properties of a protocol and also

shows how to prove them for a bilateral protocol in ANML. Other protocols and

properties may be similarly represented and analysed. Additional properties include

efficiency, performance or game theoretic properties such as Pareto efficiency,

stability, possible equilibrium, deception-free and conflict resolution. See

Rosenschein and Zlotkin, [1998] for more on game theoretic properties. The proof

 243

The Properties of a Protocol

 244

methods in this chapter may also be used for analysing process executions in state-

transition-like systems.

Properties can help to choose between protocols. However proving that a protocol

satisfies a property may not always be feasible. This problem may be countered by

monitoring the executions of a negotiation for violations of the property. While it is

possible to monitor an interaction for violations of safety properties, this is not so easy

for liveness properties. Equivalence between protocols are also discussed. We have

defined a consistency property for a protocol, but inconsistency in a negotiation state

may still arise because of discrepancies between the beliefs of a group of agents. This

is the subject of the next chapter for reasoning about the knowledge and beliefs of a

group of agents.

7 Reasoning about a Group’s Beliefs

7.1 Introduction

Agents choose to negotiate because it is more cost-effective or it is the only way to

achieve their goals. Negotiations may be collaborative or competitive. A negotiation

may be competitive but still require the agents to collaborate according to a protocol.

A participant does not necessarily know the beliefs and goals of other agents. There

are various forms of beliefs and knowledge in a multi-agent system, for example

common beliefs, common knowledge, private beliefs, private knowledge, joint beliefs

and joint knowledge. Knowledge is taken as what is certain and a fact whereas belief

is subjective to an agent and may be untrue. Cohen and Levesque [1991] describe

theorems for how a society of agents can co-operate in a dynamic environment to

achieve a goal through mutual beliefs, mutual goals, joint commitments and joint

intentions. The group can monitor the success or failure of the joint effort.

This chapter discusses the mental states of negotiating agents. Potential divergence

between mental states about a shared formula may lead to inconsistent worlds and

necessitates communication. First this chapter analyses the effect of an agent

extending a protocol on the common knowledge of the group. Secondly, the need for

a synchronisation protocol is addressed to ensure that all participants attain mutual

beliefs about the state of a negotiation after each message exchange, independent of

the quality of the communication layer underneath.

7.2 The Theory of Joint Intentions

Cohen and Levesque, [1991], describe a formal theory for teamwork, called the theory

of joint intentions. This section describes Cohen and Levesque’s theory as it relates to

245

Reasoning about a Group’s Beliefs

the mental states of the participants in a negotiation. Agents in a group may possess

the right intentions and beliefs about each other, but absence of mutual beliefs about

agreements leads to misunderstanding. In Cohen and Levesque’s joint intentions

theory, agents first form joint intentions to act in the future, keep those joint intentions

over time and then jointly act. It becomes common knowledge that the agents are

committed to their intentions, thereby discouraging any change in goals and desires on

everyone’s part.

Joint Intention

The definition of joint intention guarantees that goals and intentions persist over time

and that the mutual knowledge about these goals and intentions will persist. Agents X

and Y jointly intend to do some action iff they mutually know about their intentions,

their joint intentions and this mutual knowledge persists until it is mutually known

that the action is no longer needed.

Joint Commitment and De-commitment

A joint intention can be defined in terms of a joint commitment for doing a collective

action, with the team acting in a joint mental state. An agent does not keep to itself

private beliefs that a team’s goal is no longer valid, rather it must make this fact

mutually known to the other participants. When an agent discovers a joint goal to be

impossible, its goal becomes to make it known to the others that their goal is

impossible so that the team as a whole may give up their joint intention and goal.

Individual intentions persist as long as joint intention does.

Jointly intending sequential actions

An agent may know it is executing a repetitive or sequential action in a shared plan,

but it need not know its number in the sequence or if other steps in the sequence have

started or are over. An agent can execute a sequence of actions knowingly without

being aware of executing the individual steps. Each agent should however recognise

its turn and what it is supposed to do. It should be possible to stipulate conditions for

the execution of a sequence.

 246

Reasoning about a Group’s Beliefs

7.3 Knowledge and Belief Systems

Knowledge and belief have long been studied in epistemology, philosophy of mind

and in philosophical logic. Belief frequently applies to a sentence one is unsure about

or for which there is insufficient proof. On the other hand, knowledge applies to

things that are true. Knowledge may be regarded as true belief. Knowledge and

beliefs may be treated as modalities through epistemic logic and doxastic logic. The

beliefs of an agent are formalised in terms of an accessibility relation over possible

worlds. Beliefs are the propositions that are true in all the accessible worlds.

Epistemic logic introduces modal operators for knowledge. The formula Ki a may be

read as agent i knows that a and the formula Bi a may be read as agent i believes a.

See [Meyer and Van der Hoek 1995] for a discussion on epistemic logic. The formula

EGα denotes everyone in a group of agents, G, knows α. Let the formula BelGα

denotes everyone in a group of agents, G, believes α. The formula CGα denotes α is

common knowledge among the agents in G. CGα can be expressed in terms of EGα,

where CGα is true if everyone in G knows α, everyone in G knows that everyone in G

knows α, etc.

 CGα ≡ EGα ⁄ E2
G α ⁄ … ⁄ Em

G α ⁄ ……

where E1
Gα = EGα and is defined as everyone knows α. Ek+1

G α = EG Ek
G α, for k >

0. Similarly, let the formula CBelGα denote common or mutual beliefs where CBelGα

≡ BelGα ⁄ Bel2
G α ⁄ … ⁄ Belm

G α ⁄ ……. CBelGα is true if everyone in G believes α,

everyone in G believes that everyone in G believes α, and so forth. Belk+1
G α = BelG

Belk
G α, for k > 0. Common knowledge can be regarded as true mutual belief

An axiomatic system for knowledge and belief in terms of axioms K, D, T, 4 and 5

may be defined. See chapter 3 for definitions of these modal axioms. The K-axiom,

(Ki α ⁄ Ki (α→β)) → Ki β for i= 1..m, states that knowledge of agent i is closed under

classical logical consequence.

The axiom D states that an agent's beliefs are non-contradictory. The axiom can be

written as Ki α → ¬ Ki ¬α for knowledge and Bi α → ¬ Bi ¬α for beliefs. If agent i

knows or believes α then it does not know or believe the contrary, ¬α.

 247

Reasoning about a Group’s Beliefs

The axiom T, (Ki α → α), is often called the knowledge axiom, since it distinguishes

knowledge from belief and applies only to knowledge. Axiom T states that what is

known is true. Knowledge is thus often defined as true belief: agent i knows α if i

believes α and α is true, [Wooldridge and Jennings 1995a].

Axiom 4 is called the positive introspection axiom: Ki α → Ki Ki α. An agent knows

what it knows and similarly for beliefs. Introspection, [Konolige 1986], allows

examining one's own beliefs.

Axiom 5 is the negative introspection axiom: ¬Ki α → Ki ¬Ki α and similarly for

beliefs. It states that an agent is aware of what it doesn't know. Axiom 5 is

controversial philosophically since if an agent ignorant of something, it is unlikely in

general that it knows (or believes) this ignorance, [Meyer and Van der Hoek 1995].

Positive and negative introspection together imply an agent has perfect knowledge

about what it does and doesn't know. It is generally accepted that positive

introspection is a less demanding property than negative introspection, especially with

limited resources for reasoning. The axioms KTD45 are often chosen as a logic of

knowledge, and KD45 as a logic of belief. However an S4 system may also be

accepted for reasoning about knowledge and similarly axioms KD4 for reasoning

about beliefs.

7.4 Knowledge and Belief in a negotiation

Both knowledge and belief are used in our approach for reasoning about negotiation.

The protocol is considered common knowledge in a group of agents who are

encouraged to comply with it so as to reach a desired negotiation state. On the other

hand, the negotiation state is taken to be part of the mutual beliefs of a group.

Messages between agents may get lost or delayed such that an agent’s beliefs about

the negotiation state are not necessarily true and may not form part of other agent’s

beliefs. Another reason for using belief is that a group of agents may negotiate about

a subject they all believe in but which is not in fact true. For example, two agents

may believe they are negotiating about Christmas turkeys according to an English

auction, when in fact they are negotiating about pigeons. It could be said that the

 248

Reasoning about a Group’s Beliefs

same applies to the interaction protocol where the agents believe they commonly

know they are complying with an English auction, but in fact they are complying with

a Dutch auction. Using this stance leads to an agent not knowing anything and

believing that it knows some things. We draw a line and consider the interaction

protocol as knowledge, and the subject and state of negotiation as beliefs. Beliefs are

preferred to knowledge in our framework when representing and reasoning about the

state of negotiation according to a group of agents. Even if a group’s beliefs are not

true and they are not aware of it, the negotiation is still valid to the agents, suits their

purposes and achieves their goals.

7.4.1 Example of Contents of Knowledge and Belief in a negotiating group

In a negotiation, the common knowledge and beliefs of a group of agents may consist

of a number of sentences. In addition, an agent may privately possess individual

knowledge and beliefs. Below are listed some of the elements that may be common

or private knowledge or belief between negotiating agents.

Common Knowledge

• The protocol followed by the group for a negotiation

• The possible roles the agents can take.

Roles can embed constraints about permissions and capabilities. Roles are

defined in a protocol.

• If applicable, the institution or market-place supporting the negotiation.

• Commitment

There may be some states in a protocol that involves a higher degree of

commitment i.e. they are nearer to a successful terminal state. For example, in a

bilateral protocol proposed and offered reflects more commitment than requested

state. The state agreed is a committed state.

Common Beliefs

• The subject of negotiation

The subject of negotiation may consist of a list of attributes stored as name-value

pairs e.g. [(article, Jeans sale JB007), (price, £50), offered(john)].

• The set of agents involved in the negotiation.

 249

Reasoning about a Group’s Beliefs

An agent does not know the number of participants in an open negotiation as in an

auction.

• The state of the negotiation is mutually believed by the group.

• The history of the negotiation

The history of the negotiation depends on the states reached and actions that have

been performed. The history of the actions and state transitions may be kept for

learning purposes, non-repudiation, recovery, etc.

• The group’s goals

• The etiquette

An etiquette could ensure that agents reply when required, have resources to back

their commitments and respect any agreement or contract. It could also embody

sincerity and fairness aspects in interacting. A agent may wrongly believe an

etiquette.

• Contract and obligations

If a negotiation has successfully terminated, there may be a contract between the

participants. The contract may require its execution as in the promissory protocol

in chapter 4. It may also involve liabilities in the case of non-execution. The

contract may be derived from the state of a negotiation.

• Public conditions and variables

There may be other conditions that may be commonly believed to a group of

agents e.g. the time elapsed and remaining, beliefs about the environment or

constraints that an agent choose to make public.

Individual Beliefs and Knowledge

This section gives an indication of the possible contents of an agent’s individual

beliefs in a negotiation. Some of the elements may be derived from the common

beliefs and knowledge, for example planning and analysis of the history of the

negotiation. An agent may need information from one negotiation to influence its

decisions in another negotiation.

• The state of an agent

The state of an agent reflects the state of affairs on its side. It may depend on its

actions and the mutual beliefs.

 250

Reasoning about a Group’s Beliefs

• Goals and sub-goals

It is up to an agent to choose and update its goals and sub-goals. Goal-oriented

behaviour is specific to an agent as it chooses when and which goals to satisfy.

• Valuation functions, reservations, estimates (of costs, utility)

An agent may assign values to costs and utilities for the attributes in the subject of

a negotiation. A valuation function may help to do so.

• Strategies

An agent can calculate its strategies through decision-making mechanisms,

heuristics algorithms, risk analysis, statistical estimates and game theoretic, path-

finding and planning techniques. It may have an ordered list of paths for

planning.

• Beliefs about other agents

• Learning functions

• Trust

This includes the trust of an agent towards other participants, the market-place or

the institution. Trust can be built from several sources such as other negotiations,

the history of that negotiation and third parties.

• History of various negotiations

An agent has beliefs about past and parallel negotiations.

• Private constraints

There may be constraints private to an agent e.g. about time and resources or its

environment.

• Predictions

An agent may form predictions and construct plans using its estimates, strategies

and its beliefs.

7.5 The Properties of a Theory

The previous chapter specifies various safety and liveness properties of a protocol

expressed as a theory. Formal properties such as satisfiability and consistency of a

theory can also be derived. The theory of a protocol is common knowledge in a group

of negotiating agents. Therefore analysing the properties of the theory of a protocol

helps in reasoning about the common knowledge of the group regarding that protocol.

The common knowledge in a group G about the protocol is referred to as the common

 251

Reasoning about a Group’s Beliefs

theory in group G. Consistency of the common theory regarding the protocol entails

consistency between the agents’ knowledge about the protocol. Similarly the

properties of the common theory reflect on the properties of the common knowledge

about a protocol. This section describes the properties of a theory using the bilateral

protocol as example.

Language

A language is an enumerable set of non-logical symbols, i.e. names, function symbols,

sentence letters and predicate letters. A sentence or a formula in a language is one

whose non-logical symbols all belong to the language. ANML is a language.

Theory

A theory is a set of sentences in some language that contains all of its logical

consequences that are sentences in that language. Protocols are represented as

theories in ANML.

A Complete theory

A theory T is complete if for every sentence A (in the language of T), either A or ¬A is

a theorem of T. The theory of a protocol is complete if there are no undefined states.

To prove that the theory of the bilateral protocol is complete, the truth-values of all its

possible states are checked before and after each state transition. The possible states in

a bilateral negotiation are negotiating, requested, offered, proposed, open, closed,

agreed, rejected, timedout and their negation. The bilateral protocol is complete if all

its states remain well-defined (either they are true or false) before, during and after a

negotiation, therefore at all times. The proof is similar to the structural induction

proofs in the last chapter.

A consistent theory

A consistent theory contains no theorem whose negation is also a theorem.

A satisfiable theory

A theory is satisfiable if it has a model. A consistent theory is satisfiable.

 252

Reasoning about a Group’s Beliefs

Extension and conservative extension of a theory

A theory T is called an extension of theory S if S is a subset of T, i.e. if any theorem of

S is a theorem of T. Theory T is a conservative extension of theory S if every sentence

of the language of S that is a theorem of T is a theorem of S.

As an analogy, consider an extension T of the bilateral protocol S. The following two

theorems are part of the theory S:

¬open ¨ none_of ({ requested(X), offered(X) })

open ¨ one_of ({ requested(X), offered(X) })

The theory T only contains the theorem (none_of ({ requested(X), offered(X) }) ¤

one_of ({requested(X), offered(X) })) in addition to the theorems in S. The additional

theorem in theory T is implied by the two above theorems in theory S. T is thus a

conservative extension of theory S.

7.6 Common, Individual and Joint Theory

Consistency in the individual and common knowledge and beliefs is ensured by the

D-Axiom if an S4 or S5 system is used.

7.6.1 Common Theory

A theory α is defined to be common theory in a group of agents G, if α is common

knowledge in the group G. The theory of a protocol in ANML is a common theory in

group G if it is commonly known by the agents in G. All the agents in the group

know the protocol and know that the other agents know it and so on. If Cohen and

Levesque’s joint intentions theory applies in G, then an agent X intends to follow the

common theory, knows that others in the group follow the protocol and that others

know that X follows the protocol.

This thesis assumes the theory of a protocol to be common knowledge in a group

during a negotiation. A protocol can become common knowledge on joining the

 253

Reasoning about a Group’s Beliefs

group, by learning from a repository of protocols, from a pre-negotiation phase or

from being advertised by the institution supporting the interaction e.g. a market place.

7.6.2 Individual Theory

Consider two agents who know two different languages (L1 and L2) and two different

theories, T1 and T2, where Li is the language of theory Ti. They need a common

language and a common theory to negotiate. Let T0 be the common theory where T0 is

the set of sentences in a common language L0 = (L1 ∩ L2). Each agent’s individual

theory, T1 or T2, is an extension of the common theory T0. If T0 is not empty then both

agents have some common grounds, T0, on which to interact.

The individual knowledge of an agent in a group is private to that agent. Individual

knowledge and individual theory at an agent denotes the same concept. Various

negotiations and protocols, transactions, strategies and accumulated experience may

form part of an agent’s individual knowledge and beliefs. In addition to knowing the

common theory (i.e. protocol), an agent can privately extend the common theory in

order to guide its responses. For example in a negotiation following the bilateral

protocol, an agent called Sam, adds the following rule to its individual theory:

proposed(X) → [Sam.request] requested(Sam). Sam decides to respond with a

request after any proposal. This theorem is not part of the common theory of the

group, but is part of Sam’s individual theory.

In a negotiation, all agents in a group know the common theory and have possibly

different individual theories. The properties of these theories can be analysed. The

responsibility for designing and verifying the properties of a common theory or

protocol would probably lie with the provider of the protocol or the institution

supporting the negotiation. On the other hand, an agent manages its individual theory

and beliefs about a negotiation. Figure 7.1 illustrates possible categories in an agent’s

individual knowledge. It includes the common theory about negotiation X, and its

private knowledge about X and about its other transactions. The agent would have the

same elements for its individual beliefs.

 254

Reasoning about a Group’s Beliefs

Individual Theory
about Negotiation
X

Knowledge
about other
transactions

Common
Theory

on X

Figure 7.1 An agent’s individual knowledge

Agent 1 Agent 2

Language L1, Theory T1 Language L2, Theory T2

Theory
T2 in L2

 T1 T2

 T0
T0 is common theory
L0 = L1 ∩ L2
T1, T2 = extend(T0)

Theory
T1 in L1

Figure 7.2 Common theory T0 and individual theories T1 and T2

7.6.3 Joint Theory

The joint theory of a group of agents follows from the consequence of the union of

their individual theories. Usually, no agent knows the joint theory except if it has a

view of all of the agents’ individual theories or if the joint theory is equivalent to the

common theory. Consider two agents who know different languages (L1 and L2) and

different theories, T1 and T2, where Li is the language of theory Ti. As discussed

above, L0 = (L1 ∩ L2) and T0 are the common language and theory respectively and an

agent’s individual theory is an extension of the common theory. The joint theory, T3,

is defined to be the set of sentences, in language L3 = (L1 ∪ L2), that are consequences

of (T1 ∪ T2). T3 is an extension of the common theory T0 and of the individual

theories, T1 and T2. If T1 and T2 are conservative extensions of T0, then T3 is also a

conservative extension of T0.

 255

Reasoning about a Group’s Beliefs

Indivi-
dual

theory T2

 T1 T2

 Joint Theory T3

L3 = L1 ∪L2
T3 = extend(T0)
T3 = extend(T1)
T3 = extend(T2)

Indivi-
dual

theory T1

Figure 7.3 Joint Theory

7.7 Consistency of the Joint Theory

The protocol to be followed in a negotiation is known to all the participants. In

addition, the agents may have their own theory about how best to negotiate.

Inconsistency may arise in the joint theory of a group even though the common and

individual theories are consistent on their own. For example, in a bilateral

negotiation, one agent may believe the current state to be agreed while another agent

believes it to be timedout. The states agreed and ¬agreed, timedout and ¬timedout are

all true in the joint theory. Their individual theories are thus consistent on their own

but inconsistent with each other. This leads to an inconsistent world where for one

agent the negotiation is a success while the other thinks it is a failure.

The possible reasons for inconsistency in the joint theory regarding a protocol include

the common theory being incorrect or the additional theorems in an agent’s individual

theory render it inconsistent with other agents’ individual theory. A group of agents

may follow a common protocol but individually extend the protocol for their

purposes. Inconsistency may arise between the different individual extensions of the

protocol. The issue is, given a common theory and individual theories in a group how

is consistency ensured in the joint theory regarding a particular negotiation.

Robinson’s consistency theorem, [Boolos and Jeffrey 1989], is applied to ensure

consistency of the joint theory. Let Agent i have individual theory Ti. The reasoning

and conditions for maintaining consistency are given below.

 256

Reasoning about a Group’s Beliefs

Robinson’s consistency theorem

If Li is the language of Ti (i= 0,1,2), L0 = (L1 … L2), T0 is a complete theory, and T1 and

T2 are satisfiable extensions of T0 (which is therefore satisfiable), then T1 » T2 is

satisfiable.

The joint theory of T1 and T2 is derived from (T1 » T2). L0 is the common language of

L1 and L2. T0 is the common theory of T1 and T2. If agent i has individual theory Ti,

then the joint theory of a group of two agents is satisfiable if Robinson’s consistency

theorem applies. This rule can be extended to apply to a group of n agents with

individual theories.

Extension of Robinson’s rule: If Li is the language of Ti (i= 0,1,2,…,n), L0 = (L1 … L2

… … … Ln), T0 is a complete theory, and T1, T2 up to Tn are satisfiable extensions of T0

(which is therefore satisfiable), then the theory (T1 » T2 » …» Tn) is satisfiable.

Proof by induction

The base case is covered by Robinson’s consistency theorem for two agents in a

group with individual theories T1 and T2.

Induction Hypothesis

Assume that the extension of Robinson’s rule holds for theories T1 to Tk i.e. k agents

in a group, where agent i has individual theory Ti.

Induction Proof

The joint theory of k+1 agents is proved to be satisfiable from the preconditions of

Robinson’s rule for k+1 agents. Let Li be the language of Ti (i= 0, 1, 2,…, k+1, .. m).

Preconditions:

• The common theory, T0, of T1, T2 up to Tk+1 is in the common language L0 =

(L1 … L2 … … … Lk+1).

• Theories T1, T2 …Tk+1 are satisfiable extensions of T0.

• T0 is complete and satisfiable.

 257

Reasoning about a Group’s Beliefs

The joint theory of T1, T2 up to Tk+1 can be derived from (T1 » T2 » …» Tk+1). From

the induction hypothesis the joint theory of T1, T2 up to Tk is satisfiable. That is,

theory (T1 » T2 » …» Tk) is satisfiable. Since T1, T2 …Tk+1 are satisfiable extensions

of T0, then the theory (T1 » T2 » …» Tk » Tk+1) is an extension of T0. T0 is complete

and Tk+1 is a satisfiable extension of T0. Then the theory (T1 » T2 » …» Tk » Tk+1) is

satisfiable. QED.

The conditions for a satisfiable joint theory are therefore:

1. T0, the common theory, is a complete theory.

2. The individual theories T1 … Tk are satisfiable extensions of the common theory

T0.

3. T0 is a satisfiable theory. This follows from the above two conditions.

Hence the above three conditions must be satisfied for maintaining consistency in the

joint theory between a group of agents.

7.7.1 How Robinson’s rule preserves consistency of the joint theory

If Li is the language of Ti (i= 0,1,2), L0 = (L1 … L2), T3 is the set of sentences of (L1 »

L2) that are consequences of (T1 » T2), and T1 and T2 are conservative extensions of

T0, then T3 is also a conservative extension of T0, [Boolos and Jeffrey 1989].

According to the above theorem, if the individual theories of a group of n agents (T1

… Tn) are conservative extensions of the common theory (T0), then the joint theory

(Tk) is also a conservative extension of the common theory (T0), where Tk is the set of

sentences from (L1 » …» Lk) that are consequences of (T1 » … » Tk).

A satisfiable extension of a complete theory is conservative and a conservative

extension of a satisfiable theory is satisfiable. The common theory is satisfiable and

the joint theory is a conservative extension of the common theory and is thus

satisfiable. By the same token, the common theory is complete and satisfiable, and

the joint theory is a satisfiable extension of the common theory and is conservative.

 258

Reasoning about a Group’s Beliefs

7.7.2 Maintaining Consistency in Negotiation

Interpreting Robinson’s consistency theorem in the context of a negotiation yields: If

the theory of a protocol is complete and the agents’ individual theories about the

protocol are satisfiable extensions of the protocol, then the joint theory about that

protocol is also consistent.

Therefore for a consistent joint theory in a negotiation, the protocol must be complete.

If a theory is complete, it implies any satisfiable extension. An agent’s individual

theory must be a satisfiable (and hence conservative) extension of the protocol. Any

consistent extension that an agent privately wishes to add to a protocol should be

derivable from the protocol. The developer of a protocol or the institution enforcing a

protocol may be responsible for building and verifying that the theory of a protocol is

satisfiable and complete. On the other hand, each agent must ensure that any

extension it privately adds to the protocol is satisfiable and thus conservative. There

is a shared responsibility for the joint theory to remain consistent.

The bilateral protocol has been proved to be consistent, complete and satisfiable.

Therefore it meets the requirement of Robinson’s consistency rule for a complete and

satisfiable common theory. The onus now lies on the two agents’ side to ensure that

their individual theories are satisfiable extensions of the bilateral protocol. Consider

as an example an instance of negotiation between two agents following a protocol.

The different steps for preserving consistency in the joint theory are enumerated:

1. Define the common theory in the negotiation.

The protocol is common knowledge and thus common theory between the two

agents.

2. Verify that the common theory is complete and satisfiable.

The theory of the protocol must be checked for being complete and satisfiable.

The properties of the protocols can also be analysed.

3. Define each agent’s individual theory (T1 and T2) as extensions of the protocol.

The common theory can be derived from each agent’s individual theory. An

agent’s individual theory of the protocol extends the protocol. For example, in a

bilateral negotiation, an agent may privately decide to accept any proposal.

 259

Reasoning about a Group’s Beliefs

4. Verify that T1 and T2 are satisfiable throughout the negotiation.

Each agent’s individual theory about the protocol must be consistent and

conservative extensions of it.

5. Apply Robinson’s rule to show consistency of the joint theory.

If all the above conditions are met, then according to Robinson’s rule, the joint

theory between the two agents regarding the protocol is consistent.

7.8 Beliefs about the Negotiation State in a Fallible
Communication Medium

Agent interaction in realistic applications is subject to many forms of uncertainty -

information and network uncertainty, trust of and conflicts with other participants,

lack of stability in a deal and risks about agreements and commitments, etc.

However, one of the most common forms of uncertainty occurs when a group has

divergent beliefs about the interaction - some agents believe an agreement has been

reached, while others believe it has been rejected or that they are still bargaining.

Such misunderstandings can arise because of loss of network performance, spurious

connections, message loss or delays.

We develop synchronisation protocols for a group of agents to attain the same beliefs

about an interaction, independent of the reliability of the underlying communication

layer. This section includes and proves theorems about a group's mutual beliefs, on

which the safety of an interaction relies. Specifically, protocols for message exchange

and belief revision and our reasoning for reachability of states during interactions are

presented. Each protocol is proved to show that an increasing level of mutual and

consistent belief is reached, thereby guaranteeing an interaction's integrity.

7.8.1 Defining the Problem

Issues arise when unexpected events occur, for example agents do not comply with or

misunderstand the interaction protocol, or the communication is faulty. To deal with

such issues and the semantics of agent communications, we regard an interaction as a

joint process between agents. The steps in such a joint process progress by virtue of

the propositions believed by the group. We use belief, instead of knowledge, because

the property of knowledge being true means it is far harder to attain in practical

 260

Reasoning about a Group’s Beliefs

contexts than beliefs. Beliefs only require consistency and we assume this in our

solutions. For example, an agent X may believe an agreement has been reached with

agent Y when in fact it has misunderstood or mis-implemented the protocol, or there

has been a security breach with a malicious agent impersonating Y, or X and Y do not

share the same ontology. When these uncertainties are compounded with network

unreliability, it is easier for an agent to believe some state than to know that state.

While an interaction protocol may be considered as common belief in a group of

agents, the participants' individual beliefs about the progress of a particular interaction

are liable to differ between the time a message is sent and received. For example, a

sender has added beliefs about the message it sent compared to another agent which

has not received that message. Therefore, some degree of common beliefs and

consistency in joint beliefs about the interaction state are necessary to safely progress

in an interaction and to avoid contradictions and any confusion in the group that may

arise from a participant persisting with differing beliefs about the interaction state.

This issue of consistency is an important problem because unreliable communication

is the norm in the communication networks and infrastructures in which agents are

most likely to be deployed. The key issue here is that the interaction must not

continue without ensuring that all agents believe the same state at some point.

Otherwise if messages are lost in an interaction according to protocol P, then one

agent may believe the state to be agreed while another believes it to be browsed.

Such discrepancies may lead to disputes worsened when monetary, time or safety-

critical information are involved.

7.8.2 A Synchronisation Layer

Given these requirements, we develop synchronisation protocols that should be

followed by all agents for message exchange and belief revision in an interaction.

These protocols lie in a layer below interaction protocols but above communication

(network) protocols (see Figure 7.4). Such synchronisation protocols specify the steps

for sending messages, acknowledgments and for belief update. Their aim is to

produce a degree of shared belief, if not common belief, about the state of an

interaction, that is sufficient to remove uncertainty about that state. Moreover, we

prove that our synchronisation protocols allow a group to attain the same beliefs about

an interaction state before each transition and that an interaction safely terminates

 261

Reasoning about a Group’s Beliefs

with no uncertainty about its result. If the interaction has failed, then all agents

believe so.

Negotiation Protocol

Logical theory in our meta-language

Synchronisation Layer
knowledge-based protocol (perfect or fallible communication)

Frameworks for communication and session services

Figure 7.4 Various Protocols

Three types of protocol are distinguished in our approach – low-level, synchronisation

and interaction protocols, as in Figure 7.4

Examples of low-level protocols are TCP/IP, HTTP or those defined by CORBA,

JAVA RMI, SSL, for connection and session purposes. Interaction protocols

constitute one of the main aspects of this thesis. Interaction protocols are used in

high-level agent conversations with a plethora of underlying frameworks providing

location, platform, session, communication and programming language transparency.

Interaction protocols, such as the bilateral protocol, indicate possible sequences of

ACL-like (but not only) messages e.g. a request may be followed by an offer. An

interaction protocol is considered as common knowledge in a group complying with

that protocol. The current state of a negotiation varies depending on the actions of an

agent following the interaction protocol, for example from browsed to offered and

then to agreed.

As a negotiation progresses, all the participants must individually believe and believe

that their opponents believe the same state of that negotiation to avoid contradiction

and confusion. While in a perfect communication medium, this mutual belief follows

from the exchange of messages, this is not guaranteed when communication is faulty,

involving lost, unordered messages and delays. We adopt an epistemic approach to

address the problem of ensuring that there is a degree of shared belief, if not common

belief, between the participants about the negotiation state when communication is

 262

Reasoning about a Group’s Beliefs

imperfect. The agents in a group follow a synchronisation protocol guiding how

messages and acknowledgements are sent and how an agent revises its beliefs about

the state of a negotiation. The synchronisation protocols in sections 7.12, 7.14 and

7.15 aims to remove inconsistency in the joint beliefs of a group of agents because of

communication problems and aims to attain a degree of mutual belief. We wish to

prevent one agent from believing a negotiation to be in state x while another agent

believes it to be in state y and the negotiation continues without ensuring that both

agents will eventually believe the same state at some point.

It has been argued that common knowledge is hard to achieve when communication is

faulty, [Meyer and Van der Hoek 1995]. This chapter discusses this problem in the

context of an automated negotiation. Since belief imposes weaker constraints than

knowledge, a degree of common belief about the state of a negotiation may be

attainable. The proposed solution incorporates a synchronisation layer between an

interaction and a communication framework. Using a synchronisation protocol, we

consider reaching a degree of shared beliefs about the current state, while beliefs

about other participants gradually augments as negotiation progresses. Interaction and

synchronisation protocols are assumed to be common knowledge within a group of

agents. Section 7.11 describes the assumptions, conventions and conditions for

message exchange and state transition during a negotiation and for its termination.

The synchronisation protocol removes uncertainty about the exchange of messages at

the end of intermediate steps in an interaction. Section 7.13 proves by induction that

after any state-changing message, all participants following the synchronisation

protocol have the same belief about the current state of that negotiation before the

next transition. Finally this approach is illustrated through a generic scenario between

two agents to show the evolution of their beliefs, predictions, message exchange and

state transitions in a negotiation. The interaction process between these agents

concludes with both of them believing the same terminal state and believing that their

opponents believe so too.

7.8.3 The State of a Negotiation

As discussed in chapter 3, the state of an agent is different from what an agent

believes about the state of a negotiation. The state of an agent remains private to that

agent. Each agent has its individual and private beliefs useful for strategic reasoning

 263

Reasoning about a Group’s Beliefs

in competitive scenarios. Shared protocols are assumed to be common knowledge,

non-deterministic and can be used to achieve a goal state.

The state of a negotiation changes depending on the actions of the agents in a group.

The group adheres to a common protocol and should be aware of the state of a

negotiation and of possible successor actions and states, given by the protocol. A

current state means that state which is true while other non-parent states are false. A

state of a negotiation is part of an agent’s beliefs. Changes in beliefs about the state

of a negotiation occur in the individual beliefs of an agent on sending or receiving

messages. These changes are eventually propagated to the shared beliefs between the

group of agents as the interaction continues. The term shared belief is used to

indicate a degree of common belief, as explained in section 7.10. In order for each

agent to achieve the same belief about the negotiation state and belief that its

opponents believe the same state and so forth require coordination and allowances for

faulty communication. We specify protocols, in the context of automated negotiation,

for synchronising message exchange and update of private beliefs when it is possible

for messages to be lost or arrive unordered.

7.9 Contribution to Communication and Interaction

This work on synchronisation advances the state of the art in multi-agent interactions;

by developing an approach that ensures their safe progression through a number of

identifiable states and termination in a consistent manner.

7.9.1 Practical Usability

Existing multi-agent system work in this area typically relegates this problem to the

ISO transport layer and assumes that messages safely reach their destination.

However, this is inappropriate in situations in which an agent has to choose

compensating or alternative actions in cases of network lag or failure. For example,

let an agent X send an agreement to n agents and then receive a confirmation from m

agents (m ≤ n). If any one of the n agent's confirmations are lost through the network,

the group as a whole has to coordinate to ratify X's agreement and inform the others of

the ratification, let alone deal with delayed receipt of messages. Thus, because perfect

communication cannot be guaranteed in most multi-agent systems, the problem of

 264

Reasoning about a Group’s Beliefs

reasoning about message exchange is not strictly a transport layer issue. On the other

hand, the issue of sending messages and acknowledgements should not be dealt at the

interaction layer because at this level an agent does not want to concern itself with the

intricacies behind message exchange. The interaction level should rather concentrate

on higher-level reasoning. Consequently, we develop the concept of synchronisation

protocols to lie between interaction and communication protocols. Moreover, we

reason about beliefs rather than knowledge because common beliefs are easier to

attain than common knowledge and are more appropriate. Common knowledge can

be impossible to reach when communication is imperfect.

Our synchronisation protocols assume the completeness of the (common) interaction

protocol. Such completeness may be enforced by the protocol’s developer or the

institution holding the negotiation. The interaction protocol may be pre-determined

(which is possible in negotiation between companies, customers and providers, where

privacy of information are important, our bilateral, multi-lateral or promissory

protocols) and its completeness proved.

7.9.2 Related Work

Distributed database solutions to preserving the consistency of a shared resource are

based on two-phase locking and commit protocols, [Özsu and Valduriez 1999]. They

are not suitable for addressing the integrity of a group’s knowledge here because the

participants are autonomous agents instead of objects and servers. In distributed

databases, timeouts ensure the integrity of data and rollbacks are used to restore the

shared resource to its latest stored state. While it is feasible in a non-intelligent

system to return to a previous state, this does not apply to a multi-agent system. The

agents can collect information about a timed out or failed negotiation and their

opponents. They can use this new information in case of timeouts to influence their

behaviour in a restarted negotiation. Believing that a message did not get through

allows the sender to rethink its strategy and send a different message from before.

Therefore timeouts may give an advantage to a participant. Other events may also

have occurred during the elapsed time before restarting a negotiation. In essence, the

state of a multi-agent system on starting a negotiation is not equivalent to its state on

restarting that negotiation if timed out.

 265

Reasoning about a Group’s Beliefs

Fagin and al., [1995], use epistemic logic in analysing protocols by reasoning about

an agent’s actions, its local states and its knowledge. More work on knowledge-based

approach to protocols can be found in [Halpern and Zuck 1992, Neiger and Tutlle

1993].

The bit transmission problem, [Halpern and Zuck 1992], and end-to-end

communication problem, discussed in [Fich 1998], are examples of communication

problems in faulty medium, requiring synchronisation protocols. The bit transmission

problem involves the uncertainty of a receiver R receiving a message (a bit) from a

sender S, in a faulty communication line. If the channel is working then it is

eventually known that the message is successfully received. Otherwise, if the

communication channel is constantly faulty, one knows that a message will never be

received. When it is not guaranteed when the channel is working, then messages may

be lost in either direction at uncertain times. A medium may even be nearly perfect

with a small error rate. In either case of perfect or imperfect communication,

questions remain about the attainment of common knowledge. See [Fagin and al.

1995 and Meyer and Van der Hoek 1995] for a discussion about common knowledge

in transmitting messages over a network.

Fagin and al. [1995] describes a protocol overcoming the bit transmission problem. It

dictates that S keeps sending its message until it receives an acknowledgement from

R¸ while the latter keeps sending its acknowledgement after it receives the bit from S.

S keeps sending its message since it does not know that R has received the bit. S

knows so when it receives R’s acknowledgement. However R does not know if S has

received its acknowledgement. Even if R stops receiving the bit from S¸ this may

mean that the messages are lost rather than S has received R’s acknowledgement.

Therefore S could send an acknowledgement in response to R’s acknowledgement,

but this may escalate to R and S sending acknowledgements to each other. Faulty

communication engenders this type of uncertainty in message passing systems. Fagin

and al. [1995] analyses the bit transmission problem using the formalism of local

states, actions and global states at the agents and channel sides and ascribing

knowledge to the sender and receiver. Given a synchronisation protocol, the number

of acknowledgements and counter-acknowledgements determines the point where an

agent can eliminate uncertainty although the channel may be faulty. In the bit-

 266

Reasoning about a Group’s Beliefs

transmission protocol where a bit is being conveyed, three acknowledgements from R

and S combined are sufficient to counter the uncertainty from a faulty channel.

End-to-end communication, also known as the sequence transmission problem, is the

problem of sending a sequence of messages from one processor, the sender, to another

processor, the receiver, through an unreliable communication network. This is an

extension to the bit transmission problem. A sender S has an infinite sequence of data

that it wants to transmit to a receiver R when communication is faulty. A protocol for

exchanging these bits must exhibit safety and liveness properties for correctness.

Solutions to the sequence transmission problem include the well-known ABP

(Alternating Bit Protocol), [Bartlet and al 1969], Stenning’s protocol, [Stenning 1976]

and work by Aho and al., [1979, 1982]. The ABP is a connection-less protocol for

transferring messages in one direction between a pair of entities in a situation where

messages may be lost or duplicated, but never corrupted. Tagging messages with 0 or

1, and resending until an appropriately tagged acknowledgement is received may

provide assurance of correctness. However, this protocol does not detect the case

when two consecutive bits are lost or when bit (i+2) arrives before bit i. Stenning’s

protocol is designed for asynchronous systems where messages can be deleted,

duplicated, reordered or detectably corrupted. Safety and liveness properties have

been formulated and proved for Stenning's protocol in Hailpern and Owicki [1980].

[Fagin and al. 1995] give a knowledge-based analysis and solution from reasoning

about the data communication and local states of the agents and the environment. S

repeatedly sends the ith bit to R until S knows that R has received it and its order in the

sequence. S then sends the (i+1)th bit to R. Once R receives the ith data, it requests S

to send the next data. The semantics of first-order modal logic forces free variables to

act as rigid designators. This is how Fagin and al. [1995] counters the problem of R

not knowing that it is the ith bit being sent. R’s request for the next bit is interpreted

an acknowledgement for receiving the previous bit.

However the same principle cannot be used in a negotiation since a sequence of bits is

not being sent but rather actions for triggering the state of a negotiation. These

actions depend on the interaction protocol, are not ordered as a linear sequence and

any agent may be a sender or receiver. Van der Hoek and Wooldridge’s, [2002],

solution to the sequence transmission problem requires R and S sending three

 267

Reasoning about a Group’s Beliefs

acknowledgements between themselves after each bit. After receiving the third

acknowledgement, R sends the next bit. However this introduces the redundancy of

two additional acknowledgements being sent after S receives the first

acknowledgement from R. Sending the (i+1)th bit is an acknowledgement (second

acknowledgement) in itself from S. Then acknowledging the (i+1)th bit is an

acknowledgement (third) of the ith bit from R. This idea of having implicit

acknowledgements to previous messages, embodied in successor messages is used in

our synchronisation protocol for reaching a state of shared belief that eliminates

uncertainty.

7.10 An Interacting Group’s Beliefs

For the sake of conciseness and familiarity, this paper henceforth uses for group

beliefs the operator symbols E and C normally denoting group and common

knowledge. This is allowable because we are redefining the semantics of the operators

to denote beliefs utilizing preconceptions about knowledge operators. An axiomatic

system for belief may be defined in terms of axioms for consistency and introspection

(section 7.3). We assume that each agent in a group has such a system of beliefs and

is aware that others do.

 The formula Biα is read as agent i believes α, EGα is read as everyone in a group of

agents, G, believes α and CGα means α is common belief among the agents in G

(where as for knowledge CGα can be expressed in terms of EGα). With this standard

definition, certain properties of protocols can be proved.

We assume the protocol of an interaction is part of the common beliefs of a group

where all agents are aware of permissible states and actions and believe that other

participants have the same beliefs. Thus an agent X may believe that it follows a

protocol and believes that others in the group both believe and use the same protocol

and believe what X believes about the protocol. The individual beliefs, Bi, of an agent

i extend the common beliefs of the group and may include agent i's beliefs about its

interactions, environment and strategies. An agent revises its individual beliefs as the

interaction progresses. Thus the individual beliefs of the agents in a group about the

 268

Reasoning about a Group’s Beliefs

history and state of an interaction may differ between each other while a message is

being relayed.

7.10.1 Consistency of Joint Beliefs

The joint beliefs of a group are the sentences that are consequences of the union of the

individual beliefs of the agents. Thus the joint beliefs are extensions of the individual

and common beliefs of a group. The joint beliefs relate to the beliefs of all the agents

in a group and unless all agents publicise their beliefs, no agent is privy to the joint

beliefs of the group. Given the individual beliefs of the agents differ, the joint beliefs

of a group need not be completely consistent.

However consistency of the joint beliefs about an interaction state is needed before

progressing to the next state. Consider a multi-lateral interaction between n agents,

where the interaction state is motioned (after raising a motion). This entails that all n

agents believe the state to be (motioned ⁄ ¬seconded). An agent i sends a message m

to second the motion to eventually trigger a seconded state. On sending m, agent i

may believe the new interaction state is (seconded ⁄motioned). Agent i's belief about

the interaction state is inconsistent with the other participants. On p agents receiving

m, they update their beliefs about the interaction state to (seconded ⁄motioned). Now

(p+1) agents beliefs are inconsistent with (n-p-1) agents. This is as expected given

delays in message transfer over networks. It is important though that those (p+1)

agents do not continue with the interaction with voting and agreement while some of

the group still believe (motioned ⁄ ¬seconded), since this would result in agents

receiving unexpected messages. An agent still believing the state to be ¬seconded

could then receive a message about the result of all votes, which should only follow

after a seconded and voting state.

Thus we propose synchronisation protocols to ensure that all agents believe the

interaction state α at world w before proceeding on to the next state at world w1,

resulting in the formula EGα holding in group G at world w. In fact an interaction state

α emerges from it being a consistent and joint belief in a group at w. With the

definitions of completeness and consistency, a protocol is complete if all states are

well-defined, that is either a state or its negation can be derived at any instance. A

 269

Reasoning about a Group’s Beliefs

protocol is consistent if it does not allow a rational agent to believe both a state and its

negation at any instance.

Theorem1 A complete and consistent protocol allows a group of agents to attain

consistency in their joint beliefs.

Proof The proof of theorem1 is a ramification of Robinson`s Consistency theorem,

see section 7.7.

Convention1 The formula EGα holds about interaction state α in group G before any

further transition to a subsequent state β.

In addition to consistency in joint beliefs, safe termination of an interaction requires

that the final state becomes a common belief of all agents. For example, if an

interaction terminates in an agreed state, each agent has to believe that everyone

believes the same state and that everyone believes that it believes the state is agreed,

etc. There is then no uncertainty about joint commitments if a commitment state like

agreed is common belief. In such situations, an agent can fulfil its part of the bargain,

believing that the other agents have the same beliefs as itself about the state. Ideally

not only the terminal state but also the different states of an interaction should be

common belief in a group. However in imperfect communication environments,

common beliefs, as conventionally defined above, about each state before carrying on

to the next state would require an indefinite number of acknowledgements and is

unfeasible. Instead we propose to settle for shared beliefs which brings about common

beliefs as argued in the following section.

7.10.2 Shared Beliefs

While not achieving conventional common belief about the state of an interaction in a

group, we endeavour to ensure an increasing level of mutual belief to remove

uncertainty about an interaction's progress. Following convention1, during an

interaction, as long as the formula EGα about interaction state α holds, the agents can

continue on to the next state transition. Subsequent messages about successive state

transitions implicitly increase the mutual beliefs about the state α being part of the

 270

Reasoning about a Group’s Beliefs

history of the interaction. As an example, let an interaction perform the succession of

states 1 to 4 corresponding to (requested ; proposed ; offered ; agreed). At step 2,

before a proposed state, the formula EGrequested holds. At step 3, before an offered

state, the formula (EG proposed ⁄ E2
Gδ) holds where δ entails that requested was valid

before the current state proposed. At step 4, before agreed, the formula (EG offered ⁄

E2
G γ ⁄ E3

Gδ) holds where γ entails that proposed was valid before the current state

offered. After step 4, the state of interaction is agreed yielding the formula (EG

agreed ⁄ E2
G λ ⁄ E3

G γ ⁄ E4
Gδ) where λ entails offered was a preceding state. In this

way, the history of an interaction can be derived from the interaction protocol and the

interaction state.

Definition: The state α is shared belief if everyone believes the state α and believes

that everyone believes so too - (EG α ⁄ E2
G)

If agreed is a terminal state, then a group of agents must ensure that not only EG

agreed but also there is a degree of common belief about agreed. We settle for a

group believing the first two terms of common beliefs which we call shared belief

because shared belief about an interaction state allows the group to reach common

belief, as shown in theorem2 below.

7.10.3 Sufficiency of Shared Beliefs

Theorem2 gives the conditions for deriving common beliefs about the state of an

interaction in a group from it being a shared belief. If each agent is aware of the other

agents' reasoning system, then through positive and negative introspection about the

possible interaction states, the group can reach common beliefs about these states.

Theorem2 If the system of beliefs of all agents is consistent and is common belief in

group G, if the interaction and synchronisation protocols are common in G and

believed to be so, if group G attains shared belief about an interaction state α, then the

interaction state α is common belief in group G.

Proof It is sufficient to prove (EG α ⁄ E2
G α → E3

Gα) which results in (EG α ⁄ E2
G)

→ (EG α ⁄ E2
G ⁄ … ⁄ Em-1

G α ⁄ Em
G ⁄ …). Assume that everyone believes that

everyone believes the state is α i.e. (EG α ⁄ E2
G α). Then ∀i∈G . Bi(α ⁄ EG α).

 271

Reasoning about a Group’s Beliefs

Assuming that agent i believes that the other agents j have the same reasoning system

for beliefs as itself. Given that agent i believes that every agent is following the same

protocols, then everything agent i believes has been achieved, it believes everyone

believes so too from positive introspection. Therefore ∀i, j∈G . BiBj(α ⁄ EG α)

implying that ∀i∈G . Bi EG (α ⁄ EG α), that is E3
Gα.

Theorem2 depends on the consistency of beliefs of the member agents in a group.

Since an interaction protocol defines only a finite number of states, then positive and

negative introspection about the end states are possible and does not require complete

beliefs. In our case, an agent's introspection concerns only beliefs about what is being

communicated in a specific interaction and more particularly termination. In case of

unsuccessful termination such as timeouts, then negative introspection allows all

agents to believe that not all agents believe the end state. A safe protocol thus allows

all agents to believe any failure that occurs.

Corollary If the terminal state α is shared belief in a group G, then an interaction

terminates without uncertainty.

The corollary follows from the state of interaction being common belief, given the

preconditions of theorem2. Thus one advantage of reasoning about beliefs instead of

knowledge is the ability to attain common beliefs about the (terminal) state of an

interaction. Common knowledge is more difficult to reach since what an agent knows

would have to be true (rather than merely consistent as in the case of common belief).

7.11 Definitions and Assumptions

In a perfect communication medium, where message exchange is error-free and

instantaneous, belief revision after state transition messages can be instantaneous. In

this case, the synchronisation protocol is straightforward. However this is not the case

for time-constrained interactions in unreliable networks. To this end, we specify

synchronisation protocols between two interacting agents to ensure their interaction

progresses only with consistent joint beliefs about the interaction state. Our protocol

allows a sender to eventually believe whether others have successfully received its

message and receivers to believe whether their acknowledgments have been received.

 272

Reasoning about a Group’s Beliefs

This enables each agent to believe the same interaction state before, during and after

each state transition with an increasing degree of shared belief.

Several characteristics of a communication medium influence the design and choice

of a synchronisation protocol. The interaction itself may be time-constrained or all

the participants may benefit from unbounded time.

• Perfect communication.

Message exchange is trivially delayed, error-free, not duplicated and never

lost.

• Imperfect communication but guaranteed receipt of message.

The network may delay, duplicate or corrupt messages but does not fail

permanently so that a repeatedly sent message eventually reaches its destination.

On not receiving an expected message, a receiver believes that either the message

will eventually arrive or that the sender has crashed. A protocol using repeated

messaging is suitable when the participants have unbounded time or their deadline

is far. However such protocols increase the risk of network bottlenecks.

• Non-guaranteed receipt of messages.

In this case, a message may never get relayed. Non-receipt of an expected

message can be for any reason where a sender or the network has failed.

A family of protocols are possible for synchronisation in bilateral and multi-lateral

interactions depending on the complexity of solutions an agent chooses in dealing

with communication failures. We provide synchronisation protocols for guaranteed

and non-guaranteed receipt of messages in a bilateral interaction. These protocols

trivially apply when communication is perfect.

7.11.1 Assumptions

This section provides reasonable assumptions in order for the synchronisation

protocols to have the desired effect of ensuring the safety of an interaction. These

assumptions are the foundations of our reasoning and proofs.

 273

Reasoning about a Group’s Beliefs

Assumption1 The protocols (interaction, synchronisation and communication) are

common beliefs. Before an interaction, all participants have agreed on which protocol

to comply with. For example a market-place or an auctioneer broadcasts the types of

auction it supports.

Assumption2 Following assumption1, an interaction is initiated in a commonly

believed state. For example, in an auction if open and closed states are sub-states of

the overall parent state auctioning, then the state of the auction before its start is

¬auctioning.

Assumption3 To avoid infinite acknowledgments in our protocol, we assume that the

communication layer informs a sender if it fails to deliver its message (usually 100%

packet loss can be detected).

Assumption4 All agents have perfect recall. An agent does not lose information

erroneously about its beliefs, resulting in persistency of the states in an interaction.

7.11.2 Acknowledgments and Message Structure

We adopt a tuple for the structure for a message: (message-number, sender, receiver,

action, new-state). A message-number associated with the sender avoids confusion in

case of messages arriving in the wrong order or ghost messages. The fields sender

and receiver are the identities of the sending and receiving agents respectively. A

hash value can be used to detect whether a message has been corrupted by the

network. The parameter action is a process from the sender for transition to the state

new-state according to an interaction protocol. An action may be a FIPA-ACL or

KQML performative. Unlike standard approaches to agent communication where

belief revision is specified at a higher level than the message structure, here the state

of the interaction is part of the message. The first reason for this is that a protocol

may allow an action to trigger two different states, especially with the nesting of

interactions. Another reason is that the action may be a complex process involving

several consecutive state changes.

We define two types of acknowledgment to a message: implicit and explicit. An

implicit acknowledgment contains a performative for a state change, whereas an

 274

Reasoning about a Group’s Beliefs

explicit acknowledgment is just an acknowledgment without any performative. An

explicit acknowledgment includes an ack keyword as action instead of a performative.

Let an agent a send a message, m1, containing a performative offer and a message

number i, to agent b according to an interaction protocol \textit P. If protocol P

specifies that receiver b has to respond with a performative (agree or reject), then the

next message, m2, from b contains one of these two performatives. Message m2 is

also an implicit acknowledgment that b has received message m1. When a receives

m2 and the message number is (i+1), it can believe that b has received m1. Thus m2

is said to be an implicit acknowledgment for m1. Implicit acknowledgements reduce

the redundancy occurring in protocols where only explicit acknowledgements can be

sent after each message. Implicit acknowledgments are not a new concept but

constitute another reason for having the state as a parameter in a message.

When sending implicit acknowledgements and messages, we propose that an agent

takes an initiator role – initiator(X) holds if the protocol allows X to send the next

action causing a state transition. An agent chooses a role if the protocol allows it and

according to its strategy for achieving its goals. Our synchronisation protocols can

support (but do not enforce) the agents adopting new roles dynamically where an

agent can implicitly be a sender or a receiver of a message. Therefore, an agent X can

send a sequence of messages if the condition initiator(X) holds during that sequence

(as when continually bidding a higher price in auctions) or it can decide to be a

receiver.

If a receiving agent sends the wrong message back as in an incorrect

acknowledgement, then the latter is ignored and the sending agent repeatedly sends its

message as in the case of protocol R in section 7.12.

7.11.3 Terminating an Interaction

We specify that an interaction should be terminated by exchanging four consecutive

explicit acknowledgments for achieving shared beliefs about the final state. The

sender of the last performative leading to the terminal state sends the last (fourth)

acknowledgment. Two acknowledgements ensure that all agents believe (α ⁄ EG α)

and four acknowledgments result in all agents believing (α ⁄ EG α ⁄ E2
G α), where α

 275

Reasoning about a Group’s Beliefs

is the terminal state. Thus four acknowledgments force clean termination of an

interaction with shared beliefs about the final interaction state.

For the purposes of presentation in this paper, synchronisation protocols will be

expressed as statecharts where separate states are propositions and arcs represent

processes. The abbreviations [X\Y] and BX si are explained below.

7.12 Guaranteed Receipt of Messages

Figure 7.5 Synchronisation Protocol R

S1 ¬initiator(Y), BY ¬interacting

S2 initiator(X), BX si-1 , (si-1 ↔ ¬interacting)

S3 mesg_sent(X), BX si-1

S4 expl_ack_received(X), BX si , BX BY si-1 , BX BY BX si-1

S5 mesg_received (Y), BY si

S6 expl_ack_sent(Y), BY si

S7 impl_ack_sent(Y), BY si

S8 impl_ack_received(X), BX si+1 , BX BY si , BX BY BX si-1

S9 sent_ackm (Y), ¬E2
G st , BY E jG st

S10 received_ackm(X), BX E j+1
G st

 276

Reasoning about a Group’s Beliefs

A1 Y.receive(i, X, Y, ai ,si)

A2 (BX BY si ?; X.send (i, X, Y, ai ,si))+

A3 Y.receive(i, X, Y, ai ,si)

A4 initiator(Y)?; (BY BX si+1 ?; Y.send (i+1, Y, X, ai+1 ,si+1))+

A5 X.receive(i+1, Y, X, ai+1 ,si+1)

A6 [X\Y]; [i \ (i+1)]

A7 (BYBX BY si ?; Y.send (i, Y, X, ack ,si))+

A8 X.receive(i, Y, X, ack ,si)

A9 (BX BY si+1 ?; X.send (i+1, X, Y, ai+1 ,si+1))+ ; [Bxsi-1 \ BXsi]

A10 (si ↔ st)? ; (BYBX BY st ?; Y.send (i, Y, X, ack1 ,st))+ ; [ackm\ack1] ; [j \ 0]

A11 X.receive(m, Y, X, ackm ,st)

A12 (¬E2
G st)?; ((BX Ej+1

G st)?; X.send (m, X, Y, acki+1 ,st))+ ;

A13 (E2
G st)?

Table 7.1 The states and processes of protocol R

In this and the next section, we specify and validate synchronisation protocols

between two agents for systems in which there is guaranteed (Figure 7.5, protocol R)

and non-guaranteed (Figure 7.7, protocols T and (R+T)) receipt of messages. Unlike

the protocols in [Fagin and al. 1995], the sender and receiver roles are not reserved to

one agent. We allow agents to change their roles dynamically because any agent may

send a message in an interaction according to the common interaction protocol. This

is signified by the meta-process [X\Y] where Y replaces X (and vice versa). In an

interaction, a sender of a message may become the receiver of the next message.

Therefore we cannot separate the synchronisation protocol of the sender from that of

the receiver (as do [Fagin and al. 1995]). This, in turn, increases the complexity of the

synchronisation protocols.

The basic idea behind our synchronisation protocols is that a sender does not revise its

beliefs with the state transition it is proposing, but rather waits for an

acknowledgement of the receipt of its message before doing so. A sender can predict

the next interaction state and the group's future beliefs, provided its message is

successfully received, of which it can only be sure when receiving an

 277

Reasoning about a Group’s Beliefs

acknowledgement. As an interaction progresses with acknowledgements, an agent's

predictions are discharged while increasing the level of mutual beliefs. In what

follows, we analyse the case of guaranteed receipt of a message, when even though

communication is imperfect, the network has not failed entirely.

The synchronisation protocol, called R, in Figure 7.5 compensates for message

delays and loss by repeatedly sending a message with the assumption that it is

eventually delivered and the agents update their beliefs about the interaction state.

Protocol R considers an interaction between two agents X and Y. Let the states of the

bilateral interaction follow the sequence s0 …si … sn and let st denote a terminal state

where there are no actions possible from st for progress of the same interaction

instance. The formula BX si is used to express the proposition that X believes the state

is si. The states SM, (1 ≤ M ≤ 10), and actions AM, (1 ≤ A ≤ 13), in Figure 7.5 and

the protocol R are defined in Table 7.1. The synchronisation protocol can be fully

specified in ANML but here for the sake of conciseness we provide the states and

actions in the protocol.

In the synchronisation protocol R, if agent X is the sender of a message, then it keeps

sending its message until it believes that agent Y has received it. As a sender, X does

not yet believe the new state is si which it proposes, until it receives Y's

acknowledgement. On receiving an explicit acknowledgement, X then believes the

state is si along with Y's beliefs about both X and si. If instead X receives an implicit

acknowledgement with an action to change to state si+1 , X first believes the state si ,

that it previously proposed, has been reached, then it updates its beliefs to accept si+1

as the new state and whatever it believes Y believes. Thus, X revises its belief about

the interaction state consecutively twice from si-1 to si+1. After receipt of an implicit

acknowledgement, if X is not the initiator, it keeps sending an explicit

acknowledgement until it believes Y has received it. At this stage, X and Y may

switch roles. If X is the initiator after either an implicit or explicit acknowledgement,

X keeps sending the next state transition in the interaction protocol until it receives

another acknowledgement. Termination of the interaction is ensured with a final

terminating loop by repeatedly exchanging explicit acknowledgements until each

agent believes (E2
G st), where the terminal state st holds in the closed state.

 278

Reasoning about a Group’s Beliefs

7.13 Proof of Safety of Protocol R

Safety here means: (i) there is no inconsistency in the joint beliefs of the agents about

the interaction state before and after each state transition, (ii) that an interaction

terminates in a state that is shared belief between the two agents. This section proves

that protocol R exhibits both these features.

7.13.1 Proof of Consistency of Joint Belief

Simultaneous changes in beliefs at both agents' sides about the interaction state are

unfeasible because messages do not get relayed instantaneously. Given this, our work

aims to ensure there is a point where all agents have similar beliefs about the state of

an interaction before the next state transition. We prove by induction that the

synchronisation protocol R ensures attaining consistency of joint beliefs between

agents X and Y after each state-triggering message (a message containing an action for

a state transition). To do so, we need to prove that after each state-triggering message

to si, both agents individually come to believe si , resulting in (E2
G si), before the next

state transition.

Base Case: From Assumption2, at the start of the interaction the interaction protocol

and the state of interaction are common belief.

Induction Hypothesis: At point k, assume agents X and Y believe the interaction state

is s1.

Induction Proof: At point (k+1), (e.g. S2, A2 in Figure 7.1), let agent X keep sending

a message m2 for a state transition to s2 until BXBYs2. When agent Y receives m2, (e.g.

state S5 in Figure 7.5), it starts believing the state is s2 and repeatedly sends an

implicit or explicit acknowledgement for s2 at point (k+2), (e.g. processes A4, A7).

Agent X still believes the state to be s1. At point (k+3), (e.g. state S4 or S8), on

receiving either an explicit or implicit acknowledgement, agent X updates its belief to

s2 and stops sending m2. Both agents believe the state is s2 at point (k+3). If the

acknowledgement was implicit, agent X then updates its beliefs to the next state s3 .

 279

Reasoning about a Group’s Beliefs

From this, a receiver believes that the sender has not changed its beliefs about the

interaction state, but the receiver can believe that the sender is predicting a change.

Eventually each agent believes that both agents previously believed s2. Reasoning

about the previous beliefs of an agent is possible through an interaction protocol, and

helps to remove uncertainty about the history of the interaction.

7.13.2 Proof of Termination with Shared Belief

Figure 7.6 Termination with shared beliefs

To end an interaction, X and Y send four acknowledgements between themselves, for

the group and each agent to believe (E2
G st) where st is the terminal state (see Figure

7.6).

At point k. Agent X repeatedly sends a message for closing the interaction in state st

until BX BY st. X believes a state prior to st. Y receives X's message, updates its belief

to st and predicts EG st .

Point (k+1): first acknowledgement Ack1. Y believes st and repeatedly sends Ack1

until BX BY st, for letting X believe that Y believes st.

 280

Reasoning about a Group’s Beliefs

Point (k+2): second acknowledgement Ack2. X receives Y's acknowledgement Ack1,

stops sending st and revises its belief to (BX st ⁄ BX BY st). At this point everyone

believes st (i.e. EG st). X repeatedly sends Ack2 until it receives Ack3 from Y.

Point (k+3), third acknowledgement Ack3. Y receives Ack2 and stops sending Ack1. Y

adds to its belief BX BY st and sends Ack3 until it receives Ack4 from X. Y does not

believe E2
G st yet because it cannot be sure that X has received Ack3.

Point (k+4), fourth acknowledgement Ack4. X receives Y's acknowledgement Ack3,

stops sending Ack2 and revises its belief to (BX st ⁄ BX BY st ⁄ BX BY BX BY st). X

believes (st ⁄ EG st ⁄ E2
G st). X repeatedly sends Ack4.

Point (k+5), Y receives Ack4. Y adds BY BX BY BX st to its belief i.e. BY E2
G st. Thus

each agent now believes the terminal state and shared beliefs about st – (st ⁄ EG st ⁄

E2
G st).

7.14 Non-Guaranteed Receipt of Messages

Figure 7.7 Protocols T and (R+T) for non-guaranteed receipt of messages

 281

Reasoning about a Group’s Beliefs

Usually there is no guarantee that a message will eventually reach its destination. In

such cases, according to assumption 3, a sender is informed if its message fails to be

delivered. On the other hand, a receiver X, which is expecting a message that does not

arrive, cannot know whether the communication layer is at fault or the other agent Y is

failing to respond because it has crashed. To this end, we specify a simple

synchronisation protocol T, (Figure 7.7), based on timeouts, where an agent waits for

a message for a finite time t. Let the interaction state timedout hold after a timeout.

Unlike for other interaction states S1 to S10), given the failure of messages in

reaching their destination, it is not possible to send four acknowledgements between

the agents in order to achieve the shared belief EG
2 timedout. Therefore, shared

beliefs about timeouts are reached through negative introspection; every agent

believes that every agent believes that the interaction state is unknown and therefore

timedout.

In protocol T, messages and acknowledgements are not repeatedly sent as in protocol

R. Therefore for protocol T, the actions A1 to A13 in Figure 7.7 do not have the test

conditions and repeated sending of Table 7.1. The states and actions (processes) in

Table 7.1 also holds for protocol T after removing the test conditions and iterations

from sending messages (in processes A1 to A13) in protocol R. The new states in

Figure 7.7 for protocols T are:

S11 received_timeout(X), BX timedout

S12 E2
G st ¤ E2

G timedout

S13 restarted(X), EG si

A14 X.receive(i, _ , X, timeout ,received_timeout(X))

A15 X.send (n, X, Y, restart ,si)

A16 [Bxsi-1 \ EG si]

A17 ε

If a sender X is informed of failure of delivery of its message, then it believes the

interaction has failed in the timedout state. The same applies for termination of an

interaction through four acknowledgements when the sender of an acknowledgement

is informed that its acknowledgement cannot be delivered. Similarly, if an agent X as

 282

Reasoning about a Group’s Beliefs

a receiver is waiting for a message which does not arrive before a timeout, then it

believes the interaction state to be timedout. If an agent believes a timeout (state S11),

it can restart (action A15) the interaction to the previous state that is commonly

believed (leading to S13).

7.14.1 Proof of Safety of Protocol T

As for protocol R, two proofs are required – attaining consistency in the joint beliefs

during an interaction and proof of safely terminating an interaction.

Consistency Proof. The proof for belief revision after a message or

acknowledgement is similar to that of protocol R when the messages are delivered.

A sender does not update its beliefs about the message it sends, but a receiver updates

its beliefs on receiving explicit or implicit acknowledgements. In the case of timeouts

and restarts, consistency is ensured by restarting the interaction in a previous state that

is believed by everyone.

Termination Proof. If there are no timeouts, the proof for safe termination for

protocol R also applies to protocol T. If a timeout occurs, there are two cases for the

termination proof depending on the role of an agent. First, if X is a sender and

believes a timedout state from being notified by the network, from negative

introspection the receiver Y also eventually believes a timedout state on not receiving

X's message or acknowledgement. Second, if X is a receiver and is the first to believe

a timedout state, then the sender Y on not receiving an acknowledgement eventually

believes the timedout state from negative introspection. From the property of negative

introspection, all agents believe they are not aware what is the successful end state of

an interaction. So they all believe that they all believe that not all agents believe the

interaction is successful. Similarly if a timeout occurs during the exchange of the first

3 acknowledgements of a terminal state, then from negative introspection either agent

will come to believe the timedout state because they will not receive the next

acknowledgement. Regarding the fourth acknowledgement ack4, firstly if it cannot be

delivered by the network then the sender will be notified and the receiver will not

receive ack4. If the sender has crashed, then the receiver does not receive ack4. From

 283

Reasoning about a Group’s Beliefs

negative introspection, whenever an agent does not receive ack4, it eventually believes

timedout.

7.15 Repeated Messaging and Timeouts

Protocols R and T can be combined to give the hybrid protocol (R+T) for more

flexible behaviour in cases where there is both guaranteed and non-guaranteed receipt

of messages. Protocol (R+T) includes the timeouts from protocol T and, from

protocol R, the ability for an agent to keep sending a message or an

acknowledgement until it believes that its message or acknowledgement has been

received.

Thus, an agent repeatedly sends a message until it receives an acknowledgement or a

timeout, in which case it restarts the interaction in a commonly believed previous

state. For the protocol (R+T) in Figure 7.7, actions A1 to A13 are similar to those in

Table 7.1 for protocol R. The states S11, S12, S13 and actions A14, A16, A17 are the

same for both protocols T and (R+T). The action A15 in protocol T is replaced by

((BXBY restarted)?; X.send (n, X, Y, restart ,si))* for protocol (R+T).

When the communication framework guarantees delivery of a message, then the

hybrid protocol (R+T) can be used if the agents have deadlines. If an agent reaches

its deadline while waiting for a message, it may choose to timeout (especially when

the network is lagging). Realistically, an agent cannot keep sending a message for

periods extending over days or weeks without the risk of network bottlenecks or

wasting computation time and power. In these cases or in case of network lags,

timeouts are needed to halt the interaction process. In the non-guaranteed case,

repeated sending of a message increases the probability of it reaching the destination.

Thus protocol (R+T) combines the advantages of both protocols R and T for

realistically coping with broader reasons for failures instead of specific defects in the

communication medium.

Proof Both the safety proofs for protocol (R+T) in reaching consistency in the joint

beliefs of the group about an interaction state and the safe termination of an

 284

Reasoning about a Group’s Beliefs

interaction follow from the proofs for protocols R and T. Protocol (R+T) inherits the

properties of its parent protocols R and T.

7.16 Pragmatics of Synchronisation

Dealing with the consequences of communication failures in agent interaction has

usually either been relegated to the ISO transport layer or has been analysed through

knowledge-based reasoning about the transmission of bits over a network. This

chapter argues that agents need to reason about and compensate for message delays

and loss to avoid contradictory beliefs about the interaction state. Thus, a belief-based

approach is adopted for achieving a degree of common beliefs amongst a group of

agents about an interaction. Reaching an equivalent degree of knowledge is more

complex (if not impossible) given the property of knowledge being true. Specifically,

we ensure and prove the safe progress and termination of an interaction through

synchronisation protocols given an agent is capable of positive and negative

introspection over terminal states.

This chapter argues that synchronisation protocols take into account the realistic

aspects of agent interaction where the communication network may influence the

setting, especially in the area of wireless telecommunications. The safety of the

protocols in reaching consistency and for safe termination depends on the protocols

being complete. This may be a strong assumption in cases where protocols are

designed arbitrarily. However even in open environments with dynamic entry and

departure of agents, the interaction protocol is fixed at the beginning of the

negotiation. The properties of the protocol and in particular completeness can be

ensured by its providers or the institution supporting the trading. Given that only a

finite set of states and actions are defined by a protocol, then checking for

completeness is not intractable and can be facilitated or automated by techniques such

model checking.

 285

Reasoning about a Group’s Beliefs

7.17 Fragment of Bilateral Negotiation

The synchronisation protocol is applied to a bilateral negotiation between two agents

X and Y. Table 7.2 is a fragment of a bilateral negotiation from a proposed(Y) state to

an agreed state showing the beliefs of each agent.

Event Neg. state believed

by X and Y

privately before the

event i.e. BX and BY

Neg. state believed

by X and Y

privately after the

event i.e. BX and BY

Action performed

after the event

… … … …

X sends a request,

X.request

BX proposed(Y)

 BY

BX proposed(Y)

BY

X waits for an

acknowledgement

Y receives X’s

request

BX proposed(Y)

BY

BX proposed(Y)

 BY requested(X)

Y sends an offer

Y sends an offer,

Y.offer

BX proposed(Y)

BY requested(X)

BX proposed(Y)

BY requested(X)

Y waits for an

acknowledgement

X receives and first

deals with Y’s

implicit

acknowledgement

BX proposed(Y)

BY requested(X)

BX requested(X)

BY requested(X)

X deals with Y ’s

offer

X deals with Y’s offer BX requested(X)

BY requested(X)

BX offered(Y),

BY requested(X)

X sends an agree

Y receives X’s

message and deals

with its implicit

acknowledgement.

BX offered(Y)

BY requested(X)

BX offered(Y)

BY offered(Y)

Y deals with X’s

agreement

Y deals with X’s

agreement

BX offered(Y)

BY offered(Y)

BX offered(Y)

BY agreed

Y sends an

acknowledgement,

A1

… … … …

after 4th

acknowledgement

from X

BX agreed

BY agreed

BX agreed

BY agreed

(BelG agreed ⁄ Bel2
G

agreed

negotiation has

terminated

Table 7.2 Fragment of a bilateral negotiation showing termination

 286

Reasoning about a Group’s Beliefs

7.18 Generic Scenario of a Negotiation

This section describes a simple and generic scenario of a negotiation between two

agents, X and Y, to illustrate state transitions from an initial to a terminal state and the

attainment of shared beliefs in the group. A prediction operator is used in addition to

the modal belief operator. Pj a indicates agent j predicts a. Group G is the group of

agents X and Y i.e. {X,Y}. A prediction operator is used because an agent can predict

a given the message for making α hold is successfully received.

7.18.1 Interaction Protocol in Scenario

X.A1 Y.A2 Y.A3

 X.A2

 X.A4

 {X∪Y}.A5

outermost-state

 closed A4(X)

 X.A2

 open

A1(X) A2 (X) A3(Y)

A5

Figure 7.8 A generic scenario in state chart

Let two agents X and Y negotiate according to Figure 7.8. A logical theory for the

interaction protocol is given in ANML below:

outermost-state ↔ one-of({ open, closed})

open ↔ one-of({ A1 , A2 , A3 })

closed ↔ one-of({ A5, A4 })

¬outermost-state ↔ none-of({ open, closed})

¬open ↔ none-of({ A1 , A2 , A3 })

¬closed ↔ none-of({ A5, A4 })

¬outermost-state ↔ [X.A1] A1 (X)

A1 (X) ↔ [X.A2] A2 (X)

A2 (X) ↔([Y.A2] A2 (Y) ¤ [Y.A3] A3 (Y)) ⁄ ¬(X = Y)

A3 (X) ↔ ([Y.A2] A2 (Y) ¤ [Y.A4] A4 (Y)) ⁄ ¬(X = Y)

 287

Reasoning about a Group’s Beliefs

open ↔ ([X.A5] A5 ¤ [A3 (X)?; Y.A4] A4 (Y)) ⁄ ¬(X = Y)

Theory 7.1 Interaction Protocol of Scenario in ANML

7.18.2 A Possible Path of Negotiation

From the assumptions, agents X and Y commonly believe the state at the start of the

negotiation to be ¬(outermost-state). Table 7.3 illustrates a possible negotiation

following the interaction protocol in Theory 7.1 and the synchronisation protocol.

The term xn denotes the state agent X believes at point n in the sequence of sent

performatives. Likewise for the state yn believed by agent Y.

Agent X’s beliefs, BX Agent Y’s beliefs, BY

x0 ↔ ¬ (outermost-state)

By introspection: BX x0 y0

Common belief about x0 and y0 : BX BY x0 y0 ⁄

BX BY BX x0 y0 ⁄ ……

Possible state transitions: BX (x1 y1 ↔ A1 (X) ¤

A1 (Y))

BX BY (x1 y1 ↔ A1 (X) ¤ A1 (Y))

y0 ↔ ¬(outermost-state)

Introspection: BY x0 y0

BY BX x0y0 ⁄ BY BX BY x0 y0 ⁄ ……

Possible state transitions: BY (A1 (X) ¤ A1

(Y))

BY PX A1 (X) ¤ A1 (Y)

X repeatedly sends (1, X, Y, X.A1, A1(X), hash value)

x0 ↔ ¬ (outermost-state)

Common belief about x0 and y0 : BX BY x0 y0 ⁄

BX BY BX x0 y0 ⁄ ……

Possible state transitions: BX (x1 y1 ↔ A1 (X) ¤

A1 (Y))

Predictions of X: PX (x1 y1 ↔ A1(X))

Predictions about introspection: PX BX (x1 y1

↔A1(X)) , PXBY (x1 y1 ↔ A1(X))

X can even predict Y ’s predictions e.g. Pz PY x1

and Pz PY BY BX x1 where z = X or Y

Y receives message (1, X, Y, X.A1, A1(X),

hash value) from X

Y changes its belief to (y1 ↔A1(X))

Y believes the state at X: BY BX x0 and BY

y1

Common belief about x0: BY BX x0 y0 ⁄ BY

BX BY x0 y0 ⁄ ……

Y believes all that X predicts: BY PX (x1 y1

↔ A1(X))

According to the protocol, Y cannot perform the next state transition, so Y keeps sending an

explicit acknowledgement: (2, Y, X, ack, A1(X), hash value)

X receives Y’s acknowledgement (2, Y, X, acka, y1 ↔ A1(X)

 288

Reasoning about a Group’s Beliefs

A1(X), hash value) and stops sending its

previous message number 1

x1 ↔ A1(X)

BX (x1 y1 ↔ A1(X))

X believes that Y believes it was in state x0 but

not in x1 yet: BXBY x0,y1

X believes Y’s predictions about X going to x1

The belief at Y is similar to the above

row for Y.

Y predicts the state and belief about x1

and y1 to be A1(X)

Both X and Y believe the current state

to be x1 – BelG A1(X)

X repeatedly sends (3, X, Y, X.A2, A2(X), hash value)

x1 ↔A1(X)

X has the same belief as in the previous row for

X.

X has added predictions about message 3

PX (x2 y2 ↔ A2(X))

Pz PX (x2 y2 ↔ A2(X))

X predicts that Y still believes X to be in state x1

↔ A1(X)

PXBY (x1 ↔ A1(X))

Y receives message 3. Message 3 is an

implicit acknowledgement to Y’s

acknowledgement (ack1) to message 1.

Y stops sending its previous

acknowledgement ack1. Y believes that

X has obtained Y’s ack1 and that X

believes state x1.

Y discharges its predictions and deals

with the performative in message 3.

y2 ↔ A2(X) and from introspection BY (y2

↔ A2(X))

Y believes the state at X is A1. BY (x1 ↔

A1(X))

Shared belief about x1: BYBX x1 y1

Y repeatedly sends the next message (4, Y, X, Y.A3, A3(Y), hash value)

X receives Y’s message (4, Y, X, Y.A3, A3(Y),

hash value) and from the implicit

acknowledgement in message 4, X stops sending

message number 3

X updates its belief about the state from Y’s

implicit acknowledgement. BX (x2 ↔ A2(X))

Both X and Y have the same belief about the

state A2(X).

X believes about Y’s beliefs: BX (y2 ↔ A2(X))

X deals with the performative of Y’s message 4

and changes its belief to x3 ↔ A3(Y)

Y believes state to be y2 ↔A2(X)

Y has the same belief as in the previous

row for Y.

Y adds predictions if X receives Y’s

message 4. The predictions resemble

those when X was the sender except for a

leading PY instead of PX

 289

Reasoning about a Group’s Beliefs

X believes Y ’s predictions: BXPY (x3, y3 ↔

A3(Y))

X keeps sending (5, X, Y, X.A4, A4(X), hash value)

X has the same belief as in the previous row.

Predictions of X after sending message 5 include

the state at Y and Y’s belief. PX (y3 ↔ A3(Y))

from acknowledgement and PX (y4 ↔ A4(X))

from the performative.

X predicts the final state at X and Y

Belief at X is x3 ↔ A3(Y).

X has sent an action for terminating the

negotiation in the closed state A4(X).

Y receives message 5 from X and stops

sending message 4.

Y deals with the implicit

acknowledgement and updates to y3 ↔

A3(Y)

Both X and Y have the same belief

about the state A3(Y) at this point.

Y discharges its predictions about

message 4.

Y deals with the transition triggered by

the performative in message 5, X.A4 and

changes belief to y4 ↔ A4(X)

Y keeps sending its first explicit acknowledgement to terminate the negotiation (6, Y, X,

ack1, A4(X), hash value). Y predicts x4 ↔ A4(X) to hold at X and BG BG A4(X) to become

shared belief.

X receives Y’s first acknowledgement in

message 6 and stops sending message 5.

X updates its belief x4 ↔ A4(X).

Both X and Y have the same belief about the

state A4(X) at this point.

By introspection X believes: BX (x4 y4 ↔ A4(X))

Everybody believes the state A4(X): BelG A4(X)

Y has the same belief as in the previous

row for Y.

BY (y4 ↔ A4(X))

Y adds predictions about the belief of X

and of the group if its acknowledgement

ack1 successfully reaches X.

Both agents are in the same terminal state and BelG BelG A4(X) is ensured. X sends

acknowledgement ack2 in (7, X, Y, ack2, A4(X), hash value)

X has the same belief as in the previous row for

X.

X believes that both agents believe the state.

BXBY A4(X)

X predicts the belief of X on receiving ack2. PX

BY x4, PXBYBX x4 y4

Y receives ack2 in message 7 and stops

sending message 6

Y believes that both agents believe the

terminal state (BYBG x4 y4) and that both

agents believe that its opponent believes

that they believe the terminal state

(BYBXBG x4 y4). Y discharges some of its

 290

Reasoning about a Group’s Beliefs

predictions depending on the receipt of

message 6.

Y sends ack3 in (8, Y, X, ack3, A4(X), hash value)

X receives ack3 in message 8 and stops sending

message 7.

BX BY BX x4 y4

Y has the same belief as in the previous

row for Y.

Y predicts shared belief and the belief at

X: PYBX BYBX x4 y4

X sends ack4 in (9, X, Y, ack4, A4(X), hash value)

BX BYBX (x4 y4 ↔ A4(X))

The belief at X is A4(X), BelG A4(X) and BelG

BelG A4(X)

Y receives message 9 and ack4 and stops

sending message 8

BYBX BY (x4 y4 ↔ A4(X)).

The belief at Y is A4(X), BelG A4(X) and

BelG BelG A4(X)

Table 7.3 Possible negotiation between agent X and Y

7.19 Summary

This chapter takes into account the work on joint intention by Cohen and Levesque

[1991], epistemic logic by Fagin and al. [1995] and Meyer and Van der Hoek [1995].

The knowledge of a group of agents is analysed to ensure consistency in the joint

knowledge about the protocol. We discuss attaining shared beliefs about the

negotiation state between agents in an imperfection communication medium. To do

so, conventions and a synchronisation protocol are specified to ensure that all

participants believe the same negotiation state. The synchronisation protocols can

be formalised in ANML in the same way as interaction protocols and their properties

proved. The actual sending and receiving of messages and acknowledgements are part

of a synchronisation protocol and not of an interaction protocol.

As further work, a suite of synchronisation protocols for bilateral and multilateral

interactions can be designed according to the constraints, required flexibility and

properties of the agents and network. For example, the converse of protocol (R+T)

would involve repeated sending of a message after a timeout, thereby avoiding

flooding the network. Merging and extensions of these synchronisation protocols can

provide additional flexibility depending on network or agent unreliability. Despite

 291

Reasoning about a Group’s Beliefs

 292

being more complex, synchronisation protocols for multi-lateral interactions may also

reuse the theorems in section 7.10 as basic principles and represent a challenging

avenue for future work. We also aim to explore the relation between interaction and

synchronisation protocols.

8 Practical Agents

8.1 Introduction

A number of techniques have been used to implement strategies in multi-agent

systems, [Sandholm 1999, Faratin 2001, Yokoo and Ishida 1999, Jennings and al.

2001]. These techniques include heuristic search, decision making mechanisms

and game theory. Game theory, [Rasmusen 1989], can be used to study protocols

and strategies between self-interested agents, [Rosenchein and Zlotkin 1994]. In

such systems, an agent decides on its best course of action in response to received

messages. Traditional game theoretic models are unrealistic as they assume

rationality and complete knowledge of details of the game and equilibrium

calculations of other agents. Finding an optimal solution from all possible

strategies is computationally intractable and the assumption that an agent knows

the utilities of the other participants are unfeasible.

Decision theory, [Raiffa 1982], analyses different alternatives under uncertain

conditions and unknown outcomes of an action, for maximising the obtained

utility of a decision-maker. Decision theory, for example Markov Decision

processes, suits well the dynamic nature of agent systems and assumes that the

state of the world at any point is known. This chapter shows how to add strategies

and planning to a protocol. A simulation of a bilateral negotiation is described

using the strategies in Faratin and al., [1999], which specify one-step decision

making algorithms. Faratin and al., [1999], uses a simple protocol of offers and

counter-offers. We design an agent to respond with more choice than these two

primitives through the bilateral protocol. The experiments and results from an

293

Practical Agents

MSc. Project, [Alogogianni 2001] are included. This chapter also discusses how

to use a protocol in ANML in order to infer paths and plans towards a goal.

8.2 Strategies for Single Actions

Faratin and al. [1999] specify an agent architecture for decisions and action

mechanisms between non-coorperating agents. A negotiation subject may consist

of a set of issues and values attributed to the issues. Rational behaviour entails

maximising a value function about the set of issues. They describe two types of

mechanisms – responsive and deliberative – for evaluating messages from other

agents and for deciding on how to respond, (offer generation mechanisms). A

responsive strategy is computationally less costly and faster than a deliberative

one, which involves a more complex search of the solution space. They consider

a negotiation between two agents a and b over a changeable set of issues J. An

issue j, (j ∈J), can take values between [minj, maxj], which define the domain, Dj,

of a quantitative issue. The domain of a qualitative issue is defined as an ordered

set of possible values as in Dj = <q1,… , q1>.

8.2.1 Evaluation Mechanisms

A message from an agent contains a negotiation subject which consists of

attributes or issues represented as name-value pairs. Let the term (xb→a)t denote

the values associated to the issues, sent from agent b to a at time t. Evaluation of

(xb→a)t involves computing its score (or value) by summing the score of each

issue. An agent i defines a scoring function, Vj
i, about an issue j where Vj

i: Dj →

[0,1] binds the score agent i assigns to issue j to values between 0 and 1. Issues

are independent and the scoring functions are monotonous for quantitative issues.

Consider an agent a receiving (xb→a)t from b at time t, over a set of issues J, where

(x = (x[j1], …, x[ji], …, x[jn]) and ji ∈ J. Agent a associates weight with issue

j

ω
a

ji

i where the sum of weights of the issues in (xb→a)t is 1. These weights can be

changed since a set of issues is allowed to change during a negotiation. An agent

rates the overall subject through a weighted linear additive scoring function:

 294

Practical Agents

Va(x) = V (x[j∑
≤≤ ni1

ω
a

ij

a

ij
i])

and = 1 and V : D∑
≤≤ ni1

ω
a

ji
a

ji
j → [0,1].

These evaluation functions may be used in evaluating a set of issues from a

participant or to generate offers.

8.2.2 Responsive Mechanisms

Responsive mechanisms allow reactive behaviours depending on environmental

factors like time, behaviour and resources. A response is generated by linearly

combining simple decay functions, called tactics, [Faratin and al. 1999]. Three

types of tactics are used: time-dependent, resource-dependent and behaviour-

dependent where each tactic gives values for issues using only that environmental

factor.

In time-dependent tactics, an agent concedes more as the deadline for its

negotiation approaches. In resource-dependent tactics, an agent will concede

more as the level of the resources diminishes. In behavioural tactics, concessions

are based on the concessions of the other agents. A strategy can use a mixture of

these tactics with associated weights depending on the relative importance of

time, resources and behaviour.

Time-dependent tactics

Let ta
max denote a deadline for agent a. An offer from a is generated from a

function αj
a : T → [0,1]. At time 0 an agent does not concede and at the deadline

an agent concedes to its reservation limit, αa(ta
max) = 1. An agent a sending an

offer x to agent b for issue j at time t is denoted by (xa→b)t [j]

(xa→b)t [j] = minj
a + αj

a (t) (maxj
a - minj

a) if Vj
a is decreasing

(xa→b)t [j] = minj
a + (1- αj

a (t)) (maxj
a - minj

a) if Vj
a is increasing

Faratin and al. [1998] compute the initial actions on entering a negotiation by

asking the owner of an agent to enter a constant kj
a for each issue j. The initial

 295

Practical Agents

offer is modelled as a point in the interval of values for each issue. The interval of

values for an issue, j, is obtained from the difference between the reservation

values, (minj, maxj), of an agent for that issue. Multiplying constant kj
a with the

size of the interval determines the value of issue j in the first offer. A wide range

of time-dependent functions can be defined by varying the computation of αj
a(t)

where αa(0) = kj
a and αa(ta

max) = 1. An exponential and a polynomial way to

model α can be found in [Faratin and al. 1999]. In our simulation instead of

asking a user to input kj for an issue, a user inputs its initial value preferences for

each issue and kj
a is computed by agent, a, for issue j. The following function is

used to calculate αj
a (t) from kj

a.

 αj
a (t) = kj

a + (1- kj
a) µ

max

max),min(
t

tt

Resource-dependent tactics

An agent concedes more as the level of its resources decreases, including time.

The valuation α(r) may be derived by estimating the amount of a particular

resource, r. The offer x can then be modelled as for the time-dependent tactics.

For example, if dealing with time then α may be calculated as follows:

αj
a (t) = e- (t_max - t) where t_max is the deadline for agent a.

αj
a (t) = e-resource(t) where the function resource(t) measures the quantity of

resource at time t.

Behaviour-dependent tactics

An agent determines its concessions based on the previous attitudes of other

agents. There are different ways in which an agent imitates other agents, given in

[Faratin and al. 1998]. In the relative tit-for-tat tactic, an agent reproduces in

percentage terms the behaviour its opponent performed (δ ≥ 1) steps ago.

 (xa→b)t [j] = minj
a if P § minj

a

 maxj
a if P > maxj

a

 P otherwise

 296

Practical Agents

The value P relates to how the aspect and degree an opponent’s behaviour is

proportionally imitated. In relative tit-for-tat, the behaviour of an opponent (δ ≥

1) steps ago is reproduced in percentage terms where

 P = [j] [j] x nt

ab
δ2−

→ x nt

ba
1−

→

 [j] x nt

ab
22 +−

→
δ

(δ =1) is used for an imitative behaviour early in a negotiation. The values in a set

of issues when using relative tit-for-tat tactics is generated as follows:

][1 jx nt
ba

+
→ = min(max(][

][

][1

22

2

jx
jx

jx nt
ba

n
t

ab

n
t

ab −
→

+−
→

−
→ ×

δ

δ

,),) a
jmin a

jmax

Offer is within the range of agent a’s acceptable values and

proportionally imitates agent b’s behaviour. Our algorithm uses relative tit-for-tat

as the default behavioural tactic. If , or are equal to

zero, then an agent a uses the absolute tit-for-tat tactic.

][1 jx nt
ba

+
→

][2 jx nt
ab

δ−
→][22 jx nt

ab
+−

→
δ][1 jx nt

ba
−

→

In random absolute tit-for-tat, imitation is in absolute terms. If an opponent of

agent a decreases its proposal by d amount then a responds with an increase by d.

An agent increases or decreases its response by a random amount following its

opponent last message. Agent a concedes or demands exactly as much as its

opponent did (δ ¥1) steps ago. (δ = 1) is used. The function that computes the

response from agent a is given below and ensures that the generated set of issues

is within a’s acceptable range. The random component of the tactic in [Faratin

and al. 1998] is disregarded.

][1 jx nt
ba

+
→ = min(max(+ (- ,),)][1 jx nt

ba
−

→][2 jx nt
ab

δ−
→][22 jx nt

ab
+−

→
δ a

jmin a
jmax

Another tactic is averaged tit-for-tat, where an agent computes the average of

percentages of changes in a fragment of its opponents’ history.

 297

Practical Agents

8.2.3 Deliberative Mechanisms

Responsive strategies are computationally less complex than deliberative

mechanisms. Deliberative mechanisms in Faratin and al [1999] are strategies for

generating new offers which have the same value for an agent but better for its

opponents. Two such mechanisms include the trade offs and issue set

manipulations strategies. In the latter mechanism, a non-empty set of issues is

shared and partly modified to resolve conflicts. The set of issues consists of

“core” issues which cannot be altered and non-core issues that can dynamically be

changed. Agents can add or remove issues to the non-core issues subset for

solutions to a negotiation. An agent decides how to combine additions and

removals of issues so as to maximise the value of its response. Finding the

optimal set of issues may be computationally expensive.

In trade-offs mechanisms, an agent lowers its score on some issues and asks more

on other issues. The offer has the same value as a previous response for that agent

but is more beneficial to its opponent. In a responsive mechanism, an agent, a,

compares the score of a proposal from agent, b with the response it will generate

next. In a deliberative mechanism, an agent compares the score of a received

proposal with its own previous proposal. This decision mechanism involves

searching for all possible offers with the same score as the previous offer and

selection of the offer which is “closest” to an opponent’s last offer, [Faratin and

al. 1999]. The set and value of issues that produce the same utility as a previous

offer lie on the same iso-value curve, [Raiffa 1982]. An agent is indifferent to all

offers that lie on the same iso-value curve.

x2

 xa

 xc

 xb

 x1

Figure 8.1 Iso curves

 298

Practical Agents

The above indifference curves show an agent’s preferences over two issues x1 and

x2. Given a score function for agent i, Vi, that agent associates the same value to

points xa and xb i.e. Vi(xa) = Vi(xa) and this equality applies to all the points on the

same iso-curve. xc is preferred to xa or xb and lies on an iso-curve with increased

preference. Faratin and al., [1999], defines an iso-curve in terms of a scoring

value q. The iso-curve set at degree q for an agent a is defined as:

 isoa(q) = {x|Va(x) = q}

This gives the set of all responses that have the same value as the previous offer

from agent a. A closeness function is then used to find the point (or offer) that

would most resemble an opponent’s last offer. The best trade-off would be the

most similar response to an opponent on agent a’s iso-curve. Given two

consecutive offers, one from agent a to b, x, and one from b to a, y, the trade-off

for agent a with respect to y is calculated as follows:

 tradeoffa (x, y) = average {Sim(z, y)}
)(

max
θ

a
isoz∈

The scoring value of an offer x from agent a is q i.e. q = Va(x). Hence isoa(q)

gives the space of all possible set of issues which have the same value as Va(x). z

∈ isoa(q) denotes a possible set of issues, z, which have the same value as the set

of issues x and max {Sim(z, y)} returns the set z which is the closest to agent b’s

offer, y.

Similarity between two offers is defined as the weighted combination of the

similarity of issues, [Faratin and al. 1999]. The similarity between two offers x

and y over a set of issues J is calculated as:

 Sim (x,y) =),(jjj
a
j yxSim

Jj
ω

∈
∑

where = 1. Sima
jJj

ω
∈
∑ j is the similarity function for issue j and wj

a is the weight

agent a gives to issue j. A similarity function, [Valverde 1985], can be defined as

“a conjunction of appropriate fuzzy equivalence relations induced by a set of

 299

Practical Agents

criteria functions hi”. A criteria function is a function that maps values from a

given domain into [0,1]. As an example, desserts are compared for modelling the

similarity between them. The domain is Ddesserts = {pie, pancake, icecream, tarts,

cheesecake, sorbet, pudding, fruit}. To compare the similarity between two

elements from this given set of desserts, they are assigned different criteria such

as temperature e.g. cold, warm, ordinary or calories, etc. These criteria can be

used to obtain a set of name-value pairs where ht and hc are the comparison

criteria functions.

ht = {(pie, 0.9), (pancake, 0.8), (icecream, 0), (tarts, 0.5), (cheesecake, 0.3),

(sorbet, 0), (pudding, 0.8), (fruit, 0.5)}

hc = {(pie, 0.8), (pancake, 0.3), (icecream, 0.6), (tarts, 0.7), (cheesecake, 0.9),

(sorbet, 0.4), (pudding, 0.8), (fruit, 0.1)}

For the function ht, 1 denotes hot temperature and 0 denotes cold temperature. In

the function hc, 1 denotes maximum calories and 0 denotes minimum calories.

Given a domain of values Dj, the similarity between two values, (or issues one in

the offer and one lying on the same iso-space), xj, yj ∈ Dj is:

 Simj (xj, yj) = (h
mi≤≤1

min i(xi) ↔ hi(yi))

where {h1, …., hm} is a set of comparison criteria and hi: Dj → [0,1]. ↔ is an

arbitrary equivalence operator. For the above example with desserts, (h(xi) ↔

h(yi)) = (1- | h(xi) - h(yi)|) is used as the equivalence operator. Another simple

example of an equivalence operator is (h(xi) ↔ h(yi)) = min(h(y)/ h(x), h(x)/ h(y)).

As example the similarity between desserts is calculated using the equivalence

operator (1- | h(xi) ↔ h(yi)|).

Simdesserts (icecream, sorbet) = min(1- | ht(icecream) - ht(sorbet)|, 1- | hc(icecream)

- hc(sorbet)|) = min(1, 0.8) = 0.8

Simdesserts (icecream, pie) = min(1- | ht(icecream) - ht(pie)|, 1- | hc(icecream) -

hc(pie)|) = min(0.1, 0.8) = 0.1

 300

Practical Agents

This means from the given domain Dj, assigned criteria functions and equivalence

operators, icecream is more similar to sorbet than to pie.

8.3 Strategies for a Bilateral Negotiation

In our simulation of a bilateral negotiation, the responsive and deliberative

strategies for evaluating and generating a set of issues are combined with our

strategies for deciding on state transitions. The negotiation subject consists of a

set of issues as possible deals. When an agent receives a message containing a set

of issues, it evaluates this set and decides either to terminate the interaction or to

generate a response with a new set of issues according to its strategies. An agent

sending a message can be regarded as the initiator of the current state and other

agents that can trigger the next state are considered as respondents. Events such

as timeouts can also occur. The bilateral protocol analysed in the previous

chapters is used in addition to the capability of counter-offering and counter-

proposing from a proposed state as in the following rule:

proposed(X)) ↔ [Y.request] requested(Y) ¤ [Y.counter-propose] proposed(Y)

¤ [Y.counter-offer] offered(Y) ⁄ Ÿ(X=Y).

An issue is structured as a name-value pair where it may be a quantitative or

qualitative issue. Issues are mutually independent and can be added or removed

from a set or their values changed. The agents in a group may have opposing

interests for these issues and negotiation is the process for finding a space of

mutual interest or satisfaction of the participants’ goals. [Jennings and al. 2000]

defines a negotiation as a distributed search through a space of potential

agreements made of possibly acceptable sets of issues. When new issues are

added, extra dimensions are added to the negotiation space leading to an increase

in the number of points of agreements and vice versa. Changing the values of an

issue leads to a different point in the agreement space.

A bilateral negotiation between agents a and b is considered using the evaluation

functions for the responsive and deliberative mechanisms. Mechanisms for

evaluating received state transition and deciding on which state transition to send

 301

Practical Agents

from the protocol are needed. For example on receiving a request with the set of

issues , does agent a reply with an offer, propose, suggest or reject with

. The following sections describe our algorithms for combining the

responsive and deliberative offer-generation mechanisms with the bilateral

protocol to evaluate a received message and generate a message from the protocol

accompanied with a set of issues.

tx
ab →

'tx
ba →

8.4 Responsive Decision Making in a Bilateral Negotiation

In this section, a bilateral negotiation between agents a and b is considered, using

the evaluation functions for the responsive mechanism. Let be a vector of

values from agent a to b at time t and [j] be the value of issue j proposed by

a to b at time t. Both agents start the negotiation at t

tx
ba →

tx
ba →

start, and they start counting

from (tstart = 0). There is a local time for each negotiation process that starts with

the first message being sent. denotes the deadline for agent a. a
maxt

An agent, a, evaluates a received set of issues and generates the set of issues it

aims to respond with using its scoring function Va. Agent a receives the set of

issues from agent b at time t and generates a response with the set to

send to b at time t’ where t < t’. is generated by concessions using a

weighted mixture of the responsive mechanisms as described earlier. An

algorithm for agent a sending a state-transition and to trigger the next state

of the negotiation is given in the next section below.

tx
ab →

'tx
ba →

'tx
ba →

'tx
ba →

8.4.1 Algorithm for a state transition using responsive mechanism

Initialisation for Algorithm 8.1

no-time-left = - t’ < 2 a
maxt

better-than = Va () ¥ Vtx
ab →

a () 'tx
ba →

 302

Practical Agents

inputs: current-state /*current state triggered by b

 distance /* nearness to a deal

 set-of-possible-next-actions /*can be derived from protocol

tx
ab →

 /*proposal from b to a at t

 /* deadline for a a
maxt

 Va /*evaluation function for a

 t’ /* current time

{ , …., } /*acceptable domains for each issue e.g. (minaD1
a
nD i, maxi)

output: next-actiona, /*response from a with next-action and issues set*/ 'tx
ba →

begin

(1) if (t’ > a
maxt) then /*deadline for agent a has passed

(2) next-actiona = timeout ; exit;

(3) if not (Va() lies within Dtx
ab →

a) then /* not acceptable from b *

(4) sub-procedure not-acceptable Algorithm 8.2; exit;

(5) else /* acceptable message from b*/

(6) if (current-state = = offered(b) ⁄ ¬proposed(b)) ¤ ((no-time-left ¤ better-

than) ⁄ a.agree ∈ set-of-possible-next-actions) then

 /* a considers an agree if no choice, no time or good offer from agent b

(7) next-actiona = a.agree with tx
ab →

(8) else if (no-time-left ¤ better-than) then /*move towards a commitment */

(9) next-actiona = a.offer with tx
ab →

(10) else if (distance = = close ¤ middle) then /*towards an offer, have time */

(11) if a.propose ∈ set-of-possible-next-actions then

(12) next-actiona = a.propose with 'tx
ba →

(13) else next-actiona = a.counter-propose with 'tx
ba →

(14) else if (distance = = far) then /*have time and wants more */

(15) if a.suggest ∈ set-of-possible-next-actions then

(16) next-actiona = a.suggest with 'tx
ba →

(17) else next-actiona = a.request with 'tx
ba →

(18) endif

 303

Practical Agents

(19) endif
end

Algorithm 8.1 Bilateral protocol with responsive mechanism

Inputs

A respondent agent, a, is aware of the current-state triggered by its opponent, b,

with the proposed set of issues, from agent b to agent a at time t. Agent a

also knows its own reservation values, { , …., }, for each issue. A

quantitative issue, i, ranges from (min

tx
ab →

aD1
a
nD

i, maxi). From the bilateral protocol, an

agent can derive the set of next possible actions. An agent knows its deadline, its

evaluation function and the current time.

A set of issues from agent b can be compared with agent a’s goals to analyse the

difference between what agent a has been proposed and what agent a will propose

next. The variable distance may take three values: close, middle or far and is

determined by the difference between Va () and Vtx
ab →

a (). V'tx
ba →

'
b→

a () is

the valuation of agent a of what agent b sent it and V

tx
ab →

a () is the valuation of

the response a will send to b according to agent a’s strategies. The variable

distance measures with respect to the three intervals how far agent a and b are to

an agreement.

tx
a

close ↔ 0 < | Va () - V'tx
ba →

a () | § 0.2 tx
ab →

 middle ↔ 0.2 < | Va () - V'tx
ba →

a () | § 0.5 tx
ab →

 far ↔ 0.5 < | Va () - V'tx
ba →

a () | § 1 tx
ab →

Outputs

Given the current state triggered by agent b and the bilateral protocol, agent a will

output the next action, next-actiona, for the next state transition. It will also send

agent b a possibly new set of issues, . 'tx
ba →

 304

Practical Agents

An agent, a, first checks that its deadline has not passed. If its deadline has

expired, it sends a timeout message to close the negotiation. Otherwise, if the

message from its opponent, b, is not acceptable then agent a follows Algorithm

8.2, where it generates a response with new values for the issues. An acceptable

set of issues means that each issue in the set lies within the reservation values or

in the qualitative set of instances that agent a has.

If the current state is offered(b) and not proposed(b), then agent a can only agree

or reject. If the set of issues in agent b’s message is acceptable, then agent a

agrees. If the set of issues from b is better than what agent a would have sent or if

a’s deadline is close, then agent a sends an agree, if agree is possible. An agent

does not risk bargaining when it does not have much time left to avoid an

unsuccessful negotiation. The two conditions better-than and no-time-left are

declared at the initialisation part.

If agent a cannot agree as its next action and if it has been sent a better set of

issues than what it would have responded with or if the deadline is close (i.e. no-

time-left or better-than are true), then agent a offers b with the set of issues that b

previously sent.

If the above conditions are not met implying that the deadline is not close, then an

agent may continue bargaining to attain a higher score. In that case, an agent

decides on what state to trigger depending on the difference in what it received

last from its opponent and the set of issues it aims to send next. This difference is

given by distance and determines whether an agreement is close, middle or far. If

they are close or middle to an agreement, then an agent moves to a higher level of

commitment by sending a.propose or a.counter-propose with agent a’s new set of

issues. If distance is far, several more steps can occur before termination and

agent a’s next response is a.request or a.suggest with . 'tx
ba →

8.4.2 Algorithm 8.1 in ANML

Theory 8.1 is a representation of Algorithm 8.1 in ANML. The theory is concise

with respect to the algorithm. An agent sends a speech-act like message with a set

 305

Practical Agents

of issues e.g. Agent x sends an offer to agent y with the set of issues at

time t. We could represent such an offer action with the set of issues as a

subscript or a parameter (that is x.offer() or). The resulting

of offering is the state . For the sake of conciseness we

“factorise” the set of issues over the action A by agent X with the set of issues S

leading to the state B(X) with the set of issues S. Thus, the following rule from

the source state s

tx
yx →

tx
yx →

t
xx →

)

t
yxx

offerx
→

.

tx
yx →

y
xoffered (

0

s0 ↔ [X.AS] BS(X) is abbreviated to s0 ↔ [X.A] B(X) ⁄ S.

For example with an offer and a set of issues , the rule tx
yx →

requested(Y) ↔ [offered is simplified to t
yxx

offerx
→

.] t
yxx

X
→

)(

requested(Y) ↔ [X.offer]offered(X) ⁄ tx
yx →

The ANML theory for Algorithm 8.1 is as below:

acceptable ↔ (∀ j:) (mintx
ab →

j
a §Va(j) § maxj

a ¤ j ∈ Da)

no-time-left ↔ (t - t’ < 2) a
max

better-than ↔ (Va () ¥ Vtx
ab →

a ()) 'tx
ba →

(open ⁄ (t’ > a
maxt)) ↔ [timeout] timedout

(acceptable ⁄ offered(b) ⁄ ¬proposed(b)) ↔ ([a.agree] agreed) ⁄ tx
ab →

(acceptable ⁄ (no-time-left ¤ better-than)) ↔ ([offered(b)?; a.agree]agreed ¤

[requested(b)?; a.offer] offered(a)) ⁄ tx
ab →

 306

Practical Agents

(acceptable ⁄ (close ¤ middle)) ↔ ([(requested(b)?; a.propose) »

(proposed(b)?; a.counter-propose)] proposed(a)) ⁄ 'tx
ba →

(acceptable ⁄ far) ↔ ([(requested(b)?; a.suggest) » (proposed(b)?;

a.request)] requested(a)) ⁄ 'tx
ba →

Theory 8.1 Translating Algorithm 8.1 into an ANML theory

8.4.3 Algorithm when not-acceptable

Algorithm 8.2 is followed when the message from b to a, , is not acceptable

to agent a. The initialisation part resembles Algorithm 8.1 for no-time-left and -

better-than.

tx
ab →

sub-procedure not-acceptable
inputs: current-state /*current state triggered by b */

 distance, no-time-left /* time left to a and nearness to a deal */

 set-of-possible-next-actions /*can be derived from bilateral protocol */

tx
ab →

 /*proposal from b to a at t */

 /* deadline for a */ a
maxt

 Va /*evaluation function for a */

 t’ /* current time */

{ , …., } /*acceptable issues domains e.g. (minaD1
a
nD i, maxi)

output: next-actiona, /*response from a with next-action and issues set */ 'tx
ba →

begin
(1) if (current-state = = offered(b) ⁄ ¬proposed(b)) then

(2) next-actiona = a.reject with ; exit; tx
ab →

(3) else if no-time-left then

(4) if a.offer ∈ set-of-possible-next-actions then

(5) next-actiona = a.offer with 'tx
ba →

(6) else next-actiona = a.counter-offer with 'tx
ba →

 307

Practical Agents

(7) else if distance == close then

(8) if a.propose ∈ set-of-possible-next-actions then

(9) next-actiona = a.propose with 'tx
ba →

(10) else next-actiona = a.counter-propose with 'tx
ba →

(11) else if distance == middle ¤ far then

(12) if a.suggest ∈ set-of-possible-next-actions then

(13) next-actiona = a.suggest with 'tx
ba →

(14) else next-actiona = a.request with 'tx
ba →

(15) end

end

Algorithm 8.2 Decisions by a when not-acceptable issues from b

The above algorithm shows the decisions made by agent a when it receives a non-

acceptable set of issues and their values from b. Algorithm 8.1 calls Algorithm

8.2. Both algorithms have similar inputs and outputs. In Algorithm 8.2, agent a

does not find it worthwhile to agree to from b. Agent a responds with a

more favourable set of issues, . If the current state is offered(b) ⁄

¬proposed(b), a can only accept or reject and since is not acceptable, then a

rejects b’s set of issues. If there is no time left for further bargaining then agent a

makes an offer or a counter-offer with as a penultimate step to termination.

Otherwise if there is time left and if distance to an agreement is close then agent a

triggers the proposed state with a proposal or counter-proposal. If distance is far

or middle and there is time left for bargaining, then agent a triggers the requested

state for further bargaining. Agent a always respond with since it can only

accept what is inside its domain. Algorithm 8.2 is translated to an ANML theory

for the strategy when an unacceptable message from agent b and for responding

with .

tx
ab →

't
ba →

'tx
ba →

x

tx
ab →

'tx
ba →

'tx
ba →

acceptable ↔ (∀ j:) ((mintx
ab →

j
a §Va(j) § maxj

a) ¤ (j ∈ Da))

 308

Practical Agents

no-time-left ↔ (t - t’ < 2) a
max

(¬acceptable ⁄ offered(b) ⁄ ¬proposed(b)) ↔ ([a.reject]rejected) ⁄ tx
ab →

(¬acceptable ⁄ no-time-left) ↔ ([(requested(b)?; a.offer) » (proposed(b)?;

a.counter-offer)] offered(a)) ⁄ 'tx
ba →

(¬acceptable ⁄ close) ↔ ([(requested(b)?; a.propose) » (proposed(b)?;

a.counter-propose)] proposed(a)) ⁄ 'tx
ba →

(¬acceptable ⁄ (far ¤ middle)) ↔ ([(requested(b)?; a.suggest) »

(proposed(b)?; a.request)] requested(a)) ⁄ 'tx
ba →

Theory 8.2 Algorithm 8.2 as an ANML theory, unacceptable message

8.4.4 Generating Offers Using Responsive Mechanisms

A tactic is a function for determining the values of each issue in a set of issues

according to a criterion such as time, resources, etc. Time and behaviour

dependent tactics are used to generate . Functions in section 8.2.2 are used

for time-dependent and behaviour-dependent as responsive tactics.

'tx
ba →

An agent can generate its response by using a weighted combination of different

tactics according to different criteria. An agent’s strategy depends on which

combination of tactics is used at an instant of a negotiation. An agent is allowed

to change its rating about the importance of a tactic over time i.e. changing the

weights associated to its tactics as a negotiation progresses. Four boolean

variables, whose values depend on the amount of time left to the deadline, are

defined: much-time-left, middle-time-left, less-time-left and no-time-left. The

weight associated to a tactic is determined by the amount of time left and thus by

the truth-value of the boolean variables. When an agent generates values for a set

of issues using responsive tactics, it determines the time left until the deadline and

which boolean variable is true. Then it uses the corresponding weights for each

tactic at that time condition to compute the values in its set of issues. Let tstart = 0

 309

Practical Agents

and tmax be an agent’s deadline. The following 4 equivalencies define much-time-

left, middle-time-left, less-time-left and no-time-left and the weights of each tactic.

 0 § t <
3

maxt
 ↔ much_time_left ↔





=
=

8.0
2.0

behaviour

time

w
w

3

maxt
§ t <

3
2 maxt

 ↔ middle_time_left ↔




=
=

6.0
4.0

behaviour

time

w
w

3
2 maxt

§ t < tmax -1 ↔ less_time_left ↔




=
=

2.0
8.0

behaviour

time

w
w

 tmax -1§ t § tmax ↔ no_time_left ↔




=
=

0
1

behaviour

time

w
w

For example, when tmax = 60 and t = 34 (in seconds), then middle-time-left is true

and the weight associated to each tactic is wtime = 0.4 and wbehaviour =0.6. If the

time-dependent tactic gives (xa→b)t [price] = 32 and the behaviour-dependent

tactic gives (xa→b)t [price] = 40, then the response generated by agent a to agent b

is (0.4µ32) + (0.6µ40) = 36.8

The weights for each tactic are modeled such than when an agent has time left, it

prefers an imitative behaviour to a time-dependent tactic. But as its deadline

approaches, it increasingly favours a time-dependent tactic and is more concerned

to concede closer to its deadline. A responsive strategy is computationally and

resource inexpensive and shows reasonable performance.

8.5 Deliberative Decision Making in a Bilateral Negotiation

The responsive mechanism involves concessions over time and thus fails to find

joint gains and Pareto optimal solutions. Solutions for joint gains are beneficial to

all participants. Changing a Pareto solution would involve at least an agent

gaining less. The responsive mechanism cannot discriminate between sets of

issues with possibly different values for an issue but with the same overall value

for the set. The deliberative mechanisms described in [Faratin and al. 1999] and

in section 8.2.3 use trade-offs to achieve more win-win results. An agent, a,

making a trade-off seeks a set of issues which has the same value to itself but the

 310

Practical Agents

set is possibly more beneficial to its opponent than a’s previous proposal. This is

achieved by lowering the values on some issues while increasing others.

The strategy for an agent using the bilateral protocol with the deliberative

mechanisms in section 8.2.3 is given below. The algorithms describe an agent’s

decision making on the next state transition from the bilateral protocol. An agent

may concede if the deadline is close or its opponent has ceased conceding.

8.5.1 A bilateral Negotiation using Deliberative mechanisms

Agent, a, previously proposed to agent b at time t1−
→
nt

bax n-1 and received from

agent b at time t

nt
abx →

n. At time tn+1, agent a will respond with and an action from

the protocol to trigger the next state transition, according to Algorithm 8.3.

1+
→
nt

bax

better-than ↔ Va () ¥ Vnt
abx →

a () 1−
→
nt

bax

Algorithm 8.3

inputs: current-state /*current state triggered by b*/

 distance /* nearness to a deal*/

 set-of-possible-next-actions /*can be derived from protocol*/

1−
→
nt

bax , /*previous set of issues exchanged*/ nt
abx →

a
maxt /* deadline for a */

Va /*evaluation function for a*/

 tn /* current time*/

Da = { , …., } /*acceptable domains for each issue aD1
a
nD

output: next-actiona, /*a responds with next-action and issues set*/ 1+
→
nt

bax

begin

(1) if (tn+1 > a
maxt) then /*deadline has passed */

(2) next-actiona = timeout ; exit;

(3) if not (Va() lies within Dnt
abx →

a) then /* is not acceptable to a*/ nt
abx →

(4) sub-procedure not-acceptable-deliberative Algorithm 8.7; exit; (I)

(5) else /* acceptable message from b*/

 311

Practical Agents

(6) if (current-state = = offered(b) ⁄ ¬proposed(b)) ¤ ((no-time-left ¤ better-

than) ⁄ a.agree ∈ set-of-possible-next-actions) then

(7) next-actiona = a.agree with nt
abx →

(8) else if (no-time-left ¤ better-than) then

(9) next-actiona = a.offer with nt
abx →

(10) else if (distance = = far) then

(11) sub-procedure acceptable-and-far-distance Algorithm 8.6 (II)

(12) else if (distance = = middle) then

(13) sub-procedure acceptable-and-middle-distance Algorithm 8.5 (III)

(14) else if (distance = = close) then

(15) sub-procedure acceptable-and-close-distance Algorithm 8.4 (IV)

(16) endif
(17) endif
end

Algorithm 8.3 Bilateral protocol with deliberative mechanism

Agent a first checks whether its deadline is past and if so sends a timeout.

Otherwise if the message from agent b is acceptable and there is no time left or

b’s set of issues is better than or equal to a’s previous proposal, then agent a either

agrees with b on or a sends an offer to b with . If agent b made an

acceptable offer to a, then agent a accepts b’s offer. If is not acceptable to

agent a then the Algorithm 8.7 is followed. If is acceptable to agent a and

agent a is not pressed to agree, then agent a decides on its next response according

to its previous response at t

nt
abx →

nt
abx →

nt
bx →a

nt
abx →

n-1 and what b sent to a at tn. The variable distance can

take values far, close or middle to define the difference between the valuations of

agent a for and . distance is modeled in terms of the difference

between the scores of the last set of issues received from agent b and what agent

a’s previously sent.

1−
→
nt

bax nt
abx →

 close ↔ 0 < | Va () - V1−
→
nt

bax a () | § 0.2 nt
abx →

 middle ↔ 0.2 < | Va () - V1−
→
nt

bax a () | § 0.5 nt
abx →

 far ↔ 0.5 < | Va () - V1−
→
nt

bax a () | § 1 nt
abx →

 312

Practical Agents

Algorithm 8.3 can be translated into a theory in ANML for agent a to verify and

reason about.

acceptable ↔ (∀ j:) ((minnt
abx → j

a § Va(j) § maxj
a) ¤ (j ∈ Da))

(open ⁄ (tn+1 > t)) ↔ [timeout] timedout a
max

(acceptable ⁄ offered(b) ⁄ ¬proposed(b)) ↔ ([a.agree] agreed) ⁄ nt
abx →

(acceptable ⁄ (no-time-left ¤ better-than)) ↔ (([offered(b)?; a.agree]agreed)

¤ ([requested(b)?; a.offer] offered(a))) ⁄ nt
abx →

(acceptable ⁄ close) ↔ [{a, b}. acceptable-and-close-distance-process]sent

(acceptable ⁄ middle) ↔ [{a, b}. acceptable-and-middle-distance-

process]sent

(acceptable ⁄ far) ↔ [{a, b}. acceptable-and-far-distance-process]sent

Theory 8.3 Bilateral protocol with deliberative strategy

In contrast to the responsive strategy, the deliberative mechanism is time and

computationally more costly. The time for generating the values for a set of

issues must be taken into account. Performance depends on the size of the space

of potential agreements and on the hardware computational facilities. An agent

should avoid missing its deadline while generating an offer. For example, if agent

a takes on average 4 seconds to generate an offer and there is 4 seconds before its

deadline, then it must settle for a quick decision with an offer or an agree. It also

adopts a less time-costly strategy such as the responsive mechanism.

During a negotiation, an agent, using the deliberative strategy, notes the maximum

time, tgen, it has needed to generate a proposal so far. An agent has 5 Boolean

variables to deal with the amount of time left before an agent’s deadline, out-of-

time, no-time-left, less-time-left, middle-time-left and much-time-left. These

variables are defined in terms of tgen and the time left to an agent’s deadline tmax.

Let the current time be t.

tmax < t ↔ out-of-time

 313

Practical Agents

 tmax – tgen § t § tmax ↔ no_time_left

3
)(2 max gentt −
§ t < tmax - tgen ↔ less_time_left

3
max gentt −

§ t <
3

)(2 max gentt −
 ↔ middle_time_left

0 § t <
3

max gentt −
 ↔ much_time_left

A function deadlock(R) checks the similarity between the last R proposals from an

opponent. deadlock(R) returns true if an opponent has not been conceding in its

last R-1 proposals. The opponent has been proposing set of issues of almost the

same overall score to agent a.

The deliberative mechanism will make an agent bargain until it has reached an

agreement or it is close to its deadline. An agent triggers an offered state if it does

not have enough time to bargain. An agent sends a proposal instead of an offer if

it has enough time. An agent a decides if it has enough time to send a proposal at

tn+1 by estimating the time when it will need to respond next i.e. tn+3. Agent a

responds at tn+1, agent b at tn+2 and agent a next responds at tn+3. Agent a has to

calculate whether tn+3 is still less than tmax. Time tn+3 is dependent on tn+2 i.e. on

how long it takes for its opponent to respond. Therefore, agent a notes the

maximum time its opponent takes to generate a proposal and respond, i.e. topp_gen.

The time topp_gen is dynamic and varies according to the opponent’s computational

resources and conditions. An agent calculates tn+3 as (tn+1 + topp_gen) where tn+1 is

the time agent a responds.

tmax – tgen § tn+3 ↔ ¬ time-for-proposal

tn+3 < tmax - tgen ↔ time-for-proposal

The condition time-for-proposal is false if an agent computes that tn+3 will be

outside or too close to its deadline and true otherwise. If time-for-proposal is

true, at the current time an agent does not make an offer since it can bargain for

one more step.

 314

Practical Agents

8.5.2 Generating values with a deliberative mechanism

An agent¸ a, using the deliberative mechanism, can either concede or trade-off in

generating their response . The algorithms below prescribe the conditions

when an agent concedes or chooses to trade-off. An agent, a, concedes by

generating a contract with a lower score than its previous one, . An

agent a decides to trade-off by generating a contract that has the same score

as its previous one , but which can be more worthwhile to its opponent.

Section 8.2.3 gives various trade-off mechanisms.

1+
→
nt

bax

1
b

+
→
nt

ax

1−
→
nt

ba

1−
→
nt

bax

1+
→
nt

bax

x

Concessions

An agent choosing to concede has to decide on how much to concede and what set

of issues and values to propose next. The extent an agent concedes depends (is

inversely proportional) on the amount of time left until its deadline. The more

time an agent has the less it concedes, and only so as to trigger its opponent to

concede and to move from a deadlock. On the other hand if less-time-left is true,

then an agent should concede enough to get its offer accepted, but no more or less

than its reservation values. An agent must not propose a contract that has a higher

score for its opponent than its opponent’s own previous proposal. Thus, an agent

concedes depending on the amount of time left and its opponent’s last proposal.

The difference between an agent’s last proposal and its opponent’s response is

used to calculate an agent’s concession as given in the function below:

 Va() = V1+
→
nt

bax a() – Dif µ 1−
→
nt

bax
max

max),min(
t

tt

 where Dif = Va() - V1−
→
nt

bax a() nt
abx →

 where t is the current time and tmax is the deadline of agent a.

8.5.3 Algorithm for acceptable and close

This algorithm prescribes the decision making of agent a when agent b has sent an

acceptable set of issues and the distance between agent a’s previous proposal and

 315

Practical Agents

b’s latest proposal is close. This algorithm is called at point (IV) in Algorithm

8.3.

inputs: current-state /*current state triggered by b*/

 distance /* nearness to a deal*/

 set-of-possible-next-actions /*can be derived from protocol*/

1−
→
nt

bax , /* previous set of issues exchanged */ nt
abx →

a
maxt /* deadline for a */

 Va /*evaluation function for a*/

 tn /* current time*/

Da = { , …., } /*acceptable domains for each issue aD1
a
nD

output: next-actiona, /*response from a at t1+
→
nt

bax n+1

begin
(1) if (less-time-left ⁄ deadlock(2)) ¤ (much-time-left ⁄ deadlock(4)) ¤ (middle-time-left

⁄ deadlock(3)) then

(2) a concedes in generating 1+
→
nt

bax

(3) else

(4) a trade-offs in generating 1+
→
nt

bax

(5) endif
(6) if time-for-proposal then

(7) if a.propose ∈ set-of-possible-next-actions then

(8) next-actiona = a.propose with 1+
→
nt

bax

(9) else next-actiona = a.counter-propose with 1+
→
nt

bax

(10) else /* tn+3 is close to the deadline */

(11) if a.offer ∈ set-of-possible-next-actions then

(13) next-actiona = a.offer with 1+
→
nt

bax

(14) else next-actiona = a.counter-offer with 1+
→
nt

bax

(15) endif
end

Algorithm 8.4 Decisions when acceptable and distance is close

Algorithm 8.4 shows agent a’s decisions when the set of issues from agent b is

acceptable and both agents are close to an agreement. Using a deliberative

 316

Practical Agents

strategy, agent a bargains until its deadline is close. Agent a decides on its

response depending on the amount of time left and whether there is deadlock

because agent b has not conceded in the previous steps. Agent a checks for a

deadlock but is more strict in conceding depending on the amount of time left.

Agent a concedes when generating if there is less-time-left and agent b has

not conceded in its last offer. In deadlock(2) the last two set of issues from agent

b are compared. Agent a also concedes if much-time-left and deadlock(4) is true

or middle-time-left or deadlock(3) is true. Otherwise, agent a uses the trade-off

mechanism.

1+
→
nt

bax

Having decided whether to concede or not for , agent a next chooses its

action that will trigger the next state of the negotiation. Since both agents are

close to an agreement, then the next state should allow for a respondent to agree.

If agent a has enough time for a proposal i.e. time-for-proposal is true, then agent

a either makes a proposal or counter-proposal with . This will allow agent b

to agree or to make another response where agent a can then agree or offer. If

time-for-proposal is false, then agent a has no more time for bargaining and has to

trigger the offered state with an offer or counter-offer with . Algorithm 8.4 is

translated in ANML for the acceptable-and-close-distance-process process.

1+
→
nt

bax

+
→
nt

ax 1
b

1+
→
nt

bax

 ((less-time-left ⁄ deadlock(2)) ¤ (much-time-left ⁄ deadlock(4)) ¤ (middle-

time-left ⁄ deadlock(3))) ↔ [a.concedes-generating-] generated(a) 1+
→
nt

bax

¬ ((less-time-left ⁄ deadlock(2)) ¤ (much-time-left ⁄ deadlock(4)) ¤ (middle-

time-left ⁄ deadlock(3))) ↔ [a.trade-offs-generating-] generated(a) 1+
→
nt

bax

(acceptable ⁄ close ⁄ time-for-proposal) ↔ [(requested(b)?; a.propose) »

(proposed(b)?; a.counter-propose)] proposed(a)

(acceptable ⁄ close ⁄ ¬time-for-proposal) ↔ [(requested(b)?; a.offer) »

(proposed(b)?; a.counter-offer)] offered (a)

Theory 8.4 Decisions for acceptable-and-close-distance-process

 317

Practical Agents

8.5.4 Algorithm for acceptable and middle

The following algorithm shows the decision process for agent a after an

acceptable set of issues from b and the difference between b’s set of issues and

that in a’s message is middle. It is called at point (III) in Algorithm 8.3.

inputs: current-state /*current state triggered by b*/

 distance /* nearness to a deal*/

 set-of-possible-next-actions /*can be derived from protocol*/

1−
→
nt

bax , /* previous proposals*/ nt
abx →

a
maxt /* deadline for a */

 Va /*evaluation function for a*/

 tn /* current time*/

Da = { , …., } /*acceptable domains for each issue */ aD1
a
nD

output: next-actiona, /*response from a */ 1+
→
nt

bax

begin
(1) if less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄

deadlock(2)) then

(2) a concedes in generating 1+
→
nt

bax

(3) else a trade-offs in generating 1+
→
nt

bax

(4) endif
(5) if ¬time-for-proposal then

(6) if a.offer ∈ set-of-possible-next-actions then

(7) next-actiona = a.offer with 1+
→
nt

bax

(8) else next-actiona = a.counter-offer with 1+
→
nt

bax

(9) else /*time-for-proposal is true*/

(10) if much-time-left then /*can bargain*/

(11) if a.suggest ∈ set-of-possible-next-actions then

(12) next-actiona = a.suggest with 1+
→
nt

bax

(13) else next-actiona = a.request with 1+
→
nt

bax

(14) else /*not much time left*/

(16) if a.propose ∈ set-of-possible-next-actions then

(17) next-actiona = a.propose with 1+
→
nt

bax

 318

Practical Agents

(18) else next-actiona = a.counter-propose with 1+
→
nt

bax

(19) endif
(20) endif
end

Algorithm 8.5 Decisions when acceptable and distance is middle

Algorithm 8.5 is used when agent b sends an acceptable message to agent a and

the difference between b’s set of issues and that in agent a’s last message is

middle (as defined by distance). Agent a first checks the amount of time left in

order to decide whether to concede or to trade-off in generating . If less-

time-left is true i.e. a deadline is close then agent a concedes to favour an

agreement soon. If middle-time-left, then agent a concedes if agent b has not

conceded in its last proposal (i.e. deadlock(2)), otherwise a tradeoffs. Agent a is

more strict in conceding if it has much-time-left and therefore concedes only if

deadlock(3), and tradeoffs otherwise.

1+
→
nt

bax

In choosing on what action to trigger the next current state, agent a makes an offer

or a counter-offer if it does not have any time for bargaining. If it has enough

time for another proposal and much-time-left, then agent a bargains through

requests or suggests. If not much-time-left but it still has time for a proposal, then

agent a triggers the proposed state. Algorithm 8.5 is represented in ANML with

the conditions of acceptable and middle for acceptable-and-middle-distance-

process process.

(less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄

deadlock(2)) ↔ [a.concedes-generating-] generated(a) 1+
→
nt

bax

¬(less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄

deadlock(2)) ↔ [a.trade-offs-generating-] generated(a) 1+
→
nt

bax

(time-for-proposal ⁄ much-time-left) ↔ [(requested(b)?; a.suggest) »

(proposed(b)?; a.request)] requested(a)

 319

Practical Agents

(time-for-proposal ⁄ ¬much-time-left) ↔ [(requested(b)?; a.propose) »

(proposed(b)?; a.counter-propose)] proposed(a)

¬time-for-proposal ↔ [(requested(b)?; a.offer) » (proposed(b)?; a.counter-

offer)] offered(a)

Theory 8.5 Decisions when acceptable and distance is middle

8.5.5 Algorithm for acceptable and far

The last case of an acceptable proposal from agent b to a is when the distance is

far. This algorithm is called at point (II) in Algorithm 8.3.

begin
(1) if less-time-left ¤ middle-time-left ¤ (much-time-left ⁄ deadlock(2)) then

(2) a concedes in generating 1+
→
nt

bax

(3) else a trade-offs in generating 1+
→
nt

bax

(4) endif
(5) if ¬time-for-proposal then

(6) if a.offer ∈ set-of-possible-next-actions then

(7) next-actiona = a.offer with 1+
→
nt

bax

(8) else next-actiona = a.counter-offer with 1+
→
nt

bax

(9) else /*time-for-proposal is true*/

(10) if middle-time-left ¤ much-time-left then /*can bargain*/

(11) if a.suggest ∈ set-of-possible-next-actions then

(12) next-actiona = a.suggest with 1+
→
nt

bax

(13) else next-actiona = a.request with 1+
→
nt

bax

(14) else /*if less time left*/

(21) if a.propose ∈ set-of-possible-next-actions then

(22) next-actiona = a.propose with 1+
→
nt

bax

(23) else next-actiona = a.counter-propose with 1+
→
nt

bax

(24) endif
(25) endif
end

Algorithm 8.6 Decisions when acceptable and distance is far

 320

Practical Agents

Agent a concedes if there is less-time-left or middle-time-left or if there is much

time left but its opponent has not conceded in its last set of issues. Since the

distance towards an agreement is far, then agent a is more inclined to concede

than in the previous algorithms. If there is no deadlock and there is much time

left, then an agent uses the trade-off mechanism.

To decide on the next state transition, agent a checks if it has time to bargain and

its deadline is not reached at tn+3. If there is no time for a proposal, then agent a

triggers the offered state as a take-it-or-leave it ultimatum. If time-for-proposal is

true then agent a sends a proposal or a request depending on the time left to its

deadline. At much or middle time left, an agent bargains by triggering a requested

state. If less-time-left with still time for a proposal, then an agent triggers the

proposed state. The ANML theory for Algorithm 8.6 is given below for

acceptable-and-far-distance-process process.

 (less-time-left ¤ middle-time-left ¤ (much-time-left ⁄ deadlock(2))) ↔

[a.concedes-generating-] generated(a) 1+
→
nt

bax

¬(less-time-left ¤ middle-time-left ¤ (much-time-left ⁄ deadlock(2))) ↔

[a.trade-offs-generating-] generated(a) 1+
→
nt

bax

(time-for-proposal ⁄ (middle-time-left ¤ much-time-left)) ↔ [(requested(b)?;

a.suggest) » (proposed(b)?; a.request)] requested(a)

(time-for-proposal ⁄ ¬(middle-time-left ¤ much-time-left)) ↔

[(requested(b)?; a.propose) » (proposed(b)?; a.counter-propose)]

proposed(a)

¬time-for-proposal ↔ [(requested(b)?; a.offer) » (proposed(b)?; a.counter-

offer)] offered(a)

Theory 8.6 Decisions when acceptable and distance is far

 321

Practical Agents

8.5.6 Algorithm for a not-acceptable set of issues

A non-acceptable set of issues to an agent, a, implies that one or more values in

that set is out of the range of what agent a can accept. Partial agreement to a

negotiation is not considered (where an agent agrees to a subset of the set of

issues and continues to negotiate on the rest). In the given algorithms, an agent

cannot agree to a non-acceptable contract. An agent compromises when it

receives non-acceptable contracts as it is unsure of whether there is an intersection

between its and its opponent’s goals. Algorithm 8.7 is used when agent, a, is

using the deliberative mechanism and received a non-acceptable response from its

opponent. It is called at point (I) in Algorithm 8.3 and itself calls other

procedures depending on the distance towards an agreement. Algorithm 8.7 gives

the decision making when an agreement is far.

begin

(1) if (current-state = = offered(b) ⁄ ¬proposed(b) ¤ no-time-left) then

(2) next-actiona = a.reject ; exit; nt
abx →

(3) else if (distance = = middle) then

(4) sub-procedure non-acceptable-and-middle-distance Algorithm 8.8 (I)

(5) else if (distance = = close) then

(6) sub-procedure non-acceptable-and-close-distance Algorithm 8.9 (II)

(7) else if (distance = =far) then

(8) a concedes in generating 1+
→
nt

bax

(9) if time-for-proposal then

(10) if a.suggest ∈ set-of-possible-next-actions then

(11) next-actiona = a.suggest with 1+
→
nt

bax

(12) else next-actiona = a.request with 1+
→
nt

bax

(13) else /* tn+3 is close to the deadline */

(14) if a.offer ∈ set-of-possible-next-actions then

(16) next-actiona = a.offer with 1+
→
nt

bax

(17) else next-actiona = a.counter-offer with 1+
→
nt

bax

(18) endif /*time-for-proposal*/

(19) endif
end

Algorithm 8.7 Decisions when not-acceptable and when distance is far

 322

Practical Agents

If agent b has offered a non-acceptable set of issues or if there is no more time

left, then an agent can only reject b’s set of issues. However if there is time left,

then an agent decides on its response according to the time and to the distance

towards an agreement (i.e. the difference between its and the opponents previous

response).

Algorithm 8.7 gives agent a’s decision making when the distance is far. An agent

concedes in this situation to be closer to an acceptable region for the values in a

set of issues. The state transition by agent a depends on the amount of time left.

If there is not enough time left for further messages after agent b responds at tn+2,

then agent a sends an offer or a counter-offer with . Otherwise if there is

time left then agent a triggers the requested state since distance is far and

substantial interaction is needed to reach an agreement. It is unlikely that agent b

would agree to a propose from agent a since the distance towards an agreement is

far. The corresponding ANML theory for Algorithm 8.7 is given below.

1+
→
nt

bax

(¬acceptable ⁄ ((offered(b) ⁄ ¬proposed(b)) ¤ no-time-left)) ↔ [a.reject]

rejected

(¬acceptable ⁄ close) ↔ [{a, b}. not-acceptable-and-close-distance-process]

sent

(¬acceptable ⁄ middle) ↔ [{a, b}. not-acceptable-and-middle-distance-

process] sent

(¬acceptable ⁄ far) ↔ [a.concedes-generating-] generated(a) 1+
→
nt

bax

time-for-proposal ↔ [(requested(b)?; a.suggest) » (proposed(b)?; a.request)]

requested(a)

¬time-for-proposal ↔ [(requested(b)?; a.offer) » (proposed(b)?; a.counter-

offer)] offered(a)

Theory 8.7 Decisions when not-acceptable and when distance is far

 323

Practical Agents

8.5.7 Algorithm for not-acceptable and middle

The algorithm in this section describes agent a’s decision making when b has sent

it an unacceptable set of values and the difference between a’s and b’s last

responses give a middle distance. Algorithm 8.8 is called at point (I) in Algorithm

8.7.
begin
(1) if less-time-left ¤ (much-time-left ⁄ deadlock(2)) ¤ middle-time-left then

(2) a concedes in generating 1+
→
nt

bax

(3) else

(4) a trade-offs in generating 1+
→
nt

bax

(5) endif
(6) if ¬time-for-proposal then

(7) if a.offer ∈ set-of-possible-next-actions then

(8) next-actiona = a.offer with 1+
→
nt

bax

(9) else next-actiona = a.counter-offer with 1+
→
nt

bax

(10) else /*time-for-proposal is true*/

(11) if less-time-left then /* commits to a proposal*/

(12) if a.propose ∈ set-of-possible-next-actions then

(13) next-actiona = a.propose with 1+
→
nt

bax

(14) else next-actiona = a.counter-propose with 1+
→
nt

bax

(15) else /*more time for bargaining*/

(16) if a.suggest ∈ set-of-possible-next-actions then

(17) next-actiona = a.suggest with 1+
→
nt

bax

(18) else next-actiona = a.request with 1+
→
nt

bax

(19) endif
(20) endif
end

Algorithm 8.8 Decisions when not-acceptable and middle distance

Agent a concedes if the deadline is near when less-time-left or middle-time-left, so

as to approach an agreement. If agent a has much-time-left or agent b has

conceded in its last message, then a uses the trade-off mechanism to generate its

response.

 324

Practical Agents

In choosing a state transition, an agent checks if it needs to make an offer right

away because of lack of time. If not, then it can, as for the other algorithms,

either trigger a requested state or move towards a proposal depending on how

close is its deadline. Theory 8.8 is the corresponding ANML theory for

Algorithm 8.8 for the process not-acceptable-and-middle-distance-process.

 (less-time-left ¤ (much-time-left ⁄ deadlock(2)) ¤ middle-time-left) ↔

[a.concedes-generating-] generated(a) 1+
→
nt

bax

 (much-time-left ⁄ ¬deadlock(2)) ↔ [a.trade-offs-generating-]

generated(a)

1+
→
nt

bax

(time-for-proposal ⁄ (much-time-left ¤ middle-time-left)) ↔ [(requested(b)?;

a.suggest) » (proposed(b)?; a.request)] requested(a)

(time-for-proposal ⁄ less-time-left) ↔ [(requested(b)?; a.propose) »

(proposed(b)?; a.counter-propose)] proposed(a)

¬time-for-proposal ↔ [(requested(b)?; a.offer) » (proposed(b)?; a.counter-

offer)] offered(a)

Theory 8.8 Decisions when not-acceptable and middle distance

8.5.8 Algorithm for not-acceptable and close

Algorithm 8.9 is followed when agent a estimates that both agents are close to an

agreement but agent b has sent a non-acceptable message to agent a. This is the

case when for example two agents are proposing sets of issues of almost

acceptable scores but there are some proposed values that are out of the range of

acceptability of an agent. Algorithm 8.9 is called at point (II) in Algorithm 8.7.

begin
(1) if (less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄ deadlock(2)))

(2) a concedes in generating 1+
→
nt

bax

(3) else

 325

Practical Agents

(4) a trade-offs in generating 1+
→
nt

bax

(5) endif
(6) if time-for-proposal then

(7) if much-time-left then

(8) if a.suggest ∈ set-of-possible-next-actions then

(9) next-actiona = a.suggest with 1+
→
nt

bax

(10) else next-actiona = a.request with 1+
→
nt

bax

(11) else /* less than much time left */

(12) if a.propose ∈ set-of-possible-next-actions then

(13) next-actiona = a.propose with 1+
→
nt

bax

(14) else next-actiona = a.counter-propose with 1+
→
nt

bax

(15) endif /* for much time left*/

(16) else /* tn+3 is close to the deadline, no time for a proposal */

(17) if a.offer ∈ set-of-possible-next-actions then

(18) next-actiona = a.offer with 1+
→
nt

bax

(19) else next-actiona = a.counter-offer with 1+
→
nt

bax

(20) endif /*for time-for-proposal*/

end

Algorithm 8.9 Decisions when not-acceptable and when close distance

Agent a concedes in generating its response if there is less-time-left, much-time-

left and deadlock(3) or middle time left and deadlock(2). Otherwise, agent a

prefers to trade-off.

For a decision on the next action in the bilateral protocol, if there is much time left

then agent a triggers the requested state. If there is still time for a proposal but

not much-time-left, then agent a triggers the proposed state which may lead to an

agreement since the distance to an acceptable set of issues is close. Otherwise, if

there is no time left for bargaining, agent a makes an offer. Theory 8.9 is the

theory for Algorithm 8.9 for the not-acceptable-and-close-distance-process

process.

(less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄

deadlock(2)) ↔ [a.concedes-generating-] generated(a) 1+
→
nt

bax

 326

Practical Agents

¬(less-time-left ¤ (much-time-left ⁄ deadlock(3)) ¤ (middle-time-left ⁄

deadlock(2)) ↔ [a.trade-offs-generating-] generated(a) 1+
→
nt

bax

(time-for-proposal ⁄ much-time-left) ↔[(requested(b)?; a.suggest) »

(proposed(b)?; a.request)] requested(a)

(time-for-proposal ⁄ ¬much-time-left) ↔ [(requested(b)?; a.propose) »

(proposed(b)?; a.counter-propose)] proposed(a)

¬time-for-proposal ↔ [(requested(b)?; a.offer) » (proposed(b)?; a.counter-

offer)] offered (a)

Theory 8.9 Decisions when not-acceptable and when close distance

8.6 Implementation of a Bilateral Negotiation

The algorithm focuses on designing and implementing a bilateral negotiation

between two agents with conflicting goals to find a mutually acceptable

agreement over a set of issues. The assumptions, inputs, outputs, algorithms for

data flow between processes and some interesting implementation details in Qu-

Prolog are described.

8.6.1 Assumptions

The assumptions are realistic given two competitive negotiating agents.

• Self-interested agents

Both agents are self-interested with possibly opposing goals.

• Set of issues

The agents negotiate over a set of multiple issues such as price, quality,

guaranties, terms and conditions. The set of issues is agreed beforehand.

• Agent’s preferences

An agent specifies its preferences for the values of a set of issues. These are

the initial values for each issue when starting a negotiation. Usually the initial

value of an issue lies on the border of the range of acceptability for an agent

 327

Practical Agents

and is sent in the first message. An agent also has to specify the direction of

change in value they would like each issue to take i.e. a buyer would like the

issue price to decrease (down) and the warranty to increase (up) whereas a

seller would prefer the opposite.

• Deadline

An agent declares its deadline, tmax, and the maximum acceptable number of

rounds. The number of rounds constraints the number of times an agent is

able to respond to its opponent. The number of rounds is included for dealing

with limited resources and when generating a set of issues consumes part of

those resources. If resources (other than time) are unlimited, then an agent

can trivially declare a large number of rounds.

• Communication medium

The simulation uses TCP/IP. Agents are represented by unique names on an

IP host or domain name. An agent knows the name and location of its

opponent. Privacy of information is assumed and no other agent can join,

interfere in or corrupt a negotiation.

• Protocol

All participants know the logical theory of the bilateral protocol.

• Strategies

A rational agent makes decisions using strategies and mechanisms defined in

section 8.2. These strategies are used to evaluate a set of issues and to

respond to an opponent after generating a new set of issues and values. The

algorithms in section 8.4 and 8.5 are used for deciding on the next action from

the bilateral protocol.

8.6.2 Negotiation Cycle using a Responsive Mechanism

An agent computes the constant kj
a from the initial values given by a user for a set

of issues. An agent later uses kj
a to generate sets of issues. See section 8.2.2 for

how to calculate kj
a, αj

a from kj
a and the values in a set of issues from αj

a.

Algorithm 8.10 defines a negotiation cycle for an agent using a responsive

mechanism. An agent can either initiate the process or respond to an initiator.

Pre-conditions: current state is ¬negotiating, assumptions in section 8.6.1

 328

Practical Agents

Post-conditions: current state is closed

begin

(1) if sending-agent then /*sending-agent starts the negotiation */

(2) initialise-time-and- kj
a

(3) generate and send entry message;

(4) update beliefs including about negotiation state;

(5) endif
(6) while ¬(current-state == closed) do
(7) if sending-agent ¤ respondent then /* next one to send a message */

(8) generate message;

(9) send message to opponent;

(10) update beliefs about message and about negotiation state;

(11) endif
(12) if current-state == closed then

(13) exit;

(14) else /* waiting for a message */

(15) receive message;

(16) if time-has-not-been-started then /*received an entry message */

(17) initialise-time-and-compute-kj
a

(18) endif
(19) update beliefs including about negotiation state;

(20) endif
(21) endwhile

(22) exit;

end

Algorithm 8.10 Negotiation cycle for responsive mechanism

An agent either initiates a negotiation or responds to an initiator. Time is discreet.

The procedure initialise-time-and-kj
a sets tstart to 0 and an agent counts time from

that point on. This procedure also computes the constant kj
a using responsive

tactics. An agent starting the negotiation generates and sends the initial message.

An agent stays in the while loop when the state of negotiation is open. A sending-

agent may need to send 2 or more consecutive messages. A respondent agent has

received a message and now needs to reply. If an agent is a sending-agent or a

respondent, it generates and sends its message. It then updates its beliefs about

the set of issues sent and the state of negotiation on receiving acknowledgements.

 329

Practical Agents

If the state is not closed, an agent waits for the next state transition depending on

its role as respondent or sending-agent. On receiving a message, an agent checks

whether it is an allowable entry action and if so starts its time and computes kj
a.

Then a receiver updates its beliefs with the set of issues received and the state of

the negotiation. If the state is not closed, the while loop is re-entered. The whole

algorithm iterates until the state is closed.

8.6.3 Negotiation cycle for a Deliberative Strategy

In the algorithm for a deliberative strategy, an agent notes the amount of time it

and its opponent takes to generate a set of issues and to respond.
begin

(1) if sending-agent then /* starting the negotiation */

(2) start counting time;

(3) generate and send entry message;

(4) note time of sending

(5) update beliefs including about negotiation state;

(6) endif
(7) while ¬(current-state == closed) do
(8) if sending-agent ¤ respondent then /* next one to send a message */

(9) generate message;

(10) send message to opponent;

(11) note time of sending a message; /* for calculating topp_gen

(12) update beliefs about message and about negotiation state;

(13) endif
(14) if current-state== closed then

(15) exit;

(16) else receive message;

(17) endif
(18) if time-has-not-been-started then

(19) start counting time

(20) else
(21) compute max topp_gen

(22) endif
(23) update beliefs including about negotiation state;

(24) endwhile

(25) exit;

end

Algorithm 8.11 Negotiation cycle for deliberative mechanism

 330

Practical Agents

When a sending-agent initiates a negotiation, it notes the starting and sending

times, generates and sends the entry message.

In the loop while the state is open, a sending-agent or respondent generates and

sends a message according to deliberative mechanisms. An agent records the

sending time which will be used to compute its opponent’s maximum response

time. Then that agent updates its beliefs with the sent set of issues and the state of

negotiation on receiving acknowledgement.

If the state is closed, then the process is terminated else an agent waits to receive a

message. On receiving a message, an agent either initialises its time if it has not

done so yet or calculates its opponent’s maximum response time.

The agent then updates its beliefs about the received set of issues and the state of

negotiation and re-enters the loop. An agent keeps sending and receiving

messages in a while loop until the state is closed.

8.6.4 Some Implementation Details

The algorithm is implemented in Qu-Prolog, [Clark and al. 1998], which allows

multi-threading and inter-process communication between Qu-Prolog threads

running on the Internet. Each agent in a bilateral negotiation is executed as a

separate Qu-Prolog application. An agent has one thread forked for processing

messages from an opponent and knows the latter’s identity. Real numbers are

scaled to integers since Qu-Prolog does not support real numbers.

Input

An agent’s user preferences about the range of acceptability for a set of issues are

an input as Qu-Prolog files. An example of a preferences file for a seller is:

negotiating_issues([(price,20), (del_time,5), (warranty,3), (quality,g)]).

weight([(price,5), (del_time,2), (warranty,2), (quality,1)]).

opp_weight([(price,4), (del_time,1), (warranty,2), (quality,3)]).

min([(price,10), (del_time,1), (warranty,0)]).

max([(price,25), (del_time,8), (warranty,5)]).

direction([(price,up), (del_time,up), (warranty,down)]).

 331

Practical Agents

eval_function(quality,[(vb,100),(b,200),(m,600),(g,400),(vg,200),(ex,0)]).

round(50).

max_time(60).

Example 8.1 Preferences of a Seller

The list negotiating_issues contains (name-value) pairs of the issues that are under

negotiation and their values. In the above list, the seller wants to negotiate over

four issues – price, delivery time, warranty and quality, where the initial value of

each issue is given.

The list weight associates each issue with their importance to the seller. This list

is used by an evaluation function to compute the overall score of a set of issues.

The seller here places more importance on the price.

The list opp-weight is used in a deliberative strategy to store what an agent

believes about its opponent’s associated weights over a set of issues. An agent

uses this set for generating a response. If an agent has no indication of its

opponent’s preferences, it associates equal or almost equal weights for each issue.

The lists min and max include the range of acceptability values for quantitative

issues, here price, warranty and delivery time. The list direction associates with

each quantitative issue whether that agent prefers an increase or decrease in that

issue. An increase is given by up and a decrease by down. For any qualitative

issue, such as quality, eval_function associates with that issue a list of possible

instantiations and the scores a user places on them. Here, quality can be very bad,

bad, medium, good, very good, excellent. A seller places a high score of medium

since it brings it a profit with reasonable production costs.

The predicate round specifies the maximum number of acceptable rounds in a

negotiation process. It is used to indicate the level of resources available. The

deadline for an agent is given by max_time in seconds.

 332

Practical Agents

Output

The simulation informs a user about the state transitions, current time and

messages being sent and received. The output indicates which sub-state of closed

the process terminates in. If an agreement is reached, then the set of issues agreed

upon and its score are given.

The score of a set of issues

An evaluation function computes the overall score of a set of issues and helps in

rating them and generating new contracts. An evaluation function for agent a, Va,

returns an integer in the range of [0, 10,000], which is equivalent to considering

the first 4 decimal numbers of a real number between 0 and 1. If the function

returns an out of range value, then the score takes the limit value (0 or 10,000)

depending on the direction of the issue. In calculating the score for a qualitative

issue, the preferences of a user includes an eval_function and the score of its value

can be extracted.

Notable Procedures with a deliberative strategy as example

A negotiation starts with a procedure start_negotiation and then continues by

iterating between procedures action and process_messages. In start_negotiation,

an agent specifies its opponent, then sends an initial message to enter the process

and records the starting time. The initial message is created using the preferences

of a user and consists of a set of issues and an allowed action for a state transition.

A sending agent executes the procedure action with parameters a set of issues and

a state-triggering action for sending to its opponent. After sending a message, it

records the sending time. On receiving an acknowledgement, an agent updates its

beliefs that the current state of negotiation. An agent records the last 10 messages

sent.

A receiving agent waits for a message via the process_messages procedure and

follows Algorithm 8.10 or Algorithm 8.11. It updates its beliefs about its

opponent from the message received and keeps a list of received messages. Then,

if the state is open, a receiving agent generates and sends its response via the

procedures choose_action and action.

 333

Practical Agents

The procedure choose_action finds all the possible state-transition-actions

according to the bilateral protocol and the current state. Then generate_action

generates the set of issues an agent will send. An agent records the time spent in

generating values for a set of issues. The tactic relative tit-for-tat is used as

default tactic in the responsive mechanism.

8.7 Performance Analysis

The performance of a negotiation with a user’s preferences and chosen strategies

is analysed. There are two agents, a buyer and a seller. After inputting a user’s

preference file, each agent negotiates autonomously towards an agreement. This

section gives five case studies for varying the deadline, strategy and initial values

for the set of issues and weights. Let B denote a buyer agent, S a seller agent, del

a deliberative mechanism and resp a responsive mechanism. The values in the

result column, in the tables given below, are in the sequence price, delivery time,

warranty, quality.

8.7.1 Case1: Varying deadline between 2 deliberative agents

Hypothesis 1: When two deliberative agents negotiate, the agent with the closer

deadline gains less. The closer the deadline of both agents (the less resources),

the less is the overall gain of the group.

Experiment setup: One agent is a buyer and the other agent is a seller. Both the

buyer and seller agents use deliberative strategies.

1. Both agents have the same deadlines which are equally decreased for both

parties to investigate what is the overall gain.

2. The buyer and the seller interchangeably have a closer deadline than its

opponent to see if their gain is affected by their role.

3. The difference between their deadlines is increased to analyse how their

personal gain varies with such difference.

4. One agent starts with a very close deadline and it is checked if an

agreement is reached.

 334

Practical Agents

Table 8.1 shows the effect of varying deadlines, max_time, on the set of issues

agreed upon. The penultimate column shows which agent terminated the process

and the last column gives the number of messages exchanged.
Row Max_time Score

 Buyer Seller

Result

Buyer Seller Overall

Last
sender

#mes-
sages

1 60 60 agree(18,7,4,ex) 5279 4779 10058 seller 10

2 60 60 agree(11,7,4,vg) 6543 2644 9187 buyer 12

3 45 45 agree(18,2,0,vg) 3794 5149 8943 seller 9

4 20 20 agree(14,6,1,vg) 4686 4558 9244 seller 5

5 30 30 agree(18,4,5,vg) 5508 3721 9229 buyer 7

6 30 30 agree(19,2,5,ex) 6126 3284 9410 buyer 6

7 60 30 agree(10,5,0,ex) 6097 3142 9239 seller 7

8 15 60 agree(20,7,0,vg) 2543 7244 9787 buyer 6

9 30 150 agree(19,8,4,ex) 4868 5400 10268 buyer 6

10 10 60 timedout 0 0 0 seller 5

Table 8.1 Del-Del varying deadlines

0

2000

4000

6000

8000

10000

12000

10 15 20 30 45 60

Buyer's deadline/seconds

Sc
or

e

Score-buyer
Score-Seller
Overall Score

Graph 8.1 Scores against Buyer’s deadline

Observation 1: From rows 1-6, the individual and group gains are affected by the

agents’ deadlines.

Conclusion 1: The scores of each agent and the overall score of the group are

affected by their deadlines.

Observation 2a: Deliberative agents continue negotiating until their deadlines.

Observation 2b: Row 4 is an anomaly because with a closer deadline than row 3

the buyer manages to find a better deal, although the seller is worse off.

 335

Practical Agents

Observation 2c: Given the variation of deadlines with gains of rows 7 and 8 (i.e.

twice more time left yielding nearly twice more gain for an agent in these rows),

this proportionality is not repeated for row 9 where the two agents gain about the

same even though the seller’s deadline is 5 times further away. Row 9 is therefore

another anomaly.

Conclusion 2: Although other factors are kept constant i.e. initial preferences and

weights, the processing power of the machine on which the experiment onto may

fluctuate. But such fluctuations are kept within a reasonable margin.

Observation 3: In row 8 of Table 8.1, the seller has 4 times more time left than the

buyer and thus gains nearly 3 times as much in score. Same for rows 7 and 9.

Conclusion 3: An agent which has a closer deadline than its opponent concedes

more and thus gains less than its opponent. So as to reach an agreement, an agent

with a closer deadline moves towards its opponent’s preferences.

Observation 4a: From rows 7-8, the gain of the agents is disproportional to the

difference in the proximity of their deadlines.

Observation 4b: If one of the agent’s deadline is very near, then it sends a take-it

or leave-it offer as in row 8.

Conclusion 4: Although varying an agent’s deadline yields a corresponding

change in their gain, such change in gain may however be disproportional because

once the agents have found an acceptable set of issues, their rate of concession

does not depend so much on their deadline.

Observation 5a: There is a fair exchange when both agents have the same

deadlines.

Observation 5b: However, in row 2, both agents have the same deadlines, but with

more messages being sent.

Observation 5c: From rows 2, 5 and 6 the buyer sends the last offer and achieves a

higher score. Same for the seller in row 3.

Conclusion 5: The results show that the last agent offering an agreement gains a

higher score.

 336

Practical Agents

Observation 6: In Table 8.1, there is a significant intersection region between the

range of acceptable values for each agent. During this negotiation, the agents find

an acceptable contract quite early and negotiate to gain higher scores.

Observation 7: As soon as an agent receives an acceptable set of issues, it

concedes less and lets its opponent approach it.

Conclusion 7: The agent receiving the first acceptable set of issues is usually the

one gaining more in the end. It continues bargaining for maximising its benefits

but with less pressure to reach the acceptable region, while its opponent

compromises more in its responses.

The summary of the conclusions from case study 1 are:

- The agent with the closer deadline achieves less.

- When both agents have the same deadline, they are more likely to achieve the

same score. The agent sending the last offer or reaching its acceptable region

first stands more chance of gaining a higher score.

- Hypothesis 1 is supported.

8.7.2 Case2: Varying deadline between a deliberative and a responsive

agent

Hypothesis 2: A deliberative agent achieves more than a responsive agent since

its decision making is more complex.

Experiment setup: The negotiation between a deliberative and a responsive agent

is investigated.

1. Both the responsive and deliberative agents have the same deadlines to see

how their gain is varied with respect to only their strategies.

2. One of the agents has a closer deadline to compare their adaptability.

Mechanism Max_time Score
Buyer Seller B S

Result
Buyer Seller Overall

Last
sender

#m

1 Del Resp 60 60 agree(17,2,2,ex) 5458 3814 9272 buyer 14

2 Resp Del 45 45 agree(16,8,0, g) 2868 6400 9268 seller 13

3 Del Resp 45 45 agree(11,2,0,ex) 6258 2614 8872 buyer 14

 337

Practical Agents

4 Resp Del 30 30 agree(12,8,0,m) 3336 5265 8601 seller 11

5 Del Resp 30 30 agree(12,3,2,vg) 6051 2635 8686 buyer 10

6 Del Resp 60 30 reject(9,3,3,ex) 0 0 0 buyer 12

7 Resp Del 60 30 agree(14,3,3,m) 4715 3300 8015 seller 11

8 Del Resp 30 60 agree(17,2,2,g) 4258 4214 8472 buyer 10

9 Resp Del 30 60 reject(23,5,2,m) 0 0 0 seller 13

Table 8.2 Del-Resp varying deadlines

Observation 1: From rows 1-5, when both the responsive and deliberative agents

have the same deadline, then the deliberative agent achieves a higher score than

its opponent.

Observation 1b: A deliberative agent tries to gain more by being the last agent to

make an offer. A responsive agent is more passive.

Conclusion 1: Hypothesis 2 is satisfied.

Observation 2: From row 9, when the responsive agent has less time than a

deliberative agent, the negotiation ends in a rejected state.

Conclusion 2: The deliberative agent had more time available, was trading off and

was proposing sets of issues unacceptable to the responsive agent.

Observation 3: From row 8, if the deliberative agent has less time than the

responsive agent, then an agreement is still reached as opposed to observation 2

above.

Conclusion 3: The deliberative agent is willing to concede and an agreement is

reached. When its deadline is near, the deliberative agent makes a large

concession and sends an acceptable offer.

Observation 4: In a negotiation between a deliberative and a responsive agent,

more messages are sent than between two deliberative agents.

Conclusion 4: This is because a responsive agent takes less time to evaluate and

generate a set of issues than a deliberative agent. Thus a deliberative agent has

more time to make tradeoffs than when dealing with another deliberative agent.

Conclusion 4b: A responsive strategy is not as time consuming as a deliberative

strategy because calculating trade-offs requires time.

 338

Practical Agents

Observation 5: The overall scores between a responsive and deliberative agent is

lower than between two deliberative agents.

Conclusion 5: A responsive agent misses those solutions that increase its

opponent’s gain without decreasing the responsive agent’s gain.

Summary of conclusions from case 2:

- A deliberative agent gains more than a responsive agent when they have

similar deadlines.

- A deliberative agent tends to be the agent making the last offer, instead of the

responsive agent.

8.7.3 Case3: Comparing deliberative against responsive strategies

Hypothesis 3: Responsive strategies produce less gain than deliberative strategies.

Hypothesis 3b: Responsive strategies still find an agreement with close deadlines.

Experiment setup: Both agents have the same strategies. Their deadlines are

varied. Table 8.3 compares negotiations between two deliberative agents and

between two responsive agents under the same conditions and preferences.

Mechanism Max_time Score
Buyer Seller B S

Result
Buyer Seller Overall

Last
sender

#m

1 Del Del 60 60 agree(18,7,4,ex) 5279 4779 10058 seller 10

2 Del Del 60 60 agree(11,7,4,vg) 6543 2644 9187 buyer 12

3 Del Del 45 45 agree(18,2,0,vg) 3794 5149 8943 seller 9

4 Del Del 20 20 agree(14,6,1,vg) 4686 4558 9244 seller 5

5 Del Del 30 30 agree(18,4,5,vg) 5508 3721 9229 buyer 7

6 Del Del 30 30 agree(19,2,5,ex) 6126 3284 9410 buyer 6

7 Resp Resp 45 45 agree(16,7,3,g) 4143 5017 9160 seller 19

8 Resp Resp 30 30 agree(15,7,2,g) 4034 4903 8937 seller 18

9 Resp Resp 5 5 agree(14,5,1,m) 3620 4672 8301 buyer 14

Table 8.3 Del-Del against Resp-Resp

Observation 1: The responsive mechanism has a higher performance time and is

computationally less expensive.

Conclusion 1: The responsive mechanism is faster.

 339

Practical Agents

Observation 2: Even though responsive agents send more messages, their score

found is lower than between two deliberative agents.

Conclusion 2: Deliberative strategies achieve more than responsive strategies.

Hypothesis 3 is supported.

Observation 3: The responsive mechanism is less time-dependent when the

deadline is not close.

Observation 4: In row 9, even when the deadline is close, responsive agents find

an agreement.

Conclusion 3: Hypothesis 3b is confirmed.

Overall conclusion:

Deliberative agents find higher scores and responsive agents find faster

agreements.

8.7.4 Case4: Guessing an opponent’s weights

Hypothesis 4a: Accurate modelling of an opponent’s weights allows an agent to

individually gain more.

Hypothesis 4b: A higher overall score is expected when the participants know

each other’s preferences, resulting in a solution close to an optimum deal.

Aim: To investigate whether it is better to guess or to assign average weights to

an opponent’s preferences.

Experiment setup: To generate its next response, a deliberative agent uses its

beliefs about the preferences of its opponent. An agent’s list opp_weights stores

that agent’s beliefs about its opponent’s preferences for each issue. In this case

study, both agents use a deliberative strategy and initially assign values to their

list opp_weights. The performance is examined when

• the buyer and the seller know each other’s preferences

• both agents do not know their opponent’s preferences and give equal

weights to all issues in the list opp_weights

• An agent gives random values to its opponent’s weight

In rows 1 to 5 of Table 8.4, the deadline (tmax) of both agents is 60 seconds. In

rows 6 to 9, the deadline (tmax) of both agents is 45 seconds

 340

Practical Agents

Row weight opp_

weight
Result score overall last

sender
#mesgs

buyer (4,1,2,3) (5,2,2,1) 5279 1

seller (5,2,2,1) (4,1,2,3)

agree(18,7,4,ex)

4779

10058 seller 10

buyer (4,1,2,3) (5,2,2,1) 4165 2

seller (5,2,2,1) (4,1,2,3)

agree(18,5,2,vg)

5207

9372 buyer 10

buyer (4,1,2,3) (2,3,3,2) 6051 3

seller (5,2,2,1) (2,3,3,2)

agree(14,3,1,ex)

2835
8886 buyer 12

buyer (4,1,2,3) (1,4,4,1) 3783 4
seller (5,2,2,1) (1,4,4,1)

agree(16,3,4,b)

3770

7553 seller 10

buyer (4,1,2,3) (1,4,4,1) 0 5
seller (5,2,2,1) (1,4,4,1)

reject(5,6,4,b)

0

0 buyer 12

buyer (4,1,2,3) (5,2,2,1) 3794 6
seller (5,2,2,1) (4,1,2,3)

agree(18,2,0,vg)

5149

8943 seller 9

buyer (4,1,2,3) (2,3,3,2) 5108 7
seller (5,2,2,1) (2,3,3,2)

agree(12,4,2,g)

3121

8229 buyer 10

buyer (4,1,2,3) (2,3,3,2) 0 8
seller (5,2,2,1) (2,3,3,2)

reject(21,3,3,vg)

0

0 seller 9

buyer (4,1,2,3) (1,4,4,1) 5254 9
seller (5,2,2,1) (1,4,4,1)

agree(15,6,5,g)

2628

7882 buyer 10

Table 8.4 Del-Del agents, varying opp_weights

From Table 8.4, the scores depend on the weights assigned to the issues in

opp_weights.

Observation 1: From rows 1 and 2, the buyer and seller model each other’s

preferences correctly.

Conclusion 1: Their individual scores are higher than other rows (depending on

who is the last agent to make an offer). Hypothesis 4a is confirmed.

Conclusion 2: When an agent is correct about opp_weight the overall score is

higher. Hypothesis 4b is confirmed.

Observation 2: From rows 4, 5 and 8, when the agents randomly assign values to

each other’s scores, a rejection is reached or the gain is not as high as other rows.

 341

Practical Agents

Conclusion 3: An agent who does not know its opponent’s preferences can make

false assumptions about them. Agents who make wrong or random assumptions

about their opponent’s preferences achieve a medium score and risk rejections.

The score is also affected by the deadline i.e. decreases when the deadline of both

agents is reduced.

Conclusion 4: A rejection may then result (given close deadlines) because an

agent does not move in the right direction towards its opponent.

Observation 5: Rows 3, 7 and 9 show that agreements with average values in

opp_weights list.

Conclusion 5: When neutral and almost equal values are assigned, the overall

score is decreased but an agreement is still reached.

Conclusions from case 4:

- The best deals are reached when the agents know or rightly deduce each

other’s preferences.

- When an agent does not know its opponent’s preferences, random assignment

leads to a decreased score.

- For a reasonable deal, it is better for an agent to give equal weights to the

issues in its list opp_weight.

8.7.5 Case5: Varying initial values of deliberative agents

Hypothesis 5a: If the initial values of the two agents are close, then a better deal

is obtained.

Experiment setup: In this case, both the buyer and seller are deliberative agents

except for row 3 between a responsive and a deliberative agent. The deadline of

both agents is 60 seconds. The scores reached with different initial values for

each issue in an agent’s preferences are compared.

Row Agent Stra-

tegy
Initial
values

Initial
Score

Result Score overall Last
sender

#mesg

buyer Del (5,2,4,vg) 8858 3068 1

seller Del (25,7,1,b) 9114

agree(19,1,0,g)

5400

8468 buyer 10

 342

Practical Agents

buyer Del (5,2,4,vg) 8858 6926 2

seller Del (20,6,3,b) 6358

agree(13,2,3,ex)

2084

9010 buyer 8

buyer Del (5,2,4,vg) 8858 7258 3

seller Resp (20,6,3,b) 6358

agree(11,2,4,vg)

1214

8472 Seller 9

buyer Del (5,2,4,vg) 8858 0 4

seller Del (20,5,3,g) 5672

reject(6,4,1,ex)

0

0 buyer 10

buyer Del (10,4,3,g) 6383 6383 5

seller Del (20,5,3,g) 5672

agree(10,3,0,ex)

2570

8953 buyer 12

Table 8.5 Del-Del varying initial values of preferences, deadline 60 seconds

Observation 1: Initial values with a high overall score for the issues lead to an

agreement with an equally high score.

Observation 2: A responsive agent fares less well than a deliberative agent when

both agents start with an average set of issues.

Conclusion 1: An agent who specifies an initial set of issues more favourable to it,

will gain more in the end, even when conceding.

Conclusion 2: The initial preferences influence the concession rate of an agent.

Observation 3: When the two agents have similar preferences as in row 5, the

overall score is higher.

Conclusion 3: Hypothesis 5a is supported.

Observation 4: In row 3, the seller starts with a low set of values and a rejection

happens.

Conclusion 4: A rejection is possible when one deliberative agent starts with an

unfavourable set of issues while the other deliberative agent starts with a

favourable set. The latter agent receiving an acceptable proposal early stops

conceding and trades off instead.

Observation 5: From row 2 and 5, the buyer achieves more.

Conclusion 5: If both agents start with average sets, then the agent receiving the

first acceptable proposal achieves the better score. Once it reaches its acceptable

region, that agent stop conceding and uses tradeoffs mechanisms.

 343

Practical Agents

Conclusions from case 5:

- It pays more for an agent to start with a favourable set of issues than with an

average set.

- The agent that receives the first acceptable proposal stops concedes and

ends up gaining more.

8.7.6 Conclusions from Simulation

Different test cases are studied between two agents with different strategies,

varying deadlines, set of issues and inputs. The preferences of an agent play a

significant role in determining its final gain in a negotiation. Agents that declare

initial set of issues favourable to them gain more.

A deliberative agent usually achieves more when its deadline is reasonable. A

responsive agent achieves less but is faster in reaching an agreement.

Deliberative agents knowing each other’s preferences lead to the best solutions.

In practice, competitive agents do not know their opponent’s utilities. When an

agent does not know its opponent’s preferences, wrong assumptions give rise to

poor performance and possibly no agreement. For a reasonable deal, it is better

for an agent to assign equal weights to the issues in its list opp_weight rather than

random weights.

The performance of an agent is sensitive to its deadline and can be prone to

exploitation by its opponents. A deliberative agent can observe its opponent’s

behaviour. It can understand its opponent’s concession rate and its preferences

over a set of issues. An agent may then be able to predict its opponent’s next

action according to the protocol and history. This leads to a planning capacity in

an agent where a partial or full path of actions towards a favourable goal can be

predicted. An agent may choose a next action with a lower score but eventually

leading to a more favourable agreement. As such the responsive and deliberative

mechanisms are just one-step decision-making strategies, considering only the

next action that will bring the highest score. Planning usually involves reasoning

about two or more steps in the future. Although planning requires more

computation and time, it can offer a better overall gain. The next sections

consider path finding and planning agents.

 344

Practical Agents

8.8 Planning Agents

Agents can be endowed with AI techniques, such as search algorithms, for

determining the sequence of actions in solving a problem, [Yokoo and Ishida

1999; Poole and al. 1998]. A set of potential partial solutions to a problem can be

found. Search algorithms are used in resolving constraint satisfaction problems

(definition of a possible solution), path-finding (a method of generating possible

solutions) and game theoretic problems. Path-finding problems involve finding a

set of moves from a source state to a goal state. Constraint satisfaction problems

(CSP) require finding a goal configuration where as game theoretic problems

(two-player games) deal with competitive scenarios. Game theory unrealistically

tends to assume complete information or beliefs about an opponent’s strategies.

In standard search algorithms, an agent requires its global beliefs about a problem

to perform each sequential step. This is not applicable when an agent has limited

computational rationality and resources.

A plan may be regarded as an (partially or not) ordered set of paths, where the set

is dynamically constructed and updated as a negotiation progresses. A planner is

a problem solver that can produce plans (sequences of actions) to achieve some

goal, [Poole and al. 1998]. The input to a planner is an initial world description,

a protocol, a goal and strategies and the planner find a sequence of actions that

will transform an initial world into one in which the goal is achieved. Forward

planning, [Bacchus and Kabanza 1996], may be reduced to a path-finding

problem and can use heuristic search strategies as in section 8.9.2. Backward

planning involves backward chaining from a goal. The STRIPS planner, [Fikes

and Nilsson 1971], regression, [Waldinger 1977], and partial order planning,

[Weld 1994], aim for a smaller search space by considering only those actions that

achieve a goal. In the STRIPS planner, sub-goals are ordered in case they become

undone. Ordering is not always possible and re-achieving sub-goals wastes effort.

A regression planner addresses the problem of interacting goals by keeping track

of all the sub-goals. A partial-order planner only commits to ordering between

actions when needed. A partial-order plan is a set of actions and their

preconditions in a partial ordering showing precedence of actions.

 345

Practical Agents

The logical theory of a protocol may be considered as a directed state-space graph

where a node is a state of negotiation, an edge is an atomic action and a path is a

process. Search algorithms may be used to find a path towards a goal state. The

following sections discuss planning from an ANML protocol through reasoning

about the set of possible paths to a state.

8.8.1 The Tasks of a Shopping Scenario

Consider a shopping process between a retailer and a consumer. One can

envisage a simple retail agent as seeking to maximise a long term profitability

goal by wise buying, efficient distribution and stock management, and successful

sales. In contrast, the goals of a retail customer are more subtle, involving, say

maintenance of a personally adequate supply of garments, foods, or other

consumables, through purchase within a fixed budget. The joint shopping process

is illustrated in Figure 8.2 by an incomplete hierarchical JSD diagram [Jackson

1975], where task sequencing is left to right, iteration is loosely indicated by the

symbol *, and shading distinguishes the activities of different or joint agents.

Note that at the lowest level each task is attributed to a single agent, but it is not

yet necessarily atomic.

make
transaction

choose
purchase

Display
goods

shopping*

delivery payment agree price
and

availability

pay by
chosen mode

accept
payment

mode

offer payment
mode

*
*

*

retailer

customer

joint

Figure 8.2 Shopping process between a retailer and a customer in JSD

The shopping process is a joint process which can be decomposed into abstract

parts done by either one agent or both agents at a time. First the retail agent

displays the goods being offered, perhaps in the form of a catalogue or an event

sent on an event channel to broadcast what is proposed. The customer then

 346

Practical Agents

browses through the offers and chooses what he/she wants to purchase. At this

stage there has not been any interaction between the two agents except for the

sequencing itself, and synchronising this is a suppressed detail. The process of

making a transaction will embody greater interaction between the two agents. In

Figure 8.2, the make transaction joint process has been broken down into three

joint processes. These three processes can themselves be further broken down

into sequential actions done jointly by the two agents or by a single agent. The

illustrated decomposition is by no means definite and is just one of many possible

decompositions. The hierarchical shopping task as a joint process in ANML is as

follows:

(retailer » customer).shopping = (r:retailer.display_goods;

c:customer.choose_purchase; {r , c}.make_transaction)*

{r : retailer , c : customer }. make_transaction = {r , c}.

(agree_price_and_availability ; payment ; delivery)

The first composition expresses the shopping process as a joint process between a

retailer and a customer agent and consists of three sequential processes: the

retailer display goods, the customer choose purchase and the joint

make_transaction process. Although a faithful representation of the joint

processes is implicit in the JSD diagram, it is an idealisation which ignores

abnormal termination, such as when the customer makes no choice.

8.8.2 Joint States of the Shopping Process

The effects of the actions of the agents on the states of the shopping process can

be represented them in a statechart, as a dual of Figure 8.2. Abnormal transitions

can now be portrayed. Whereas Figure 8.2 represents joint tasks and process

hierarchy, Figure 8.3 illustrates the hierarchy of joint states for the shopping

process linked by the abstract display goods, choose purchase and make_

transaction tasks, [Cunningham and Paurobally 1999].

 347

Practical Agents

 c.choose transact
 c.no_ reject
 choice

 open_transaction closed_trans.

shopping restart

browsed chosen delivered

r.display

rejected

c.browse

displayed

on_show

Figure 8.3 First Level State Transition Diagram of the Shopping Process

In Figure 8.3, the parent state on_show is the overall state. The shopping sub-

state is entered by the customer browsing. The sub-states of shopping are the

states open_transaction and closed_transaction. The states rejected and delivered

are terminal sub-states that may be the sub-goals of an agent. Planning can lead to

these goals and sub-goals. The on_show state is entered by the retailer making a

display, leading to the displayed state. Then, the entrance of a customer through

browsing leads to an open_transaction. Various state transitions change the sub-

states of open_transaction and eventually terminate in a closed_transaction state.

From the closed_transaction state, a customer or a retailer can restart a

transaction. The process transact (make_transaction in Figure 8.2) may be a

bilateral negotiation over the price, availability, the mode of payment and the

delivery.

Each state in Figure 8.3 implies a partial state of affairs at an agent’s side. For

example, the displayed state infers a retailer having certain goods for sale.

Similarly the chosen state of the shopping process implies a need of a customer

and its monetary state. So the state transition diagram in Figure 8.3 represents the

joint states of the shopping process but implies states of the involved agents.

Theory 8.10 is a protocol in ANML for the shopping interaction in Figure 8.3

between a consumer, c, and a retailer, r.

shopping ¨ one_of ([open_transaction, closed_transaction])

closed_transaction ¨ one_of ([delivered , rejected])

open_transaction ¨ one_of ([browsed, chosen])

 348

Practical Agents

on_show ¨ one_of ([displayed, shopping])

¬shopping ¨ none_of ([open_transaction, closed_transaction])

¬closed_transaction ¨ none_of ([delivered , rejected])

¬open_transaction ¨ none_of ([browsed, chosen])

¬on_show ¨ none_of ([displayed, shopping])

¬on_show ¨ [r.display] displayed (1)

displayed ¨ [c.browse] browsed (2)

browsed ¨ [c.no_choice] rejected ¤ [c.choose] chosen (3)

chosen ¨ [r.reject » c.reject] rejected ¤ [{r , c}.transact] delivered (4)

closed_transaction ¨ [r.restart » c.restart] open_transaction (5)

Theory 8.10 Protocol for a Shopping Interaction

8.8.3 The Paths of the Shopping Process

The ANML theory of the shopping process may be considered as a graph.

Condition (1) gives the entry edges and conditions (2), (3), (4) and (5) are the

internal edges of the graph. The states rejected and delivered are the end nodes.

The delivered state may be a goal. Paths from an entry node to the goal node are

derived. To do so, the ‘?’ operator is used to test whether a path to a certain state

is possible and to check if that goal state holds. A path to a state consists of

processes leading to that state. For example the paths to an open_transaction state

are the union of the following sets of paths:

• the customer entering the open_transaction through a browse action

• paths to the closed_transaction state following by the action of either the

customer or the retailer restarting the transaction.

• paths to the chosen state

The paths to the closed_transaction state are inferred and may include the paths to

an agent’s goal. Let p0 be paths to open_transaction and pc be paths to

closed_transaction. The paths p0 and pc can be derived from Theory 8.10.

p0 = pc ; restart » ((Ÿ on_show)?; r.display ; c.browse) (6)

pc = p0 ; ((chosen ?; {c, r}. transact » reject) » (browsed ?; (c.choose;

({c, r}. transact » reject)) » c.no_choice)) (7)

 349

Practical Agents

Eliminating p0 in (7) by substitution gives:

pc = (pc ; restart » ((Ÿ shopping)?; r.display ; c.browse)) ; ((chosen ?; {c,

r}. transact » reject) » (browsed?; (c.choose ; ({c, r}.transact » reject) »

c.no_choice)) (8)

Let the path entries = (Ÿ on_show)?; r.display ; c.browse and the path exits = (

chosen ?; {c, r}.transact » reject) » (browsed ?; c.choose ; ({c, r}.transact »

reject) » c.no_choice). From (8), we can derive

pc = (pc ; restart ; exits) » (entries; exits), whence: (9)

pc = (entries ; exits) » (restart ; exits)* (10)

A path to the closed_transaction state consists of entry to the open_transaction

state followed by exit paths from that state with optional reiterations by restarting

the transaction followed by exit paths. The recursive path equation (9) is solved

as (10) in the regular algebra of paths, when viewing the logical theory of a

protocol as a graph, by postulating the inference rule (x = (x ; A) » B) fl (x = B;

A*). See [Backhouse and Carre 1973].

8.9 Finding Paths and Assigning Utilities

Negotiating agents can use the theories of protocols as inference engines in order

to plan for a goal. From the ANML specification of a protocol, an abstract rule

for a negotiation towards a path can emerge. For example, in the bilateral

protocol, where the most abstract state is negotiating, let the abstract process,

negotiate represent all the paths leading to a closed state of negotiation from a

non-started negotiation. The axiom ¬negotiating ¨ [negotiate] closed holds in a

bilateral negotiation.

The negotiate process contains all sub-paths that two agents can follow so as to

reach their goal state. A goal-directed agent uses a sub-path of the process

negotiate such that from an open state, an agreed state that satisfies their goal is

reached. The formula $p:path <open?; p>agreed asserts that from an open state,

there is a path p leading to the agreed state, a possible outcome of negotiate. The

 350

Practical Agents

paths may themselves be represented as ANML processes, inferred from the

protocol, or may form part of the library of an agent’s plans of actions. A rational

agent will seek to derive a path that will lead it to an agreed state. An abstract

negotiating state like agreed has significance for an agent because the agreed state

represents a sub-goal of the agent, moving it closer to its greater goal.

Referring to the shopping process in section 8.8.2, the stages of offering and

accepting a payment mode can follow a bilateral protocol. The retailer and

customer follow a path in the abstract process negotiate. An example of a

possible path for the joint process {r:retailer,c:customer}.negotiate_payment is:

r.propose_mode; (c.request_mode ;(r.propose_mode ; c.request_mode)* ;

r.offer_mode)§1 ; (c.accept_mode | c.reject_mode).

A protocol in ANML can be used as an inference engine to derive a valid

sequence of actions from any source state to a target (not only a terminal) state i.e.

a valid path. As an example of path derivation from the bilateral protocol, a

sequence of actions can be derived leading from a requested(Y) state to an

agreement between agents X and Y. For clarity, we give those rules of the

bilateral protocol that are used for the derivation of the path preq-agree, where

requested(Y) → [preq-agree]agreed.

proposed(X) → offered(X) (1)

requested(X)↔ [Y.offer] (offered(Y) ⁄ ¬proposed(X)) ¤

[Y.propose]proposed(Y) ¤ [Y.suggest] requested(Y) ⁄ Ÿ(X= Y). (2)

offered(X) ↔ [Y.agree] agreed(Y) ⁄ Ÿ(X= Y). (3)

proposed(X)) ↔ [Y.request] requested(Y) ⁄ Ÿ(X=Y). (4)

From rules (2) then (3), a possible path for agent X is requested(Y)?; X.offer;

Y.agree

Applying rules (2), (2), (4), (4), (1) and (3) consecutively, another path preq-agree is

requested(Y)?; X.suggest; Y.propose; X.request; Y.propose; X.agree

 351

Practical Agents

The ‘*’ operator can be used in a path for repetitive actions. For example let A be

either agents X or Y in the following path:

requested(Y)?; iterative-suggestions ; (iterative-proposals » A.offer);A.agree

iterative-suggestions = (X.suggest; Y.suggest » Y.suggest; X.suggest)*

iterative-proposals = ((X.propose; Y.request; iterative-suggestions) »

(Y.propose; X.request; iterative-suggestions))*

Consider a general aspect where a protocol can be used to find a path towards a

state. Let the state, outermost-state, denote the overall parent state in a protocol

e.g. negotiating in the bilateral protocol. All states are sub-states of the state

outermost-state. Let all terminal states be sub-states of the terminal state closed in

that protocol. If the protocol satisfies the termination property, then all paths are

equal to or a sub-path of the path all-possible-paths where the formula

¬outermost-state ↔ [all-possible-paths] closed hold for that protocol. This rule is

used for proving termination in a protocol.

If an agent has a goal goalx, then its goal is achievable from the current state statex

if $ px:path < statex?; px > goalx. Goal goalx is possible from statex if there is a

path px from statex to goalx. For example, in an English auction, when statex is

auctioned and goalx is sold, px denotes a possible path from the auctioned state to

the sold state in the formula $px:path <auctioned?; px>sold.

8.9.1 Utility of Paths

Although, each agent has its own goal – to make a profit and to buy a service at a

certain price respectively – when making a transaction, two agents will negotiate

and converge to some final set of values that satisfies both goals, as in section 8.3.

A rational agent will not only seek to achieve its goal of finding an agreed

negotiation state. It will also try to achieve such a goal in a manner that will be

most cost effective for it, so will negotiate with the sub-goal of closing the

negotiation in an agreed state at the minimum cost. If the utility of a goal is

defined as the difference between the worth of the goal and the cost of attaining

the goal, and suppose that the worth to be the maximum cost that an agent is

 352

Practical Agents

willing to pay to achieve its goal, each agent may have a partially ordered set of

goal utility values. Different agents can have differing utility orderings and mutual

beliefs of each other’s utility values may be incomplete. The agent goal may have

the maximum utility, but its decisions can only be based on estimates of how to

achieve this.

Earlier sections have studied an agent evaluating a set of issues and generating its

response. An agent has to comply with the negotiation protocol and the external

and internal constraints of the environment. An ANML protocol allows an agent

to find a set of paths towards its goal. Therefore one step strategies can be

extrapolated to plans of actions.

A path can be expressed in terms of other paths and sub-paths using ANML

operators. An agent has to choose between the possible paths depending on its

goals and preferences. The cost of a goal may be a fixed cost of the path to get to

that goal or some estimated cost from a heuristic or statistical scheme. In order to

choose between paths, build a plan of action, and eventually make its response, an

agent can use assignments of estimated utility for each element of a path, then use

some computational rationale to compose utility or estimated utility. A predicted

set of possible paths can be ordered according to their utilities. For example, for a

optimal choice of single path:

• utility(path to state_a) is utility(state_a) if path to state_a does not consist of

subpaths

• utility(path_a ; path_b) is utility(path_a) + utility(path_b).

• utility(path_a » path_b) is maximum (utility(path_a) , utility (path_b)).

• utility(e), the null path, is utility of value 0.

• utility(f), the empty set of paths, is utility of value - ∞.

• utility(a*) is maximum (0 , utility(a) + utility(a*)).

In such an idealised case, a full worth is assigned to desired (goal) states and zero

worth to unsuccessful terminal states such as rejected in a shopping process. It

may also be required that the cost of each transition to be positive in order that the

utility of a loop is ultimately negative. However the actual cost of a transition

 353

Practical Agents

such as transact will include the price of the chosen goods, which depends on

successful choice, while the success of the transact sub-negotiation may depend

on this choice and the strategy of the retailer. Thus more realistic computations

must replace the third and sixth utility axioms above by probability estimates for a

set of paths, for example, the estimated utility of a set of terminating paths starting

with c.browse and ending in a closed transaction, and thus incur more complex

computations for statistical estimation.

An agent must thus have a library of negotiation plans, each providing a set of

paths that enable it to interact with and respond to other agents with the aim of

satisfying its goals. These plans may reflect the agent’s individual beliefs about

utility, the common beliefs of the agents about negotiation paths and estimates of

the beliefs or behaviour of other agents.

8.9.2 A Discussion about Search Strategies for Path-finding

A search algorithm essentially consists of incrementally exploring paths from start

nodes to goal nodes. A frontier between explored and yet to be explored nodes is

maintained, where a search expands the frontier into the unexplored part of a

graph. Search strategies determine the way in which the frontier is expanded and

a graph is explored for possible paths. Traditional path finding may assign a cost

with an arc or path of a graph. A negotiation can include can be the cost of

performing a process or the cost (or worth/utility) of carrying out a goal. The cost

of interacting is assumed to be negligible compared to the worth of a goal, which

can influence path-finding strategies. See [Poole and al. 1998] and [Yokoo and

Ishida 1999] for various search strategies and their time and space complexity.

Blind search strategies do not consider where the goal is and report success when

they unintentionally find it. Examples of blind search strategies are depth-first

strategies, breadth-first strategy, lowest-cost-first strategies. Their time and space

complexity can rise exponentially with the risk of non-termination through infinite

paths and cycles.

Heuristic search strategies expand those nodes that are the most promising for

reaching a goal. A heuristic function h(n) is an estimate of the path length from a

 354

Practical Agents

node n. There is a trade-off between the amount of work for deriving a heuristic

value for a node and how accurately the heuristic value mirrors the actual path

length, [Poole and al. 1998]. A heuristic function provides information about

which neighbour of a node may lead to a goal. Examples of heuristic search

algorithms are best-first search, heuristic depth-first search, A* search.

A* uses lowest-cost-first and best-first searches to consider both the current path

cost and heuristic values in selecting the next node. For each path on the frontier,

A* uses an estimate of the total path length from a start node to a goal node along

that path. If g(n) is the cost (or length) of the path from a start node to node n, and

h(n) is an estimated path length from node n to the goal, then the total path cost

from a source node (state) to a goal node (state) via n is f(n) = g(n) + h(n). The

next neighbouring node with the lowest f(n) is chosen for expansion. A* search

always find a path and the first path found is optimal given finite branching and

bounded costs. A* search may be exponential in space and time.

Search strategies can be refined so as to reduce the search space, computation and

time or to find the shortest path. For example, explicit cycle checking methods or

multiple path pruning that do not explore neighbours that are already in the visited

nodes so far avoid infinite paths and cycles. A* search may use iterative

deepening (IDA*) where the search is bound by f(n) instead of depth.

To counter the exponential complexity of searching, search strategies can be

enhanced with informed and intelligent methods to reduce space and time costs.

The direction of search means whether starting from a source node to a goal or

vice versa. In some situations the goal is not known and so restricts using

backward search. Bi-directional search aims to reduce the search space by

simultaneously searching forward from a source node and backward from a goal.

A path is obtained when the two search frontiers intersect. Possible intersections

between forward and backward search are considered as islands in the search

graph. They are constrained to be on the path being searched for. The search

problem is then decomposed into finding subsets of the path. However searching

through a large space of possible islands may complicate the search. This

decomposition relates to distributed problem solving or planning where partial or

 355

Practical Agents

abstract paths may be searched in the first instance before concentrating on

detailed paths. Useful path decompositions or abstractions are required. There

are other variants that can be used for optimisation of search strategies such as

dynamic programming, hill climbing, simulated annealing, beam search and

genetic algorithms.

In bilateral negotiations, two-player game strategies can be combined with

heuristic search techniques for finding a set of possible paths. It is

computationally expensive to generate a complete game tree for a complicated

game. Game strategies for pruning the search space include the minimax and

alpha-beta pruning procedure. In minimax strategy, [Shannon 1950], a player

favours the move that will maximise its gain and minimise its opponent’s gain.

The evaluation value of each node, from the root node, can be defined recursively

in terms of its child nodes. Alpha-beta pruning, [Knuth and Moore 1975], prunes

out those branches that are not going to be visited in any case and saves

computation in expanding them. See [Pearl 1984] and [Korf 1988] for more about

path-finding, search strategies and two-player games.

8.9.3 The mental state of a planning agent

An agent can use its beliefs about the environment, its opponents, the negotiation

and the mutual beliefs of a group to construct possible paths and to order and to

choose between them for planning purposes. Chapter 7 provides some possible

individual and mutual beliefs and knowledge of an agent that can help in its

planning.

An agent may assign utilities to the possible paths, as in section 8.9.1, to obtain an

ordered set of paths. Likewise, plans may be stored as an ordered set of predicted

actions from a source state to a current state. Plans and the values assigned to

them dynamically changes depending on the progress of a negotiation. An agent

can then rate its plans for choosing which one to follow. The utility of a plan may

depend on both its worth and the cost of carrying out the plan. For example, an

agent may store information about its plans as follows:

{((request;propose;request; request; …;offer), 10), ((request; …;offer), 12),

….., (plani , utilityi , probabilityi), ….}

 356

Practical Agents

 357

The probability of a plan succeeding may be analysed according to a time frame,

an agent’s resources or an opponent’s behaviour. Choosing a plan can reuse one-

step decision making strategies where an agent concedes more as time elapses or

resources gets scarce. At the beginning, an agent chooses a plan with high utility.

During negotiation, if the agent faces significant risk of failure and losing out, it

becomes more willing to choose plans of lesser utility but with more chance of

succeeding.

There are uncertainties and risks in the outcomes when an agent has insufficient

knowledge. Probability theory can be defined as the study of how knowledge

affects belief, [Poole and al. 1998]. Possible worlds can be assigned with the

probability of how likely the true state of affairs corresponds to a possible world.

Reasoning under uncertainty involves an agent estimating what is most likely to

happen and what may happen i.e. the probability of desired and undesired

outcomes and the tradeoffs between them in choosing a path. Decision theory

includes techniques for calculating the tradeoffs between the desirability of

outcomes from sequences of actions related to the probability of the outcomes.

8.10 Summary

This chapter shows how to combine a protocol with strategies for a negotiation.

One-step decision-making strategies are adapted for use with the bilateral protocol

to evaluate and generate a set of issues and a state-triggering action. The

behaviours and gains of an agent are analysed according to varying strategies.

Path-finding and planning mechanisms are also discussed in the context of

automated negotiation. Asymmetric and multiple-issue negotiations are assumed.

However a multiple-issue negotiation can lead to an exponential growth in

computation space and time. The attributes themselves need to be agreed upon.

9 Conclusion and Further Work

9.1 Summary

This thesis has addressed the need for precisely specifying and validating protocols

and their properties, for negotiation between rational agents.

Automated negotiation saves time and cost, while exhibiting continuous, complex and

dynamic problem-solving capabilities. A key aspect in automated negotiation is the

rich interaction between agents, facilitated by languages, protocols, content languages

and ontologies. Although protocols have become part of many multi-agent

infrastructures, there is still a lack of methodologies for formalised protocol

specification. Most of the methodologies used for this purpose, such as state

transition diagrams, statecharts and AUML, are informal notations that are unsuitable

for expressing agent interactions. This thesis shows that protocols expressed in them

are prone to errors and ambiguities. In fact it argues that such methodologies are not

expressive enough to fully represent open and dynamic multi-agent interactions. Thus

more work is needed on the formal aspect of specifying protocols to facilitate the

sharing and use of conversation policies by agents.

For a formalisation of interaction protocols and negotiation, this thesis related the

processes in a negotiation to its states. It is difficult to a find notation where processes

and states are given equal status, let alone form the basis for a simple and rational

calculus for an executable system. There is no established notation to represent both

the states and processes of an active agent, or a calculus for deciding why a particular

negotiation should achieve the mutual goals. A suitably rich logic with action terms

and variables appears capable of a practical reasoning system which can relate

processes to goal states. Towards this end, the syntax and semantics of a meta-

358

Conclusion and Further Work

language, called ANML, were specified based on extended propositional dynamic

logic for representing and reasoning about agent interaction protocols. In ANML the

state of a negotiation is related to the negotiation’s sub-processes where that state is

believed by a group of agents who propose state transitions. Being multi-modal,

ANML inherits the properties of the PDL system. In addition the axioms and

inference rules holding by virtue of ANML-specific connectors are defined.

Applications of ANML for fully and concisely specifying various negotiation

protocols such as bilateral, multi-lateral, auctioning and promissory protocols were

given. Interaction protocols were also be verified to avoid misunderstandings and

ambiguities between participants. Protocols proposed in state charts and AUML were

verified and the errors, incompleteness and ambiguities in them discussed. Each

verified protocol was accompanied with a corrected version in ANML.

In addition to correctness, a protocol may be specified and analysed to exhibit

desirable properties such as safety and liveness. These properties can be used to

compare and choose between protocols. A number of safety and liveness properties

were defined in ANML and proofs for them provided for the bilateral protocol.

Another aspect investigated in this thesis concerns the consistency of joint knowledge

and beliefs between interacting agents. The assumptions and conditions for ensuring

such consistency were given and proved in two cases – firstly in ensuring the

consistency of joint knowledge in a group when the participants share and

individually extend a protocol, and secondly for ensuring that a group of agents

synchronously attains shared beliefs about the negotiation state, in an imperfect

communication medium.

Finally a description of how goal-seeking agents can combine strategies with a

protocol for a successful negotiation was discussed. Two strategies, deliberative and

responsive, were adapted for one-step decision making in a bilateral negotiation and

the results of the simulation analysed. The thesis also discussed how planning

capacity in agents emerges from applying AI techniques such as path-finding,

heuristic search or game theory to the state-space graph of a protocol.

 359

Conclusion and Further Work

9.2 Further Research

An extended formal analysis of the properties of the ANML formalism, such as

consistency, completeness, soundness and decidability, and its implication represents

an interesting avenue for further work: theorem proving methods are useful for

conducting such analysis. It may be possible to translate ANML into a higher order

logic and thereby exhibit the soundness property. Theorem proving also facilitates

mechanisation of verifying the ANML theory of a protocol and its properties.

An interaction protocol can exhibit properties other than safety, liveness and those

analysed in this thesis, for example game theoretic properties. Game theoretic

properties may influence the private strategies of an agent and encourage behaviours

like sincerity, social welfare, Pareto efficient, equilibrium and stable solutions.

Protocols can be represented using Petri nets, but such methodology does not support

breaking a protocol into sub-protocols. In ANML, hierarchical states allow

abstraction and nesting of protocols. Protocols expressed in other notations could also

have been verified and the relation between µ-calculus, model-checking and ANML

further investigated.

In synchronising the beliefs between agents about the state of a negotiation, rules of

message exchanges and beliefs revision are given for a faulty communication

medium. It is assumed that a message eventually gets through after persistent

sending. Timeouts need to be incorporated in the solution to capture the case when an

agent crashes or gives up.

A simulation on a larger scale and according to different negotiation protocols would

allow exploring in more detail behaviours of agent in maximising gains. Adaptive

protocols and strategies would be useful in dynamic, open environments and allow

planning.

ANML and the theory of a protocol are based on multi-modal logic. These may not

be understood by a non-logically inclined user who would prefer a graphical notation

 360

Conclusion and Further Work

such as AUML or statecharts. An improvement would be to make ANML accessible

to a non-formal user.

9.2.1 Further Developments in Related Areas

This section presents multiple research areas where ANML can be applied to,

extended for or contribute to.

ANML could be rendered more expressive depending on the domain or application

under study. For example, the intersection operator could be added to express

concurrent processes. As such ANML is found to be expressive enough to model m-n

agent interactions.

The semantics of protocols represent an interesting area of future work. This includes

exploring the roles of an agent and the meaning of a particular state and process name.

States can embody different levels of commitment such as the state requested

compared with agreed. Negotiation could help in sharing common ontologies

between societies of agents.

The individual states of involved agents, instead of a negotiation state, and the

changes in their states as a negotiation progresses could be investigated. A high-level

view may enable modeling changes in an agent’s individual state, thereby addressing

concurrency issues and how to construct interaction protocols.

Interaction protocols need not be rigorous in their enforcement. Adaptive protocols

are desired in a dynamic and open environment. Planning of protocols allows

constructing more flexible protocols or interactions from the goals of a group of

agents.

Different phases in an electronic transaction involve service brokerage, navigation,

selection, negotiation, payment and customer retention. The relation between

negotiation and these phases could be investigated. There is scope for specifying an

abstract theory of a negotiation and extend phases before and after a negotiation for

learning a user’s preferences, setting up an interaction and executing commitments

and engagements. Learning helps an agent to adapt its behaviour in a dynamic

 361

Conclusion and Further Work

 362

environment. An agent can learn about its opponents, its user’s preferences and adapt

a protocol and strategies for changes in the environment. Experience about past and

parallel negotiations could influence decision making. How interactions are

characterised in terms of resources change, exchange, production, consumption and

market mechanisms can be investigated.

Dialogues and argumentation could be used to design richer protocols of interaction.

These may resolve conflicts in multi-agent systems. Agents could justify and

persuade their opponents about their points of view and reach compromises that

would not have been obvious when complying with an inflexible protocol. A protocol

in ANML could be extended to include arguments such as threats, promises,

explanations, querying and appeals.

The set of issues in a negotiation may be vague because the product is difficult to

specify or the participants are unsure about their preferences. An agent does not know

exactly what is a good deal and the acceptability range if any is dynamic. The relative

importance of the attributes is not fixed at the start. Therefore there is scope for

further work on the uncertainty aspect of a negotiation.

Other possibilities for further work relate to current issues in the agent oriented field

such as establishing trust and enforcing sincerity of opponents. Practical aspects for

executing a negotiation could include extending ANML protocols for more than just

negotiation, for example for tasks-accomplishment, coorperation, coordination

techniques or dialoguing in a team.

Negotiation is pervasive to real-world and electronic interactions. Currently our work

is being applied to investigate service negotiation between agents located on mobile

communication devices. Mobile communications involve low bandwidth, latency and

loss of performance, providing a realistic setting in analysing the consistency of the

joint beliefs of a group.

Appendix A – Normal Modal System

A.1 Syntax of Modal Logic

This appendix gives the semantics of modal and multi-modal systems and the rules and properties of a

normal modal system. It may be used as a complement to chapter 3 where the meta-language ANML

is specified. The rules and axioms of a normal modal system also apply in ANML.

Modal logic is the logic of necessity and possibility. Necessity is what is true at every possible world

and possibility is what is true at some possible world. The syntax of propositional modal logic is as

follows:

Atomic formulae: p e φ

Formulae: A e Fma(φ)

 A ::= p | ^ | A1 → A2 | �A

Other connectives include the propositional logic operators (negation, disjunction, conjunction,

equivalence, True) and ‡. The formula ‡A is equivalent to ¬ �¬A. If the formula A is possible, then it

is not the case that ¬A holds in all accessible worlds.

Kripke was concerned with giving precise meaning to modalities of necessity and possibility. The

truthfulness of a proposition depends on all truth assignments deemed possible and not only on one

single truth assignment as in classical logic. Kripke, [Kripke 1963], characterised a proposition as

being necessarily true if it holds in every possible world, while a proposition is possibly true if it holds

in some possible world. The possible worlds are accessible through a binary relation from the current

world, called an accessibility relation. Hintikka, [Hintikka 1969], proposed multiple accessibility

relations, where each relation is attributed to a specific agent or world. This allows personal belief or

knowledge if the relation is reflexive. A sentence �A is true if and only if A is true at every possible

world. Sentence ‡A is true if A is true at some possible world.

363

Appendix A

A.2 Semantics of Modal Languages

A standard model is a structure M = (W, R, V). Worlds is a set of possible worlds in that model. V

represents an assignment of sets of possible worlds to atomic sentences i.e. the possible worlds where a

formula holds, as an interpretation of the model. V: p → Pow(W) is a function with propositions, φ, as

domain and powerset of W, Pow(W), as range. V tells us at which worlds (if any) each propositional

symbol is true.

M, w p iff w ∈ V(p) , p ∈ PROP

R is a binary relation on W, (R Œ W µ W). R is an accessibility relation between 2 worlds and is defined

by the modality in the language. World w1 is accessible to world w2 means that w2 is possible relative

to world w1 through the relation R. An accessibility relation associates the world where a modal

formula holds to a possible world in the model. A modality holds in world w1 if the consequence of

that modality holds in other accessible worlds such as w2, which is possible relative to w1.

The truth conditions of modal formulas use the relation R of relative possibility where �A is true at w1

if and only if A is true at every world w2 that is possible relative to w1. The truth at every or some

possible world relative to the given world is used to define a modality.

M, w1 ╞ �A iff for every w2 in M such that w1 R w2 , M, w2╞ A

M, w1 ╞ Ì A iff for some w2 in M such that w1 R w2 , M, w2╞ A

Relations can be any sort of binary relation on Worlds; no assumption is made concerning its content or

structure. Therefore we can define the modalities in a multi-modal language through accessibility

relations.

Let ξ or ξ denote provability in the modal system ξ. Let M and N be models of ξ. M, w j where

w ∈ W means that j is satisfied in M at world w i.e. w ∈ V(j). M is a model for j, M j iff "ww∈W

(M, w j). M is a model for a set of formulae Γ, M Γ iff "jj∈Γ (M j). j is satisfiable if $M, w

(M, w j). j is valid (j) if "M (M j). Models M and N are modally equivalent (over a modal

language L), if "jj∈L (M j iff N j). M and N are isomorphic (M = N) if they are copies of the same

model.

A.2.1 Multi-Modal Semantics

Given a set of modality labels MOD, the set of well-formed formulas j of the multimodal language

over propositions φ and MOD is

 j::= p | ¬j | j ⁄ y | j ¤ y | j → y| <a> j | [a] j

for all p œ f and a œ MOD. A Kripke model M is a triple (W, {Ra | a ∈ MOD}, V). W is a non-empty

set of states or worlds, Ra is a binary relation on W with modality a, and V is a valuation function with

 364

Appendix A

domain propositions f and range powerset of W. V tells us at which states each propositional symbol is

true.

M, w [a] A iff "w1 (w Ra w1 → M, w1 A)

M, w <a> A iff $w1 (w Ra w1 and M, w1 A)

A.2.2 Propositional Dynamic Logic

The syntax of PDL programs denoted by a is a ::= π | a1 ; a2 | a1 » a2 | a* | A?

A model for propositional dynamic logic is a structure of the form, M = (Worlds, {Ra: a ∈ Prog(φ, P

)}, V). Ra is a binary relation on Worlds for each program a, and M, s ╞ [a] A iff sRat implies M, t╞ A

where s and t ∈ Worlds. The relation, Ra, between two worlds, s and t, reflect the intended meanings of

program a, which can itself consist atomic sub-programs. In world s, [a]A is true iff A holds in all

possible worlds t, related to s via Ra . Program a is executed to change from state s to state t. A model

M is defined to be standard if it satisfies the following conditions:

Ra; b = Ra È Rb = {(s, t, u) ∈ Worlds: ∃u(s Rau & u Rb t)}

 Ra»b = Ra » Rb

 RA? = {(w, w) ∈ W: M, w ╞ A}

Ra* = Ra ; a* = (Ra)* = ancestral of Ra

A.3 Axioms for Normal Systems of Modal Logic

ANML encompasses the following axioms and rules for PDL and normal systems in modal logic.

 <α>(β ¤ δ) ↔ <α>β ¤ <α>δ

[α](β ¤ δ) ↔ [α]β ¤ [α]δ

 [α](β ⁄ δ) ↔ [α]β ⁄ [α]δ

 <α>(β ⁄ δ) ↔ <α>β ⁄ <α>δ

 <α>β ⁄ [α] ↔ <α>(β ¤ δ)

 [α](β → δ) → ([α]β → [α]δ)

Monotonicity of <α>
ba

ba
>→<><

→
αα

Monotonicity of [α]
ba

ba
][][αα →

→

A.3.1 Axioms in PDL

 <α»β> δ ↔ <α>δ ¤ <β>δ

[α»β] δ ↔ [α]δ ⁄ [β]δ

<α;β> δ ↔ <α><β>δ

[α;β] δ ↔ [α][β]δ

 365

Appendix A

<α?>β ↔ (α⁄β)

[α?]β ↔ (α→ β)

[α*]β → β

β → <α*>β

[α*]β → [α] β

<α*>β ↔ <α> β

[α*]β ↔ [α*α*] β

<α*>β ↔ <α*α*> β

[α*]β ↔ [α**] β

<α*>β ↔ <α**> β

[α*]β ↔ β⁄ [α][α*] β

<α*>β ↔ β¤ <α><α*> β

[α*]β ↔ β⁄ [α*] (β → [α]β)

<α*>β ↔ β¤ <α*> (¬β ⁄ <α>β)

A.4 Rules of Inference in a modal system

The rules of inference below apply in normal system in multi-modal logic over Fma(φ, w). Let

formulae A, B ∈ Fma(φ, w), processes a, β, ρ ∈ Proc(φ, w) and S a normal logic system in Fma(φ, w).

• Modal axiom DfÌ (definition of Ì)

DfÌ <a>A ↔ ¬([a]¬A)

The formula ¬([a] ¬A) is read as it is not the case that in every possible world, the formula ¬A holds

after executing process a. If a consists of sub-processes, then <a>A means there is a possible path a to

a world where A holds. There is a possible path to state A after the execution of a iff not all executions

of a lead to ¬A.

• RN, RM, RR and RE

The inference rule RN states that if A is a tautology then A holds in all the worlds after the execution of

any process a.

If A implies B and process a triggers A, we can infer from RM that a triggers B.

If A and B are sub-states of C, then from rule RR a process a that triggers A and B also triggers the

parent state C. The rules RN, RM, RR and RE follow from RK for n = 0, 1, and 2, respectively.

RN. __A__

 [a]A

 RM __A → B___

 [a] A → [a]B

 RR ___(A ⁄ B)→ C________

 366

Appendix A

 ([a] A ⁄ [a]B) → [a] C

RE is the rule of inference between equivalent states and allows to derive that the same process triggers

equivalent states.

RE A ↔ B ____

 [a]A ↔ [a]B

Proof in system S:

A ↔ B = (B → A) ⁄ (A → B) (by propositional logic)

 = ([a]B → [a]A) ⁄ ([a]A → [a]B) (by RM)

 = [a] A ↔ [a]B (by propositional logic)

• N, M and C axioms

N. [a] T

 Proof: By PL, ├ S T. By RN, ├ S [a]T

 M. [a](A ⁄ B) → ([a]A ⁄ [a]B)

 Proof: From PL and RM.

By Propositional logic (PL) ├ S (A ⁄ B) → A and ├ S (A ⁄ B) → B

 By RM ├ S [a] (A ⁄ B) → [a] A and ├ S [a] (A ⁄ B) → [a] B

 By PL [a] (A ⁄ B) → [a] A ⁄ [a] B

 C. ([a]A ⁄ [a]B) →[a] (A ⁄ B).

 Proof: By PL ├ S (A ⁄ B) → (A ⁄ B).

By RR, ├ S ([a]A ⁄ [a]B) →[a](A ⁄ B).

• R and K axioms

R. [a] (A ⁄ B) ↔ ([a] A ⁄ [a] B)

Proof From M and above and introducing equivalence.

K ([a] (A→ B)) → ([a] A → [a] B)

Proof By PL ├ S ((A →B) ⁄ A) → B

By RR ├ S ([a](A →B) ⁄ [a] A) → [a] B

By PL (C ⁄ D) → F is C→ (D → F)

By PL ([a](A →B)) → ([a] A → [a] B)

 367

Appendix A

A.5 Rules and Axioms for <a>

We give the rules and axioms underlying the possibility modality <a> holding in a normal system for

modal logic. By the schema DfÌ <a>A is ¬([a] ¬A). <a>A has the modal meaning of possible worlds

i.e. <a>A holds in world w1 if after executing a, there is some world(s) accessible to w1 where A holds.

In the context of a graph or a negotiation, <a>A can be read as the possible path a to a goal state A.

• RKÌ

RKÌ ___ A → (A1¤ ….. ¤ An) _____

 <a> A → (<a> A1 ¤ …. ¤ <a> An) (n r 0)

RKÌ expresses that if there is a path to a sub-state, then there is a possible path to at least one of its

parent states.

• Rules RNÌ, RMÌ and RRÌ

RNÌ ___ ŸA___

 ¬(<a>A)

RMÌ __A → B___

 <a> A → <a>B

 RRÌ _____A → (B ¤C)__________

 <a> A → (<a>B ¤ <a> C)

RNÌ, RMÌ, RRÌ follow from RKÌ for n = 0, 1, and 2, respectively. For RNÌ, when n=0, the

conditionals in RKÌ are identified with the negation of their antecedents, [Chellas 1980]. RNÌ says

that if ¬A is a tautology then there is no possible path to A. RMÌ expresses that a possible path to a

sub-state is a possible path to its parent state too. RRÌ similarly means that a possible path to a sub-

state with 2 parent states is a possible path to at least one of its parent states.

• RE Ì

 RE Ì __A ↔ B___

 <a> A ↔ <a>B

Proof: A ↔ B = (B → A) ⁄ (A → B) (by propositional logic, PL)

 = (<a>B → <a>A) ⁄ (<a>A →<a>) (by RMÌ)

 = <a>A ↔ <a>B (by propositional logic, PL)

 368

Appendix A

 369

If A and B are mutually dependent sub-state and parent state (or are the same state), then a possible path

to A implies a path to B and vice versa.

• Df É

Df Ñ [a] A ↔ ¬ (<a>¬ A)

 Proof: using PL, Df Ì and RE

If all paths lead to A then it is not possible to get to a world where ¬A holds. This schema is useful

when striving for a goal e.g. an agreement.

• Axioms NÌ, MÌ and CÌ

 NÌ ¬ (<a> ^)

 Proof: By PL, ¬^. By RnÌ, ¬ <a> ^

 MÌ (<a>A ¤ <a>B) → <a>(A ¤ B)

 Proof: From PL and RMÌ

A variant of MÌ would be (<a>A ¤ <r>B) → <a » r>(A ¤ B)

• Axioms CÌ, RÌ

 CÌ <a>(A ¤B) → <a>A ¤ <a>B.

 Proof: By PL ├ S (A ¤ B) → (A ¤ B).

Hence, by RRÌ, ├ S <a>(A ¤B) → <a>A ¤ <a>B).

 RÌ <a>(A ¤B) ↔ <a>A ¤ <a>B.

Proof From CÌ and MÌ, biconditional.

• Axiom KÌ

KÌ (¬(<a> A) ⁄ <a>B) → <a > (¬A ⁄B)

Proof From B → (A ¤(¬A ⁄ B)) and RRÌ

If a does not lead to A but to B, then executing it yields a world with (¬A ⁄B).

The above axioms and rules over [a] and <a> are those of a normal system as for modal logic and

propositional dynamic logic.

Appendix B - Electronic Commerce and

its Architectures

B.1 Introduction

Technology can now be used in new ways to offer original and innovative services which would not have been

possible otherwise. In the last decade information and communication technologies (such as Internet and the

World Wide Web) have given birth to Electronic Commerce. Electronic commerce is defined as performing

commercial transactions on-line. Electronic Commerce offers several advantages over traditional ways of doing

business. Organisations perceive Electronic Commerce as a means of offering better services that are accessible

to a wide range of market participants. Secondary costs that occur during real life business transactions are

eliminated in electronic commerce e.g. delivery of services, payment costs, credit costs or costs that are induced

by the uncertainty of exchange rates. Organisations can thus gain competitive advantage. There are a growing

number of organisations that are adopting online trading approaches to exploit the advantages of electronic

commerce.

The first part of this appendix contains a survey of the evolution of electronic commerce with respect to its

various aspects. Cunningham, Paurobally and al. [1998] provide a case study of an existing online service

provider for electronic documents. Our findings allow us to list the requirements for electronic commerce.

Finally we prioritise these requirements and describe a possible classification of the steps in an electronic

transaction. The second part of this appendix presents the CORBA architecture, [OMG 2000], CORBA services

and facilities, from [Orfali and Harkley 1997a]. It describes CORBA-compliant higher-level frameworks such

as the business object level architecture. The third part of this appendix consists of CORBA-compliant

architectures for electronic commerce. In particular we examine a negotiation framework based on CORBA and

CORBA-services.

Part I

B.2 The Evolution of Electronic Commerce

We performed a study on electronic commerce in 1998, [OSM Consortium 1997], and some of the observations

appear to be still valid. The main findings then were disappointing sales patterns due to lack of interactivity,

370

Appendix B

advertising space being hard to sell and proprietary technology being abandoned in favour of open standards.

The conclusions suggested that technology had been unsatisfactory and that there was a need for a complete

infrastructure for electronic commerce, [OSM Consortium 1997]. We found a limited number of vending

patterns in the electronic markets. The commercialisation pattern was still nothing more than a copy of what

non-commercial people think real life commerce is. Usually this is a Web page representing the shop window,

along with some form of catalogue and a shopping basket. This is still the case today though the number of

online purchases has increased.

Today most companies have a web presence and many provide an online shopping facility from which all

participants can benefit from reduced costs and from location and time transparency. The latest statistics show

that about 100.2 million people in the U.S. or nearly half of the adult population with access to the web have

made a purchase online at one time or another, [Cox 2001]. An estimated $3.5 billion was spent online in March

2000 and $13.8 billion in 2000 for travel services, [Cox 2001].

However, the Internet is an interactive medium. The study did not find any sophisticated interactive process

which demonstrated the full potential of the Internet and the realised benefits for electronic commerce, for

example, in the way hypertext enriches information access. To this end, research is being performed on a range

of associated issues such as brokering, [Sycara and al. 1997], security, [Tahara and al. 2001], trust, [Poslad and

Calisti 2000], negotiation, [Jennings and Wooldrigdge 1997; Rosenschein and Zlotkin 1998; Sandholm 1995],

ontologies, [Ontolinga; Mahalingam and Huhns 1997; Huhns and Singh 1997], multimedia, law, [Shoham and

Tennenholtz 1995], and payment, [Wang and al. 1998; Yi and Okamoto 1998]. Current online shopping sites

represent the first generation of e-commerce applications with client and server software and with humans still

being involved at both ends, adding to transaction costs. To remove these costs and to automate time-consuming

tasks, software agents that are personalised and continuously running may be used. For example, in auctions

extending over several days, like Ebay, an agent knowing the preferences of its owner may watch out for

interesting auctions and at any time strategically bid no further than a given reserve price. Specialised agents

may be developed to support the different steps during a transaction, from searching and filtering large and

unstructured online information to brokering, negotiation and paying.

If the consumer buying behaviour is divided in six main stages: need identification, product brokering, merchant

brokering, negotiation, payment and delivery, as in [Guttman and al. 1998], then so far there are agent

applications supporting the first three stages. Shopping assistants like PersonaLogic, [Guttman and al. 1998],

and Firefly, [Maes and al. 1999], address the initial two stages and help customers find products through filtering

and recommendation respectively. Other shopping assistants like Jango, [Jango], and Bargainfinder, [Krulwich

1996] are involved in merchant brokering, i.e. selecting providers. Bargainfinder performs on-line price

comparisons by sending requests for price to different sellers while Jango as an advanced Bargainfinder masks

the fact that those requests are coming from a central site and simulates them as genuine requests for competitive

reasons. However all of these applications concentrate on price and unfortunately overlook possible value-added

services offered by merchants.

 371

Appendix B

B.3 Different Aspects of Electronic Commerce

The importance of payment systems

Security issues relating to payment are perceived as a determining factor for the proliferation of electronic

commerce. Thus the main research efforts appeared to be concentrated on payment and security systems. To be

able to show ‘up front’ that a secure technology for payment is being used is itself a sign of reliability. Yet

behaviour studies do not show this element as a determining factor for first time purchase: the potential buyer

usually goes all the way through the ‘shopping process’ and then decides whether the payment method offered

by the vendor is acceptable or not. About 60% of the sites studied used the idea of a Virtual Caddy (Shopping

Basket) for the shopping process and just under 90% accepted credit cards. Although roughly 50% of the

selected commercial Web sites used encryption technology, it is commonly accepted that more than 50% of

Web-based transactions happen in insecure environments, i.e. the buyers don’t know or don’t care. Interestingly,

today most compensations in case of fraud are handled not by the banker or the customer but by the merchant.

A number of security protocols have been developed to enable secure electronic commerce transactions. Among

these, Secure Sockets Layer (SSL) technology is used in many major web servers and browsers to secure

communications over the Internet through encryption and digital certificates. Secure Electronic Transactions

(SET) is a protocol that provides secure transmission of on-line payment information. Applications developed

over Java can use the Gateway Security model of the Java Electronic Commerce Framework to enable access to

sensitive data through only controlled gateways.

Emerging Standards and Systems

Open standards and protocols help lower the costs of offering new services on the customer desktop. Sun

Microsystem’s Electronic Commerce Framework extends the core Java platform for electronic commerce

applications. The Java Commerce APIs support basic services to create new electronic commerce applications

such as on-line shopping malls, home banking or electronic brokerage. A Java Commerce Client (JCC) permits

electronic commerce transactions from the desktop. Users are provided with a Wallet-like user interface, a

database, and an extensible platform that enables the use of a variety of payment instruments and protocols for a

large number of e-commerce operations. Examples of other applications are Microsoft® BackOffice®,

Microsoft Wallet and IBM’s Managed Electronic Transaction Services.

Advertisements

About 60% of the sites studied used advertising. This takes place by advertising on other sites (referring), on

one’s own site or real-world advertising. Webmasters often use the opportunity to promote specific parts of their

sites. It is common knowledge that referral links (advertisements which will take the user to a different site) are

hard to sell. Only the major sites, in terms of traffic, are able to attract advertisements. Studies showed that two-

thirds of the advertising spending went to the 10 largest sites. This indicates that advertising is not seen by the

market to offer any real value except for a few exceptionally active sites. Even in those cases there is the

problem that users don’t often follow the links. This has led to a change in the pricing of web adverts.

Advertisers are not willing to pay a price per person that has seen the advert. Instead they will only pay a certain

price per person that has clicked on the advertisement and hence referred to the advertiser’s site.

 372

Appendix B

As most home users are reluctant to pay for some online services, advertising may increase in some areas. With

new technology advertisers will be able to target the right portion of the market, for example, by advertising on a

small site or channel with very few hits, but read by the right kind of people. Business users are usually quite

willing to pay for useful information, so advertising may not be the only way to fund certain sites.

Legal Framework

The Internet is changing the way many organisations and individuals function. However, claims that a

completely new legal framework is required to cover the ‘electronic world’ may be excessive. It is true that the

current legal system lacks certain features, but principles that apply to the Internet can apply to many other areas.

Widespread concerns with pornography and with copyright have elicited adaptation of pre-existing laws. On the

other hand, there are aspects that do require new law. For example, if digital signatures are adopted and are

deemed to be secure, laws need to be drafted to make them legally acceptable. Other matters can be raised too,

such as security (anonymity and privacy mainly), trust and loss of government control. The issues involved here

need clarification. Can the government be considered to be a trusted third party and do users think so?

Security

A simple error in e-commerce software can lead to large-scale fraud, theft, or breaking into the security and thus

to the compromise of thousands of credit card numbers which can be quickly and widely distributed. With online

commerce running to billions in the year 2001, new technologies are required to make electronic commerce both

secure and user-friendly. Secure Sockets Layer (SSL) is the most widely used channel technology for securing

communications over the Internet today. SSL uses public key cryptography and digital certificates to

authenticate the Web site to the consumer and to ensure private communications by encrypting the channel.

Many major web servers and browsers support SSL channel encryption.

Brokering

The Internet enables customers to locate and purchase products and services, with less dependence on their

location relative to the vendor. The main difficulty is in locating the relevant products or services. This problem

could be solved by special intermediary services, brokers to match vendors with consumers. As such, brokering

services are still rare today in electronic commerce with a lack of adopted standards. The services that exist

include search engines and appear to be business-to-business, not very interactive and have crude interfaces, or

advertising at webmasters. Yet with brokering, customers would gain access to a larger market with more

competitive prices. Vendors may not be so keen, because competition reduces profit margins, but in the long

term, brokering should induce access to a global market as well as providing a market more responsive to

changing customer needs.

CommerceNet is an industry consortium involved in accelerating the growth of Internet commerce and creating

business opportunities for its members. Their motto is “to transform the net into a global electronic marketplace

and make electronic commerce easy, trusted, and ubiquitous”. It tries to unify vendors and end-users and help

them jointly seize market opportunities. Agent toolkits for brokering include Kasbah, [Chavez and Maes1996],
Tete-a-tete, [Guttman and al. 1998], Auctionbot [Wurman and al. 1998].

 373

Appendix B

See Cunningham, Paurobally and al. [1998] for a case study of an industrial association providing information

retrieval services to its customers. The case study helps us examine the requirements and constraints of

brokerage-based business processes. The main finding was the importance of value-added information.

Compared to search engines such as Lycos, AltaVista or Yahoo which have on-line indices running in hundreds

of millions documents and which receive millions of queries daily, the business company’s database captures

only a fraction of these amounts. Yet, the value of the information stored is much higher, since the classification

by human lectors assures a higher selectivity and quality. Business customers are willing to pay a high charge

for comfort and for human expertise in both the processes of document acquisition and retrieval. Therefore, in

an Internet-oriented setting, the integration of human resources may be an important factor within the

preparation and provision of services.

B.4 Prioritising Requirements for Electronic Commerce

Although studies suggest that most requirements apply to any field of commerce, there are some sector-specific

requirements. For example:

• Banking: Different laws on the protection of security of funds apply in different countries.

• Insurance: Complex mutual transactions which are negotiated and performed on-line need technical support

(e.g. in the areas of reinsurance and co-assurance).

• Publishing: External parties with neutral judgements (e.g. rating services) are required in a decentralised

environment to evaluate and recommend service providers for the quality of their services. Rating services

may be useful in other areas too.

In table B.1, we have ranked the requirements that apply to most sectors. The rankings are based on the analysis

of data collected from studies. The rankings are indicative and not absolute. The table shows the different

criteria which are lacking currently in e-commerce architectures and the relative effort needed for supporting a

criteria. Features are ranked by their perceived current level of support in the first column. Those that are best

supported come first. In the second column, they are ranked according to the preferred support level. Finally, in

the third column the ranking is by the effort required to reach the preferred level of support. Those features that

are not currently well supported but are required are given first. They are followed by those features that are

required less but might be fairly well supported.

Current level of support

1.

2.

3. Catalogues

4.

5.

6.

7.

8.

9.

10.

1. Certification

2.

3.

4. Negotiation

5.

6.

7.

8.

9. Catalogues

10.

On-line distribution

Performance & Reliability

User Friendliness

Payment

Privacy

Logs & Documentation

Human Resource Integration

Interoperability & Heterogeneity

 Certification

Preferred level of support

Payment

Performance & Reliability

Service Brokers

User Friendliness

On-line distribution

Privacy

Interoperability & Heterogeneity

Effort Required (adjusted)

1. Auditing

2. Negotiation

3. Service Brokers

4. Payment

5. Certification

6. Privacy

7. Human Resource Integration

8. User Friendliness

9. Catalogues

10. Interoperability & Heterogeneity

 374

Appendix B

11.

12.

13.

11.

12.

13.

 Auditing

 Service Brokers

 Negotiation

 Auditing

Human Resource Integration

Logs & Documentation

11. Performance & Reliability

12. On-line distribution

13. Logs & Documentation

Table B.1 List of requirements for Electronic Commerce

Security and certification - Currently, the most inhibiting factor for performing significant transactions is the

lack of security. Security implies the concepts of privacy, authentication and non-repudiation. To achieve all of

the above an infrastructure for security is required. The starting point for this infrastructure would be a way to

identify individuals when needed. This could make them accountable for their actions and provide

authentication and non-repudiation. Privacy is relatively straightforward to achieve. It is very likely that public

key cryptography, [Rivest and al. 1978] will be the basis of security systems. The main problem of public key

cryptography is the distribution of public keys. One must have a way of knowing that a certain public key

belongs to a specific individual. A Certification Agency acting as a trusted third party can certify the ownership

of public keys. An electronic commerce framework would necessarily need to support certification for these

purposes.

Auditing Support - An architecture must have some support for audits in order to ensure that contracts are

executed as set out in their terms and conditions. If necessary one should be able to check that an exchange was

fair and that the legal formalities were taken care of. One way to do this would be through notary services.

Negotiation - Negotiations between humans are usually slow and may be tedious. This is especially true in

complex situations. Currently there is only basic support for on-line negotiations mainly in the form of auction

sites. The automation or partial automation of negotiations is required. The protocols and methods used need to

be standardised to reduce costs.

Payment - One of the greatest requirements for electronic commerce is secure payment systems. The problem

lies in the support of the payment systems and not the existence of payment systems as such. In other words,

there is a lack of a framework which supports multiple payment systems. Within such a framework, consumers

may negotiate with the vendor and agree on the preferred payment mechanism. Currently, there are various

payment mechanisms, the most popular of which is payment with credit cards. Others have not yet reached their

critical mass.

Human Resources Integration - Ideally, customers want to pay only for added-value services. In some cases it

is possible to add value without human intervention. Nevertheless, the ‘intelligence’ of computers remains

limited. It is necessary to integrate human resources or to make use of human expertise. The case study about

wf shows that business customers would be willing to pay for human expertise. In any case, when computers are

commonplace, the added-value will come mainly from humans. A framework for electronic commerce would

have to be able to integrate different types of resources such as human and computer resources.

Brokers - Some types of on-line brokering already exist, for example Internet search engines, middle agents and

institutions for managing auctions. We expect that vendors and consumers will realise the importance of

brokering once payment and security issues have been resolved. Since the number of vending patterns on the

 375

Appendix B

Internet is increasing, the need for brokering has started to be felt e.g. in the transport and logistics sector, mainly

due to its decentralisation.

Catalogues - Electronic catalogues can provide complete and up-to-date information, greater choices, wider user

access and on-line enrolment. Currently, electronic catalogues do exist, but they lack standardisation. As a

result, each catalogue may require different hardware and software and have a different interface. Additionally

they may not provide all the necessary functions and it may not be possible to integrate them with other

catalogues. The product and service descriptions might be incompatible between catalogues. As catalogues

would be the main way of displaying the profiles of different services, it is imperative that some standardisation

takes place.

Interoperability - With the diverse range of existing and future systems, it is crucial that any electronic

commerce framework is not platform specific. Adoption of standards such as those of the Object Management

Group, Sun Systems or FIPA will ensure interoperability across a wide range of computer systems. An

electronic commerce framework would be based on the idea of a global network; to achieve that, interoperability

is a prerequisite.

B.5 Business Transactions

In view of the above requirements, an e-commerce architecture must provide the following services:

•

•

•

•

The distribution and inspection of information - A business needs to establish a formal point of presence

in the virtual world and to provide a catalogue of its services. These catalogues may be produced using any

applicable tool. However, customers have to be able to inspect these service offers concurrently regardless

of the specific tool used to publish them.

Negotiation - In an open market, customers and providers both have ideas about what makes a good deal or

a bad deal. Negotiation mechanisms allow a recursive interaction between consumer and deal maker in the

resolution of a good deal. Solutions to a good deal are driven by independent business models of the

respective parties. Negotiation supports convergence or migration between two points of view on what a

service should contain and the contractual terms of engagement.

Contracts and commercial services - Contracts provide a framework within which an agreement between

multiple parties can be established, drafted and subsequently engaged. As such, contracts are conceptually

shared structures that bind together a set of obligations such as the exchange of commercial services.

Customer relationship management - Customer retention, service quality and competitiveness of on-line

service delivery are key aspects of relationship management, involving long term interaction between a

provider and the provider’s customer base.

Present-day electronic commerce applications are limited chiefly to cataloguing on one side and payment

facilities on the other with fixed vendor and client roles. The role of the vendor is passive after he/she publishes

Web pages and is not able to negotiate with customers. Frameworks need to work at a level of sophistication

closer to real world commerce than is evident. There is growing concern to solve the current lack of interactivity

in online trading systems. Open standards and protocols help lower the costs of offering new services on the

 376

Appendix B

customer desktop. Users, providers and software developers use interoperability standards to interact with

components in different domains.

•

•

•

•

•

•

•

•

Software developers and technology providers need a reference architecture to use for the development of

their products. The architecture must be standardised enough to allow them to implement parts of an overall

electronic market system and at the same time flexible enough to allow the market infrastructure to evolve.

Consumers need a wider choice of products and services at competitive prices and a market that will adapt

quickly to their needs. They should be able to use standard and non-standard services, as well as compound

services to suit their individual requirements.

Providers need the means to access a large, global market at very low cost, 24 hours a day, to offer services

efficiently and effectively and to shorten their product cycle times. Providers need to be able to publish their

services without the need to formally standardise them.

Electronic commerce systems should, [OSM Consortium 1997]:

1. Allow the decision-maker access to relevant information wherever it is situated.

2. Allow the decision-maker to request and obtain information management services from other departments in

the organisations.

3. Proactively identify and deliver timely, relevant information that may not have been explicitly asked for.

4. Inform the decision-maker of changes that have been made elsewhere in the business process, which

impinge upon the current decision context.

5. Identify the parties who may be interested in the outcome and results of the decision-making activity.

The characteristics in business processes are maximisation of profits; physically distributed, decentralised

ownership; autonomous groups; natural concurrency; monitor and manage the overall business which is dynamic

and unpredictable. Such commercial business transactions can be modelled in ways that encourage

standardisation. For example, we can separate the construction from the execution phases of transactions. In the

construction phase, a provider or consumer builds a commercial service in the following steps:

Information Collection – the use of catalogues and brokerage systems to find on-line agencies, commercial

services, service providers, consumers and third parties.

Agreement– the construction of a contract, where the terms and conditions of engagement are agreed by the

parties through negotiation and other mechanisms. This may involve negotiation to construct a contract and

associated obligations.

Engagement – the progression from agreement to commitment. In the real world, this is characterised by

the signing of a document by all parties of a contract.

The execution phase consists of three other steps:

Configuration – the framework over which electronic transactions take place, including the use of federated

policies for security, payment, etc.

Service Execution – the execution of commercial services in the context of higher level contract policies

(like fair exchange).

 377

Appendix B

• Termination – the validation and the closing of the contract across all participants, in accordance with

policies concerning delivery assurance, fitness for purpose and associated obligations.

B.6 Conclusions on Requirements for E-Commerce

Studies show that the full potential of the Internet as an interactive medium for conducting online transactions is

not being exploited. Electronic commerce is currently restricted to information collection with a shopping

basket. Security, implying privacy, authentication and non-repudiation, are important requirements for

electronic commerce. The security of an underlying infrastructure will determine its adoption. Two other

important requirements are negotiation and brokering, covering a range of functionalities such as dialogues,

matchmaking, effective information search and the supervision, drawing up and execution of contracts. Such

services are currently absent in the online world. We have passed the first stages where electronic commerce

may only be an extension of traditional commerce. A framework must be sufficiently standardised for practical

use but be generic enough to support market evolution and emerging business models. An electronic commerce

infrastructure needs to be interoperable with and make full reuse of the different technologies available. An

emerging technology of electronic commerce has to coexist and evolve with more traditional information

technology in business, where the existence of monolithic, legacy systems ill-suited to distributed access and

management provides considerable inertia for change. In the real world there are several layers of interaction

that can take place between a potential vendor and client, as well as several layers of intermediaries who can act

or interfere. This is an area where distributed object architectures for interoperable components and business

agent architectures have a growing impact.

Part II
Applications in large networks such as the Internet and the World Wide Web form a distributed environment

through which information and resources are passed. Components may be aggregated using open systems and

client/server interoperation standards to form higher level systems. In this part, we describe object oriented

frameworks specified by the Object Management Group, OMG, which can support electronic commerce

applications. We also describe a roadmap proposed by OMG for electronic commerce stemming from a

European Commission project, OSM. We provide more details of CORBA services, facilities and CORBA

compliant business architectures. While we mostly analyse CORBA and related applications, other framework

embodying distributed object concepts are Microsoft DCOM and Java beans/OJDBC. DCOM being Microsoft’s

standard is subject to controversies. Java ODBC is relatively new compared to CORBA.

B.7 Object Management Architecture

One of the main contributions of the OMG towards distributed frameworks is the Common Object Request

Broker Architecture, CORBA. The CORBA specification describes the Object Management Architecture

(OMA) which consists of an Object Model and a Reference Model. The Object Model describes the structure of

CORBA compliant objects and their terminology. An object is an encapsulated entity with an identity whose

services can be accessed only through known interfaces by client requests, [OMG]. These interfaces are defined

 378

Appendix B

in CORBA’s interface definition language (IDL). IDL is a declarative language that allows objects to hide their

implementation and only declare their interfaces. A client does not need to access the implementation of a server

but rather it sends messages to the server object. The latter interprets the message and executes the service and

may return the results to the client or cause an exception.

The server declares its interface as a set of attributes and of operations that a client can request. An operation has

a signature that describes the parameters to be passed and returned, the exceptions raised and possible contextual

information. An object can also support multiple interfaces through inheritance. The requests issued from client

requests may have parameters which are used to pass data to the target object. An object implementation

consists of the code for creating an object instance and the code for published methods which may update the

system’s state.

The OMA reference model defines the OMG components for distributed object oriented services. The Object

Request Broker (ORB) is the core of the OMA and allows communication between clients and objects. The ORB

acts as a bus and forwards requests from a client to a registered server and then forwards any reply from the

server to the client. When using the ORB, an object does not need to specify the communication mechanism or

the location of other objects. There are four categories of object interfaces that use the ORB bus as shown in

Figure B.1. Each of the components in these categories can be used to further electronic commerce applications.

Object Request Broker (ORB)

Application
Objects

Domain
Interfaces

Common
Object

Services

Common
Facilities

ORB CORE

Dynamic
Skeleton

Static
IDL

Skeleton
ORB

Interface
IDL

Stubs
Dynamic

Invocation

Object
Adapter

Client Object Implementation

Interface identical for all ORB implementations
There may be multiple object adapters
There are stubs and a skeleton for each object type
ORB-dependent interface

Figure B. 1: The OMA Reference Model Figure B. 2: CORBA Architecture

• Common Object Services is a set of interfaces that can be called upon by distributed object programs.

CORBA services such as security, transaction and session can be used in electronic commerce applications.

• Common Facilities are frameworks defined in IDL and are oriented towards end-user applications. They

tend to define interfaces for the collaboration of application objects.

• Domain Interfaces provide a set of interfaces similar to the common object services and common facilities

but applied to particular application domains.

• Application Objects are the client and server objects and applications. They use the above interfaces and the

ORB. The interfaces are application-specific and not standardised.

B.8 CORBA

The Common Object Request Broker Architecture (CORBA), Figure B.2, promulgated by the OMG, specifies

an open standard for client/server middleware. In this section, we describe the CORBA specification which can

 379

Appendix B

form the basis for electronic commerce infrastructures. Objects can be both clients and servers. The interfaces

of CORBA objects are defined in IDL. The IDL interface of a server can be considered as a contract of the

methods provided by the server. IDL is a declarative language and its grammar is a subset of C++ with

additional keywords to support distributed concepts. An IDL interface may include a component’s attributes,

supported methods with input and output parameters and their types, parent classes, exceptions and events that

can be sent. IDL provides no implementation details so that IDL-specified methods can be written in and

invoked in any language that supports CORBA bindings. A server’s interface is added to an interface repository

which can be accessed at run-time. A client accesses the interface repository to learn about the server. A client

must know the object reference (identity) of the server and the operation to invoke along with the required

parameters.

Figure B.2 shows the CORBA architecture. It shows the ORB and the interfaces of its component with respect

to clients and servers. The Object Request Broker (ORB) is the core of the architecture and allows

communication between clients and objects. The ORB acts as a bus and forwards requests from a client to a

registered server and then forwards any reply from the server to the client. When using the ORB, an object does

not need to specify the communication mechanism or the location of other objects.

There are two ways that a client can use the ORB to invoke a method on a server – by calling stub routines on

the ORB statically or by dynamically constructing a request. On receiving a client request, the ORB finds the

appropriate server object implementation, passes on the parameters and invokes the method(s). The ORB

invokes a method on a server either statically through an IDL skeleton or through a dynamic skeleton. When the

server has carried out the request, the ORB transfers back the result and control to the client. A client does not

need to know the location of a server, the latter’s implementation details or operating system. The server on its

side does not distinguish between static or dynamic method invocation.

The Dynamic Invocation Interface (DII) – This interface allows dynamic construction of object invocations.

CORBA has an API for looking up the interfaces of a server. It helps to generate the parameters and to issue a

call after specifying the object and the operation to be called.

The Client IDL Stubs, Static Invocation – The client defines in IDL the services it wants to invoke. The IDL

compiler generates IDL stubs that consist of code to invoke client services through the ORB and to perform

parameter marshalling. A client has an IDL stub for each interface it uses on the server.

The ORB Interface – The ORB interface is the same for all ORBs. This interface consists of a few operations

for both client and server implementations such as converting an object reference to a string and vice versa. The

ORB core is responsible for locating a server object adapter and transmiting an invocation and its parameters. It

then transfers control to the server implementation through the server skeleton.

Static IDL Skeleton – The server declares which methods, for each object, are implemented through this

interface. Static IDL skeletons are generated by the compiler from declared IDL interfaces. The ORB calls the

 380

Appendix B

implementation through these static skeletons. The skeletons do not know whether the client invocation is

through the IDL stubs or the DII.

Dynamic Skeleton Interface (DSI) – Servers may have components that do not have IDL compiled skeletons.

The implementation code provides descriptions of operations and their parameters to the ORB which itself

provides the input parameters and the method call. The DSI finds the target object and method from the

incoming invocation. Results from the implementation execution are passed back to the ORB. DSI are useful

for implementing bridges between ORBs.

Object Adapter – An object adapter provides ORB services to object implementations e.g. generation and

assignment of object references, activation and deactivation of server objects, security of interactions, method

invocation and registration of implementations. The object adapter can also accept requests on behalf of the

server’s objects. CORBA 2.0 specifies that each ORB must support a standard adapter called the Basic Object

Adapter (BOA). An ORB provider can support more specific services in addition to the BOA. The next version

of CORBA defines the Portable Object Adaptor (POA) with backward compatibatibility with BOA. A POA

allows programmers to construct object implementations that are portable between different ORB products.

Since server objects are not running all the time but rather on demand from client requests, POA ensures the

transparent activation of objects. POA also supports persistency such that an object’s states can be saved beyond

the lifetime of the server.

Interface Repository – This repository contains IDL-defined interfaces of the objects registered with the ORB.

It is regarded as a run-time distributed database. The API allows access, store and update operations on the

registered component interfaces and their method declarations. The information obtained may be used to perform

requests at run time.

Implementation Repository – This repository contains information about the classes a server supports,

instantiated objects and their object references. The ORB locates and activates implementations of objects

through operations on the Implementation Repository. A client is able to call any object instance that

implements the registered interface, [Orfali and al. 1997b]. In static invocation, an IDL pre-compiler generates

static IDL stubs and the client knows, at compile time, what methods are to be invoked on which servers. In

dynamic invocation, the client creates a request at run-time with an object reference, method and its associated

parameters to invoke methods for which there is no IDL stub. A server does not distinguish between static or

dynamic method invocations.

Static invocations are easier to program, by just invoking the method on an object and passing required

parameters. Type checking is enforced at compile time in static invocation. Dynamic invocation offers

flexibility and allows creation of requests on the run and adding new classes without changing a client’s code.

New services can be discovered at runtime such that generic clients are written with dynamic APIs and become

more specific later at runtime. On the other hand, static invocations have better performance than dynamic

invocation.

 381

Appendix B

B.9 Java and Distributed objects

Java applets are copied to a client machine after a request from the client browser. Then the bytecodes are run

through a verifier to safeguard the client from viruses before being executed by an interpreter. Java is portable

because bytecodes can be loaded on any platform which runs a java virtual machine. The portability of Java

applications renders transparent installation and porting of programs. The portability and error management of

Java can be combined with CORBA’s interoperability. Once the applets are downloaded on the client side,

operations can be invoked on remote objects through CORBA. CORBA compliant applications written in Java

are able to run on any platform and interoperate with other objects independent of their location and language.

An application can be partitioned to run on clients and servers without recompiling with any update cascading

from the servers to the clients. A Java applet acts as a client and invokes CORBA server objects.

B.10 CORBA Services

CORBA services are a collection of interfaces offering basic functions for using and adding features to objects.

These services are used to construct distributed applications and are independent of application domains. Each

CORBA service provides a specific function and can be combined with other services. We briefly outline the

function of each CORBA service and suggest its relevancy with electronic commerce. Unfortunately many

Object Services specified by the OMG still lack implementation products.

• Naming Service – The naming service maps names to unique object references and allows objects on an

ORB to locate others. This function can be used in catalogue support and in brokering to find clients and

providers.

• Life Cycle – The life cycle interface provides operations for creating, deleting, copying and moving objects

while keeping the relationships between the objects consistent. Life cycle functions may used to create the

entities involved in electronic commerce such as those representing participants, facilities and products.

• Events – An event is an occurrence in an object and is communicated to another object via notification

messages. In a transaction, an object can either be a supplier or a consumer of events, both of which can

initiate an event transfer. A consumer of events registers its interest in specific events and on event

occurrence the supplier of events sends it notification messages. An event channel is an object on the ORB

where suppliers send their events and consumers are notified about the events. Multiple suppliers can thus

communicate with multiple consumers asynchronously without knowing each other.

• Object Trader – Service providers advertise their services with the trader by passing an object reference, its

service type and properties. The trader maintains a repository of service types which consumers use to

discover services that match their needs, their constraints and preferences. Traders from different domains

can create federations and advertise their services in a pool.

• Transactions – A transaction is a contract binding the client to one or more servers and can be initiated by a

client’s request in the form of a set of method invocations.

• Concurrency – This service provides interfaces to acquire and release locks that let multiple clients

coordinate their access to shared resources like catalogues and transaction states.

• Security – Details of a transaction must be kept private as well as a server’s resources must be protected

against unauthorised access. The ORB provides security for objects and allows them to be ported across

 382

Appendix B

environments with different security mechanisms. Clients must comply with security requirements and

provide identification, authentication and credentials. Resources are protected by access control lists and via

encryption, audit trails, authorisation and non-repudiation policies.

• Persistent Object Service – Persistence means that the objects maintain their state in a non-volatile datastore

after the process terminates or is interrupted. There are operations for retaining and managing the state.

• Externalisation – This service defines interfaces for externalising an object to a stream and internalising an

object from a stream. On externalisation, the object can be transported to a different process, machine or

ORB and then internalised for execution.

• Query – Queries can be performed to find objects or collections whose attributes meet the specified search

criteria. A query service can delegate queries and combine the results for a global search.

• Collections – Objects can be grouped into collections with operations for querying, adding, replacing,

removing and retrieving elements.

• Object relationships – This service allows to dynamically create and manage relations between objects and

assign roles to objects.

• Time – The Time service helps to synchronise time using global time servers. The interfaces ascertain the

order in which events occur, generate time-based events and compute the interval between two events.

• Licensing – The Licensing Service provides a mechanism for producers to control and charge the use of

their intellectual property.

• Properties – From this service, named attributes (properties) can dynamically be associated with

encapsulated components.

B.11 CORBA Facilities

CORBA facilities are IDL frameworks that provide services to application objects and aiming to support end-

user applications. The facilities are divided into two categories: Horizontal Common Facilities, which are used

by most systems, and Vertical Market Facilities, which are domain-specific. The Vertical Market Facilities

represent technology that supports various market segments such as health care, retailing, manufacturing and

financial systems. Horizontal Common Facilities mostly provide functions shared by systems. There are four

domains:

1. The user interface facilities make an application accessible to its users and responsive to their needs.

2. Information Management facilities cover the modelling, definition, storage, retrieval, management and

interchange of information.

3. System Management facilities cover the management of complex, multi-vendor information systems by

service providers.

4. Task Management facilities support the automation of work, both user processes and system processes. The

agent facility provides support for static and dynamic agents. The rule management facility supports

knowledge acquisition, maintenance, and execution of rule based objects, such as intelligent agents.

B.12 Higher Level Frameworks: The Business Object Facility

The Business Object Component Architecture (BOCA) and the Business Object Facility (BOF) Interoperability

Specification were two proposals to the OMG’s for modelling business objects. These two specifications were

 383

Appendix B

finally replaced by the task/session facility, which contains the key ideas from the BOF. The BOCA

specification’s main contribution was in a meta-model for describing business models, that is, it provided the

necessary tools, concepts and language with which to describe a model of a business system. The BOF

specification defines a CORBA compliant object in a business domain called a business object e.g. an employee.

A business object has attributes and operations, but unlike in CORBA, operations have pre and post conditions

enforcing their behaviour. It may also take on roles within a business and have relationships with other business

objects. The BOF specifies a Component Definition Language (CDL), an extension of IDL, to describe business

objects. The specified interfaces, protocols and shared services provide technical interoperability between

business objects. The aim is for business objects to be defined and implemented in terms of business concepts

without effort on the technical aspects.

A.12.1 Business System Domain

A business system domain (BSD) is a distributed objects system in a particular business domain. A consistent,

recoverable representation of that business domain is maintained. The BSD may be as small as a solution to a

particular problem, or as large as the information for an entire enterprise. Relationships between business

objects should not cross BSD boundaries. However different business system domains may interoperate by

loosely coupling through adaptors and achieve compatibility and integrity within each BSD.

A BSD may include address spaces that represent a vendor’s framework. The latter may itself incorporate

different business object types. Each business object type has a type manager that provides methods for

accessing business objects. Each address space is under its own business object framework. Interoperating

business objects may be in address spaces with different framework implementations. A federation of several

BSDs is accomplished through the use of adaptors. An adaptor allows a business object to be represented in one

domain, A, and linked to its primary representation in another domain, B, where its shared state and behaviour

are implemented. The domain containing the adaptor is dependent upon the referenced domain which contains

the primary representation of the shared object. The object in the primary domain should work independent of

the adaptor in the dependent domain.

B.13 Advantages of CORBA

Along with along with the advantages of object-oriented programming, CORBA provides a high level approach

to developing distributed applications.

• CORBA is more sophisticated than Remote Procedure Call (RPC) or database stored procedures. CORBA

objects can be accessed remotely, independent of operating system differences.

• Since the implementation is separated from the interface, the client does not need to be aware of

implementation details and of updates such as creation, installation and communication. Objects can be

found based upon their interface, host machine or object reference, facilitating distribution, interoperability

and heterogeneity.

• CORBA provides language-neutral data types and so allows invocation of server objects by clients written

in any high level language that support CORBA bindings.

 384

Appendix B

• Servers must register their IDL interfaces with the interface repository. Clients can use metadata to discover

the servers and find how to invoke services at run-time. This makes CORBA a self-describing system with

automatic generation of stub code through IDL mapping compiler.

• An ORB can run alone on a system or be connected to other ORBs using CORBA 2.0’s Internet Inter-ORB

Protocol (IIOP) services. An ORB can broker inter-object calls within a single process, multiple processes

running within the same machine, or multiple processes running across networks and operating systems.

This allows objects to interoperate through distributed systems.

• Legacy systems can be encapsulated through CORBA IDL by registering an interface for existing systems

and making them appear as objects.

• ORB method invocations are specific. A function invoked on an object will return different results as when

invoked on another instance, depending on the type and state of the object.

• CORBA has defined a set of services and facilities e.g. for creating and deleting objects, persistency,

associations and security. A user can create an ordinary object and then make it transactional, secure,

lockable, and persistent through multiply-inheritance from CORBA services, [Orfali and al. 1997]. CORBA

offers facilities such as automatic server activation and deactivation, load balancing and some garbage

collect mechanism.

• Combined with Java’s portability, downloaded Java applets can interoperate with other distributed objects

through IIOP routing. This frees web servers of managing extra communication.

B.14 Shortcomings of CORBA

• Lack of formalisation - One of the main difficulties encountered by CORBA users is understanding and

using the framework. Most of them have a limited understanding of the CORBA architecture, as its

specification is not clear. Using CORBA methodology can result in an overly complex system design with

many similar fine-grain components to control and with a lack of component management mechanisms.

CORBA has a steep learning curve requiring investments in time, new training and new architecture. A

simple and formal CORBA specification with associated semantics is needed to clarify the standard. The

preconditions and postconditions of a component, its functions and events have to be formally stated. Hence

we need an overall abstract theory of the CORBA system.

• IDL is an inflexible component definition mechanism, which may be appropriate for generic low-level

component communication but not for more context-sensitive components found at a higher level in the

client/server hierarchy.

• No holistic view for complex systems - CORBA lacks the necessary scope to relate to a holistic view of the

strategic relationship between organisations and their information systems as it is more relevant to

information systems infrastructure, [Vinosky 1997]. CORBA is not suitable for modelling information flow

in the organisation. It fails to provide sufficient conceptual basis for modelling complex systems as the

individual objects and methods are too primitive and the design patterns are too generic and too rigid. One

solution would be to capture purposeful behaviour in domain terms and allow flexible interactions.

 385

Appendix B

• There is minimal support for organising collectives and no facilities for aggregation of objects to offer a

variety of services. There is a need for richer structures to capture wider range of relationships for team

building. CORBA does not specify a rich set of message types for co-operation of intelligent components.

• Need for a complete development process - A more complete development process than what CORBA

provides is needed. A balance must be reached between applicability and reusability. There is no standard

component-oriented development methodology to develop ‘pluggable’ CORBA components that will slot

easily into application architectures designed to solve real-world business problems. Many specified

CORBA object services still lack as implementation products.

• The scope of the system testing is limited by the component level i.e. components may be only tested as

‘black boxes’.

• The caller determines when to call a method on an object and this places all the work on the caller. This

is not feasible in a competitive environment where the callee might not want a competitor to access its

services. The callee needs to be able to control who is invoking its methods. The caller and the callee may

want to negotiate with each other and the CORBA framework on its own does not support this.

• Autonomy - Objects are obedient and their functionalities need to be programmed beforehand. The user

has to provide choices and monitor the execution of the objects. They can not choose between actions

autonomously and anticipate future trends. There is a lack of autonomy and ability to co-operate with other

objects automatically.

• Too many vendor variations cause compatibility problems.

• Extra download time. To be able to communicate with another CORBA object, an applet needs an ORB to

talk to and so an orblet is downloaded along with the classes that form the applet. Orblets are Java classes.

• Implementations are immature and continually evolving.

• Limited mainstream acceptance (DCOM and Java ODBC competition).

• Many ORBs do not provide full functionality of the CORBA specification.

• Interoperability between different ORB implementations can be a problem – code written for one ORB

may need modification for use with another ORB.

• Performance can be slow.

• Legacy systems with large objects are complicated.

• CORBA remains unproven, slow to evolve, hard to administer.

• There is no inheritance for exceptions. Inheritance causes problems in versioning, so objects cannot

support two versions of the same interface. IDL does not support overloading of operations.

• Scalability can be an issue if design is not well thought out.

• The limited concurrency model means there is no standard for thread priority, deadlines and timeouts.

 386

Appendix B

In a dynamic environment, the object-oriented approach on its own fails, as there are no innate solutions for

dealing with a situated problem solver and there is no mechanism for the objects to respond to changes in the

environment autonomously and rationally. To solve this, higher level frameworks may be built on CORBA

using its interoperation capabilities in order to provide more dynamic and complex behaviour. Such higher level

CORBA-compliant frameworks can themselves be used to support electronic commerce applications. In the

next part, we describe CORBA compliant architectures for electronic commerce.

Part III

B.15 EC Architectures - The Task/Session Facility

The Task/Session Facility, [OMG Task/session], defines business level notions of users, places, resources, tasks

and workspaces as processes. It is specified in UML representing the business objects and relationships in the

end user view of a distributed system. When instantiated, these CORBA compliant objects become

configurations of people in places, using resources in tasks and processes. The WWW Document Object Model

(DOM) level specification is used to complement the OMG task/session specification so as to handle data in

XML structures. The task/session framework provides applications with business objects customised enough to

be distinguished at the user end interface. These entities are able to inherit from tasks, users, desktops and

workspaces and be linked to each other. The main types introduced in the task/session specification are:

• AbstractPerson contains information about people, a party or an organisation.

• User objects identify people and determine access to resources. Users have tasks and resources located in

workspaces on a desktop and are connected or disconnected to a session.

• Workspaces are created by users and represent private and shared places where resources, including task and

session objects may be contained.

• Desktop links users to workspaces. Each user has one desktop and many workspaces which may themselves

be shared amongst users.

• Tasks describe user units of work that bind a user to selected data and process resources.

• Resources are collected in workspaces and represent process resources such as applications or data resources

such as files or other CORBA objects.

• Usage is a relationship that connects tasks to processes and information resources.

• Containment is a relationship linking resources to workspaces.

B.16 Open Service Model Reference Architecture

Current electronic commerce applications, such as those on the World Wide Web, primarily support the

information collection step. The OSM framework’s objective is to enable the exchange of information between

sophisticated mediators (brokers), consumers and providers of services during the construction and execution

phases. OSM’s mission statement is to provide an open service model for global information brokerage and

distribution. Electronic brokers offer value-added services to deal with the vast amount of information available

which would otherwise be difficult, if not impossible, to search manually. Brokering agents overcome the

 387

Appendix B

limitations of direct negotiations between customers and suppliers through matchmaking, negotiating and

monitoring transactions.

Information can be gathered from different sources e.g. an independent consumer association, a previous buyer

of the product or special rating services. A broker may then selectively direct information to customers by

maintaining databases about products and services. Electronic brokering cuts down on expensive searches. In

the agreement and execution step, brokers may act as third parties and assist in negotiations. They maintain the

anonymity of the participants during negotiations by acting as intermediaries and thus enable competitors to

negotiate. Brokers may also ensure that transactions are carried out as agreed and that the consumers and

providers complete their part of the deal.

The OSM Reference Architecture has been adopted by the OMG as a roadmap for electronic commerce. The

architecture is based on CORBA 2.0 and discusses payment and security facilities, client interaction with service

providers, service access, catalogue maintenance, negotiation and monitoring of service delivery, intermediate

brokers supporting standard and non-standard services, intelligent service matching and dynamic service

construction. Implementation of the OSM architecture used the BOF specification. The OSM project assumes

that business objects developed under the system will be exposed through a generic browser which can represent

collaborative or competitive services. The OSM architecture, Figure B. 3, is composed of three principal layers:

Market-oriented facilities

Service management facilities

Low level facilities

Catalogue, Agency and brokerage
facilities

Object browser, session, contract
and service management facilities

Negotiation, selection, certificate
and payment facilities

CORBA (IDL)

Figure B. 3: OSM Reference Architecture

Session facilities support asynchronous event communications by opening a channel between participants and

providing transactional integrity and channel security. Providers advertise their products on relevant information

channels and authorised consumers subscribe to channels of interest. Catalogues enable information browsing

and inspection through their interface. Collections of items from different suppliers can also be constructed into

a catalogue, so enabling brokerage. An agency facility establishes a formal query point and public query

interface about a provider in an electronic marketplace.

The brokerage facility allows users to advertise and discover resources while ensuring anonymity and privacy.

Participants are more focused in dealing with information about commercial services. The selection facility

supports selection and configuration of supporting appliances and policies. The negotiation facility allows

parties to communicate and mutually agree on a transaction. A negotiation process is defined as the progressive

and controlled disclosure of information between parties leading to mutual agreement and subsequent

engagement to that agreement. This engagement can be said to be contractually binding. The payment facility

enables interactions between a buyer and a seller and any necessary third parties for the successful electronic

exchange of goods or services. The value exchanged is governed by regulations and business requirements

which are expressed in a “payment protocol” associated with each payment type.

 388

Appendix B

The object browser provides a framework for presentation and management of components such as services,

contracts, and certificates. It offers portability and interoperability of products and services across desktop

environments. The Object Browser is expected to interact with a number of objects such as service descriptions

and catalogues referred to as resources. The OSM object browser was implemented in JDK 1.2 beta version 3,

with components built using the Java Swing classes. The object browser contains one or more view panels, each

associated with a resource.

B.17 Negotiation Facility Specification

Parties in a business transaction may have differing goals and negotiation mechanisms are required to bring

convergence between the two points of view and subsequent engagement in a deal. The OSM+ negotiation

facility, [OSM SARL 1998], addresses the convergence, agreement and engagement phases of commercial

transactions. It specifies a set of interfaces to support negotiation between two or more parties. Negotiation

processes can be divided in three categories. In technical negotiation, the participants agree on technical

applications such as method of payment or the negotiation of a value to be assigned to a property. In business

level agreement, negotiation is on business factors like the subject of negotiation or the attribution of results.

Promissory commitments deal with long-term agreements like promises to perform a process, rights and

obligations between participants.

The negotiation facility is built upon the OMG CORBA 2.3 specification and the CORBA Object Services

(COS). It reuses the Document Object Model, [DOM], and the Task/Session specification. The framework

itself consists of the Community Framework and the Collaboration framework. Negotiation processes following

business models run on the overall negotiation framework. Processes acting as customers and providers interact

at a high level where the underlying layers in the framework provide a web of coordination interfaces for

negotiation. At the highest level, lower level connectivity and interoperability functions are abstracted away to

obtain a system where the objects can be viewed as communicating processes. These entities inherit from the

underlying interfaces and have the capability to carry out negotiation with other participants and converge to an

agreement that satisfies the user’s goals. Furthermore they can be given capabilities to enter into meaningful

coordination and thereby become trustworthy enough to enter into engagement procedures. Finally processes

draw up contracts and ensure execution and delivery.

 Negotiation Models

 Framework
 Enhancements
 for negotiation

 CORBA
 Compliant COS
 Frameworks Services

Bilateral and Multilateral Negotiation and
Promissory Engagement Process Models

CORBA 2.3

 Lifecycle Properties TimeBase

 Collections Notification Object
 Identity

DOM Task/Session

Document

Community Framework

Collaboration Framework

Figure B. 4: Negotiation Facility Framework

 389

Appendix B

CORBA 2.3 as the lowest layer provides interfaces for clients to invoke operations on remote servers. The

CORBA layer provides networking, method invocation and interoperability between objects, and higher up the

hierarchy, between negotiating processes. The COS services layer provides interfaces for the management of

objects, of their properties and relationships and of time. The naming service (identity) allows objects on an

ORB to locate other objects. The Notification service enables objects to register or deregister their interest in

specific events before sending notification on event occurrence. Offers, requests, rejections and acceptance can

be thought essentially as events that are passed to negotiating processes.

The Negotiation facility builds extensively on the Task/Session Specification described in section B.15. The

WWW Document Object Model (DOM) level specification complements the OMG task/session specification to

handle data in XML structures by providing a common interface to XML and HTML documents. The

community framework of the negotiation facility extends the notion of workspace by introducing membership

roles between users and workspaces. Communities of users emerge from this layer. Users are associated into

groups following membership constraints. The interfaces at this level are divided into those supporting

membership management and those defining a community, an agency or an enterprise. A community interface

offers client applications controlled access to resources that may be required during the course of a collaboration.

Agency inherits from Community and LegalEntity types to introduce the notion of legal community such as a

company that maintains jurisdiction of a set of resources. A Membership interface enables associations of users

of the type Member according to rules exposed under a MembershipKind. The operations in Membership allow

addition, listing and removing of members, querying Member participation and exposing the state of the

Membership. There is an attribute in the MembershipKind interface to qualify the extent of information

disclosure and membership kind to public or private parties.

The collaboration framework introduces interfaces to support the execution of collaborative processes amongst

communities of users. These collaboration processes can be customised to follow arbitrary negotiation models.

A process running on a collaboration framework associates members, a model of negotiation and a subject of

collaboration together. The core operations defined in this layer are used by negotiation processes. An

Encounter interface exposes the run-time state of a process involving a collection of participating members. The

attributes of the Encounter interface are a subject of Encounter and a template that exposes the constraints. The

result of the execution of an Encounter is either a success or a failure event. There are further interfaces

supporting the specialisation of Encounter into Collaboration, Engagement and Voting definitions. The

Collaboration type enables users to invoke transition operations that lead from initial to terminal states. A

client joins an instance of Collaboration by establishing a Member role and interacts in the collaboration using

operations like apply and invoke transitions and commands. The Collaboration interface has as attributes the

active state which is an ordered sequence of state instances and a timeout list that exposes all active timeout

transitions. On invocation of an apply operation a ‘transition’ is passed as argument which if successful will

change the active state to the target and parent states in the transition.

Engagement interfaces enable the association of proof of engagement to an agreement by defining the security

criteria to be applied during the engagement process. It handles open contracts or those requiring the explicit

engagement of all participants and provides a persistent store for the registration of proofs. Voting interface has

 390

Appendix B

 391

the vote operation that takes one of the enumerated values yes, no or abstain as an input argument and

determines the success or failure by counting the votes and deciding if the number of yes votes is greater than a

percentage of the quorum. From the collaboration framework we have operations that define a group of users

engaging in negotiation according to a subject and operations that manage the state of negotiation. As goal states

are satisfied an engagement process can be launched for commitment and for setting up contracts between the

agents. Participants need to comply to a protocol to ensure that they and all other participants following the

same rule coordinate meaningfully. The protocol can be regarded the set of public rules that dictate the conduct

of an agent towards other agents when carrying out some collaboration process.

B.18 Summary

The OMG has a number of specifications that allow objects to interoperate at a business level. Higher level

frameworks can be built on CORBA to support electronic commerce applications. Some of the disadvantages of

CORBA, such as lack of autonomy, can be solved by using an agent oriented approach. Agent architectures may

provide solutions for sophisticated business transactions involving automated negotiation. The Negotiation

Facility Framework consists of several layers of CORBA-compliant frameworks. Above the collaboration

framework, negotiation processes can be thought as being abstract enough to come into the realm of agent

oriented systems. These agent systems are at a natural level of abstraction over object oriented systems and

inherit from them. Agent processes running over the negotiation facility interact, coordinate and thereby

converge their goals towards agreements. Agent oriented applications are more suitable for supporting strategic

decision making in unpredictable environments such as automated negotiation.

References

[1] Abadi M. and Lamport L. 1988. “The existence of refinement mappings”. Theoretical

Computer Science, 82:253--284, 1991.

[2] Abadi M., Alpern B., Apt K., Francez N., Katz S., Lamport L., Schneider F. 1991.

“Preserving Liveness: Comments on Safety and Liveness from a Methodological Point

of View”. Information Processing Letters 40(3): 141-142 (1991)

[3] Aho A. V. and Ullman J. D. and Yannakakis M. 1979. “Modeling Communication

Protocols by Automata”. Proc. 20th Annual IEEE Symposium on Foundations of

Computer Science, pp. 267-273, 1979.

[4] Aho A. V. and Ullman J. D. and Yannakakis M. 1982. “Bounds on the Size and

Transmission Rate of Communication Protocols”. Computers and Math with

Applications, Vol. 8, 3, pp. 205-214, 1982.

[5] Allen, J. 1984. Towards a general theory of action and time. Artificial Intelligence,

23(2):123-154.

[6] Alogogianni, K. E. 2001. “Bilateral Agent Negotiation for Electronic Commerce”. MSc.

In Advanced Computing Thesis, Imperial College.

[7] Alpern B. and Schneider F. 1985. “Defining liveness”. Information Processing Letters,

21:181-185.

[8] Amazon. 2002. http://amazon.co.uk

[9] Areces, C., Blackburn P. and Marx M. 1999. “A roadmap on the complexity of hybrid

Logics.” Computer Science Logic, Proceedings of the 8th annual conference of the

EACSL. LNCS 1683, pp 307-321.

[10] Areces, C., Blackburn P. and Marx M. 1999b. “Hybrid Logics: Characterisation,

interpolation and complexity.” Journal of Symbolic Logic, 1999.

[11] Ashby, W.R. 1962. “Principles of the self-organizing system”. in H. Von Foerster and

G.W. Zopf (eds.) Principles of Self-Organization, Pergamon, p 255-278.

[12] Austin, J. L. 1962. “How to do things with words.” London Oxford University Press.

[13] Bacchus, F. and Kabanza, F. 1996. “Using temporal logic to control search in a forward

chaining planner”. In New Directions in AI Planning, ISO Press. pp 141-153.

[14] Backhouse, R., Carre, B. 1975. “Regular algebra applied to path-finding problems”. J.

Inst. Maths Applics. 1975, Volume 15, pp. 161-186.

392

http://amazon.com/

References

[15] Bailey, J.,Georgeff, M.,Kemp D., Kinny D. and Kotagiri R. 1995. “Active databases and

agent systems - a comparison.” In T. Sellis, editor, Proceedings of the Second

International Workshop on Rules in Database Systems, Athens, Greece, LNCS 985,

pages 342—356. Springer-Verlag

[16] Baldoni, M., Giordano, L., Martelli, A., and Patti V. 1998. “A Modal Programming

Language for Representing Complex Actions”. Journal of Logic and Computation.

[17] Barbuceanu, M. and Fox, M. S. 1995. “COOL: A Language for Describing Coordination

in Multi-Agent Systems”. In Proceedings of the International Conference on Multi-

Agent Systems, San Francisco, CA.

[18] Bartlet, K. A., Scantlebury, R.A. and Wilkinson, P. T. 1969. “A Note on Reliable Full-

Duplex Transmission over Half-Duplex Links", Communications of the ACM, Vol.12(5).

[19] Bauer, B. 2001b. “UML Class Diagrams: Revisited in the Context of Agent-Based

Systems”. Agent-Oriented Software Engineering, Paolo Ciancarini and Michael

Wooldridge eds., Springer-Verlag, Berlin, pp. 91-103.

[20] Bauer, B., Müller, J., Odell, J. 2001. “Agent UML: A Formalism for Specifying

Multiagent Interaction”. Agent-Oriented Software Engineering, Paolo Ciancarini and

Michael Wooldridge eds., Springer-Verlag, Berlin, pp. 91-103.

[21] Beam, C., Segev, A., Shanthikumar, J. G. 1996. “ Electronic Negotiation through

Internet-based Auctions”. Fisher Center for Information Technology and Management,

University of California at Berkeley, Working Paper 96-WP-1019.

[22] Ben-Ari, M., Halpern, J. Y. and Pnueli, A. 1982. “Deterministic Propositional Dynamic

Logic”. Finite Models, Complexity, and Completeness. Journal of Computer and System

Sciences. 25(3): 402-417 (1982)

[23] Bench-Capon, T. J. M. 2001. “The Notion of an Ideal Audience in Legal Argument”.

Artificial Intelligence and Law 9(1): 59-71 (2001)

[24] Bensalem, S., Lakhnech Y., and Owre S. 1998. “Computing Abstractions of Infinite

State Systems Compositionally and Automatically”. In CAV'98. LNCS 1427, 1998.

[25] J. Billington, M. Diaz, G. Rozenberg. 1999. “Application of Petri Nets to

Communication Networks”. Lecture Notes in Computer Science, vol. 1605, Springer-

Verlag, 1999,

[26] Bjorner, N., Browne, A., Colon, M., Finkbeiner, B., Manna, Z., Sipma, H. and Uribe T.

1999. “Verifying temporal properties of reactive systems: A step tutorial”. Formal

Methods in System Design.

[27] Blackburn, P. 2000. “Representation, Reasoning, and Relational Structures: a Hybrid

Logic Manifesto”. Proc. of the 1st. Method for Modalities Workshop. Amsterdam.

Special Issue of the Logic Journal of the IGPL. Vol 8:3, 339-625.

 393

References

[28] Blackburn, P. and Siegleman, J. 1995. “Hybrid Languages.” Journal of Logic, language

and Information. 4(3) pp 251-272. Special issue on decompositions of first-order logic.

[29] Boehm, B W, Brown, JR., Kaspar, H., Lipow, M., MacLeod, G J. and Merritt, M J.

1978. “Characteristics of Software Quality”. New York, NY: North-Holland Publishing

Company, 1978.

[30] Boolos, G. S. and Jeffey, R. C. 1989. “Computability and Logic”. Cambridge University

Press. Third Edition. ISBN 0521389232.

[31] Boster, F. J., and Mongeau, P. 1984. “Fear-arousing persuasive messages”. In R. N.

Bostrom, editor, Communication yearbook 8. SAGE Publications, 1984

[32] Bradfield J and Stirling C. 1992. “Local model checking for inifinite state spaces”.

Theoretical Computer Science, 96:157--174, 1992.

[33] Bradshaw, J. 1995. “Software Agents”. AAAI press/ The MIT press.

[34] Bradshaw, J. 1996. “KaoS: An open agent architecture supporting reuse,

interoperability, and extensibility”. In tenth Knowledge Acquisition for knowledge-Based

systems workshop.

[35] Brazier, F., Van Eck, P. and Treur, J. 1997. “Modelling Competitive Cooperation of

Agents in a Compositional Multi-Agent Framework”. International 13 Journal of

Cooperative Information Systems, 6:67-94.

[36] Brooks, R. 1991b. “Intelligence without representation”, AI, 47:139-159.

[37] Brooks, R. 1990. “Elephants don’t play chess.” Robotics and autonomous Systems, 6:3-

15.

[38] Brooks, R. 1991. “Intelligence without reason”, Proceedings of the Twelfth International

Joint Conference on Artificial Intelligence (IJCAI-91), pages 569-595, Sydney,

Australia.

[39] Burstall, R. M. 1974. “Program proving as hand simulation with a little induction.“ In

Information Processing 74. Stockholm pp 308-312.

[40] Chang E., Manna Z., and Pnueli A. “The safety-progress classification”. In subseries F:

Computer and System Science, NATO Advanced Science Institutes Series. Springer-

Verlag, 1992.

[41] Chavez, A. and Maes, P. 1996. “Kasbah: An agent marketplace for buying and selling

goods”. In Proceedings of the First International Conference on the Practical

Application of Intelligent Agents and Multi-Agent Technology, London, April 1996.

[42] Chellas, B. 1980. “Modal Logic: An Introduction”. Cambridge University Press, ISBN

0521295157.

[43] Cheng, D. T. and Covaci, S. 1997. “The OMG Mobile Agent Facility: A Submission”.

Rothermel, K. and Popescu-Zeletin, R., Eds., Mobile Agents. Springer-Verlag.

 394

References

[44] Cherkasova, L. and Kotov, V. 1989.” Descriptive and Analytical Process Algebras”.

Rozenberg, G.: Lecture Notes in Computer Science, Vol. 424; Advances in Petri Nets

1989, pages 77-104. Berlin, Germany: Springer-Verlag, 1990.

[45] Clark, k. l., Robinson P. and Hagen R. 1998. “Programming internet distributed DAI

applications in Qu-Prolog”. In Multi-agent systems, (ed. C. Zhang and D. Lukose),

Springer-Verlag LNAI 1544

[46] Clarke E. and Emerson E. 1981. “Synthesis of synchronization skeletons for branching

time temporal logic”. In Logic of Programs: Workshop, Yorktown Heights, NY, May

1981 Lecture Notes in Computer Science, vol. 131, Springer-Verlag. 1981.

[47] Clearwater, S., Ed. 1995. “Market-Based Control: A Paradigm for distributed resource

allocation.” World Scientific.

[48] Cockburn, D. and Jennings, N. R. 1995. “ARCHON: A Distributed Artificial

Intelligence System for Industrial Applications”. In: Foundations of Distributed

Artificial Intelligence (eds. G. M. P. O'Hare and N. R. Jennings), Wiley & Sons.

[49] Codish M. and Taboch C. 1999. “A semantic basis for the termination analysis of logic

programs”. The Journal of Logic Programming, 41:103-123, 1999.

[50] Cohen E. and Lamport L. 1998. “Reduction in tla”. In David Sangiorgi and Robert de

Simone, editors, CONCUR'98 Concurrency Theory, volume 1466 of Lecture Notes in

Computer Science, pages 317--331. Springer-Verlag, 1998.

[51] Cohen, P. R. and Levesque, H. J. 1991. “Teamwork”. Nous, 35 ,25(4):487-512.

[52] Cohen, M.D., March, J.G., and Olsen, J.P. 1972. "A garbage can model of organizational

choice", Administrative Science Quarterly, 17, pp. 1-25.

[53] Cohen. P.R. and Levesque, H. J. 1990. “Intention is choice with commitment”.

Artificial Intelligence 42(3): 213-261.

[54] Conte, R. and Castelfranchi, C. 1995. “Cognitive and Social Action”. UCL Press,

London.

[55] Corkill, D. 1982. “A Framework for Organizational Self-Design in Distributed Problem

Solving Networks” PhD Dissertation. University of Massachusetts.

[56] Cost, R., Chen Y., Finin, T., Labrou, Y. and Peng Y. 1999. “Modeling agent

conversations with colored petri nets”. In Working Notes of the Workshop on Specifying

and Implementing Conversation Policies, pages 59-66.

[57] Cousot P. and Halbwachs N. 1978. "Automatic Discovery of Linear Restraints among

Variables of a Program". Conference Record 5th ACM Symp. on Principles of

Programming Languages, Tucson, 1978, pp. 84-96.

[58] Cox, B. 2001. “The Mainstreaming of E-commerce”. Ecommerce guide – news and

trends. 2001 INT Media Group.

 395

References

[59] Cunningham, J. , Paurobally, S., Diacakis, A., McConnell, S., Gross, G., Lorenzen, L.

1998. “Requirements for Electronic Commerce”. In proc. Trends in Distributed Systems

for Electronic Commerce, Hamburg, Springer LNCS 1402.

[60] Cunningham, J. and Paurobally, S. 1999. “Negotiation Processes in Electronic

Commerce” AAAI Fall Symposium 1999. Workshop Modal & Temporal Logics based

Planning for Open Networked Multimedia Systems. Boston November 1999.

[61] DAML. http://www.daml.org

[62] Davis, E. 1990. “Representations of commonsense knowledge.” San Mateo, CA:

Morgan Kauffman.

[63] Decker, K. and Lesser, V. 1993. “Quantitave modeling of complex computational task

environments.” Proc. Of the Eleventh National Conference on AI, 217-224.

[64] Decker, K. and Lesser, V. 1997. “Designing a Family of Coordination Algorithms”.

Readings in Agents. Michael N. Huhns and Munindar P. Singh (eds.) p389-404. ISBN

1-55860-495-2

[65] Decker, K., Sycara, K. and Williamson, M. 1997. “Middle-agents for the Internet”. In

Proc. of the 15th Joint Conf. on Artificial Intelligence, 1997.

[66] Dederichs, F. Weber R. 1990. “Safety and Liveness From a Methodological Point of

View”. Information Processing Letters 36(1): 25-30.

[67] Dignum F. and Cortés U. 2001. “Agent-Mediated Electronic Commerce III”. LNCS

2003, Springer-Verlag, 2001.

[68] Dignum F. 2001. “Agents, Markets, Institutions and Protocols”. “Agent Mediated

Electronic Commerce, The European Agentlink perspective”, LNCS-1991, F. Dignum

and C. Sierra (eds.). Springer-Verlag, pages 98-114.

[69] DOM, Document Object Model. http://www.w3.org/DOM/

[70] Dowell, M., Stephens, L., and Bonnell, R. 1995. “Using a domain knowledge ontology

as a semantic gateway among databases”. In Proceedings of the Workshop on Basic

Ontological Issues in Knowledge Sharing, International Joint Conference on Artificial

Intelligence (IJCAI-95), Montreal, Canada, August 1995.

[71] Durfee, E. 1998. “Planning in Distributed Artificial Intelligence.” In O’Hare and

Jennings (eds.) Foundations of distributed artificial intelligence, pp 31-247.

[72] Durfee, E. 1998. “Coordination of Distributed Problem Solvers.” Kluwer, 1998.

[73] Durfee, E. 1999. “Distributed Problem Solving and Planning”. Mutiagent Systems A

modern approach to distributed Artificial Intelligence. Weiss Ed. MIT Press. ISBN

0262232030.

[74] Ebay. 2002. http://www.ebay.com.

 396

http://www.daml.org/
http://www.ebay.com/

References

[75] Elio R. and Haddadi, A. 1999. " On Abstract Models and Conversation Policies" In Proc.

Workshop on Specifying and Implementing Conversation Policies, Autonomous

Agents'99 Conference, Seattle, May, 1999.

[76] Emerson, E. A. 1990. “Temporal and modal logic”. Handbook of theoretical computer

science, vol. B. pp 995-1072.

[77] Fagin R. , Halpern, J. Y., Moses, Y. and Vardi, M. Y. 1995. “Reasoning about

knowledge”. MIT Press, Cambridge, Mass., 1995

[78] Fagin, R., Vardi, M. Y. 1985. “An Internal Semantics for Modal Logic: Preliminary

Report”. STOC 1985: 305-315

[79] Faratin, P. 2001. “ Multi-Agent Contract Negotiation” Socially Intelligent Agents -

creating relationships with computers and robots "Multiagent Systems, Artificial

Societies, and Simulated Organizations" Series . Kluwer.

[80] Faratin, P., Klein, M., Samaya, H., Bar-Yam, Y. 2001. “Simple Negotiating Agents in

Complex Games: Emergent Equilibria and Dominance of Strategies”. In Proceedings of

the 8th Int Workshop on Agent Theories, Architectures and Languages (ATAL-01),

Seattle, USA, pp. 42—53.

[81] Faratin, P., Sierra C., and Jennings, N. R. 1998. “Negotiation Decision Functions for

Autonomous Agents”. Int. Journal of Robotics and Autonomous Systems, 24 (3-4).

[82] Faratin, P., Sierra C., Jennings, N. R. 2000. “Using Similarity Criteria to Make

Negotiation Trade-Offs”. Proc. 4th International Conference on Multi-Agent Systems

(ICMAS-2000), pages 119-126.

[83] Faratin, P., Sierra C., Jennings, N. R. and Buckle, P. 1999. “Designing Responsive and

Deliberative Automated Negotiators Negotiation”. Proc. AAAI Workshop on

Negotiation: Settling Conflicts and Identifying Opportunities, Orlando, FL, 12-18.

[84] Farquhar, A., Fikes, R. and Rice, J. 1996. “The Ontolingua server: A tool for

collaborative ontology construction”. Technical report, Stanford KSL 96-26.

[85] Fatima, S. S. , Wooldridge, M. and Jennings N. R. 2001. ”Optimal negotiation strategies

for agents with incomplete information". Proc. 8th Int. Workshop on Agent Theories,

Architectures and Languages (ATAL), Seattle, USA, 53-68.

[86] Feldbrugge, F. and Jensen, K. 1987. “Petri Nets: Applications and Relationships to Other

Models of Concurrency”. In Lecture Notes in Computer Science, Vol. 255, pages 20-61.

[87] Ferguson, I. 1992. “Touring Machines: Autonomous Agents with Attitudes”. IEEE

Computer 25(5): 51-55

[88] Fich F.E.. 1998. “End-to-end Communication”, Proceedings of the 2nd Int. Conf. on

Principles of Distributed Systems. 1998.

[89] Fikes, R.E. and Nilsson, N.J. 1971. “STRIPS: A new approach to the application of

theorem proving to problem solving”. Artificial Intelligence 2(3-4).

 397

References

[90] Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzson, R., McKay, D., McGuire,

J., Pelavin, R., Shapiro, S., Buffalo, S., Beck, C. 1993. “Specification of KQML, Agent

Communication Language” The DARPA Knowledge Sharing Initiative External

Interfaces Working Group, February, 1993.

[91] FIPA .2001e. “FIPA Iterated Contract Net Interaction Protocol”.

http://www.fipa.org/specs/fipa00030/XC00030F.html

[92] FIPA. 2001a. “FIPA Interaction Protocol Library specification”.

http://www.fipa.org/specs/fipa00025/XC00025E.html

[93] FIPA. 2001b. “FIPA Request Interaction Protocol”.

http://www.fipa.org/specs/fipa00026/XC00026F.html

[94] FIPA. 2001c. “FIPA Request When Interaction Protocol”.

http://www.fipa.org/specs/fipa00028/XC00028F.html

[95] FIPA. 2001d. “FIPA Contract Net Interaction Protocol”.

http://www.fipa.org/specs/fipa00029/XC00029F.html

[96] FIPA. 2001f. “FIPA Brokering Interaction Protocol”.

http://www.fipa.org/specs/fipa00033/XC00033F.html

[97] FIPA. 2001g. “FIPARecruiting Interaction Protocol”.

http://www.fipa.org/specs/fipa00034/XC00034F.html

[98] FIPA. 2001h. “FIPA English Auction Interaction Protocol”.

http://www.fipa.org/specs/fipa00031/XC00031F.html

[99] FIPA. 2001i. “FIPA Dutch Auction Interaction Protocol”.

http://www.fipa.org/specs/fipa00032/XC00032F.html

[100] FIPA.. 1997. Agent Communication Language Technical report. Foundation for

Intelligent Physical Agents. http://www.fipa.org

[101] FIPA.. 2001. Foundation for Intelligent Physical Agents. http://www.fipa.org

[102] Fischer, M. J. and Ladner, R.E. 1979. “Propositional dynamic logic of regular

programs.” Journal of Computational System Science. Vol 18, pp 194-211.

[103] Foldoc. “Free on-line dictionary of computing”. http://foldoc.doc.ic.ac.uk

[104] Francez, N., and Pnueli, A. 1978. "A proof method for cyclic programs", Acta Inf.,

vol 9, 1978, 138-158

[105] Franklin, S. and Graesser, A. 1996. “Is it an agent, or just a program?: A taxonomy

for autonomous agents”. In Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages. Springer-Verlag,

[106] Galbraith, J. 1973. "Designing Complex Organizations" Addison-Wesley

[107] Ganzinger H. and Waldmann U. 1993. “Termination proofs of well-moded logic

programs via conditional rewrite systems”. In Proceedings of the 3rd International

 398

http://www.fipa.org/specs/fipa00030/XC00030F.html
http://www.fipa.org/specs/fipa00025/XC00025E.html
http://www.fipa.org/specs/fipa00026/XC00026F.html
http://www.fipa.org/specs/fipa00028/XC00028F.html
http://www.fipa.org/specs/fipa00029/XC00029F.html
http://www.fipa.org/specs/fipa00033/XC00033F.html
http://www.fipa.org/specs/fipa00034/XC00034F.html
http://www.fipa.org/specs/fipa00031/XC00031F.html
http://www.fipa.org/specs/fipa00032/XC00032F.html
http://foldoc.doc.ic.ac.uk/

References

Workshop on Conditional Term Rewriting Systems, volume 656 of Lecture Notes in

Computer Science, pages 113-127, Berlin, 1993. Springer-Verlag.

[108] Gasser L. and A. Majchrzak. 1992. "HITOP-A: A Tool To Facilitate Interdisciplinary

Manufacturing System Design" International Journal of Human Factors in

Manufacturing, 2(3), pages 255--276, 1992.

[109] Gasser L., Braganza C., and Herman N.1987. “Implementing distributed artificial

intelligence systems using mace”. In Proceedings of the Third IEEE Conference on

Artificial Intelligence Applications, pages 315-320.

[110] Gasser, L. 1998. “Social Conceptions of Knowledge and Action: DAI Foundations

and Open Systems Semantics”. Readings in Agents. Michael N. Huhns and Munindar P.

Singh (eds.) p389-404. ISBN 1-55860-495-2

[111] General Magic. 1995. “Telescript Language Reference”. General Magic, Inc. 420

North Mary Avenue, Sunnyvale, CA 94086. October 1995.

http://www.generalmagic.com/

[112] Gerbrandy, J. and Groeneveld, W. 1997. “Reasoning about Information Change”.

Journal of logic, language and information, 6:147-169, 1997.

[113] German S M. and Wegbreit B. 1975. “A synthesizer of inductive assertions”. IEEE

Transactions on Software Engineering, 1(1):68--75, March 1975.

[114] Giacomo, G. and Lenzerini, M. 1995. “PDL-based framework for reasoning about

actions”. In M. Gori and G. Soda (Eds.), Topics in Articial Intelligence. LNAI 992.

[115] Giddens, A. 1984. “The constitution of society”. University of California Press.

[116] Giordano, L., Martelli, A. and C. Schwind. 1998. “Dealing with concurrent actions in

modal action logics”. In H. Prade, editor, ECAI'98. John Wiley & Sons. 537-541.

[117] Goldblatt, R. 1992. Logics of Time and Computation, Lecture Notes, Center for the

Study of Language and Information 1987.

[118] Gordon M. and Melham T. 1993. “Introduction to HOL: A Theorem Proving

Environment for Higher-Oder Logic”. University Press, Cambridge, 1993.

[119] Graf S. and Sifakis J. 1987. “Readiness semantics for regular processes with silent

actions” Proc. ICALP 87 (Th.Ottman, ed.) Karlsruhe, LNCS 267, Springer-Verlag,

pp.115-125.

[120] Gray, R. 1996. "Agent Tcl: A flexible and secure mobile agent system" In Proc. of

the Fourth Annual Tcl/Tk Workshop, pages 9-23, Monterey, Cal., July 1996.

[121] Grosz, B. and Kraus, S. 1996. “Collaborative plans for complex group actions.”

Aritificial Intelligence, 86:269-358.

[122] Guardian Newspaper, Friday 3rd August 2001.

[123] Guilfoyle, C.,Jeffcoate, J. and Stark, H. 1997. “Agents on the Web: Catalyst for E-

Commerce”. Ovum Ltd, London, Apr. 1997.

 399

References

[124] Guttman, R., Mouskas, A. and Maes, P. 1998. “Agent-Mediated electronic

commerce: A survey”. Knowledge Engineering Review, 13(2): 147-159.

[125] Hailpern B. T. and Owicki S. S. 1980. “Verifying Network Protocols using Temporal

Logic”. Technical Report 192. Computer Systems Laboratory Stanford University.

[126] Halpern and Moses. 1990. Knowledge and common knowledge in a distributed

environment. Journal of the ACM, 37:549-587.

[127] Halpern J. Y. and Shoham Y. 1991. “A propositional modal logic of time intervals”.

Journal of the ACM, 38(4):935-962, 1991.

[128] Halpern, J.Y. and Zuck, L.D. 1992. “A little knowledge goes a long way: knowledge-

based derivations and correctness proofs for a family of protocols”. J. of the ACM, 39(3).

[129] Hanks and McDermott 1986. “Default reasoning, nonmonotonic logic, and the frame

problem.” Proceedings of AAAI 1986, 328-333.

[130] Haar, S., Kaiser L., Simonot-Lion, F. and Oussaint, J. 2000. “On Equivalence

between Timed State Machines and Time Petri Nets”. INRIA Research report RR-4049.

[131] Harel, D. 1984., “First order dynamic logic”. Extensions of Classical Logic,

Handbook of Philosophical Logic II. pp.497-604.

[132] Harel, D. and Naamad, A. 1996. “The Statemate Semantics of Statecharts”. ACM

Transactions Software Engineering Method 5:4 October 1996.

[133] Harel, D., Naamad, A.,Lachover, H.,.Pnueli, A., Politi, M. 1990. “ Statemate: A

Working Environment for the Development of Complex Reactive Systems”. IEEE

Transactions of Software Engineering Vol16, No4, April 1990.

[134] Harel, D., Politi, M. 1998. “Modeling reactive systems with statecharts, The

Statemate approach”. McGraw-Hill.

[135] Harel, D., Rosner, R., and Vardi, M. 1990a. “On the power of bounded concurrency

III: Reasoning about programs”. Proceedings of Fifth Annual IEEE Symposium on Logic

in Computer Science, 478-488, Philadelphia, Pennsylvania.

[136] Hennessy M. and Milner R. 1985 “Algebraic laws for nondeterminism and

concurrency”. Journal of the ACM (JACM). 32(1), 137—161.

[137] Hintikka, J. 1969. “Semantics for propositional attitudes,” In Models for Modalities,

Reidel: Dordrecht, the Netherlands.

[138] Hoare C. A. 1980. “Communicating sequential processes, On the construction of

programs” R.McKeag & A Macnaghten, eds. Cambridge University press, pp. 229-254.

[139] Holzmann G. J. 1997. “The model checker SPIN”. IEEE Trans. on Software

Engineering, 23(5):279--295, 1997.

[140] Houston, P. J., Wilkie, F. G., Anderson, T. J. 1998. “Component-based

development, CORBA and RM-ODP”, IEE Proceeding-Software, 145(1):22-28.

 400

References

[141] Howard, R.A. and Matheson, J.E. 1981. “Influence diagrams.” In the principles and

applications of decision analysis. pp 720-762.

[142] Huhns, M. N. and Singh M. P (eds.) 1997. “Readings in Agents”. p371-379. ISBN 1-

55860-495-2

[143] Huhns, M. N. and Stephens, L. 1999. “Multiagent Systems and Societies of Agents”.

In Multiagent Systems A modern approach to distributed Artificial Intelligence. MIT

Press. ISBN 0262232030.

[144] Huhns, M. N. and Weiss, G. (eds.). 1998. “Special Issue on Multiagent Learning”.

Machine Learning Journal. Vol 33(2-3).

[145] Huhns, M., and Singh, M. 1997. "Ontologies for Agents". In IEEE Internet

Computing November-December 1997, pp. 81-83

[146] Hunsberger, L. and. Grosz, B. J. 2000. “A combinatorial auction for collaborative

planning”. Proceedings of the Fourth International Conference on Multi-Agent Systems

(ICMAS-2000), pages 151-158, 2000.

[147] Jackson, M. 1975. “ Structured Design”. Academic Press 1975

[148] Jancar, P. 1995. “High Undecidability of Weak Bisimilarity for Petri Nets.” In:

Mosses, P.D.; Nielsen, M.; Schwartzbach, M.I.: Lecture Notes in Computer Science, Vol.

915; TAPSOFT'95: Theory and Practice of Software Development, Aarhus, Denmark,

May 22-26, 1995, pages 349-363. Springer-Verlag, 1995.

[149] Jaynes, E. 1985. “Bayesian methods: General background”. In Maximum Entropy

and Bayesian methods. Cambridge University Press, pp 1-25.

[150] Jennings, N. 1995. “Controlling cooperative problem solving in industrial multi-

agent systems using joint intentions”. Artificial Intelligence, 75.

[151] Jennings, N. and Wooldridge, M. 1997. (eds). “Agent Technology”. Springer.

[152] Jennings, N. and Wooldridge, M. 1996. “Software Agents”. IEE Review 42(1).

[153] Jennings, N. R., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C. and Wooldridge,

M. 2001. "Automated negotiation: prospects, methods and challenges" Int. J. of Group

Decision and Negotiation 10 (2) 199-215.

[154] Jennings, N., Faratin, P.,Johnson, M., O’Brien, P. and Wiegand, M. 1996. “Using

Intelligent Agents to Manage Business Processes”, Proc. First Int. Conf. on The

Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM96).

[155] Jennings, N., Norman, T. and Faratin, P. 1998. “ADEPT: An agent-based apporach

to business process management”. ACM ISGMOD Record, 27(4): 32-39.

[156] Jennings, N., Parsons, S., Sierra, C. and Faratin,P. 2000. "Automated Negotiation".

Proc. 5th Int. Conf. on the Practical Application of Intelligent Agents and Multi- Agent

Systems (PAAM-2000), Manchester, UK, 23-30.

 401

References

[157] Jennings, N., Sycara, K.and Wooldridge, M. 1998. “A roadmap of agent research and

development”. International Journal of Autonomous Agents and Multi-Agent Systems.

[158] Jensen, K. 1993. “An Introduction to the Theoretical aspects of Coloured Petri Nets”.

Lecture Notes in Computer Science, Vol. 803; A Decade of Concurrency, pages 230-272.

Springer-Verlag, June 1993.

[159] Jensen, K. 1994. “Coloured Petri Nets - Basic Concepts, Analysis Methods and

Practical Use” EATCS Monographs on Theoretical Computer Science. Berlin: Springer-

Verlag.

[160] Jensen, K. 1994. “Condensed State Spaces for Symmetrical Coloured Petri Nets.”

Formal Methods in System Design Vol. 9, pages 7-40. Kluwer Academic Publishers..

[161] Jensen, K. 1998. “An Introduction to the Practical Use of Coloured Petri Nets”.

Lecture Notes in Computer Science, Vol. 1492: Lectures on Petri Nets II: Applications.

Springer-Verlag, 1998.

[162] In: Reisig, W.; Rozenberg, G.: Lecture Notes in Computer Science, Vol. 1492:

Lectures on Petri Nets II: Applications. Springer-Verlag, 1998. ISBN: 3-540-65307-4.

[163] Jin, Y and Levitt, R. 1996. "The Virtual Design Team: A Computational Model of

Project Organizations", Computational and Mathematical Organisation Theory. 2(3).

[164] Jones, A. and Firozabadi B. 2000. “On the Characterisation of a trusting agent:

Aspects of a formal approach”. In C. Castelfranchi and Y. Tan (eds): Trust and

Deception in Virtual Societies. Kluwer Academic Press.

[165] Kaelbling, L. P., Littman, M. L. and Moore, A. W. 1996. “Reinforcement learning: A

survey”. Journal of Artificial Intelligence Research. 4:237--285

[166] Kakas A., Kowalski R., Toni F. 1992. “Abductive Logic Programming”. Journal of

Logic and Computation 2(6): 719-770.

[167] Kakas, A. and Miller, R. 1997. “A simple declarative language for describing

narratives with actions.” The journal of Logic Programming. Vol 31(1-3), pp. 157-200.

[168] Keller R. 1976. “Formal Verification of Parallel Programs”. Communications of the

ACM, vol. 7, 1976

[169] Keller, R. 1976. “Formal Verification of Parallel Programs”. Communications of the

ACM, vol. 7. 1976.

[170] Kindler, E. 1994. “Safety and Liveness Properties: A Survey”. In EATCS [EAT94],

pages 268+.

[171] Knuth, D. E. and Moore, R. W. 1975. “An analysis of alpha-beta pruning”. Artificial

Intelligence, 6(4):293-326.

[172] Koning J L and Huget M P, Jun Wei, and Xu Wang. 2001. “Extended Modeling

Languages for Interaction Protocol Design”. Proc. of Agent-Oriented Software

Engineering (AOSE) 2001, Agents 2001, Montreal. p. 93-100.

 402

References

[173] Koning J L and Huget M P. 2001. “A Semi-Formal Specification Language

Dedicated to Interaction Protocols", H. Kangassalo and H. Jaakkola and E. Kawaguchi

(eds.), Information Modeling and Knowledge Bases XII, Frontiers in Artificial

Intelligence and Applications, IOS Press, 2001.

[174] Konolige, K. 1986. “A Deduction Model of Belief”. Pitman Publishing: London and

Morgan Kaufmann: San Mateo, CA

[175] Korf, R. E. 1988. “Search in AI: A survey of recent results”. In H.Shrobe, editor,

Exploring Artificial Intelligence. Morgan-Kauffman.

[176] Kosaraju, S. R. 1982. “Decidability of reachability in vector addition systems,” 14th

Annual ACM Symp. Theory and Computing. P 267-281.

[177] Kowalski R. and Sergot, M. 1986. “A logic-based calculus of events”. New

generation computing 4(1):67-95.

[178] Kozen, D. 1983. “Results on the propostional mu-calculus”. Theoretical Computer

Science 27, 333-354.

[179] Kraus, S. 1996. “An Overview of Incentive Contracting”. AI journal 83(2), 297-346.

[180] Kraus, S., Sycara, K. and Evenchik, A. 1998. “Reaching Agreements through

Argumentation: a Logical Model and Implementation”. Artificial Intelligence 104:1--70.

[181] Kraus. S. 2001. “Automated Negotiation and Decision Making in Multi-agent

Environments.” In Proceedings of 9th ECCAI Advanced Course and EASSS 2001.

Springer, LNAI 2086.

[182] Kraus. S. 2001a. “ Strategic Negotiation in Multi-Agent Environments”. MIT Press,

Cambridge, USA.

[183] Kripke, S. A. 1963. “Semantical analysis of modal logic I: Normal propositional

calculi,” Zeitschrift fur mathematics Logik und Grundlagen der Mathematik, pp 67-96.

[184] Krulwich, B. 1996. “The bargainfinder agent: Comparison price shopping on the

internet”. In J. Williams, ed., Bots and Other Internet Beasties. SAMS.NET, 1996.

http://bf.cstar.ac.com/bf/.

[185] Kuwabara, K., Ishida, T. and Osata, N. 1995. "AgenTalk: Describing Multiagent

Coordination Protocols with Inheritance". In proceedings of the 7th IEEE International

Conference on Tools for Artificial Intelligence, pages 460-465.

[186] Labrou, Y. 2001. “Standardising Agent Communication”. In Proceedings of 9th

ECCAI Advanced Course and EASSS 2001. Springer, LNAI 2086.

[187] Labrou, Y. and Finin, T. 1997. “Semantics for an agent communication language”.

The fourth International workshop on Agent Theories, Architectures and Languages.

Rhode Island, USA.

[188] Labrou, Y. and Finin, T. 1997b. “Semantics and conversations for an agent

communication language”. In Proceedings of the Fifteenth International Joint

 403

References

Conference on Artificial Intelligence (IJCAI-97), pages 584--591, Nagoya, Japan.

Communications of the ACM, 21:666--677.

[189] Lamport, L. 1977. “Proving the correctness of multiprocess programs”. IEEE

Transactions Software Eng, Se-3, 2, (March 1997), 125-143.

[190] Lamport, L. 1980. “The “Hoare Logic” of concurrent programs”. Acta Inf 14, 1. 21-

37

[191] Lamport, L. 1980a. “Sometimes is sometimes "not never" - on the temporal logic of

programs”. In Proceedings of the 7th ACM Symposium on Principles of Programming

Languages, pages 174--185, January 1980.

[192] Lamport, L. 1994. “A temporal logic of actions”. ACM Transactions on

Programming Languages and Systems, 16(3):872-- 923, March 1994.

[193] Last-Minute. 2002. http://www.last-minute.com

[194] Lehmann, D., O'Callaghan, L.I. and Shoham, Y. 1999. “Truth revalation in rapid,

approximately efficient combinatorial auctions”. In ACM Conference on Electronic

Commerce, 1999.

[195] Lendaris,G. 1964. “On the definition of self-organizing systems.” IEEE Proceedings

52. p324-325.

[196] Lichtenstein, O., Pnueli, A., Zuck, L. 1985. “The glory of the past”. Proc. Workshop

on Logics of Programs, Brooklyn, 1985, Springer-Verlag, LNCS 193, pp. 196--218.

[197] Lieberman, H. 1997. “Autonomous interface agents”. In Proc. ACM Conference on

Computers and Human Interface, Atlanta, GA, 1997.

[198] Lin, F. and Shoham, Y. 1992. “Concurrent actions in the situation calculus.” In Proc.

AAAI-92, pp. 590-595.

[199] Lin, F., Norrie, D H, Shen, W and Kremer R. 1999. “Schema-based approach to

specifying conversation policies”. In Working Notes of the Workshop on Specifying and

Implementing Conversation Policies, Third International Conference on Autonomous

Agents, pages 71--78.

[200] Lomuscio, A., Wooldridge, M. and Jennings, N. 2000. “A Classification Scheme for

Negotiation in Electronic Commerce. In Agent Mediated Electronic Commerce. The

European AgentLink Perspective. C. Sierra and F. Dignum, editors. ISBN: 3-540-

41671-4. Springer Verlag. pages 61-77.

[201] Loredo, T. 1990. “From Laplace to supernova SN1987A: Bayesian inference in

astrophysics”. In Maximum Entropy and Bayesian methods. Kluwer Academic Press,

pp 81-142.

[202] Lufthansa. http://www.lufthansa.com

[203] Maes, P. 1991. “Designing Autonomous Agents”. Cambridge MIT Press.

[204] Maes, P., "Intelligent Software." In: Labile Ordnungen, Hans-Bedrow-Institut, 1997.

 404

http://www.last-minute.com/
http://www.lufthansa.com/

References

[205] Maes, P., Guttman, R., Moukas, A. 1999. ”Agents that buy and sell”.

Communications of the ACM 42, 3 (Mar. 1999), p. 81

[206] Malone., T. W. 1987. “Modeling Coordination in Organizations and Markets”.

Management Science, 33(10):1317--1332, 1987.

[207] Manna Z. and Pnueli A. 1995. “Temporal verification of reactive systems – safety”.

Springer-Verlag ISBN 0387944591.

[208] Manna, Z. and Sipma H. 1998. “Deductive Verification of Hybrid Systems using

SteP”. In Hybrid systems: computation and control. International Workshop LNCS

1386, Springer-Verlag.

[209] Manning, P. 1977. “Rules in an Organizational Context.” In Organizational Analysis,

Sage.

[210] Marsh S. P. 1994. “Formalising Trust as a Computational Concept”. Ph.D. thesis,

University of Stirling, Dept. of Comp. Science and Mathematics. April 1994.

[211] Martin, D., Cheyer, A., and Moran, D. 1999b. “The Open Agent Architecture: a

framework for building distributed software systems." Applied AI , 13(1/2):91-128.

[212] Martin, F., Plaza, E. and Rodr ' iguez-Aguilar, J. 1999. “Conversation protocols:

Modeling and implementing conversations in agent-based systems”. In Working Notes of

the Workshop on Specifying and Implementing Conversation Policies, Third

International Conference on Autonomous Agents ,pages 49-58.

[213] Matos, N., Sierra, C., and Jennings, N. 1998. "Determining Successful Negotiation

Strategies: An Evolutionary Approach". Proceedings of the Third International

Conference on Multi-Agent Systems ICMAS'98, Paris, 1998, pp. 182-189.

[214] Mayfield J., Labrou Y. and Finin T. “Evaluation of KQML as an agent

communication language”. In M. Wooldridge, J. P. Mueller, and M. Tambe, editors,

Intelligent Agents II: Agent Theories, Architectures, and Language. Springer-Verlag

Lecture Notes in AI, Volume 1037, 1996.

[215] Mayr E. W. 1984. “An algorithm for the general Petri net reachability problem”.

SIAM J. Comp. 13(3) 441-460.

[216] McBurney, P., Parsons, S. and Johnson M. W. 2002. “When are two protocols the

same?” In Agent Communication Languages and Conversation Policies, Proceedings of

an AAMAS-02 Workshop, Bologna, Italy.

[217] McCarthy J. and Costello T. 1998. “Combining narratives”. In A.G. Cohn and L.K.

Schubert, editors, Principles of Knowledge Representation and Reasoning: Proceedings

of the Sixth International Conference (KR'98), pages 48-59.

[218] McCarthy, J. 1980. “Circumscription – a form of non-monotonic reasoning.”

Artificial Intelligence, 13, 27-39.

 405

References

[219] McCarthy, J. 1986. “Applications of circumscription to formalizing common-sense

knowledge”. Artificial Intelligence, 28:89-116.

[220] McCarthy, J. and Hayes, P. 1969. “Some Philosophical Problems from the

Standpoint of Artificial Intelligence” In Machine Intelligence 4. pp 463-502

[221] Meyer, J.-J. C. and van der Hoek, W. 1995. “Epistemic Logic for Artificial

Intelligence and Computer Science” volume 41 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press: Cambridge, England, 1995.

[222] Miller, J. A., Sheth, A. P., Kochut, K. J. ; Wang, X. 1996. "CORBA-Based Run-Time

Architectures for Workflow Management Systems". Journal of Database Management,

Special Issue on Multidatabases, 7(1) (1996), pp. 16-27.

[223] Milner R. 1989. “Communication and Concurrency”. Prentice Hall, 1989.

[224] Minar, N., Burkhart, R., Langton, C., Askenazi, M. 1996. "The Swarm Simulation

System, A Toolkit for Building Multi-Agent Simulations".

http://www.santafe.edu/projects/swarm/overview/overview.html.

[225] Mitchell, T. 1997. “Machine learning”. McGraw-Hill.

[226] Moore, S. 1999. “On conversation policies and the need for exceptions”. In Working

Notes of the Workshop on Specifying and Implementing Conversation Policies, Third

International Conference on Autonomous Agents. pages 19-28.

[227] Moss S. and Edmonds B.1997. “A formal preference-state model with qualitative

market judgements”. The International Journal of Management Science, 25(2):155-169

[228] Muggleton S. 1999. “Inductive Logic Programming: Issues, Results and the

Challenge of Learning Language in Logic”. Artificial Intelligence 114(1-2): 283-296.

[229] Müller, J 1996. “The Design of Intelligent Agents - A Layered Approach”. Springer.

[230] Murata, T. 1989. “Petri Nets: Properties, Analysis and Applications”. Proceedings

of the IEE, Vol 77(4). April 1989.

[231] Naur, P. (ed.) 1960. “Revised Report on the Algorithmic Language ALGOL 60.”

Communications of the ACM, Vol 3 (5), pp. 299-314.

[232] Neiger, G. and Tuttle M. R. 1993. “Common knowledge and consistent simultaneous

coordination”. Distributed Computing, 6(3):181-192.

[233] Nodine M. and Unruh A. 1997. “Facilitating open communication in agent systems:

the InfoSleuth infrastructure”. In Proceedings of the Fourth International Workshop on

Agent Theories, Architectures, and Languages, 1997. MCC-INSL-113-98.

[234] Noriega, P. and Sierra C. 1996. “Towards layered dialogical agents”. In Proceedings

of the ECAI'96 Workshop Agents Theories, Architectures and Languages ATAL’9.

[235] Noriega, P. and Sierra C. editors. 1999. “Agent Mediated Electronic Commerce”

(LNAI Volume 1571). Springer-Verlag: Berlin, Germany.

[236] Nouvelles-frontieres. 2002. http://www3.nouvelles-frontieres.fr/nf

 406

http://www3.nouvelles-frontieres.fr/nf

References

[237] Nowostawski, M., Purvis, M., and Cranefield, S., "A Layered Approach for

Modelling Agent Conversations ", Proceedings of the 2nd International Workshop on

Infrastructure for Agents, MAS, and Scalable, MAS, 5th International Conference on

Autonomous Agents (2001) 163170.

[238] Nwana, H. S. 1996. “Software agents: An Overview”. Intelligent Systems Research,

BT Laboratories, Knowledge Engineering Review. Vol. 11, No. 3, pp 205-244.

[239] Odell, J., Parunak, H.V.D., Bauer B. 2000. “Extending UML for Agents”. Proc. of

the Agent-Oriented Information Systems Workshop at the 17th National conference on

Artificial Intelligence, Gerd Wagner, Yves Lesperance, and Eric Yu eds., Austin, TX.

[240] Odell, J., Parunak, H.V.D., Bauer B. 2001. “Representing Agent Interaction

Protocols in UML”. Agent-Oriented Software Engineering, Paolo Ciancarini and

Michael Wooldridge eds., Springer-Verlag, Berlin, pp. 121–140.

[241] Ohlebusch, E. 1999. “Transforming conditional rewrite systems with extra variables

into unconditional systems”. In Proceedings of the 6th International Conference on

Logic for Programming and Automated Reasoning, volume 1705 of Lecture Notes in

Artificial Intelligence, pages 111-130, Berlin, 1999. Springer-Verlag.

[242] OMG, Object Management Group. 1998a. “Combined Business Object Facility

Interoperability Specification”, http://www.omg.org/pub/docs/bom/98-05-03

[243] OMG, Object Management Group. 1998b. “Mobile Agent Facility Specification”,

http://www.omg.org/pub/docs/cf/02-06-97

[244] OMG, Object Management Group. 1999. Task and Session Faciltiy.

http://www.omg.org

[245] OMG, Object Management Group. 2000. “The Common Object Request Broker:

Architecture and Specification, 2.4”. http://www.omg.org.

[246] Orfali, R. and Harkey, D. 1997a. “Client-server programming with Java and

CORBA”, John Wiley & Sons.

[247] Orfali, R., Harkey, D., Edwards, J. 1997b. “Instant CORBA”. John Wiley & Sons.

[248] OSM Consortium. 1997. “WP1 Task 1.6, Deliverable 6 Consolidated Analysis”.

http://www.osm.net

[249] OSM Consortium. 1997. “WP2, OSM Reference Architecture”. http://www.osm.net

[250] OSM SARL. 1998. Negotiation facility. , http://www.omg.org, EC/99-03-06

[251] Owicki S. and Lamport L. 1982. “Proving Liveness Properties of Concurrent

Programs.” ACM Transactions on Programming Languages and Systems. Vol. 4, No. 3.

July 1982, pages 455 – 495.

[252] Özsu M. T. and Valduriez P. 1999. “Principles of Distributed Database Systems”,

Second Edition Prentice Hall ISBN 0-13-659707-6.

 407

http://www.omg.org/pub/docs/cf/02-06-97
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

References

[253] Panconesi A. 1997.

http://www.nada.kth.se/kurser/kth/2D5340/wwwbook/node20.html

[254] Parsons, S., Sierra, C. and Jennings, N. R. 1998. “Agents that reason and negotiate by

arguing”. Journal of Logic and computation, 8(3):261-292

[255] Parunak Van D. H.1996. “Visualizing agent conversations: Using enhanced Dooley

graphs for agent design and analysis”. In Proc. of the 2nd International Conference on

Multi-Agent Systems (ICMAS '96).

[256] Passay, S. and Tinchev, T. 1991. “An Essay in Combinatory Dynamic Logic”.

Information and Computation 93(2): 263-332 (1991)

[257] Paurobally, S. and Cunningham, J. 2000a. “Specifying the Processes and States of

Negotiation”. In Agent Mediated Electronic Commerce. The European AgentLink

Perspective. C. Sierra and F. Dignum, editors. ISBN: 3-540-41671-4. Springer Verlag.

pages 61-77.

[258] Paurobally, S. and Cunningham, J. 2000b. “Processes and States of Negotiation and

Underlying Architecture.” In Practical Reasoning Agent Workshop. FAPR 2000.

London. ISSN 1469-4166.

[259] Paurobally, S. and Cunningham, J. 2002a. “Verification of Protocols for negotiation

between agents.” Proceedings of European Conference on AI 2002. (ECAI 2002), Lyon

France, July 2002.

[260] Paurobally, S. and Cunningham, J. 2002b. Safety and Liveness of Negotiation

Protocols. Artificial intelligence and the simulation of behaviour Convention.

(AISB2002). Intelligent Agents in virtual markets track. London April 2002.

[261] Pearl, J. 1984. “Heuristics: Intelligent Search Strategies for Computer Problem

Solving”. Addison-Wesley

[262] Pearl, J. 1988. “Probabilistic reasoning in intelligent systems: Networks of plausible

inference”. Moragn Kaufmann, San Mateo, CA.

[263] Pentland, B.T. 1995. “Grammatical models of organizational processes”.

Organization Science 6, 5, pp.541-556. 1995.

[264] Petri, C.A. 1966. “Communication with Automata”. Vol. 1. Applied Data Research,

Princeton, AF 30(602)-3324, 1966

[265] Pitt, J., and Mamdani, A. 1999. “Communication protocols in multi-agent systems”.

In Working Notes of the Workshop on Specifying and Implementing Conversation

Policies, Third International Conference on Autonomous Agents pages 39-48.

[266] Pitt, J., Anderton M., Cunningham, J. 1996. “Normalized Interactions between

Autonomous Agents, A Case Study in Inter-Organisational Project Management”, CSCW

5, pp 210-222.

 408

References

[267] Pnueli A. 1977. “The temporal semantics of concurrent programs.” Theoretical

Computer Science 13:1-20.

[268] Pnueli A. 1979. “The temporal logic of programs”. In proceedings of the 18th

Symposium on the Foundation of Computer Science, IEEE, Providence, pp 46-57.

[269] Pnueli A. 1985. “Linear and branching structures in the semantics and logics of

reactive systems”, proc. 12th ICALP (W.Brauer, ed.) Nafplion, Greece, LNCS 194,

Springer-Verlag, pp. 15-32.

[270] Poole D., Mackworth A., Goebel R. 1998. “Computational Intelligence. A logical

approach.” Oxford University Press ISBN 0195102703.

[271] Poslad, S. and Calisti, M. 2000. “Towards improved trust and security in FIPA agent

platforms”. Autonomous Agents 2000 Workshop on Deception, fraud, and trust in agent

societies, Barcelona, June 2000.

[272] Poslad, S. and Charlton, P. 2001. “Standardising Agent Interoperability: The FIPA

approach.” In Proceedings of 9th ECCAI Advanced Course and EASSS 2001. Springer,

LNAI 2086.

[273] Prakken H., Sergot M.J. 1997. “Dyadic Deontic Logic and Contrary-to-duty

Obligations”. Defeasible Deontic Logic: Essays in Nonmonotonic Normative Reasoning.

D. Nute (ed.), Synthese Library No. 263, Kluwer Academic Publishers, pp 223-262.

[274] Pratt, V. R. 1976. “Semantical considerations on Floyd-Hoare logic”. Proceedings

of 17th IEEE Symposium, Foundations of Computer Science, pp. 109-121.

[275] Pratt, V. R. 1981. “A decidable mu-calculus: Preliminary report.” Proceedings 22nd

Annual Symposium on Foundations of Computer Science. pp. 421-427.

[276] Pratt, V.R.1976. “Semantical considerations on Floyd-Hoare logic”. In Proc. 17th

Ann. IEEE Symp. on Foundations of Comp. Sci., pages 109--121.

[277] Purvis, M. K., Cranefield, S. J. S., Nowostawski, M., and Purvis, M. A. 2002. "Multi-

Agent System Interaction Protocols in a Dynamically Changing Environment",

Information Science Discussion Paper Series, Number 2002/04.

[278] QXL. 2002. http://www.qxl.com

[279] Raiffa, H. 1982. The Art and Science of Negotiation. Harvard University Press, 1982

[280] Rao A. S. and Georgeff, M. P. 1991. “Modeling Rational Agents within a BDI-

Architecture”, In R. Fikes and E. Sandewall, editors, International Conference on

Principles of Knowledge Representation and Reasoning (KR), Massachusetts.

[281] Rao A. S. and Georgeff, M. P. 1992. “An Abstract Architecture for Rational Agents”,

Proceedings of the Third International Conference on Principles of Knowledge

Representation and Reasoning, Boston 1992.

 409

http://www.qxl.com/

References

[282] Rao A. S. and Georgeff, M. P. 1995. “BDI agents: From theory to practice”. In V.

Lesser (ed.): Proc. of the First Int. Conf. on Multi-Agent Systems (ICMAS-95). 312-319.

MIT Press, 1995.

[283] Rasmusen, E. 1989. “Games and Information: An Introduction to Game Theory”.

Basil Blackwell, Oxford, U.K. and Cambridge, Mass.

[284] Reisig, W. 1985. “Petri Nets, An Introduction”. EATCS, Monographs on Theoretical

Computer Science, W.Brauer, G. Rozenberg, A. Salomaa (Eds.), Springer Verlag,

Berlin, 1985.

[285] Reiter, R. 1991. “The frame problem in the situation calculus: A simple solution

(sometiems) and a completeness result for goal regression.” In Artificial Intelligence and

mathematical theory of computation: Papers in honor of John McCarthy, 359-380.

[286] Rhodes, B. 2000. “Margin notes: building a contextually aware associative memory”.

Intelligent User Interfaces 2000: 219-224.

[287] Rich, C. and Sidner, C. 1997. “COLLAGEN: When agents collaborate with people.”

In Proceedings of the International Conference on Autonomous Agents (Agents’97).

[288] Richters M. and Gogolla M. 1998. “On formalizing the UML object constraint

language OCL”. In Proceedings, Conceptual Modeling, LNCS 1507, pages 449--464.

Springer, 1998.

[289] Rivest, R., Shamir A. and Adlemann, L. 1978. "A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems." Communications of the ACM, 21: 120-126.

February 1978.

[290] Robles, S., Poslad, S., Borrell, J., Bigham, J. 2001. “Adding security and privacy to

agents acting in a marketplace: a trust model”, 2001 IEEE 35th International Carnahan

Conference on Security Technology, Oct 2001, p 235 –239

[291] Rodriguez, J., Martin, F., Noriega, Garcia, P., P., Sierra, C. 1998b. “Towards a test-

bed for trading agents in electronic auction markets.” AI Communications, 11(1):5-19,

1998.

[292] Rodriguez, J., Noriega, P., Sierra, C., Padget, J. 1998a. “Competitive Scenarios for

Heterogeneous Trading Agents.” Proceedings of the Second International Conference on

Autonomous Agents (Agents’ 98).

[293] Rosenschein, J. S. and Zlotkin, G. 1998. “Rules of Encounter. Designing

Conventions for Automated Negotiation among Computers”. MIT Press. ISBN

0262181592.

[294] Rosenschein, J., Sandholm, T., Sierra, C., Maes, P. and Guttmann, R.. 1998b.

“Agentmediated electronic commerce: Issues, challenges and some viewpoints”. In

Proceedings of the Second International Conference on Autonomous Agents.

 410

References

[295] Rothkopf, M., Pekec, A. and Harstad, R. 1998. “Computationally manageable

combinatorial auctions”. Management Science, 44:1131--1147, 1998.

[296] RuleML. http://www.dfki.de/ruleml

[297] Rushby J. 1994. "Critical System Properties: Survey and Taxonomy", Reliability

Engineering and System Safety, 43(2): 189-219, 1994.

[298] Sadek, M. D. 1992. “A study in the logic of intention”. In Proceedings of the Third

International Conference on Principles of Knowledge Representation and Reasoning,

Cambridge, MA. pages 462--473.

[299] Samuelson L. 1998. “Evolutionary Games and Equilibrium Selection.” MIT Press

ISBN: 0262692198.

[300] Sandholm, T. 1993. “An implementation of the contractnet protocol based on

marginal cost calculations.” Proc. Nat. Conf. On Artificial intelligence. AAAI Press.

[301] Sandholm, T. 1996. ”Limitations of the Vickrey Auction in Computational

MultiAgent Systems”. In Proceedings of ICMAS-96, pp. 299-306

[302] Sandholm, T. and Suri S. 2001. “Market Clearability”. In proceedings of

International joint conference on Artificial Intelligence , IJCAI 2001. Pages 1145 – 1152

[303] Sandholm, T., Sikka, S., and Norden, S. 1999b. “Algorithms for optimizing leveled

commitment contracts”. In Proc. of IJCAI99, pages 535-540.

[304] Sandholm, T.and Lesser, V. 1995. “Issues in automated negotiation and electronic

commerce: Extending the contract net framework”. In 1st Int'l Conf. on Multiagent

Systems, pages 328--335, San Francisco.

[305] Sandholm, T.and Lesser, V. 1997. “Coalitions Among Rationally Bounded Agents”.

Artificial Intelligence, 94(1):99—137.

[306] Sandholm, T.W. 1999. “Distributed Rational Decision Making.” In Weiss, G. (ed.)

1999. “Mutiagent Systems A modern approach to distributed Artificial Intelligence”.

MIT Press. ISBN 0262232030.

[307] Schild, K. 2000. “On the Relationship Between BDI Logics and Standard Logics of

Concurrency2. Autonomous Agents and Multi-Agent Systems 3(3): 259-283

[308] Searle, J. R. 1969. “Speech acts: An essay in the philosophy of language”.

Cambridge University Press.

[309] Segev, A. and Beam, C. 1997. ”Automated Negotiations: a Survey of the State of the

Art”. In Wirtschaftsinformatik, vol. 39, 1997, pp. 269-279

[310] Sen, S. 1996. “Adaptation, coevolution and learning in multiagent systems”. Papers

from the 1996 AAAI Spring Symposium. AAAI Press. AAAI Technical Report SS-96-01.

[311] Sen, S. and Weiss, G. 1999. “Learning in Multiagent Systems.” In Weiss, G. (ed.)

1999. “Mutiagent Systems A modern approach to distributed Artificial Intelligence”.

MIT Press. ISBN 0262232030.

 411

http://www.dfki.de/ruleml

References

[312] Sen, S., Sekaran, M. and Hale, J. 1994. “Learning to Coordinate Without Sharing

Information”. Proceedings of the National Conference on Artificial Intelligence.

[313] Sergot M.J. 1999. “Normative Positions”. In Norms, Logics and Information

Systems, P. McNamara and H. Prakken (eds), IOS Press, Amsterdam, pp 289-308.

[314] Shanahan M.P. 1997. “Solving the Frame problem: a mathematical investigation of

the Common sense law of Inertia”. MIT Press, 1997

[315] Shanahan, M. 1997. “Event calculus planning revisited”. In Proc. of the European

Conference on Planning (ECP), volume 1348 of LNAI, pages 390-402. Springer, 1997.

[316] Shanahan, M. P. 1999. “The Event Calculus Explained”. In Artificial Intelligence

Today, eds. M. J. Wooldridge and M. Veloso, Springer-Verlag Lecture Notes in

Artificial Intelligence no. 1600, Springer-Verlag, pages 409-430.

[317] Shannon, C.E. 1950. “Programming a Computer for Playing Chess”. Philosophical

Magazine, Vol. 41 (7th series), 256-275.

[318] Shehory O. and Kraus S. 1999. “Feasible formation of coalitions among autonomous

agents in non-super-additive environments”. Computational Intelligence, 15(3). 1999.

[319] Shoham, Y. 1991. “AGENT0: A simple agent language and its interpreter”. In

Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim. 704-709.

[320] Shoham, Y. 1993. “Agent Oriented Programming”, Journal of AI , 60(1):51-92

[321] Shoham, Y. and Tennenholtz, M. 1995. “On Social Laws for Artificial Agent

Societies: Off-Line Design”. Artificial Intelligence, 73, 231-252, 1995.

[322] Shostak R. E. 1984. “Deciding combinations of theories”. J. of the ACM, 31(1):1-12.

[323] Sierra C., Faratin P. and N. R. Jennings. 1997. “A Service-Oriented Negotiation

Model between Autonomous Agents”. Proc. 8th European Workshop on Modeling

Autonomous Agents in a Multi-Agent World, Ronneby, Sweden, 17-35, 1997.

[324] Sierra C., Godo, J., Lopez de Mantaras R., Manzano M. 1996. “Descriptive dynamic

logic and its applications to reflective architectures.” Future Generation Computer

Systems Journal, Elsevier. 12:157-171.

[325] Sierra C., Jennings N.R., Noriega P., and Parsons S. 1998. “ A framework for

argumentation-based negotiation.” In M.P. Singh, A. Rao, and M.J. Wooldridge, editors,

Proc. ATAL-97, pages 177-192. Springer-Verlag.

[326] Singh, M. P. 1998. "A Semantics for Speech Acts," in Readings in Agents. Edited by

M. N. Huhns, and M. P. Singh. Morgan Kaufmann, San Francisco, 458-470.

[327] Singh, M. P., 1993. “A Semantics for Speech Acts”. Annals of Mathematics and

Artificial Intelligence.

[328] Singh, M. P., Rao, A. S. and Georgeff, M. P. 1999. “Formal methods in DAI: Logic-

based representation and reasoning”. In G. Weiss, editor, Multiagent Systems. A Modern

Approach to Distributed Artificial Intelligence, pages 331--376. The MIT Press.

 412

References

[329] Sistla A.P. and Clarke E.M. 1985. “The complexity of propositional linear temporal

logics”. Journal of the ACM, 32(3):733--749, 1985.

[330] Sistla, A. P. 1994. “Safety, liveness and Fairness in Temporal Logic”. Formal

Aspects in Computing, 1994, vol. 6, pp 495-511.

[331] Smith, R. G. 1980. “The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver”. IEEE Trans. in Comp. 29 (12), 1104-1113.

[332] Spivey J. M. 1988. “The Z Reference Manual”. Prentice Hall International.

[333] Stenning V. 1976. “A Data Transfer Protocol”. Computer Networks 1.

[334] Stevens R S and Kaplan D J. 1992. "Determinacy of generalized schema". IEEE

Transactions on Computers 41 (1992), 776-779.

[335] Sycara, K. 1990. “Persuasive argumentation in negotiation”. Theory and decision, 28:

203-242.

[336] Tahara, Y., Ohsuga, A. and Honiden, S. 2001. “Mobile Agent Security with the

IPEditor Development Tool and the Mobile UNITY Language”. Proceedings of 5th

International Conference on Autonomous Agents 2001. pp 656-662.

[337] Tambe, M. 1996. “Teamwork in real-world, dynamic environments”. In Proceedings

of the Second International Conference on Multi-Agent Systems (ICMAS-96), Menlo

Park, California, AAAI Press.

[338] Tambe, M. 1997. “Towards flexible teamwork”. Journal of AI Research. 7:83-124.

[339] Tennenholtz, M. 2001. “Rational Competitive Analysis”. In International Joint

Conference on Artificial Intelligence 2001. pp 1067-1072.

[340] Tsang, E. 1993. “ Foundations of Constraint Satisfaction”. Academic Press, 1993

[341] Van der Hoek, W. and Wooldridge, M. 2002. “Model Checking Knowledge and

Time”. In Proceedings of the 9th Int. SPIN Worshop. on Model Checking of Software.

[342] Vidal, J. M. and Durfee, E. H. 1996. “The impact of nested agent models in an

information economy”. In Proceedings of the Second International Conference on

Multiagent Systems. AAAI Press.

[343] Vinoski, S. 1997. “ CORBA: Integrating Diverse Applications within Distributed

Heterogeneous Environments”. IEEE Communications Magazine, Vol. 14, No. 2.

[344] Wagner T,. Benyo, B., Lesser V., and Xuan P. 1999. “Investigating Interactions

Between Agent Conversations and Agent Control Components”. In Agents 99 Workshop

on Conversation Policies.

[345] Wagner, D. and Schneier, B. 1996. “Analysis of the SSL 3.0 Protocol”. The Second

USENIX Workshop on Electronic Commerce Proceedings, USENIX Press, pp. 29-40.

[346] Waldinger, R. 1997. “Achieving several goals simultaneously”. Machine

Intelligence 8: Machine Representations of Knowledge, Chichester, England.

 413

References

[347] Waldinger, R. J., Levitt, K. N. 1974. “Reasoning about programs”. Artificial

Intelligence, 5(3):235--316

[348] Walton, D. N. and Krabbe, E. C. W. 1995. “Commitment in Dialogue: Basic

Concepts of Interpersonal Reasoning “. State Univ. New York P.

[349] Watanabe, T., Mizobata, Y. and Onaga, K. 1989. “Time Complexity of Legal Firing

Sequence and Related Problems of Petri Nets”. Transactions of the Institute of

Electronics, Information and Communication Engineers E, Vol. E72, No. 12, pages

1400-1409.

[350] Wang, X. F., Lam, K. Y. and Yi, X. 1998. “Secure Agent-mediated Mobile

Payment”, In proceedings First Pacific Rim International Workshop on Multi-agents,

Mutiagent Platforms. Toru Ishida (ed.) Springer 3540659676.

[351] Warmer J. and Kleppe A. 1999. “OCL: The constraint language of the UML”.

Journal of Object-Oriented Programming, May 1999.

[352] Watkins, C. J. C. H. 1989. “Learning from delayed rewards.” PhD. Thesis, King’s

College, Cambridge University.

[353] Webster, B F. 1995. “Pitfalls of Object-Oriented Development”. M&T Books, New

York, ISBN 1-55851-397-3.

[354] Weiss, G. (ed.) 1998. “Special Issue on Learning in Distributed AI Systems”. Journal

of experimental and theoretical artificial intelligence. Vol 10(3).

[355] Weiss, G. (ed.) 1999. “Mutiagent Systems A modern approach to distributed

Artificial Intelligence”. MIT Press. ISBN 0262232030.

[356] Weiss, G. 1993. “Learning to coordinate actions in multi-agent systems”. In

Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,

pages 311-316.

[357] Weiss, G., and Dillenbourg, P. 1999. “What is 'multi' in multiagent learning?” In P.

Dillenbourg (Ed.), Collaborative learning. Cognitive and computational approaches

(Chapter 4, pp. 64--80). Pergamon Press.

[358] Weld, D. S. 1994. “An introduction to least commitment planning”. AI Magazine

15(4): 27-61.

[359] Wellman, M. P. 1995. “Market-oriented programming environment and its

application to distributed multicommodity flow problems”. Journ. AI Res. 1(1), 1-23.

[360] Wellman, M. P. 1998. “A Computational Market Model for Distributed

Configuration Design”. Readings in Agents. Michael N. Huhns and Munindar P. Singh

(eds.) p371-379. ISBN 1-55860-495-2

[361] Wellman, M. P. and Wurman, P. R.1998. “Market-aware agents for a multi-agent

world”. In Robotics and Autonomous Systems 24:115-125, 1998

 414

References

 415

[362] White, J. E. 1994. “Telescript technology: The foundation for the electronic

marketplace”. White paper, General Magic, Inc., 2465 Mountain View, CA 94040.

[363] Winograd, T. and. Flores, F. 1986. “Understanding Computers and Cognition: A new

foundation for design”. Addison Wesley, Reading, MA 1986.

[364] Wooldridge, M. 1996. “Practical Reasoning with Procedural Knowledge: A Logic of

BDI Agents with Know-How”. In D. M. Gabbay and H.-J. Ohlbach, editors,

International Conference on Formal and Applied Practical Reasoning. Springer-Verlag.

[365] Wooldridge, M. 1998. “Verifiable semantics for agent communication languages”.

Third International Conference on Multi-Agent Systems, Y. Demazeau (ed.), IEEE Press.

[366] Wooldridge, M. 2001. “An Introduction to MultiAgent Systems.” Wiley and Sons Ltd.

ISBN 0471-49691-X.

[367] Wooldridge, M. and Jennings, N. R. 1995a. “Intelligent agents: Theory and practice”.

The Knowledge Engineering Review, 10(2):115--152.

[368] Wooldridge, M. and Jennings, N. R. 1995b. “Agent Theories, Architectures, and

Languages: A Survey.” In M. J. Wooldridge and N. R. Jennings, editors, Proc. ECAI-94

Workshop on Agent Theories, Architectures and Languages. Springer-Verlag,

[369] Wurman, P. R., Wellman M. and Walsh W. 1998. “The Michigan Internet

AuctionBot: A configurable auction server for human and software agents”. Second

International Conference on Autonomous Agents, May 1998.

[370] Yang, Q. 1997. “Intelligent Planning: A decomposition and abstraction-based

approach” Springer-Verlag, New-York.

[371] Yang, Z., and Duddy, K. 1996. "CORBA: A Platform for Distributed Object

Computing”. ACM Operating Systems Review, Vol 30, No 2, PP 4-31, April 1996.

[372] Yi, X. and Okamoto, E. 1998. “A Secure Agent-based Payment System for Mobile

Computing Environments”, IEICE Technical Reports, Vol.98, No.84, 1998

[373] Yokoo, M. and. Ishida, T. 1999. “Search algorithms for agents”. In G. Weiss, editor,

Multiagent Systems A Modern Approach to Distributed AI, pages 165-199. MIT Press.

Acronyms

Acronyms

ABP Alternating Bit Protocol

ACL Agent Communication Language

AI Artificial Intelligence

AMEC Agent Mediated Electronic Commerce

ANML Agent Negotiation Meta-Language

AOP Agent Oriented Programming

ARCHON ARchitecture for Cooperative Heterogeneous ON-line systems

AUML Agent Unified Modeling Language

BDI Belief, Desire, Intention

BOCA Business Object Component Architecture

BOF Business Object Framework

BSD Business System Domain

CDL Component Definition Language

CORBA

Common Object Request Broker Architecture

COS Common Object Services

CPN Coloured Petri Nets

CTL Computational Tree Logic

CTL* Computational Tree Logic*

EAUML Extended Agent Unified Modeling Language

EC Electronic Commerce

E-Commerce Electronic Commerce

 416

Acronyms

 417

FIPA

The Foundation for Intelligent Physical Agents

FSM Finite State Machines

IDL Interface Definition Language

IP Interaction Protocol

KB Knowledge Base

KQML Knowledge Query and Manipulation Language

MAS Multi-Agent System

MASSIF Mobile Agent Facility

OCL Object Constraint Language

OMA Object Management Architecture

OMG Object Management Group

OOP Object-Oriented Programming

ORB Object Request Broker

OSM Open Service Model

PDL Propositional Dynamic Logic

SL Semantic Language

SLA Service Level Agreement

SSL Secure Socket Layer

TCP/IP Transport Control Protocol/ Internet Protocol

UML Unified Modeling Language™

W3, WWW World Wide Web

W3C World Wide Web Consortium

XML eXtended Mark-up Language

	Shamimabi Paurobally
	abstract.pdf
	Abstract

	Acknowledgements.pdf
	Acknowledgements

	contents.pdf
	ContentsAbstract2Contents5Figures101 Introduction131.1Negotiation in Agent Mediated Electronic Commerce131.2Motivation and Aims151.3Thesis Outline241.4Background and Related Research261.5Statement of Contribution312 Agents for Negotiation322.1Introduct

	Figures.pdf
	Figures

	1 Introduction.pdf
	Introduction
	Negotiation in Agent Mediated Electronic Commerce
	Motivation and Aims
	Contributions to Automated Negotiation

	Thesis Outline
	Background and Related Research
	Background: Multi-Agent Systems (MAS)
	Agent Mediated Electronic Commerce and Markets
	Automated Negotiation
	Strategies and Planning

	Statement of Contribution

	2 AOP architectures.pdf
	Agents for Negotiation
	Introduction
	Characteristics of Agents
	Non-logic Based Agents: Reactive Agents
	Brook’s Subsumption Architecture

	Hybrid Agents
	Logics Based Agents
	Shoham’s Agent-Oriented Programming
	BDI agents
	Computational Tree Logic (BDI CTL*)

	Agent Design Concepts
	Mobile Agents
	Learning agents
	Interface and Information Agents

	Multi-Agent Systems
	ARCHON Architecture

	Agent Mediated Electronic Commerce
	The ADEPT Agent Architecture
	Middleware Agents

	Automated Negotiation
	Requirements for Negotiations
	Agent Communication Languages
	Negotiation Protocols
	Decision Making and Strategic Planning
	Auctions

	Summary

	3 Methodology.pdf
	ANML – Agent Negotiation Meta-Language
	Introduction
	Motivation for ANML
	Possible Logics for ANML
	Situation Calculus
	Event Calculus
	Modal Logic
	Multi-Modal Logic - Propositional Dynamic Logic (PDL)
	Hybrid Logics
	Logics of Concurrency

	ANML as Extended PDL
	ANML for Specifying Protocols

	Syntax of ANML
	Semantics of ANML
	Standard Models for ANML
	Formulas
	Processes

	Axioms and Inference Rules in ANML
	Precedence of ANML Operators
	Constructs from ANML Connectives
	Axioms and Inference rules in ANML
	Examples of negotiation through multi-modal axioms and rules
	Rules and Axioms for <(>

	D, T, B, 4 and 5 Properties in ANML
	Axioms on ANML Connectives
	State Axioms
	Inference Rules and Axioms over Processes

	The state of a process-like negotiation between agents
	Further Work on ANML
	Conclusion

	4 Other protocol.pdf
	Representing Protocols in ANML
	Introduction
	A Bilateral Protocol
	Buying a pizza online (Business to Consumer)
	Buying telecommunication bandwidth (Business to Business)
	Holiday (Business to Consumer)

	Bilateral Negotiation Expanded
	Expanded Bilateral protocol in JSD
	State-chart and ANML theory for expanded bilateral protocol

	Multi-lateral Protocol
	Scenario for Multilateral Negotiation
	Promissory Negotiation
	Scenario for Promissory negotiation
	Redeeming a voucher
	Fulfilling a Commitment

	Auction Protocols
	English Auction
	Scenario of an English Auction
	Dutch Auction
	Sealed Bid Auction

	Fish-Market Auction
	Summary

	5 Case Studies.pdf
	Verification of Protocols
	Introduction
	Bilateral Protocol
	Errors in the Original Bilateral Protocol
	Theory of Bilateral Negotiation – Corrected Versi
	Errors in sub-states

	Representing Protocols in AUML
	AUML and FIPA IPs
	FIPA Request Interaction Protocol
	Errors in AUML Request Protocol
	Corrections of the Request Protocol

	FIPA Request-When Interaction Protocol
	Errors in Request-When IP
	Corrected Request-When IP in ANML

	FIPA Iterated Contract Net Interaction Protocol
	Errors in Iterated Contract Net Protocol in AUML
	A logical theory of the Iterated Contract Net Protocol

	FIPA English Auction Interaction Protocol
	Errors in English Auction IP in AUML
	Corrected English Auction IP in ANML
	Dutch Auction IP

	FIPA Recruiting Interaction Protocol
	Some Errors in AUML Recruitment IP
	ANML Theory for Recruiting Protocol

	Translating Bilateral negotiation from ANML to AUML
	What is wrong with AUML?
	Propositions for Extended AUML

	Petri Nets for Interaction Protocols
	Petri Nets Graphs
	Marked Petri Nets
	Properties of Petri Nets
	Communication Protocols in Petri Nets

	Translating from Petri Nets to ANML
	Merging of Processes
	Splitting of processes
	Coloured Petri Nets
	Request Interaction Protocol in Petri Nets
	Contract Net Interaction Protocol in Petri Nets
	A Pair-wise Negotiation Protocol in Coloured Petri Net
	KQML Register in Petri Net

	Issues about Petri Nets
	Reachability Problem in Petri Nets
	Sub-Protocols
	Conclusions about Petri Nets for Interaction Protocols

	Summary

	6 Properties.pdf
	The Properties of a Protocol
	Introduction
	Safety and Liveness properties – A survey
	Some General Properties of Protocols
	Safety
	Partial Correctness
	Liveness

	Definition of Properties
	Preliminary Definitions
	Termination Property
	Soundness
	Liveness
	Serial, Ordered and Serialisable
	Completeness
	Non-Arbitrary Restart
	Reliability
	Consistency
	Non-Concurrent Processes
	Decidable

	Proving the Properties of the Bilateral Protocol
	Termination
	Strong Termination
	Liveness
	Soundness
	Serial
	Ordered
	Not Serialisable
	Complexity
	Security
	Non-Consecutive Property
	Reliability
	Consistency
	A Discussion about Equivalency between Protocols
	Types of Equivalences between Protocols
	Related Work on Equivalence in Petri Nets
	Equality Problem in Petri Nets
	Equivalence in Protocols using ANML
	Is a protocol a subset of another protocol

	Summary

	7 Joint theory.pdf
	Reasoning about a Group’s Beliefs
	Introduction
	The Theory of Joint Intentions
	Knowledge and Belief Systems
	Knowledge and Belief in a negotiation
	Example of Contents of Knowledge and Belief in a negotiating group

	The Properties of a Theory
	Common, Individual and Joint Theory
	Common Theory
	Individual Theory
	Joint Theory

	Consistency of the Joint Theory
	How Robinson’s rule preserves consistency of the
	Maintaining Consistency in Negotiation

	Beliefs about the Negotiation State in a Fallible Communication Medium
	Defining the Problem
	A Synchronisation Layer
	The State of a Negotiation

	Contribution to Communication and Interaction
	Practical Usability
	Related Work

	An Interacting Group’s Beliefs
	Consistency of Joint Beliefs
	Shared Beliefs
	Sufficiency of Shared Beliefs

	Definitions and Assumptions
	Assumptions
	Acknowledgments and Message Structure
	Terminating an Interaction

	Guaranteed Receipt of Messages
	Proof of Safety of Protocol R
	Proof of Consistency of Joint Belief
	Proof of Termination with Shared Belief

	Non-Guaranteed Receipt of Messages
	Proof of Safety of Protocol T

	Repeated Messaging and Timeouts
	Pragmatics of Synchronisation
	Fragment of Bilateral Negotiation
	Generic Scenario of a Negotiation
	Interaction Protocol in Scenario
	A Possible Path of Negotiation

	Summary

	8 Practical Agents.pdf
	Practical Agents
	Introduction
	Strategies for Single Actions
	Evaluation Mechanisms
	Responsive Mechanisms
	Deliberative Mechanisms

	Strategies for a Bilateral Negotiation
	Responsive Decision Making in a Bilateral Negotiation
	Algorithm for a state transition using responsive mechanism
	Algorithm 8.1 in ANML
	Algorithm when not-acceptable
	Generating Offers Using Responsive Mechanisms

	Deliberative Decision Making in a Bilateral Negotiation
	A bilateral Negotiation using Deliberative mechanisms
	Generating values with a deliberative mechanism
	Algorithm for acceptable and close
	Algorithm for acceptable and middle
	Algorithm for acceptable and far
	Algorithm for a not-acceptable set of issues
	Algorithm for not-acceptable and middle
	Algorithm for not-acceptable and close

	Implementation of a Bilateral Negotiation
	Assumptions
	Negotiation Cycle using a Responsive Mechanism
	Negotiation cycle for a Deliberative Strategy
	Some Implementation Details

	Performance Analysis
	Case1: Varying deadline between 2 deliberative agents
	Case2: Varying deadline between a deliberative and a responsive agent
	Case3: Comparing deliberative against responsive strategies
	Case4: Guessing an opponent’s weights
	Case5: Varying initial values of deliberative agents
	Conclusions from Simulation

	Planning Agents
	The Tasks of a Shopping Scenario
	Joint States of the Shopping Process
	The Paths of the Shopping Process

	Finding Paths and Assigning Utilities
	Utility of Paths
	A Discussion about Search Strategies for Path-finding
	The mental state of a planning agent

	Summary

	9 Conclusion.pdf
	Conclusion and Further Work
	Summary
	Further Research
	Further Developments in Related Areas

	appendixA.pdf
	Appendix A – Normal Modal System
	Syntax of Modal Logic
	Semantics of Modal Languages
	Multi-Modal Semantics
	Propositional Dynamic Logic

	Axioms for Normal Systems of Modal Logic
	Axioms in PDL

	Rules of Inference in a modal system
	Rules and Axioms for <(>

	AppendixB.pdf
	Appendix B - Electronic Commerce and its Architectures
	Introduction
	The Evolution of Electronic Commerce
	Different Aspects of Electronic Commerce
	Prioritising Requirements for Electronic Commerce
	Business Transactions
	Conclusions on Requirements for E-Commerce
	Object Management Architecture
	CORBA
	Java and Distributed objects
	CORBA Services
	CORBA Facilities
	Higher Level Frameworks: The Business Object Facility
	Business System Domain

	Advantages of CORBA
	Shortcomings of CORBA
	EC Architectures - The Task/Session Facility
	Open Service Model Reference Architecture
	Negotiation Facility Specification
	Summary

	References.pdf
	References

	Glossary.pdf
	Acronyms

	Title.pdf
	SHAMIMABI PAUROBALLY

	Acknowledgements.pdf
	Acknowledgements

	Title.pdf
	SHAMIMABI PAUROBALLY

