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Abstract.  A critical issue of applying Linear Discriminant Analysis (LDA) is both the 

singularity and instability of the within-class scatter matrix.  In practice, particularly in 

image recognition applications such as face recognition, there are often a large number of 

pixels or pre-processed features available, but the total number of training patterns is 

limited and commonly less than the dimension of the feature space.  In this paper, a new 

LDA-based method is proposed. It is based on a straighforward stabilisation approach for 

the within-class scatter matrix.  In order to evaluate its effectiveness, experiments on face 

recognition using the well-known ORL and FERET face databases were carried out and 

compared with other LDA-based methods.  The results indicate that our method im-

proves the LDA classification performance when the within-class scatter matrix is not 

only singular but also poorly estimated, with or without a Principal Component Analysis 

intermediate step and using less linear discriminant features. 
 
Keywords:  Linear Discriminant Analysis (LDA); small sample size; face recognition. 

1   Introduction 

The Fisher Discriminant Analysis, also called the Linear Discriminant Analysis (LDA), 

has been used successfully as a statistical feature extraction technique in several classifi-

cation problems. 

A critical issue in using LDA is, however, the singularity and instability of the within-

class scatter matrix.  In practice, particularly in image recognition applications such as 

face recognition, there are often a large number of pixels or pre-processed features avail-

able, but the total number of training patterns is limited and commonly less than the di-

mension of the feature space.  This implies that the within-class scatter matrix either will 

be singular if its rank is less than the number of features or might be unstable if the total 
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number of training patterns is not significantly larger than the dimension of the feature 

space. 

A considerable amount of research has been devoted to the design of other Fisher-

based methods, for targeting small sample and high dimensional problems [1, 3, 21, 26, 

27, 28, 29].  However, less attention has been paid to problems where the dimensionality 

of the feature space is comparable to the total number of training examples.  In this situa-

tion, the within-class scatter matrix is full rank but poorly estimated. 

In this paper, a new Fisher-based method is proposed.  It is based on the straightfor-

ward maximum entropy covariance selection approach [24] that overcomes both the sin-

gularity and instability of the within-class scatter matrix when LDA is applied in limited 

sample and high dimensional problems.  In order to evaluate its effectiveness, experi-

ments on face recognition using the well-known ORL and FERET face databases were 

carried out and compared with other LDA-based methods – a brief account of these re-

sults was presented in [23].  The results indicate that our method improves the LDA clas-

sification performance when the within-class scatter matrix is singular as well as poorly 

estimated, with or without a Principal Component Analysis (PCA) intermediate step and 

using less linear discriminant features. 

2   L inear  Discr iminant Analysis (LDA) 

The primary purpose of the Linear Discriminant Analysis is to separate samples of dis-

tinct groups by maximising their between-class separability while minimising their 

within-class variability.  Although LDA does not assume that the populations of the dis-

tinct groups are normally distributed, it assumes implicitly that the true covariance matri-

ces of each class are equal because the same within-class scatter matrix is used for all the 

classes considered [11]. 

Let the between-class scatter matrix bS  be defined as 
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and the within-class scatter matrix wS  be defined as 
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where jix ,  is the n-dimensional pattern j  from class iπ , iN  is the number of training 

patterns from class iπ , and g  is the total number of classes or groups.  The vector ix  

and matrix iS  are respectively the unbiased sample mean and sample covariance matrix 

of class iπ  [7].  The grand mean vector x  is given by 
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where N  is the total number of samples, that is, gNNNN +++= �21 .  It is important 

to note that the within-class scatter matrix wS  defined in equation (2) is essentially the 

standard pooled covariance matrix multiplied by the scalar )( gN − , that is 
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The main objective of LDA is to find a projection matrix ldaP  that maximizes the ratio 

of the determinant of the between-class scatter matrix to the determinant of the within-

class scatter matrix (Fisher’s criterion), that is 
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Devijver and Kittler [5] have shown that ldaP  is in fact the solution of the following ei-

gensystem problem: 

0=Λ− PSPS wb . (6) 

Multiplying both sides by 1−
wS , equation (6) can be rewritten as 
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where P  and Λ  are respectively the eigenvectors and eigenvalues of bw SS 1− .  In other 

words, equation (7) states that if wS  is a non-singular matrix then the Fisher’s criterion 

described in equation (5) is maximised when the projection matrix ldaP  is composed of 

the eigenvectors of bw SS 1−  with at most )1( −g  nonzero corresponding eigenvalues.  This 

is the standard LDA procedure. 

The performance of the standard LDA can be seriously degraded if there are only a 

limited number of total training observations N  compared to the dimension of the fea-

ture space n .  Since the within-class scatter matrix wS  is a function of )( gN −  or less 

linearly independent vectors, its rank is )( gN −  or less.  Therefore, wS  is a singular 

matrix if N  is less than )( gn + , or, analogously, might be unstable if N  is not at least 

five to ten times )( gn + [9]. 

In the next section, recent LDA-based methods proposed for targeting limited sample 

and high dimensional problems are described.  A novel method of combining singular 

and non-singular covariance matrices for solving the singularity and instability of the 

within-class scatter matrix is proposed in section 4. 

3   LDA L imited Sample Size Approaches 

A critical issue for the standard LDA feature extraction technique is the singularity and 

instability of the within-class scatter matrix.  Thus, a considerable amount of research has 

been devoted to the design of other LDA-based methods, for overcoming the limited 

number of samples compared to the number of features.  In the following sub-sections, 

recent LDA-based methods with application to face recognition are described.  Since the 

face recognition problem involves small training sets, a large number of features, and a 

large number of groups, it has become the most used application to evaluate such limited 

sample size approaches [1, 3, 21, 26, 27, 28, 29]. 

3.1   Fisher faces Method 

The Fisherfaces [1, 29] method is one of the most successful feature extraction ap-

proaches for solving limited sample size problems in face recognition.  It is also called 

the Most Discriminant Features (MDF) method [21]. 
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The Fisherfaces or MDF method is essentially a two-stage dimensionality reduction 

technique.  First the face images from the original vector space are projected to a lower 

dimensional space using Principal Component Analysis (PCA) [25] and then LDA is 

applied next to find the best linear discriminant features on that PCA subspace. 

More specifically, the MDF projection matrix mdfP  can be calculated as 

pcaldamdf PPP *= , (8) 

where pcaP  is the projection matrix from the original image space to the PCA subspace, 

and ldaP  is the projection matrix from the PCA subspace to the LDA subspace obtained 

by maximising the ratio 

PPSPP

PPSPP
P
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T

P
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As described in the previous section, equation (9) analogously states that if pcaw
T
pca PSP  is 

a non-singular matrix then the Fisher’s criterion is maximised when the projection matrix 

ldaP  is composed of the eigenvectors of )()( 1
pcab

T
pcapcaw

T
pca PSPPSP −  with at most )1( −g  

nonzero corresponding eigenvalues. 

The singularity problem of the within-class scatter matrix wS  is then overcome if the 

number of retained principal components varies from at least g  to at most gN −  PCA 

features [1, 21, 29]. 

3.2   Chen et al.’ s Method (CLDA) 

Chen et al. [3] have proposed another LDA-based method, here called CLDA, that over-

comes the singularity problems related to the direct use of LDA in small sample size 

applications, particularly in face recognition. 

The main idea of their approach is to use either the discriminative information of the 

null space of the within-class scatter matrix to maximise the between-class scatter matrix 

whenever wS  is singular, or the eigenvectors corresponding to the set of the largest ei-

genvalues of matrix bwb SSS 1)( −+  whenever wS  is non-singular.  Fukunaga [7] has 

proved that the eigenvectors of bwb SSS 1)( −+  are the same as bw SS 1− . 

The CLDA algorithm for calculating the projection matrix cldaP  can be summarised as 

follows [3]: 
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i. Calculate the rank r  of the within-class scatter matrix wS ; 

ii. If wS  is non-singular, that is nr = , then cldaP is composed of the eigenvectors cor-

responding to the largest eigenvalues of bwb SSS 1)( −+ ; 

iii. Otherwise, calculate the eigenvectors matrix ],...,,,...,[ 11 nrr vvvvV +=  of the singu-

lar within-class scatter matrix wS .  Let Q  be the matrix that spans the wS  null 

space, where ],...,,[ 21 nrr vvvQ ++=  is an nx )( rn −  sub-matrix of V ; 

iv. The projection matrix cldaP is then composed of the eigenvectors corresponding to 

the largest eigenvalues of TT
b

T QQSQQ )( .  Chen et al. have proved that those ei-

genvectors obtained through the transformation TQQ  are the most discriminant 

vectors in the original sample space [3]. 

Although their experimental results have shown that CLDA improves the performance 

of a face recognition system compared with Liu et al.’ s approach [12] and the standard 

template matching procedure [10], Chen et al.’ s approach will select the same linear dis-

criminant features as the standard LDA when wS  is non-singular but poorly estimated. 

3.3   Yu and Yang’s Method (DLDA) 

Yu and Yang [28] have developed a direct LDA algorithm (DLDA) for high dimensional 

data with application to face recognition that diagonalises simultaneously the two sym-

metric matrices wS  and bS  [7]. 

The key idea of their method is to discard the null space of bS  by diagonalising bS  

first and then diagonalising wS .  As pointed out by Yu and Yang [28] the traditional 

LDA procedure takes the reverse order and consequently discards the null space of wS  

which contains discriminative information [3].  This diagonalisation process also avoids 

the singularity problems related to the use of the pure LDA in high dimensional data 

where the within-class scatter matrix wS  is likely to be singular [28]. 

The DLDA algorithm for calculating the projection matrix dldaP  can be described as 

follows [28]: 

i. Diagonalise bS , that is calculate the eigenvector matrix V  such that Λ=VSV b
T ; 
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ii. Let Y  be the first m  columns of V  corresponding to the bS  largest eigenvalues, 

where )( bSrankm≤ .  Calculate YSYD b
T

b = , where bD  is the diagonal mx m  

sub-matrix of the eigenvalues matrix Λ ; 

iii. Let 21−= bYDZ  be a whitening transformation of bS  that also reduces its dimen-

sionality from n  to m , that is, IYDSYDZSZ bb
T

bb
T == −− )()( 2121 ; 

iv. Diagonalise ZSZ w
T , that is compute U  and wD  such that ww

TT DUZSZU =)( ; 

v. Calculate the projection matrix dldaP  given by TT
wdlda ZUDP 21−= . 

Using computational techniques to handle large scatter matrices, Yu and Yang’s [28] 

experimental results have shown that DLDA can be applied on the original vector space 

of face images without any explicit intermediate dimensionality reduction step.  How-

ever, they pointed out [28] that by replacing the between-class scatter matrix bS  with the 

total scatter matrix TS , given by wbT SSS += , the first two steps of their algorithm be-

comes exactly the PCA dimensionality reduction technique. 

3.4   Yang and Yang’s Method (YLDA) 

More recently, Yang and Yang [27] have proposed a linear feature extraction method, 

here called YLDA, which is capable of deriving discriminatory information of the LDA 

criterion in singular cases. 

Analogous to the Fisherfaces method described previously in the subsection 3.1, the 

YLDA is explicitly a two-stage dimensionality reduction technique.  That is, PCA [25] is 

used firstly to reduce the dimensionality of the original space and then LDA, using a 

particular Fisher-based linear algorithm called Optimal Fisher Linear Discriminant 

(OFLD) [26], is applied next to find the best linear discriminant features on that PCA 

subspace. 

The OFLD algorithm [26] can be described as follows: 

i. In the m-dimensional PCA transformed space, calculate the within-class and be-

tween-class scatter matrices wS  and bS ; 

ii. Calculate the eigenvectors matrix ],...,,[ 21 mvvvV =  of wS .  Suppose the first q  

eigenvectors of wS  correspond to its non-zero eigenvalues; 
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iii. Let a projection matrix be ],...,,[ 211 mqq vvvP ++= , which spans the null space of wS .  

Form the transformation matrix 1Z  composed of the eigenvectors of 11 PSP b
T .  The 

first 1k  YLDA discriminant vectors are given by 11
1 ZPPylda = , where generally 

11 −= gk ; 

iv. Let a second projection matrix be ],...,,[ 212 qvvvP = .  Form the transformation ma-

trix 2Z  composed of the eigenvectors corresponding to the 2k  largest eigenvalues 

of )()( 22
1

22 PSPPSP b
T

w
T − .  The remaining 2k  YLDA discriminant vectors are given 

by 22
2 ZPPylda = , where 2k  is an input parameter that can extend the final number 

of LDA features beyond the )1( −g  nonzero bS  eigenvalues; 

v. Form the projection matrix yldaP  given by the concatenation of 1
yldaP  and 2

yldaP . 

Yang and Yang [27] have proved that the number m  of principal components to retain 

for a best LDA performance should be equal to the rank of the total scatter matrix TS , 

given, as reminder, by wbT SSS +=  and calculated on the original space [27].  However, 

no procedure has been shown to determine the optimal value for the parameter 2k .  This 

parameter is context dependent and consequently can vary according to the application 

studied.  Moreover, although YLDA addresses the PCA+LDA problems when the total 

scatter matrix TS  is singular, such PCA strategy does not avoid the within-class scatter 

instability when TS  is non-singular but poorly estimated. 

4   The Maximum Uncertainty LDA-based Approach 

In order to avoid both the singularity and instability critical issues of the within-class 

scatter matrix wS  when LDA is used in limited sample and high dimensional problems, 

we propose a new LDA-based approach based on a straightforward covariance selection 

method for the wS  matrix. 

4.1   Related Methods 

In the past, a number of researchers [2, 4, 17, 19] have proposed a modification in LDA 

that makes the problem mathematically feasible and increases the LDA stability when the 

within-class scatter matrix wS  has small or zero eigenvalues. 
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The idea is to replace the pooled covariance matrix pS  of the scatter matrix wS  (equa-

tion (4)) with a ridge-like covariance estimate of the form 

kISkS pp +=)(
�

, (10) 

where I  is the n by n identity matrix and 0≥k .  DiPillo [4] attempted to determine ana-

lytically the optimal choice for the value k .  However, such solution has been shown 

intractable in practice and several researchers have performed simulation studies to 

choose the best value for k  [4, 17, 19]. 

According to Rayens [19], a reasonable grid of potential simulation values for the op-

timal k  could be 

maxmin λλ ≤≤ k , (11) 

where the values minλ  and maxλ  are respectively the non-zero smallest and largest eigen-

values of the pooled covariance matrix pS .  Rayens [19] has suggested that a more pro-

ductive searching process should be based on values near minλ  rather than maxλ .  How-

ever, this reasoning is context-dependent and a time-consuming leave-one-out optimisa-

tion process is necessary to determine the best multiplier for the identity matrix. 

Other researchers have imposed regularisation methods to overcome the singularity 

and instability in sample based covariance estimation, especially to improve the Bayes 

Plug-in or QDF classification performance [6, 8, 22].  Most of these works have used 

shrinkage parameters that combine linearly a singular or unstable covariance matrix, such 

as pS , to a multiple of the identity matrix. 

According to these regularisation methods, the ill posed or poorly estimated pS  could 

be replaced with a convex combination matrix )(γpS
�

 of the form 

ISS pp λγγγ )()1()( +−=
�

, (12) 

where the shrinkage parameter γ  takes on values 10 ≤≤ γ  and could be selected to 

maximise the leave-one-out classification accuracy.  The identity matrix multiplier would 

be given by the average eigenvalue λ  of pS  calculated as 

n
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where the notation “ tr”  denotes the trace of a matrix. 

The regularisation idea described in equation (12) would have the effect of decreasing 

the larger eigenvalues and increasing the smaller ones, thereby counteracting the biasing 

inherent in sample-based estimation of eigenvalues [6]. 

4.2   The Proposed Method 

The proposed method considers the issue of stabilising the pS  estimate with a multiple 

of the identity matrix by selecting the largest dispersions regarding the pS  average ei-

genvalue.  It is based on our maximum entropy covariance selection idea developed to 

improve quadratic classification performance on limited sample size problems [24]. 

Following equation (10), the eigen-decomposition of a combination of the covariance 

matrix pS  and the n by n identity matrix I  can be written as [14] 

��

��

+==

==

++=

+=

+=

n

rj

T
jj

r

j

T
jjj

n

j

T
jj

r

j

T
jjj

pp

kk

k

kISkS

11

11

)()()(

)()(

)(

φφφφλ

φφφφλ

�

 
(14) 

where r  is the rank of pS ( nr ≤ ), jλ  is the jth non-zero eigenvalue of pS , jφ  is the 

corresponding eigenvector, and k  is an identity matrix multiplier.  In equation (14), the 

following alternative representation of the identity matrix in terms of any set of or-

thonormal eigenvectors is used [14] 

�
=

=
n

j

T
jjI

1

)(φφ . (15) 

As can be seen from equation (14), a combination of pS  and a multiple of the identity 

matrix I  as described in equation (10) expands all the pS  eigenvalues, independently 

whether these eigenvalues are either null, small, or even large. 

A possible regularisation method for LDA could be the one that decreases the larger 

eigenvalues and increases the smaller ones, as briefly described by equation (12) of the 

previous sub-section.  According to this idea, the eigen-decomposition of a convex com-

bination of pS  and the n by n identity matrix I  can be written as 
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where the mixing parameter γ  takes on values 10 ≤≤ γ  and λ  is the average eigen-

value of pS . 

Despite the substantial amount of computation saved by taking advantage of matrix 

updating formulas [6, 19, 22], the regularisation method described in equation (16) 

would require the computation of the eigenvalues and eigenvectors of an n by n matrix 

for each training observation of all the classes in order to find the best mixing parameter 

γ .  In recognition applications where several classes and a large total number of training 

observations are considered, such as face recognition, this regularisation method might 

be unfeasible. 

Yet, equation (16) describes essentially a convex combination between a singular or 

poorly estimated covariance matrix, the pooled covariance matrix pS , and a non-singular 

or well-estimated covariance matrix: the identity matrix I .  Therefore, the same idea 

described in [24] of selecting the most reliable linear features when blending such co-

variance matrices can be used. 

Since the estimation errors of the non-dominant or small eigenvalues are much greater 

than those of the dominant or large eigenvalues [7], we propose the following selection 

algorithm in order to expand only the smaller and consequently less reliable eigenvalues 

of pS , and keep most of its larger eigenvalues unchanged: 

i. Find the Φ  eigenvectors and Λ  eigenvalues of pS , where ][ gNSS wp −= ; 

ii. Calculate the pS  average eigenvalue λ  using equation (13); 

iii. Form a new matrix of eigenvalues based on the following largest dispersion values 

)],max(),...,,max(),,[max( 21
* λλλλλλ ndiag=Λ ; (17a) 

iv. Form the modified within-class scatter matrix 

))(()( *** gNgNSS T
pw −ΦΦΛ=−= . (17b) 
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The new LDA (NLDA) is constructed by replacing wS  with *
wS  in the Fisher’s crite-

rion formula described in equation (5).  It is a straightforward method that overcomes 

both the singularity and instability of the within-class scatter matrix wS  when LDA is 

applied directly in limited sample and high dimensional problems.  NLDA also avoids 

the computational costs inherent to the aforementioned shrinkage processes. 

The main idea of the proposed LDA-based method can be summarised as follows.  In 

limited sample size and high dimensional problems where the within-class scatter matrix 

is singular or poorly estimated, it is reasonable to expect that the Fisher’s linear basis 

found by minimizing a more difficult “ inflated”  within-class *
pS  estimate would also 

minimize a less reliable “shrivelled”  within-class pS  estimate. 

5   Exper iments 

In order to evaluate the effectiveness of the new LDA-based method (NLDA) on face 

recognition, comparisons with the standard LDA (when possible), Fisherfaces, CLDA, 

DLDA, and YLDA, were performed using the well-known Olivetti-Oracle Research Lab 

(ORL, http://www.cam-orl.ac.uk) and FERET [18] face databases. 

A simple Euclidean distance classifier was used to perform classification in the projec-

tive feature space, analogously to the other approaches we investigated.  Each experiment 

was repeated 25 times using several features.  Distinct training and test sets were ran-

domly drawn, and the mean and standard deviation of the recognition rate were calcu-

lated.  The classification of the ORL 40 subjects was computed using for each individual 

5 images to train and 5 images to test.  In the FERET database with 200 subjects, the 

training and test sets were respectively composed of 3 and 1 frontal images. 

For implementation convenience, the ORL face images were resized to 32x32 pixels, 

representing a recognition problem where the within-class scatter matrix is singular, that 

is the total number of training observations was 200=N  and the dimensionality of the 

original images was 1024=n .  The FERET images were resized to 16x16 pixels in order 

to pose an alternative pattern recognition problem where the within-class scatter matrix is 

non-singular but poorly estimated, i.e. 600=N  and 256=n . 

To determine the number of principal components to be retained in the intermediate 

step of Fisherfaces, experimental analyses were carried out based on the best classifica-

tion accuracy of several PCA features in between the corresponding interval ),( gNg − .  
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The best results were obtained when the ORL and FERET original images were first 

reduced respectively to 60 and 200 PCA features. 

For the purpose of establishing the number of the YLDA best discriminant vectors de-

rived from the within-scatter matrix eigenvectors space, we used for the ORL database 

the eigenvectors corresponding to the remaining 10 largest eigenvalues, as suggested by 

Yang and Yang’s work [27].  For the FERET database, the eigenvectors corresponding to 

the remaining 20 largest eigenvectors were sufficient to determine the respective YLDA 

best discriminant vectors.  We assumed that an eigenvalue λ  is positive if .0)( >λround  

6   Results 

Tables 1 and 2 present the maximum test average recognition rates (with standard devia-

tions) of the ORL and FERET databases over the corresponding number of PCA (when 

applicable) and LDA features. 

Since the ORL face database contains only 40 subjects to be discriminated, the LDA 

features of the Fisherfaces, CLDA, DLDA, and NLDA were limited to 39 components.  

Using the remaining 10 largest eigenvalues, the number of YLDA discriminant vectors 

could be extended from 39 to 49 LDA features.  Also, the notation “ -”  in the standard 

LDA (LDA) row of the Table 1 indicates that the within-class scatter matrix was singular 

and consequently the standard LDA could not be calculated. 

Table 1. ORL (32x32 pixels) LDA classification results. 

Table 1 shows that the new LDA (NLDA) led to higher classification accuracies than 

the other one-stage approaches.  The overall best classification result was reached by 

Method PCA LDA Recognition Rate

Fisherfaces 60 39 94.9% (1.9%)

YLDA 199 45 96.1% (1.4%)

LDA - - -

CLDA 39 95.4% (1.5%)

DLDA 39 94.9% (1.6%)

NLDA 39 95.8% (1.6%)

Features
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Yang and Yang’s approach (YLDA) – 96.1% (1.4%) – which was not significantly 

greater than the NLDA one – 95.8% (1.6%).  However, the YLDA used a much larger 

two-stage linear transformation matrix compared to the one-stage methods.  In terms of 

how sensitive the NLDA results were to the choice of the training and test sets, it is fair 

to say that the new LDA standard deviations were similar to the other methods. 

Table 2 presents the results of the FERET database.  In this application, the within-

class scatter was non-singular but poorly estimated and the standard LDA (LDA) could 

be applied directly on the face images.  As can be seen from Table 2, the overall best 

classification result was achieved by NLDA – 95.4% (1.4%) – using remarkably only 10 

features.  Again, regarding the standard deviations, NLDA showed to be as sensitive to 

the choice of the training and test sets as the other approaches investigated. 

Table 2. FERET (16x16 pixels) LDA classification results. 

7   Memory Issues 

According to Samal and Iyengar [20], images with 32x32 pixels and at least 4 bits per 

pixel are sufficient for face identification problems.  However, it is possible that memory 

computation problems would arise when scatter matrices larger than 1024x1024 elements 

are used directly in the optimisation of the Fisher’s criterion described in equation (5). 

In fact, the PCA intermediate step that has been applied to project images from the 

original space into the face subspace has made not only some of the aforementioned 

LDA-based approaches mathematically feasible in limited sample size and high-

dimensional classification problems, but also has allowed the within-class wS  and be-

Method PCA LDA Recognition Rate

Fisherfaces 200 20 91.5% (1.9%)

YLDA 256 92 94.7% (1.4%)

LDA 20 86.2% (1.9%)

CLDA 20 86.2% (1.9%)

DLDA 20 94.5% (1.3%)

NLDA 10 95.4% (1.4%)

Features
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tween-class bS  scatter matrices to be calculable in computers with a normal memory size 

[13]. 

In the experiments described previously, our attention was focused on evaluating the 

new LDA-based performance in situations where the within-class scatter matrix was 

either singular or poorly estimated, without a PCA intermediate step of dimensionality 

reduction.  However, it would be important to assess the proposed method in higher reso-

lution images where the PCA intermediate step is made necessary to avoid such memory 

computation difficulties. 

Thus, we discuss here further experimental results that evaluate the previous top 2 

NLDA and YLDA approaches when the standard resolutions of 64x64 pixels and 96x64 

pixels were used respectively for the ORL and FERET face images.  Analogous to the 

previous experiments, the classification of the ORL 40 subjects was computed using in 

total 200 examples for training (5 images per subject) and the remaining 200 examples (5 

images per subject) for testing.  In the FERET database with 200 subjects, the total num-

ber of training and test sets were respectively composed of 600 (3 images per subject) 

and 200 (1 image per subject) images.  Following the Yang and Yang’s work [27], we 

used again the eigenvectors corresponding to the remaining 10 largest eigenvalues to 

extend the number of YLDA discriminant vectors.  For the FERET database, the eigen-

vectors corresponding to the remaining 25 largest eigenvalues were sufficient to deter-

mine the respective YLDA best discriminant vectors. 

As described previously, the total number of principal components to retain for a best 

LDA performance should be equal to the rank of the total scatter matrix bwT SSS +=  

[27].  When the total number of training examples N  is less than the dimension of the 

original feature space n , the rank of TS  can be calculated as [15] 

.1

)1()(

)()()(

−≤
−+−≤

+≤

N

ggN

SrankSrankSrank bwT

 (18) 

In order to avoid the high memory rank computation of such large scatter matrices and 

because both NLDA and YLDA deal with the singularity of the within-class scatter ma-

trix, we used equation (18) to assume that the rank of TS  in both applications was 1−N .  

Therefore, we first projected the original ORL and FERET images into the corresponding 
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199 and 599 largest principal components and secondly we applied the NLDA and 

YLDA feature classification methods. 

Table 3 shows the maximum test average recognition rates (with standard deviations) 

of the ORL and FERET datasets over the corresponding number of PCA and LDA fea-

tures.  As can be seen, likewise the previous experiments, the best classification results 

for the ORL dataset was achieved by the Yang and Yang’s approach (YLDA), which was 

slightly better than the NLDA one.  However, the YLDA used a larger two-stage linear 

transformation matrix.  In the FERET application, where the higher resolution images 

improved the classification results of both YLDA and NLDA approaches, the NLDA 

achieved clearly the best classification performance, using impressively only 10 LDA 

features after the PCA dimensionality reduction. 

Table 3. ORL (64x64 pixels) and FERET (96x64 pixels) LDA classification results. 

8   Conclusions 

In this paper, we extended the idea of the maximum entropy selection method used in 

Bayesian classifiers to overcome not only the singularity but also the instability of the 

LDA within-class scatter matrix in limited sample, high dimensional problems. 

The new LDA-based method is a straightforward approach that considers the issue of 

stabilising the ill posed or poorly estimated within-class scatter matrix with a multiple of 

the identity matrix.  Although such modification has been used before, our method is 

based on selecting the largest and consequently most informative dispersions. Therefore, 

it avoids the computational costs inherent to the commonly used optimisation processes, 

Dataset

Method PCA LDA Recognition Rate

ORL

YLDA 199 46 96.1% (1.5%)

NLDA 199 39 95.7% (1.5%)

FERET

YLDA 599 220 95.5% (1.2%)

NLDA 599 10 97.6% (1.1%)

Features
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resulting in a simple and efficient implementation for the maximisation of the Fisher’s 

criterion. 

Experiments were carried out to evaluate this approach on face recognition, using the 

ORL and FERET databases.  Comparisons with similar methods, such as Fisherfaces [1, 

29], Chen et al.’ s [3], Yu and Yang’s [28], and Yang and Yang’s [26, 27] LDA-based 

methods, were made.  In both databases, our method improved the LDA classification 

performance with or without a PCA intermediate step and using less linear discriminant 

features.  Regarding the sensitivity to the choice of the training and test sets, the new 

LDA gave a similar performance to the compared approaches. 

We have shown that in limited sample size and high dimensional problems where the 

within-class scatter matrix is singular or poorly estimated, the Fisher’s linear basis found 

by minimising a more difficult but appropriate “ inflated”  within-class scatter matrix 

would also minimise a less reliable “shrivelled”  within-class estimate.  We believe that 

such LDA modification might be suitable for solving not only the singularity and insta-

bility issues of the linear Fisher methods, but also the Fisher discriminant analysis with 

kernels [16] where the non-linear mapping of the original space to a higher dimensional 

feature space would commonly lead to a ill-posed within class scatter matrix. 
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