Expressiveness and Complexity of Graph Logic

Anuj Dawar!, Philippa Gardner?, and Giorgio Ghelli®

L University of Cambridge Computer Lab., Cambridge, UK, anuj . dawar @I . cam ac. uk
2 Department of Computing, Imperial College, London, UK, pg@loc. i c. ac. uk
3 Dipartimento di Informatica, Universitadi Pisa, Pisa, Italy, ghel | i @i . uni pi . it

Abstract. We investigate the complexity and expressive power of the spatial logic for querying
graphsintroduced by Cardelli, Gardner and Ghelli (ICALP2002). We show that the model-checking
complexity of versions of this logic with and without recursion is PSPACE-complete. In terms of
expressive power, the version without recursion is a fragment of the monadic second-order logic
of graphs and we show that it can express complete problems at every level of the polynomial
hierarchy. We also show that it can define all regular languages, when interpretation is restricted to
strings. The expressive power of the logic with recursion ismuch greater asit can express properties
that are PSPACE-complete and therefore unlikely to be definable in second-order logic.

1 Introduction

Spatial logics are logics to describe graphs, memory heaps, or trees, characterized by the presence
of the composition (or separation) operator. These logics alow one to reason compositionally about
mobile processes [6] and about code with side effects[15]. Recently, languagesto query tree-shaped and
graph-shaped databases have been proposed, based on spatial logics featuring first-order quantification,
composition, and recursive formulas [5, 4]. The languages seem to be pragmatically viable [8], but a
precise assessment of their expressive power and eval uation cost is needed to understand whether spatial
logics are a good foundation for semi-structured data query languages. With this aim, we are concerned
in particular with determining, for alogic L:

— the combined complexity of the model-checking problem for L, i.e. the complexity class that con-
tainsthe set Truths, = {(G,0,¢) : ¢ € L, GE? ¢};

— the expressivity of the query language associated with L, i.e. theset of dl setsG , = {G : G F ¢},
for asentence ¢ € L; expressivity is aso known as “ data complexity” of L.

We focus on G, a spatia logic to describe graphs introduced in [4], which exhibits the crucial op-
erators in the simplest setting and on its recursion-free fragment GL. Our main result is that, although
model-checking for GL,, is PSPACE-complete asit is for FO (first-order) and MSO (monadic second-
order), GL,, can define sets of graphswhich are PSPACE-complete and therefore unlikely to be express-
ible in second-order logic.

We establish that the set Truthsgy, is in PSPACE in Section 2.1, by a trandation into MSO. In
Section 3 we show that Truthse, is PSPACE-hard and we show that, for any ¢ € GL, G 4 isin the poly-
nomial hierarchy (PH) and that for each level X7 of PH, thereisa¢ € GL suchthat G, is X¥-complete.
Finally, in Section 4 we examine the expressiveness and complexity of the logic with recursion.

1.1 Preliminaries

The formulas of Graph Logic are interpreted over labelled, directed graphs. While in [4] these graphs
areoriginally described by termsin asuitable algebra, an alternative presentation asrelational structures
is also provided. The approach we take here is based on the latter. To be precise, a graph is a structure
G = (X UEU A, edge) where,

— X isaset of vertices, F aset of edgesand A a set of labels. These sets are dl finite and mutually
digoint. Moreover, X C X and A C A, where X is afixed infinite set of names and A a fixed
infinite set of labels (names do not actually name anything, they are just the universe of constants
from which elements of the graph are drawn).

—edge : E - A x X x X isafunction that associates with each edge a label and a source and
destination vertex.

This presentation differs from the one given in [4] in that we do not have an explicit function src
mapping names to vertices in the graph. Essentialy this is because we do not consider the operation
of name hiding that plays a significant role in the original presentation of the term algebra of graphs.
However, al of our results easily apply to the case where hiding is available. It is only the translation of
Graph Logic to monadic second-order logic presented in Section 2.1 that requires some modification to
cope with hiding, as we will point out.

The essential graph building operation is graph composition. Intuitively, the composition G 1 | G-
is formed by taking the digoint union of the graphs G ; and G2, while identifying nodes which have the
same name. Moreformally, suppose G; = (X; U Ey U A;, edge;) and G2 = (X2 U E» U Ay, edge,).
Then, the composition G = G | G is defined to be the graph (X U E U A, edge) where:

- X =X,UXy;

— E=FkE W E,,
—A=A,UA,;and

— edge = edge, W edge,.

Definition 1. The formulas of (recursion-free) Graph Logic (GL) are built up from a set X' of node
names, a set A of label names, a set Vy of node variables and a set V 4 of label variables. Aformulais
one of

0

T

a(é, &) wherea € AUV andé; € XY U Vy
&L=6&o0ra; =ay whereq; € AUV and§; € X U Vy
¢l or pAY o ¢ where ¢ and v areformulas

dz.¢ or Ja.¢ wherez € Vy,a € V4 and ¢ isaformula.

In the following, we use bold face for constants (a, x, ...), italics for variables (a, x, ...) and greek
letters for terms (a, €. . .), which are either constants or variables.

For the semantics, suppose ¢ isaformulaand G = (XUEUA, edge) isagraph.Leto : Vo UV —
X U A be an assignment of node and |abel names to the node and label variables respectively. Extend
o in acanonical fashion to the domain Vy U V4 U X U A, by letting o(z) = zforz € X U A. The
satisfaction relation G F7 ¢ is defined by:

G E7 Tforany G.

G E° 0if, andonly if, E = (.

GE° 51 = 52 If, and Onlyif, 0'51 = 0'52.

G E? a; = as if, and Only if, ca; =ocas.

GE? a(&,&) if,andonly if, E = {e} and edge(e) = (o, 0&1,0Es).

GE? ¢ |¢if,andonlyif, G =G, | G2 forsomeG; and G, and Gy E7 ¢ and G5 E7 4.

G E7 Jz.¢if, andonly if, G E7" ¢ for some o’ which agrees with o for all arguments other than z.
G E° Ja.¢ if, and only if, G E" ¢ for some o’ which agrees with o for all arguments other than a.

NGO WNE

The semantics for the Boolean connectivesis standard. Note that the quantifiers are interpreted as rang-
ing over the infinite sets of names X and A, even though the graph G isfinite. This makes no difference
to the power of the logic to express propertiesthat are invariant under renamings, as we shall see.

1.2 Related Work

A review of the vast field of work on the complexity and expressivity of various logics is beyond the
scope of this paper. We only cite papers that study these questions in the context of the so-called spatial
logics, which are logics characterized by the presence of a “separation” (or composition) operator like
the | operator introduced above.

Calcagno et al. studied the complexity of model-checking and validity for the separation logic, a
spatial logic used to describe mutable data structures stored in aheap [2]. They prove undecidability of
validity for the logic with quantifiers, and then focus on the quantifier-free fragment, which we do not
consider here. Their most interesting result is decidability of validity for the quantifier-free fragment
in presence of the adjunct operator “magic wand”, operator which we do not consider here. The same
result is proved for the quantifier-free Static Ambient Logic in [3].

Charatonik et al. studied the compl exity of model-checking for theambient logic[7]. Thisisaspatial
logic for the properties of processes, characterized by spatial and temporal modalities, which are not of
interest in the context of static graphs. They prove that model-checking is PSPACE-complete for the
simplest fragments of the logic, but it remains so even when the model is enriched with communication
and mohility, and the logic is enriched with spatial and temporal modalities.

Dal-Zilio et a. defined atrangation of the quantifier-free spatial ambient logic enriched with Kleene
star operator into Presburger automata [10]. Once more, they focus on operators we do not consider
(adjunct and Kleene star), but they only study the quantifier-free fragment of the logic.

2 Graph Logic and MSO

We consider the expressive power of GL and compare it to the monadic second-order logic of graphs.
Section 2.1 shows that formulas of GL can be trandlated into thislogic (with aminor qualification with
regard to the range of quantification), while Section 2.2 illustrates the expressivity of GL by looking at
the definitions of some specific properties of graphs. In Section 2.3 we show that the expressive power
of GL coincideswith that of monadic second-order logic over graphsthat are strings.

2.1 Monadic Second-Order Logic

In this section we show that for every formulaof GL, thereisan equivalent formulaof monadic second-
order logic (MSO). As the structures over which we interpret our formulas are three-sorted, so is our
version of MSO. Moreover, we treat edge syntactically as a 4-ary relation, rather than a function. To
be precise, the formulas of MSO are built up from the names X', the labels A, three sorts of first-order
variables: Vy, V4 and Vg, and acollection S of set variables. A formulais one of:

edge(e,a, &1, &) wherea € AUV, e € Veand§é, € XY U Vy

ep = e O ap = ap Or fl :fz Wha’eez'EVg,aiGAUVA,giGXUVX
eeS whereee Veand S € S

dANYoOr - where ¢ and ¢ are formulas

Je.¢ or dzx.¢ or Ja.¢ wherex € Vy,e € Ve, a € V4 and ¢ isaformula
3S.¢ where S € S and ¢ isaformula

The semantics is standard except that set variables are interpreted as ranging over sets of edges. In this
sense, this version of monadic second-order logic is akin to the logic MS , of [9].

In order to define a translation of formulas of GL to MSO, there is one issue that needs to be
addressed carefully. The node and label quantifiersin GL are interpreted over the infinite sets X’ and A.
However, in the standard semantics of MSO, the range of the first-order quantifiersis the set of nodes

X and the set of labels A that are in the graph. In order to define a reasonable translation, we show that
the quantifiersin G can be restricted to afinite set, without loss of generality.

Lete G = (X UE U A ,edge) beagraph and ¢ aformulaof GL which contains k distinct node
variables and [distinct label variables. Let X' C X be afinite set of node names such that: X ¢ X';
each node constant occurring in ¢ isin X’; and X' contains at least £ distinct names that are not in X
and do not occur in ¢. Similarly, let A’ C A be afinite set containing A4, al label constants occurringin
¢ and at least [other labels.

Lemma 1. If G £7 ¢ thenthereisac’ : Vo UV, — X' U A’ suchthat G E° 6.

Proof. Let x beanamethat isintherangeof o but notin X'. If x = gz for some variable that occurs
freein ¢, by the choice of X', there must be somey € X' suchthat y # oy for any y that isfreein
¢ and such that y is not in the graph G and does not occur in ¢. Thus, the permutation of X that only
exchangesx and y is an automorphismof G and therefore G = 2*Y ¢. Proceeding in thisway with all
variables that are mapped to elements outside X/, and similarly with label variables that are mapped to
Y, we obtain the desired o'

Now, for asentence ¢, write G EX 4" ¢ if (& satisfies ¢ when theinterpretation of the node and | abel
quantifiersisrestricted to the sets X’ and A’ respectively. We use Lemma 1 to establish the following.

Lemma 2. For any sentence ¢ of GL, G £ ¢ if, and only if, G EX"+4" ¢,

Proof. Follows easily by applying Lemma 1 to each subformula of ¢ that begins with an existential
quantifier.

To define the trandlation of formulas of GL, we define, inductively, for each formula ¢ of GL a
formula[¢]° of MSO, which isto be read as “the translation of ¢ relativized to the set of edges S”. In
the following, weuse S = S’ | S" as an abbreviation for the MSO formula:

Ve.((e€S & (eeS'"VeeS") A(eeS & e¢S"))

[o(&,E)]° =aer Je € S. [edge(e, a,&,E') A Ve' € S.e =¢€]
[[¢/ | ¢II]]S = def ESI’SII- S=4g | S" A [[¢I]]S’ A [[¢/l]]S”

[[0]]5 =def —Jde.e€ S

[-0]° =uer —[0]° [0 A ¢1° =aer [91° A [4']°
[[333¢]]S —def dz. [[(ﬁ]]s H3a¢HS —def da. [[¢]]S
[€=¢1° =ar&=¢ [a =] =g a=0

To state precisely in what sense this is a valid trandation, we need one further definition. For any
graph G = (X U E U A, edge) and any formula¢ € GL with k distinct node variables and [distinct
label variables, definethegraph G+ = (X'UEUA’, edge) where X' is X along with all node constants
occurring in ¢ and exactly k additional nodes, and A’ is A along with all label constants occurringin ¢
and exactly k additional l1abels. Then, we have:

Theorem 1. For any graph G = (X U E U A, edge), any formula ¢ € GL and any o whoserangeis
containedin X' U A’

GE® ¢ & GTE [¢]".

Proof. Straightforward induction on the formula.

Remark: As we remarked in Section 1, in defining the logic GL, [4] considers an algebra for graph
descriptionsthat doesnot involve name hiding and it isthis version of thelogic that the abovetranglation
correspondsto. If name hiding is alowed, the operation of graph composition is subtly different. That
is, if G; and G, are graphs, their composition G; | G is defined by taking the digoint union of the sets
of edges and identifying nodes with the same name provided that the name is not hidden. Formulas of
GL can till betranslated to MSO under this interpretation if we include in our graph structures a unary
predicate Named for the set of nodes whose names are not hidden.

The effect of Theorem 1 is that it immediately establishes upper bounds on the expressive power
of GL and the complexity of the model-checking problem. It is known by [13,17] that a property of
relational structures is definable in second-order logic if, and only if, it isin the polynomial hierarchy
PH. Thus, we have:

Theorem 2. For any sentence ¢ € GL, the set of graphs {G : G F ¢} belongsto PH.

Moreover, for each level ' of the polynomial hierarchy, there are properties definable in MSO that
are XP-complete. We show in Section 3 that this is also the case for GL. On the other hand, there
are computationally simple properties that are not expressible in MSO which therefore could not be
expressiblein GL either. For instance, the following is a direct consequence of Theorem 1:

Corollary 1. Thereis no formula ¢ of GL such that G F ¢ if, and only if, G has an even number of
edges.

It is also known that the combined complexity of MSO is PSPACE-complete. That is, the decision
problem Truthspso = {(G,0,¢) : ¢ € MSO, G E° ¢} is PSPACE-complete. Since the translation
given above is itself computable in polynomial time, it establishes that Truthsg;, is in PSPACE. In
Section 3 we show that it is, in fact, PSPACE-compl ete.

2.2 Expressivity of Graph Logic

We have seen that, in terms of expressive power, GL can be considered to be a fragment of monadic
second-order logic. Tranglation in the other directionis not possiblefor trivial reasons having to do with
the range of quantification. For instance, the sentence 3zVyVaVe(—edge(e, a, z,y) A —edge(e, a, y, x)
of MSO istruein agraph G if, and only if, it contains isolated nodes. In G L, with quantifiers ranging
over theinfinite set of all names, it is not possible to distinguish isolated nodes in the graph from nodes
not in the graph. Thus, for the purpose of a tranglation, it makes sense to restrict ourselves to graphs
that contain no isolated nodes. Still, we conjecturethat there is no trangdlation possible. That is, there are
formulas of MSO that are not equivalent, even in restriction to the class of finite graphswith no isolated
nodes, to any formula of GL. Establishing thisis difficult. To illustrate this difficulty, we show how we
can express some natural MSO propertiesin GL. Below we describe informally how these properties
are expressed by formulas of GL. The details of the definitions are in the full paper.

Connectivity. Graph connectivity is a problem well-known to be definablein M SO, but not in first-order
logic (see[12]). We notethat it is definablein GL.

The following formulas constrain the in- and out-degrees of nodes:

—~~

z,y) | T
OUtZl(JJ)

In>1 () =der 3a,y. aly,z) | T Out>1(z) =4ef Ja,y. a
|I’122(J;) =def |n21(.7;) | |n21($) OutZQ(ZL') =def Outzl(
|n0(.1‘) =def —|In21(m) OUto(.Z‘) =def —|OUt21
Iny (.Z‘) =def |n21(1’) AN —||n22(1‘) Out; (.Z‘) =def OUtZl(

8

|
A &

) AN —Outzz(x)

—~

8

We will also use the formula Here, defined by Here(z) = 4e¢ In>1(2) vV Outsq (). This formula
selects those nodes that are actually in the graph. We henceforth use the abbreviation Vz € G. ¢ for
Vz. Here(z) = ¢,andsimilarly Vzq,...,2,€G. ¢.

Now, define the formula
Path(z,y) =4er INo(z) A Outo(y) A VZeG((z £z = Ini(2)) A (z#£y = Outi(y)). (2

If, for agraph G, G E7 Path(x,y), then G consists of asingle path from oz to oy along with possibly
other smple cyclesdigjoint from this path. Thus, G E? (Path(z,y) | T) holdsif, and only if, G contains
a path from oz to oy. Indeed, if the formulais satisfied, then G = G, | G2, where G; consists of a
path and possibly some cycles, implying that G' contains the required path. Conversely, if G contains a
path from oz to oy, it can be expressed as the composition of this path and the rest of the graph, thereby

satisfying the formula. Thus, we have that the formulaVz, y € G.(Path(z, y) | T) expressesthat agraph

is strongly connected.

Disjoint Paths. Using the formula Path defined above, t is easy to construct aformulathat expressesthe
property that there are two edge-digoint paths between distinguished nodes a to b in a graph G. The

formulais Path(a, b) | Path(a, b) | T. We show how to construct aformulathat expresses that there are
two node-disjoint paths from a to b, which is a well-known NP-complete problem [14]. The formula
TwoPath(a, b)

TWOPth(a, b) =def Outzz(a) AN |n0(a) A |n22(b) A OUtg(b)
AVzeG(z#aANz#b = In(z)) A (x#a Axz#b = Out(z)))

istrueinagraph G if, and only if, G consists of two node-digjoint paths from a to b and possibly some
additional simple cycles. Thus, TwoPath(a,b) | T expresses the existence of two node-dijoint paths
fromatob.

2-colourability. Asafinal example, we construct a formulathat expressesthat a graph is 2-colourable.
Similarly to the formulas In>» and Out>», we define the formula Deg-.,,(z) to be the formula that
assertsthat = has at least n neighbours (regardless of the direction of the edges). Thus, for instance

Deg.., () =daer (Fa,y. (aly,z) V a(z,y))) | Fa,y. (aly,z) V a(z,y))) | T.

Also, define Deg_,, () to be the formulaDegs, ,,(z) A —Degs,, ., (z). We also define the formulas

Cycles =4, V2 € G. Deg_, ()
Edges =45 V2 €G. Deg_, ().

Note that, if every nodein agraph G has exactly two neighbours, then G is the disjoint union of simple
cycles (ignoring directions on the edges). Similarly, if every nodein G has exactly one neighbour, than
G isthe digoint union of simple edges. Thus, the sentences Cycles and Edges express, respectively,
that G isadigoint collection of cycles and that G is a digoint collection of edges. Also observe that a
collection of simple cycles can be decomposed into two graphs each of which isadigjoint collection of
edgesif, and only if, all the cycles are of even length. Thus, the sentence Cycles A —(Edges | Edges)
issatisfied by G if, and only if, G is acollection of cycles at least one of which is of odd length. Since
agraph is 2-colourableif, and only if, it contains no cycles of odd length, 2-colourability is defined by
the sentence: —[(Cycles A —~(Edges | Edges)) | T].

These examples illustrate the varied expressive power of GL. Nonetheless, it seems unlikely that
GL is as expressive as MSO. We conjecture that Hamiltonicity—the class of graphs that contain a
Hamiltonian cycle; and 3-colourability are both inexpressible in GL. These can both be seen to be
expressiblein MSO*.

4That is, in the version of MSO we have defined, which alows quantification over sets of edges. If second-
order quantification is restricted to sets of vertices, then Hamiltonicity is not definable [12, Cor. 6.3.5], though
3-colourahility still is.

In order to separate the expressive power of MSO from that of GL, we need a method that can
demonstrate that a given property is not definable in the latter. A natural such class of techniquesis the
Ehrenfeucht-Fraissé style games. Games for spatial logics such as GL are introduced in [11]. It is not
difficult to use such a game to show that GL cannot express that a graph has an even number of edges,
yielding a direct proof of Corollary 1. It remains a challenge to deploy this game method to prove the
inexpressibility of more complex problems, such as Hamiltonicity or 3-colourability.

2.3 Strings

We now look at the expressive power of GL on aparticular class of graphs corresponding to strings over
afinite alphabet. A string graph over thefinite alphabet A C A is either the empty graph or a graph of
theshapea; (x1,%2) | ... | an—1(Xn—1,Xn), Wwhere each of thelabels a; isin A. Identifying the graph
a;(x1,%2) | ... | ap—1(xXp—1,%,) with theword a; ...a,,_1, we can see each sentence ¢ of GL as
defining a language—namely the set of words that satisfy ¢.

While the relationship of GL with MSO over arbitrary graphs remains unresolved we are able to
show that on string graphsthey have equal expressive power. It iswell-known (by aresult of Buchi [1])
that alanguage is definable in MSO if, and only if, it is regular®. It follows that any language definable
in GL is regular. We now show the converse, that every regular language is definable by a formula of
GL. We do this by tranglating regular expressions into formulae of GL. The crucial case is the Kleene
star. The trandation to G is based on the observation that a string graph is in the language L * if, and
only if, it can be decomposed into two graphs, each of which is the disconnected sum of stringsin L.

In order to do this, we first introduce some auxiliary formulae to count the incoming and outgoing
edges. In addition to the formulae introduced at (1), (3) and (2), we need:

|nS1(JZ) =def Ino(x) \ |n1($)
Outgl(.’r) =def OUto(.’L’) Vv Out; (1‘)

We can now introduce some additional predicates. NoCycles means that no subgraph of the current
graphisacycle. LinearFromTo(z, y) meansthat the graphislinear from z toy. Finaly, SetOfWords(¢)
means that the graph is a set of disconnected linear graphs, and each of these linear graphs satisfies the
formula ¢.

NotEmptySetOfCycles = 4¢r (—0) A Yz €G. (Iny(z) A Outy(z))
NoCycles =4 =(T | NotEmptySetOf Cycles)
LinearFromTo(z, y) = 4e NOCycles A Path(z,y)
Linear =g4¢; 3z, y. LinearFromTo(z, y)
SetOfWords(¢) =4 NoCycles A (Vz €G. In<i(z) A Out<:(2))
A(Vz,y€qG. (Ing(xz) A Outy(y)
= (T |= LinearFromTo(z,y) = ¢)))

We can now translate every regular expression L into an equivalent formulaF(L). The critical case
is Kleene star. A word w belongsto L* if it is the concatenation of a sequence of words w1, . . ., wy,
each belonging to L. In this case, it is possible to split the corresponding graph G/(w) into the two

5 The original result uses a different representation of strings as relational structures, but the proof is robust and
easily translated to our setting.

subgraphs G; and G» which are not themselves words, but each is a set of disconnected words, each
of them individually in L. On the other hand, if it is possible to split G(w) into two such graphs, then
w € L*. Thisis expressed by the formulaF(L*) below. Observe that each of thetwo graphs G ; and G-
may be empty.

F(E) =def 0
F(L; L) = 4o Linear A 3z,y. (F(L) A Outo(z)) | (Ing(z) A F(L'))
F(L+ L") =aer F(L) Vv F(L)
) =

F(L*) =4er 0 V Linear A (SetOfWords(F(L)) | SetOfWords(F(L)))

Thisgivesus

Theorem 3. Alanguageisdefinablein GL if, and only if, it isregular.

3 Complexity of Graph Logic

In this section we establish lower bounds on the data complexity and combined complexity of GL that
match the upper bounds established through the translation to M SO.

3.1 Combined complexity

We begin by showing that the set Truthsg, = {(G,0,¢) : ¢ € GL, G E? ¢} is PSPACE-hard, by a
reduction from validity of Quantified Boolean Formulas (QBF). We use a fixed graph in the reduction.
The same technique has been used in [7] to prove the same result for the ambient logic, and in [2] to
prove undecidability of validity for the separation logic. Indeed, the proof is based on the PSPACE-
completeness of the first-order logic of graphs. In the reduction, we do not use the operator | .

A Quantified Boolean Formulais aterm generated by the following grammar:

=3P |~ |PAD | P

where P ranges over propositional variables. The definitions of validity and satisfiability for QBF are
standard (see [16]). QBF formulas ¢ are trandated into GL formulas as follows, where for each P,
rp € Vy isadifferent namevariable, and t € X’ is aname constant; the trandation can be evaluated in
L ogspace.

[[ELP Sp]] =def E|1'p. [[QS]] [[P]] =def TP = t

[2] =der —[2] [A & =ace [2] A [2]

Lemma 3. Satisfiability of closed QBF formulas can bereduced to the model-checking problem { (G, 0, ¢) : ¢ € GL, G E’ ¢}
for afixed graph G.

Proof. We take GG to be the fixed graph that satisfies a(t, f). Given an assignment ¢ of truth values to
the propositional variables in a formula @, define o’ to be the variable assignment such that o (X) =
true & of(zx) = t. An easy induction then shows that & is true under o if, and only if, G £ [#],
hence the closed formula® is satisfiable if, and only if, (G, €, [®]) € Truthsgy,.

Theorem 4. The model-checking problemfor GL is PSPACE-complete.

The expressive power of GL is intermediate between that of first-order logic (FO) and MSO, in
that any first-order formula on graphs can be translated to GL. Thus, Theorem 4 is unsurprising as the
model -checking problem for both FO and M SO is PSPACE-complete.

3.2 Data complexity

We prove here that, for each positive integer & there exists a sentence ¢, such that the problem: ‘ given
G, decide whether G E ¢’ is hard for the k' universal level of the polynomial hierarchy, i.e. G 4, €
II?-hard. Since GL is closed under negation, we also obtain hard problems for the existential levels of
the hierarchy. In the proof we use the derived operator ¢ | = ¢ = 4o (¢ |). By this definition,
G E7 ¢ |= ¢ if, and only if, for every partition of G into G',G", if G' E” ¢, then G" £ . We will
also use the following formulas:

|n22($) =def Ha:yaa,ayl~ a’(yax) | a’l(ylax) | T

|n21(1') —def Ha,y' (l(y,.Z’) | T (3)
Ino(z) =aer ~IN>1(2)

Out>1(2) =aer Fa,y-alz,y) | T

The proof begins by showing a logspace-computable function G(®), that codes propositional for-
mulas as graphs in a way that allows us to express questions about the satisfiability and the validity of
¢ as GL formulas over G(®).

Informally, G translates a propositional formula® into agraph G(®) of the same size, that represents
¢ asacircuit. The edges of the graph have labels from the set And, Not, Var, FanOut, Switch and Result.
There is an edge labelled Var for each variable, the source of which is the target of an edge labelled
Switch (the purpose of these edgesis that a selection of them will encode an assignment of truth values
to thevariables). Thetarget of each Var edgeisthe source of anumber of edges|abelled FanOut, onefor
each occurrence of the variablein @. The source of each And edge has two incoming edges and its target
has one outgoing edge. Similarly, the source of each Not edge has one incoming edge and its target one
outgoing edge. Finally, there is only one edge labelled Result , that marks the root of the formula, and
its source and target are the same.

More formally, we define the trandation G asfollows. In thefirst line X4, ..., X, arethe variables
of @. The trandation is based on aquadruple z = (z 5, 50, Ty, Tp); Tsis Tso, T, A€ three functions
that associate nodes to the free variables of ¢, and x,, associates a node to each occurrencein ¢ and to
the specia occurrence e . As usual, an occurrence is a string of 0'sand 1's, possibly empty (), such
that, when « is associated to aformularooted in a binary operator, «.0 and .1 are associated to its two
subformulas, and similarly for unary operators. The operator (a) ~ isdefinedas (a.0) = (a.1) =a,
()~ = e. Thefour functionsin x are al injective and their codomains are disjoint. These functions
do not use up space, since they are not stored in atable, but perform some fixed bit-manipulation on the
input to produce the output.

G(2,x) =def [P,€]” | Switch(wsi(X1),250(X1)) | Var(zso(X1), 20(X1)) |
oo | Switeh(25i(X0), 50 (X0)) | Var(xse(Xn), 2y (Xn))
| Result(z, (), zp(e)
[® A ¥, 0] =4 [8,0.01" | [¥',0.1]" | And(z,(0), z,(a "))
II_'¢7O[]]I =def [[QS,O[O]]Jc | NOt(l'p(Oé),l'p(Oti))
[X;:, a]* =def FanOut(z,(X;),zp(a™))
Let (®),, bethesubformulaof & rooted at the occurrence «.. Observethat for every occurrencea in we
have exactly oneedgea(y, z,(a ")), labelled And, Not, or FanOut, depending on whether the root of

(P)o is A, -, Or avariable, unless o = ¢, in which case we also have an edge Result(x , (€7), zp(e7)).
Also observe that:

— Switch edges have no incoming edge and one outgoing edge;

— Var edges have one Switch incoming edge and many FanOut outgoing edges,

— FanOut edges have one Var incoming edge and one And or Not outgoing edge;

— And edges havetwo FanOut, And, or Not incoming edge and one And, Not, or Result outgoing
edge;

— Not edges have one FanOut, And, or Not incoming edge and one And, Not, or Result outgoing
edge;

— the Result edge hasitself plus one FanOut, And, or Not asthe only incoming edges, and itself as
the only outgoing edge.

The previous enumeration is exhaustive: no edge has any incoming or outgoing edges more than what
islisted above.

Corresponding to any assignment o of truth values to the variablesin &, there is a decomposition
of G(®) into two graphs G’ and G" where G' contains the edges corresponding to subformulas of &
that are made true by o. We construct a pair of formulas of GL TruePart and FalsePart that define
the well-formedness of the graphs G’ and G"'. For instance, TruePart asserts that a graph contains an
And edgeif, and only if, it contains both its preceding edges and FalsePart assertsthat a graph contains
an And edge if, and only if, it contains at least one of its preceding edges. A propositiona formulais
satisfiable if there exists an assignment whose partition leaves the root edge Result in the TruePart
(see GSat below). The propositional formula is valid if, for any assignment, hence for any possible
FalsePart, the formularoot isin the TruePart (G Val). The formulas TruePart, and FalsePart, and
the partition G4(®, z,0), G¢(®, z, o) are defined as follows.

TruePart = Vx,y.(Switch(z,y) | T) = Out>(y)
AV, y. (Var(z,y) | T) = In>.(z)
AVz,y. (FanOut(z,y) | T) = Ins1(z)
AV, y. (And(z,y) |T) = In>,(z)
AVz,y. (Not(z,y) | = Ino(a:)
AVz (Result(z,x) |

FulsePart = Vz,y.(Switch(z,y) |
AVz,y. (Var(z,y) |
AVz,y. (FanOut(z,y)
AVz,y. (And(z,y) | T)
AV, y. (Not(z,y) | T)
AVz (Result(z,z) | T) = Inss

Gy(D,z,0) ={a(y,zp(a”)) : thesubformula(®), istrueino}
U {Var(zs0(X),zy(X)) : o(X) = true}
U {Switch(z4(X), 250(X)) : o(X) = true}
Gy(P,z,0) ={a(y,zp(a”)) : thesubformula(®), isfaseino}
U {Var(zs0(X),z,(X)) : o(X) = fdse}
U {Switch(z5(X), 250(X)) : o(X) =fase}

L)
L)
L)
L)

Lemma 4. For every assignment ¢ to the free variables of &:
G(®,z,0) F TruePart N Gy(®,x,0) F FalsePart
For every partitionof G(®, z) intoG¢, Gy, and o suchthat o (X) = false & Switch(z5;(X), z50(X)) €
Gf:
Gt F TruePart A Gy F FalsePart
= G =G(P,z,0) N Gy =Gy(D,z,0)

10

Proof. The first part is true by construction. For the second part, by construction. all the switches of
truevariablesarein G; by Va, y.(Switch(z,y) | T) = Out>1(y), al the variables associated to these
switchesarein G, and by Vz, y. (Var(z,y) | T) = In>;(z) only these variables are. Hence, al the
falsevariablesarein G ;.

Now we can prove that, for every occurrence o of ¢, an edge a(y,z ,(a™)) isin G; when ($), =
trueandisin G ; otherwise. We proveit by induction on the well-founded order on the occurrences of ¢
defined by the transitive closure of a < a~; the order is well-founded because & is finite (observe that
the minimal elements are the longest occurrencesin &).

When « is minimal, then (&), is a variable, hence a(y, z,(a)) is a FanOut edge, which is in
{a(y,zp(a™)) : ($)o = true}if, andonly if, itsinput variableistrue. TheconditionVz, y. (FanOut(z,y) | T) =
In>1 () ensuresthat every FanOut edge of atrue variableisin G ;. The same reasoning holds exchang-
ing true, G, with false, G ;.

When « isnot minimal, then (&), isrooted either in A or in —; wefirst assume a # .

Inthefirstcase, a(y, z,(a ")) = And(zp(a), zp(a 7)), and,if itisinG, by Ve, y. (And(z,y) | T) =
In>»(z) both of its incoming edges are in G'; too, else, by induction, both (®) .0 and (€),.1 are true,
hence (&), is true too. The same reasoning holds for G ¢, with the difference that in this case we are
only assured that one of the two incoming edgesisin G ¢, but thisis enough to ensurethat (&), isfalse.

If (§), isrootedin—, thena(y, z,(a ")) = Not(zp(a),zp(a™)), and,ifitisinGy, Ve, y. (Not(z,y) | T) =
Ing () implies that its incoming edgeisin G f, hence, by induction, (®) .. isfase, hence (®), istrue.
The same reasoning holds exchanging true, G, with false, G'¢.

Finaly,if a = €,a(y, z,(a ")) may dsobe Result(e, e~); if itisin Gy, thentheother a(y, z, (7))
isin G; too, hence the whole subformulais true, hence Result(e —,e~) isin G¢(®, x, o). The samerea
soning holds exchanging true, G, with false, G¢.

Conversely, we can show that, if G(®,2) = Gy | G, and Gy F FalsePart, then there is a truth
assignment o such that Gy = Gf(®,z,0) and G; = G¢(®, z, o). This truth assinment is obtained by
setting o(X) truefor al X for which the edge Switch(z 4; (X), z5,(X)) isin G;.

We can now define the formulas G'Sat and G'Val that characterise the sets of graphs encoding
satisfiable and the valid formulas respectively.

ResultHere = 40p 3x. Result(z,z) | T
GSat =def (TruePart A ResultHere) | FalsePart
GVal =dqef FalsePart |= (TruePart A ResultHere)

Theorem 5. Theset {G : G F GVal} isco-NP-complete.

Proof. We reduce PVAL, the validity of propositional formulas, to {G : G E G Val}, by proving that
¢ € PVAL & G(P,x) F GVal.

Assumethat & € PVAL. Wewant to provethat G(®, z) E GVal, i.e. that for every partition G(&, x)
asGy | Gy, if Gy F FalsePart, then G; F TruePart A ResultHere.

Let o be the truth assignment associated with the partition G ¢, G¢. Thus,G; = G¢(®,z,0) and
Gy = G4(P,z,0). Since Gy F FalsePart and @ isvalid, a(y,z,(e7)) isin Gy, hence, by definition
of G¢(®,x,0) the Result loopisin G, hence G; F ResultHere.

For the other direction, assume that G(&, z) £ GVal. Thisimplies that, for every partition G(&, z)
asGy | Gy, if Gy F FalsePart, then G¢ £ TruePart A ResultHere. \We can now conclude that for
every o the set of all occurrencesa such that (®) , istrueincludestheroot e, hencethe formulais valid.

Theorem 6. Theset {G : G F GSat} is NP-complete.

Proof. We reduce PSAT, the satisfiability of propositional formulas, to {G : G E GSat}, by reasoning
asin the previous case.

11

We are now ready to prove that, for each £ there exists aformula ¢, such that the problem: ‘given
G, decide whether G E7 ¢’ is II}-hard. The standard hard problem for aclass I} of the polynomial
hierarchy isthe validity of a Quantified Boolean Formulawith k alternation of quantifiers, i.e. aformula
like the following one (where no quantifier appearsin ¢ and the last quantifier is 3 if k is even, as we
assume below, and isV if & is odd):
12 CD. G (LN NI D G, Gl) SN S)

Te—1

We encode such formulas into graphs which has edge labels And, Not, Var, FanOut, and Result as
before. In addition, there is, for each 1 < i < k, alabel SwitchE? (or SwitchA? if the i quantifier
block is universal). With variables thus labelled as universally or existentially quantified and marked
with an index indicating where they occur in the formula, we are able to construct a formula G Val i,
using alternations of | and negation, to express that the formulaencoded by G(®) isvalid.

Theorem 7. For each k there exists a GL formula ¢4, (1) that characterizes a set of graphs that is
complete for IT; (X7).

Proof. We only show this for 7 and for even k. As for the previous theorems, for every k, we exhibit
atrandation G (@,) and aformula G Val;, such that, for every closed QBF with maximal level k, &,
isvaidiff G (P, z) F GValy,.
Consider aformula
12, CND) (LI SN) S K)
We consider the following translation G, (@, x), identical to the previous one but for the partition of the
switches according to the level and the quantifier of their variables.

Gr(®,x) =des [P, €]” | SwztchAl(xSl(Xl) T50(X1)) | Var(wso(X1), 2y (X1))
|SwztchA (xsi(X]) a:so(X1)| Var(mso(X“) ;rv(Xill))
| SwitchE® (fsz(Y1) so(Y7)) | Var(zso(Y7), 20 (Y7))
|SU”tChE (z sz(Y)5 80(3))| ar(xso(YZ),xU ng))

| SwthhEk(xsi(Yilz),xSO(Yi]Z)) | VaT‘(SL‘SO(Y;}Z),LL‘U(Ef))
| Result(zp (), zp(e))
[& AP, a]” =def ...

Theformula G Valy, is defined as follows.

SwitchesA' | = (SwitchesE? | ...
(SwitchesA*™" | = (SwitchesE" | ((TruePart; A ResultHere) | FalsePart;)))...)

Where SwitchesA® and SwitchesE® are defined as:

SwitchesA’: =def Va,z,y. (a(z,y) | T) = a= SwitchAi'
SwitchesE"' =ge¢p Ya, z,y. (a(z,y) | T) = a = SwitchE"

TruePart, isthe same as TruePart but we replace Switch(z, y) intheimplication
Va,y.(Switch(z,y) | T) = Out>q(y)
with adigjoint listing of the different switch edges we have:

Va,y.((SwitchA (z,y) V ... V SwitchE* (z,y)) | T) = Outs(y).

12

FalseParty, is defined by generalizing FalsePart in the same way.

The formula G'Val;, says that: for each assignment to first-level universal variables there exists
an assignment to second-level existential variables such that ...for each assignment to k& — 1*"-level
universal variables there exists an assignment to kt"-level existential variables such that the formula
holds.

One consequence of this is that the aternation of | with negation forms an infinite hierarchy of
expressive power in GL. Hence, it is not possible to obtain a normal form similar to the conjunctive or
disiunctive normal forms of boolean operators, characterized by a fixed number of aternations between
| and negation.

Corollary 2. Unless the polynomial hierarchy collapses, the alternation of | and negation form a strict
hierarchyin GL.

4 Recursion

In [4], afixed-point operator pR.¢ is defined for GL, where R is avariable that can appear inside ¢ as
an atomic formula, and only in positive positions, i.e. each occurrence of R is within the scope of an
even number of negationsin ¢. We use G L, to denote the logic with recursion.

Satisfaction G E7 ¢ is now defined as the minimal relation that satisfies the properties specified in
Section 1 plus the following:

G E° uR.¢if, andonly if, G E° ¢{R « (uR.¢)}

More formally, we can define the semantics such that [¢] ., denotesthe set of all graphsthat satisfy
¢ under assignments o and p, where p is avaluation for the recursion variables.

In the definition below, we follow the notation of [4] for describing graphs. Thus, a(x,y) isaterm
denoting the graph with asingle edge labelled a between the nodes x and y. Larger graphs can be built
up using the composition operator |. It should be clear from context whether such aterm or aformulaof
GL, isintended.

Definition 2 (Satisfaction).Let G be the set of all graphs. Let o denote an assignment for name and
label variables, and let p map recursion variables to elements of P(G). The satisfaction interpretation

13

[-lo:p : F — P(G) isdefined as:

[0],, = {G : G=0)
[a(&1, &)l ={G : G =ao(&i0,80)}
[¢|¢]ep ={G : G=G1| G2 A Gi € [9]o;p A G2 € [Y]op}
[[T]]cr:p =g
[¢ A ¥]osp = [Elosp N [¥]oip
[=8lo:p = G\ [¢]op
[3z. ‘z’]]cr:p = U |[¢]]0’,$>—>x:p

xeX

[Ha. (z)]]cr:p = U |[¢]]0’,m—>a;p
acA
[[R]]«T;p = Rp

[uR-$lop = (1S € P(9)) : [8losp.rss C S}
[61 = &]op =G, i &0 = &a; B otherwise
[ar = as]sp =G, ifaro = azo; () otherwise

Definition 2 is shown to be well-defined by structural induction on formulas. For the recursive case,
observe that the set P(G) is acomplete lattice. Define the satisfaction relation G =7 ¢ for aformula ¢
with no free recursion variablesif and only if G € [¢],.,, for any p.

It is instructive to compare this logic with other logics of recursion, such as LFP, the extension of
first-order logic with an operator for forming the least fixed points of relational expressions (see [12]
for an exposition). For arelational variable R and aformula ¢ in which R only appears positively, LFP
allows the expression pR.¢ which defines the least relation such that R < ¢. Just as the graph com-
position operator of G'L can be simulated by a monadic second-order quantifier one might think that
recursion can be simulated by the fixed-point operator of LFP. There is, however, a crucial difference.
Whilethefixed-pointsin L FP are defined in the lattice of relationson agraph G, the form recursion takes
here defines fixed-points of maps on the lattice of sets of subgraphs of G. Thus, while the evaluation
of afixed-point in LFP can be performed by an iteration that is guaranteed to convergein a polynomial
number of steps, the number of steps required to reach afixed-point of arecursiveformulain GL is po-
tentially exponential in the size of the graph GG. Thisis amply illustrated by the result in Section 4.2 that
exhibits a PSPACE-compl ete problem that is definable in the logic. Thisis why the result in Section 4.1
showing that the model-checking complexity of the logic is still in PSPACE is remarkable.

We now explorethe complexity and the expressivity of this recursion operator.

4.1 Combined Complexity

The set {(G,0,¢) : ¢ € GL,, G F° ¢} is PSPACE-hard, by results in Section 3. We now exhibit a
PSPACE algorithm to decide the problem, establishing atight upper bound on its complexity.

The algorithm extends the standard model-checking algorithm for SO, and islisted in Table 1.

We assume that no variable in the formulais bound in two distinct places. We associate a counter
to each variable and a bitmask to each | operator in the formula. We have a variable bitmap mask that
specifies which edges in the graph are included in the current subgraph. To check whether ¢ | ¢ holds,
we let the corresponding bitmask m iterate over al the submasks of the current mask. For each value

14

inputs: G, v; other global variables: stack, and the implicit call stack;
Evauate(y,G) =
let mask=1,15...1, where n = sizeof(G);
return(eval (¢, mask));
eva (—¢, mask) =
return(not eval (¢,mask));
eva(¢p A 1, mask) =
if (eval(¢, mask) andif eval(z), mask)) {return(true);}
elsereturn (false);
eva(3x.¢, mask) =
foriinl.ndo
push({"x" = 1), stack);
if eval(¢, mask) {pop(stack); return(true); }
pop(stack)
return(false);
eval(¢ | 1, mask) =
for submask in submasks(mask) do
if (eval(¢, submask) andif eval(¢, compl(submask))) {return(true);}
return (false);
eva(a(z,y), mask) =
if (get(stack,”a”)(get(stack,”z"),get(stack,”y")) € GNmask) {return(true); }
elsereturn(false);
eva(uR., mask) =
push(("R" = mask), stack);
res = eval (¢, mask);
pop(stack); return(res);
eva (R, mask)
if mask== get(stack,” R") return(false)
else find pR.¢ intheinput formula vy
and return(eval (1 R.¢, mask));

Table 1. The model-checking algorithm for GL,,

15

of m we check ¢ against the subgraph identified by m and ¢ against its complement. ¢ | « holds if
and only if we find a value for m such that both checks succeed. Actually, we cannot have a different
variable for each |, since the algorithm is written to work for formulas of any size. Hence, misjust a
local variable of the procedurethat checksthe | case, which will be automatically saved on the call stack
when a subroutineis called, and restored when the subroutine exits. Thus, we have, on the call stack, as
many bitmask variables as we need.

To check whether 3z.¢ holds, we let the corresponding counter x enumerate al the names that
appear either in the graph or in the formula, plus one fresh name for each variablein the formula. 3x.¢
holdsif and only if we find avalue for x such that ¢ model-checks. As above, we do not have a different
counter for each variable x, but we use a stack. In this case we push a pair “ X’ =x on an explicit stack
every time a quantification 3z is met. We do not use the call stack for x because later, to check whether
a(&1, &) holds, we will have to substitute all the variables among «, €1, &> with their value, and we can
retrieve those values by exploring the explicit stack.

To model-check uR.¢, we first push on the stack a pair R-current mask. Then, when R is met, we
first check whether the current mask is still equal to that associated to R on the stack. If the current mask
isastrict subset of that stored in R, we substitute R for uR.¢ and continue. If it is equal to that stored
in R, then this branch can only loop forever, hence falseis returned.

We prove that this algorithm runsin polynomial space and that it is correct. The proofsare givenin
the appendix.

Theorem 8. Evauate(y), G) always terminates and can be executed with polynomial space.

Proof. Let n bethe maximum of the number of edges and the number of nodesin G. The algorithm uses
the call stack and the variable stack. Each recursive call pushes its local variables, the return address,
and the call parameters on the call stack. The worst case is that of |, where we have one local variable
that isn bitslong (submask) plusthe mask parameter that isn bitslong aswell. Hence, each stack frame
on the call stack is linearly bounded by the input size. The same is true for the stack variable, where
each stack frame has either n size (if it isamask) or log(n) size, in the 3z /a.¢ cases. Moreover, each
procedure call performs at most one push, and aways pops what it pushed, hence the stack variable
never contains more frames then the call stack. Hence we have only to show that the call stack growth
is bounded by a polynomial. This bound implies termination as well, since al the for loops in the code
are bounded.

Every framein the call stack contains abit mask. Thismask is always equal to, or included into, the
one of the preceding frame. L et a stack-chunk be a sequence of stack frames which all contain the same
mask. The stack will always be composed by at most n + 1 stack-chunks, where n isthe size of the input
graph, sincen + 1 isthelength of the longest chain of n-bit masks ordered by strict inclusion. A single
stack-chunk may contain two frames that correspond to the evaluation of the same R variable only if
the second one is the last frame on the stack, since the first evaluation of R with mask m is followed
by an evaluation of pR.¢» which pushes (R = m) on stack, so that the next evaluation of R with mask
m returns immediately. Hence, any stack-chunk contains at most & + 1 recursion-variable frames, if
k is the number of recursive variablesin ¢. Finally, the sub-chunk included between two consecutive
recursion-variable frames cannot contain more than [frames, where [is the longest path in the syntax
tree of ¢, since any other case but R walks one step down along ¢. This gives an O(nkl) bound on the
number of frames of the call stack.

Theorem 9. Evaluate(y, G) = trueif, and only if, G F).

Proof. Consider the proof system of Table 2. The formulaG.in rule (I/ u) isthe formulathat contains
onea(x,y) literal for each edgein the graph separated by |, henceis only satisfied by G' (up to isomor-
phism). X (G, o, ¢) isaset that contains all the namesin G, o, ¢, plus one fresh name. No other fresh
name needs to be checked, since they would all give the same result.

16

We will prove soundness of the algorithm w.r.t. the proof system, and soundness of the proof system

w.r.t. satisfaction, i.e.:

evaly ¢ () (1, m) = true
evaly ¢, (¢, m) = false
¢o isclosed, G;o - ¢
¢o isclosed, G;o t/ ¢

= GNnm;() vy
= Gnm;() Y
= GF¢o
= GF —¢o

soundness of eval, case true
soundness of eval, case false
soundness of

soundness of I/

Here, evaly ¢ s(¢, mask) is the result of calling eval (¢, mask) when input formulais ¢, input graph is
G, and current stack is s. G N'm isthe subset of GG identified by the mask m.
Our proof relies on the following definitions and properties.

E$¢(S,R:m) =
Z;¢(S,R =m)
Yop(s, R=m) =

Z;r;{[(s,x =x)

T, () (R pR.¢'}

Ejﬁb;w(s, R=m)

= ¥ () {z > x)
evaly o 5(¢,m) =true = GNm; ZF (s) - ¢
evdl i, o(6,m) =fllse= G Nm; T, (s) I ¢

if Rispositivein ¢;,
uR.¢'" isasubterm of ¢

= X7 (){R = ((pR.¢') A ~(G0m))} if Risnegativein ¢;1)

(la)
(10)

The trandation of a stack s, R = m into a substitution E;¢(s, R = m) depends on where we are
in the process of building the proof, since rules (-) and (I/) push two different valuesfor R in the
substitution, and the algorithm is looking for a proof of either (- u) or (I). The property (1ab) ex-
pressesthefact that this variability can be captured by a polarity computation, expressed by the functions
E;;{[(). Here “R is negative in ¢; " means (informally): substitute in ¢ every free recursive variable
with its definition in ¢; iterate this process an arbitrary number of times; R is negativein ¢; «) if no pos-
itive occurrence of R will ever appear. Hence, for example, R isnegativein R'; uR.—~uR'.—(R | - R').
(The positivity condition over R’ implies that, if no positive occurrence of R appears after we expand
R' once, it is not going to appear after two expansions.)

Property (1ab) is easy to prove by induction on the depth of the call stack of the algorithm, and by
cases. We show the only hard case, eval 4 ¢ (1R, m) = false.

evalq/,,(;,s(R, m) =fdse =

gither R = m isins, or evaly ¢ s(uR.¢, m) = false

in the second case, by induction Gnm; X (W(s) V uR.¢

in thefirst case Gnm; X p,.,(s)FGOm

hence GNm; X g ,.,(s)/ =GOm

in both cases, we can apply rule (I A): GNm; X g sy () (WR.9) A =G Om
R must be positivein uR.¢, hence

R(X g 4.4(8)) = (uR.¢) A =G N'm, hence: GNm; X g 4.,(8) I/ B(Z R 45.,(5))

by (/ R): GNm; X g 4.(8) 7 R
I (s) only depends on the polarity of variablesinside ¢, which does not change
if we expand a variable with its definition: G Nm; ZE;¢(S) VR

Now we have to prove soundness of the proof system, by induction on the size of a proof, and by
cases on the last rule applied. All cases are trivial but (I ©). We want to prove that, for any pair ¢, o,
such that o bindsall free variablesin ¢ but R,

G E(¢(o{R — ((LR.9) A ~G)})) = G F((nR.¢)o)

17

G ¢ [p(c{R— (uR.¢) A ~G)N] = G ¢ [uR-¢o]
We will exploit the following properties, proved in [4]:

[P{R < ¥}oip = [Blop{Rs 010} (2)
[[NR-(z)]]J;p = fizpoint(AS. [[(z)]]a';p{RHS})
thefunction AS. [¢];,{r—s} iSMONOtonein S

We can rewrite [¢(c{R — ((uR.¢) A =G)})] as follows, where M = [uR.¢o], and F(¢,0) is

[p(c{R — ((uR.9) A =G)})]
[(po){R « (nR.¢o) A =G)}] = by (2)
[(60)]0) i ros 1((uB00) A -GOT}
[[((ba')]]();{RHM\G} =
F(¢,0)(M\ G)

Now, M isafixed point of the monotonefunction F(¢, o), hence F(¢, o) (M\G) C F(¢,0)(M) C M.
G ¢ F(¢,0)(M\G) impliesthat F(¢,0)(M\G) C (M \G), hence, by definition, M C F(¢,0)(M \
G) C (M \G), henceG ¢ M, cv.d.

(FA) 7 A) (k=) (=)
Giob¢p N Gsobq Giolf o vV Gio v G;oltf ¢ G;o k¢
Giob¢ AN Giolf o Ny Gio b —¢ Giotf =¢
(F3) (¥ 3)
IxeX(G,0,v). Go{r —x}+ ¢ VxeX(G,0,¢). Gio{x — x} ¢
Gyot Jx.¢ Gyot/3Jx.¢
(Fa(&€)) (F a(&,¢)) (Fe=¢) Fe=¢)
G=ao(ér,€0) G#olnts) to=to fo €0

GiorFal€,l) Gotal&t) Goré=¢ Golée=¢
1) 1)
3G, G".G=GG" N G;TFop ANG"; T+ VG&',G".G=GG" = G;TWovVv G"';TWHy

Giok o |y Giolf o |y
(- R) (7 R) (F p) (¥ 1)
G;o - Ro G;olf Ro Gi(o{R— (uRP)} ¢ Gi(o{R— (pR.¢) N 2G)}) ¥V ¢
G;oFR G;o ¥ R G;oF pR.¢ G;o t/ uR.¢

Table 2. Proof systemfor G ++ ¢ and G t/ ¢

4.2 EXxpressive Power

While recursion does not take the combined complexity out of PSPACE, it adds expressive power to
the logic. As asimple example, hereis aformulathat characterises the graphs with an even number of
edges, which is not expressiblein either MSO or LFP.

18

pE. 0V ((Ja,2,y. a(z,y)) | Fa,2,y. a(z,y)) [F)

In this section we show that we can express a PSPACE-complete problem in this language. Thisis
achieved by an encoding of quantifier Boolean formulas (QBF) as graphs. The encoding is similar to
the onein Section 3.2 except we do not have different edge labels for the different number of quantifier
aternations. Instead, we have two labels, Forall and Exists, in addition to Switch, and the aternation of
edgeswith these labels leading up to a Var edgeindicate the quantifier type and index of the correspond-
ing Boolean variable. The details are given in the proof of Theorem 10 in the appendix. They alow us
to defineaformula G'Val,, of GL,, which defines those graphs that encode valid QBF formulas.

pR. ((TruePart A ResultHere) | FalsePart)
V (3z,y. QRoot(x) A (Forall(z,y) | (SwitchesOf (y) |= R)))
V (3z,y. QRoot(x) A (Ezist(z,y) | (SwitchesOf (y) | R)))

Theformulacan beread as: either (1) the formulahas no quantifier and is valid, or (2) the outermost
quantifier is a v, and the rest of the formula (Forall(z,y) | ...) is vaid, for any assignment to the
variables quantified by the outermost forall (SwitchesOf (y) |= ...), or (3) the outermost quantifier is
an 3, and there exists an assignment of the quantified variables (SwitchesOf (y) | .. .) such that the rest
of theformulaisvalid.

Theorem 10. There exists a GL,, formula that characterizes a set of graphsthat is PSPACE-complete.

Proof. We define a translation of closed QBF and a recursive formula G'Val , that characterizes the
tranglation of valid formulas. The thesis follows since validity of QBF is complete for PSPACE.

We first define avariant of the trandation G ,,(®, =) of Section 3.2, where the depth of a quantifier
isidentified by the length of the chain of Forall- Exist edgesthat leadsto it. We trandate both formulas
and assignment; an assignment is represented as the set of those variables that are assigned to true;
any other free variable is implicitly assigned to false. Consider the following formula-assignment pair,
where & is quantifier-free.

¢=VX{ .. X, 3V Y2 IV.. Y o={Z,....,Z,}

[P

It istrandated as:

Gu(P,0,x) =g4of Switch(zo,250(Z1)) | ... | Switch(zo,Ts0(Zm))
| Forall(zq, 1)
| Switch(z1,50(X1)) | Var(zso(X71),z,(X71))
| ..o | Switch(z1, 250(X})) | Var(zeo(X}), z0(X}))
| Exist(xy,x2)
| Switch(xs, Tso(Y2)) | Var(zso(Y2), z,(Y32))
| ...] Switch(x%xso(Yig)) | Var(xso(Yig),xU(Yii))
| Forall(z2, x3)
| Exist(x,—1,2n)
| Switch(zn, 250(Y1")) | Var(zso(Y1"), 2 (¥Y1"))
| ... | Switch(zp, 250(Y7))) | Var(zso(Y])), 20 (Y7)))
| [#.€]F | Result(zy(e).p(e))

19

Theformula G'Val,, is defined as follows.

pR. ((TruePart A ResultHere) | FalsePart)
V (3z,y. QRoot(x) A (Forall(z,y) | (SwitchesOf (y) |= R)))
V (3z,y. QRoot(x) A (Ezist(z,y) | (SwitchesOf (y) | R)))

Where QRoot(x) and SwitchesOf (y) and defined as:

QRoot () =gef ~3x'. (Forall(z',z) V Ezist(z',x)) | T
SwitchesOf (x) =ger Va,y',z. (a(y',2) | T) = y' =y A a = Switch

Thegraph G, (¢, 0, z) represents aformula-assignment pair ¢, 0. The action of removing an outermost
Forall(xz;,x;v1) or Exist(x;, x;41) and aset of Switch(x;11, z) edgescorrespondsto removing the out-
ermost set of quantificationsfrom ¢ and fixing avaluation ¢’ for the corresponding quantified variables.
The subgraph left isnot exactly thetranslation of ¢’, oo’ because the newly valuated variables have their
switches starting from z;; instead of o, but thisisirrelevant since nothing in G'Val,, depends on this
difference. The formula G'Val,, determines the validity of a graph representing a formula-assignment
pair ¢-o, obtained by trand ation followed by some instances of this removal operation, as follows.

If no Foralll Ezist quantifier is left, GVal, just evaluates ¢-o. If there is an outermost universal
quantifier, G Val,, stripsthe quantifier, obtaining aformula¢’, and verifies whether for each assignment
o' for the quantified variables (i.e., for each set of outermost switchesthat areremoved) ¢ '-o¢’ isvalid.
If the outermost quantifier isexistential, G Val,, stripsthe quantifier, obtaininga¢’, and verifies whether
an assignment o’ exists such that ¢'-co’ isvalid.

This theorem shows that the recursion operator allows the characterization of sets of graphsthat we
cannot hope to define in second-order logic.

5 Conclusion

We have investigated the complexity and expressive power of the graph logic introduced by Cardelli,
Gardner and Ghelli. The graph composition operator | in that logic has a natural translation into second-
order logic using an existential quantifier over sets of edges. In terms of complexity, the | operator is as
powerful as the monadic second-order quantifier: GL can express complete problemsat al levels of the
polynomial hierarchy. The recursion operator in the logic of Cardelli et a. also proves interesting from
the point of view of its expressive power. It alows us to define recursions of exponential length and
to express PSPACE-complete problems. Nonethel ess, the model -checking complexity of the full logic,
with | and recursion, remains within PSPACE.

References

1. J. R. Buchi. Weak second order arithmetic and finite automata. Zeitschrift f. Mathematische Logik und Grund-
lagen d. Mathematik, 6:66—92, 1960.

2. C.Calcagno, H. Yang, and P. W. O’ Hearn. Computability and complexity resultsfor aspatial assertion language
for data structures. In FSTTCS: 21st Conference, volume 2245 of Springer LNCS, pages 108-119, 2001.

3. Cristiano Calcagno, Luca Cardelli, and Andrew D. Gordon. Deciding validity in aspatial logic for trees. ACM
S GPLAN Notices, 38(3):62—73, 2003.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In ICALP: Automata, Languages,
and Programming, 29th International Colloquium, volume 2380 of Springer LNCS, pages 597-610, 2002.

5. L. Cardelli and G. Ghelli. TQL: A query language for semistructured data based on the ambient logic. Mathe-
matical Structuresin Computer Science, 2003. To appear.

20

10.

11

12.

13.

14.

15.

16.
17.

LucaCardelli and Andrew D. Gordon. Anytime, anywhere: modal logics for mobile ambients. In POPL, pages
365-377, 2000.

W. Charatonik, S. Dal-Zilio, A. D. Gordon, S. Mukhopadhyay, and JM. Talbot. Model checking mobile
ambients. Theoretical Computer Science, 308:277-331, 2003.

G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. The query language TQL. In
International Workshop on the Web and Databases (WebDB), Madison, Wisconsin, USA, pages 1924, 2002.
B. Courcelle. The expression of graph properties and graph transformations in monadic second-order logic. In
G. Rozenberg, editor, Handbook of Graph Grammars and Graph Transformations, chapter 5, pages 313-400.
World Scientific, 1997.

S. Dal-Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on. In POPL: 31st ACM Symposium on
Principles of Programming Languages, pages 135-146, 2004.

A. Dawar, P. Gardner, and G. Ghelli. Games for the ambient logic. forthcoming.

H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2 edition, 1999.

R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp, editor, Com-
plexity of Computation, S AM-AMS Proceedings, Vol 7, pages 4373, 1974.

S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical Computer
Science, 10(2):111-121, 1980.

Peter W. O’ Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that alter data struc-
tures. In Proceedings of the 15th International Workshop on Computer Science Logic, pages 1-19. Springer-
Verlag, 2001.

Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1-22, 1976.

21

