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Abstract  
  
Transcranial Doppler ultrasound can be used to detect emboli in blood flow for predicting 
stroke. Embolic signals have characteristic transient chirps suitable for wavelet analysis. 
We have implemented and evaluated the first on-line intelligent wavelet filter to amplify 
embolic signals building on our previous work in detection. Our intelligent wavelet 
amplifier uses the matching filter properties of the Daubechies 8th order wavelet to 
amplify embolic signals. Even the smallest embolic signal is enhanced without affecting 
the background blood flow signal. We show an increase of over 2db (on average) in 
embolic signal strength and an improvement in detection of 10-20%. 
 
 
Introduction 
 
Embolic signals need to be differentiated from both artifacts and random Doppler speckle 
(high intensity signals that occur in the normal Doppler waveform). Previous attempts at 
improving the embolic to signal noise ratio have used frequency filtering using band-pass 
filters with a fixed band-width. In contrast, our approach is not based on isolating the 
embolic frequency segments, but rather enhancing them using the Daubechies discrete 
wavelet transform. Wavelets are an excellent transform for analyzing embolic signals, 
because of their resemblance to embolic signals and superior time resolution [Nizam 
1999, Krongold 1999]. We use the discrete wavelet transform as a method of finding an 
instantaneous matching filter for each embolic signal. The better the chosen basis the 
better the enhancement process works. Our experiments showed that the Daub 8th order 
wavelet provided the best match for the embolic signals from the standard set of discrete 
wavelets. Figure 1 shows that on the first two scales the wavelet transform acts as a 
matched filter, although it is not a perfect match. 
 



We have shown that the method is feasible in practice and much more efficient than 
doing multi band filtering, especially when combined with some intelligence.  
 
Wavelet Filter process 
 
Time-Scale and Time Frequency representations are powerful methods for analyzing and 
processing non-stationary signals with time-varying spectral content. A one-dimensional 
signal is mapped by a time frequency representation into a two-dimensional (2-D) signal, 
which is a function of both time and frequency. This joint representation exploits the non-
stationary characteristics of a signal and, therefore, can be very useful in detecting non-
stationary signals. The simplest and most popular time frequency representation is the 
short time Fourier transform which is simply an overlapped windowed fast Fourier 
transform. The problem with this type of analysis is that short duration narrowband 
signals such as embolic signals can be destroyed because of the time frequency resolution 
dilemma.  With a large overlap, this problem is mitigated but it is still very time 
consuming to filter and nearly impossible to just amplify without altering the background 
signal significantly. The squared magnitude of the short time Fourier transform is known 
as the spectrogram and this is the usual display found on trans-cranial Doppler machines. 
Various quadratic time frequency representations, such as the Wigner distribution, 
provide a better potential detection performance.  However the problem with these 
mathematical tools is that they require a concise statistical description of embolic signals.  
 

[Wigner Transform] 
 
Implementation of the quadratic time-frequency/time-scale detectors requires a statistical 
model of the emboli centred at some nominal time and frequency/scale. On the other 
hand simple linear detectors have not been always accurate. In order to use Linear filters 
as detectors, the underlying assumption is that the signal is known and deterministic. 
Embolic signals have a characteristic sound, but their sound is not uniform and requires 
visual confirmation on the spectrogram. As most embolic signals are similar to a 
Gaussian white noise process (as there intensities peaked at a centre frequency), a filter 
that most resembles their shape would be considered an optimal detector [Poor(1994)].  
 
Krongold (1999) showed that the scalogram or magnitude square power of the wavelet 
scales is an optimal basis, using generalised likelihood ratio test statistics, as the exact 
embolic signal structure is not known before encountering the emboli. We used the 
discrete wavelet transform and a Daubechies 8th order mother wavelet to provide a basis 
for searching for the scale that is most similar to the matching filter. A matched filter of 
each embolic signal provides the highest Embolic to background noise ratio possible. The 
Daubechies 8th order wavelet is quite similar to embolic signals and at various dilations it 
represents an estimate of the matched filter. Higher order Daub filters were too smooth 
and resulted in the removal of parts of the course embolic signal.  Estimates of embolic to 
background ratio along with intelligence for rejecting artefact and speckle were used to 
select the best scale. The process is detailed by Marvasti et al (2004). 
  



The intelligent wavelet amplification software utilizes both the scale number(s) and the 
location of the potential embolic signal in time. At first glance it might appear that the 
filter is needlessly complicated, but this is because the interpretation of the discrete 
wavelet transform is not very intuitive. After taking the wavelet transform, only detail 
coefficients and one set of approximation coefficient are left. In order to reconstruct the 
original signal, each level of the approximation coefficients c(m,n) must be constructed 
from decomposed high pass d(m-1,n) and c(m-1, n) coefficients. The synthesis and 
analysis (g, h) filters are the same in an orthogonal wavelet basis such as Daubechies. The 
multiplication is in fact a sparse matrix.   
 
Cm,n = Σ gn-2k . cm-1,k +  hn-2k . dm-1,k 
 
where Cm,n and  dm-1,k are approximation and detail coefficients at decomposition scale 
level m - log2(n).  A variable Hanning window is used to amplify the time scale-position 
denoted by (m,n).  Ultimately, no original data is eliminated unlike most wavelet de-
noising applications. Within each wavelet transform block (Figure 2 S2), the selected 
scale wavelet coefficients are replaced with the new amplified wavelet coefficients. A 
scale (scale 2 in the example) is selected from all the detailed coefficients and copied to a 
new buffer (S3) where all the other coefficients are set to zero. It is reconstructed in the 
time domain by using the inverse discrete wavelet transform. The reconstructed scale 
(S4) is amplified by multiplying by a scaled Hanning Window. The amplified wavelet 
coefficients (S5) are then created using the forward discrete wavelet transform. The 
amplification window causes some distortion in the other scales (similar to Gibb’s 
phenomenon in fast Fourier transform), but the effect is not significant because only the 
selected scale coefficients are used in the replacement stage. 
 
The process shown in Figure 2 is repeated for both scales where the embolic signal is 
present. The intelligent wavelet amplification process evaluated in this paper operates on 
two scales, but does not always amplify both. The second scale is only amplified if there 
is a potential embolic signal also appearing on it. The peak on the second scale must be as 
high as 60% of the first scale. The second scale is ignored if it is at a high frequency as 
scales greater than 5 are mainly composed of artefacts. 
 
The following parameters were found to provide optimal amplification with least 
distortion: Wavelet block size 1.024 seconds or 8192 data points; search window 150ms 
or 1200 data points; amplification multiples 2.1 and 1.5 for best and second best scales 
respectively, and amplification window size  64 ms or 512 data points. The amplification 
multiples represent a maximum gain of approximately 3 dB and 1.7 dB for the best and 
second best scale respectively. This is the limit before significant signal distortion occurs 
(due to clipping). The search window ensures that the peak of the embolic signal is 
aligned with the amplification window. The amplification window size is 512 data points 
or 1/16 of the total data on the selected scales, so only 1/16 of the selected scale is 
amplified using the variable Hanning Window.  All the scale coefficients are calculated 
and a raw quadrature audio signal is reconstructed ready for passage through a 
commercial software package, called FS-1, for final embolic signal detection and decibel 
calculation. 



 
 
Results 
 
The system was trained on 2 hours of recordings made from various patients. The testing 
was done on 1 hour of recordings from a combination of nine patients with symptomatic 
carotid stenosis. The raw Doppler audio was sampled at 8khz.  
 
 
Table 1 

  
On average there was an increase of 2db in signal intensity when comparing the filtered 
and non-filtered signals. Our intensity measurements used a fast Fourier transform 
spectrogram that is standard in blood flow measurements. 
 
There was only one case in the compilation tape where a non embolic signal that was 
filtered created a false emboli. This false detection occurred on the first and second 
scales, which have a higher bandwidth. The larger bandwidth means more noise 
components (speckle and artifact) are present and thus the signal to noise ratio can be 
reduced. The higher frequency emboli are more sensitive to amplification. Sensitivity was 
also increase by 20% in the compiled data, and 10% in the online data from carotid 
stenosis patients. Specificity was mainly unchanged or slightly reduced in the online data. 
We plan to address this minor problem in the near future using better intelligence and 
packet filtering. 
 
 
Conclusion and Future Work 
 
During this study we managed to show that a simple detection algorithm matched to a 
wavelet based amplifying filter can improve the S/N ratio and performance of manual and 
automated embolic detection systems. The commercial FS-1 software used in the EME 
Nicollete TCD Doppler had an improved performance after filtering. We had an average 
increase of 2db and a detection rate improvement of 10 – 20% after filtering. Two extra 
embolic signals were found after enhancement and were verified as embolic signals that 
had an original intensity of 5 db. The clear indication here is that while using the wavelets 
alone for detection wasn’t necessarily better than frequency filtering, discrete wavelet 
transform amplification is useful as a preprocessing mechanism. 
 
 

 Increase in Embolic Signal Strength 
Std- 
dev 

Average 
intensity 
(dB) 

Number of 
Emboli 

Average  
increase (dB) 

False 
Positives 

Extra 

2.99 9.00 96 2.0 1 2 
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Figure 1      8 detail scales and one approximation scale using Daub 8 DWT.  
                    Each Scale is reconstructed to the full data width.  
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Figure 2 Embolic Signal Intelligent Wavelet Amplification Process 


