
On model checking multiple hybrid views

Altaf Hussain and Michael Huth

Department of Computing, South Kensington campus, Imperial College London,
London, SW7 2AZ, United Kingdom, {ah701,mrh}@doc.imperial.ac.uk

Abstract. We study consistency, satisfiability, and validity problems for
collectively model checking a set of views endowed with labelled transi-
tions, hybrid constraints on states, and atomic propositions. A PTIME
algorithm for deciding whether a set of views has a common refinement
(consistency) is given. We prove that deciding whether a common refine-
ment satisfies a formula of the hybrid mu-calculus (satisfiability), and its
dual (validity), are EXPTIME-complete. We determine two generically
generated “summary” views that constitute informative and consistent
common refinements and abstractions of a set of views (respectively).

1 Introduction

In model checking [7, 31] one builds a model M of an artefact’s state and be-
havior, expresses desired properties of such state and behavior in a temporal
logic or some variant thereof, and verifies (refutes) such a property by verifying
(refuting) the instance M |= φ of a satisfaction relation |=.

Often not all aspects of state or behavior are known at model time. For
example, a concrete program may be abstracted by a Boolean program [1], or
requirements for a design may leave details intentionally under-specified [22]. In
such situations, models benefit from being 3-valued so that state and behavior
can take on values true (guaranteed), false (impossible) or ⊥ (possible). Key
benefits are: an explicit under-specification through ⊥, soundness of abstraction-
based model checks for properties that mix path quantifiers [23], and reliable
feasibility checks for counter-examples and simulations (see e.g. [28]). By now
it is well understood that many such 3-valued notions of models are equally
expressive as model checking frameworks [11], demonstrating the robustness of
this notion. The additional value ⊥ in models also blurs the boundaries between
abstraction and parameterized model checking since a single model may express
infinitely many non-equivalent 2-valued systems as its refinements.

For 3-valued models M , the judgment M |= φ becomes 3-valued as well and
may be written as two predicates V (M, φ) and S(M, φ) where the intention
of V (M, φ) is to assert φ for M : “φ holds in all 2-valued refinements of M ;”
whereas S(M, φ) states that φ is consistent for M : “some 2-valued refinement
of M satisfies φ.” Deciding these judgments, the generalized model checking of
Bruns & Godefroid [3], is EXPTIME-complete for formulas φ of the propositional
mu-calculus and partial Kripke structures as 3-valued models M [3]. The com-
positional approximation of these judgments, the 3-valued compositional model

checking algorithm given in [2], can be reduced to two 2-valued checks and there-
fore done in linear time [3]. Deciding whether a 3-valued model has a 2-valued
refinement, the answer to S(M, true), is trivial as S(M, true) is always true due
to the consistency packed into the definition of partial Kripke structures or any
other variant of Larsen & Thomsen’s modal transition systems [25, 11].

In this paper we re-develop this programme of 3-valued compositional model
checking, generalized model checking, and deciding the existence of refinements
in a setting where not just one M but finitely many 3-valued views Mi (1 ≤ i ≤ k)
are given and where we wish to reason about these views collectively. Assuming
a notion of refinement between 3-valued views, Bruns & Godefroid’s generalized
model checking then reads:

For a property φ, is there a 2-valued refinement of all Mi satisfying φ?
In particular, is there a 2-valued refinement of all Mi?

We show that the latter decision problem is in PTIME and that the former
is EXPTIME-complete for the hybrid mu-calculus of Sattler & Vardi [32]. Our
notion of view is a variant of Kripke modal transition systems [17] where some
atomic state propositions are nominals, true at exactly one state. Nominals al-
low for the modelling of agents and their movement, XML documents etc. The
semantics of φ reflects the hybrid constraints on nominals without increasing the
EXPTIME upper bound on satisfiability, due to a result in [32].

The PTIME algorithm for consistency checking computes those tuples of the
product state space of all Mi that have a common refinement. This subset is the
state space of “summary” views that serve as informative consistent common
refinements and abstractions of all Mi (respectively).

Outline of this paper: In Section 2 we define 3-valued views and their 3-valued
compositional property semantics. Section 3 defines refinement between views
and proves that the 3-valued compositional property semantics is sound for,
and logically characterizes, refinement. In Section 4 we define generalized model
checking and consistency checking for a finite set of views and show that these
problems are reducible to satisfiability checking in the hybrid mu-calculus and,
in fact, EXPTIME-complete and so no more complex than generalized model
checking for the propositional mu-calculus and a single model. Section 5 develops
an efficient algorithm for consistency checking which computes all tuples of states
that have a common refinement. The algorithm for consistency checking is used
in Section 6 to define “summary” views that are informative common refinements
(respectively, abstractions) of a given set of views. Section 7 states related work
and Section 8 concludes.

2 Views and their property semantics

We define the 2-valued models that express hybrid views of an artefact, essen-
tially the ones given by Sattler & Vardi in [32]. For the remainder of this paper

let AP , Nom, and Act be mutually disjoint finite sets of state propositions, nom-
inals, and events (respectively) with a designated universal event u ∈ Act which
has transitions between any pair of states. The idea is that AP ∪Nom and Act
are observables that annotate states and transitions (respectively). The hybrid
nature of nominals n ∈ Nom comes from restricting the class of 2-valued views
to those at which each n ∈ Nom is true (i.e. annotated) at exactly one state. The
universal event u enables one to express familiar hybrid logic operators, such as
“at nominal n, φ holds,” in the hybrid mu-calculus (see e.g. [32]).

Definition 1. A 2-valued view M is a tuple (S,R, L) where S is a set of states,
R ⊆ S ×Act × S is a transition relation with {(s, s′) ∈ S × S | (s, u, s′) ∈ R} =
S × S, and L : AP ∪ Nom → P(S) is a labelling function such that L(n) is a
singleton for all n ∈ Nom.

Example 1. Figure 1 depicts a 2-valued view. Throughout this paper, figures
omit transitions for the universal event u.

α

α

(t1, s2)

(s1, s2)

q1

n

q1
q2

(u1, t2)

β

Fig. 1. A 2-valued view with AP = {q1, q2}, Nom = {n}, Act = {α, β, u}, and three
states (s1, s2), (u1, t2), and (t1, s2). It is a common completion of the views in Figure 5.

The hybrid mu-calculus of [32] is defined in negation normal form and its expres-
siveness relates it closely to description logics [26] which are used in knowledge
representation. Here we define its grammar with an unrestricted clause for nega-
tion. Hybrid extensions of branching-time temporal logics, e.g. hybrid CTL [10,
14], are all expressible in the hybrid mu-calculus (hMU) whose grammar is

φ ::= q | Z | ¬φ | φ ∧ φ | 〈α〉φ | µZ.φ (1)

where q ∈ AP ∪ Nom, α ∈ Act ∪ Act with Act = {ᾱ | α ∈ Act}, and Z
ranges over a countable set Var of recursion variables. Our results remain valid
without past tense modalities 〈ᾱ〉 (by setting Act = {}) or hybrid constraints
n (by setting Nom = {} throughout). For α ∈ Act , ᾱ denotes the “inverse”
event; its semantics is given by extending the definition of R for a 2-valued view
M = (S,R, L) through ((s, ᾱ, s′) ∈ R iff (s′, α, s) ∈ R). For α ∈ Act , we let
¯̄α be α again. We write φ1 ∨ φ2 for ¬(¬φ ∧ ¬φ2), φ1 → φ2 for ¬(φ1 ∧ ¬φ2),
and, for all α ∈ Act ∪ Act , [α]φ for ¬〈α〉¬φ. In the least fixed point formula

µZ.φ, µZ binds all occurrences of Z in φ with static scoping and we require that
all free occurrences of Z in φ are under an even scope of negations. If φ[Z/ψ]
denotes the formula obtained from φ by replacing all free occurrences of Z in
φ with ψ, the greatest fixed point formula νZ.φ is derived as ¬µZ.¬φ[Z/¬Z].
A formula φ is closed if it contains no free recursion variables. Its meaning is
then independent from an environment. The semantics of formulas over 2-valued
views is a special case of that for 3-valued views so we first define those models
and their semantics.

Definition 2. A 3-valued view M is a pair (Ma,M c) with Ma = (S,Ra, La)
and M c = (S, Rc, Lc) where S is a set of states, Ra, Rc ⊆ S × (Act ∪ Act) × S
are transition relations with Ra ⊆ Rc, {(s, s′) ∈ S | (s, u, s′) ∈ Ra} = S×S, and
((s, ᾱ, s′) ∈ Rm iff (s′, α, s) ∈ Rm) for m ∈ {a, c}, and La, Lc : AP ∪ Nom →
P(S) are labelling functions with La(q) ⊆ Lc(q) for all q ∈ AP ∪Nom subject to
the following constraints, for all n ∈ Nom:

1. La(n) contains at most one state and Lc(n) is non-empty,
2. if La(n) is non-empty, La(n) = Lc(n).

For any s ∈ S, (M, s) is a pointed 3-valued view M with initial state s.

The intuition behind 3-valued views is that all a-structure specifies asserted
(guaranteed, valid etc) information, whereas all c-structure declares consistent
(possible, satisfiable etc) information [25]. The complement of c-information
specifies an impossibility, e.g. (s, α, s′) 6∈ Rc expresses that event α cannot lead
from state s to state s′. Note that the universal event u is asserted to be so. The
inclusions for transitions and labels ensure logical consistency of the semantics
given for hMU below. In particular, the universal event u is universally possible.
The two constraints on labelling nominals are based on [14] where s ∈ La(n)
states “n is at s,” and that s ∈ Lc(n) expresses “n may be at s.”

Example 2. Two 3-valued views (M1, s2) and (M2, s2) are depicted in Figure 4.
In figures of this paper, transitions for all ᾱ ∈ Act are implied, solid lines denote
Ra-transitions, and dashed lines denote Rc \Ra-transitions. For q ∈ AP ∪Nom,
a label q, q?, or its absence at state t denote t ∈ La(q), t ∈ Lc(q) \ La(q), and
t 6∈ Lc(q) (respectively).

The denotational semantics [| · |]m· of hMU over 3-valued views maps formulas
φ and environments ρ, functions Z 7→ (ρa(Z), ρc(Z)) of type Var → {(L,U) ⊆
S×S | L ⊆ U}, into sets of states for a mode of analysis m ∈ {a, c} in Figure 2.
Note that ¬a = c, ¬c = a, and premα (A) = {s ∈ Σ | ∃s′ ∈ A : (s, α, s′) ∈ Rm}
for all α ∈ Act ∪Act and m ∈ {a, c}.

Definition 3. We write (M, s)|=a
ρ φ for s ∈ [| φ |]aρ , saying that φ is a (ρ-)valid

assertion at s; similarly (M, s)|=c
ρ φ means s ∈ [| φ |]cρ and denotes that φ is

(ρ-)consistent at s. (If φ is closed, we elide ρ.)

[| q |]mρ = Lm(q) [| Z |]mρ = ρm(Z)
[| ¬φ |]mρ = Σ \ [| φ |]¬m

ρ [| φ1 ∧ φ2 |]mρ = [| φ1 |]mρ ∩ [| φ2 |]mρ
[| 〈α〉φ |]mρ = prem

α ([| φ |]mρ) [| µZ.φ |]mρ = lfpλA.[| φ |]mρ[Z 7→A] .

Fig. 2. Semantics of hMU over 3-valued views for mode m ∈ {a, c}.

Least fixed points lfpλA.[| φ |]mρ[Z 7→A] are formed in the complete lattice (P(Σ),⊆).
Note that for m ∈ {a, c} we have s|=m [α]φ iff (for all (s, α, s′) ∈ R¬m , s′|=m

φ). If
K is a 2-valued view, we may cast it into a 3-valued view M with Ma = M c = K.
Then [| φ |]aρ = [| φ |]cρ holds in M for all ρ and φ of hMU so this defines the 2-
valued semantics k |=ρ φ to be k ∈ [| φ |]aρ for all states k of K.

Example 3. For (M2, s2) in Figure 4 we have s2|=c¬〈α〉[β]〈α〉true since we don’t
have s2|=a〈α〉[β]〈α〉true, for (s2, α, x) ∈ Ra implies x = t2, (t2, β, t2) ∈ Rc, but
there is no Ra-transition labelled with α out of t2. We have s2|=a

µZ.[β]¬true ∧
〈β̄〉〈ᾱ〉Z since there is no (s2, β, x) ∈ Rc and so s2|=a [β]¬true, and there is a
Ra-cycle (s2, β̄, t2)(t2, ᾱ, s2) from s2 to s2 that generates the word β̄ᾱ.

3 Refinement between views

In specifying a 3-valued view we implicitly describe a possibly infinite set of 2-
valued views. Such intuitions can be formalized in Cousot & Cousot’s framework
of abstract interpretation [8] or through a co-inductive definition of refinement,
as done by Larsen & Thomsen in [25].

Remark 1. One can reconcile both formalizations. First, a co-inductive refine-
ment defines a concretization function (M, s) 7→ C(M, s) for pointed 3-valued
views, where C(M, s) is the class of pointed 3-valued views that refine (M, s) and
are 2-valued up to casting. Second, it is less obvious how one should abstract a
class C of 2-valued views by a single pointed 3-valued view as any (M, s) with
C ⊆ C(M, s) is a possible abstraction. But from results in [15] one can derive
a Galois adjunction between compact sets C of 2-valued models and bounded
Scott-closed sets of 3-valued models in the domain model for refinement of [18].

We won’t elaborate this point further and turn to defining refinement.

Definition 4. For i = 1, 2 let (Mi, si) = (((Si, R
a
i , La

i), (Si, R
c
i , L

c
i)), si) be

pointed 3-valued views. Then (M1, s1) is refined by (M2, s2) iff there is a re-
lation Q ⊆ S1 × S2 such that (s1, s2) ∈ Q and, for all (s, t) ∈ Q, we have

1. for all q ∈ AP ∪Nom, s ∈ La
1(q) implies t ∈ La

2(q),
2. for all q ∈ AP ∪Nom, t ∈ Lc

2(q) implies s ∈ Lc
1(q),

3. for all α ∈ Act∪Act, if (s, α, s′) ∈ Ra
1 , there is (t, α, t′) ∈ Ra

2 with (s′, t′) ∈ Q,
4. for all α ∈ Act∪Act, if (t, α, t′) ∈ Rc

2, there is (s, α, s′) ∈ Rc
1 with (s′, t′) ∈ Q.

We write (M1, s)≺(M2, t) whenever there is such a Q with (s, t) ∈ Q and denote
by C(M, s) the completions of (M, s), the set of those refinements (N, t) of (M, s)
that are 2-valued up to casting.

Example 4. The pointed 3-valued view (V+, (s1, s2)) of Figure 6 refines the views
(M1, s2) and (M2, s2) of Figure 5 where refinement relates states from hybrid
views to their tuple state: s1 to (s1, s2), t2 to (u1, t2) etc.

Since refinement is transitive, (M1, s)≺(M2, t) implies C(M2, t) ⊆ C(M1, s) and
the converse has been proved for views without nominals in [16]. Proofs from
the non-hybrid setting, showing that the fixed-point free fragment of the modal
mu-calculus logically characterizes refinement and that refinement is sound with
respect to the compositional 3-valued property semantics [23], also apply to our
setting and so we state them without proof.

Theorem 1. For pointed 3-valued views (M, s) and (N, t) we have (M, s)≺(N, t)
iff (for all closed, fixed-point free formulas φ of hMU, s ∈ [| φ |]a implies t ∈
[| φ |]a). If (M, s)≺(N, t), then s ∈ [| φ |]a implies t ∈ [| φ |]a , and t ∈ [| ψ |]c
implies s ∈ [| ψ |]c, for all closed φ, ψ of hMU.

This logical characterization and soundness secure soundness of [| φ |]m relative
to the thorough semantics of Bruns & Godefroid in [3] adapted to our hybrid
setting, where for any closed φ of hMU the predicate GMC (M, s, φ) means “k |=
φ for some (K, k) ∈ C(M, s).”

Corollary 1. For any closed φ in hMU and state s of any 3-valued view M :

1. If s ∈ [| φ |]a , then GMC (M, s,¬φ) is false.
2. If GMC (M, s, φ) is true, then s ∈ [| φ |]c.

Proof. This is proved as in [3] where completions may violate hybrid constraints,
which soundly over- and under-approximates the statements in items 1 and 2
(respectively) where GMC (M, s, φ) refers to hybrid models only.

Example 5. For (M2, s2) from Figure 5 we have s2 6|=a〈β〉true∨¬〈β〉true as there
is no (s2, β, x) ∈ Ra but (s2, β, t2) ∈ Rc. The formula is a tautology and so true
for all completions of (M2, s2): the converse of item 1 is not true.

4 Multiple views and their decision problems

We can now define the decision problems studied in this paper. Let V = {(Mi, si) |
1 ≤ i ≤ k} be any finite set of pointed 3-valued views (Mi, si) where all
(Mi, si) ∈ V have only finitely many states. Each (Mi, si) may be an abstrac-
tion of a concrete and consistent artefact, e.g. a piece of software. Alternatively,
each (Mi, si) may be the description of a hybrid knowledge-representation or
database view (where hybrid constraints are needed in XML documents) or the
description of a particular stake holder in the sense of requirements engineering.

In the case of software, consistency of all (Mi, si) ∈ V is usually assured as the
artefact is a consistent common refinement by construction, up to casting and
representational changes. In the latter cases, consistency is a primary concern in
crafting a model that honors all views (Mi, si) ∈ V. For example, if each (Mi, si)
is an answer to a query from a local database, V is often not consistent. We
identify decision problems.

Definition 5. Let C(V) = {(N, t) | ∀(M, s) ∈ V : (N, t) ∈ C(M, s)} be the set
of common completions of V. For closed φ of hMU, we define parameterized
boolean expressions C(V), S(V, φ), and V (V, φ):

1. Consistency: C(V) holds iff all views of V have a common completion, i.e.
iff C(V) 6= {}.

2. Satisfiability: S(V, φ) is true iff there is a common completion of V that
satisfies φ, i.e. iff {(N, t) ∈ C(V) | t |= φ} 6= {}.

3. Validity: V (V, φ) holds iff all common completions of V satisfy φ.

Since all pointed 3-valued (M, s) have (Ma, s) as a completion, C(V) holds iff
all views of V have a common refinement. Note that V (V, φ) holds for all φ
if V has no common refinement. Thus it is wise to first decide C(V) so as to
avoid unintended certifications through V (V, φ). We show that all three decision
problems above are reducible to satisfiability checks of hMU over 2-valued views.
Inspired by [23] we construct a closed formula [Mi, si] of hMU for each pointed
3-valued view (Mi, si) such that for all pointed 3-valued views (N, t) we have

(N, t)|=a [Mi, si] iff (Mi, si)≺(N, t) . (2)

The existence of such formulas secures the desired reductions.

Theorem 2. 1. Each pointed 3-valued view (Mi, si) has a formula [Mi, si] of
the hybrid mu-calculus satisfying (2) for all pointed 3-valued views (N, t).

2. The decision problems C(V), S(V, φ), and V (V, φ) are reducible to satisfia-
bility checks of hMU over 2-valued views and in EXPTIME.

Proof. 1. For each state ti in Mi we set (similar to (3) in [23])

[Mi, ti] = (
∧

(ti,α,t′i)∈Ra

〈α〉[Mi, t
′
i]) ∧ (

∧

α∈Act

[α](
∨

(ti,α,t′i)∈Rc

[Mi, t
′
i])) (3)

∧
∧
{q | ti ∈ La(q)} ∧

∧
{¬q | ti 6∈ Lc(q)}

as a system of greatest fixed point equations. As Mi has only finitely many
states, each [Mi, ti] is expressible in hMU. The proof that [Mi, si] satisfies (2)
is basically the one given in [25].

2. We can reduce C(V) by proving that V = {(Mi, si) | 1 ≤ i ≤ k} has a
common completion iff the closed formula

σV =
k∧

i=1

[Mi, si] (4)

of hMU is satisfiable over 2-valued views. If σV is satisfiable, k |= σV for
some pointed 2-valued view (K, k). Since (K, k) can be cast into a pointed
3-valued view, (2) and k |= σV render (Mi, si)≺(K, k) for all i = 1, 2, . . . , k
and so (K, k) ∈ C(V). Conversely, if V has a common completion (K, k) we
have (Mi, si)≺(K, k) for all i = 1, 2, . . . , k. Using (2) this implies (K, k) |= σV
and so σV is satisfiable over 2-valued views. The reductions for S(V, φ) and
V (V, φ) are variations of the reduction for C(V). The check S(V, φ) holds iff
φ∧σV is satisfiable over 2-valued views. The check V (V, φ) holds iff ¬φ∧σV
is unsatisfiable over 2-valued views. The EXPTIME result follows directly
from these reductions and Theorem 2 of [32].

Example 6. For (M2, s2) from Figure 5 we express [M2, s2] in hMU with Zs2 , Zt2 ∈
Var : [M2, s2] = νZs2 .〈α〉ψ∧ [α]ψ∧ [β]ψ∧ [β̄]ψ∧ q1∧¬n where ψ = νZt2 .〈ᾱ〉Zs2 ∧
[α]Zt2 ∧ [β]Zs2 ∧ [ᾱ]Zs2 ∧ [β̄]Zs2 ∧ n ∧ ¬q1 ∧ ¬q2.

The semantics of Figure 2 is in NP and in co-NP via a reduction to 2-valued
checks similar to the one in [3]. Such a reduction is not possibly in general for
S(V, φ) and V (V, φ) as they are EXPTIME-complete.

Theorem 3. S(V, φ) and V (V, φ) are EXPTIME-complete in the size of φ.

Proof. For V = {(M, s)}, S(V, φ) and V (V, φ) ask whether some (respectively
all) completions of (M, s) satisfy φ. So S(V, φ) is the generalized model checking
problem GMC (M, s, φ) of Bruns & Godefroid in [3] and V (V, φ) its dual. Since
GMC (M, s, φ) is EXPTIME-complete for formulas of the modal mu-calculus [3]
(essentially, hMU with Act = {} and Nom = {} by [11]), S(V, φ) and V (V, φ)
are EXPTIME-hard for general V and φ of hMU. By Theorem 2 the decision
problems S(V, φ) and V (V, φ) are in EXPTIME and so EXPTIME-complete.

5 Complexity of common refinement checks

Practical considerations suggest to investigate whether the upper bound of The-
orem 2 can be lowered for C(V), which we now do.

Definition 6. Let V = {(Mi, si) | 1 ≤ i ≤ k}, each Mi having state space Si.

1. We denote
∏k

i=1 Si by SV , write t for tuples (t1, t2, . . . , tk) ∈ SV , and use
Vs to stress that si is the initial state in each (Mi, si) of V.

2. A common refinement witness is a relation W ⊆ SV such that t ∈ W implies
(a) for all i and q ∈ AP ∪Nom, if ti ∈ La(q) then tj ∈ Lc(q) for all j 6= i,
(b) for all i and α ∈ Act ∪ Act, if (ti, α, t′i) ∈ Ra, there is t′ ∈ W such that

(tj , α, t′j) ∈ Rc for all j 6= i, and
(c) for all n ∈ Nom, there is t ∈ W such that for all i, ti ∈ Lc(n).

Note that in clause (b) above the ith coordinate of t′ is bound to the given t′i and
that clause (c) is required as each n holds in a state of K for any (K, k) ∈ C(V).
As the arbitrary union of common refinement witnesses is a common refinement
witness, there is a greatest common refinement witness for each Vs, denoted by
WVs . This relation captures the existence of common refinements.

Theorem 4. For any Vs, the predicate C(Vs) is equivalent to “s ∈ WVs
.”

Proof. We show W = {t ∈ SVs
| C(Vt) 6= {}} ⊆ WVs

. Given t ∈ W , there is
(K, k) = ((SK , RK , LK), k) ∈ C(Vt). Clause (b): For any i if (ti, α, t′i) ∈ Ra, there
is (k, α, k′) ∈ RK with (Mi, t

′
i)≺(K, k′) as (Mi, ti)≺(K, k). Since (Mj , tj)≺(K, k)

for all j 6= i and (k, α, k′) ∈ RK , there is (tj , α, t′j) ∈ Rc with (Mj , t
′
j)≺(K, k′)

for each j 6= i. In particular, Vt′ has (K, k′) as a common refinement and so
t′ ∈ W . A similar reasoning applies to clauses (b) and (c) and so W ⊆ WVs

.

1. Let C(Vs). Then s ∈ W ⊆ WVs
.

2. Let s ∈ WVs . We define K = (WVs , R, L) as the product of c-structure:
(t, α, t′) ∈ R iff (for all i, (ti, α, t′i) ∈ Rc), and t ∈ L(q) iff (for all i, ti ∈ Lc(q))
for q ∈ AP . For n ∈ Nom, we set L(n) = {t} for some t ∈ WVs satisfying
clause (c) of Definition 6.2. We claim that (K, s) ∈ C(Vs) with refinement
{(ti, t) | t ∈ WVs

} showing (Mi, ti)≺(K, t). By definition, any transition
from t ∈ WVs in K or propositional/nominal label at t in K is c-matched
for ti in each Mi. Conversely, any a-transition (ti, α, t′i) in Mi with t ∈ WVs

ensures matching c-transitions (tj , α, t′j) for all j 6= i such that t′ ∈ WVs
as

t ∈ WVs
. So (t, α, t′) ∈ R as Ra ⊆ Rc in Mi. Since t′ ∈ WVs

this works
co-inductively. A similar argument applies to ti ∈ La(q) and ti ∈ La(n).

Figure 3 shows an algorithm for computing WVs where we omitted any opti-
mizations for sake of clarity. This algorithm is related to the partition refine-
ment algorithms for computing the greatest bisimulation relation (see e.g. [29]),
except that WVs is not an equivalence relation and so no partition or splitting
occurs. However, if V consists of two pointed 2-valued views the algorithm is a
non-optimal version of the familiar splitting algorithm for bisimulation.

No = {};

let (bad (t, No)) = // fails clause (a) of Definition 6.2:

((some i, j, q | t_i in L^a(q) && not t_j in L^c(q))

|| // fails clause (b) of Definition 6.2:

(some (t_i,a,x) in R^a | all t’ in S_V minus No |

x = t’_i ==> some j | not (t_j,a,t_j’) in R^c

)) in

{ while (some t in S_V minus No | (bad (t, No))) {

No = No union {t};

} // else-branch: fails clause (c) of Definition 6.2

if (all n in Nom | some t’ in S_V minus No | all i | t_i in L^c(n))

{ Yes = S_V minus No; } else { Yes = {}; }

Fig. 3. Computing WVs for a given set of views Vs, where union and minus denote
set-theoretic union and complement, respectively.

Theorem 5. The algorithm of Figure 3 terminates after at most | SV | itera-
tions and assigns to Yes the set WVs .

Proof. For termination, S V minus No equals S V initially and No is a subset of
S V that increases by one at each iteration so there cannot be more iterations
than elements in S V. It remains to show correctness:

– For WVs
⊆ Yes it suffices to show W ⊆ Yes for a non-empty common

refinement witness W ⊆ SV . To that end, it suffices to show that W ⊆
S V minus No is an invariant of the while-statement as {} 6= W forces exe-
cution of the if-branch. The inclusion W ⊆ S V minus No holds initially as
then No is empty and W ⊆ S V. Assume that W ⊆ S V minus No holds right
before an iteration of the while-statement. Given t ∈ W , the expression (bad
(t, No)) is false since t is in the common refinement witness W and the
range of the quantifier all t’ is the set S V minus No and subsumes W by
assumption. Thus, no t ∈ W can be added to No.

– For Yes ⊆ WVs
it suffices to show that a non-empty Yes is a common refine-

ment witness. After the assignment to the non-empty Yes, the expression
(bad (t, No)) is false for all t in Yes and the Boolean guard of the if-
statement is true, so this states that Yes is a common refinement witness.

Example 7. Let Act = {α, β, u} and Act = {ᾱ, β̄, ū}.
1. Let V = {(M1, s1), (M2, s2)} with S1 = {s1, t1, u1}, S2 = {s2, t2}, AP ∪

Nom = {}, and transitions and labelling as in Figure 4. The algorithm non-
deterministically computes Yes to be empty: add (t1, s2) to No as (t1, β, s1) ∈
Ra

1 and there is no (s2, β, x) ∈ Rc
2; add (u1, s2) to No as (s2, β̄, t2) ∈ Ra

2 and
there is no (u1, β̄, x) ∈ Rc

1; add (u1, t2) since (t2, β, s2) ∈ Ra
2 and the only

match (u1, β, t1) ∈ Rc
1 is such that (t1, s2) is already in the set No; add (s1, s2)

as (s1, α, u1) ∈ Ra
1 but the only match (s2, α, t2) ∈ Rc

2 is such that (u1, t2) is
in No; add (s1, t2) since (t2, β, t2) ∈ Ra

2 and there is no (s1, β, x) ∈ Rc
1; and

finally add (t1, t2) as (t1, β, s1) ∈ Ra
1 but (s1, x) is in No for all choices of x.

2. Figure 5 shows V = {(M1, s1), (M2, s2)} with Nom = {n} and WV =
{(s1, s2), (u1, t2), (t1, s2)}; all other pairs are ruled out as they violate clause
(a) of Definition 6.2 for n.

α

s1
α

β

t1

u1

s2

t2β

α, β

α

α

β

α

β

Fig. 4. A V = {(M1, s1), (M2, s2)} for which no Vt has a common refinement.

s1 β

β

α

u1

β

t2s2

nq1

α

n

q2?
t1

α

β

β

α

q1
q2?

Fig. 5. A V = {(M1, s1), (M2, s2)} for which there are common refinements.

6 Summary views

We construct 3-valued “summary” views V− and V+ that serve as consistent and
informative common abstractions and refinements of V (respectively).

Definition 7. Let V be given. For ? ∈ {−, +} we define a 3-valued view V? =
(Va

? ,Vc
?) with Vm

? = (WV , Rm
V?

, Lm
V?

) for m ∈ {a, c} such that for all q ∈ AP ∪
Nom, α ∈ Act ∪Act

t ∈ La
V+

(q) iff ∃i : ti ∈ La(q) t ∈ Lc
V+

(q) iff ∀i : ti ∈ Lc(q)
(t, α, t′) ∈ Ra

V+
iff ∃i : (ti, α, t′i) ∈ Ra (t, α, t′) ∈ Rc

V+
iff ∀i : (ti, α, t′i) ∈ Rc

t ∈ La
V−(q) iff ∀i : ti ∈ La(q) t ∈ Lc

V−(q) iff ∃i : ti ∈ Lc(q)
(t, α, t′) ∈ Ra

V− iff ∀i : (ti, α, t′i) ∈ Ra (t, α, t′) ∈ Rc
V− iff ∃i : (ti, α, t′i) ∈ Rc

except for n ∈ Nom: La
V+

(n) = {} if its definition above does not render a sin-
gleton; and Lc

V−(n) = La
V−(n) if the latter’s definition above renders a singleton.

These summary views render common refinements and abstractions.

Proposition 1. Let V = {Mi | 1 ≤ i ≤ k} be given. Then V− and V+ are
3-valued views and, for all t ∈ WV and all i, we have (V−, t)≺(Mi, ti)≺(V+, t).

Proof. All constraints on transitions and the labelling for 3-valued views are met
in V− and V+ by construction: the provisos on n take care of the constraints on
3-valued labels for nominals (items 1 and 2 in Definition 2), and the restriction
of the state space SV to WV and consistency of each Mi take care of the rest. We
claim that Q = {(ti, t) | t ∈ WVs} shows (Mi, ti)≺(V+, t): (a) Let ti ∈ La(q).
Then t ∈ La

V+
(q) by definition. (b) Let t ∈ Lc

V+
(q). Then ti ∈ Lc(q) by definition.

(c) Let (ti, α, t′i) ∈ Ra. Then (t, α, t′) ∈ Ra
V+

by definition and (t′i, t
′) ∈ Q. (d)

Let (t, α, t′) ∈ Rc
V+

. Then (ti, α, t′i) ∈ Rc by definition and (t′i, t
′) ∈ Q. — The

proof of (V−, t)≺(Mi, ti) is dual to the one just given.

The abstraction V− is concrete enough to meaningfully relate to the common
views. The common refinement V+ aids comprehension. Users may want to ex-
plore WV to generate alternative summaries, as done for SV in [33].

Example 8. Figure 6 shows V+ and V− for the V of Figure 5.

α

α

(t1, s2)

(s1, s2)

q1

n

(u1, t2)

q1
q2?

β (s1, s2)

(t1, s2)

(u1, t2)

n

q2?
β

β

ββ

q1
q2?

β

αα

α

V+ V−

Fig. 6. The summary views V+ and V− for the V of Figure 5.

7 Related work

Uchitel & Chechik [33] merge modal transition systems with overlapping but
different sets of events to obtain a minimal common refinement and suggest user
participation to explore common behavior if no minimal common refinement ex-
ists. Their algorithms check the consistency of two models and construct a least
common refinement if it exists. Their models are more general in that events may
differ in views, but less general in that we handle hybrid constraints and com-
pute the space of all consistent tuples. They stress engineering activities in model
elaboration, we use static analysis and identify the complexities of the relevant
decision problems. Larsen et al. use projective views for a constrained-based
proof methodology on modal transition systems [24]. Fitting uses a partial order
of experts to constrain the consistency of experts’ assertions about the truth
and falsity of transitions and state observables in multiple-valued Kripke struc-
tures [9]. Chechik et al. endow Fitting’s models with a semantics for negation
drawn from a De Morgan lattice negotiated among experts. For these models
they devise a multiple-valued version of computation tree logic and its symbolic
model checking algorithm [6]. Multiple-valued model checking is reducible to
2-valued model checking [6, 5]. Bruns & Godefroid [4] build a query checker for
temporal logic which, for a Kripke structure and a query with a hole as input,
returns a formula of propositional logic that, when placed into the query’s hole,
makes the query true for that Kripke structure. Our models for hybrid views
assume that views have the same representation, here algebraic signature and
type, of a specification. As Jackson points out, this may not always be appropri-
ate [21]. Nentwich et al. developed the tool xlinkit that analyzes distributed

XML documents for possible inconsistencies, based on rules written in first-order
logic [27]. Guerra [13] proposes a specification framework for software artifacts,
where specifications have defaults and allow for exceptions stemming from the
reuse or evolution of system demands. In loc. cit. specifications are written in
linear-time temporal logic [30] and a non-monotonic semantics for this logic is
defined based on default institutions [12]. Foundations for view-based model
checking, where models are those of first-order logic with transitive closure, are
developed in [19]. In [20] assertion-consistency lattices are defined and argued
to be the proper generalization of De Morgan lattices for sound abstraction of
multiple-valued models and their checks. For modal transition systems and the
modal mu-calculus, the decision problems of this paper have already been defined
in [16] and the reduction to satisfiability in the modal mu-calculus for common
refinement checks has been stated in [15].

8 Conclusions

We studied finite sets of views, where each view is a 3-valued hybrid model. Such
views are suitable models for answers to database queries, knowledge represen-
tation, functional requirements etc. We showed that the decision problems “Is
there is common refinement satisfying φ?” (satisfiability) and “Does φ hold for
all common refinements?” (validity) are EXPTIME-complete for the hybrid mu-
calculus. We gave a PTIME decision procedure for checking whether such a set
is consistent in that it has a common refinement (satisfiability for φ being true).
This procedure was used to compute the state space of “summary” views that
are informative and consistent common refinements (respectively, abstractions).

Acknowledgments

Sebastian Uchitel was always ready to give his feedback on this line of work.
We acknowledge discussions with Glenn Bruns on the static analysis of sets of
answers drawn from a set of queries executed on a database view.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for
Model Checking C Programs. In T. Margaria and W. Yi, editors, Proceedings of
TACAS’2001, volume 2031 of LNCS, pages 268–283, Genova, Italy, April 2001.
Springer Verlag.

2. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Verifi-
cation, volume 1633 of Lecture Notes in Computer Science, pages 274–287. Springer
Verlag, July 1999.

3. G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Par-
tial State Spaces. In Proceedings of the 11th International Conference on Concur-
rency Theory, volume 1877 of Lecture Notes in Computer Science, pages 168–182.
Springer Verlag, August 2000.

4. G. Bruns and P. Godefroid. Temporal Logic Query Checking. In Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science, pages 409–417,
Boston, Massachusetts, 16-19 June 2001. IEEE Computer Society Press.

5. G. Bruns and P. Godefroid. Model Checking with Multiple-Valued Models. In
Proc. 31st International Colloquium on Automata, Languages and Programming,
Turku, Finland, 12-16 July 2004. To appear.

6. M. Chechik, B. Devereux, A. Gurfinkel, and S. Easterbrook. Multi-Valued Sym-
bolic Model-Checking. ACM Transactions on Software Engineering and Method-
ology, 12(4):1–38, October 2003.

7. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In D. Kozen, editor, Logic of Programs Workshop, number
131 in LNCS. Springer Verlag, 1981.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

9. M. Fitting. Many-valued modal logics II. Fundamenta Informaticae, 17:55–73,
1992.

10. M. Franceschet and M. de Rijke. Model Checking for Hybrid Logics. In Proc. of the
Workshop on Methods for Modalities, INRIA Lorraine, Nancy, France, September
2003.

11. P. Godefroid and R. Jagadeesan. On The Expressiveness of 3-Valued Models. In
L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proc. of 4th
Conference on Verification, Model Checking and Abstract Interpretation, volume
2575 of LNCS, pages 206–222, New York, January 2003. Springer Verlag.

12. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, January 1992.

13. S. Guerra. Distance Functions for Defaults in Reactive Systems. In T. Rus, editor,
Proc. of the 8th International Conference on Algebraic Methodology and Software
Technology, volume 1816 of Lecture Notes in Computer Science, pages 26–40, Iowa
City, Iowa, May 2000. Springer Verlag.

14. M. Huth. Abstraction and probabilities for hybrid logics. In A. Cerone and A. Di
Pierro, editors, Proc. of the Second Workshop in Quantitative Aspects of Pro-
gramming Languages, Electronic Notes in Theoretical Computer Science, page 16,
Barcelona, Spain, March 2004. Elsevier & Science Direct. To appear, preliminary
version appeared in pre-proceedings.

15. M. Huth. Beyond image-finiteness: labelled transition systems as a Stone space. In
Proc. of the 19th Annual IEEE Symposium on Logic in Computer Science, Turku,
Finland, 13-17 July 2004. IEEE Computer Society. To appear.

16. M. Huth. Refinement is complete for implementations. Invited submission to the
special issue for the Third International Workshop on Automated Verification of
Critical Systems. Under review, January 2004.

17. M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: a founda-
tion for three-valued program analysis. In D. Sands, editor, Proc. of the European
Symposium on Programming, pages 155–169. Springer Verlag, April 2001.

18. M. Huth, R. Jagadeesan, and D. A. Schmidt. A domain equation for refinement of
partial systems. Accepted for publication in the journal Mathematical Structures
in Computer Science. In press; 1 February, 2003.

19. M. Huth and S. Pradhan. Model-Checking View-Based Partial Specifications.
In S. Brookes and M. Mislove, editors, Electronic Notes in Theoretical Computer
Science, volume 45. Elsevier Science Publishers, 2001.

20. M. Huth and S. Pradhan. Consistent Partial Model Checking. In M. Mislove,
editor, Electronic Notes in Theoretical Computer Science, volume 73, page 39.
Elsevier Science Publishers, 2003.

21. D. Jackson. Structuring Z Specifications With Views. ACM Transactions on
Software Engineering and Methodology, 4(4):365–389, October 1995.

22. D. Jackson, I. Shlyakhter, and M. Sridharan. A Micromodularity Mechanism. In
Proc. of the ACM SIGSOFT Conference on the Foundations of Software Engineer-
ing/European Software Engineering Conference, September 2001.

23. K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, number 407 in Lecture Notes in Computer Sci-
ence, pages 232–246. Springer Verlag, June 12–14 1989. International Workshop,
Grenoble, France.

24. K. G. Larsen, B. Steffen, and C. Weise. A Constraint Oriented Proof Methodology
Based on Modal Transition Systems. In E. Brinksma, R. Cleaveland, K. G. Larsen,
T. Margaria, and B. Steffen, editors, Tools and Algorithms for Construction and
Analysis of Systems, First International Workshop, volume 1019 of Lecture Notes
in Computer Science, pages 17–40, Aarhus, Denmark, 19-20 May 1995. Springer
Verlag.

25. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Third Annual Sympo-
sium on Logic in Computer Science, pages 203–210. IEEE Computer Society Press,
1988.

26. B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422
of Lecture Notes in Artificial Intelligence. Springer Verlag, 1990.

27. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency
checking and smart link generation service. ACM Transactions on Internet Tech-
nology, 2(2):151–185, 2002.

28. C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding Feasible Counter-examples
when Model Checking Abstracted Java Programs. In T. Margaria and W. Yi,
editors, Proc. of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01), volume 2031 of LNCS, pages
284–298, Genova, Italy, April 2-4 2001. Springer Verlag.

29. D. Peled. Software Reliability Methods. Springer Verlag, New York City, New York,
2001.

30. A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symposium
on the Foundations of Computer Science, pages 46–57, 1977.

31. J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
cesar. In Proc. of the fifth International Symposium on Programming, 1981.

32. U. Sattler and M. Vardi. The Hybrid µ-calculus. In R. Goré, A. Leitsch, and
T. Nipkov, editors, Proc. of the First International Joint Conference on Automated
Reasoning, volume 2083 of Lecture Notes in Computer Science, pages 76–91, Siena,
Italy, 18-23 June 2001. Springer Verlag.

33. S. Uchitel and M. Chechik. Merging Partial Behavioural Models. In Proc. of
the 12th ACM Int’l Symposium on Foundations of Software Engineering, Newport
Beach, California, 31 October - 5 November 2004. To appear.

