
Expressiveness and Complexity of Graph Logic

Anuj Dawar1, Philippa Gardner2, and Giorgio Ghelli3

1 University of Cambridge Computer Lab., Cambridge, UK, anuj.dawar@cl.cam.ac.uk
2 Department of Computing, Imperial College, London, UK, pg@doc.ic.ac.uk

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy, ghelli@di.unipi.it

Abstract. We investigate the complexity and expressive power of the spatial logic for querying
graphs introduced by Cardelli, Gardner and Ghelli (ICALP 2002). We show that the model-checking
complexity of versions of this logic with and without recursion is PSPACE-complete. In terms of
expressive power, the version without recursion is a fragment of the monadic second-order logic
of graphs and we show that it can express complete problems at every level of the polynomial
hierarchy. We also show that it can define all regular languages, when interpretation is restricted to
strings. The expressive power of the logic with recursion is much greater as it can express properties
that are PSPACE-complete and therefore unlikely to be definable in second-order logic.

1 Introduction

Spatial logics are logics to describe graphs, memory heaps, or trees, characterized by the presence
of the composition (or separation) operator. These logics allow one to reason compositionally about
mobile processes [6] and about code with side effects [15]. Recently, languages to query tree-shaped and
graph-shaped databases have been proposed, based on spatial logics featuring first-order quantification,
composition, and recursive formulas [5, 4]. The languages seem to be pragmatically viable [8], but a
precise assessment of their expressive power and evaluation cost is needed to understand whether spatial
logics are a good foundation for semi-structured data query languages. With this aim, we are concerned
in particular with determining, for a logic L:

– the combined complexity of the model-checking problem for L, i.e. the complexity class that con-
tains the set TruthsL = f(G; �; �) : � 2 L; G �

� �g;
– the expressivity of the query language associated with L, i.e. the set of all setsG� = fG : G � �g,

for a sentence �2L; expressivity is also known as “data complexity” of L.

We focus on GL�, a spatial logic to describe graphs introduced in [4], which exhibits the crucial op-
erators in the simplest setting and on its recursion-free fragment GL. Our main result is that, although
model-checking for GL� is PSPACE-complete as it is for FO (first-order) and MSO (monadic second-
order),GL� can define sets of graphs which are PSPACE-complete and therefore unlikely to be express-
ible in second-order logic.

We establish that the set TruthsGL is in PSPACE in Section 2.1, by a translation into MSO. In
Section 3 we show that TruthsGL is PSPACE-hard and we show that, for any � 2 GL, G� is in the poly-
nomial hierarchy (PH) and that for each level� p

i
of PH, there is a � 2 GL such thatG� is�p

i
-complete.

Finally, in Section 4 we examine the expressiveness and complexity of the logic with recursion.

1.1 Preliminaries

The formulas of Graph Logic are interpreted over labelled, directed graphs. While in [4] these graphs
are originally described by terms in a suitable algebra, an alternative presentation as relational structures
is also provided. The approach we take here is based on the latter. To be precise, a graph is a structure
G = (X [E [A; edge) where,

– X is a set of vertices, E a set of edges and A a set of labels. These sets are all finite and mutually
disjoint. Moreover, X � X and A � A, where X is a fixed infinite set of names and A a fixed
infinite set of labels (names do not actually name anything, they are just the universe of constants
from which elements of the graph are drawn).

– edge : E ! A � X � X is a function that associates with each edge a label and a source and
destination vertex.

This presentation differs from the one given in [4] in that we do not have an explicit function src
mapping names to vertices in the graph. Essentially this is because we do not consider the operation
of name hiding that plays a significant role in the original presentation of the term algebra of graphs.
However, all of our results easily apply to the case where hiding is available. It is only the translation of
Graph Logic to monadic second-order logic presented in Section 2.1 that requires some modification to
cope with hiding, as we will point out.

The essential graph building operation is graph composition. Intuitively, the composition G 1 j G2

is formed by taking the disjoint union of the graphsG 1 andG2, while identifying nodes which have the
same name. More formally, suppose G1 = (X1 [E1 [A1; edge1) and G2 = (X2 [E2 [A2; edge2).
Then, the compositionG = G1 j G2 is defined to be the graph (X [E [A; edge) where:

– X = X1 [X2;
– E = E1] E2;
– A = A1 [A2; and
– edge = edge1] edge2.

Definition 1. The formulas of (recursion-free) Graph Logic (GL) are built up from a set X of node
names, a set A of label names, a set VX of node variables and a set VA of label variables. A formula is
one of

0

T
�(�1; �2) where � 2 A [VA and �i 2 X [VX
�1 = �2 or �1 = �2 where �i 2 A [VA and �i 2 X [VX
� j or � ^ or :� where � and are formulas
9x:� or 9a:� where x 2 VX ; a 2 VA and � is a formula:

In the following, we use bold face for constants (a, x, . . .), italics for variables (a, x, . . .) and greek
letters for terms (�, �. . .), which are either constants or variables.

For the semantics, suppose � is a formula andG = (X[E[A; edge) is a graph. Let � : VX [VA !
X [A be an assignment of node and label names to the node and label variables respectively. Extend
� in a canonical fashion to the domain VX [VA [X [A, by letting �(z) = z for z 2 X [A. The
satisfaction relation G �

� � is defined by:

1. G �
� T for any G.

2. G �
� 0 if, and only if, E = ;.

3. G �
� �1 = �2 if, and only if, ��1 = ��2.

4. G �
� �1 = �2 if, and only if, ��1 = ��2.

5. G �
� �(�1; �2) if, and only if, E = feg and edge(e) = (��; ��1; ��2).

6. G �
� � j if, and only if, G = G1 j G2 for some G1 and G2 and G1 �

� � and G2 �
� .

7. G �
� 9x:� if, and only if, G �

�
0

� for some �0 which agrees with � for all arguments other than x.
8. G �

� 9a:� if, and only if, G �
�
0

� for some �0 which agrees with � for all arguments other than a.

The semantics for the Boolean connectives is standard. Note that the quantifiers are interpreted as rang-
ing over the infinite sets of names X andA, even though the graphG is finite. This makes no difference
to the power of the logic to express properties that are invariant under renamings, as we shall see.

2

1.2 Related Work

A review of the vast field of work on the complexity and expressivity of various logics is beyond the
scope of this paper. We only cite papers that study these questions in the context of the so-called spatial
logics, which are logics characterized by the presence of a “separation” (or composition) operator like
the j operator introduced above.

Calcagno et al. studied the complexity of model-checking and validity for the separation logic, a
spatial logic used to describe mutable data structures stored in a heap [2]. They prove undecidability of
validity for the logic with quantifiers, and then focus on the quantifier-free fragment, which we do not
consider here. Their most interesting result is decidability of validity for the quantifier-free fragment
in presence of the adjunct operator “magic wand”, operator which we do not consider here. The same
result is proved for the quantifier-free Static Ambient Logic in [3].

Charatonik et al. studied the complexity of model-checking for the ambient logic [7]. This is a spatial
logic for the properties of processes, characterized by spatial and temporal modalities, which are not of
interest in the context of static graphs. They prove that model-checking is PSPACE-complete for the
simplest fragments of the logic, but it remains so even when the model is enriched with communication
and mobility, and the logic is enriched with spatial and temporal modalities.

Dal-Zilio et al. defined a translation of the quantifier-free spatial ambient logic enriched with Kleene
star operator into Presburger automata [10]. Once more, they focus on operators we do not consider
(adjunct and Kleene star), but they only study the quantifier-free fragment of the logic.

2 Graph Logic and MSO

We consider the expressive power of GL and compare it to the monadic second-order logic of graphs.
Section 2.1 shows that formulas of GL can be translated into this logic (with a minor qualification with
regard to the range of quantification), while Section 2.2 illustrates the expressivity of GL by looking at
the definitions of some specific properties of graphs. In Section 2.3 we show that the expressive power
of GL coincides with that of monadic second-order logic over graphs that are strings.

2.1 Monadic Second-Order Logic

In this section we show that for every formula of GL, there is an equivalent formula of monadic second-
order logic (MSO). As the structures over which we interpret our formulas are three-sorted, so is our
version of MSO. Moreover, we treat edge syntactically as a 4-ary relation, rather than a function. To
be precise, the formulas of MSO are built up from the names X , the labels A, three sorts of first-order
variables: VX , VA and VE , and a collection S of set variables. A formula is one of:

edge(e; �; �1; �2) where � 2 A [VA; e 2 VE and �i 2 X [VX
e1 = e2 or �1 = �2 or �1 = �2 where ei 2 VE ; �i 2 A [VA; �i 2 X [VX
e 2 S where e 2 VE and S 2 S
� ^ or :� where � and are formulas
9e:� or 9x:� or 9a:� where x 2 VX ; e 2 VE ; a 2 VA and � is a formula
9S:� where S 2 S and � is a formula:

The semantics is standard except that set variables are interpreted as ranging over sets of edges. In this
sense, this version of monadic second-order logic is akin to the logic MS 2 of [9].

In order to define a translation of formulas of GL to MSO, there is one issue that needs to be
addressed carefully. The node and label quantifiers in GL are interpreted over the infinite sets X andA.
However, in the standard semantics of MSO, the range of the first-order quantifiers is the set of nodes

3

X and the set of labels A that are in the graph. In order to define a reasonable translation, we show that
the quantifiers in GL can be restricted to a finite set, without loss of generality.

Let G = (X [E [A; edge) be a graph and � a formula of GL which contains k distinct node
variables and l distinct label variables. Let X 0 � X be a finite set of node names such that: X � X 0;
each node constant occurring in � is in X 0; and X 0 contains at least k distinct names that are not in X
and do not occur in �. Similarly, let A 0 � A be a finite set containingA, all label constants occurring in
� and at least l other labels.

Lemma 1. If G �
� � then there is a �0 : VX [VA ! X 0 [A0 such that G �

�
0

�.

Proof. Let x be a name that is in the range of � but not in X 0. If x = �x for some variable that occurs
free in �, by the choice of X 0, there must be some y 2 X 0 such that y 6= �y for any y that is free in
� and such that y is not in the graph G and does not occur in �. Thus, the permutation of X that only
exchanges x and y is an automorphism ofG and thereforeG �

�;x 7!y �. Proceeding in this way with all
variables that are mapped to elements outside X 0, and similarly with label variables that are mapped to
Y 0, we obtain the desired � 0.

Now, for a sentence �, writeG �
X
0
;A

0

� ifG satisfies � when the interpretation of the node and label
quantifiers is restricted to the sets X 0 and A0 respectively. We use Lemma 1 to establish the following.

Lemma 2. For any sentence � of GL, G � � if, and only if, G �
X
0
;A

0

�.

Proof. Follows easily by applying Lemma 1 to each subformula of � that begins with an existential
quantifier.

To define the translation of formulas of GL, we define, inductively, for each formula � of GL a
formula [[�]]S of MSO, which is to be read as “the translation of � relativized to the set of edges S”. In
the following, we use S = S 0 j S00 as an abbreviation for the MSO formula:

8e: ((e 2 S , (e 2 S0 _ e 2 S00)) ^ (e 2 S0 , e =2 S00))

[[�(�; �0)]]S =def 9e 2 S: [edge(e; �; �; �0) ^ 8e0 2 S: e = e0]

[[�0 j �00]]S =def 9S
0; S00: S = S0 j S00 ^ [[�0]]S

0

^ [[�00]]S
00

[[0]]S =def :9e: e 2 S

[[:�]]S =def :[[�]]
S

[[� ^ �0]]S =def [[�]]
S ^ [[�0]]S

[[9x:�]]S =def 9x: [[�]]
S

[[9a:�]]S =def 9a: [[�]]
S

[[� = �0]]S =def � = �0 [[� = �0]]S =def � = �0

To state precisely in what sense this is a valid translation, we need one further definition. For any
graph G = (X [E [A; edge) and any formula � 2 GL with k distinct node variables and l distinct
label variables, define the graphG+

= (X 0[E[A0; edge) whereX 0 isX along with all node constants
occurring in � and exactly k additional nodes, and A 0 is A along with all label constants occurring in �
and exactly k additional labels. Then, we have:

Theorem 1. For any graph G = (X [E [A; edge), any formula � 2 GL and any � whose range is
contained in X 0 [A0

G �
� � , G+

�
�
[[�]]E :

Proof. Straightforward induction on the formula.

4

Remark: As we remarked in Section 1, in defining the logic GL, [4] considers an algebra for graph
descriptions that does not involve name hiding and it is this version of the logic that the above translation
corresponds to. If name hiding is allowed, the operation of graph composition is subtly different. That
is, if G1 andG2 are graphs, their compositionG1 j G2 is defined by taking the disjoint union of the sets
of edges and identifying nodes with the same name provided that the name is not hidden. Formulas of
GL can still be translated to MSO under this interpretation if we include in our graph structures a unary
predicate Named for the set of nodes whose names are not hidden.

The effect of Theorem 1 is that it immediately establishes upper bounds on the expressive power
of GL and the complexity of the model-checking problem. It is known by [13, 17] that a property of
relational structures is definable in second-order logic if, and only if, it is in the polynomial hierarchy
PH. Thus, we have:

Theorem 2. For any sentence � 2 GL, the set of graphs fG : G � �g belongs to PH.

Moreover, for each level � p

i
of the polynomial hierarchy, there are properties definable in MSO that

are �p

i
-complete. We show in Section 3 that this is also the case for GL. On the other hand, there

are computationally simple properties that are not expressible in MSO which therefore could not be
expressible in GL either. For instance, the following is a direct consequence of Theorem 1:

Corollary 1. There is no formula � of GL such that G � � if, and only if, G has an even number of
edges.

It is also known that the combined complexity of MSO is PSPACE-complete. That is, the decision
problem TruthsMSO = f(G; �; �) : � 2 MSO; G �

� �g is PSPACE-complete. Since the translation
given above is itself computable in polynomial time, it establishes that TruthsGL is in PSPACE. In
Section 3 we show that it is, in fact, PSPACE-complete.

2.2 Expressivity of Graph Logic

We have seen that, in terms of expressive power, GL can be considered to be a fragment of monadic
second-order logic. Translation in the other direction is not possible for trivial reasons having to do with
the range of quantification. For instance, the sentence 9x8y8a8e(:edge(e; a; x; y)^:edge(e; a; y; x)
of MSO is true in a graph G if, and only if, it contains isolated nodes. In GL, with quantifiers ranging
over the infinite set of all names, it is not possible to distinguish isolated nodes in the graph from nodes
not in the graph. Thus, for the purpose of a translation, it makes sense to restrict ourselves to graphs
that contain no isolated nodes. Still, we conjecture that there is no translation possible. That is, there are
formulas of MSO that are not equivalent, even in restriction to the class of finite graphs with no isolated
nodes, to any formula of GL. Establishing this is difficult. To illustrate this difficulty, we show how we
can express some natural MSO properties in GL. Below we describe informally how these properties
are expressed by formulas of GL. The details of the definitions are in the full paper.
Connectivity. Graph connectivity is a problem well-known to be definable in MSO, but not in first-order
logic (see [12]). We note that it is definable in GL.

The following formulas constrain the in- and out-degrees of nodes:

In�1(x) =def 9a; y: a(y; x) j T Out�1(x) =def 9a; y: a(x; y) j T
In�2(x) =def In�1(x) j In�1(x) Out�2(x) =def Out�1(x) j Out�1(x)
In0(x) =def :In�1(x) Out0(x) =def :Out�1(x)
In1(x) =def In�1(x) ^ :In�2(x) Out1(x) =def Out�1(x) ^ :Out�2(x)

(1)

We will also use the formula Here, defined by Here(x) =def In�1(x) _ Out�1(x). This formula
selects those nodes that are actually in the graph. We henceforth use the abbreviation 8x 2 G: � for
8x: Here(x)) �, and similarly 8x1; : : : ; xn2G: �.

5

Now, define the formula

Path(x; y) =def In0(x) ^ Out0(y) ^ 8z2G((z 6= x) In1(z)) ^ (z 6= y) Out1(y))): (2)

If, for a graph G, G �
� Path(x; y), then G consists of a single path from �x to �y along with possibly

other simple cycles disjoint from this path. Thus,G �
�
(Path(x; y) j T) holds if, and only if, G contains

a path from �x to �y. Indeed, if the formula is satisfied, then G = G1 j G2, where G1 consists of a
path and possibly some cycles, implying that G contains the required path. Conversely, if G contains a
path from �x to �y, it can be expressed as the composition of this path and the rest of the graph, thereby
satisfying the formula. Thus, we have that the formula 8x; y2G:(Path(x; y) j T) expresses that a graph
is strongly connected.
Disjoint Paths.Using the formula Path defined above, t is easy to construct a formula that expresses the
property that there are two edge-disjoint paths between distinguished nodes a to b in a graph G. The
formula is Path(a;b) j Path(a;b) j T. We show how to construct a formula that expresses that there are
two node-disjoint paths from a to b, which is a well-known NP-complete problem [14]. The formula
TwoPath(a;b)

TwoPath(a;b) =def Out�2(a) ^ In0(a) ^ In�2(b) ^ Out0(b)
^8x2G((x 6= a ^ x 6= b) In1(x)) ^ (x 6= a ^ x 6= b) Out1(x)))

is true in a graphG if, and only if, G consists of two node-disjoint paths from a to b and possibly some
additional simple cycles. Thus, TwoPath(a;b) j T expresses the existence of two node-disjoint paths
from a to b.
2-colourability. As a final example, we construct a formula that expresses that a graph is 2-colourable.
Similarly to the formulas In�2 and Out�2, we define the formula Deg�n(x) to be the formula that
asserts that x has at least n neighbours (regardless of the direction of the edges). Thus, for instance

Deg�2(x) =def (9a; y: (a(y; x) _ a(x; y))) j (9a; y: (a(y; x) _ a(x; y))) j T:

Also, define Deg=n(x) to be the formula Deg�n(x) ^ :Deg�n+1(x). We also define the formulas

Cycles =def 8x2G: Deg=2(x)
Edges =def 8x2G: Deg=1(x):

Note that, if every node in a graph G has exactly two neighbours, then G is the disjoint union of simple
cycles (ignoring directions on the edges). Similarly, if every node in G has exactly one neighbour, than
G is the disjoint union of simple edges. Thus, the sentences Cycles and Edges express, respectively,
that G is a disjoint collection of cycles and that G is a disjoint collection of edges. Also observe that a
collection of simple cycles can be decomposed into two graphs each of which is a disjoint collection of
edges if, and only if, all the cycles are of even length. Thus, the sentence Cycles ^ :(Edges j Edges)
is satisfied by G if, and only if, G is a collection of cycles at least one of which is of odd length. Since
a graph is 2-colourable if, and only if, it contains no cycles of odd length, 2-colourability is defined by
the sentence: :[(Cycles ^ :(Edges j Edges)) j T]:

These examples illustrate the varied expressive power of GL. Nonetheless, it seems unlikely that
GL is as expressive as MSO. We conjecture that Hamiltonicity—the class of graphs that contain a
Hamiltonian cycle; and 3-colourability are both inexpressible in GL. These can both be seen to be
expressible in MSO4.

4 That is, in the version of MSO we have defined, which allows quantification over sets of edges. If second-
order quantification is restricted to sets of vertices, then Hamiltonicity is not definable [12, Cor. 6.3.5], though
3-colourability still is.

6

In order to separate the expressive power of MSO from that of GL, we need a method that can
demonstrate that a given property is not definable in the latter. A natural such class of techniques is the
Ehrenfeucht-Fraı̈ssé style games. Games for spatial logics such as GL are introduced in [11]. It is not
difficult to use such a game to show that GL cannot express that a graph has an even number of edges,
yielding a direct proof of Corollary 1. It remains a challenge to deploy this game method to prove the
inexpressibility of more complex problems, such as Hamiltonicity or 3-colourability.

2.3 Strings

We now look at the expressive power of GL on a particular class of graphs corresponding to strings over
a finite alphabet. A string graph over the finite alphabet A � A is either the empty graph or a graph of
the shape a1(x1;x2) j : : : j an�1(xn�1;xn), where each of the labels ai is in A. Identifying the graph
a1(x1;x2) j : : : j an�1(xn�1;xn) with the word a1 : : : an�1, we can see each sentence � of GL as
defining a language—namely the set of words that satisfy �.

While the relationship of GL with MSO over arbitrary graphs remains unresolved we are able to
show that on string graphs they have equal expressive power. It is well-known (by a result of Büchi [1])
that a language is definable in MSO if, and only if, it is regular 5. It follows that any language definable
in GL is regular. We now show the converse, that every regular language is definable by a formula of
GL. We do this by translating regular expressions into formulae of GL. The crucial case is the Kleene
star. The translation to GL is based on the observation that a string graph is in the language L � if, and
only if, it can be decomposed into two graphs, each of which is the disconnected sum of strings in L.

In order to do this, we first introduce some auxiliary formulae to count the incoming and outgoing
edges. In addition to the formulae introduced at (1), (3) and (2), we need:

In�1(x) =def In0(x) _ In1(x)

Out�1(x) =def Out0(x) _ Out1(x)

We can now introduce some additional predicates. NoCycles means that no subgraph of the current
graph is a cycle. LinearFromTo(x; y) means that the graph is linear from x to y. Finally, SetOfWords(�)
means that the graph is a set of disconnected linear graphs, and each of these linear graphs satisfies the
formula �.

NotEmptySetOfCycles =def (:0) ^ 8x2G: (In1(x) ^ Out1(x))

NoCycles =def :(T j NotEmptySetOfCycles)

LinearFromTo(x; y) =def NoCycles ^ Path(x; y)

Linear =def 9x; y: LinearFromTo(x; y)

SetOfWords(�) =def NoCycles ^ (8x2G: In�1(x) ^ Out�1(x))

^ (8x; y2G: (In0(x) ^ Out0(y)

) (T j) LinearFromTo(x; y)) �)))

We can now translate every regular expression L into an equivalent formula F(L). The critical case
is Kleene star. A word w belongs to L� if it is the concatenation of a sequence of words w1; : : : ; wn,
each belonging to L. In this case, it is possible to split the corresponding graph G(w) into the two

5 The original result uses a different representation of strings as relational structures, but the proof is robust and
easily translated to our setting.

7

subgraphs G1 and G2 which are not themselves words, but each is a set of disconnected words, each
of them individually in L. On the other hand, if it is possible to split G(w) into two such graphs, then
w 2 L�. This is expressed by the formula F(L�) below. Observe that each of the two graphsG1 and G2

may be empty.

F(�) =def 0

F(L;L0) =def Linear ^ 9x; y: (F(L) ^ Out0(x)) j (In0(x) ^ F(L0))

F(L+ L0) =def F(L) _ F(L0)

F(L�) =def 0 _ Linear ^ (SetOfWords(F(L)) j SetOfWords(F(L)))

This gives us

Theorem 3. A language is definable in GL if, and only if, it is regular.

3 Complexity of Graph Logic

In this section we establish lower bounds on the data complexity and combined complexity of GL that
match the upper bounds established through the translation to MSO.

3.1 Combined complexity

We begin by showing that the set TruthsGL = f(G; �; �) : � 2 GL; G �
� �g is PSPACE-hard, by a

reduction from validity of Quantified Boolean Formulas (QBF). We use a fixed graph in the reduction.
The same technique has been used in [7] to prove the same result for the ambient logic, and in [2] to
prove undecidability of validity for the separation logic. Indeed, the proof is based on the PSPACE-
completeness of the first-order logic of graphs. In the reduction, we do not use the operator j .

A Quantified Boolean Formula is a term generated by the following grammar:

� ::= 9P: � j :� j � ^ �0 j P

where P ranges over propositional variables. The definitions of validity and satisfiability for QBF are
standard (see [16]). QBF formulas � are translated into GL formulas as follows, where for each P ,
xP 2 VX is a different name variable, and t 2 X is a name constant; the translation can be evaluated in
Logspace.

[[9P: �]] =def 9xP : [[�]] [[P]] =def xP = t

[[:�]] =def :[[�]] [[� ^ �0]] =def [[�]] ^ [[�0]]

Lemma 3. Satisfiability of closed QBF formulas can be reduced to the model-checking problem f(G; �; �) : � 2 GL; G �
� �g

for a fixed graphG.

Proof. We take G to be the fixed graph that satisfies a(t; f). Given an assignment � of truth values to
the propositional variables in a formula �, define � 0 to be the variable assignment such that �(X) =

true , �0(xX) = t. An easy induction then shows that � is true under � if, and only if, G �
�
0

[[�]],
hence the closed formula � is satisfiable if, and only if, (G; �; [[�]]) 2 TruthsGL.

Theorem 4. The model-checking problem for GL is PSPACE-complete.

The expressive power of GL is intermediate between that of first-order logic (FO) and MSO, in
that any first-order formula on graphs can be translated to GL. Thus, Theorem 4 is unsurprising as the
model-checking problem for both FO and MSO is PSPACE-complete.

8

3.2 Data complexity

We prove here that, for each positive integer k there exists a sentence �k such that the problem: ‘given
G, decide whether G � �k’ is hard for the kth universal level of the polynomial hierarchy, i.e. G�k

2
�
p

i
-hard. Since GL is closed under negation, we also obtain hard problems for the existential levels of

the hierarchy. In the proof we use the derived operator � j) = def :(� j :). By this definition,
G �

� � j) if, and only if, for every partition of G into G 0; G00, if G0 �� �, then G00 �� . We will
also use the following formulas:

In�2(x) =def 9a; y; a
0; y0: a(y; x) j a0(y0; x) j T

In�1(x) =def 9a; y: a(y; x) j T
In0(x) =def :In�1(x)
Out�1(x) =def 9a; y: a(x; y) j T

(3)

The proof begins by showing a logspace-computable function G(�), that codes propositional for-
mulas as graphs in a way that allows us to express questions about the satisfiability and the validity of
� as GL formulas over G(�).

Informally,G translates a propositional formula� into a graphG(�) of the same size, that represents
� as a circuit. The edges of the graph have labels from the set And, Not, Var, FanOut, Switch and Result.
There is an edge labelled Var for each variable, the source of which is the target of an edge labelled
Switch (the purpose of these edges is that a selection of them will encode an assignment of truth values
to the variables). The target of each Var edge is the source of a number of edges labelled FanOut, one for
each occurrence of the variable in �. The source of each And edge has two incoming edges and its target
has one outgoing edge. Similarly, the source of each Not edge has one incoming edge and its target one
outgoing edge. Finally, there is only one edge labelled Result , that marks the root of the formula, and
its source and target are the same.

More formally, we define the translation G as follows. In the first line X1; : : : ; Xn are the variables
of �. The translation is based on a quadruple x = (xsi; xso; xv ; xp); xsi, xso, xv are three functions
that associate nodes to the free variables of �, and xp associates a node to each occurrence in � and to
the special occurrence ��. As usual, an occurrence is a string of 0’s and 1’s, possibly empty (�), such
that, when � is associated to a formula rooted in a binary operator, �:0 and �:1 are associated to its two
subformulas, and similarly for unary operators. The operator (�)� is defined as (�:0)� = (�:1)

�
= �,

(�)
�

= ��. The four functions in x are all injective and their codomains are disjoint. These functions
do not use up space, since they are not stored in a table, but perform some fixed bit-manipulation on the
input to produce the output.

G(�; x) =def [[�; �]]x j Switch(xsi(X1); xso(X1)) j Var(xso(X1); xv(X1)) j
: : : j Switch(xsi(Xn); xso(Xn)) j Var(xso(Xn); xv(Xn))

j Result(xp(�
�
); xp(�

�
))

[[� ^ �0; �]]x =def [[�; �:0]]x j [[�0; �:1]]x j And(xp(�); xp(�
�
))

[[:�; �]]x =def [[�; �:0]]x j Not(xp(�); xp(�
�
))

[[Xi; �]]
x

=def FanOut(xv(Xi); xp(�
�
))

Let (�)� be the subformula of � rooted at the occurrence�. Observe that for every occurrence� in� we
have exactly one edge a(y; xp(��)), labelled And , Not , or FanOut , depending on whether the root of
(�)� is ^ , :, or a variable, unless � = �, in which case we also have an edge Result(xp(��); xp(��)).
Also observe that:

– Switch edges have no incoming edge and one outgoing edge;

9

– Var edges have one Switch incoming edge and many FanOut outgoing edges;
– FanOut edges have one Var incoming edge and one And or Not outgoing edge;
– And edges have two FanOut, And , or Not incoming edge and one And , Not , or Result outgoing

edge;
– Not edges have one FanOut , And , or Not incoming edge and one And , Not , or Result outgoing

edge;
– the Result edge has itself plus one FanOut, And , or Not as the only incoming edges, and itself as

the only outgoing edge.

The previous enumeration is exhaustive: no edge has any incoming or outgoing edges more than what
is listed above.

Corresponding to any assignment � of truth values to the variables in �, there is a decomposition
of G(�) into two graphs G0 and G00 where G0 contains the edges corresponding to subformulas of �
that are made true by �. We construct a pair of formulas of GL TruePart and FalsePart that define
the well-formedness of the graphs G 0 and G00. For instance, TruePart asserts that a graph contains an
And edge if, and only if, it contains both its preceding edges and FalsePart asserts that a graph contains
an And edge if, and only if, it contains at least one of its preceding edges. A propositional formula is
satisfiable if there exists an assignment whose partition leaves the root edge Result in the TruePart
(see GSat below). The propositional formula is valid if, for any assignment, hence for any possible
FalsePart , the formula root is in the TruePart (GVal). The formulas TruePart , and FalsePart , and
the partition Gt(�; x; �), Gf (�; x; �) are defined as follows.

TruePart = 8x; y:(Switch(x; y) j T)) Out�1(y)
^8x; y: (Var(x; y) j T)) In�1(x)
^8x; y: (FanOut(x; y) j T)) In�1(x)
^8x; y: (And(x; y) j T)) In�2(x)
^8x; y: (Not(x; y) j T)) In0(x)
^8x (Result(x; x) j T)) In�2(x)

FalsePart = 8x; y:(Switch(x; y) j T)) Out�1(y)
^8x; y: (Var(x; y) j T)) In�1(x)
^8x; y: (FanOut(x; y) j T)) In�1(x)
^8x; y: (And(x; y) j T)) In�1(x)
^8x; y: (Not(x; y) j T)) In0(x)
^8x (Result(x; x) j T)) In�2(x)

Gt(�; x; �) = fa(y; xp(�
�
)) : the subformula (�)� is true in �g

[fVar(xso(X); xv(X)) : �(X) = trueg
[fSwitch(xsi(X); xso(X)) : �(X) = trueg

Gf (�; x; �) = fa(y; xp(�
�
)) : the subformula (�)� is false in �g

[fVar(xso(X); xv(X)) : �(X) = falseg
[fSwitch(xsi(X); xso(X)) : �(X) = falseg

Lemma 4. For every assignment � to the free variables of �:

Gt(�; x; �) � TruePart ^ Gf (�; x; �) � FalsePart

For every partition ofG(�; x) intoGt; Gf , and � such that �(X) = false , Switch(xsi(X); xso(X)) 2
Gf :

Gt � TruePart ^ Gf � FalsePart

) Gt = Gt(�; x; �) ^ Gf = Gf (�; x; �)

10

Proof. The first part is true by construction. For the second part, by construction. all the switches of
true variables are in Gt; by 8x; y:(Switch(x; y) j T)) Out�1(y), all the variables associated to these
switches are in Gt, and by 8x; y: (Var(x; y) j T)) In�1(x) only these variables are. Hence, all the
false variables are in Gf .

Now we can prove that, for every occurrence � of �, an edge a(y; x p(��)) is in Gt when (�)� =

true and is in Gf otherwise. We prove it by induction on the well-founded order on the occurrences of �
defined by the transitive closure of � < ��; the order is well-founded because � is finite (observe that
the minimal elements are the longest occurrences in �).

When � is minimal, then (�)� is a variable, hence a(y; xp(�
�
)) is a FanOut edge, which is in

fa(y; xp(�
�
)) : (�)� = trueg if, and only if, its input variable is true. The condition8x; y: (FanOut(x; y) j T))

In�1(x) ensures that every FanOut edge of a true variable is in G t. The same reasoning holds exchang-
ing true, Gt, with false, Gf .

When � is not minimal, then (�)� is rooted either in ^ or in :; we first assume � 6= �.
In the first case, a(y; xp(��)) = And(xp(�); xp(�

�
)), and, if it is inGt, by 8x; y: (And(x; y) j T))

In�2(x) both of its incoming edges are in Gt too, else, by induction, both (�)�:0 and (�)�:1 are true,
hence (�)� is true too. The same reasoning holds for Gf , with the difference that in this case we are
only assured that one of the two incoming edges is in Gf , but this is enough to ensure that (�)� is false.

If (�)� is rooted in:, then a(y; xp(��)) = Not(xp(�); xp(�
�
)), and, if it is inGt, 8x; y: (Not(x; y) j T))

In0(x) implies that its incoming edge is in Gf , hence, by induction, (�)�:0 is false, hence (�)� is true.
The same reasoning holds exchanging true, G t, with false, Gf .

Finally, if � = �, a(y; xp(��)) may also beResult(��; ��); if it is inGt, then the other a(y; xp(��))
is in Gt too, hence the whole subformula is true, hence Result(��; ��) is in Gt(�; x; �). The same rea-
soning holds exchanging true, Gt, with false, Gf .

Conversely, we can show that, if G(�; x) = Gf j Gt and Gf � FalsePart , then there is a truth
assignment � such that Gf = Gf (�; x; �) and Gt = Gt(�; x; �). This truth assinment is obtained by
setting �(X) true for all X for which the edge Switch(xsi(X); xso(X)) is in Gt.

We can now define the formulas GSat and GVal that characterise the sets of graphs encoding
satisfiable and the valid formulas respectively.

ResultHere =def 9x: Result(x; x) j T
GSat =def (TruePart ^ ResultHere) j FalsePart

GVal =def FalsePart j) (TruePart ^ ResultHere)

Theorem 5. The set fG : G � GValg is co-NP-complete.

Proof. We reduce PVAL, the validity of propositional formulas, to fG : G � GValg, by proving that
� 2 PVAL , G(�; x) � GVal .

Assume that � 2 PVAL. We want to prove thatG(�; x) � GVal , i.e. that for every partitionG(�; x)

as Gf j Gt, if Gf � FalsePart , then Gt � TruePart ^ ResultHere.
Let � be the truth assignment associated with the partition Gf , Gt. Thus,Gt = Gt(�; x; �) and

Gf = Gf (�; x; �). Since Gf � FalsePart and � is valid, a(y; xp(��)) is in Gt, hence, by definition
of Gt(�; x; �) the Result loop is in Gt, hence Gt � ResultHere.

For the other direction, assume that G(�; x) � GVal . This implies that, for every partition G(�; x)

as Gf j Gt, if Gf � FalsePart , then Gt � TruePart ^ ResultHere. We can now conclude that for
every � the set of all occurrences � such that (�)� is true includes the root �, hence the formula is valid.

Theorem 6. The set fG : G � GSatg is NP-complete.

Proof. We reduce PSAT, the satisfiability of propositional formulas, to fG : G � GSatg, by reasoning
as in the previous case.

11

We are now ready to prove that, for each k there exists a formula � k such that the problem: ‘given
G, decide whether G �

� �k’ is �p

k
-hard. The standard hard problem for a class � p

k
of the polynomial

hierarchy is the validity of a Quantified Boolean Formula with k alternation of quantifiers, i.e. a formula
like the following one (where no quantifier appears in � and the last quantifier is 9 if k is even, as we
assume below, and is 8 if k is odd):

8X1
1 : : : X

1
i1
:9Y 2

1 : : : Y
2
i2
: : : :8Xk�1

1 : : : Xk�1
ik�1

:9Y k1 : : : Y
k

ik
:�:

We encode such formulas into graphs which has edge labels And, Not, Var, FanOut, and Result as
before. In addition, there is, for each 1 � i � k, a label SwitchE i (or SwitchAi if the ith quantifier
block is universal). With variables thus labelled as universally or existentially quantified and marked
with an index indicating where they occur in the formula, we are able to construct a formula GVal k,
using alternations of j and negation, to express that the formula encoded by G(�) is valid.

Theorem 7. For each k there exists a GL formula �k (k) that characterizes a set of graphs that is
complete for �p

k
(�p

k
).

Proof. We only show this for � p

k
and for even k. As for the previous theorems, for every k, we exhibit

a translation Gk(�; x) and a formula GVal k such that, for every closed QBF with maximal level k, �k
is valid iff Gk(�; x) � GValk.

Consider a formula
8X1

1 : : :X
1
i1
:9Y 2

1 : : : Y
2
i2
: : : : 9Y k1 : : : Y

k

ik
:�:

We consider the following translationGk(�; x), identical to the previous one but for the partition of the
switches according to the level and the quantifier of their variables.

Gk(�; x) =def [[�; �]]x j SwitchA1
(xsi(X

1
1); xso(X

1
1)) j Var(xso(X

1
1); xv(X

1
1))

j SwitchA1
(xsi(X

1
i1
); xso(X

1
i1
)) j Var(xso(X

1
i1
); xv(X

1
i1
))

j SwitchE 2
(xsi(Y

2
1); xso(Y

2
1)) j Var(xso(Y

2
1); xv(Y

2
1))

j SwitchE 2
(xsi(Y

2
i2
); xso(Y

2
i2
)) j Var(xso(Y

2
i2
); xv(Y

2
i2
))

: : :

j SwitchE k
(xsi(Y

k

ik
); xso(Y

k

ik
)) j Var(xso(Y

k

ik
); xv(Y

k

ik
))

j Result(xp(�
�
); xp(�

�
))

[[� ^ �0; �]]x =def : : :

The formula GVal k is defined as follows.

SwitchesA1 j) (SwitchesE 2 j : : :

(SwitchesAk�1 j) (SwitchesE k j ((TruePart i ^ ResultHere) j FalsePart i))) : : :)

Where SwitchesAi and SwitchesE i are defined as:

SwitchesA
i
=def 8a; x; y: (a(x; y) j T)) a = SwitchA

i

SwitchesE i =def 8a; x; y: (a(x; y) j T)) a = SwitchE i

TruePartk is the same as TruePart but we replace Switch(x; y) in the implication

8x; y:(Switch(x; y) j T)) Out�1(y)

with a disjoint listing of the different switch edges we have:

8x; y:((SwitchA1
(x; y) _ : : : _ SwitchEk(x; y)) j T)) Out�1(y):

12

FalsePartk is defined by generalizing FalsePart in the same way.

The formula GVal k says that: for each assignment to first-level universal variables there exists
an assignment to second-level existential variables such that . . . for each assignment to k � 1

th-level
universal variables there exists an assignment to k th-level existential variables such that the formula
holds.

One consequence of this is that the alternation of j with negation forms an infinite hierarchy of
expressive power in GL. Hence, it is not possible to obtain a normal form similar to the conjunctive or
disjunctive normal forms of boolean operators, characterized by a fixed number of alternations between
j and negation.

Corollary 2. Unless the polynomial hierarchy collapses, the alternation of j and negation form a strict
hierarchy in GL.

4 Recursion

In [4], a fixed-point operator �R:� is defined for GL, where R is a variable that can appear inside � as
an atomic formula, and only in positive positions, i.e. each occurrence of R is within the scope of an
even number of negations in �. We use GL� to denote the logic with recursion.

Satisfaction G �
� � is now defined as the minimal relation that satisfies the properties specified in

Section 1 plus the following:

G �
� �R:� if, and only if, G �

� �fR (�R:�)g

More formally, we can define the semantics such that [[�]]�;� denotes the set of all graphs that satisfy
� under assignments � and �, where � is a valuation for the recursion variables.

In the definition below, we follow the notation of [4] for describing graphs. Thus, a(x;y) is a term
denoting the graph with a single edge labelled a between the nodes x and y. Larger graphs can be built
up using the composition operator j. It should be clear from context whether such a term or a formula of
GL� is intended.

Definition 2 (Satisfaction).Let G be the set of all graphs. Let � denote an assignment for name and
label variables, and let � map recursion variables to elements of P(G). The satisfaction interpretation

13

[[]]�;� : F ! P(G) is defined as:

[[0]]�;� = fG : G � 0g

[[�(�1; �2)]]�;� = fG : G � ��(�1�; �2�)g

[[� j]]�;� = fG : G � G1 j G2 ^ G1 2 [[�]]�;� ^ G2 2 [[]]�;�g

[[T]]�;� = G

[[� ^]]�;� = [[�]]�;� \ [[]]�;�

[[:�]]�;� = G n [[�]]�;�

[[9x: �]]�;� =

[

x2X

[[�]]�;x7!x;�

[[9a: �]]�;� =

[

a2A

[[�]]�;a7!a;�

[[R]]�;� = R�

[[�R:�]]�;� =

\
fS 2 P(G)) : [[�]]�;�;R7!S � Sg

[[�1 = �2]]�;� = G; if �1� = �2�; ; otherwise

[[�1 = �2]]�;� = G; if �1� = �2�; ; otherwise

Definition 2 is shown to be well-defined by structural induction on formulas. For the recursive case,
observe that the set P(G) is a complete lattice. Define the satisfaction relation G �

� � for a formula �
with no free recursion variables if and only if G 2 [[�]]�;�, for any �.

It is instructive to compare this logic with other logics of recursion, such as LFP, the extension of
first-order logic with an operator for forming the least fixed points of relational expressions (see [12]
for an exposition). For a relational variable R and a formula � in which R only appears positively, LFP
allows the expression �R:� which defines the least relation such that R $ �. Just as the graph com-
position operator of GL can be simulated by a monadic second-order quantifier one might think that
recursion can be simulated by the fixed-point operator of LFP. There is, however, a crucial difference.
While the fixed-points in LFP are defined in the lattice of relations on a graphG, the form recursion takes
here defines fixed-points of maps on the lattice of sets of subgraphs of G. Thus, while the evaluation
of a fixed-point in LFP can be performed by an iteration that is guaranteed to converge in a polynomial
number of steps, the number of steps required to reach a fixed-point of a recursive formula in GL is po-
tentially exponential in the size of the graphG. This is amply illustrated by the result in Section 4.2 that
exhibits a PSPACE-complete problem that is definable in the logic. This is why the result in Section 4.1
showing that the model-checking complexity of the logic is still in PSPACE is remarkable.

We now explore the complexity and the expressivity of this recursion operator.

4.1 Combined Complexity

The set f(G; �; �) : � 2 GL�; G �
� �g is PSPACE-hard, by results in Section 3. We now exhibit a

PSPACE algorithm to decide the problem, establishing a tight upper bound on its complexity.
The algorithm extends the standard model-checking algorithm for SO, and is listed in Table 1.
We assume that no variable in the formula is bound in two distinct places. We associate a counter

to each variable and a bitmask to each j operator in the formula. We have a variable bitmap mask that
specifies which edges in the graph are included in the current subgraph. To check whether � j holds,
we let the corresponding bitmask m iterate over all the submasks of the current mask. For each value

14

inputs: G, ; other global variables: stack, and the implicit call stack;

Evaluate(,G) =
let mask= 1112 : : : 1n where n = sizeof(G);
return(eval(, mask));

eval(:�, mask) =
return(not eval(�,mask));

eval(� ^ , mask) =
if (eval(�, mask) andif eval(, mask)) freturn(true);g
else return (false);

eval(9x:�, mask) =
for i in 1..n do

push(h”x” = ii, stack);
if eval(�, mask) fpop(stack); return(true);g
pop(stack)

return(false);

eval(� j , mask) =
for submask in submasks(mask) do

if (eval(�, submask) andif eval(, compl(submask))) freturn(true);g
return (false);

eval(a(x; y), mask) =
if (get(stack,”a”)(get(stack,”x”),get(stack,”y”)) 2 G\mask) freturn(true);g
else return(false);

eval(�R: , mask) =
push(h”R” = maski, stack);
res = eval(, mask);
pop(stack); return(res);

eval(R, mask)
if mask== get(stack,”R”) return(false)
else find �R:� in the input formula

and return(eval(�R:�, mask));

Table 1.The model-checking algorithm for GL�

15

of m we check � against the subgraph identified by m and against its complement. � j holds if
and only if we find a value for m such that both checks succeed. Actually, we cannot have a different
variable for each j, since the algorithm is written to work for formulas of any size. Hence, m is just a
local variable of the procedure that checks the j case, which will be automatically saved on the call stack
when a subroutine is called, and restored when the subroutine exits. Thus, we have, on the call stack, as
many bitmask variables as we need.

To check whether 9x:� holds, we let the corresponding counter x enumerate all the names that
appear either in the graph or in the formula, plus one fresh name for each variable in the formula. 9x:�
holds if and only if we find a value for x such that � model-checks. As above, we do not have a different
counter for each variable x, but we use a stack. In this case we push a pair “x”=x on an explicit stack
every time a quantification 9x is met. We do not use the call stack for x because later, to check whether
�(�1; �2) holds, we will have to substitute all the variables among �; �1; �2 with their value, and we can
retrieve those values by exploring the explicit stack.

To model-check �R:�, we first push on the stack a pair R-current mask. Then, when R is met, we
first check whether the current mask is still equal to that associated toR on the stack. If the current mask
is a strict subset of that stored in R, we substitute R for �R:� and continue. If it is equal to that stored
in R, then this branch can only loop forever, hence false is returned.

We prove that this algorithm runs in polynomial space and that it is correct. The proofs are given in
the appendix.

Theorem 8. Evaluate(, G) always terminates and can be executed with polynomial space.

Proof. Let n be the maximum of the number of edges and the number of nodes inG. The algorithm uses
the call stack and the variable stack. Each recursive call pushes its local variables, the return address,
and the call parameters on the call stack. The worst case is that of j, where we have one local variable
that is n bits long (submask) plus the mask parameter that is n bits long as well. Hence, each stack frame
on the call stack is linearly bounded by the input size. The same is true for the stack variable, where
each stack frame has either n size (if it is a mask) or log(n) size, in the 9x=a:� cases. Moreover, each
procedure call performs at most one push, and always pops what it pushed, hence the stack variable
never contains more frames then the call stack. Hence we have only to show that the call stack growth
is bounded by a polynomial. This bound implies termination as well, since all the for loops in the code
are bounded.

Every frame in the call stack contains a bit mask. This mask is always equal to, or included into, the
one of the preceding frame. Let a stack-chunk be a sequence of stack frames which all contain the same
mask. The stack will always be composed by at most n+1 stack-chunks, where n is the size of the input
graph, since n+ 1 is the length of the longest chain of n-bit masks ordered by strict inclusion. A single
stack-chunk may contain two frames that correspond to the evaluation of the same R variable only if
the second one is the last frame on the stack, since the first evaluation of R with mask m is followed
by an evaluation of �R: which pushes hR = mi on stack, so that the next evaluation of R with mask
m returns immediately. Hence, any stack-chunk contains at most k + 1 recursion-variable frames, if
k is the number of recursive variables in �. Finally, the sub-chunk included between two consecutive
recursion-variable frames cannot contain more than l frames, where l is the longest path in the syntax
tree of �, since any other case but R walks one step down along �. This gives an O(nkl) bound on the
number of frames of the call stack.

Theorem 9. Evaluate(, G) = true if, and only if, G � .

Proof. Consider the proof system of Table 2. The formula G in rule (6` �) is the formula that contains
one a(x;y) literal for each edge in the graph separated by j, hence is only satisfied by G (up to isomor-
phism). X (G; �; �) is a set that contains all the names in G, �, �, plus one fresh name. No other fresh
name needs to be checked, since they would all give the same result.

16

We will prove soundness of the algorithm w.r.t. the proof system, and soundness of the proof system
w.r.t. satisfaction, i.e.:

eval ;G;()(;m) = true) G \m; () ` soundness of eval, case true
eval ;G;()(;m) = false) G \m; () 6` soundness of eval, case false
�� is closed, G;� ` �) G � �� soundness of `
�� is closed, G;� 6` �) G � :�� soundness of 6`

Here, eval ;G;s(�, mask) is the result of calling eval(�, mask) when input formula is , input graph is
G, and current stack is s. G \m is the subset of G identified by the mask m.

Our proof relies on the following definitions and properties.

�+
�; (s;R = m) = �+

�; (s)fR 7! �R:�0g if R is positive in �; ,
�R:�0 is a subterm of

�+
�; (s;R = m) = �+

�; (s)fR 7! ((�R:�0) ^ :(G \m))g if R is negative in �;

��
�; (s;R = m) = �+

:�; (s;R = m)

�
+=�
�; (s; x = x) = �

+=�
�; (s)fx 7! xg

eval ;G;s(�;m) = true) G \m;�+
�; (s) ` � (1a)

eval ;G;s(�;m) = false) G \m;��
�; (s) 6` � (1b)

The translation of a stack s;R = m into a substitution �+
�; (s;R = m) depends on where we are

in the process of building the proof, since rules (` �) and (6` �) push two different values for R in the
substitution, and the algorithm is looking for a proof of either (` �) or (6` �). The property (1ab) ex-
presses the fact that this variability can be captured by a polarity computation, expressed by the functions
�

+=�
�; (). Here “R is negative in �; ” means (informally): substitute in � every free recursive variable

with its definition in ; iterate this process an arbitrary number of times; R is negative in �; if no pos-
itive occurrence of R will ever appear. Hence, for example,R is negative in R 0

;�R::�R0::(R j :R0).
(The positivity condition over R 0 implies that, if no positive occurrence of R appears after we expand
R0 once, it is not going to appear after two expansions.)

Property (1ab) is easy to prove by induction on the depth of the call stack of the algorithm, and by
cases. We show the only hard case, eval ;G;s(R;m) = false.

eval ;G;s(R;m) = false)
either R = m is in s, or eval ;G;s(�R:�;m) = false
in the second case, by induction G \m;��

�R:�; (s) 6` �R:�

in the first case G \m;��
�R:�; (s) ` G \m

hence G \m;��
�R:�; (s) 6` :G \m

in both cases, we can apply rule (6` ^): G \m;��
�R:�; (s) 6` (�R:�) ^ :G \m

R must be positive in �R:�, hence
R(��

�R:�; (s)) = (�R:�) ^ :G \m, hence: G \m;��
�R:�; (s) 6` R(��

�R:�; (s))

by (6` R): G \m;��
�R:�; (s) 6` R

��
�; (s) only depends on the polarity of variables inside �, which does not change

if we expand a variable with its definition: G \m;��
R; (s) 6` R

Now we have to prove soundness of the proof system, by induction on the size of a proof, and by
cases on the last rule applied. All cases are trivial but (6` �). We want to prove that, for any pair �, �,
such that � binds all free variables in � but R,

G � :(�(�fR 7! ((�R:�) ^ :G)g))) G � :((�R:�)�)

17

i.e.
G =2 [[�(�fR 7! ((�R:�) ^ :G)g)]]) G =2 [[�R:��]]

We will exploit the following properties, proved in [4]:

[[�fR g]]�;� = [[�]]�;�fR7![[]]�;�g (2)

[[�R:�]]�;� = �xpoint(�S: [[�]]�;�fR7!Sg)

the function �S: [[�]]�;�fR7!Sg is monotone in S

We can rewrite [[�(�fR 7! ((�R:�) ^ :G)g)]] as follows, where M = [[�R:��]], and F (�; �) is
defined as �S: [[(��)]]();fR7!Sg

[[�(�fR 7! ((�R:�) ^ :G)g)]] =

[[(��)fR ((�R:��) ^ :G)g]] = by (2)

[[(��)]]();fR7![[((�R:��)^:G)]]g =

[[(��)]]();fR7!MnGg =

F (�; �)(M nG)

Now,M is a fixed point of the monotone functionF (�; �), henceF (�; �)(MnG) � F (�; �)(M) �M .
G =2 F (�; �)(M nG) implies that F (�; �)(M nG) � (M nG), hence, by definition,M � F (�; �)(M n
G) � (M nG), hence G =2M , c.v.d.

(` ^)

G;� ` � ^ G;� `

G; � ` � ^

(6` ^)

G; � 6` � _ G;� 6`

G; � 6` � ^

(` :)

G;� 6` �

G;� ` :�

(6` :)

G;� ` �

G;� 6` :�

(` 9)

9x2X (G;�;): G; �fx 7! xg ` �

G; � ` 9x:�

(6` 9)

8x2X (G;�;): G;�fx 7! xg 6` �

G;� 6` 9x:�

(` �(�; �0))

G = ��(��; �0�)

G;� ` �(�; �0)

(6` �(�; �0))

G 6= �(��; �0�)

G;� 6` �(�; �0)

(` � = �0)

�� = �0�

G;� ` � = �0

(6` � = �0)

�� 6= �0�

G;� 6` � = �0

(` j)

9G0; G00: G = G0
jG00

^ G0;T ` � ^ G00;T `

G;� ` � j

(6` j)

8G0; G00: G = G0
jG00

) G0;T 6` � _ G00;T 6`

G;� 6` � j

(` R)

G; � ` R�

G;� ` R

(6` R)

G; � 6` R�

G;� 6` R

(` �)

G; (�fR 7! (�R:�)g) ` �

G; � ` �R:�

(6` �)

G; (�fR 7! ((�R:�) ^ :G)g) 6` �

G;� 6` �R:�

Table 2.Proof system for G ` � and G 6` �

4.2 Expressive Power

While recursion does not take the combined complexity out of PSPACE, it adds expressive power to
the logic. As a simple example, here is a formula that characterises the graphs with an even number of
edges, which is not expressible in either MSO or LFP.

18

�F: 0 _ ((9a; x; y: a(x; y)) j (9a; x; y: a(x; y)) j F)

In this section we show that we can express a PSPACE-complete problem in this language. This is
achieved by an encoding of quantifier Boolean formulas (QBF) as graphs. The encoding is similar to
the one in Section 3.2 except we do not have different edge labels for the different number of quantifier
alternations. Instead, we have two labels, Forall and Exists, in addition to Switch, and the alternation of
edges with these labels leading up to a Var edge indicate the quantifier type and index of the correspond-
ing Boolean variable. The details are given in the proof of Theorem 10 in the appendix. They allow us
to define a formula GVal � of GL� which defines those graphs that encode valid QBF formulas.

�R: ((TruePart ^ ResultHere) j FalsePart)
_ (9x; y: QRoot(x) ^ (Forall (x; y) j (SwitchesOf (y) j) R)))

_ (9x; y: QRoot(x) ^ (Exist(x; y) j (SwitchesOf (y) j R)))

The formula can be read as: either (1) the formula has no quantifier and is valid, or (2) the outermost
quantifier is a 8, and the rest of the formula (Forall(x; y) j : : :) is valid, for any assignment to the
variables quantified by the outermost forall (SwitchesOf (y) j) : : :), or (3) the outermost quantifier is
an 9, and there exists an assignment of the quantified variables (SwitchesOf (y) j : : :) such that the rest
of the formula is valid.

Theorem 10. There exists a GL� formula that characterizes a set of graphs that is PSPACE-complete.

Proof. We define a translation of closed QBF and a recursive formula GVal � that characterizes the
translation of valid formulas. The thesis follows since validity of QBF is complete for PSPACE.

We first define a variant of the translation Gn(�; x) of Section 3.2, where the depth of a quantifier
is identified by the length of the chain of Forall -Exist edges that leads to it. We translate both formulas
and assignment; an assignment is represented as the set of those variables that are assigned to true;
any other free variable is implicitly assigned to false. Consider the following formula-assignment pair,
where � is quantifier-free.

� = 8X1
1 : : :X

1
i1
:9Y 2

1 : : : Y
2
i2
: : : : 9Y n1 : : : Y n

in
:� � = fZ1; : : : ; Zmg

It is translated as:

G�(�; �; x) =def Switch(x0; xso(Z1)) j : : : j Switch(x0; xso(Zm))

j Forall (x0; x1)
j Switch(x1; xso(X

1
1)) j Var(xso(X

1
1); xv(X

1
1))

j : : : j Switch(x1; xso(X
1
i1
)) j Var(xso(X

1
i1
); xv(X

1
i1
))

j Exist(x1; x2)
j Switch(x2; xso(Y

2
1)) j Var(xso(Y

2
1); xv(Y

2
1))

j : : : j Switch(x2; xso(Y
2
i2
)) j Var(xso(Y

2
i2
); xv(Y

2
i2
))

j Forall (x2; x3)
j : : :
j Exist(xn�1; xn)
j Switch(xn; xso(Y

n

1)) j Var(xso(Y
n

1); xv(Y
n

1))

j : : : j Switch(xn; xso(Y
n

in
)) j Var(xso(Y

n

in
); xv(Y

n

in
))

j [[�; �]]x j Result(xp(�
�
); xp(�

�
))

19

The formula GVal� is defined as follows.

�R: ((TruePart ^ ResultHere) j FalsePart)
_ (9x; y: QRoot(x) ^ (Forall (x; y) j (SwitchesOf (y) j) R)))

_ (9x; y: QRoot(x) ^ (Exist(x; y) j (SwitchesOf (y) j R)))

Where QRoot(x) and SwitchesOf (y) and defined as:

QRoot(x) =def :9x
0: (Forall (x0; x) _ Exist(x0; x)) j T

SwitchesOf (x) =def 8a; y
0; z: (a(y0; z) j T)) y0 = y ^ a = Switch

The graphG�(�; �; x) represents a formula-assignment pair �, �. The action of removing an outermost
Forall (xi; xi+1) orExist(xi; xi+1) and a set of Switch(xi+1; z) edges corresponds to removing the out-
ermost set of quantifications from � and fixing a valuation � 0 for the corresponding quantified variables.
The subgraph left is not exactly the translation of � 0; ��0 because the newly valuated variables have their
switches starting from xi+1 instead of x0, but this is irrelevant since nothing in GVal � depends on this
difference. The formula GVal � determines the validity of a graph representing a formula-assignment
pair �-�, obtained by translation followed by some instances of this removal operation, as follows.

If no Forall /Exist quantifier is left, GVal � just evaluates �-�. If there is an outermost universal
quantifier, GVal� strips the quantifier, obtaining a formula � 0, and verifies whether for each assignment
�0 for the quantified variables (i.e., for each set of outermost switches that are removed) � 0-��0 is valid.
If the outermost quantifier is existential,GVal � strips the quantifier, obtaining a �0, and verifies whether
an assignment �0 exists such that �0-��0 is valid.

This theorem shows that the recursion operator allows the characterization of sets of graphs that we
cannot hope to define in second-order logic.

5 Conclusion

We have investigated the complexity and expressive power of the graph logic introduced by Cardelli,
Gardner and Ghelli. The graph composition operator j in that logic has a natural translation into second-
order logic using an existential quantifier over sets of edges. In terms of complexity, the j operator is as
powerful as the monadic second-order quantifier: GL can express complete problems at all levels of the
polynomial hierarchy. The recursion operator in the logic of Cardelli et al. also proves interesting from
the point of view of its expressive power. It allows us to define recursions of exponential length and
to express PSPACE-complete problems. Nonetheless, the model-checking complexity of the full logic,
with j and recursion, remains within PSPACE.

References

1. J. R. Büchi. Weak second order arithmetic and finite automata. Zeitschrift f. Mathematische Logik und Grund-
lagen d. Mathematik, 6:66–92, 1960.

2. C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity results for a spatial assertion language
for data structures. In FSTTCS: 21st Conference, volume 2245 of Springer LNCS, pages 108–119, 2001.

3. Cristiano Calcagno, Luca Cardelli, and Andrew D. Gordon. Deciding validity in a spatial logic for trees. ACM
SIGPLAN Notices, 38(3):62–73, 2003.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In ICALP: Automata, Languages,
and Programming, 29th International Colloquium, volume 2380 of Springer LNCS, pages 597–610, 2002.

5. L. Cardelli and G. Ghelli. TQL: A query language for semistructured data based on the ambient logic. Mathe-
matical Structures in Computer Science, 2003. To appear.

20

6. Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: modal logics for mobile ambients. In POPL, pages
365–377, 2000.

7. W. Charatonik, S. Dal-Zilio, A. D. Gordon, S. Mukhopadhyay, and J-M. Talbot. Model checking mobile
ambients. Theoretical Computer Science, 308:277–331, 2003.

8. G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. The query language TQL. In
International Workshop on the Web and Databases (WebDB), Madison, Wisconsin, USA, pages 19–24, 2002.

9. B. Courcelle. The expression of graph properties and graph transformations in monadic second-order logic. In
G. Rozenberg, editor, Handbook of Graph Grammars and Graph Transformations, chapter 5, pages 313–400.
World Scientific, 1997.

10. S. Dal-Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on. In POPL: 31st ACM Symposium on
Principles of Programming Languages, pages 135–146, 2004.

11. A. Dawar, P. Gardner, and G. Ghelli. Games for the ambient logic. forthcoming.
12. H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2 edition, 1999.
13. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp, editor, Com-

plexity of Computation, SIAM-AMS Proceedings, Vol 7, pages 43–73, 1974.
14. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical Computer

Science, 10(2):111–121, 1980.
15. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that alter data struc-

tures. In Proceedings of the 15th International Workshop on Computer Science Logic, pages 1–19. Springer-
Verlag, 2001.

16. Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.
17. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1976.

21

