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Abstract

The language C+ of Giunchiglia, Lee, Lifschitz, McCain, and Turner
(2004) is a formalism for specifying and reasoning about the effects of
actions and the persistence (‘inertia’) of facts over time. An ‘action de-
scription’ in C+ is a set of C+ laws which define a labelled transition
system of a certain kind. This document presents (C+)++, an extended
form of C+ designed for representing norms of behaviour and institutional
aspects of (human or computer) societies. There are two main extensions.
The first is a means of expressing ‘counts as’ relations between actions,
also referred to as ‘conventional generation’ of actions. The second is a
way of specifying the permitted (acceptable, legal) states of a transition
system and its permitted (acceptable, legal) transitions.

1 Introduction

The language C+ of Giunchiglia, Lee, Lifschitz, McCain, and Turner (2004) is
a formalism for specifying and reasoning about the effects of actions and the
persistence (‘inertia’) of facts over time. An ‘action description’ in C+ is a set of
C+ laws which define a labelled transition system of a certain kind. Implemen-
tations supporting a wide range of querying and planning tasks are available,
notably in the form of the ‘Causal Calculator’ CCalc1. This document presents
(C+)++, an extended form of C+ designed for representing norms of behaviour
and institutional aspects of (human or computer) societies. There are two main
extensions. The first is a means of expressing ‘counts as’ relations between ac-
tions, also referred to as ‘conventional generation’ of actions. The second is a
way of specifying the permitted (acceptable, legal) states of a transition system
and its permitted (acceptable, legal) transitions.

There are two aims: to investigate how far one can get by building on transition
systems, and to determine how far one can get by building on the language C+
in particular.

The language C was introduced by Giunchiglia and Lifschitz (1998). It applies
the ideas of ‘causal theories’ (Lifschitz, 1997; Turner, 1999) to reasoning about
the effects of actions and the persistence (‘inertia’) of facts (‘fluents’), building
on earlier suggestions by McCain and Turner (1997). A summary of C is included

1http://www.cs.utexas.edu/users/tag/cc
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in the survey article by Gelfond and Lifschitz (1998). (Giunchiglia and Lifschitz,
1999) discusses relationships to situation calculus. C+ extends C by allowing
multi-valued fluents as well as Boolean fluents (Giunchiglia et al., 2001) and
generalises the form of rules in the language in various ways. The definitive
presentation of of C+, and of the underlying formalism of ‘nonmonotonic causal
theories’, is provided in (Giunchiglia et al., 2004). C+ and the Causal Calculator
CCalc have been applied successfully to a number of non-trivial benchmark
examples in the temporal reasoning literature (see e.g. (Akman et al., 2004) and
the CCalc website). We have used it in our own work to construct executable
specifications of agent societies (see e.g. (Artikis et al., 2003a,b)).

The language C+ provides a means of constructing a transition system with
certain properties. A separate language is used for making assertions about this
transition system—about what is true at various states in runs of the transition
system—and for expressing queries about them. One implementation route is
via the translation of a C+ action description into a causal theory, and thence
into a set of formulas of (classical) propositional logic (its ‘literal completion’).
This is the method used by CCalc: it performs the required translations and
then invokes a standard propositional satisfaction solver to find models of the
C+ action description. An alternative implementation route is provided by
translations into extended logic programs (Lifschitz and Turner, 1999). We are
developing another translation into logic programs with a different computa-
tional behaviour (EC+ in the diagram). That line of development is not covered
in this document. See (Craven and Sergot, 2003).
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In what follows, we give particular emphasis to the transition system semantics.
We want to exploit the bridge this provides to other standard methods and
tools in logic and computer science, such as temporal logics and model checking
techniques.

Section 2 provides an overview of the two language extensions by way of motiva-
tion. Sections 3–7 present the language C+ and the formalism of nonmonotonic
causal theories, and the transition system semantics of C+ on which the rest
of the development builds. Section 8 presents the language (C+)+ and the
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treatment of ‘counts as’. Section 9 presents the language (C+)++ and its treat-
ment of permission. Section 10 summarises and gives a brief outline of further
developments.

2 Outline

We want to be able to represent and reason about procedures and protocols—
what actions are possible, permitted, valid at each stage; what rights, pow-
ers, obligations are created and destroyed as the protocol/procedure progresses;
what kind of normative or institutional relations are created when the proto-
col/procedure reaches completion. We want to be able to determine from a
recorded narrative of actions that have been performed what actions are now
possible, permitted, valid, and what their effects will be; we should also like to
be able to prove general properties of these protocols (termination, ‘fairness’,
that such and such a protocol has a particular property, that two protocols have
identical effects, and so on). Typical examples include auction protocols, rules
of procedure, argumentation/dialogue games, negotiation protocols, contract
formation, business rules and procedures, procedural law.

We have taken (labelled) transition systems as the basic representational struc-
ture. So we will have fluents (state variables, Boolean and non-Boolean, whose
values vary from state to state), transition labels to represent actions, and in
C+, a way of specifying the effects of actions on fluents. C+ expressions of the
form α causes F if G express that F holds after any transition of type α when G
holds in the state immediately preceding the transition. Other language features
of C+ will be presented later. C+ provides a treatment of default persistence
(‘inertia’) of fluents, indirect effects of actions, and a form of concurrent execu-
tion of actions. It also allows us to express properties of transitions as a whole,
such as saying that a transition is ‘permitted’ or ‘acceptable’ or ‘unusual’. In
future developments we plan to introduce explicit representations of agents (in-
cluding names for collective agents as well as for individuals), roles, and multiple
institutions. These are not included yet.

The first additional feature of the extended language (C+)++ is a relationship
(‘counts as’) between actions: we want to be able to say that, in circumstances
G, a transition of type α counts as a transition of type β. The effects of such a
transition are those that it has by virtue of being a transition of type α and those
it has by virtue of being a transition of type β. This is essentially the same idea
as the ‘counts as’ conditional presented in (Jones and Sergot, 1996) but now
transposed to a different treatment of action on a quite different semantical
structure.

For example: suppose we wish to represent that birth of a person X initiates (or
‘causes’) that X is a citizen of the Republic (it does not matter which Republic—
let it be the Republic of Great Britain) if either of X ’s parents is a citizen of
the Republic at the time of X ’s birth. X ’s birth, moreover, makes the parents
of X happy. Let birth (X,F,M) and acquires cit (X) be names of actions, and
citizen (X), parent (X,Y ), and happy (X) be fluents, forX , Y , F andM ranging
over some given set of person names. The expression birth (X,F,M) is to be
read as representing the birth of a child X to a father F and a mother M . In

3



the language C+ we could write:

birth (X,F,M) causes (parent (X,F ) ∧ parent (X,M))
birth (X,F,M) causes (happy (F ) ∧ happy (M))
birth (X,F,M) causes citizen (X) if (citizen (F ) ∨ citizen (M))

In the extended language (C+)++ the same example could be represented in-
stead as follows:

birth (X,F,M) causes (parent (X,F ) ∧ parent (X,M))
birth (X,F,M) causes (happy (F ) ∧ happy (M))

birth (X,F,M) counts as acquires cit (X) if (citizen (F ) ∨ citizen (M))

acquires cit (X) causes citizen (X)

This (C+)++ representation separates what some (e.g. (Searle, 1969)) have
called a ‘brute fact’, the birth of X , from its institutional effects, the acquisition
of citizenship by X , as recognised by the Republic. It separates the effects that
the birth of X has by virtue of being a birth (the parents of X become happy, a
brute fact), and possible effects it might have by virtue of being an acquisition
of citizenship (X becomes a citizen, an institutional fact). This separation is
essential, we believe, to give structure to the representation, though the benefits
of that are difficult to demonstrate with such a small example. Larger and more
realistic examples will be presented in due course. Furthermore, it allows us
to specify with much greater precision what is permitted and what is not. For
suppose that the Republic forbids the birth of X when the parents of X already
have another child. In the language (C+)++, this can be expressed

not-permitted birth (X,F,M) if parent (Y, F ) ∧ parent (Y,M) ∧X 6= Y

But does this imply that the acquisition of citizenship of X is also forbidden
(not permitted) in these circumstances? No—there may be other means, such
as naturalization, by which a person X can acquire citizenship, and those other
means are not necessarily forbidden.

On the other hand, suppose that the children of Adam and Eve are not permitted
to be citizens (for some reason or another). In the language (C+)++, we can
write

not-permitted citizen (X) ∧ parent (X,Adam) ∧ parent (X,Eve)

In (C+)++ it can be inferred from this (see Section 9), not only that acquires cit (X)
is not permitted for any childX of Adam and Eve, but also that birth (X,Adam,Eve)
is not permitted whenever citizen (Adam) or citizen (Eve) holds (because then
citizen (X) holds, and citizen (X) is not permitted for this X).

For the representation of protocols and procedures (such as the rules of an auc-
tion, or the formation of a contract) the ‘counts as’ relation provides a means—
again, essential we believe—for expressing the distinction between unsuccessful
attempts to perform a certain, institutionally significant, kind of action, and
successful performance of that action. For example, in an offer-acceptance pro-
tocol as usually found in contract formation, we often say that X ‘made an offer’
to Y that such-and-such should be done even when the offer that X made was
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in fact an invalid offer that has no possible effect. For example, when Jeremy
aged 10 offers to sell his father’s car JYU-927W to Alex we still say Jeremy
‘made an offer’ to Alex even though clearly Jeremy, as a 10 year old child, has
no power to offer to sell the car to anyone. Jeremy ‘makes an offer’ to Alex
only in the sense that he performs some kind of communicative act that would
have been regarded as a real, valid offer had Jeremy been empowered to offer
to sell the car at the time. Since Jeremy was not so empowered, he performed
the communicative act (he ‘made an offer’) but this act was not effective (he
did not ‘make an offer’ in the other sense of that term).

In line with the account given in (Jones and Sergot, 1996), we will distinguish
between the action that attempts, possibly unsuccessfully, to produce some in-
stitutionally significant fact (such as offering to sell the car) and the action that
(by definition) successfully does produce that institutionally significant fact.
The notation X :α will represent that agent X performed (successfully) the ac-
tion α. The notation X signals α will represent that agent X made an attempt,
possibly successful, possibly not, to perform the action α. (The keyword ‘at-
tempts’ or ‘indicates’ could have been chosen in place of ‘signals’. It is difficult
to find a suitable term that works in all contexts.) How does X ‘signal’ or
‘indicate’ his attempt to offer? There are further rules of the ‘counts as’ type
to specify that.

So we will have rules specifying when an attempted act is successful, i.e., rules
of the form:

(X signals α) counts as (X :α) if . . . conditions

For convenience, we shall usually specify such rules using the abbreviation pow:

pow(X,α) =def (X signals α) counts as (X :α)

Example:
pow(X, sell (Y )) if owner (X,Y )

(The example is for illustration. It does not pretend to be a representation of
the concept of selling or of ownership.)

Here pow represents what Jones and Sergot (1996) termed ‘institutionalised
power’, a generalisation to organisational structures in general (‘institutions’)
of the concept that in legal theory is variously called ‘legal power’, ‘legal com-
petence’, or ‘legal capacity’. Thus, in the legal context, pow(X,α) represents
that X has the legal competence/capacity to perform action α.

Permission to perform certain kinds of acts is specified separately. For example,
Jeremy’s father might want to tell his son that he (Jeremy) is not permitted to
offer to sell car JYU-927W to anyone. He means by this:

not-permitted Jeremy signals offer (Jeremy, Y, JYU-927W)

The fact that Jeremy, as a 10 year old child, is not empowered (not legally
competent) to make an offer to sell the car is irrelevant—it is attempts by
Jeremy to offer to sell the car that are not permitted.

Or to take another example, we might wish to say that in general, in a certain in-
stitution, acts of communicating offers without the requisite power/competence
are regarded as anti-social and are not permitted:

not-permitted X signals offer (X,Y, P ) if ¬pow(X, offer (X,Y, P ))
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In practice, we would probably want to say that making offers which are prima
facie invalid is not permitted. That refinement is easily made.

As an implementation issue, we might wish to go on to specify that a system im-
plementing a certain protocol/procedure should disable non-permitted actions.
That is a separate consideration. The point is that we distinguish and specify
separately:

• when attempts to perform actions ‘count as’ successful—these are the
constitutive rules of the protocol;

• which kinds of actions (successful, unsuccessful) are permitted—these are
normative-regulative rules that further classify runs of the protocol into
permitted (acceptable, desirable) and not permitted (unacceptable, unde-
sirable);

• how a system to implement/control/enforce the protocol should deal with
prohibited (unacceptable, undesirable) runs of the protocols.

Examples of specifications of protocols and procedures from the area of multi-
agent systems in this style, though not using the language (C+)++, may be
found in (Artikis et al., 2002, 2003a,b). The aim of this report is to present the
language (C+)++ and its features.

3 Preliminaries

The earliest presentations of C+ gave the semantics of the language both in
terms of transition systems and as translations to ‘causal theories’. The most
recent presentation (Giunchiglia et al., 2004) downplays the transition systems
aspect, presenting the language as a higher-level notation for causal theories of a
certain kind with the relationship to transition systems presented as a secondary
issue. In our case, however, one of the main aims is to explore the suitability of
(labelled) transition systems as the semantic basis for a language to represent
actions and norms, and for this reason we want to emphasise the transition
systems aspects. The formal semantics of C+ and its extensions (C+)+ and
(C+)++ will be given here in terms of transition systems, with translations to
causal theories treated primarily as an implementation route.

The material in this section is quite standard, though the transition systems
defined by C+ do have a novel feature in that they allow formulas to be evaluated
on transition labels as well as states. The main purpose of the section is to
introduce terminology and some notation.

3.1 Multi-valued signatures

A multi-valued propositional signature σ (Giunchiglia et al., 2001, 2004) is a set
of symbols called constants. For each constant c in σ, there is a non-empty
set dom(c) of values called the domain of c. An atom of a signature σ is an
expression of the form c= v where c is a constant in σ and v ∈ dom(c). We will
write Atoms(σ) for the set of atoms of signature σ. An atom c= v is trivial if
the domain of c is a singleton, i.e., if dom(c) = {v} for some value v. We write
Trivial (σ) for the set (possibly empty) of the trivial atoms of σ.
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A formula ϕ of signature σ is any propositional compound of atoms of σ.

ϕ ::= ⊥ | > | any atom c= v | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

We write ϕ→ ψ for truth functional (‘material’) implication (ϕ→ ψ =def ¬ϕ∨
ψ). c 6= v is shorthand for ¬(c= v). > (true) and ⊥ (false) are 0-ary connectives
(rather than constants with a fixed interpretation). Form(σ) denotes the set of
formulas of signature σ.

A Boolean constant is one whose domain is the set of truth values {t, f}. If p
is a Boolean constant, p is shorthand for the atom p= t and ¬p for the atom
p= f. Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

An interpretation of σ is a function that maps every constant in σ to an element
of its domain. An interpretation I satisfies an atom c= v, written I |=σ c= v,
if I(c) = v. We will often omit the subscript σ when context allows. The
satisfaction relation |=σ is extended from atoms to formulas in accordance with
the standard truth tables for the propositional connectives. When X is a set of
formulas we also write I |=σ X to signify that I |=σ ϕ for all formulas ϕ ∈ X .
I is then a model for the set of formulas X . A set of formulas X is σ-satisfiable
if it has a model, i.e., if I |=σ X for some interpretation I of σ. Where σ is a
signature, we will write I(σ) for the set of interpretations of σ.

An expression of the form c = d, where both c and d are constants, is understood
as shorthand for the disjunction (c= v1 ∧ d= v1) ∨ · · · ∨ (c= vk ∧ d= vk) where
v1, . . . , vk are the elements of dom(c)∩dom(d). c 6= d is shorthand for ¬(c = d).

We write |=σ ϕ to mean that I |=σ ϕ for all interpretations I of σ. Where
X is a set of formulas of signature σ, X |=σ ϕ denotes that I |=σ ϕ for all
interpretations I of σ such that I |=σ X . When X ′ is a set of formulas of
signature σ, X |=σ X ′ is shorthand for X |=σ ϕ for all formulas ϕ ∈ X ′.
It is easy to check that (for finite X and X ′) X |=σ ϕ iff |=σ

∧

(X) → ϕ, and
X |=σ X

′ iff |=σ

∧

(X)→ ∧

(X ′). X ≡σ X
′ means that X |=σ X

′ and X ′ |=σ X .

Proposition 1 Let X and X ′ be sets of atoms of signature σ. Let Trivial (σ)
denote the set (possibly empty) of trivial atoms of σ. If X is σ-satisfiable, then
X |=σ X

′ iff X ′ ⊆ X ∪ Trivial (σ).

Proof. The notation X |=σ X
′ is shorthand for X |=σ ϕ for all ϕ ∈ X ′, so it is

sufficient to show that the result holds for all atoms of σ: we show that if X is
σ-satisfiable, then X |=σ c= v iff c= v ∈ X ∪ Trivial (σ).
Left-to-right: Suppose X is σ-satisfiable and c= v is an atom of σ. Suppose c= v
is not trivial. We show that if c= v /∈ X then X 6|=σ c= v. Suppose c= v /∈ X .
There are two cases: either (i) c= v′ ∈ X for some v 6= v′, or (ii) there is no
c atom in X . For case (i), c= v′ ∈ X implies X = X ∪ {c= v′}, and since X
is σ-satisfiable, so is X ∪ {c= v′}. For case (ii), choose any interpretation I of
σ which has I |=σ X and I(c) = v′ for some v′ 6= v. There must be such a
v′ ∈ dom(c) because, by assumption, c= v is not trivial. So in both cases (i)
and (ii), there is an interpretation I of σ such that I |=σ X ∪ {c= v′} for some
v′ 6= v. So now we have I |=σ X but I 6|=σ c= v, and so X 6|=σ c= v.
Right-to-left: Suppose c= v ∈ X ∪ Trivial (σ) and I |=σ X . We show I |=σ

c= v. If c= v is trivial then I |=σ c= v since clearly I |=σ Trivial (σ) for any
interpretation I of σ. If c= v is not trivial then c= v ∈ X and hence I |=σ c= v
because I |=σ X . ut
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The σ-satisfiability condition is required in Proposition 1. For if X is not σ-
satisfiable, then X |=σ X

′ for any set X ′ ⊆ Atoms(σ). And suppose c= v is a
trivial atom of a signature σ. Then X |=σ c= v for all X ⊆ Atoms(σ), even
when c= v /∈ X .

Reduction to Boolean signatures

It is easily seen that when the domain of every constant c of the signature is fi-
nite, all multi-valued constants and interpretations can be translated to Boolean
constants and standard propositional interpretations (Giunchiglia et al., 2004):
replace c by a family of Boolean constants, one for each value of dom(c), to-
gether with the constraint that exactly one of these new constants must have
value t in any interpretation.

In other words, given a signature σ, let σB be the signature which is identical to
σ for all Boolean constants of σ, and in which there is a Boolean constant of the
form c= v for every non-Boolean atom c= v of σ. When I is an interpretation
of σ, let IB be the interpretation of σB such that IB(p) = I(p) for all Boolean
constants p of σ, and IB(c= v) = t iff I(c) = v for all non-Boolean atoms c= v
of σ.

An atom c= v can be viewed as a classical, propositional atom. Finding a model
of a set X of formulas of a (multi-valued) signature σ can be reduced to finding
a classical model of X together with the following set of additional formulas
Boolean(σ):

∨

v

(c= v) ∧
∧

v 6=w

¬(c= v ∧ c=w) for all c ∈ σ.

That is, I |=σ ϕ iff IB |=σB
{ϕ} ∪ Boolean(σ), and hence

X |=σ ϕ iff X ∪ Boolean(σ) |=PL ϕ

where |=PL denotes classical, truth-functional entailment.

3.2 Transition systems

A labelled transition system is a structure 〈S,A, R〉 in which

• S is a (non-empty) set of ‘states’;

• A is a (non-empty) set of transition labels (also called ‘events’);

• R is a set of transitions, R ⊆ S ×A× S.

It does not matter whether we think of the labelled transitions as a single three-
place relation R, as here, or as a family of binary relations {Rε}ε∈A. The former
is chosen here for consistency with published accounts of the language C+. A
transition system can be depicted as a labelled directed graph. Every state s is
a node of the graph. Labelled directed edges of the graph are the tuples (s, ε, s′)
of R.

We are free to interpret the labels on the transitions in various ways. The usual
way is to see each label as corresponding to execution of an action or perhaps
several actions concurrently. It is then usual to call the transition label an
‘event’. The triple (s, ε, s′) represents execution of event ε in state s leading
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(possibly non-deterministically) to the state s′. An event ε is executable in s
when there is at least one tuple (s, ε, s′) in R. An event ε is deterministic in s
if there is at most one such s′.

Paths, ‘runs’, or ‘histories’ A run or trace of a transition system is a finite
or infinite (ω length) path through the system. (One or other of the terms run
or trace is often reserved to refer to infinite length paths. We will use ‘run’ and
‘path’ interchangeably and avoid the use of the term ‘trace’. The account of C+
in (Giunchiglia et al., 2004) uses the term ‘history’.)

Let 〈S,A, R〉 be a transition system. A run (or path or history) of length m is
a sequence

s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)

such that s0, s1, . . . , sm ∈ S, ε0, . . . , εm−1 ∈ A, and (si, εi, si+1) ∈ R for 0 ≤
i < m.

Sometimes there is a distinguished set S0 ⊆ S of initial states. All runs (or
histories) are then defined so that their first state s0 ∈ S0. If there is a single
initial state S0 = {s0} then the set of all runs of the transition system can be
seen as a tree rooted in s0.

3.3 Query languages

A wide variety of languages—we will call them query languages—can be in-
terpreted on labelled transition systems. These include simple propositional
languages, as well as temporal logics such as CTL and LTL widely used for
expressing and verifying properties of transition systems.

We begin with states. Let σf be a multi-valued signature of constants called
‘state variables’, or more usually in AI terminology, fluent constants. Given a
labelled transition system 〈S,A, R〉 we add a valuation function which specifies,
for every fluent constant f ∈ σf and every state s ∈ S, a value in dom(f).
Throughout this paper we shall be dealing with the special case of transition
systems in which

• each state s ∈ S is an interpretation of σf, S ⊆ I(σf).

The valuation function for fluent constants is then redundant: the state already
specifies the value of each fluent constant in that state. It is often convenient to
adopt the convention that an interpretation I of σf is represented by the set of
atoms of σf that are satisfied by I . A state is then a (complete, and consistent)
set of fluent atoms. We sometimes say a formula ϕ ‘holds in’ state s or ‘is true
in’ state s as alternative ways of saying that s satisfies ϕ.

Although it is much less common, an idea employed in C+ and in the Causal
Calculator CCalc is that another category of constants and formulas — action
formulas — can be interpreted on the transition labels/events of a transition
system. So, let σa be a multi-valued signature of constants called action con-
stants, disjoint from σf. Given a labelled transition system 〈S,A, R〉 we add
a valuation function for action constants which specifies, for every action con-
stant a ∈ σf and every label/event ε ∈ A, a value in dom(a). Again, throughout
the paper we shall be dealing with a special case, the case of labelled transi-
tion systems in which the set A of labels/events is the set of interpretations of
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σa. In other words the transition systems of interest will be those of the form
〈σf, S, I(σa), R〉, on which we will interpret various query languages of signature
σf ∪ σa, or variations thereof. (σf, σa) is the ‘action signature’ of the transition
system.

Note that since a transition label/event ε is an interpretation of σa, it is mean-
ingful to say that ε satisfies an action formula α (ε |=σa α). When ε |=σa α we
say that the event ε is of type α. When ε |=σa α we also say that the transition
(s, ε, s′) is a transition of type α.

Moreover, since a transition label is an interpretation of the action constants
σa, it can also be represented by the set of atoms that it satisfies. The suggested
reading of a transition label {a1 = v1, a2 = v2, . . . , an = vn} for an action signa-
ture with action constants a1, a2, . . . , an is that it represents a composite action
in which the elementary actions a1 = v1, a2 = v2 . . . , an = vn are performed (or
occur) concurrently. Where a is a Boolean action constant, ¬a, i.e. a= f, can
be read as indicating that action a is not performed; and where all action con-
stants are Boolean, the action {a1 = f, . . . , an = f} can be read as representing
the ‘null’ event.

For example: suppose there are three agents, a, b, and c which can move in
direction E, W , N , or S, or remain idle. Suppose (for the sake of an example)
that they can also whistle as they move (they are trains, let us say). Let the
action signature consist of action constants move(a), move(b), move(c) with
domains {E,W,N, S, idle}, and Boolean action constants whistle(a), whistle(b),
whistle(c). Then one possible interpretation of the action signature, and there-
fore one possible transition label, is

{move(a) =E,move(b) =N,move(c) = idle ,whistle(a),¬whistle(b),whistle(c)}

Because of the way that action formulas are evaluated on a transition (s, ε, s′),
an action formula can also be regarded as expressing a property of the transition
(s, ε, s′) as a whole. For example, we might include in the action signature a
Boolean action symbol unusual which is intended to be satisfied by transition
labels/events which are regarded as unusual for some reason or another. In
later sections we will employ the action constant trans (possible values: green
and red) to indicate whether a given transition is ‘permitted/acceptable’ (green)
or ‘not permitted/unacceptable’ (red).

Example (queries on states) For an example of one possible query lan-
guage, consider the propositional language of signature σf extended with ex-
pressions of the form [α]ϕ where α is any formula of signature σa. [α]ϕ is
intended to express that ϕ holds in every state following a transition of type α.

Let T = 〈σf, S, I(σa), R〉. Define the satisfaction relation |= so that T , s |= f = v
iff s |=σf f = v for fluent atoms f = v, T , s |= ¬ϕ iff T , s 6|= ϕ, T , s |= (ϕ ∧ ϕ′)
iff T , s |= ϕ and T , s |= ϕ′, and so on as usual for the other truth functional
connectives, and

T , s |= [α]ϕ iff T , s′ |= ϕ for every s′ such that (s, ε, s′) ∈ R and ε |=σa α.

The notation [α]ϕ is intended to be reminiscent of that of dynamic logic, except
that in this language α is an action formula not a transition label as in dynamic
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logic. In particular, ‘action negation’, which is problematic in dynamic logic,
has a straightforward meaning here: [¬α]ϕ simply says that ϕ holds in every
state following a transition of type ¬α.

We say (as usual) that a formula ϕ is true in the transition system T =
〈σf, S, I(σa), R〉, written T |= ϕ, when T , s |= ϕ for every state s in T .

Example Let σf be the set of fluent constants {loc(a), loc(b)} with possible
values {N,S}, and let σa be the set of Boolean action constants {go(a), go(b)}.
Consider the transition system T depicted in the following diagram:

loc(a) = N
loc(b) =S

loc(a) = S
loc(b) = N

loc(a) = S
loc(b) = S

{go(a), go(b)}

{go(a),¬go(b)} {¬go(a), go(b)}

{¬go(a),¬go(b)} {¬go(a),¬go(b)}

{¬go(a),¬go(b)}

There is no state {loc(a) =N, loc(b) =N} in T (for the sake of the example).

One can check by observation that, for example:

T |= loc(a) =N → [go(a)] loc(a) =S

T |= loc(a) =N → [go(a)] [go(a)] loc(a) =N

T |= loc(a) =N → [¬go(a)] loc(a) =N

T |= loc(a) =N → [go(b)] loc(a) =S

T |= (loc(a) =S ∧ loc(b) =S)→ [go(a) ∧ go(b)]⊥

Example (time-stamped queries) Query languages can also be interpreted
on the paths (‘runs’) of a transition system. One candidate is the query language
supported by the Causal Calculator CCalc. This uses propositional formulas of
time-stamped fluent and action constants: the time-stamped fluent atom f [i] = v
represents that fluent atom f = v holds at integer time i, or more precisely, that
f = v is satisfied by the state si of a path s0 ε0 · · · εi−1 si, · · · of the transition
system; the time-stamped atom a[i] = v represents that action atom a= v is
satisfied by the transition label εi of a path s0 ε0 · · · si εi si+1, · · · .
In general, given a multi-valued signature σ and a non-negative integer i, we
write σ[i] for the signature consisting of all constants of the form c[i] where c is
a constant of σ, with dom(c[i]) = dom(c). For any non-negative integer m, we
write σm for the signature σ[0] ∪ · · · ∪ σ[m]. As usual, Form(σm) is the set of
formulas of signature σm.

The time-stamped query language used (as in CCalc) to express properties
of paths of length m of a transition system with action signature (σf, σa) is

11



the propositional language of signature σf
m ∪ σa

m−1. In other words, the query
language is Form(σf

m ∪ σa
m−1), whose formulas consist of:

• atoms f [i] = v where i ∈ 0 ..m and f = v is a fluent atom of σf;

• atoms a[i] = v where i ∈ 0 ..m−1 and a= v is an action atom of σa;

• all truth-functional compounds of the above.

Let π = s0 ε0 s1 · · · sm−1 εm−1 sm be a path of length m of a transition system
T of action signature (σf, σa). An atom f [i] = v for any fluent constant f of
σf and 0 ≤ i ≤ m is true on path π (or ‘holds on’ path π, or ‘is satisfied by’
path π), written T , π |=m f [i] = v, when si |=σf f = v; for action constants a of
σa and 0 ≤ i < m, T , π |=m a[i] = v when εi |=σa a= v; and |=m is extended
to formulas ϕ of signature σm = σf

m ∪ σa
m−1 by the usual truth tables for the

propositional connectives.

We will say ϕ is true on paths of length m of T , written T |=m ϕ when T , π |=m

ϕ for all paths of length m of T .

The definition of the satisfaction relation |=m can be stated more concisely, as
follows. First some notation (which will also be useful later).

Let π[i] denote the ith component of a path π: that is, when π = s0 ε0 s1 · · · si εi si+1 . . . ,
let π[i] = si ∪ εi. Clearly, π[i] is an interpretation of σf ∪ σa when π is a path
of a transition system with action signature (σf, σa).

For any formula ψ of signature σf∪σa, let ψ[i] stand for the formula of signature
σf[i] ∪ σa[i] obtained by time-stamping every constant in ψ with i, that is,
replacing every constant c in ψ by the constant c[i]. Clearly, every formula ϕ of
signature σm = σf

m ∪ σa
m−1 is a truth-functional compound of formulas of the

form ψ[i] where 0 ≤ i ≤ m and ψ is a formula of signature σ = σf ∪ σa.

Now, for any path π of length m of a transition system T of action signature
(σf, σa), we have

T , π |=m ψ[i] iff π[i] |=σ ψ

Example (contd) Consider again the transition system T depicted in the
figure above. We have, amongst other things:

T |=1 (loc(a)[0] =N ∧ go(a)[0])→ loc(a)[1] =S

T |=2 (loc(a)[0] =N ∧ go(a)[0] ∧ go(a)[1])→ loc(a)[2] =N

T |=1 (loc(a)[0] =N ∧ ¬go(a)[0])→ loc(a)[1] =N

T |=2 (loc(a)[0] =N ∧ go(b)[0] ∧ go(a)[1])→ loc(a)[2] =N

T |=m (loc(a)[i] =N ∧ loc(a)[i+2] =N)→ (go(a)[i] ∧ go(a)[i+1]) for all 0 ≤ i ≤ m−2

T |=m (loc(a)[i] =S ∧ loc(b)[i] =S)→ (¬go(a)[i] ∧ ¬go(b)[i]) for all 0 ≤ i ≤ m−1

A wide variety of other languages can be interpreted on transition systems. In
Section 9.6 we will show how the temporal logic CTL can be used to express
properties of a transition system defined by an action description of (C+)++.
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4 The Action Description Language C+
The language C+ has evolved through several versions. Here we follow the
(definitive) presentation in (Giunchiglia et al., 2004) though with more em-
phasis on the transition system semantics and with some small notational and
terminological differences. These differences are recorded in the text.

4.1 Syntax

An action signature (σf, σa) is a (non-empty) set σf of fluent constants and a
(non-empty) set σa of action constants. Fluent constants are partitioned into
simple fluent constants and statically determined fluent constants. Simple fluent
constants are related to actions by dynamic laws, which specify how the values
of simple fluents change in transitions from one state to another. The values
of statically determined fluents can also vary from state to state but they are
defined by static laws relating their values in a state to the values of other fluents
in that state. Static laws can also express constraints on the values of simple
fluent constants in a state.

Action constants are partitioned into exogenous action constants, which are used
to name kinds of actions, and transition attributes which are used to represent
attributes of actions and other properties of transitions. (This partitioning
of action constants is not part of standard presentations of C+. There, the
declaration of exogenous actions is done by means of a special kind of C+ law
and not, as here, as part of the signature of the language. There is no practical
difference between these two treatments, as will be explained later. We prefer
to specify exogenous actions in the signature for uniformity with the treatment
of fluent constants, but nothing of significance turns on this.)

A fluent formula is any truth-functional compound of fluent atoms (i.e., a for-
mula of signature σf). An action formula is any formula of signature σa that
contains at least one action constant. Notice that since > and ⊥ are treated as
0-ary connectives, they are not action formulas, though a∧¬a and a∨¬a are for
any Boolean action constant a. The language also allows formulas of signature
σf ∪ σa.

The sentences of C+ are of three kinds.

• A static law (or rule) is an expression of the form

caused F if G (1)

where F and G are fluent formulas (i.e., formulas of signature σf). F is the
head of the rule and G is the body. Static laws are used to express constraints
that hold in all states and to define statically determined fluents.

• A fluent dynamic law (or rule) is an expression of the form

caused F if G after ψ (2)

where F and G are fluent formulas, and ψ is a formula of signature σf ∪ σa,
with the restriction that statically determined fluent constants may not appear
in the head of the rule, F . We will say G after ψ is the body of the rule.
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Informally, in a transition (s, ε, s′), formulas F and G are evaluated at s′

(the resulting state), fluent atoms in ψ are evaluated at s (i.e., in the state
immediately before the transition), and action atoms in ψ are evaluated on
the transition label ε itself. It may be helpful to note that any set of fluent
dynamic laws can be written equivalently as a set of fluent dynamic laws of
the form

caused F if G after H ∧ α
where H is a fluent formula and α is an action formula, and this is the form
that will appear most frequently in subsequent sections. Fluent dynamic laws
are primarily used to express how the values of fluents are affected by different
kinds of actions, and to specify which of the fluents are ‘inertial’, that is, which
fluents are such that their values persist by default from one state to the next.
The expression

α causes F if H

is shorthand for a fluent dynamic law of the form: caused F if > after H ∧ α.

• An action dynamic law (or rule) is an expression of the form

caused α if ψ (3)

where α is an action formula (i.e., a formula of signature σa) and ψ is any
formula of signature σf ∪ σa. α is the head of the rule and ψ is the body.

Action dynamic laws are used to express, among other things, that any tran-
sition of type α must also be of type α′ (caused α′ if α), or that any transition
from a state satisfying fluent formula G must be of type β (caused β if G).
Examples will be provided in later sections.

An action description is a set of static and dynamic laws.

In the remainder of this presentation we will omit the keyword caused when
writing causal laws. This is simply to shorten expressions and avoid linebreaks.

Example The effects of toggling a switch between on and off can be rep-
resented by a simple Boolean fluent constant on and an (exogenous) Boolean
action constant toggle and the following pair of laws:

toggle causes on if ¬on
toggle causes ¬on if on

which, recall, are shortand for the following fluent dynamic laws:

on if > after toggle ∧ ¬on
¬on if > after toggle ∧ on

Note that default persistence (‘inertia’) of fluent values is not a built-in feature
of the C+ language. One specifies explicitly which fluents are ‘inertial’ by means
of a C+ law of the form

inertial f

This is shorthand for the set of fluent dynamic laws of the form

f = v if f = v after f = v, for every v ∈ dom(f)
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How this law works to express default persistence of f = v will become clearer
when we look at the semantics of C+ laws. Notice that a statically determined
fluent constant cannot be inertial, since inertial declarations are fluent dynamic
laws, and no statically determined fluent can be in the head of a fluent dynamic
law.

Early versions of the language also included a separate category of rigid con-
stants in the action signature, used to represent fluents whose values are constant
and do not vary from state to state. In the latest presentations (Giunchiglia
et al., 2004), rigid constants are not features of an action signature but of an
action description. A fluent constant c is rigid (relative to an action description
D) if the value of c is the same in every state of the transition system defined
by D. Trivial fluent constants are clearly rigid, but there may also be rigid
constants which are not trivial.

Definite action descriptions

Of particular interest are definite action descriptions.

An action description D is definite when, for all static laws, fluent dynamic
laws, and action dynamic laws in D:

• the head of every law is either a fluent atom (resp., action atom) or the
symbol ⊥, and

• no atom is the head of infinitely many laws of D.

(Note that, as defined above, a Boolean fluent constant p and its negation ¬p,
and a Boolean action constant a and its negation ¬a are atoms, and hence are
included in the definition.)

4.2 Semantics

Consider an action description D of C+ of signature (σf, σa).

• A state is an interpretation of the fluent constants σf that is closed under the
static laws of D, that is to say, that satisfies G→ F for every static law F if G
in D. A state must further satisfy certain restrictions concerning statically
determined fluents which we will identify presently.

• A transition label or event is an interpretation of the action constants σa.
A transition label must satisfy certain constraints concerning the exogenous
action constants, as identified below.

• A transition is a triple (s, ε, s′) where s and s′ are states and ε is a transition
label/event. A transition defined by an action description D must also satisfy
the fluent dynamic laws and the action dynamic laws of D, in a sense to be
defined below.

The transition system defined by an action description D is the transition sys-
tem 〈σf, S, I(σa), R〉 which has the states of D as its states S, and which has
(s, ε, s′) ∈ R when (s, ε, s′) is a transition of D.
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Semantics: Definitions

Let Tstatic(s) stand for the heads of all static laws in D whose bodies are satisfied
by s; let E(s, ε, s′) stand for the heads of all fluent dynamic laws in D whose
bodies are satisfied by the transition (s, ε, s′); and let A(ε, s) stand for the heads
of all action dynamic laws whose bodies are satisfied by the transition (s, ε, s′).
More precisely:

Tstatic(s) =def {F | F if G is in D, s |= G}
E(s, ε, s′) =def {F | F if G after ψ is in D, s′ |= G, s ∪ ε |= ψ}
A(ε, s) =def {α | α if ψ is in D, s ∪ ε |= ψ}

(Throughout this section we omit subscripts on |= whenever context allows.
Notice that since σf and σa are disjoint, s |=σf F iff s |=σf∪σa F for any fluent
formula F , and ε |=σa α iff ε |=σf∪σa α for any action formula α.)

In the absence of statically determined fluents, an interpretation s of σf is a state
of D iff it is closed under all the static laws, i.e., iff s |= Tstatic(s). In the presence
of statically determined fluents, the characterisation of what constitutes a state
is a little more complicated.

An interpretation s of σf is a state of D when

• s |= Tstatic(s)

• there is no other interpretation s′ of σf which agrees with s on the inter-
pretation of all simple fluents and is such that s′ |= Tstatic(s).

Alternatively: let Simple(s) denote the simple fluent atoms that are satisfied by
an interpretation s of σf. Clearly s |= Simple(s) for any s. So then we can say
the following.

Definition 2 Let D be an action description with fluent signature σf. An in-
terpretation s of σf is a state of D when

{s′ ∈ I(σf) | s′ |= Tstatic(s) ∪ Simple(s) } = {s}

In words: when s |= Tstatic(s) ∪ Simple(s) and there is no other interpretation
s′ of σf such that s′ |= Tstatic(s) ∪ Simple(s).

The rationale behind these definitions, especially that of the uniqueness con-
dition, is perhaps far from obvious. It is a direct application of the methods
of ‘nonmonotonic causal theories’ (see Section 5 below) in which the language
C+ has its origins. For convenience we will write X !|= ϕ to denote that X is
the only interpretation that satisfies a formula (or set of formulas) ϕ. In this
notation, an interpretation s of σf is a state of D when

s !|= Tstatic(s) ∪ Simple(s)

A transition (s, ε, s′) satisfies the action dynamic laws of D when:

• ε |= A(ε, s)

• there is no other interpretation ε′ of σa which agrees with ε on the inter-
pretation of all exogenous action constants and is such that ε′ |= A(ε, s).

16



Again, let Exog(ε) denote the exogenous atoms of σa that are satisfied by an
interpretation ε of σa. Clearly, ε |= Exog(ε). The transition (s, ε, s′) satisfies
the action dynamic laws of D when

ε !|= A(ε, s) ∪ Exog(ε)

that is, when {ε′ ∈ I(σa) | ε′ |= A(ε, s) ∪ Exog(ε) } = {ε}.
(s, ε, s′) is a transition defined by an action description D (or simply: is a
transition of D) if s is a state of D, the transition (s, ε, s′) satisfies the action
dynamic laws of D, and the resulting state s′ is the only interpretation of σf

that satisfies all formulas Tstatic(s′) ∪ E(s, ε, s′). (Early presentations of C+,
e.g. (Giunchiglia and Lifschitz, 1998; Giunchiglia et al., 2001) referred to this as
a causally explained transition.)

Definition 3 Let D be an action description of C+ of signature (σf, σa). Let
s and s′ be interpretations of σf, and ε an interpretation of σa. (s, ε, s′) is a
transition of D iff

• s !|= Tstatic(s) ∪ Simple(s)

• ε !|= A(ε, s) ∪ Exog(ε)

• s′ !|= Tstatic(s′) ∪ E(s, ε, s′)

In words: (s, ε, s′) is a transition of D iff s is a state of D, ε is the only model
of A(ε, s)∪Exog(ε), and s′ is the only model of E(s, ε, s′) that also satisfies the
static laws of D.

The uniqueness condition in the above definition does not imply that all events
are deterministic, as will be illustrated in examples later.

The transition system defined by an action description D is the transition sys-
tem 〈σf, S, I(σa), R〉 which has the states of D as its states S, and which has
(s, ε, s′) ∈ R when (s, ε, s′) is a transition of D. We will say that π is a path of
D when π is a path of the transition system defined by D.

Notice that the last condition of Definition 3 makes no mention of Simple(s′).
It is not obvious therefore that the definition is well formed, that is, that the
resulting state s′ of every transition (s, ε, s′) defined by D is guaranteed to be a
state of D. It is easy to check that this is so. It relies on the fact that formulas
in E(s, ε, s′) contain only simple and no statically determined fluent constants.
(It might appear there is a simple argument relying on the observation that
E(s, ε, s′) ⊆ Simple(s′). But that is not so, because in the general case E(s, ε, s′)
is a set of formulas not a set of atoms.)

Proposition 4 If (s, ε, s′) is a transition defined by an action description D
then s′ is a state of D.

Proof. We show that if s′ is the only model of Tstatic(s′) ∪ E(s, ε, s′) then s′ is
the only model of Tstatic(s′) ∪ Simple(s′).

Clearly s′ is a model of Tstatic(s′)∪Simple(s′) because s′ |= Tstatic(s′) (from the
assumption) and s′ |= Simple(s′) (by definition). So it remains to show that s′

is the only such model.
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Notice first that a state s′ can be represented in the form s′s ∪ δ′ where s′s is an
interpretation of the simple fluent constants and δ′ is an interpretation of the
statically determined fluent constants. We then have Simple(s′s ∪ δ′) = s′s. So
suppose that s′s∪δ′ is the only model of Tstatic(s′s∪δ′)∪E(s, ε, s′s∪δ′). We need
to show that s′s ∪ δ′ is the only model of Tstatic(s′s ∪ δ′) ∪ Simple(s′s ∪ δ′), that
is, that there is no other interpretation s′′s ∪ δ′′ such that s′′s ∪ δ′′ |= Tstatic(s′s ∪
δ′) ∪ Simple(s′s ∪ δ′).
For any s′′s ∪ δ′′, s′′s ∪ δ′′ |= Simple(s′s ∪ δ′) if and only if s′′s = s′s, because
Simple(s′s ∪ δ′) = s′s.

So it remains to show that there is no other interpretation δ′′ 6= δ′ of the
statically determined fluent constants such that s′s ∪ δ′′ |= Tstatic(s′s ∪ δ′).
Suppose there were such a δ′′. s′s∪δ′ |= E(s, ε, s′s∪δ′), and E(s, ε, s′s∪δ′) contains
no statically determined fluents, so s′s ∪ δ′′ |= E(s, ε, s′s ∪ δ′) also. Now we have
s′s ∪ δ′′ |= Tstatic(s′s ∪ δ′)∪E(s, ε, s′s ∪ δ′), which contradicts the assumption that
s′s ∪ δ′ is the only such interpretation. ut

In future sections, (in particular in Section 6), we will be primarily concerned
with paths/runs of the transition system defined by D. Proposition 4 can
also be applied to simplify the the characterisation of paths of D, as follows.
(si−1, εi−1, si) and (si, εi, si+1) are both transitions of D when

si−1 !|= Tstatic(si−1) ∪ Simple(si−1),

εi−1 !|= A(εi−1, si−1) ∪ Exog(εi−1),

si !|= Tstatic(si) ∪ E(si−1, εi−1, si),

and

si !|= Tstatic(s0) ∪ Simple(si),

εi !|= A(εi, si) ∪ Exog(εi),

si+1 !|= Tstatic(si+1) ∪E(si, εi, si+1).

But by Proposition 4, si !|= Tstatic(si) ∪ E(si−1, εi−1, si) already implies
si !|= Tstatic(s0) ∪ Simple(si) (si is a state of D), and so this condition can
be dropped. We thus have the following.

Proposition 5 Let D be a C+ action description of signature (σf, σa).

s0 ε0 s1 · · · εm−1 sm is a path of length m ≥ 0 of the transition system defined
by D iff s0, s1, . . . , sm are interpretations of σf and ε0, ε1, . . . , εm−1 are inter-
pretations of σa such that

s0 !|= Tstatic(s0) ∪ Simple(s0)

ε0 !|= A(ε0, s0) ∪ Exog(ε0)

s1 !|= Tstatic(s1) ∪ E(s0, ε0, s1)

...
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εi !|= A(εi, si) ∪ Exog(εi)

si+1 !|= Tstatic(si+1) ∪ E(si, εi, si+1)

...

εm−1 !|= A(εm−1, sm−1) ∪ Exog(εm−1)

sm !|= Tstatic(sm) ∪ E(sm−1, εm−1, sm)

Proof. In the preceding discussion. The cases m = 0 and m = 1 are trivial. ut

Semantics: Definite action descriptions

When D is a definite action description, the conditions under which an in-
terpretation s of σf is a state, and the conditions under which (s, ε, s′) is a
transition defined by D, can be simplified very considerably. For then Tstatic(s),
E(s, ε, s′), and A(ε, s) are all sets of atoms, possibly also containing the ele-
ment ⊥. And if we represent an interpretation s of σf by the set of atoms
of σf that are satisfied by s, the condition that s is the only interpretation
of σf that satisfies all formulas Tstatic(s) ∪ Simple(s) is equivalently stated as
s = Tstatic(s) ∪ Simple(s) ∪ Trivial (σf), where Trivial (σf) denotes the set (pos-
sibly empty) of the trivial atoms of σf. Trivial atoms complicate the account
slightly but since they can be used to represent rigid fluent constants we will
keep open the possibility that they are present.

Informally: suppose first that s = Tstatic(s)∪Simple(s). Any interpretation s′ of
σf satisfying Tstatic(s)∪Simple(s) must also be such that Tstatic(s)∪Simple(s) ⊆
s′; every interpretation s′ of σf must also satisfy Trivial (σf). However, s′ cannot
contain any additional atoms of σf not in Tstatic(s) ∪ Simple(s) ∪ Trivial (σf)
because s is already a complete set of atoms and s′ would not then be an
interpretation of σf. So s is unique. We can generalise the above informal
argument, as follows.

Proposition 6 Let X be a set of atoms of signature σ. Let I be an interpreta-
tion of σ, represented as a set of atoms. Let Trivial (σ) denote the set (possibly
empty) of trivial atoms of σ. Then I is the unique interpretation of σ satisfying
X iff I = X ∪ Trivial (σ).

Proof. Left-to-right: Suppose the set of atoms I is the only interpretation of σ
such that I |= X . Then it follows that X |=σ I (i.e., atoms I are all satisfied
in all models of X): there is only one interpretation of σ that satisfies X , that
interpretation is I , and clearly I |= I . I |= X so X is σ-satisfiable, and by
Proposition 1, X |=σ I implies I ⊆ X ∪ Trivial (σ). Further, since I |= X we
have X ⊆ I . And clearly Trivial (σ) ⊆ I . So we have X ∪ Trivial (σ) ⊆ I ⊆
X ∪ Trivial (σ).
Right-to-left: Suppose I = X ∪Trivial (σ). Clearly I satisfies X because X ⊆ I .
To show I is unique, suppose I ′ |= X for some other interpretation I ′ of σ, also
represented as a set of atoms. We have X ⊆ I ′, and so I ⊆ X ⊆ I ′, and hence
I ⊆ I ′. But for interpretations I and I ′, I ⊆ I ′ iff I ′ = I . ut
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Applying Proposition 6 to the definition of a state of D, we obtain the following
concise definition for the case where D is a definite action description.

Proposition 7 Let D be a definite action description of signature (σf, σa) . Let
s be a set of atoms of σf representing an interpretation of σf. s is a state of D
iff

s = Tstatic(s) ∪ Simple(s) ∪ Trivial (σf)

ut

Notice that the above characterisation of a state does not hold for an arbitrary
set s of atoms of σf — s must be an interpretation (a consistent and complete
set of atoms) of σf.

It is perhaps helpful to see that the conditions for an interpretation s of σf to
be a state of D can be equivalently stated as follows. First, in the case where
there are no trivial atoms in σf:

• Tstatic(s) ⊆ s
• s− Simple(s) = Tstatic(s)− Simple(s)

In other words, the state s must satisfy the static laws of D, and the set of
statically determined atoms in s, s−Simple(s), must be completely determined
by the static laws of D. When Trivial (σf) 6= ∅:
• Tstatic(s) ⊆ s
• s− Simple(s) =

(

Tstatic(s) ∪ Trivial (σf)
)

− Simple(s)

By similar applications of Proposition 6, for any definite action description
D, the condition that a set s′ of atoms represents the only interpretation of
σf satisfying Tstatic(s′) ∪ E(s, ε, s′) is equivalently stated as s′ = Tstatic(s′) ∪
E(s, ε, s′)∪Trivial (σf); and the condition that a set ε of action atoms represents
the only interpretation of σa satisfying A(ε, s) ∪ Exog(ε) is equivalently stated
as ε = A(ε, s) ∪ Exog(ε) ∪ Trivial (σa). So then:

Proposition 8 Let D be a definite action description of signature (σf, σa).
(s, ε, s′) is a transition of D iff s and s′ are interpretations of σf and ε is
an interpretation of σa such that:

• s = Tstatic(s) ∪ Simple(s) ∪ Trivial (σf) (s is a state of D)

• ε = A(ε, s) ∪ Exog(ε) ∪ Trivial (σa)

• s′ = Tstatic(s′) ∪ E(s, ε, s′) ∪ Trivial (σf)
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4.3 Example

Signature: simple Boolean fluent constants loaded , on; exogenous Boolean ac-
tion constants load , toggle .

There are no static laws in this first example.

inertial loaded
inertial on

load causes loaded
toggle causes on if ¬on
toggle causes ¬on if on

¬loaded
on

loaded
on

¬loaded
¬on

loaded
¬on

‘load ’

‘load ’

‘toggle’ ‘toggle’ ‘toggle’ ‘toggle’

‘load ’

‘load ’

(Action load is supposed to mean something like ‘ensure that loaded’. Otherwise
we would change the action description to load causes loaded if ¬loaded .)

In the diagram, transition labels ‘load ’ and ‘toggle’ are shorthand for {load ,¬toggle}
and {¬load , toggle}, respectively.

Let’s consider state {¬loaded , on} and event {load ,¬toggle}. There are no static
laws so we can ignore Tstatic in this example, and there are no action dynamic
laws to consider.

• Is ({¬loaded , on}, {load ,¬toggle}, {loaded , on}) a transition defined by this ac-
tion description?
Yes, because E({¬loaded , on}, {load ,¬toggle}, {loaded , on}) = {loaded , on}.

• Is ({¬loaded , on}, {load ,¬toggle}, {loaded ,¬on}) a transition defined by this
action description??
No, because E({¬loaded , on}, {load ,¬toggle}, {loaded ,¬on}) = {loaded} 6=
{loaded ,¬on}.

There are two other kinds of transitions, not shown in the diagram above. They
are transitions with labels {load , toggle} and {¬load ,¬toggle}.

¬loaded
on

loaded
on

¬loaded
¬on

loaded
¬on

l-tl-t
l-t l-t

null

null

null

null
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The label l-t in the diagram is shorthand for {load , toggle} and null is shorthand
for {¬load ,¬toggle}.
If we wanted to eliminate the null events, we could add the following law to the
action description:

⊥ if > after ¬load ∧ ¬toggle
for which there is a standard abbreviation in C+:

nonexecutable ¬load ∧ ¬toggle

Remark: the reading of causes The choice of the abbreviation causes
in C+ can be misleading. For example, we might observe that whenever Jack
leaves work, he is tired. We can express this by means of a fluent dynamic law

tired(Jack) if > after leaves work(Jack)

In abbreviated form this is

leaves work(Jack) causes tired(Jack)

But we would surely not want to say that Jack’s action of leaving work causes
him to be tired.

We will retain the abbreviation causes in what follows since most other accounts
and examples of C+ make extensive use of it. However, we emphasise that the
reading of causes in examples to follow should not be given any strong of reading
of causation: it is the unabbreviated fluent dynamic law that is intended.

4.4 Abbreviations

The language C+ provides various abbreviations, of which causes, inertial, and
nonexecutable are the most common. Here is the full list, as presented in
(Giunchiglia et al., 2004, Appendix B).

In the following, F and G are fluent formulas, α and α′ are action formulas, ψ
is a formula, f is a fluent constant, and a is an action constant.

F F if >
α α if >
F after ψ F if > after ψ

default F F if F

default F if G F if F ∧G
inertial f f = v if f = v after f = v, for all v ∈ dom(f)

inertial f if ψ f = v if f = v after f = v ∧ ψ, for all v ∈ dom(f)

α causes F F if > after α

α causes F if ψ F if > after α ∧ ψ
nonexecutable α ⊥ if > after α (or: α causes ⊥)

nonexecutable α if ψ ⊥ if > after α ∧ ψ (or: α causes ⊥ if ψ)

α may cause F F if F after α

α may cause F if ψ F if F after α ∧ ψ
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The last of these, may cause, is used for specifying the effects of non-deterministic
actions. An example will follow later.

The form nonexecutable α is, strictly, not allowed according to (Giunchiglia
et al., 2004) but is used in that paper.

We also have, where a is an action constant and f a fluent constant:

exogenous a a= v if a= v, for all v ∈ dom(a)
(or: default a= v, for all v ∈ dom(a))

exogenous a if ψ a= v if a= v ∧ ψ, for all v ∈ dom(a)
(or: default a= v if ψ, for all v ∈ dom(a))

exogenous f f = v if f = v, for all v ∈ dom(f)
(or: default f = v, for all v ∈ dom(f))

exogenous f if G f = v if f = v ∧G, for all v ∈ dom(f)
(or: default f = v if G, for all v ∈ dom(f))

Exogenous fluent constants are those whose values can vary from one state to
another, but not under the effects of actions in the action description. Whether
it is raining could be represented by an exogenous (Boolean) fluent constant,
for example.

For reference, here are the remaining abbreviations given in (Giunchiglia et al.,
2004, Appendix B). They are not used in this paper.

α causes α′ if ψ α′ if α ∧ ψ
α may cause α′ if ψ α′ if α′ ∧ α ∧ ψ
default α α if α

default α if ψ α if α ∧ ψ
default F if G after ψ F if F ∧G after ψ

default F after ψ default F if > after ψ (or: F if F after ψ)

constraint F ⊥ if ¬F
constraint F after ψ ⊥ if ¬F after ψ

rigid f ⊥ if f 6= v after f = v, for all v ∈ dom(f)
(or: constraint f = v after f = v, for all v ∈ dom(f))

always ψ ⊥ after ¬ψ

For f a statically determined Boolean fluent constant, and a a Boolean action
constant:

F if G unless f F if G ∧ ¬f
default ¬f

F if G after ψ unless a F if G after ψ ∧ ¬a
default ¬a

α if ψ unless a α if ψ ∧ ¬a
default ¬a
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Note that many of the above abbreviations are ambiguous as given in (Giunchiglia
et al., 2004, Appendix B), in the special case that components are > or ⊥.

4.5 Example (‘Yale Shooting Problem’)

Signature: simple Boolean fluent constants loaded , alive ; exogenous Boolean
action constants load , shoot , wait .

inertial loaded
inertial alive

load causes loaded
shoot causes ¬alive if loaded
shoot causes ¬loaded
nonexecutable shoot ∧ load
nonexecutable wait ∧ shoot
nonexecutable wait ∧ load
nonexecutable ¬wait ∧ ¬shoot ∧ ¬load

loaded
alive

loaded
¬alive

¬loaded
alive

¬loaded
¬alive

‘load ’
‘shoot ’

‘shoot ’‘load ’

‘load ’‘wait ’ ‘load ’‘wait ’

‘wait ’ ‘shoot ’ ‘wait ’ ‘shoot ’

The diagram uses the same shorthand convention for transition labels as used
earlier.

It is not possible to load and shoot a gun at the same time: shoot ∧ load events
are eliminated by the first of the nonexecutable laws.

Alternatively, we could dispense with the action constant wait and represent it
instead by the ‘null’ event {¬shoot ,¬load}. The last three lines of the action
description could then be deleted.

Consider now the query languages introduced in Section 3.3. Let DYSP be the
action description above. We write DYSP |= ϕ (resp. DYSP |=m ψ) when TYSP

is the transition system defined by DYSP and TYSP |= ϕ (resp. TYSP |=m ψ).
One can see from the diagram above that we have, for example:

DYSP |= [shoot ] [load ]¬alive
DYSP |=3 (load [0] ∧ shoot [2])→ ¬alive [3]

and indeed

DYSP |=m (load [i] ∧ shoot [j])→ ¬alive [k] for any 0 ≤ i < j < k ≤ m

4.6 Example

This is a completely artificial example, just for the sake of illustrating how static
laws work as constraints on simple fluents.

Signature: simple Boolean fluent constants rich , happy , on ; exogenous Boolean
action constants win, lose , toggle .
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inertial rich
inertial on
inertial happy

win causes rich
lose causes ¬rich
toggle causes on if ¬on
toggle causes ¬on if on

happy if rich (a static law)

nonexecutable lose ∧ win

¬rich
¬happy
on

¬rich
happy
on

rich
happy
on

¬rich
happy

¬on

¬rich
¬happy
¬on

rich
happy

¬on

‘win ’

‘win ’

‘win ’

‘win ’

‘lose’

‘lose’

‘lose’

‘lose’

‘lose’

‘lose’

‘win ’

‘win ’

‘toggle’
‘toggle’

‘toggle’

null

null

null

null

null

null

Because of the static law, there are only 6 states not 23 = 8. The diagram does
not show the transitions with labels {toggle ,win,¬lose} and {toggle,¬win , lose}.
This is just to reduce clutter.

What if we drop the law that specifies happy is inertial? In that case, since
there is nothing to ‘cause’ ¬happy (¬happy /∈ Tstatic(s) for any s and ¬happy /∈
E(s, ε, s′) for any transition (s, ε, s′)), there can be no transitions to any state
where ¬happy holds, and by a similar argument, no transitions to happy states
where rich does not hold. There are thus no ‘lose ’ transitions, and some null
and ‘toggle ’ transitions are eliminated also, as shown in the following diagram.

¬rich
¬happy
on

¬rich
happy
on

rich
happy
on

¬rich
happy

¬on

¬rich
¬happy
¬on

rich
happy

¬on

without inertial happy

‘win’

‘win’

‘win’

‘win’

‘win’

‘win’

‘toggle’

null

null
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Suppose instead of inertial happy we add another static law

default ¬happy (i.e., ¬happy if ¬happy)

Now we get transitions to ¬happy states, but still no transitions to happy states
where rich does not hold. Also, some null and ‘lose ’ transitions have different
effects, since happy goes to ¬happy by default. This is illustrated in the leftmost
of the two diagrams below.

Suppose we make happy exogenous (in effect adding another law default happy to
default ¬happy)? Now the static law happy if rich is strong enough to eliminate
unwanted states but the ‘toggle ’ and null transitions, which were deterministic,
now become non-deterministic. (We omit the diagram for this case.)

Finally, suppose instead of default happy , we add the static law ¬happy if ¬rich .
Then there are only four states instead of six: states with happy ∧ ¬rich are
eliminated. This is shown in the rightmost diagram below.

¬rich
¬happy
on

¬rich
happy
on

rich
happy
on

¬rich
happy

¬on

¬rich
¬happy
¬on

rich
happy

¬on

‘win’

‘win’

‘win’

‘win’

‘lose ’

‘lose ’

‘lose ’

‘lose ’

‘win’

‘win’

‘toggle’

null

null

null

null

null ‘lose ’

null ‘lose ’

‘toggle’

¬rich
¬happy
on rich

happy
on

¬rich
¬happy
¬on

rich
happy

¬on

‘win’

‘win’

‘lose’

‘lose’

‘lose’

‘lose’

‘win’

‘win’

‘toggle’
‘toggle’

null

null

null

null

default ¬happy ¬happy if ¬rich

Now suppose we make happy a statically determined fluent constant. Then there
are only two states in the transition system: {rich , happy , on} and {rich , happy ,¬on}.
This is easy to check using the characterisation of a state, s = Tstatic(s) ∪
Simple(s):

s = Tstatic(s) ∪ Simple(s)

{ rich , happy , on} = {happy} ∪ {rich , on} √

{ rich , happy ,¬on} = {happy} ∪ {rich ,¬on} √

{¬rich , happy , on} 6= {} ∪ {¬rich , on} ×
{¬rich , happy ,¬on} 6= {} ∪ {¬rich ,¬on} ×
{¬rich ,¬happy , on} 6= {} ∪ {¬rich , on} ×
{¬rich ,¬happy ,¬on} 6= {} ∪ {¬rich ,¬on} ×
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(We omit the two interpretations satisfying rich ∧ ¬happy since they are obvi-
ously not states.)

Now add another static law: default ¬happy (i.e., ¬happy if ¬happy ):

s = Tstatic(s) ∪ Simple(s)

{ rich, happy , on} = {happy} ∪ {rich , on} √

{ rich, happy ,¬on} = {happy} ∪ {rich,¬on} √

{¬rich , happy , on} 6= {} ∪ {¬rich , on} ×
{¬rich , happy ,¬on} 6= {} ∪ {¬rich ,¬on} ×
{¬rich ,¬happy , on} = {¬happy} ∪ {¬rich , on} √

{¬rich ,¬happy ,¬on} = {¬happy} ∪ {¬rich ,¬on} √

Now we have another two states in the transition system: we have also {¬rich ,¬happy , on}
and {¬rich ,¬happy ,¬on}. Notice that when happy is statically determined, the
pair of static laws happy if rich and default ¬happy is equivalent to the pair
happy if rich and ¬happy if ¬rich . Both say that happy is true in a state iff
rich is true. (When happy is not statically determined, the two pairs are not
equivalent, as the figure above demonstrates: we have default ¬happy in the dia-
gram on the left and ¬happy if ¬rich in the diagram on the right. In particular,
default ¬happy admits states that are eliminated by the other formulation.)

Finally, we cannot add inertial happy when happy is statically determined, since
inertial declarations are fluent dynamic laws and cannot have statically deter-
mined fluent constants in their head.

4.7 Example (Winning the lottery)

Winning the lottery causes one to become (or remain) rich. Losing one’s wallet
causes one to become (or remain) not rich. A person who is rich is happy.

Signature: simple Boolean fluent constants alive , rich , happy ; exogenous Boolean
action constants birth , death ,win, lose .

inertial alive
inertial rich
inertial happy

birth causes alive
nonexecutable birth if alive

death causes ¬alive
nonexecutable death if ¬alive
win causes rich
nonexecutable win if ¬alive
lose causes ¬rich
nonexecutable lose if ¬alive
happy if rich
¬rich if ¬alive
¬happy if ¬alive
nonexecutable birth ∧ death
nonexecutable birth ∧ win
nonexecutable birth ∧ lose
nonexecutable win ∧ lose

alive
¬rich
¬happy

¬alive
¬rich
¬happy

alive
rich
happy

alive
¬rich
happy

‘birth’

‘death ’

‘win’

‘death ’

‘lose’

‘win’

‘death ’

‘lose’

‘win’

‘lose’

null

null

null

null
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The example is constructed partly to show how C+ deals with indirect effects of
actions (ramifications). Here we have two fluents, happy and rich , whose values
are constrained by the presence of static laws. The first is not affected directly
by any action, whereas the second one is.

Because of the static laws, there are only four states in the transition system
and not 23 = 8. Transition labels ‘birth ’, ‘death ’, ‘win’, ‘lose ’ in the diagram are
shorthand for the events {birth,¬death ,¬win ,¬lose}, {¬birth , death ,¬win ,¬lose},
{¬birth ,¬death ,win ,¬lose}, {¬birth ,¬death ,¬win , lose}, respectively. The la-
bel null is shorthand for {¬birth,¬death ,¬win ,¬lose}.
Notice that as formulated here, the example allows for reincarnation: a person
can be born, die, and be born again. The possibility of reincarnation can be
eliminated easily enough, for example by adding another fluent constant dead
together with a static law⊥ if alive∧dead ; the simpler version with reincarnation
is perfectly adequate for present purposes.

The diagram does not show transitions of type death∧ lose (i.e., transitions with
label {¬birth , death ,¬win , lose}). Their effects in this example are exactly the
same as those of ‘death ’ transitions. There are no transitions of type win∧death :
they would lead to states with rich ∧ ¬alive , and there can be no such states
because of the static law ⊥ if rich ∧ ¬alive . However, it seems unreasonable to
insist that transitions of type win ∧ death are non-executable. We can admit
the possibility of win ∧ death transitions by replacing the causes law for win
by the following:

win causes rich if ¬death
or equivalently win ∧ ¬death causes rich . (These statements are equivalent be-
cause they are shorthand for rich if > after win∧¬death and rich if > after (win∧
¬death) ∧ > respectively.) The effects of the ‘win’ transitions are unchanged,
but the transition system now contains transitions of type win ∧ death : their
effects are exactly the same as those of ‘death ’ transitions and transitions of
type death ∧ lose transitions. More generally, we might want to say that win-
ning the lottery makes a person rich by default, and is overriden in exceptional
circumstances, such as dying as the lottery is being won.

Notice that happy is declared inertial, and so still persists even if one becomes
not rich. That is why the ‘lose ’ transition from state {alive , rich , happy} re-
sults in the state {alive ,¬rich , happy}. We could of course modify the action
description so that happy is no longer inertial but defined to be true if and
only if rich is true. Or we might prefer to make happy non-inertial and let the
‘lose ’ transition be non-deterministic. The interactions between these various
adjustments are rather subtle, however, and not always immediately obvious.
We will discuss some options below.

For illustration of the semantics, let us consider state {¬alive ,¬rich ,¬happy}
and event ‘birth ’ (i.e., {birth ,¬death ,¬win ,¬lose}). There are no action dy-
namic laws to consider; the fluent dynamic laws that need to be considered are
the law birth causes alive , the three inertial statements, and the nonexecutable
statements.

• Is ({¬alive ,¬rich ,¬happy}, ‘birth’, {alive ,¬rich ,¬happy}) a transition defined
by the action description? It is, because E({¬alive ,¬rich ,¬happy}, ‘birth ’,
{alive ,¬rich ,¬happy}) = {alive ,¬rich ,¬happy}.
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• Is ({¬alive ,¬rich ,¬happy}, ‘birth’, {alive ,¬rich , happy}) a transition defined
by this action description? No, because E({¬alive ,¬rich ,¬happy}, ‘birth ’,
{alive ,¬rich , happy}) = {alive ,¬rich} 6= {alive ,¬rich , happy}.

• Is there a transition of the form ({alive ,¬rich ,¬happy}, ‘birth’, s′) defined by
this action description? No: the law nonexecutable birth if alive means that
E({alive ,¬rich ,¬happy}, ‘birth ’, s′) must contain the element ⊥, and no state
s′ can contain ⊥.

Simple though it is, the example still raises a number of interesting questions.
For example:

• Given the stated results of birth and death , the law nonexecutable birth ∧death
is implied by the remaining parts of the action description, in the sense that it
could be deleted without affecting the transition system that is defined. This
is because we have the implied laws (birth ∧ death) causes (alive ∧ ¬alive), or
equivalently (birth ∧ death) causes ⊥, which is just nonexecutable birth ∧ death .

Similarly, in the original formulation, we have the implied law (win∧lose) causes
(rich ∧ ¬rich), which gives nonexecutable win ∧ lose . But note that after the
adjustment to take into account the possible overriding effects of death , we
have only the implied law (win∧ lose) causes (rich ∧¬rich) if ¬death , or equiv-
alently, (win ∧¬death ∧ lose) causes (rich ∧¬rich), that is, nonexecutable win ∧
¬death ∧ lose , or equivalently nonexecutable win ∧ lose if ¬death . This clearly
does not imply nonexecutable win ∧ lose .

• In the original formulation we have the implied law nonexecutable win ∧ death
because: we have the implied law (win∧death) causes (rich∧¬alive), and there
is no state in which rich ∧ ¬alive holds because of the static law ⊥ if rich ∧
¬alive ; so (win ∧ death) causes ⊥.

• The laws nonexecutable birth ∧ win and nonexecutable birth ∧ lose are also
implied. We have birth causes ⊥ if alive and win causes ⊥ if ¬alive . So we
can derive (birth ∧ win) causes ⊥ if alive and (birth ∧ win) causes ⊥ if ¬alive .
Now we derive (birth ∧ win) causes ⊥ if (alive ∨ ¬alive). And similarly for
nonexecutable birth ∧ lose .

Such questions are addressed in a separate paper (Sergot and Craven, 2005) on
the logical properties of ‘causal theories’ and of the language C+.

Instead of the static laws ¬rich if ¬alive and ¬happy if ¬alive , suppose we have
⊥ if rich ∧ ¬alive and ⊥ if happy ∧ ¬alive . What difference does it make, in
this example, and in general? What about alive if rich and alive if happy?

First, notice that all three formulations are equivalent from the point of view
of states. A state s satisfies the static law F if G iff it satisfies ¬G if ¬F iff
it satisfies ⊥ if G ∧ ¬F iff s |= G → F . But they are not equivalent from
the point of view of transitions. If we replace ¬happy if ¬alive by either of
alive if happy or ⊥ if happy ∧¬alive , the only way that ¬happy can be ‘caused’
is by inertia. Consequently, we eliminate all the death transitions (‘death ’, and
transitions of type death ∧ lose and death ∧win) from states in which rich holds.
(Also, look at the causality reading of these rules.) If we replace ¬rich if ¬alive
by either of alive if rich or ⊥ if rich ∧ ¬alive , the argument is similar but a
little more complicated. The only way that ¬rich can be ‘caused’ is by a lose
transition or by inertia. Consequently, the transitions ‘death ’ and transitions of
type death ∧ win become non-executable in the state {alive , rich , happy}.
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There is one way in which we can use constraints ⊥ if rich ∧ ¬alive and
⊥ if happy ∧ ¬alive (or alive if rich and alive if happy ) without losing tran-
sitions. That is by adding a pair of extra fluent dynamic laws: either

death causes ¬rich and death causes ¬happy

or the weaker pair

death may cause ¬rich and death may cause ¬happy

The second pair seems preferable to the first, but neither is entirely satisfactory
since they require all ramifications of death to be identified in advance and then
modelled explictly using causal laws.

Statically determined fluents

To illustrate the difference between ‘simple’ and ‘statically determined’ fluents,
suppose now that fluent constant happy is statically determined not simple. We
have to remove the inertial happy declaration since this is not well formed when
happy is statically determined. Suppose we have the static laws happy if rich ,
⊥ if rich ∧ ¬alive , and ⊥ if happy ∧ ¬alive . There is only one state in the
transition system defined by this action description, namely {alive , rich , happy}.

s = Tstatic(s) ∪ Simple(s)

{¬alive ,¬rich ,¬happy} 6= {} ∪ {¬alive ,¬rich} ×
{ alive ,¬rich ,¬happy} 6= {} ∪ {alive ,¬rich} ×
{ alive ,¬rich , happy} 6= {} ∪ {alive ,¬rich} ×
{ alive , rich , happy} = {happy} ∪ {alive , rich} √

(We omit the four interpretations satisfying ¬alive ∧ rich , ¬alive ∧ happy , or
rich ∧ ¬happy since they are obviously not states.)

If however we complete the definition of happy by adding another static law
¬happy if ¬happy (i.e., default ¬happy) then the only state eliminated from the
original transition system is {alive ,¬rich , happy}, and we get three states.

s = Tstatic(s) ∪ Simple(s)

{¬alive ,¬rich ,¬happy} = {¬happy} ∪ {¬alive ,¬rich} √

{ alive ,¬rich ,¬happy} = {¬happy} ∪ {alive ,¬rich} √

{ alive ,¬rich , happy} 6= {} ∪ {alive ,¬rich} ×
{ alive , rich , happy} = {happy} ∪ {alive , rich} √

We have the following transition system:

alive
¬rich
¬happy

¬alive
¬rich
¬happy

alive
rich
happy

‘birth’

‘death ’

‘win ’

‘lose’

‘lose’

‘win ’null

null

null
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Notice that with the static laws as given above, there is no ‘death ′ transition from
{alive , rich , happy} to {¬alive ,¬rich ,¬happy}: there is nothing to ‘cause’ the
transition from rich to ¬rich . We can obtain the additional ‘death ′ transition
by adding, for example, the static law ¬rich if ¬alive (which implies, but is not
implied by, ⊥ if rich ∧ ¬alive).

4.8 Example (Going to work 1)

This is a modified version of an example used in (Giunchiglia and Lifschitz,
1998) to illustrate non-deterministic actions in C+ and its precursor C. There
is a slightly more complicated version in (Giunchiglia et al., 2004). The simpler
version is sufficient for the points we want to make here.

Let the (exogenous) Boolean action constant go represent ‘Jack goes to work’.
Jack can go to work by walking or, if his car is in his garage, he can drive. For
simplicity, to simplify the diagrams, we ignore the possibility that Jack goes in
the opposite direction.

The following action description

inertial atWork
inertial carInGarage

go causes atWork

nonexecutable go if atWork

makes ‘go’ deterministic in all states, as shown in the following diagram

¬atWork
carInGarage

atWork
carInGarage

¬atWork
¬carInGarage

atWork
¬carInGarage

‘go’

‘go’

(Reflexive edges corresponding to the event {¬go} are not shown.)

However, what we expect (or want) is that ‘go’ is non-deterministic in those
states where carInGarage is true, because here Jack can either walk to work or
drive and thereby move his car. To obtain this effect one adds another statement
to the action description:

go may cause ¬carInGarage if carInGarage

go may cause ¬carInGarage if carInGarage is an abbreviation for the fluent
dynamic law ¬carInGarage if ¬carInGarage after carInGarage ∧ go. With the
additional statement we obtain the following transition diagram ({¬go} events
omitted):

¬atWork
carInGarage

atWork
carInGarage

¬atWork
¬carInGarage

atWork
¬carInGarage

‘go’

‘go’

‘go’
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4.9 Example (Going to work 2)

An alternative formulation of the preceding example would distinguish between
walking to work and driving to work. Let us have two (exogenous) Boolean
action constants walk and drive to represent walking and driving to work re-
spectively. The action description

inertial atWork
inertial carInGarage

walk causes atWork
drive causes atWork
drive causes ¬carInGarage if carInGarage

nonexecutable walk if atWork
nonexecutable drive if atWork
nonexecutable drive if ¬carInGarage
nonexecutable walk ∧ drive

defines the following transition system ({¬walk ,¬drive} omitted):

¬atWork
carInGarage

atWork
carInGarage

¬atWork
¬carInGarage

atWork
¬carInGarage

‘walk ’

‘walk ’

‘drive’

The first two causes laws could be replaced by the (equivalent) law:

(walk ∨ drive) causes atWork

We could also represent that walk and drive are both kinds of go by means of
the action dynamic laws:

go if walk
go if drive
¬go if ¬go

The third law (¬go if ¬go) can be dropped when go is an exogenous action
constant. When go is exogenous, we can also get the same effects by writing
the pair of fluent dynamic laws:

nonexecutable walk ∧ ¬go
nonexecutable drive ∧ ¬go

We might also wish to add (in the absence of another kind of go, such as cycling):

nonexecutable go ∧ ¬walk ∧ ¬drive

This would not change the form of the transition system shown above except
to replace transition labels ‘walk ’ and ‘drive ’ by {go,walk} and {go, drive} re-
spectively.

Notice that the transition label {go,walk}, and indeed the action dynamic laws,
cannot distinguish between two concurrent but unrelated actions go and walk
and one action ‘go by walking’. We return to this point when we discuss ‘counts
as’ and act generation in Section 8 below.
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4.10 Example (Going to work 3)

There is another source of non-determinism: fluents which vary from state to
state but are not ‘caused’ by any kind of action. An example is ‘raining’. These
are fluents which might properly be termed ‘exogenous’.

For example: add to the signature a simple Boolean constant raining , and to
the action description the pair of static laws:

raining if raining
¬raining if ¬raining

We obtain a transition system containing, for example, the fragment:

¬atWork
carInGarage

¬raining

atWork
carInGarage

¬raining

atWork
carInGarage
raining

‘walk ’

‘walk ’

The pair of static laws for raining above may also be written more concisely in
C+ as:

exogenous raining

Recall that in general, for a fluent constant f , the abbreviation exogenous f
stands for the set of static laws f = v if f = v, for every v ∈ dom(f).

5 Nonmonotonic causal theories

The language C+ can be regarded as a higher-level notation for particular classes
of theories in the formalism of ‘nonmonotonic causal theories’, and indeed this is
how it is presented in (Giunchiglia et al., 2004). The formalism is also referred
to as ‘causal theories’, and as ‘the logic of causal explanation’ in (Lifschitz,
1997). Turner (1999) has a more general formalism which he calls the ‘logic of
universal causation’.

Syntax A causal theory of signature σ is a set of expressions (‘causal rules’)
of the form

F ⇐ G

where F and G are formulas of signature σ. A rule of this form is to be read as
saying that F is ‘caused’ if G is true (which is not the same as saying that G
‘causes’ F ).

Semantics Let Γ be a causal theory of signature σ and let X be an interpre-
tation of its signature. The reduct ΓX is the set of heads of rules of Γ whose
bodies are satified by the interpretation X :

ΓX =def {F | F ⇐ G is a rule in Γ and X |= G}
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X is a model of Γ iff X is the unique model of ΓX , i.e., the unique interpretation
of σ that satisfies all formulas in ΓX .

The rationale is this. ΓX is the set of formulas that are ‘caused’ or ‘causally
explained’ according to the rules of Γ, under interpretation X . If ΓX has no
models, or more than one model, or a unique model different from X , then X
is not considered to be a model of Γ. Γ is consistent or satisfiable if it has a
model.

Definite clausal theories A causal theory Γ is definite if

• the head of every rule of Γ is an atom or ⊥, and

• no atom is the head of infinitely many rules of Γ.

(Compare with the definition of definite action descriptions given earlier.) Recall
that as defined earlier, when p is a Boolean constant, ¬p is shorthand for the
atom p= f and so covered by the definition.

5.1 Translation into (classical) propositional logic

Definite causal theories can be translated via the process of ‘literal completion’
into expressions of (classical) propositional logic. The process is analogous to the
Clark (predicate) completion that provides the original semantics for negation
by failure in logic programs.

The completion of a definite causal theory Γ, comp(Γ), is defined as follows.

Consider a definite causal theory Γ of signature σ. For each non-trivial atom A
the completion formula for A is the formula

A↔ G1 ∨ · · · ∨Gn

where G1, . . . , Gn (n ≥ 0) are the bodies of the rules of Γ which have head A.
The completion of Γ, comp(Γ), is the set of formulas obtained by taking the
completion formulas for all non-trivial atoms of σ along with the formula ¬F
for each rule of the form ⊥ ⇐ F in Γ.

Notice:

1. The completion formula for any non-trivial atom A that is the head of no
rule in Γ (the case n = 0) is A↔ ⊥.

2. For a trivial atom A nothing is included in the completion. Alternatively,
we could add A to the completion. It would make no difference to the
models of the completion but might perhaps make it clearer.

3. We are treating Boolean constants as a special case of two-valued con-
stants, with ¬p standing for p= f when p is a Boolean constant.

Proposition (Proposition 6 in (Giunchiglia et al., 2004)) The models of a
definite causal theory are precisely the models of its completion.

Careful: the causal theory {p⇐ q} has no models. The completion of this theory
is not {p↔ q}, which has models, but {p↔ q,¬p↔ ⊥, q ↔ ⊥,¬q ↔ ⊥}, which
has no models.
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As already observed, the task of finding a model of the completion comp(Γ) of
a definite causal theory Γ—and generally the task of finding a model of any set
of formulas of a multi-valued signature—can be reduced to the task of finding
a model of a set of classical propositional formulas.

6 Translation of C+ to causal theories

For any action description D in C+, and any non-negative integer m, it is
possible to construct a causal theory ΓD

m such that the models of ΓD
m correspond

to the paths of length m of the transition system defined by D. The language
C+ can thus be regarded as a higher-level notation for defining causal theories
of a particular kind, and indeed this is exactly as it is presented in (Giunchiglia
et al., 2004).

When the action signature of D is (σf, σa) the signature of ΓD
m is obtained by

time-stamping every fluent and action constant of D with non-negative integers
between 0 and m: in the notation of Section 3.3 this is the signature σm =
σf

m∪σa
m−1, where σf

m = σf[0]∪· · ·∪σf[m] and σa
m = σa[0]∪· · ·∪σa[m−1]. Note

in particular that the signature σ0 of ΓD
0 is σf[0] and the signature σ1 of ΓD

1 is
σf[0] ∪ σa[0] ∪ σf[1].

Given an action description D, and a non-negative integer m, the causal theory
ΓD

m is constructed as follows. For every static law F if G in D, include a causal
rule of the form

F [i]⇐ G[i] for every i ∈ 0 ..m.

For every fluent dynamic law F if G after ψ in D, include a causal rule of the
form

F [i+1]⇐ G[i+1] ∧ ψ[i] for every i ∈ 0 ..m−1.

For every action dynamic law α if ψ in D, include a causal rule of the form

α[i]⇐ ψ[i] for every i ∈ 0 ..m−1.

We also require the following ‘exogeneity laws’. For every simple fluent constant
f and every v ∈ dom(f), include a causal rule:

f [0] = v ⇐ f [0] = v

And for every exogenous action constant a and every v ∈ dom(a), include a
causal rule:

a[i] = v ⇐ a[i] = v for every i ∈ 0 ..m−1.

As observed earlier, the presentation of C+ in (Giunchiglia et al., 2004) does
not treat the specification of exogenous action constants as part of the signature
but instead requires statements of the form

exogenous a

to be included explicitly in the action description for every action constant a
intended to be exogenous. exogenous a is shorthand for the fluent dynamic laws

a= v if a= v, for all v ∈ dom(a)
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One can see that the translation to the causal theory ΓD
m is the same whichever

treatment of exogenous action constants is taken.

For convenience, we list here the translated forms of the most commonly used
abbreviations of C+:

default F F [i]⇐ F [i]

default F if G F [i]⇐ F [i] ∧G[i]

inertial f f [i+1] = v ⇐ f [i+1] = v ∧ f [i] = v, for all v ∈ dom(f)

inertial f if ψ f [i+1] = v ⇐ f [i+1] = v ∧ f [i] = v ∧ ψ[i], for all v ∈ dom(f)

α causes F F [i+1]⇐ α[i]

α causes F if ψ F [i+1]⇐ α[i] ∧ ψ[i]

nonexecutable α ⊥⇐ >∧ α[i]

nonexecutable α if ψ ⊥⇐ >∧ α[i] ∧ ψ[i]

α may cause F F [i+1]⇐ F [i+1] ∧ α[i]

α may cause F if ψ F [i+1]⇐ F [i+1] ∧ α[i] ∧ ψ[i]

Clearly any interpretation X of the signature σm of ΓD
m can be written in the

form
s0[0] ∪ ε0[0] ∪ s1[1] ∪ · · · ∪ sm−1[m−1] ∪ εm−1[m−1] ∪ sm[m]

where each si[i] and εi[i] is an interpretation of σf[i] and σa[i], respectively.

Now we relate models of causal theories ΓD
m to the definitions of states and

transitions of an action description D as given in Section 4.2. The second
part of Theorem 9 below corresponds to Proposition 8 of (Giunchiglia et al.,
2004). The statements and proofs are different, however, because in (Giunchiglia
et al., 2004) states and transitions are defined in terms of models of ΓD

0 and ΓD
1

respectively, and not explicitly in terms of transition systems as in Section 4.2.
The following result establishes that the definitions of Section 4.2 are equivalent
to those of (Giunchiglia et al., 2004). The proofs are not difficult but they are
rather long to present in detail and so we defer them to a separate section so as
not to disrupt the flow of the presentation.

Theorem 9 Let D be an action description with signature (σf, σa). An inter-
pretation s[0] of σf[0] is a model of ΓD

0 iff s is a state of D.

An interpretation X ∈ I(σm) of the form s0[0]∪ε0[0]∪· · ·∪εm−1[m−1]∪sm[m] is
a model of ΓD

m iff (s0 ε0 · · · εm−1 sm) is a path of length m ≥ 0 of the transition
system defined by D.

In particular, ΓD
1 represents paths of length 1 of D, i.e., the transitions defined

by the action description D. ΓD
0 represents the states of the transition system

defined by D: an interpretation s of the fluent constants σf is a state of D
precisely when s[0] is a model of ΓD

0 .

Since action descriptions in C+ can be regarded as abbreviations for causal
theories of a certain kind (above), literal completions for laws of C+ can be
defined also. Action descriptions in C+ are thereby translated into formulas of
(classical) propositional logic, which in turn can be submitted to a standard
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propositional satisfiability solver. Although this method is limited to action
descriptions that are definite, this is not an important restriction in practical
applications.

6.1 Proof of Theorem 9

First, consider the reduct (ΓD
0 )s[0]. It consists of:

• formulas F [0] for every static law F if G in D such that s[0] |=σf[0] G[0],
i.e., F [0] for every F ∈ Tstatic(s); we write Tstatic(s)[0] for this set of
formulas;

• atoms f [0] = v for every simple fluent constant f such that s[0] |=σf[0]

f [0] = v; this is the set Simple(s[0]).

Let s′ be an interpretation of σf[0]. It is easy to see that s′[0] |=σf[0] (ΓD
0 )s[0] iff

s′[0] |=σf[0] Tstatic(s)[0] ∪ Simple(s[0]) iff s′ |= Tstatic(s) ∪ Simple(s).

And s′[0] is the only model of (ΓD
0 )s[0] iff s is the only model of Tstatic(s) ∪

Simple(s) iff s is a state of D. ut

Now let X be an interpretation of σm of the form

s0[0] ∪ ε0[0] ∪ · · · ∪ εm−1[m−1] ∪ sm[m]

First, consider the reduct (ΓD
m)X . It consists of:

• formulas F [i] for every static law F if G in D such that si[i] |=σf[i] G[i]
for 0 ≤ i ≤ m, i.e., F [i] for every F ∈ Tstatic(si) for 0 ≤ i ≤ m; this is the
set Tstatic(s0)[0] ∪ · · · ∪ Tstatic(s1)[0] ∪ · · · ∪ Tstatic(sm)[m];

• atoms f [0] = v for every simple fluent constant f such that s0[0] |=σf[0]

f [0] = v, i.e., Simple(s0[0]);

• formulas F [i + 1] for every fluent dynamic law F if G after ψ in D such
that si+1[i+ 1] |=σf[i+1] G[i + 1] and si[i] ∪ εi[i] |=σ[i] ψ[i] for 0 ≤ i < m,
i.e., F [i + 1] for every fluent dynamic law F if G after ψ in D such that
si+1 |= G and si ∪ εi |= ψ for 0 ≤ i < m; following the previous notation,
this is the union of sets E(si, εi, si+1)[i+ 1] for 0 ≤ i < m;

• formulas α[i] for every action dynamic law α if ψ in D such that si[i] ∪
εi[i] |=σ[i] ψ[i] for 0 ≤ i < m, i.e., α[i] for every action dynamic law α if ψ
in D such that si∪εi |= ψ for 0 ≤ i < m; this is the union of sets A(εi, si)[i]
for 0 ≤ i < m;

• atoms α[i] = v for every exogenous action atom in σa such that εi[i] |=σa[i]

α[i] = v for 0 ≤ i < m, i.e., the union of sets Exog(εi[i]) for 0 ≤ i < m.

Let X ′ be the interpretation s′[0] ∪ e′[0] ∪ · · · ∪ e′[m−1] ∪ s′[m] of σm.
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X ′ |=σm
(ΓD

m)X iff

s′[0] |=σf[0] Tstatic(s0)[0] ∪ Simple(s0[0])

e′[0] |=σa[0] A(ε0, s0)[0] ∪ Exog(ε0[0])

s′[1] |=σf[1] Tstatic(s1)[1] ∪E(s0, ε0, s1)[1]

...

s′[i] |=σf[i] Tstatic(si)[i] ∪ E(si−1, εi−1, si[i]

e′[i] |=σa[i] A(εi, si)[i] ∪ Exog(εi[i])

s′[i+1] |=σf[i+1] Tstatic(si+1)[i+1] ∪E(si, εi, si+1)[i+1]

...

e′[m−1] |=σa[m−1] A(εm−1, sm−1)[m−1] ∪ Exog(εm−1[m− 1])

s′[m] |=σf[m] Tstatic(sm)[m] ∪E(sm−1, εm−1, sm)[m]

It follows that X ′ |=σm
(ΓD

m)X iff

s′0 |= Tstatic(s0) ∪ Simple(s0)

ε0 |= A(ε0, s0) ∪ Exog(ε0)

s′1 |= Tstatic(s1) ∪ E(s0, ε0, s1)

...

s′i |= Tstatic(si) ∪E(si−1, εi−1, si)

εi |= A(εi, si) ∪ Exog(εi)

s′i+1 |= Tstatic(si+1) ∪E(si, εi, si+1)

...

εm−1 |= A(εm−1, sm−1) ∪ Exog(εm−1)

s′m |= Tstatic(sm) ∪ E(sm−1, εm−1, sm)

And X is the only model of (ΓD
m)X iff

s′0 !|= Tstatic(s0) ∪ Simple(s0)

ε0 !|= A(ε0, s0) ∪ Exog(ε0)

s′1 !|= Tstatic(s1) ∪ E(s0, ε0, s1)

...

s′i !|= Tstatic(si) ∪ E(si−1, εi−1, si)

εi !|= A(εi, si) ∪ Exog(εi)

s′i+1 !|= Tstatic(si+1) ∪ E(si, εi, si+1)

...

εm−1 !|= A(εm−1, sm−1) ∪ Exog(εm−1)

s′m !|= Tstatic(sm) ∪ E(sm−1, εm−1, sm)

But by Proposition 5, these are precisely the conditions for s0 ε0 · · · εm−1 sm to
be a path of length m of D. ut
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6.2 Example

toggle causes on if ¬on
toggle causes ¬on if on

load causes loaded

inertial on
inertial loaded

on[i+1]↔ (toggle [i] ∧ ¬on [i]) ∨ (on [i+1] ∧ on [i])

¬on[i+1]↔ (toggle [i] ∧ on [i]) ∨ (¬on [i+1] ∧ ¬on [i])

loaded [i+1]↔ load [i] ∨ (loaded [i+1] ∧ loaded [i])

¬loaded [i+1]↔ ¬loaded [i+1] ∧ ¬loaded [i]

on[0]↔ on[0]
¬on[0]↔ ¬on [0]
loaded [0]↔ loaded [0]
¬loaded [0]↔ ¬loaded [0]

toggle[i]↔ toggle [i]
¬toggle [i]↔ ¬toggle [i]
load [i]↔ load [i]
¬load [i]↔ ¬load [i]

on if > after toggle ∧ ¬on
¬on if > after toggle ∧ on

loaded if > after load

on if on after on
¬on if ¬on after ¬on
loaded if loaded after loaded
¬loaded if ¬loaded after ¬loaded

on [i+1]⇐ toggle[i] ∧ ¬on [i]
¬on [i+1]⇐ toggle [i] ∧ on[i]

loaded [i+1]⇐ load [i]

on [i+1]⇐ on[i+1] ∧ on [i]
¬on [i+1]⇐ ¬on [i+1] ∧ ¬on [i]
loaded [i+1]⇐ loaded [i+1] ∧ loaded [i]
¬loaded [i+1]⇐ ¬loaded [i+1] ∧ ¬loaded [i]

on [0]⇐ on [0]
¬on [0]⇐ ¬on [0]
loaded [0]⇐ loaded [0]
¬loaded [0]⇐ ¬loaded [0]

toggle [i]⇐ toggle [i]
¬toggle [i]⇐ ¬toggle [i]
load [i]⇐ load [i]
¬load [i]⇐ ¬load [i]

Note the introduction of the ‘exogeneity laws’ in the second step.

7 Computational tasks

C+ is a language for defining labelled transition systems (of a certain kind). A
wide variety of languages—‘query languages’—can be interpreted on the tran-
sition systems so defined. These include simple propositional languages, as well
as temporal logics such at CTL and LTL, and potentially many others. The
query language supported by the Causal Calculator CCalc is the time-stamped
language discussed in Section 3.3 for expressing properties of paths/runs of some
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specified length m of a transition system. For an action description of signa-
ture (σf, σa) and non-negative integer m, this is the propositional language of
signature σf

m ∪ σa
m−1, which is also the signature of the causal theory ΓD

m.

For example, for the ‘lottery example’ of Section 4.7, the query

¬alive [0] ∧ alive [m] ∧ happy [m]

asks whether there is a path of length m in the transition system such that alive
is false in the initial state while alive and happy are both true in state m.

For a definite action description D, a formula ψ of the query language can be
evaluated by finding (classical) models of comp(ΓD

m) (and therefore paths of
length m of the transition system defined by D) which are also models of ψ,
i.e., finding models of comp(ΓD

m) ∪ {ψ}.
This then is the basic operation of the Causal Calculator CCalc. For a given
action description D of signature (σf, σa), non-negative integer m, and query ψ
of the time-stamped signature σm, CCalc

• performs the translation of D to ΓD
m,

• constructs comp(ΓD
m),

• invokes a standard propositional sat-solver to find (classical) models of
comp(ΓD

m) ∪ ψ, and then

• post-processes the sat-solver output to show the models obtained.

In practice, the first two steps may be combined into one, possibly with some
additional optimisations to simplify the set of formulas passed to the sat-solver.

There is also a sub-language for specifying the action signature—sorts, variables,
shorthand for various common forms of fluent, implementations of integer arith-
metic, and so on—and a language for expressing particular common forms of
queries. Details of these components are omitted here. They are not always
well documented and vary slightly from one version of CCalc to another. See
http://www.cs.utexas.edu/users/tag/cc for details of the current version
of CCalc.

This general method covers a wide range of computational tasks. The account
below follows a standard classification (prediction, ‘postdiction’, planning) cur-
rent in the AI literature. CCalc has been applied successfully to a number
of non-trivial benchmark examples in the temporal reasoning literature (see
e.g. (Akman et al., 2004) and the CCalc website). In our own work we have
used it to construct executable specifications of agent societies (see e.g. (Artikis
et al., 2003a,b)).

Prediction Given an action description D of signature (σf, σa):

• Initially F holds.

• Partially specified events of type α0, α1, . . . , αk happen.

• Does G hold in state k + 1?

In other words is there a path/run/history s0 ε0 s1 · · · sk εk sk+1 such that s0 |=
F , εi |= αi for each i ∈ 0..k, and sk+1 |= G? F and G are formulas of σf and αi

are formulas of σa.
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We want to know whether

comp(ΓD
k+1) |= (F [0] ∧ α0[0] ∧ α1[1] ∧ · · · ∧ αk[k]→ G[k + 1])

We use a sat-solver to check whether

comp(ΓD
k+1) ∪ {F [0] ∧ α0[0] ∧ α1[1] ∧ · · · ∧ αk[k] ∧ ¬G[k + 1]}

is satisfiable.

A variant of the problem:

• Initially F holds.

• Partially specified events of type α0, α1, . . . , αk happen.

• Is it possible that G holds in state k+1? In other words, is there a possible
run/path/history through the transition system such that G holds at its
final state?

We check whether

comp(ΓD
k+1) ∪ {F [0] ∧ α0[0] ∧ α1[1] ∧ · · · ∧ αk[k] ∧ ¬G[k + 1]}

is satisfiable. If satisfiable, a propositional sat-solver will return all models.

‘Postdiction’ (stupid term)

• Partially specified events of type α0, α1, . . . , αk happen.

• G holds now.

• Does it follow that initially F ?

We want to know whether

comp(ΓD
k+1) |= (α0[0] ∧ α1[1] ∧ · · · ∧ αk[k] ∧G[k + 1]→ F [0])

We check whether

comp(ΓD
k+1) ∪ {α0[0] ∧ α1[1] ∧ · · · ∧ αk[k] ∧G[k + 1] ∧ ¬F [0]}

is satisfiable. And as before, checking whether

comp(ΓD
k+1) ∪ {α0[0] ∧ α1[1] ∧ · · · ∧ αk[k] ∧G[k + 1] ∧ F [0]}

is satisfiable deals with the variant of the problem in which we want to know
whether it is possible that initially F .

Temporal interpolation Prediction and ‘postdiction’ are both special cases
of the general problem in which:

• Partially specified events of type α0, α1, . . . , αk happen.

• Certain combinations of fluents (partially specified states) hold at given
times.

We want to determine what holds in each state, or what possibly holds in each
state.

41



Planning

• Initially F .

• Goal: G.

Find the shortest sequence of fully specified actions (i.e., events, or transition la-
bels) ε0, ε1, . . . , εk−1 such that there is a path/run/history s0 ε0 s1 · · · sk−1 εk−1 sk

in which s0 |= F and sk |= G.

We try consecutively for k = 0, 1, . . . up to some specified maximum value m:

comp(ΓD
k ) ∪ {F [0] ∧G[k]} satisfiable ?

The sat-solver returns all models, and these contain a representation of the plan:
ε0, ε1, . . . , εk−1.

(The reference here is to events εi because we want fully specified actions in
the plan. In the other problems, a formula αi represents a partially specified
event/transition.)

Notice that this formulation of planning is rather simplistic, in several respects.
If any of the events in the plan ε0, ε1, . . . , εk−1 are non-deterministic, execution
of the sequence of events ε0, ε1, . . . , εk−1 in the initial state may possibly result
in the goal state but there is no guarantee that it will. Moreover, there is no
distinction here between events that are effectively realisable and those that or
not. For example, a possible ‘plan’ for becoming rich in the lottery example is to
win the lottery. Possible refinements to deal with practical planning problems
are outside the scope of this document.

Other possible problems

• Given a sequence of (partially specified) events α0 α1 . . . αk (no gaps), is
this consistent with a given transition system (action description) D? This
can be combined with partial information about these actions, and about
some or all of the states. This is an instance of the temporal interpolation
problem above.

• Given a sequence of (partially specified) events α0 α1 . . . αk, but with pos-
sible gaps, is this consistent with a given transition system (action descrip-
tion) D? What are the complete (no gap) sequences of events?

In principle this problem could also be solved, by iterating various sat-
solver tests as in the planning problem to cover in some systematic fashion
single gaps of one missing event, single gaps of j missing events, multiple
gaps of single and j missing events, and so on, and so on, in all combina-
tions. Clearly this method is not feasible without some further restrictions
on possible gaps because of the (infinitely many) combinations to be con-
sidered.

Model checkers for temporal logic

A main attraction of the C+ formalism compared to other action languages
in the AI literature is that it has an explicit semantics in terms of transition
systems, providing a bridge between AI formalisms and methods in other areas of
computer science. One way of exploiting this link is by applying model checkers
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for temporal logics to verify system properties of transition systems defined
using the language C+ (and its extensions (C+)++ to be presented later).

A small example of the use of CTL with an action description of C+ (actually
(C+)++ to be introduced in later sections) is sketched in (Sergot, 2005). Further
development, both of C+ as an input language to standard temporal logic model
checkers, and of the use of a modified form of CCalc as a bounded model
checker, is a topic of current investigation and will be covered in a separate
paper.

Translation into (extended) logic programs

An alternative implementation route for C+ is provided via a translation of (a
subclass of) causal theories into (extended) logic programs (Giunchiglia et al.,
2004, Section 7.2). We will not pursue this line of development here. The
following summary is included for completeness.

Consider a causal theory whose rules are all of the form

L0 ⇐ L1 ∧ · · · ∧ Ln (4)

where L0, . . . , Ln(n ≥ 0) are literals (i.e., of the form A or ¬A for A an atom of
the signature of the theory).

Each such causal rule is translated to a clause of an (extended) logic program:

L0 ← not L1, . . . ,not Ln

where not is negation by failure and Li stands for the literal complementary to
Li.

For C+, a static law F if G thus translates to the logic program

F [i]← not ¬G[i],

a law inertial p for Boolean constant p translates to the clauses

p[i+1]← not ¬p[i+1],not ¬p[i] (5)

¬p[i+1]← not p[i+1],not p[i], (6)

and a law α causes F if ψ translates to the clause

F [i+1]← not ¬α[i],not ¬ψ[i].

Every causal theory of the form (4) can be translated to an equivalent (extended)
logic program, in the following sense.

Proposition (Proposition 11 in (Giunchiglia et al., 2004)) Let Γ be a causal
theory whose rules have the form

L0 ⇐ L1 ∧ · · · ∧ Ln (n ≥ 0)

where L0, . . . , Ln are literals. Let lp(Γ) denote the (extended) logic program
obtained by writing each such causal rule as a clause of the form:

L0 ← not L1, . . . ,not Ln
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An interpretation X of the signature of Γ is a model of the causal theory Γ iff
X is an answer set for tbe logic program lp(Γ).

Lifschitz and Turner (1999) present other, equivalent but more direct, transla-
tions of action descriptions into (extended) logic programs. For certain (com-
mon) special forms of action description, the translations of C+ shown above
can be simplified. A static law F if G becomes

F [i]← G[i]

a law inertial p for Boolean constant p translates to the clauses

p[i+1]← not ¬p[i+1], p[i] (7)

¬p[i+1]← not p[i+1],¬p[i], (8)

and a law α causes F if ψ translates to the clause

F [i+1]← α[i], ψ[i].

The translation into logic programs provides another implementation route,
employing answer set solvers such as Smodels (Niemelä, 1999) and dlv (Eiter
et al., 2001) in place of the satisfiability solvers used in CCalc. We shall not
pursue this line of development.

We have a separate development, not presented here, that is attempting to de-
velop an alternative translation to a different form of extended logic program
with the same answer sets but with a different, ‘event calculus’ style, of compu-
tation (Craven and Sergot, 2003).

8 The language (C+)+: Action generation and

‘counts as’

We now extend the language C+ by adding expressions of the form α counts as β
for representing (a version of) the ‘counts as’ relation of (Jones and Sergot, 1996)
or, essentially the same idea, what Goldman (1970) referred to as ‘conventional
generation’. We will call this extended language (C+)+. The counts as atoms
of (C+)+ can be seen as a distinguished type of fluent atom which has a spe-
cial, fixed interpretation in an augmented kind of transition system. We want
to be able to say that every transition of type α counts also (in specified cir-
cumstances) as a transition of type β. (Or more precisely: every transition of
the type denoted by the action formula α counts (in specified circumstances)
as a transition of the type denoted by action formula β.) The effects of such
a transition are those that it has by virtue of being a transition of type α and
those it has by virtue of being a transition of type β. This in turn provides us
with a treatment of institutionalised power, as outlined in Section 2.

One simple possibility, which we shall reject, is to leave the notion of transition
system itself unchanged, and simply require that the transition labels defined
by a (C+)+ action description are closed under the generation/counts as rules.
This is unsatisfactory, however. First, we would not be able to distinguish
between α counts as β and nonexecutable α ∧ ¬β (⊥ after α ∧ ¬β). Second,
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we want ‘counts as‘ to be a semantic feature of a transition system and not
just a syntactic feature of the (C+)+ language. And third, we want a dynamic
notion of ‘counts as’ that can change under the effects of actions, so that we
can say in the (C+)+ language, for example, that α′ causes (α counts as β), or
that α′ causes pow(X,α) where pow(X,α) is an abbreviation for special forms
of counts as expressions. So we are left with the task of augmenting transition
systems in one way or another.

We will present the development in two stages: first, a simple form of augmented
transition system with a static notion of ‘counts as’ to introduce the basic idea,
and then a more complicated structure to support the dynamic notion. We
will then discuss how action descriptions of (C+)+ can be translated to C+ and
causal theories.

A more general version of the whole account, allowing arbitrary formulas of
signature σf ∪ σa in counts as expressions and not just action formulas, could
also be constructed along similar lines but will not be explored here.

8.1 Preliminaries

We want to be able to say that, under specified conditions, every transition
(s, ε, s′) of type X counts, in institution I, as a transition of type Y . First we
must decide on what to take as the transition types. One obvious candidate is
the subsets ℘(R) of the set R of transitions. We would then define a counts as
relation CI ⊆ ℘(R)× ℘(R). However, this is much more general than we need.
It would allow, for instance, (s1, ε1, s

′
1) counts as (s2, ε2, s

′
2) even when s1 6= s′1

and/or s2 6= s′2. This is meaningful, but is much more general than we need.

Instead we take as types of transition the subsets ℘(A) of the set A of transition
labels. The transition (s, ε, s′) is of type X (X ⊆ A) when ε ∈ X . Since we
want to use action formulas to denote types of transitions, we again consider
the special case where transition labels are interpretations of σa (as opposed to
specifying a separate valuation function for action constants of σa). For action
formula α and a given transition system, let ‖α‖ denote the set of transition
labels/events that satisfy α:

‖α‖ =def {ε ∈ I(σa) | ε |= α}

As in previous sections, we will say that a transition is of type α when we mean
that the transition is of type ‖α‖. Notice that if action formulas α and β are
equivalent in the signature σa (α ≡σa β) then ‖α‖ = ‖β‖.
Now we add to the labelled transition system an extra component

CI ⊆ S × ℘(A)× ℘(A)

CI(s,X, Y ) represents that any transition (s, e, s′) of type X counts, in insti-
tution I, as a transition of type Y . In principle there could be several such CI

components, one for each institution I that we wish to model. However, there
are some further points of detail to be settled concerning the structure of states
when there are multiple institutions, and to avoid those complications we stick
to the case of a single institution for now (i.e., a single ‘counts as’ relation CI).
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One might also consider a four-argument ‘counts as’ relation

CI ⊆ S × ℘(A) × ℘(A) × S

but this is also more general than we need. It would only make a difference in
the case of non-deterministic transitions ε where X counts as Y depends on the
final state as well as the initial state of the transition. This is so rare it is not
worth the extra complications.

Now the basic semantic structure, which we will call a ‘statically augmented
transition system’, or ‘static ATS’ for short, is a structure of the form

〈S,A, R, CI〉

where S, A, and R are the states, transition labels/events, and transitions
of a labelled transition system, as usual, and CI is the ‘counts as’ relation,
CI ⊆ S × ℘(A)× ℘(A).

We further require that CI satisfies the following condition, for all states s ∈ S
and all transition types X,Y ⊆ A:

if CI(s,X, Y ) then for any (s, ε, s′) ∈ R, if ε ∈ X then ε ∈ Y (C′
ε)

Condition (C′
ε) captures the key idea that any transition of type X is also a

transition of type Y . It can also be expressed in the form

if CI(s,X, Y ) then τR(s,X) ⊆ τR(s, Y )

where τR(s,X) =def {(s, ε, s′) ∈ R | ε ∈ X} denotes the set of transitions of
type X that are executable in state s. Note that we do not want the converse of
(C′

ε): even if ε ∈ X implies ε ∈ Y for all (s, ε, s′) ∈ R we do not necessarily want
to conclude that CI(s,X, Y ). There may be other rules operative in institution
I (such as mere coincidence, and other kinds of causal and logical connections)
which mean that all transitions of type X are also transitions of type Y , and we
do not want to include these other connections as instances of the ‘counts as’
variety (Cf. (Jones and Sergot, 1996)). We will make some further comments
about condition (C′

ε) in Section 8.10.

Note that transition types and the counts as relation CI are defined here in
terms of states and transition labels/events, and are independent of the actual
transition relation R.

The intention is this. We have some query language LQ of signature σf ∪ σa, or
possibly its time-stamped version, of signature σf[0]∪σa[0]∪· · ·∪σa[m−1]∪σf[m]
for some non-negative integer m. This language will have an additional binary
connective, say counts asI , allowing expressions of the form α counts asI β for α
and β belonging to some designated set of action formulas, or α counts asI [i] β
in the time-stamped language. This counts asI connective is intended to be
the analogue of the ‘counts as’ conditional of (Jones and Sergot, 1996) but
restricted here to expressing ‘counts as’ relations between (designated pairs of)
action formulas rather than formulas in general. Atoms of the language LQ will
be interpreted on states and transition labels as usual. counts asI expressions
will be evaluated on states as follows:

s |= α counts asI β iff (s, ‖α‖, ‖β‖) ∈ CI
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or if LQ is a time-stamped language evaluated on paths, then

π |= α counts asI [i] β iff (πs[i], ‖α‖, ‖β‖) ∈ CI

where πs[i] denotes the ith state of the path π, i.e., πs[i] = si when π =
s0 ε0 s1 ε1 . . . εi−1 si . . . .

(We are using different symbols counts asI and counts as so as not to confuse
expressions of the query language with expressions of the (C+)+ action descrip-
tions used to define an ATS. Informally, they are intended to represent the same
concept. It will be convenient to keep the distinction when we discuss imple-
mentation options and translations of (C+)+ to causal theories in Section 8.9
below.)

Augmented action signatures We will again consider the special case in
which states are interpretations of some set σf of fluent constants and transition
labels/events are the interpretations of a set σa of action constants. We add
a (disjoint) set σγ of Boolean constants of the form α counts as β for α and β
belonging to some designated set of action formulas of σa. We do not necessarily
want to allow arbitrary formulas of α and β of σa in αcounts asβ expressions. σγ

allows these restrictions to be specified if desired. (σf, σγ , σa) is an augmented
action signature. We will say that constants α counts asβ and α′ counts asβ′ of
σγ are σa-equivalent when α ≡σa α′ and β ≡σa β′. Notice that since > and ⊥
are not action formulas (they are 0-ary connectives) there are no constants of the
form αcounts as⊥ or >counts asβ. As for the query language LQ, αcounts asIβ
is a well-formed expression of LQ when α counts as β is a constant of σγ (and
likewise for the time-stamped query language).

Definition 10 (Static ATS) A statically augmented transition system (static
ATS) of signature (σf, σγ , σa) is a structure of the form

〈σf, σγ , S, I(σa), R, CI〉

where

• S ⊆ I(σf) is a set of states,

• I(σa) is the set of transition labels/events,

• R is the set of labelled transitions, R ⊆ S × I(σa)× S,

• CI is the ‘counts as’ relation, CI ⊆ S × ℘(I(σa))× ℘(I(σa)),

and, for all states s ∈ S and all transition types X,Y ⊆ I(σa):

if CI(s,X, Y ) then for any (s, ε, s′) ∈ R, if ε ∈ X then ε ∈ Y (C′
ε)

Remark (unsupported institutional actions) When α counts asβ, β rep-
resents an institutional action (as opposed to a ‘brute’ or ‘basic’ action). α may
represent an institutional action or a brute/basic action. In the present version,
we have chosen not to make any explicit distinction between brute/basic and
institutional actions in the semantics. Further, we have chosen not to eliminate,
in the semantics, the possibility of unsupported institutional actions. β is an
unsupported institutional action in a transition (s, ε, s′) when α counts asβ is a
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constant in σγ (so β represents an institutional action), ε |= β, but ε 6|= α′ for
any constant α′ counts asβ in σγ . For example, if wave flag counts as start race
is a constant in σγ , and there is no other means of performing start race besides
wave flag specified in σγ , then start race is an unsupported institutional action
in any transition of type start race ∧ ¬wave flag . It is a moot point whether
unsupported institutional actions are meaningful given the intended informal
reading. We have chosen not to eliminate them in the semantics (though this
could be done easily) because unsupported institutional actions can be elimi-
nated straightforwardly as desired when the action description is formulated,
as will be illustrated by an example later. Not building this into the semantics
gives more flexibility. We return to this point later in Section 8.8.

The treatment of ‘counts as’ presented here is guided by the account of ‘counts
as’ conditionals and institutionalised power in (Jones and Sergot, 1996). A direct
comparison is not possible because the semantic frameworks of the two accounts
are very different, and because the dynamic setting adoped here raises a number
of further considerations outside the scope of (Jones and Sergot, 1996). We limit
ourselves to some brief remarks and some comments on the related concept of
conventional generation of Goldman (1970).

The semantic counterpart of CI in (Jones and Sergot, 1996) is transitive, at least
in the absence of convincing counter-examples to the contrary. This suggests
that we might strengthen the CI relation, for example by imposing the following
additional constraint, for all transition types X,Y, Z ⊆ A and all states s of the
transition system:

if CI(s,X, Y ) and CI(s, Y, Z) then CI(s,X,Z) (Ctrans)

This would mean that all states s have the property that

s |= (α counts asI β ∧ β counts asI γ)→ α counts asI γ

though only when αcounts asβ, β counts asγ, and αcounts asγ are all constants
of σγ .

The possibility that ‘counts as’ could also be reflexive–that is, in the present
context, that the following constraint could also be imposed

CI(s,X,X)

for all states s and all transition types X ⊆ A–is explicitly rejected in (Jones
and Sergot, 1996). The reason is simply that ‘counts as’ is not a mere form of
classification, but is intended to convey the idea that certain kinds of action, or
states of affairs more generally, have a special conventional significance within
an institution. The action of opening a window, say, might have no special
conventional significance within an institution: we would then not wish to say
that opening a window ‘counts as’ opening a window. A reflexivity constraint
could be imposed, but only in a restricted form, for special categories of tran-
sition types X , those corresponding to actions of conventional significance in
institution I. How are these special categories of transition types are to be
characterised? This is not a question we will attempt to address in this paper.
For present purposes we can say that X is a transition type in this special cat-
egory when X = ‖α‖ or X = ‖β‖ for some constant α counts as β in σγ . For
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ease of reference, let us write AI for the transition types of special conventional
significance in institution I, as represented by the signature σγ : AI =def {X ⊆
A | X = ‖α‖ or X = ‖β‖ for some constant α counts as β in σγ}. A suitably
qualified reflexivity constraint would take the form

CI(s,X,X) if X ⊆ AI (Crefl)

Note that relying on the signature σγ in this way finesses the practical conse-
quences of deciding what form of reflexivity constraint to adopt. The constraint
(Crefl) yields the property that all states s satisfy

s |= α counts asI α

but only when α counts as α is specified as a constant of σγ .

Jones and Sergot (1996) comment briefly on the similarities and some of the
differences between their ‘counts as’ conditional and Goldman’s notion of con-
ventional generation. Let GI (s,X, Y ) represent that a transition of type X
(under conditions s) conventionally generates, in the norm/rule system (insti-
tution) I, a transition of type Y . This move already deserves some comment 2.
Goldman’s act generation is a relationship between act tokens not act types. So,
for example, a particular instance of Jim’s hammering a nail into a wall might
‘causally generate’ in Goldman’s terminology a particular instance of Jim’s wak-
ing Mary, but that would not be a relationship between all instances of Jim’s
hammering a nail into a wall and all instances of Jim’s waking Mary. Con-
ventional generation is different because norms/conventions tend to be general
rather than specific, and so it is often meaningful to speak about conventional
generation as a relationship between act types, as we do here.

Goldman argues that conventional generation, like other forms of act generation,
is irreflexive and transitive. So let us impose the following constraints, for all
states s in S and all subsets X , Y of A:

• (s,X,X) 6∈ GI

• if GI(s,X, Y ) and GI(s, Y, Z) then GI(s,X,Z)

We see that GI(s, ·, ·) (or more precisely, the projection GI(s, ·, ·) for fixed s)
is a strict ordering on transition types. The natural interpretation is to see the
relationship between ‘counts as’ CI and Goldman’s ‘conventional generation’
GI as analogous to that between a partial order and its corresponding strict
partial order, i.e., to expect that the following should hold: CI(s,X, Y ) iff either
GI(s,X, Y ) or X = Y , for all states s and all transition types X,Y ⊆ AI . CI

then comes out to be anti-symmetric, which suggests imposing the following
further constraint on CI , for all states s in S and all subsets X , Y of AI :

if CI(s,X, Y ) and CI(s, Y,X) then X = Y (Ca-symm)

The ‘counts as’ relation CI (or rather, each projection CI(s, ·, ·) for fixed s)
is a partial ordering, not on the set of all transition types, but on the set AI

of transition types with special conventional significance in institution I. The
non-minimal elements of this ordering correspond to institutional actions, and

2The author is grateful to Andreas Herzig for a helpful reminder of this point.
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the minimal ones to what we might call ‘basic’ actions. (We prefer the term
‘basic’ actions to Searle’s ‘brute’ actions because many examples, such as the
auction protocol presented in Section 8.7 below, can be usefully formalised at
the level of basic actions such as ‘signal a bid’ without necessarily specifying
in detail the ‘brute’ actions (physical actions, the transmission of specific forms
of electronic messages, and so on) by means of which the making of a bid is
actually signalled in the auction.)

Although this seems quite plausible, we shall not explore these possibilities in
detail here. Since ‘counts as’ and conventional generation appear inter-definable
(at least in principle, even if not exactly as suggested above), we shall fix on
the ‘counts as’ reading CI from now on. Moreover, we will not adopt the con-
straints (Crefl), (Ctrans), (Ca-symm) as fixed features of the semantics. Although
it is tempting to do so, the practical significance of the reflexivity constraint
(Crefl) is negligible, while the transitivity constraint is problematic to express in
the formalism of causal theories. There are moreover alternative formulations,
particularly of transitivity, that could also be considered. We defer further
discussion until Section 8.9 below.

Finally, given the intended reading of counts as constants, it would be natu-
ral to impose the additional restriction that the ‘counts as’ signature σγ must
be cycle-free, in the sense that it must contain no constants α0 counts as α1,
α1counts asα2, . . . , αn−1counts asαn (n ≥ 1) where αn ≡σa α0, and αi ≡σa αi+1

for 0 ≤ i < n. Again, this seems reasonable but there are some further points
of detail to resolve, and we make no such assumption about σγ in the version
presented in this paper. All the examples that will be discussed, however, will
have σγ cycle-free in the sense described above.

8.2 Augmented transition systems

The ‘static ATS’ structure defined in the previous section is too simple for what
we want. It provides only a static ‘counts as’ relation between transition types,
whereas we want to support a dynamic version, that is, one in which transitions
can change the CI relation whether or not they also change the values of fluents.
We need a more complicated structure. One possibility is to extend the static
ATS structure with another transition relation, this time between ‘counts as’
relations: the tuple (CI , ε, C

′
I) would represent that a transition with label

ε ∈ A transforms the ‘counts as’ relation from CI to C ′
I . We would then

need to formulate suitable constraints to ensure that transitions between states
and transitions between CI relations are coherent in some appropriate sense.
Instead of that, we can get the same effect by defining a structure with a single
transition relation, but one defined between augmented states (sf, γI), each of
which is characterised by the values sf of the fluent constants and by a set γI
of pairs (X,Y ) specifying that in this augmented state a transition of type X
counts as a transition of type Y . The condition corresponding to (C′

ε) is then:

if ((sf, γI), ε, (s′f, γ
′
I)) ∈ R, then for any (X,Y ) ∈ γI , if ε ∈ X then ε ∈ Y

As usual, we will concentrate on the special case where states (now augmented
states) are interpretations of the action signature. In an augmented action
signature (σf, σγ , σa), σf and σγ are disjoint, and every augmented state s can
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be represented by an interpretation of σf ∪ σγ , i.e., in the form sf ∪ γ where
sf is an interpretation of the fluent constants σf and γ is an interpretation of
the ‘counts as’ constants σγ . When interpretations are represented by the set
of atoms that they satisfy, sf is a set of fluent atoms and each γ will be a set
of counts as atoms. We need one further restriction: since ‖α‖ = ‖β‖ when
α ≡σa β, the interpretation s must agree on the value of all σa-equivalent pairs
of counts as constants in σγ ; s (and therefore γ) must satisfy the condition s |=
(αcounts asβ ↔ α′ counts asβ′) for all (distinct) pairs of constants αcounts asβ,
α′ counts as β′ in σγ such that α ≡σa α′ and β ≡σa β′.

As a small point of detail, since an augmented state is characterised by the
values of the σf and σγ constants, we can allow the augmented action signature
(σf, σγ , σa) to have either, but not both, of σf and σγ empty. (We will use this
in small illustrative examples to follow.)

Definition 11 Let (σf, σγ , σa) be an augmented action signature. s is an inter-
pretation of the augmented action signature (σf, σγ , σa) when s is an interpre-
tation of σf∪σγ that agrees on the values of all σa-equivalent pairs of counts as
atoms in σγ . We will write I(σf ∪ σγ ;σa) for the set of all such interpretations.

For convenience later, we write

Equiv (σγ , σa) =def {α counts as β ↔ α′ counts as β′ |
α counts as β and α′ counts as β′ are distinct
constants of σγ such that α ≡σa α′ and β ≡σa β′}

s is then an interpretation of (σf, σγ , σa) when s is an interpretation of σf ∪ σγ

such that s |= Equiv (σγ , σa).

Here is the special case of interest.

Definition 12 (Augmented transition system (ATS)) An augmented tran-
sition system (ATS) of signature (σf, σγ , σa) is a structure of the form

〈σf, σγ , S, I(σa), R, C+
I 〉

where

• S is the set of augmented states, S ⊆ I(σf ∪ σγ ;σa), i.e., every s in S is
an interpretation of σf ∪ σγ that agrees on the values of all σa-equivalent
pairs of counts as atoms in σγ , s |= Equiv(σγ , σa),

• I(σa) is the set of transition labels/events,

• R is the set of labelled transitions, R ⊆ S × I(σa)× S,

• C+
I is the dynamic ‘counts as’ relation, C+

I ⊆ S × ℘(I(σa)) × ℘(I(σa)),
defined as

C+
I =def { (s, ‖α‖, ‖β‖) | s ∈ S, s |= α counts as β }

• R satisfies the following condition, for all states s ∈ S and all transition
types X,Y ⊆ I(σa):

if C+
I (s,X, Y ) then for any (s, ε, s′) ∈ R, if ε ∈ X then ε ∈ Y (C+

ε )

51



There is clearly some redundancy in this structure, because the C+
I compo-

nent is already determined by the augmented states, but keeping C+
I explicit

is convenient for expressing constraints on an ATS, and for ease of comparison
with the static ATS structure of the previous section. The condition (C+

ε ) is
equivalently stated (see below) as:

if (s, ε, s′) ∈ R then, for any s |= α counts as β, if ε ∈ ‖α‖ then ε ∈ ‖β‖

or equivalently again

if (s, ε, s′) ∈ R then, for any s |= α counts as β, we have ε |= α→ β

Now, by construction, we have (s, ‖α‖, ‖β‖) ∈ CI iff s |= α counts as β, and
so evaluation of α counts asI β expressions in a query language evaluated on
the augmented transition system can be reduced to evaluation of α counts as β
atoms on states. This is a very desirable feature.

Note again that we have chosen not to eliminate the possibility of unsupported
institutional actions in the ATS but leave them to be eliminated as desired when
action descriptions are formulated. We return to this point in Section 8.8.

Remark One can see that a static ATS 〈σf, σγ , Sf,A, Rf, CI〉 is the special
case of an ATS 〈σf, σγ , S,A, R, C+

I 〉 in which there are no states sf ∪ γ and
sf ∪ γ′ in S with γ 6= γ′, and where Sf is the set of states {sf | sf ∪ γ ∈ S}, Rf =
{(sf, ε, s′f) | (sf ∪ γ, ε, s′f ∪ γ′) ∈ R}, and CI = {(sf, X, Y ) | (sf ∪ γ,X, Y ) ∈ C+

I }.
We note that a dynamic ATS can be approximated by a static ATS, with no real
loss of expressive power. For instead of allowing actions to change the values
of counts as constants, we can always define counts as in terms of ordinary
fluent constants, possibly with the introduction of new fluent constants. We
then specify how actions affect these (new) fluent constants rather than the
counts as constants directly. Since the values of counts as constants are then
determined completely by the values of ordinary fluent constants in each state,
a static ‘counts as’ relation is sufficient. It may seem therefore that there is no
real benefit in adopting the more complicated dynamically augmented structure.
However, there is also no real benefit in restricting attention to the simpler
static version. As an implementation issue, the causal theories into which (C+)+

action descriptions are translated turn out to be essentially the same whether we
choose the static or the dynamic version. Moreover, even in the static version,
the ‘counts as’ relation CI has to be represented somehow. If we choose to
represent it by a set of counts as atoms, which seems natural, then we end up
with augmented states again, exactly as in the dynamic version but now without
the flexibility to manipulate counts as constants directly. We save nothing, at
the price of having to impose a restriction on the (C+)+ language to prohibit
formulas containing counts as constants from appearing in the heads of fluent
dynamic laws. We might as well support the dynamic notion, at no extra cost,
and with the additional flexibility.
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8.3 The language (C+)+

We want to be able to include ‘counts as’ expressions in both the heads and
bodies of static and dynamic laws, and to write, for example, laws of the form
α′ causes (αcounts asβ) if G. Syntactically, expressions of the form αcounts asβ
will behave just like (Boolean) fluent constants. In any given application the
set of action formulas α and β that can appear in a counts as constant may be
further restricted when the ‘counts as’ signature σγ is specified. In particular it
is often sufficient to restrict α counts as β constants to the form where both α
and β are action atoms, or more generally conjunctions of action atoms, from
some designated set. The general development does not depend on any such
restriction however, so we will not adopt it yet, but defer further discussion
until we consider the translation of (C+)+ action descriptions to causal theo-
ries. Moreover, to provide flexibility in formulating action descriptions, it is
convenient to retain the distinction between simple and statically determined
constants in the ‘counts as’ signature σγ .

Syntax The syntax of static and dynamic laws of (C+)+ is exactly as in
the language C+, including the restrictions that apply to statically determined
constants, and including the abbreviations inertial, causes, etc., described earlier.
Syntactically, an action description of (C+)+ of signature (σf, σγ , σa) is also an
action description of C+ of signature (σf ∪ σγ , σa). Semantically, counts as
constants are given a special status in (C+)+ that they do not have in C+
where they are just regular fluent constants.

To avoid (unintended) unsupported institutional actions, any action constant
in the formula β of an α counts as β atom is not (automatically) exogenous,
though it may be deliberately declared as exogenous when the action description
is formulated. (An example follows presently.)

Semantics An action description of (C+)+ defines an augmented transition
system: the counts as constants are given special treatment in that they define
its ‘counts as’ relation, as follows.

Definition 13 Let D be an action description of (C+)+ of signature (σf, σγ , σa).
The ATS defined by D is

〈σf, σγ , S, I(σa), R, C+
D〉

where:

• s ∈ S is a state of the ATS defined by D (in short: a (C+)+-defined
state of D) iff s is the only interpretation of σf ∪ σγ that agrees on the
values of all σa-equivalent pairs of counts as atoms in σγ and satisfies
Tstatic(s) ∪ Simple(s), i.e., the only interpretation of σf ∪ σγ such that3

s !|= Tstatic(s) ∪ Simple(s) ∪ Equiv (σγ , σa)

3It is easy to check that s is the only interpretation of σf ∪ σγ that agrees on the values
of all σa-equivalent pairs of counts as atoms in σγ and satisfies a set of formulas X iff
s !|= X ∪ Equiv(σγ , σa).
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• (s, ε, s′) ∈ R is a transition of the ATS defined by D (in short: a (C+)+-
defined transition of D) iff s and s′ are interpretations of σf ∪σγ and ε is
an interpretation of σa such that

– s !|= Tstatic(s) ∪ Simple(s) ∪ Equiv (σγ , σa)

– s′ !|= Tstatic(s′) ∪ E(s, ε, s′) ∪ Equiv (σγ , σa)

– ε !|= A(ε, s) ∪ Exog(ε) ∪ {α→ β | s |= α counts as β}
• The ‘counts as’ relation C+

D of the ATS defined by D (in short: the ‘counts
as’ relation defined by D) is

C+
D = {(s, ‖α‖, ‖β‖) | s |= α counts as β}

Compare in particular the conditions ε !|= A(ε, s) ∪ Exog(ε) ∪ {α → β | s |=
αcounts asβ} required for (s, ε, s′) to be a transition of the (C+)+ action descrip-
tion D with the weaker conditions ε !|= A(ε, s) ∪ Exog(ε) required for (s, ε, s′)
to be a transition of the C+ action description D.

It remains to check that the transition system defined by a (C+)+ action de-
scription D is indeed an ATS of the correct form. We need to check that
the transitions (C+)+-defined by D satisfy the condition (C+

ε ), and that when
(s, ε, s′) is a transition (C+)+-defined by D then s′ is an augmented state of D.

Proposition 14 Let D be an action description of (C+)+. The transition sys-
tem 〈σf, σγ , S, I(σa), R, C+

D〉 defined by D (i) satisfies the condition (C+
ε ) for an

ATS, and (ii) has the property that when (s, ε, s′) ∈ R then s′ ∈ S.

Proof. For (i): suppose (s,X, Y ) ∈ C+
D . Then X = ‖α‖ and Y = ‖β‖ for some

action formulas α and β such that s |= α counts as β. Suppose (s, ε, s′) ∈ R.
Then by Definition 13, we have ε |= (α→ β), i.e., ε ∈ ‖α‖ implies ε ∈ ‖β‖, and
so ε ∈ X implies ε ∈ Y , as required.

For (ii), we need to show that if s′ is the only model of Tstatic(s′)∪E(s, ε, s′) ∪
Equiv (σγ , σa) then s′ is the only model of Tstatic(s′)∪Simple(s′)∪Equiv (σγ , σa).
This follows from the observation that E(s, ε, s′) contains no statically deter-
mined constants, by exactly the same line of reasoning as in the proof of Propo-
sition 4 for labelled transition systems. ut

Example (waving a flag) Consider the (C+)+ action description D with
Boolean action constants wave and start , where wave (representing the wav-
ing of a flag, say) is exogenous and start (representing the institutional ac-
tion of starting a race, say) is not. σγ contains the simple (Boolean) constant
wave counts as start . Suppose D contains just the static laws

wave counts as start if wave counts as start

¬(wave counts as start) if ¬(wave counts as start)

(i.e., exogenous wave counts as start) and the action dynamic law

¬start if ¬start (i.e., default ¬start)

There are no simple fluent constants in σf, no trivial constants in either σf or
σγ , no pairs of distinct σa-equivalent counts as constants in σγ , and there are
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only two static laws, so it is easy to confirm that there are precisely two states
in the ATS defined by D:

{wave counts as start} and {¬(wave counts as start)}.
There are no trivial constants in σa and only one action dynamic law, and so
the transitions in the ATS defined by D can be easily determined, as shown in
the diagram below.

wave counts as start

¬(wave counts as start)

(C+)+ : default ¬start

{¬wave,¬start} {wave,start}

{¬wave,¬start}

{wave,¬start}

When wave counts as start holds, all transitions of type wave are also transi-
tions of type start . Notice that default ¬start is strong enough (in this exam-
ple) to eliminate unsupported institutional actions {¬wave , start} even when
wave counts as start does not hold.

For comparison, here is the transition system obtained when the same action
description is viewed as an action description of C+.

wave counts as start

¬(wave counts as start)

C+ : default ¬start

{¬wave,¬start}

{wave,¬start}

{¬wave,¬start}

{wave,¬start}

We can admit unsupported institutional actions in the (C+)+-defined ATS, if we
want them, by making start exogenous, effectively adding the action dynamic
law start if start to default ¬start . We then get

wave counts as start

¬(wave counts as start)

(C+)+ : exogenous start

{¬wave,¬start} {wave,start}

{¬wave,start}

{¬wave,¬start} {wave,start}

{¬wave,start} {wave,¬start}
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This is the transition system that would be obtained from the C+ action de-
scription, except that the C+-defined system also contains a {wave ,¬start}
transition from {wave counts as start} to itself.

Note that the elimination of unsupported institutional actions in this example
does not depend on the fact that there is only one means of starting a race. Sup-
pose we extend the example with another action constant shoot (for shooting
a gun, say) and another constant shoot counts as start in the action signature.
We add the static laws exogenous shoot counts as start . There are four states
in the ATS so defined. The state {wave counts asstart , shoot counts asstart} has
(reflexive) transitions {wave , shoot , start}, {wave,¬shoot , start}, {¬wave , shoot ,
start}, and {¬wave ,¬shoot ,¬start} but no transition {¬wave ,¬shoot , start}
where there is an unsupported institutional action. The state {wave counts as
start ,¬(shoot counts as start)} has (reflexive) transitions {wave , shoot , start},
{wave ,¬shoot , start}, and {¬wave ,¬shoot ,¬start}, but no transition {¬wave ,
shoot , start} and no transition {¬wave ,¬shoot , start} with an unsupported in-
stitutional action. Similarly for {¬(wave counts as start), shoot counts as start}.
The state {¬(wave counts asstart), ¬(shoot counts asstart)} has (reflexive) tran-
sitions {wave , shoot ,¬start}, {wave,¬shoot ,¬start}, {¬wave , shoot ,¬start},
and {¬wave ,¬shoot ,¬start} but no transitions of type start , and in particular
no transition {¬wave ,¬shoot , start} with an unsupported institutional action.

We have eliminated unsupported institutional actions in this example by means
of the action dynamic law default ¬start . This was chosen to emphasise the
difference between (C+)+ and C+ action descriptions. It is simpler and clearer
to eliminate institutional actions by means of a law of the form

nonexecutable start ∧ ¬wave ∧ ¬shoot

This is the style we will adopt in subsequent examples.

It is now possible to investigate the relationships that exist in general between
the states and transitions of a (C+)+ action description of signature (σf, σγ , σa)
and those of the C+ action description of signature (σf ∪ σγ , σa). These rela-
tionships are somewhat involved however and we omit the details here.

8.4 Translation to C+ and causal theories

Now: given an action description D of (C+)+ we construct a causal theory Γ+D
m

such that models of Γ+D
m correspond one-to-one with the paths of length m of

the ATS defined by D. We do not need to worry about representing the ‘counts

as’ relation C+
D in models of Γ+D

m because counts as atoms in states do that for
us already.

In fact, we can define a translation from a (C+)+ action description of signature
(σf, σγ , σa) to a C+ action description D ∪ δ of signature (σf ∪ σγ , σa) where
the additional C+ laws δ capture the special treatment given to counts as
constants in (C+)+. Models of the causal theory ΓD∪δ

m obtained from the C+
action description D ∪ δ correspond one-to-one with the paths of length m of

the ATS defined by D; in other words, Γ+D
m =def ΓD∪δ

m . Moreover (subject to
some restrictions identified below) when D is a definite action description of
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(C+)+, the additional laws δ are all definite laws of C+, and so we obtain the
very desirable property that definite action descriptions of (C+)+ translate to
definite action descriptions of C+. This means that we can employ the method of
literal completion, and the Causal Calculator CCalc, to perform computations
on definite (C+)+ action descriptions.

The additional causal laws δ required to translate a (C+)+ action description
D to the equivalent C+ action description consist of two (disjoint) sets, δD and
δσγ . The basic idea is that δD contains a C+ action dynamic law

β if α ∧ α counts as β

for every constant αcounts asβ in σγ . However, in the case where β is a conjunc-
tion of (not necessarily atomic) action formulas it is much more convenient to
include a separate action dynamic law for each conjunct of β, dealing separately
with the special cases where the conjunct is ⊥ or >. More precisely: every for-
mula β in a constant α counts as β of σγ is a conjunction β1 ∧ · · · ∧ βm (m ≥ 1)
of (not necessarily atomic) formulas βi. δD is the set of C+ laws obtained as
follows. For every constant α counts as β in σγ such that ⊥ is not a conjunct of
β, δD includes a C+ action dynamic law of the form

βi if α ∧ α counts as β (9)

for every conjunct βi 6= > of β; and for every constant α counts as β in σγ such
that ⊥ is a conjunct of β, δD includes a C+ fluent dynamic law of the form

⊥ if > after α ∧ α counts as β (10)

(i.e., nonexecutable α if α counts as β in abbreviated form). The separate form
(10) is required in the latter case because the expression ⊥ if α ∧ α counts as β
is not a well-formed action dynamic law of C+ (⊥ is a 0-ary connective and not
an action formula of σa). And note that although there is no constant of the
form α counts as> in σγ (> is a 0-ary connective) there could be a conjunct >
in the formula β of a constant α counts as β. No C+ law is included in δD in
this case. (> if > after α counts as β is well-formed but it has no effect on the
models of a C+ action description and so is omitted from δD.)

The other component δσγ of δ is the set of C+ static laws of the form

(α counts as β ↔ α′ counts as β′) if > (11)

for every pair of distinct constants αcounts asβ and α′counts asβ′ in σγ such that
α ≡σa α′ and β ≡σa β′. These are required to ensure that interpretations/states
agree on the values of σa-equivalent counts as constants.

It may seem that the causal laws δσγ are unnecessarily cumbersome to get the
desired effect. But consider: suppose we want simple Boolean constants p and
q to have the same values in all states. (We choose p and q here to make the
point rather than counts as atoms to reduce writing.) Suppose, for illustration,
that we have the single fluent dynamic law a causes p. Adding the static law
(p↔ q) if > gives the following set of states and transitions

¬p
¬q

p
q

a

a

57



which is also what is required by the semantics.

If in place of (p↔ q) if > we try the pair of static laws ⊥ if p∧¬q and ⊥ if q∧¬p
we get the right states but we get no transitions. (There is nothing to ‘cause’ q
in the state after a.) If we try instead the pair of static laws p if q and q if p we
again get the right states but now too many transitions. We have the implied
laws p if p and q if q, and we get the following states and transitions:

¬p
¬q

p
q

a

¬a

a

¬a

If we add two further laws ¬p if ¬q and ¬q if ¬p then p and q both become
(implied) exogenous, and we get even more transitions:

¬p
¬q

p
q

a

¬a

a

¬a

a

¬a

The form of causal laws δD in (9) and (10) is chosen so that when D is a
definite action description of (C+)+ (defined below), and Equiv (σγ , σa) and δσγ

are empty, then D ∪ δD = D ∪ δD ∪ δσγ is a definite action description of C+.
There will be no causal laws of form (10) in δD in this case. However, the
soundness of the translation from (C+)+ to C+ for the general case does not
depend on any assumptions about the form of β in α counts as β constants.

Theorem 15 Let D be a (C+)+ action description of signature (σf, σγ , σa).
Let δD be the set of C+ action dynamic laws

βi if α ∧ α counts as β1 ∧ · · · ∧ βi ∧ · · · ∧ βm

for every constant α counts as β1 ∧ · · · ∧ βi ∧ · · · ∧ βm (m ≥ 1) in σγ for which
βk 6= ⊥ for any 1 ≤ k ≤ m and every βi (1 ≤ i ≤ m) such that βi 6= >, together
with C+ fluent dynamic laws

⊥ if > after α ∧ α counts as β

for every constant α counts as β in σγ for which ⊥ is a conjunct of β. Let δσγ

be the set of C+ static laws

(α counts as β ↔ α′ counts as β′) if >

for every pair of distinct constants α counts as β and α′ counts as β′ in σγ such
that α ≡σa α′ and β ≡σa β′.

s is a state of the ATS defined by D iff s is a state of the labelled transition
system defined by the C+ action description D∪δD∪δσγ of signature (σf∪σγ , σa).

(s, ε, s′) is a transition of the ATS defined by D iff (s, ε, s′) is a transition of
the labelled transition system defined by the C+ action description D∪ δD ∪ δσγ

of signature (σf ∪ σγ , σa).
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Proof. The expressions Tstatic(s), E(s, ε, s′), A(ε, s) refer here to the causal laws
of the (C+)+ action description D.

States: The conditions for s ∈ S to be a (C+)+-defined augmented state of D
are:

s !|= Tstatic(s) ∪ Simple(s) ∪ Equiv(σγ , σa)

Compare the conditions for s to be a state of the C+ action description D ∪
δD ∪ δσγ :

s !|=
(

Tstatic(s) ∪ Equiv(σγ , σa)
)

∪ Simple(s)

These are clearly equivalent.

Transitions: To prove the result for transitions we show that the conditions

s′ !|= Tstatic(s′) ∪ E(s, ε, s′) ∪ Equiv (σγ , σa)

ε !|= A(ε, s) ∪ Exog(ε) ∪ {α→ β | s |= α counts as β}

are equivalent to the conditions

s′ !|=
(

Tstatic(s′) ∪ Equiv(σγ , σa)
)

∪
(

E(s, ε, s′) ∪EδD
(s, ε, s′)

)

ε !|=
(

A(ε, s) ∪AδD
(ε, s)

)

∪ Exog(ε)

where EδD
(s, ε, s′) and AδD

(ε, s′) denote respectively the heads of the fluent dy-
namic and action dynamic laws in δD whose bodies are satisfied by the transition
(s, ε, s′), i.e.,

EδD
(s, ε, s′) = {⊥ | α counts as β in σγ , ⊥ is a conjunct of β,

s′ |= >, s ∪ ε |= α ∧ α counts as β}
= {⊥ | s |= α counts as β, ⊥ is a conjunct of β, ε |= α}

and

AδD
(ε, s) = {βi | α counts as β in σγ , ⊥ is not a conjunct of β,

βi is a conjunct of β, βi 6= >, s ∪ ε |= α ∧ α counts as β}
= {βi | s |= α counts as β, ⊥ is not a conjunct of β,

βi is a conjunct of β, βi 6= >, ε |= α}
The conditions on s′ and ε above are equivalently expressed (because s′ and ε
are disjoint) as

s′ ∪ ε !|= Tstatic(s′) ∪ Equiv (σγ , σa) ∪ E(s, ε, s′) ∪ EδD
(s, ε, s′) ∪

A(ε, s) ∪ AδD
(ε, s) ∪ Exog(ε)

which in turn can be expressed (because s′ and ε are disjoint) as

s′ !|= Tstatic(s′) ∪ E(s, ε, s′) ∪ Equiv(σγ , σa)

ε !|= A(ε, s) ∪ Exog(ε) ∪ AδD
(ε, s) ∪ EδD

(s, ε, s′)

Now

ε |= AδD
(ε, s) iff ε |= {βi | s |= α counts as β, ⊥ is not a conjunct of β,

βi is a conjunct of β, βi 6= >, ε |= α}
iff ε |= {βi | s |= α counts as β, ⊥ is not a conjunct of β,

βi is a conjunct of β, ε |= α}

59



and

ε |= EδD
(ε, s) iff ε |= {⊥ | s |= α counts as β, ⊥ is a conjunct of β, ε |= α}

iff ε |= {βi | s |= α counts as β, ⊥ is a conjunct of β,

βi is a conjunct of β, ε |= α}

And so

ε |= AδD
(ε, s) ∪EδD

(ε, s)

iff ε |= {βi | s |= α counts as β, βi is a conjunct of β, ε |= α}
iff ε |= {β | s |= α counts as β, ε |= α}
iff ε |= {α→ β | s |= α counts as β}

which completes the proof. ut

Corollary 16 Paths of length m in the ATS defined by a (C+)+ action descrip-
tion D are in one-to-one correspondence with the models of the causal theory
ΓD∪δD∪δσγ

m .

8.5 Reduced action descriptions

The causal laws δσγ required for translation to C+ are a nuisance—for one
thing, they mean that in general a (C+)+ action description cannot translate
to a definite action description of C+. They are included primarily for the
sake of completeness. There are a number of straightforward methods by which
their effect can be obtained in other ways, depending on the level of generality
required.

One obvious method is as follows. We want to restrict attention to interpreta-
tions that agree on the values of constants c1, c2, . . . , cn. In the present context
c1, c2, . . . , cn are σa-equivalent counts as constants in σγ . Instead of repre-
senting such interpretations by the set of all atoms they satisfy, it is obviously
sufficient to represent an interpretation by the value of a single representative
member of c1, c2, . . . , cn. So: we partition the counts as constants in σγ into
σa-equivalent classes and pick one representative member from each equivalence
class. This representative member can be identified when the signature σγ is
specified or it can be chosen arbitrarily. Now we replace every occurrence of a
counts as constant in the action description by the representative member of the
σa-equivalence class to which it belongs. This is straightforward to implement,
and has the additional benefit that the representation of interpretations is more
concise. It only remains to ensure that the evaluation of query languages on the
ATS similary translates formulas before they are evaluated, which is also easy
to arrange.

We will call a (C+)+ action description D of signature (σf, σγ , σa) reduced if
there are no distinct constants α counts as β and α′ counts as β′ in σγ such that
α ≡σa α′ and β ≡σa β′. Clearly every action description of (C+)+ can be
translated to a reduced action description, for example by the process outlined
above. For a reduced action description D the set Equiv (σγ , σa) is empty and
so the conditions for s to be a state of the ATS (C+)+-defined by D are simply

60



s !|= Tstatic(s)∪ Simple(s) (as for a C+ action description), and the translation
of the (C+)+ action description to C+ can dispense with the static laws δσγ

since these are also empty.

In what follows, we will not employ this general method but instead restrict
attention to a special form. We will say that an action description of signature
(σf, σγ , σa), is atom-conjunctive when every α counts asβ constant of σγ is such
that the formulas α and β are both (non-empty) conjunctions of action atoms,
written in some standard order and without repetitions. As an implementation
issue, it is easy to ensure that the conjuncts in counts as constants are re-
arranged into the standard order if necessary in a simple pre-processing stage.
Clearly all atom-conjunctive action descriptions are reduced. (And as a minor
consideration, the translation of (C+)+ to C+ does not introduce any fluent
dynamic laws of the ‘nonexecutable’ form (10).)

Why this particular form? Although in practice it will often be the case that
both α and β in α counts as β constants are atoms of σa, we want to be able
to support the more general case where they are conjunctions of atoms, for the
following main reason. An action of type a with attributes x1, x2, . . . , xn can be
represented in C+ (and (C+)+) either as an action atom a(x1, x2, . . . , xn) = v
with n arguments or as a conjunction of n + 1 action atoms a= v ∧ a1 =x1 ∧
a2 =x2∧· · ·∧an =xn where a1, . . . , αn are (usually non-exogenous) action con-
stants which pick out the values of the attributes. This second style of repre-
sentation has significant advantages, both in terms of flexibility or ‘elaboration
tolerance’ (Giunchiglia et al., 2004, Sect. 5.6), and economy, in that the number
of action constants required in the first style is exponential in the number of
attributes n whereas in the conjunction-of-attributes style it is linear.

The atom-conjunctive form accommodates all the examples that we can expect
to encounter in practice. Moreover, it is likely that the properties of the ‘counts
as’ relation C+

I of an ATS can be strengthened quite naturally, allowing all
α counts as β atoms, for arbitrary action formulas α, to be written equivalently
in a normal form as a truth-functional compound of α′counts asβ atoms in which
α′ is a conjunction of action atoms. This requires only that (α1∨α2)counts asβ
comes out to be equivalent to the conjunction of α1counts asβ and α2counts asβ,
which seems non-controversial. However, this remains to be checked, and we
leave the details to a future version.

8.6 Definite action descriptions

As in the case of C+, the action descriptions of primary interest are those that
are definite.

Definition 17 A (C+)+ action description D of signature (σf, σγ , σa) is defi-
nite iff the C+ action description D of signature (σf ∪ σγ , σa) is definite, and
for every constant α counts asβ in σγ , β is a (non-empty) conjunction of atoms
of σa, written in some standard order and without repetitions.

Note that this definition does not depend on the form of action formulas α in
α counts as β constants, so an action description can be definite without being
atom-conjunctive (or even ‘reduced’). However, as already explained, we are
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primarily interested in the special category of definite action descriptions which
are also atom-conjunctive.

For definite, atom-conjunctive action descriptions, the characterisation of states
and transitions of the ATS they define can be simplified as usual. For reference,
the relevant conditions are as follows.

Proposition 18 Let D be a definite, atom-conjunctive action description of
(C+)+ of signature (σf, σγ , σa). s is a state of D and (s, ε, s′) is a transition
of D iff s and s′ are interpretations of σf ∪ σγ and ε is an interpretation of σa

such that:

• s = Tstatic(s) ∪ Simple(s) ∪ Trivial (σf ∪ σγ)

• s′ = Tstatic(s′) ∪ E(s, ε, s′) ∪ Trivial (σf ∪ σγ)

• ε = A(ε, s) ∪ Exog(ε) ∪ Trivial (σa) ∪
{βi | s |= α counts as β1 ∧ · · · ∧ βi ∧ · · · ∧ βn, ε |= α }

Further, D∪δD is a definite action description of C+ when D is a definite action
description of (C+)+, and so we have the following.

Proposition 19 Let D be a definite, atom-conjunctive action description of
(C+)+ of signature (σf, σγ , σa). Paths of length m of the ATS defined by D are
in one-to-one correspondence with the (classical) models of comp(ΓD∪δD

m ). In
particular, states of the ATS are encoded by the models of comp(ΓD∪δD

0 ) and
transitions by the models of comp(ΓD∪δD

1 ).

Example Consider the following example. It is rather artificial but it is dif-
ficult to construct a convincing example without making it too large and com-
plicated. A more realistic example is presented in Section 8.7 below.

Signature: exogenous action constants wave flag and wave hand (Boolean)
and switch with values on and off ; non-exogenous action constants start race,
signalX (Boolean); simple fluent constants statusX (Boolean) and light with
values on and off ; simple (Boolean) constants wave flag counts as start race,
switch = on counts as signalX , wave hand counts as signalX .

The following is a definite, atom-conjunctive action description of (C+)+:

inertial light
inertial wave flag counts as start race
inertial switch = on counts as signalX
inertial wave hand counts as signalX
inertial statusX

switch = on causes light = on
switch = off causes light = off

wave flag counts as start race if > % fixed, for the sake of the example

start race causes (switch = on counts as signalX )
start race causes (wave hand counts as signalX )

signalX causes statusX

nonexecutable start race ∧ ¬wave flag
nonexecutable signalX ∧ ¬switch = on ∧ ¬wave hand
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(We allow the possibility of waving the flag, waving a hand, and switching the
light at the same time.)

The translation to C+ adds the following action dynamic laws:

start race if wave flag ∧ (wave flag counts as start race)
signalX if switch = on ∧ (switch = on counts as signalX )
signalX if wave hand ∧ (wave hand counts as signalX )

In the ATS so defined, there are no transitions of type wave flag ∧ ¬start race:
if a wave flag action occurs then the transition must also be of type start race.
And since start race ‘causes’ switch = on counts as signalX , after a wave flag
event, there are no transitions of type switch = on∧¬signalX : after a wave flag
event, any transition of type switch = on is also of type signalX ; its effects
are those it has by virtue of being a transition of type switch = on (light = on)
and those it has by virtue of being a transition of type signalX (statusX is
true). Likewise for wave hand transitions following a wave flag . The two
nonexecutable laws of the action description are included to eliminate unsup-
ported institutional actions.

8.7 Example: an auction protocol

Consider a simple kind of auction in which agents make bids as follows. Any
agent can open the bidding (when there is no current bid) at an amount N up
to some designated maximum. Any agent can raise the current bid by N units,
where again N must not exceed the designated maximum. Bids can be made
by agents in any order, except that no agent may bid twice in succession. An
agent may revoke its last bid, but only until the next (valid) bid is made. An
agent may withdraw from the auction at any time, unless it has made the last
(valid) bid. Once withdrawn, an agent may not resume bidding. (The ‘winner’
is the last agent left in the auction when all others have withdrawn, though for
simplicity we will ignore this here.)

The terms ‘may’ and ‘can’ are to be understood not as permission, but as part
of the definition of what counts as a valid bid. The representation should be
able to express both attempted but possibly invalid bids, and valid bids.

We have trivial (and so ‘rigid’) fluent constants player (X) for X ranging over
the names of participants in the auction. There is also a trivial fluent atom
max raise =Max for some positive integer Max . The action constants are
Boolean constants (X signals α) and (X :α) for α ranging over open (N), raise (N),
withdraw , revoke , and N ranging over all integers between 1 and Max . The ac-
tion constants (X signals α) are exogenous, and (X :α) are not. We could also
have made (X signals open ), (X signals raise ), (X :open ) and (X :raise ) multi-
valued constants with values in the range 1..M for some integer M but there is
little to be gained from doing so in this example.

To represent the state of the auction we have (inertial) multi-valued fluent con-
stants current bidder and current bid , and an inertial (Boolean) fluent constant
withdrawn(X) for each player X . The possible values of current bid are all in-
tegers in the range 1..Mmax for some suitably chosen integer Mmax.

We also employ the abbreviation

pow(X,α) =def (X signals α) counts as (X :α)
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The ‘counts as’ signature σγ contains all instances of the pow expressions. And
instead of making them simple and inertial, in this example we will make them
statically determined and false by default.

Version 1 Although it is a simple idea, revocation complicates the formulation
substantially. So first we show a version without revocation, so as not to distract
attention from the main points. We will discuss revocation separately after that.

Preliminary:

inertial current bidder , current bid , withdrawn(X)
nonexecutable (X signals α) ∧ (X signals α′)

for all α 6= α′ ranging over open (N), raise (N), withdraw , revoke . The above
allows for concurrent actions by different players. These can be eliminated if
desired by replacing the nonexecutable laws above by adding

inertial current bidder , current bid , withdrawn(X)
nonexecutable (X signals α) ∧ (X ′ signals α′)

for all X 6= X ′ ranging over the names of the players.

Now we specify the powers. The nonexecutable laws below eliminate unsup-
ported institutional actions.

nonexecutable (X :α) ∧ ¬(X signals α)

default ¬pow(X,α) % statically determined, and not inertial

pow(X, open (N)) if
player (X) ∧ ¬withdrawn(X) ∧
max raise =Max ∧ 0 < N ≤ Max ∧
current bid = none

pow(X, raise (N)) if
player (X) ∧ ¬withdrawn(X) ∧
max raise =Max ∧ 0 < N ≤ Max ∧
current bidder 6=X

pow(X,withdraw ) if
player (X) ∧ ¬withdrawn(X) ∧
current bidder 6=X

Now we specify the effects of (successful, valid) actions:

X :open (N) causes current bidder =X
X :open (N) causes current bid =N

X :raise (N) causes current bidder =X
X :raise (N) causes current bid = Current +N if

current bid = Current

X :withdraw causes withdrawn(X)

The above uses some simple arithmetic, easily added. See e.g. the implementa-
tion provided as part of the Causal Calculator CCalc4.

4http://www.cs.utexas.edu/users/tag/cc
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Version 2 The complication with revocation is that we have to remember at
least the last previous bid made so we know what to re-instate when revocation
takes place. We do not want to implement a stack of bids—not in this example
anyway. Notice that the extra complication is part of the temporal structure of
the bidding process and not a result of the need to specify counts as or pow.
It is a limitation of C+, and of transition systems in general, that a state is
independent of the history of transitions by which it was reached.

So introduce another pair of inertial (multi-valued) fluent constants, previous bid
and previous bidder . They are inertial because some actions (such as with-
drawals) do not affect the current bid. A raise action now changes the value
of current bid and current bidder as before, but first sets previous bid and
previous bidder . In addition to the laws of version 1 we have:

X :raise (N) causes previous bidder =Y if current bidder =Y
X :raise (N) causes previous bid = Tot if current bid = Tot

where Y ranges over the names of the players and Tot ranges over integers in
the range 1..Mmax.

Revocation when it happens re-instates the previous bid and previous bidder as
the current bid and current bidder :

X :revoke causes current bidder =Y if previous bidder =Y
X :revoke causes current bid =Tot if previous bid =Tot

Notice that this formulation also deals with revocations of the opening bid. In
that case only the second of the clauses above has any effect: the first and third
have no effect because there is no previous bid following an opening bid.

It remains to specify when agent X is empowered to revoke. One way is to
attempt to specify it by formulating appropriate combinations of previous bid
and current bid . Clearer, and more natural, is to do it by specifying further
effects of open , raise , and revoke , as follows:

X :open (N) causes pow(X, revoke)

X :raise (N) causes pow(X, revoke)
X :raise (N) causes ¬pow(Y, revoke) if pow(Y, revoke)

X :revoke causes ¬pow(X, revoke)

This completes the specification of the example.

To illustrate that instances of counts as can sometimes be chained together,
suppose that agent Bob is to act as a representative in the auction of another
agent Charles. This arrangement might be expressed as follows:

Bob signals raise (N) counts as Charles signals raise (N) if >

There are other forms of representation, also expressible in the language (C+)+.
We do not attempt any systematic account of the possibilities here. Some sug-
gestions along these lines, using a different formalism, are discussed for example
in (Gelati et al., 2004).

Note also that actions can have institutional effects which are not of the ‘power’
kind. Suppose, for example, that Charles promises or is instructed that every
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time he makes a bid, he must inform his superior, Clare. Here, a bid by Charles
creates an obligation on him to perform another action. There is some ambiguity
here about whether Charles is obliged to inform Clare of every attempted bid
(‘signals’) or only of successful bids. The distinction is evidently expressible in
the (C+)+ language.

Further structuring It would be advantageous to introduce some further
structure in the specification of pow, for instance by separating out the time-
dependent from the time-independent parts. More generally, we might separate
the components that make a bid ‘valid’ (better perhaps: ‘well formed’) from the
conditions defining pow and counts as . The difficulty here is not in devising
such representations but in fixing on terminology. Terms such as ‘valid’, ‘well
formed’, ‘inadmissible’, ‘improper’, ‘out of order’, ‘void’, ‘voidable’ have specific
meanings in certain contexts, but these contexts are relatively few, and the
same meaning is not always given in each. There is unfortunately much scope
for confusion here. It would be better to identify and fix on some neutral terms,
but these are difficult to find. Some preliminary suggestions are provided in
(Prakken, 1998; Prakken and Gordon, 1999).

Examples of what can be done with such formalisations are provided in (Ar-
tikis et al., 2002, 2003a,b). There, similar protocols are formalised using event
calculus and/or the language C+ as the action formalism and then subjected
to various kinds of analysis. These examples can be reformulated using the
additional resources of the language (C+)+ instead. (We do not present these
reformulations here.) The advantage of using (C+)+ is that it provides a built-in
treatment of counts as and pow, and their properties, which otherwise have to
anticipated and coded up explicitly as C+ laws.

8.8 Unsupported institutional actions

We have chosen to leave the elimination of unsupported institutional actions
to the formulation of action descriptions. A case can be made that this is
unreasonable, that the elimination of unsupported institutional actions is fun-
damental to the notion of ‘counts as’ being modelled, and that this should
therefore not be a feature of action descriptions but rather a fixed semantic fea-
ture of ATS structures. It is easy to formulate the required conditions. Where
α1 counts asβ, . . . , αn counts asβ are all the constants of the form αcounts asβ
in the signature σγ , we require that every transition (s, ε, s′) of the ATS has
the property that ε 6|= β ∧ ¬α1 ∧ · · · ∧ ¬αn, i.e., that ε |= β → (α1 ∨ · · · ∨ αn).
(It may seem that this is equivalent to the condition ε |= β ↔ (α1 ∨ · · · ∨ αn)
but this is not so, since we require ε |= αi → β only when αi counts as β holds
in state s of the transition (s, ε, s′), whereas the condition required to eliminate
unsupported institutional actions depends only on the signature σγ and not on
the counts as atoms that actually hold in state s.)

However, this treatment would also pre-suppose an assumption of completeness
in the specification of the σγ signature. It would assume that there are no other
means of effecting the institutional action β besides those actions αi that appear
in αi counts asβ constants in σγ . It is at least conceivable that this assumption
would not always be desired, and in these circumstances transition labels/events
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with unsupported institutional actions would be meaningful even if in general
they are not. It is, in any case, very easy to ensure that an action description
eliminates (undesired) unsupported institutional actions. To eliminate an un-
supported institutional action β one includes in the action description a fluent
dynamic law

nonexecutable β ∧ ¬α1 ∧ · · · ∧ ¬αn

where α1 counts as β, . . . , αn counts as β are all the constants of the form
α counts as β in the signature σγ . This guarantees that all transitions (s, ε, s′)
of the ATS defined satisfy the property ε |= β → (α1 ∨ · · · ∨ αn), without
introducing any new transitions. For these two reasons together (no assumptions
of completeness in σγ , and the ease of adding the required nonexecutable laws
in the action description where desired) we do not include the elimination of
unsupported institutional actions as a fixed feature of the semantics.

Some care has to be taken when deciding on the ‘counts as’ signature σγ . Com-
pare a signature containing the single constant α counts as β1 ∧ β2, on the one
hand, with a signature containing the pair of constants α counts as β1 and
α counts as β2, on the other. These have different effects. In both cases, a
transition of type β1∧β2∧¬α represents (assuming no other relevant counts as
constants) an unsupported institutional action: β1 ∧ β2 is unsupported in the
first case, and both β1 and β2 are unsupported in the second. However, in the
first case a transition of type β1 ∧¬β2 ∧ ¬α does not represent an unsupported
institutional action, whereas in the second case it does (β1 is unsupported).

Implicit in this treatment of ‘counts as’ is that the conjunction β1 ∧ β2 in a
constant α counts as β1 ∧ β2 represents a single action whose attributes are
specified by β1 ∧ β2. In contrast, when β1 ∧ β2 is intended to represent the
concurrent execution of two separate actions β1 and β2, two separate constants
α counts as β1 and α counts as β2 should be employed.

As a further example, consider the difference in terms of unsupported institu-
tional actions between a signature S1 containing two constants

α1 counts as β ∧ β1

α2 counts as β ∧ β2
(S1)

and a signature S2 containing four separate constants

α1 counts as β α1 counts as β1

α2 counts as β α1 counts as β2
(S2)

In the case S1, β would typically be a conjunction of some common set of
core attribute-values and β1 and β2 conjunctions of additional attribute-values
to represent the two different types of β actions. In the case S2, β, β1, and
β2 would each represent a particular kind of action, though of course there is
nothing in the syntax of C+ (or of (C+)+) that indicates the difference explicitly.

In the case S1, a transition has an unsupported institutional action when it sat-
isfies β∧β1∧¬α1 or β∧β2∧¬α2; in the case S2 when it satisfies β∧¬α1∧¬α2 or
β1∧¬α1 or β2∧¬α2. One can see that if a transition has an unsupported insti-
tutional action with signature S1 then it also has an unsupported institutional
action with signature S2, though not vice-versa. However, if every transition
label/event also satisfies β ↔ (β1∨β2), then the two are equivalent. So: suppose
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that in S1 the conjunction β does represent some common set of core attribute
values, and that there are exactly two kinds of β actions, one represented by
the full set of attribute values β ∧β1, and the other represented by β ∧β2. Now
suppose we make this explicit in the action description, e.g., by including the
three fluent dynamic laws nonexecutable β ∧ ¬β1 ∧ ¬β2, nonexecutable β1 ∧ ¬β,
and nonexecutable β2∧¬β. Then every transition label/event in the ATS defined
satisfies β ↔ (β1 ∨β2), and the signature S1 and S2 agree on the conditions for
unsupported institutional actions.

There is clearly more to this. It may be worthwhile extending the syntax of
(C+)+ (and C+) to make explicit when a conjunction of action atoms is intended
to represent the attributes of a single action and when it is intended to represent
instead the concurrent execution of several distinct actions. One can see how
this might be done, by having a separate category of action-attribute constants
in the signature σa, for instance. We leave the details for future work.

8.9 Discussion: Possible strengthenings

We turn now to the possibility of strengthening the ‘counts as’ relation C+
I to a

transitive relation or to an ordering on (the special category of ‘institutionally
significant’) transition types, as outlined in the earlier discussion in Section 8.1
on comparisons with ‘counts as’ conditionals in (Jones and Sergot, 1996) and
‘conventional generation’ in (Goldman, 1970). Since reflexivity of ‘counts as’
is of negligible practical interest, there are two main issues: the difficulty of
implementing the transitivity conditions in the translation from (C+)+ to causal
theories, and the choice of the most appropriate formulation of transitivity. We
limit ourselves to some remarks about possibilities and the issues arising, and
leave detailed investigation to a future version.

We note first that the constraint (C+
ε ) in every ATS already gives a kind of

‘pseudo-transitivity’ of C+
I . Expressed in terms of τR(s,X), the set of transitions

of type X executable in state s, (C+
ε ) takes the form (for all transition types X ,

Y and all states s):

if C+
I (s,X, Y ) then τR(s,X) ⊆ τR(s, Y )

from which follows the ‘pseudo-transitivity’ property (for all transition types X ,
Y , Z and all states s):

if C+
I (s,X, Y ) and C+

I (s,X,Z) then τR(s,X) ⊆ τR(s, Z)

as well as a (very weak) kind of ‘pseudo-anti-symmetry’

if C+
I (s,X, Y ) and C+

I (s, Y,X) then τR(s,X) = τR(s, Y )

and a (trivial) ‘pseudo-reflexivity’

if C+
I (s,X,X) then τR(s,X) = τR(s,X)

But suppose we wished to strengthen these properties as suggested in Sec-
tion 8.1, to

C+
I (s,X,X) (C+

refl)

if C+
I (s,X, Y ) and C+

I (s, Y, Z) then C+
I (s,X,Z) (C+

trans)

if C+
I (s,X, Y ) and C+

I (s, Y,X) then X = Y (C+
a-symm)
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for all states s and for all transition types X,Y, Z ⊆ AI , where, recall, AI

denotes the transition types of special conventional significance in institution
I, defined in this paper as AI =def {X ⊆ A | X = ‖α‖ or X = ‖β‖ for some
constant α counts as β in σγ}.
The first step is easy. It is easy to adjust the definition of the ATS defined by
a (C+)+ action description (Definition 13) so that the ‘counts as’ relation has
the desired additional properties. Let D be an action description of (C+)+ of
signature (σf, σγ , σa). The super-augmented transition system defined by D is
the structure

〈σf, σγ , S,A, R, C++
D 〉

where 〈σf, σγ , S,A, R, C+
D〉 is the ATS defined by D according to Definition 13

and where the new ‘counts as’ relation C++
D is defined to be the ‘reflexive tran-

sitive closure’ of C+
D , or more precisely, the smallest relation containing C+

D that
satisfies the conditions (C+

refl) and (C+
trans). If we further specify that C+

D must
be cycle-free, then C++

D also satisfies (C+
a-symm), and so is an ordering on the

‘institutionally significant’ transition types AI in the sense discussed in Sec-
tion 8.1. It is easy to check that the condition (C+

ε ) is satisfied by C++
D if it is

satisfied by C+
D , and so the structure defined in this way is an ATS.

So far so good. The problem comes in trying to find a causal theory, or a
translation to a C+ action description, that will encode the paths of the ‘super-
augmented’ transition sytem, and specifically additional causal laws that will
construct C++

D as the ‘reflexive transitive’ closure of C+
D .

It might appear that (C+
refl) and (C+

trans) can be captured straightforwardly by
including further laws of the form:

α counts as α if > (12)

for every constant α counts as α in σγ ,

α counts as β if α counts as β′ ∧ β′ counts as β (13)

for all constants α counts as β, α counts as β′, and β′ counts as β in σγ , and

default ¬ (α counts as β) (14)

for every constant α counts as β in σγ to capture the closure condition.

But this does not work. As pointed out in (Giunchiglia et al., 2004, sect.7.2)
expressing the reflexive transitive closure of a relation in the language of causal
theories is not straightforward. For example, at first sight the causal laws

q(x, x) ⇐ >, q(x, y)⇐ p(x, z) ∧ q(z, y), ¬q(x, y)⇐ ¬q(x, y)

may appear to express that q is the reflexive transitive closure of p. But they do
not: there is a model of the causal theory in which q is the reflexive transitive
closure of p but there are also other models in which q, though reflexive and
transitive, contains more than the reflexive transitive closure of p. Consider
{p(1, 1), p(2, 2)}. The reflexive transitive closure is {q(1, 1), q(2, 2)}, represented
by the model {q(1, 1), q(2, 2),¬q(1, 2),¬q(2, 1)}, but the causal theory also has
three other models: {q(1, 1), q(2, 2), q(1, 2),¬q(2, 1)}, {q(1, 1), q(2, 2),¬q(1, 2),
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q(2, 1)}, and {q(1, 1), q(2, 2), q(1, 2), q(2, 1)}. It is perhaps easier to see why this
is so by comparison with symmetric closure. The causal laws

q(x, y)⇐ p(x, y), q(x, y)⇐ q(y, x), ¬q(x, y)⇐ ¬q(x, y)

similarly fail to express that q is the symmetric closure of p. In the example
{p(1, 1), p(2, 2)}, the causal theory will contain the instances q(1, 2) ⇐ q(2, 1),
q(2, 1) ⇐ q(1, 2), ¬q(1, 2) ⇐ ¬q(2, 1), and ¬q(2, 1) ⇐ ¬q(1, 2) and it is easy to
see that we get two models: {q(1, 1), q(2, 2),¬q(1, 2),¬q(2, 1)} as intended, but
also {q(1, 1), q(2, 2), q(1, 2), q(2, 1)}.
It is not clear how this problem can be resolved. Since we view translations to
causal theories as essentially an implementation issue, one possibility is to place
the burden elsewhere in the implementation, that is to say, not in the component
that constructs causal theories from (C+)+ action descriptions but in the com-
ponent that evaluates queries on the causal theories so constructed. To evaluate
formulas of some query language on the ‘super-augmented’ ATS defined by a

(C+)+ action description D, we construct the causal theory Γ+D
m = ΓD∪δD∪δσγ

m

representing the (regular) ATS defined by D, which encodes the ‘counts as’ re-
lation C+

D , but arrange that the associated query evaluator evaluates formulas
containing counts asI expressions not on C+

D but on the relation C++
D . The pro-

cess of constructing (the relevant instances of) C++
D from (the relevant instances

of) C+
D is the job of the query evaluator, not part of the translation from D to

Γ+D
m.

This is not difficult to implement, but it is not satisfactory either. It would
mean that counts as constants in the (C+)+ language do not behave in the
same way, do not have the same properties as, the corresponding counts asI
expressions in the query language. One could say that this does not matter,
that counts as constants in (C+)+ are used only to define the relations C+

D

and (indirectly) C++
D , and that the semantics of (C+)+ is unambiguous in this

respect: one should not ascribe more properties to counts as constants than are
stated by the semantics. But still: it is only natural to assume that counts as
constants in the (C+)+ language will behave in the same way as the relations
they define, and it is at best confusing if it is otherwise. For instance, suppose
we write a counts as b if > in a (C+)+ action description, and also a fluent
dynamic law α causes (b counts as c) (say). It would be entirely reasonable to
suppose, given the intended (stronger, transitive) reading of counts as , that in
any state after an α transition, a counts as c will hold. But it does not—this
kind of inference is not supported by the language (C+)+ itself. In the existing
version, only the weaker ‘pseudo-transitivity’ is present: after an α transition,
every transition of type a will be a transition of type c, but this does not imply
that the constant a counts as c will be true. In the query language, in contrast,
acounts asIc would be true, and this sort of mis-match is clearly to be avoided.

Implementation issues aside, there are in any case some other possible for-
mulations of transitivity that can be considered as alternatives to (C+

trans),
and which remain to be investigated. Suppose for example that α counts as
β1 ∧ · · · ∧ βj ∧ βj+1 ∧ · · · ∧ βn, and that β1 ∧ · · · ∧ βj counts as α′. Would we
want to conclude that α counts as α′? An affirmative suggests we should look
at a stronger type of transitivity, of the form

C+
I (s,X, Y ) and C+

I (s, Y ′, Z) implies C+
I (s,X,Z), if Y ⊆ Y ′
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or possibly, of the even stronger form

C+
I (s,X, Y ) and C+

I (s, Y ′, Z) implies C+
I (s,X,Z), if τR(s, Y ) ⊆ τR(s, Y ′)

which depends on the actual transitions R of an ATS and not just on truth-
functional properties of action formulas. These, and other forms, remain to be
investigated, and are not included in the present version of (C+)+.

We do not see this as an important limitation of (C+)+. The significance of
the very restricted form of reflexivity is negligible. Transitivity of ‘counts as’
is adopted in (Jones and Sergot, 1996) in the absence of convincing counter-
examples to the contrary, but is not a critical feature of the characterisation
adopted there, and neither is it here.

8.10 Defeasibility of ‘counts as’

There is one further remark that we wish to make, concerning the defeasibility
of ‘counts as’. We can expect that in many practical applications the laws
specifying ‘counts as’ relationships will be formulated most naturally as general
default rules that are subject to implicit exceptions, exceptions to exceptions,
and so on. We do not see anything particularly unusual or problematic about
the formalisation of such rules in (C+)+. (C+)+ inherits from C+ and the
formalism of causal theories a general treatment of non-monotonic inference,
and can be used to formulate defeasible general rule and exception structures
using devices familiar from the literature on knowledge representation. (See
(Giunchiglia et al., 2004, Sect. 7) for a comparison of causal theories with other
well-known formalisations of non-monotonic reasoning.)

It may seem however that there is a different, more fundamental, kind of defeasi-
bility inherent in the treatment of ‘counts as’, and this deserves some comment.

It is a cornerstone of the treatment given here of ‘counts as’ relations that when
α counts as β then any transition of type α is also a transition of type β. This
is expressed by the constraint (C+

ε ) required of an ATS. The effect is that when
α counts as β holds in a state s there can be no transitions of type α ∧ ¬β from
the state s. The same constraint is implicit in formalisations of ‘counts as’ in
other action formalisms, such as (Jones and Sergot, 1996), where it emerges in
discussion of ‘exercise of power’.

It might appear that (C+
ε ) as it stands is too strong. Suppose, for example, that

αcounts asβ and that β causes F . F holds in all states following the occurrence
of a transition of type β; and since all occurrences of type α are also occurrences
of type β, we get in effect that α ‘causes’ F . This is as intended: we want to be
able to infer that actions α have effects by virtue of being actions of type α and
that they also have effects by virtue of being counted, in institution I, as actions
of type β. By the same argument, when α counts as β and β is non-executable,
then α is also non-executable. For if there are no transitions of type β in some
given state s, and all transitions of type α are also transitions of type β, then
there can be no transitions of type α in state s either.

But suppose now that raise hand counts asstart race. And suppose further that
start race is non-executable in some state—the runners are not ready, the track
is too wet, or any number of other conditions hold. We must infer, as above,
that in these circumstances raise hand is also non-executable. It seems that
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whenever the race is unable to start, the starter is unable to raise his hand, in
the sense that his action of doing so is non-executable.

Now there is nothing strange or problematic about this inference if the purpose
of the action description is to act as a system specification. The fact that there
are circumstances in which raising a hand is non-executable when we expect
that it should be executable indicates that there is a flaw in the specification.
The provision of computational tools to help identify such flaws is one of the
main aims of the development.

But what if the purpose of the action description is to provide an accurate
formal model of some real-world fragment? Just because a race is not ready to
start we do not infer that the starter is (physically) unable to raise his hand. It
might seem that some adjustment is necessary, and that this adjustment must
concern condition (C+

ε ). Perhaps the constraint that when α counts as β, every
transition of type α is a transition of type β is too strong, and condition (C+

ε )
should be made defeasible and subject to exceptions in some way. This seems to
be the position adopted by e.g. (Gelati et al., 2002, 2004) who have expressed
the view (in a different formal framework) that the ‘counts as’ connection is
inherently defeasible.

It seems to us that this is the wrong way of looking at the problem. It is not
the condition (C+

ε ) that needs to be made defeasible but the formalisation of
what counts as what. In the example, if starting the race is non-executable
unless circumstances G hold, then it is simply not true to say that raising a
hand counts as starting the race; raising a hand counts as starting the race if G
holds, but not otherwise.

Schematically, we have α counts asβ; β causes F , but when ¬F holds, β is non-
executable, and so too is α. However, α counts as β is usually conditional on
some other factual circumstances: schematically, the pattern is αcounts asβ if G
and β causes F . When ¬F holds, β is non-executable, and α is non-executable
when G∧¬F holds. But it will often be the case that G∧¬F can never be true
because of other features of the specification or of the real-world fragment being
modelled. One purpose of a formalisation is precisely to detect such features.

In summary: it is not the condition (C+
ε ) that needs to be made defeasible.

Viewed as a kind of conditional, α counts as β is not a defeasible conditional,
though in practice the laws defining when α counts as β holds will often be
naturally formulated as defeasible general rules subject to exceptions.
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9 The language (C+)++: Permission

We now consider a second extension to the language C+, to provide a means
of specifying the ‘permitted’, ‘acceptable’, ‘ideal’, ‘legal’ states and the ‘permit-
ted’, ‘acceptable’, ‘ideal’, ‘legal’ actions and transition paths. This extension is
independent of the extension to accommodate ‘counts as’/conventional genera-
tion, but since we will usually want both features in the intended applications
we present it here as an extension to the language (C+)+ of the previous section.

The semantic structure is a ‘coloured ATS’ which is a structure of the form:

〈σf, σγ , S,A, R, C+
I , Sgreen, Rgreen〉

(or a ‘coloured LTS’ of the form

〈σf, S,A, R, Sgreen, Rgreen〉

if we do not need the ‘counts as’ features). The two new components are

• Sgreen ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we
call Sgreen the ‘green’ states of the system;

• Rgreen ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—
we call Rgreen the ‘green’ transitions of the system.

We refer to the complements S − Sgreen and R − Rgreen as the ‘red states’ and
‘red transitions’, respectively. It is also possible to consider a more elaborate
structure, of partially coloured transition systems in which states and transitions
can be green, red, or uncoloured, but we shall not present that version here.

Note that Rgreen ⊆ R means that we build in the property that ‘permission’
implies ‘can’. We impose the following additional constraint:

• if (s, ε, s′) ∈ Rgreen and s ∈ Sgreen then s′ ∈ Sgreen.

which we refer to as the green-green-green constraint. Performing a permitted
(green) action (transition) in a permitted (green) state must always lead to a
permitted (green) state. All other possible combinations of green/red states and
green/red transitions are allowed. In particular, and contra the assumptions un-
derpinning John-Jules Meyer’s (1988) construction of ‘dynamic deontic logic’, a
non-permitted (red) transition can result in a permitted (green) state. Similarly,
it is easy to devise examples in which a permitted (green) transition can lead
to a non-permitted (red) state. Some illustrations will arise in the examples to
be considered later in the section. The only combination that cannot occur is
the one eliminated by the ‘green-green-green’ constraint: a permitted (green)
transition from a permitted (green) state cannot lead to a non-permitted (red)
state.

Semantic devices such as Sgreen and Rgreen are familiar in the field of deon-
tic logic. For example, Carmo and Jones (1996) employ a similar structure
(though not for the purpose of constructing a language for defining them, as we
attempt here) which has ideal/sub-ideal states and ideal/sub-ideal transitions
(unlabelled). van der Meyden’s (1996) ‘dynamic logic of permission’ employs a
structure in which transitions, but not states, are classified as ‘permitted/non-
permitted’. van der Meyden’s version was constructed as a response to problems
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of Meyer’s ‘dynamic deontic logic’ (Meyer, 1988) which classifies transitions as
‘permitted/non-permitted’ by reference only to the state resulting from a tran-
sition. ‘Deontic interpreted systems’ (Lomuscio and Sergot, 2003) classify states
as ‘green’/‘red’, where these states have further internal structure to model the
local states of agents in a multi-agent context. In all of these examples (and oth-
ers) the task has been to find axiomatisations of such structures in one form of
deontic logic or another. Here we are concerned with a different task, that of de-
vising a language for defining coloured transition systems of the form described
above.

9.1 The language (C+)++

The language (C+)++ extends the language (C+)+ with two new forms of laws.

• A state permission law (or rule) is an expression of the form

not-permitted F (15)

where F is a fluent formula (i.e., a formula of signature σf).

• An action permission law (or rule) is an expression of the form

not-permitted α if ψ (16)

where α is an action formula (i.e., a formula of signature σa) and ψ is a formula
of signature σf ∪ σa. not-permitted α is shorthand for not-permitted α if >.

It is also convenient to allow two variants of rule forms (15) and (16): oblig F
is an abbreviation for not-permitted ¬F and oblig α is an abbreviation for
not-permitted ¬α.

Informally, in the transition system defined by an action description D, a state
s is red whenever s |= F for any state permission law not-permitted F . All other
states are green by default. A transition (s, ε, s′) is red whenever s ∪ ε |= ψ
and ε |= α for any action permission law not-permitted α if F after ψ. All
other transitions are green, subject to the ‘green-green-green’ constraint which
may impose further conditions on the possible colouring of a given transition.
Examples will follow shortly to illustrate the effects of the ‘green-green-green’
constraint. It is possible to construct variants of the language with the defaults
working the other way round (that is, a variant where the permission laws specify
what is permitted (green), with other states and transitions not permitted (red)
by default), or more elaborate forms allowing defaults to be mixed, but these
all turn out to be more awkward and rather unnatural. We will stick to one
basic form in this present account.

Let D be an action description of (C+)++. Dbasic refers to the subset of laws of
D that are also laws of (C+)+ (and hence also laws of C+). The coloured ATS
defined by D has the augmented states S and transitions R that are defined by
its (C+)+ component Dbasic. In the case where we are not using the ‘counts as’
features, the coloured LTS defined by D has the states S and transitions R of
the labelled transition system defined by the C+ action description Dbasic. In
both cases, coloured ATS and coloured LTS, the green states Sgreen and green
transitions Rgreen are defined as follows:

Sgreen =def S − Sred Rgreen =def R−Rred
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where

Sred =def {s | s |= F for some state permission law not-permitted F in D}
Rred =def {(s, ε, s′) | s ∪ ε |= ψ, ε |= α, s′ |= F for some action

permission law not-permitted α if F after ψ in D}
∪ {(s, ε, s′) | s ∈ Sgreen and s′ /∈ Sgreen}

The last component of the Rred definition ensures that the ‘green-green-green’
constraint is satisfied.

9.2 Example

Suppose it is forbidden for a man and a woman to be alone together in a room.
Let a and b be men and c be a woman, and suppose they inhabit a world in which
there is one dwelling consisting of two rooms with a connecting internal door and
one external door, as depicted in Figure 9.1. For the sake of simplicity, suppose
further that exactly one of the three persons a, b and c moves from one room
to another at any one time, and ignore the possibility that a, b or c move out of
the dwelling or other persons move in from the outside. These simplifications
are imposed merely to keep the diagrams of the resulting transition system
manageable. The example works just as well without the simplifications but
the diagrams become too large to exhibit here.

Let fluents loc(x) = p represent the location of person x, for x ranging over a, b,
and c, and p ranging over the locations ‘left’ and ‘right’ (say). Let move(x) = p
represent the action in which x moves to location p. The action description
for the example specifies that the loc(x) fluents are inertial, that the move(x)
actions are exogenous, that exactly one move(x) action takes place at any tran-
sition, that move(x) = p is nonexecutable when loc(x) = p, and that move(x) = p
‘causes’ loc(x) = p. These parts are just as for the language C+; the details are
straightforward and omitted. The state permission laws for the example may
be stated in various ways, of which one simple formulation is as follows (where
p ranges over the two locations ‘left’ and ‘right’):

not-permitted loc(a) = p ∧ loc(c) = p ∧ ¬loc(b) = p
not-permitted loc(b) = p ∧ loc(c) = p ∧ ¬loc(a) = p

There are more general and more elegant ways of formulating the required laws;
this simple form is adequate for present purposes and does not distract from
the main point of the example.

The transition system defined by this action description is shown in Figure 9.1,
first with just the states coloured as determined by the state permission laws,
and then with the colours of the transitions shown as determined by the ‘green-
green-green’ constraint.
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Figure 9.1: The transition system for the connecting rooms example. The top picture shows
the colouring of the states: the darker shade indicates the red states as determined by the state
permission laws, the others are green by default. The bottom diagram shows the colouring of
the transitions, as determined by the ‘green-green-green’ constraint.
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9.3 Translation to causal theories

The translation of an action description D in (C+)++ to a causal theory ΓD
m is

exactly as for the translation of (C+)+ theories, with the following extension to
deal with the state and action permission laws.

Let status and trans be distinguished fluent and action constants, respectively, in
the signature of ΓD

m, both with possible values green and red. They will be used
to represent the colour of a state and the colour of a transition, respectively.

For every state permission law not-permitted F and time index i ∈ 0 ..m, include
in ΓD

m a causal rule of the form

status[i] = red⇐ F [i] (17)

and for every i ∈ 0 ..m, a causal rule of the form

status[i] = green⇐ status[i] = green (18)

to specify the default colour of a state. A state permission law of the form
oblig F produces causal rules of the form

status[i] = red⇐ ¬F [i]

For every action permission law not-permitted α if F after ψ and time index
i ∈ 0 ..m−1, include in ΓD

m a causal rule of the form

trans[i] = red⇐ F [i+1] ∧ α[i] ∧ ψ[i] (19)

and for every i ∈ 0 ..m−1, a causal rule of the form

trans[i] = green⇐ trans[i] = green (20)

to specify the default colour of a transition. An action permission law of the
form oblig α if F after ψ produces causal rules of the form

trans[i] = red⇐ F [i+1] ∧ ¬α[i] ∧ ψ[i]

Finally, to capture the ‘green-green-green’ constraint, include for every i ∈
0 ..m−1 a causal rule of the form

trans[i] = red⇐ status[i] = green ∧ status[i+1] = red (21)

It is straightforward to show that models of the causal theory ΓD
m correspond

to all paths of length m through the coloured transition system defined by D,
where the fluent constant status and the action constant trans encode the colours
of the states and transitions, respectively.

Note that when an action description D in (C+)++ is definite, it translates to
a causal theory ΓD

m which is also definite.

Causal rules (17), (18) and (20) can be expressed in the language C+, that is to
say, state permission laws and the default colouring of states and transitions can
be expressed as laws in C+, with status and trans treated as ordinary fluent and
action constants. The causal rules (19) and (21), however, corresponding to ac-
tion permission laws and the green-green-green constraint, cannot be expressed
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in C+. The form of these rules, where there is a time index in the antecedent
greater than the time index in the consequent, conflicts with the very strong
reading of ‘causes’ that underpins the language C+. Rules corresponding to (19)
and (21) are deliberately excluded from the language C+, by design. C+ could
express a restricted form of action permission law, of the form

not-permitted α if > after ψ (22)

since this translates to the causal rule

trans[i] = red⇐ α[i] ∧ ψ[i]

which is the translated form of an action dynamic law of C+. However, there
is no similar simplification that allows the ‘green-green-green’ constraint to be
expressed satisfactorily as a law in C+. C+ can express:

⊥ if status = red after trans = green ∧ status = green

which translates to causal rules:

⊥ ⇐ status[i+1] = red ∧ trans[i] = green ∧ status[i] = green (23)

and it can express

status = green after trans = green ∧ status = green

which translates to causal rules:

status[i+1] = green⇐ trans[i] = green ∧ status[i] = green (24)

but both of these give quite the wrong effect. Both can be interpreted as defining
transition systems. But although these transition systems satisfy the green-
green-green constraint, they give the wrong interaction between state and action
permission laws and the associated defaults.

The following example provides an illustration.

9.4 The ‘green-green-green’ constraint: Example

Consider a simple example of a bank (with one customer): states of the bank
are represented by the value of a single fluent constant balance which represents
the current balance of the customer’s account. Suppose values of balance are
multiples (including negative multiples) of 10 euro. There are three actions
that the customer can perform: withdraw 10 euro, withdraw 20 euro, deposit
10 euro. A state is forbidden (not permitted, red) if the balance is less than
0. Suppose further, for the sake of the example, that a withdrawal (of any
amount) is forbidden (red) when the balance is zero or negative. A suitable
action description for this example in (C+)++ is very straightforward; we omit
the details.

The transition system, colouring first only the states and transitions that are
explictly specified to be red, is as follows:
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· · · -20 -10 0 10 20 · · ·

green red

The labels on transitions are obvious from context so we omit them for clarity.

Suppose first that we apply the defaults and the green-green-green constraint in
a different order to that specified in Section 9.3 above: suppose we first assume
that all transitions not explicitly forbidden (red) are permitted (green), then
apply the green-green-green constraint, and only then the default that states
not red are green. At the first step we obtain the following partially coloured
transition system:

· · · -20 -10 0 10 20 · · ·

Now applying the green-green-green constraint forces us to conclude that the
state 10 is red. This is because the transition from 10 to −10 is green, and the
state −10 is red, so the state 10 cannot be green; it must be red.

Furthermore, state 0 must now also be red, because there is a green transition
from 0 to a red state, 10. And the state 20 must be red too, because there is
a green transition from a red state, 10, to 20. And so on, for all states greater
than 20. We are left with the following picture.

· · · -20 -10 0 10 20 · · ·

The result is surely quite counter-intuitive: we conclude that all balances, pos-
itive as well as negative, are not permitted, which is surely wrong.

Contrast this with what is obtained by treating constraints and defaults in the
manner specified in Section 9.3. First, states that are not explicitly red are
green by default:

· · · -20 -10 0 10 20 · · ·

Now apply the green-green-green constraint: the transition from 10 to −10 must
be red because 10 is a permitted (green) state while −10 is a forbidden (red)
one.

· · · -20 -10 0 10 20 · · ·

Finally all other transitions are green by default, leaving the transition system
coloured as follows.

· · · -20 -10 0 10 20 · · ·

green red
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And surely this is what we would expect: 10, 20, . . . are all permitted states,
and it is the transition from 10 to −10, i.e., the withdrawal of 20 euro when the
balance is at 10 euro, that is not permitted.

Notice also that in this example, contra Meyer’s definition of forbidden actions
in ‘dynamic deontic logic’ (Meyer, 1988), there is a green transition (from −20
to −10) which results in a red state. And it is surely right that this transition
should be green: it is surely permitted, given the permission laws stated above
and the declared reading of defaults, that the customer is permitted to deposit
10 euro even though this still leaves his account in the negative. Although not
shown in this example, it is also easy to find cases where a forbidden (red)
transition can lead to a green (permitted) state. Suppose, for instance, that
the bank decides to specify that withdrawals of less than 20 euro are no longer
permitted (because of the administrative inconvenience, say): such withdrawals
are still possible (they are not ‘nonexecutable’) but from the bank’s point of
view they are undesirable, that is to say, not permitted (‘red’).

Or: suppose now there are two customers, custA and custB. On Meyer’s account,
whenever custA’s account balance is negative, it is forbidden for custB to deposit
or withdraw from his own account. This is surely wrong.

9.5 Relaxation of syntax

Permission laws of the form (15) and (16) are convenient but rather restrictive.
For more flexibility, the (C+)++ language also allows distinguished fluent and
action constants status and trans to be used explicitly in formulas and causal
laws. The atoms status = red and trans = red can then be regarded as instances
of what are sometimes called ‘violation constants’ in deontic logic. It is also
easy to allow more ‘shades’ of red and green to allow different notions of per-
mitted/legal/acceptable to be mixed. We will not employ that device in the
examples discussed in this paper.

9.6 Example (trains)

The following example is used in (van der Hoek et al., 2004; Jamroga et al.,
2004) to illustrate the use of alternating-time logic (ATL) (Alur et al., 2002) for
determining the effectiveness of ‘social laws’ designed to co-ordinate the actions
of agents in multi-agent system. The term is from (Shoham and Tennenholtz,
1992a,b, 1995; Moses and Tennenholtz, 1995) We will use the example for a
different purpose, to illustrate how the permission component of (C+)++ can
be used to analyse variants of the example in which agents may fail to obey
social laws. More elaborate versions of the example, in which additional com-
ponents are introduced in ordere to enforce compliance with the ‘social laws’,
are discussed in (Sergot, 2005).

There are two trains, a and b, with a running clockwise round a double track,
and b running anti-clockwise. There is a tunnel in which the double track
becomes a single track. If the trains are both inside the tunnel at the same time
they will collide. The tunnel can thus be seen as a kind of critical section, or as
a resource for which the trains must compete.
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There are obviously many ways in which the example can be formulated. The
following will suffice for present purposes. Let simple fluent constants loc(a)
and loc(b) represent the locations of trains a and b respectively. They both have
possible values {W, t,E}. For action constants, we take a and b with possible
values {go, stay}. (Action constants act(a) and act(b) may be easier to read
but we choose a and b for brevity.) Both are exogenous.

t

W E

a b

The C+ action description representing the possible movements of the trains is
as follows.

inertial loc(a), loc(b) (25)

train a moves clockwise:

a= go causes loc(a) = t if loc(a) = W
a= go causes loc(a) = E if loc(a) = t
a= go causes loc(a) = W if loc(a) = E

(26)

train b moves anti-clockwise:

b= go causes loc(b) = t if loc(b) = E
b= go causes loc(b) = W if loc(b) = t
b= go causes loc(b) = E if loc(b) = W

(27)

collisions:

collision iff loc(a) = t ∧ loc(b) = t % for convenience

nonexecutable a= go if collision
nonexecutable b= go if collision

(28)

collision is a statically determined Boolean fluent constant, introduced for con-
venience. Here and in the rest of this section, F iff G is used as shorthand for
the pair of laws F if G and default ¬F .

Suppose, for the sake of an example, that we impose additional norms (social
laws), as follows: no train is permitted to enter the tunnel unless the other
train has just emerged. (We assume that this will be observed by the train
that is preparing to enter. One of the variants of the example in (Sergot, 2005)
introduces a communication mechanism–a semaphore–to allow the trains to
communicate their positions to each other.) Will such a law be effective in
avoiding collisions?
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Figure 9.2: Coloured transition system for the trains example. A state label such as EW is
short for {loc(a) = E, loc(b) =W}. Transition labels are omitted for clarity. Horizontal edges
are transitions in which train a moves and b does not. Vertical edges are transitions in which
train b moves and a does not. Diagonal edges are transitions in which both trains move.
Reflexive edges, corresponding to transitions in which neither train moves, are omitted from
the diagram to reduce clutter. Dotted lines indicate red transitions. All states and all other
transitions, including the omitted reflexive ones, are green.

First, it is convenenient to define the following auxiliary action constants (all
Boolean and non-exogenous):

enter(a) iff a= go ∧ loc(a) = W
exit(a) iff a= go ∧ loc(a) = t

enter(b) iff b= go ∧ loc(b) = E
exit(b) iff b= go ∧ loc(b) = t

(29)

Again, these are introduced merely for convenience; the example can be con-
structed easily enough without them. Now we formulate the social laws:

not-permitted enter(a) if loc(b) 6= W
not-permitted enter(b) if loc(a) 6= E

(30)

Let Dtrains be the (C+)++ action description consisting of laws (25)–(30). The
coloured transition system defined by Dtrains is shown in Figure 9.2.

How do we test the effectiveness of the social laws (30)? Since the causal theory
ΓDtrains

1 encodes the transitions defined by Dtrains, the following captures the
property that if both trains comply with the social laws, no collisions will occur.

comp(ΓDtrains

1 ) |= ¬collision [0] ∧ trans[0] =green→ ¬collision [1] (31)

This can be checked, as in CCalc, by using a standard sat-solver to determine
that the formula comp(ΓDtrains

1 ) ∪ {¬collision [0]∧ trans[0] = green∧ collision [1]}
is not satisfiable. The property (31) is equivalently expressed as:

comp(ΓDtrains

1 ) |= ¬collision [0] ∧ collision [1]→ trans[0] = red (32)

which says that a collision occurs only following a transition in which either one
train or both violate the norms.
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Notice that comp(ΓDtrains

1 ) 6|= trans[0] = green→ ¬collision [1]: as formulated by
Dtrains, the transition from a collision state to itself is green.

One major advantage of taking C+ as the basic action formalism, compared
to other action formalisms in AI, is its explicit transition system semantics.
This enables a wide range of other analytical techniques to be applied. In
particular, system properties can be expressed in the branching time temporal
logic CTL and verified on the transition system defined by a C+ or (C+)++

action description using standard model checking systems. (See e.g. (Clarke
et al., 2000).)

We will say that a formula ϕ of CTL is valid on a (coloured) transition system
〈S, I(σa), R, Sgreen, Rgreen〉 defined by (C+)++ action description D when s∪ε |=
ϕ for every s ∪ ε such that (s, ε, s′) ∈ R for some state s′. The definition is
quite standard, except for a small adjustment to allow action constants in ϕ to
continue to be evaluated on transition labels ε. (And we do not distinguish any
particular set of initial states; all sets in S are initial states.) We will also say
in that case that formula ϕ is valid on the action description D.

In CTL, the formula AXϕ expresses that ϕ is satisfied in the next state in all
future branching paths from now.5 EX is the dual of AX : EXϕ ≡ ¬AX¬ϕ.
EXϕ expresses that ϕ is satisfied in the next state of some future branching
path from now. The properties (31) and (32) can thus be expressed in CTL as
follows:

¬collision ∧ trans = green→ AX¬collision (33)

or equivalently ¬collision ∧ EX collision → trans = red. It is easily verified by
reference to Figure 9.2 that these formulas are valid on the action description
Dtrains. Also valid is the CTL formula EX trans = green which expresses that
there is always a permitted action for both trains. This is true even in collision
states, since the only available transition is then the one where both trains
remain idle, and that transition is green. The CTL formula EF collision is also
valid on Dtrains, signifying that in every state there is at least one path from
then on with collision true somewhere in the future.6

(Sergot, 2005) goes on to consider more elaborate versions of the example: in
general, we want to be able to verify formally whether the introduction of ad-
ditional control mechanisms—additional controller agents, communication de-
vices, restrictions on agents’ possible actions—are effective in ensuring that
agents comply with the norms (‘social laws’) that govern their behaviour. These
more elaborate versions can be analysed in similar fashion.

5s0 ∪ ε0 |= AX ϕ if for every infinite path s0 ε0 s1 ε1 · · · we have that s1 ∪ ε1 |= ϕ.
6s0 ∪ ε0 |= EF ϕ if there is an (infinite) path s0 ε0 · · · sm εm · · · with sm ∪ εm |= ϕ for

some m ≥ 0.
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10 Conclusion

The language(s) (C+)++ provide an executable formalism for representing the
institutional aspects of agent societies (specifically, the ‘counts as’ relation be-
tween actions) and a simple treatment of permission for expressing norms or
‘social laws’ that govern their behaviour.

Definite, atom-conjunctive action descriptions of (C+)+, which are the action de-
scriptions of practical interest, can be implemented straightforwardly by trans-
lation to definite action descriptions of C+. We thus have direct routes to
implementation, using the established computational techniques for C+, such
as CCalc and translations to logic programs. And although in the paper we
only illustrated the use of CTL and model checking techniques in connection
with the permission component of (C+)++, it is clear that they can also be used
to verify system properties of action descriptions of (C+)+, such as the auction
protocol presented in Section 8.7.

The permission component of (C+)++ provides a means of distinguishing be-
tween permitted, acceptable, desirable (‘green’) states and transitions. It can
be used as an extension of C+, or in combination with the ‘counts as’ features,
as an extension of (C+)+. Definite action descriptions of (C+)++ cannot be
translated to C+ because of the ‘green-green-green constraint’ but they can be
translated to (definite) non-monotonic causal theories, requiring only very mi-
nor modification to existing computational tools such as CCalc. They can
also be used with model checking systems, as illustrated briefly with the ‘trains’
example in Section 9.6. In addition to verifying system properties that hold if
all agents/system components behave in accordance with norms/‘social laws’,
we are able to analyse system properties that hold when agents/system com-
ponents fail to comply with norms, and to analyse formally the effectiveness
of introducing additional control, enforcement, and recovery mechanisms. This
has been demonstrated on some small examples (see e.g. (Sergot, 2005)) but
there is no reason to think that the techniques would not scale up to realistic
examples, within the limits of existing model checking technology.

The semantical device employed in (C+)++, of partitioning states, and here
also transitions, into ‘ideal’ (‘green’) and ‘sub-ideal’ (‘red’), is familiar in the
field of deontic logic. It is essentially the same device as is employed in ‘Stan-
dard Deontic Logic’ (SDL). It has very well known inadequacies, particularly
in regard to the representation of ‘contrary-to-duty’ structures. To some extent
these problems are mitigated in (C+)++ because it is a richer representational
formalism than SDL and because it can deal with temporal aspects of ‘contrary-
to-duty’ where these are present. However, there are benchmark problems in
the deontic logic literature that will not receive adequate treatment in (C+)++.
A detailed evaluation of the permission component of (C+)++, and a discussion
of further possible refinements, is outside the scope of this paper and will be
covered separately elsewhere.

The language(s) (C+)++ inherit from C+ a number of very desirable features.
Besides implementation methods, and support for concurrent actions, non-
determinism, and indirect effects of actions, the underlying formalism of causal
theories provides a general purpose non-monotonic framework for expressing
defeasible general rules and defeasible effects of actions.
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The language(s) (C+)++ also inherit a number of important limitations. One
limitation is that causal rules can refer only to states and transitions at most
one time-step away from each other. This makes it impossible to refer directly
to the values of fluents further in the past, or to features of earlier transitions. In
the auction example of Section 8.7, for example, it was necessary to introduce
additional fluents to represent the last bid made in order to encode a simple
revocation mechanism. More complicated examples soon become unwieldy. We
might wish to say, for example, that three attempted invalid bids by an agent
in an auction are permitted, but a fourth is not. Relying on additional fluents
to record the relevant fragment of history not only increases the number of
states (exponentially) but also tends to make the representation obscure. It
is also impossible to say, directly, that the execution of one action causes the
execution of another action at the next time-step, or at some other time in
the future. These are limitations of C+ rather than of the causal theories into
which C+ is translated: Craven and Sergot (2005) present a generalisation of
C+ which removes this restriction, though it provides only a partial solution
and the corresponding (C+)++ extensions remain to be developed.

Other limitations of C+ and (C+)++ are limitations of transition systems gen-
erally. States and transitions are global, and so lack the structure required to
model large numbers of interacting components, such as multi-agent systems.
Transitions have no (explicit) duration, and there is no support for time metrics:
encoding delays and deadlines in C+ is awkward at best. Naturally there are
other structures in computer science that have been designed to overcome the
limitations of transition systems. One can imagine devising similar represen-
tational formalisms based on these other structures. The details are far from
trivial of course.

Besides addressing these various issues, current development of (C+)++ includes
the following topics:

• technical investigation of logical properties of C+ and of (C+)++ (see
(Sergot and Craven, 2005) for a preliminary study);

• experiments with the use of the CCalc-based implementation of (C+)++

as the reasoning engine for the ‘society simulator’ developed by Alexander
Artikis (Artikis et al., 2002) in place of the event calculus and C+ currently
employed;

• refinement of the representational formalism to provide more structure in
states, in two respects:

– support for multiple institutions (multiple ‘counts as’ relations)

– the introduction of local states, and local actions, for agents (and
environment) for modelling multi-agent systems;

• development of the EC+ implementation described in (Craven and Sergot,
2003) which provides an event calculus style of computation for queries
on (a subset of) C+ action descriptions;

• investigations of the use of C+ and (C+)++ as input languages for model
checking systems, specifically NuSMV (Cimatti et al., 2002).
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