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Abstract. Distributed language features form an important part of modern object-
oriented programming. In spite of their prominence in today’s computing envi-
ronments, the formal semantics of distributed primitives for object-oriented lan-
guages have not been well-understood, in contrast to their sequential part. This
makes it difficult to perform rigorous analysis of their behaviour and develop
formally founded safety methodologies. As a first step to rectify this situation,
we present an operational semantics and typing system for a Java-like core lan-
guage with primitives for distribution. The language captures the crucial but of-
ten hidden concerns involved in distributed objects, including object serialisation,
dynamic class downloading and remote method invocation. We propose several
invariant properties that describe important correctness conditions for distributed
runtime behaviour. These invariants also play a fundamental rôle in establishing
type safety, and help bound the design space for extensions to the language. The
semantics of the language are constructed modularly, allowing straightforward
extension, and this is exploited by adding primitives for direct code distribution
to the language: thunk passing. Typing rules for the new primitives are developed
using the invariants as an analysis tool, with type soundness ensuring that their
inclusion does not violate safety guarantees.

1 Introduction

Language features for distributed computing form an important part of modern object-
oriented programming. It is now common for different portions of an application to be
geographically separated, relying on communication via a network interface for coor-
dination. Distributing an application in this way confers many advantages to the pro-
grammer, such as resource sharing, load balancing, and fault tolerance [8]. Remote pro-
cedure call helps simplify such engineering practice by attempting to offer a seamless
integration of network resource access and local procedure calls.

The Java programming language is a popular choice for developing such systems,
with a highly dynamic and customisable class loading mechanism at its heart. Ap-
plets are a widespread example of code mobility derived from the use of custom class
loaders—when a user visits a page containing a Java applet, the virtual machine running
inside their web browser can automatically download and link the required classes with-
out user intervention. Obtaining classes automatically is fundamental to Java Remote
Method Invocation [26] (RMI). This is widely adopted for the Java platform and offers
the programmer a straightforward mechanism for accessing shared remote resources.
It fully exploits the customisable class loading system of the underlying language to
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allow code to propagate around the network. When objects are passed as parameters to
remote methods, if the provider of that method does not have the corresponding class
file, it may attempt to obtain it from the sender.

The semantics of RMI is different from normal, local method invocation. Passing a
parameter to a remote method (or accepting a return value) can involve many operations
hidden from the end-user, for the very reason of maintaining seamless integration with
the original language. For example, not all objects in RMI are passed by reference (un-
like local invocation): only those of classes implementing theRemote marker interface
are. All other objects are passed by value, which invokes the serialisation mechanism of
the language. Similarly, if an object of a class finds its way to a particular location that
does not have the byte-code for that class, it uses a customised class loading mechanism
to attempt to obtain the class from the network. Moreover, verifying that the received
class is safe to use may require the downloading of many others (such as the direct su-
perclass, classes mentioned in method bodies and so on). Typically the programmer is
only aware of these actions when something fails.

The presence of these hidden features at runtime makes the behaviour of a program
using idioms for distributed computation much more complex and less understandable
than a sequential one. Due to this complexity, the need to identify a precise semantics
for distributed primitives is arguably even greater. By having a good semantic account
for distribution, we may benefit from many of the useful outcomes of similar formal
studies in the context of sequential language features. For example, we can build a
basis for reasoning and verification of mobile code (e.g. applets, agents); we can use
the resulting theoretical framework for the analysis of new language constructs and
engineering methodologies; and we can discuss optimisations based on a clear semantic
understanding. Further, and perhaps most importantly, a good semantic account of the
features makes the life of the systems designer and implementor easier by providing a
reference framework for implementation.

This paper aims to give such a formal semantics for a core Java-like language with
basic programming primitives for distribution, extending existing core languages [18,
4]. A central challenge to modelling distributed features is to give a representation of
runtime behaviour that reflects the “hidden” elements discussed above. This includes
class downloading and serialisation; both are features that contribute to the observ-
able behaviour of a program. Another key activity, matching return points for a remote
method call, is non-trivial because of unavoidable interleaving of operations in a sys-
tem with multiple locations, even if the underlying programmer-level language does not
explicitly mention them. We show that a succinct representation of these runtime be-
haviours is indeed possible, partly using techniques from theπ [28] and Higher-Order
π-calculi [32]. One of the highlights is the use of alinear type discipline [21, 15] to
ensure correct intermediate state of RMI and its returns. The semantics avoids becom-
ing tied to a particular implementation of RMI by abstracting away concerns such as
the methods for resource binding or the use of stubs and skeletons (this is sensible since
implementation strategies change over time: for example, the need for skeletons was re-
moved in homogeneous, all-Java, systems when JDK version 1.1 moved to version 1.2).
The semantics is flexible and modular: we distill the key features of class downloading
and serialisation separately, so that important design choices (for example eager/lazy
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class downloading) can be easily reflected in the semantics. Our hope is that the formal
semantics we present here will offer a clear high-level understanding of the behaviour
of distributed extensions to Java-like languages, as well as contributing a starting point
for the further development and application of formal semantics to such languages.

Applying the proposed formal semantics, we first establish the most basic safety
property for any typed formalism: type soundness. Establishing type safety is highly
non-trivial, making use of manyinvariant propertieswhich runtime configurations
should satisfy over time. For instance, one simple example of an invariant says that if an
expression contains a reference to an instance of a local class, then that object should be
stored in the same physical location as the code in question. The invariants capture ba-
sic safety criteria for distributed states that we believe sensible implementations should
conform to. They can be used as a ’sanity check’ during the design of typing rules: if
an invariant is not guaranteed by reduction then it tends to point to a concrete issue in
typing rules as well as a possible remedy. The use of invariants in proving safety guar-
antees goes beyond type safety: as a simple example, we show progress properties can
also be derived from combinations of invariants.

As another use of the proposed formal machinery, we show how our framework can
incorporate a new primitive for distributed object-oriented programming,thunk pass-
ing, which passes fragments of code as a value in communication for later execution.
While well-known in languages like Scheme, Lisp and MetaML [1], and while having
significant usability in distributed object-oriented programming, we do not know a con-
sistent, type-safe language-level incorporation of this primitive for distributed Java-like
languages. Indeed, a typing rule for the primitive strong enough to ensure type safety
is far from obvious because of its interaction with the existing distributed primitives.
To find a sound typing rule, we use invariants as a tool for analysis (for example, thunk
passing leaks references to local objects over the network under a simple minded typ-
ing rule: the violation directly suggests how the rule can be strengthened). The resulting
typing rule guarantees preservation of fundamental properties such as type safety and
progress in the extended language. We also experiment with the incorporation of dis-
tributed failure to demonstrate extensibility of our framework.

We summarise our major technical contributions below.

– Introduction of a core calculus for a class based Java-like typed object-oriented pro-
gramming language with basic primitives for distribution, including dynamic class
downloading and serialisation. Its formal semantics centres on the representation of
runtime distributed configurations, uses techniques from process calculi, and treats
different design choices modularly, such as eager/lazy class downloading.

– A new technique to systematically prove type safety in distributed formalisms using
network invariants. The invariants represent healthiness conditions of distributed
states. Not only are they essential for proving type safety but also they are a useful
analytical tool for developing consistent typing rules.

– An integration of thunk-passing primitives into distributed object-oriented pro-
gramming, and establishment that their integration with RMI and class download-
ing mechanisms preserve type safety and progress. The typing rules for these prim-
itives are developed through the analysis of their interplay with invariants.
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In the remainder, Section 2 informally introduces the language we study in the
present work. Section 3 introduces its syntax. Section 4 lists the auxiliary definitions.
Sections 5 defines the operational semantics. Section 6 lists examples of the operational
semantics; two of them give a detailed analysis of behaviour of the programs listed in
Section 2. Section 7 defines the typing system. Section 8 proves the basic properties
of the typing system. Section 9 develops the invariants and progress properties. Sec-
tion 10 proves the subject reduction using the invariants. Section 11 discusses related
work. Section 12 concludes the paper with further topics. Appendix lists all rules for
the operational semantics and the typing system for reference.

2 Program Examples

This section illustrates the basic ideas of the small distributed Java-like language we
study in the present paper, using concrete programming examples. Consider the follow-
ing class definition:

1 class Server { int doTask ( Task t ){ return t . compute (); } }

A server can be created by instantiatingServer . The idea is simple—a site with pow-
erful computing resources can accept, via RMI calls,Task s, which specify the work
the compute server should perform on behalf of the supplier. Its code is as follows:

1 class Task { int compute (){ return 0; } }

In our simple setting we assume tasks return integers, but one could easily say that
a specialTaskResult class might be created for this purpose. Upon receipt of an
instance of theTask class (or a subclass of it), the server calls thecompute () method
on it. The client to such a server would look something like the following:

1 class Client {
2 Server s;
3 Client ( Server s) { this . s = s; }
4 int gcd ( int a, int b) { return s. doTask ( new GcdTask ( a, b)); }
5 }
6 class GcdTask extends Task {
7 int a, b;
8 GcdTask ( int a, int b) { this . a = a; this . b = b; }
9 int compute () {

10 int r = 0;
11 while ( true ) {
12 if ( this . b == 0) {
13 return this . a;
14 } else {
15 r = this . a % this . b;
16 this . a = this . b;
17 this . b = r ;
18 }}}}
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Here, the client wishes the server to compute the greatest common divisor of two inte-
gers using an iterative version of Euclid’s algorithm. To do so, the programmer creates a
subclassGcdTask with the correct body overriding thecompute () method of class
Task . The client requests work be done by the server by making the remote method
call s. doTask ( t ) and awaiting the result.

The behaviour of the above program, although conceptually simple, contains sig-
nificant elements which cannot be captured in purely sequential (or non-distributed)
formalisms. Firstly, the server site may not have a copy of the classGcdTask : in
which case, it is standard practice in RMI that the site will request a copy of the class
binary (byte code) from the client, invoking remote communication. In contrast, non-
distributed formalisms assume all classes are available locally. A second observation
is that, when sending the instance of theGcdTask to a server, if that class does not
implement theRemote interface, then the sender site invokes the serialisation mecha-
nism. Again, a non-distributed formalism does not have to consider passing objects by
value, hence ignore this aspect. Semantically, however, the distinction between remote
references and local references is essential in RMI (in Java and other similar languages),
so this distinction and associated behaviour should be modelled. Finally, in the above
example, it is natural to expect that many clients could be handled by a single server,
so the formalism should support concurrency. Formal semantics of distributed objects
must inevitably include runtime behaviour, such as a remote invocation in transit, a re-
turn message in transit, and a request for a class to be downloaded and a class being
delivered. Unlike in sequential formalisms, representation of these intermediate states,
or runtime, is a fundamental part of the formal semantics. We shall later present a simple
way to represent them borrowing ideas from a (typed) HOπ-calculus.

The class downloading mechanisms in RMI realise a natural method for transferring
code over network. The design space for code passing is however not limited to them.
Another construct which complements class downloading may realise code mobility
more explicitly, in the form known asthunk passing[1]. Later sections will examine
the introduction of this primitive from a formal viewpoint. Here let us illustrate this
primitive and its significance using the previous example of a task server. As mentioned,
if the server does not have the classGcdTask , it must download it. Not only does this
add an extra burden of making sure that any class the server might need to perform its
job is available in a directory accessible via the network; it also leads to low efficiency
and high rate of failures. Suppose there is a deep inheritance hierarchy aboveGcdTask
. Then the server, after obtaining the class, must fetch all of its superclasses as needed.
This can require several trips across the network, increasing the risk of failure and
adding latency. Further, the “compute server” is tightly coupled with the notion of a
Task —any work that a client wishes to do must be cast in this framework. These
issues arise because class downloading does not allow direct, fine-grained control of
code passing by programming.

Primitives for the creation and execution of a thunk, which we writefreeze[t](e)
anddefrost(e), solve this issue. First we give the code for the server:

1 class ThunkServer {
2 int compute ( thunk ( int ) t ) { return defrost ( t ); }
3 }
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As one can see, it makes no mention of any class—its only stipulation is that the thunk in
question, whendefrosted(read: evaluated), returns something of typeint . That is not
to say that the body of the thunk cannot use any other classes, but the server developer
is not tied to any particular representation of the work to be done. Next we show the
code for the modified client:

1 class ThunkClient {
2 ThunkServer s;
3 ThunkClient ( ThunkServer s) { this . s = s; }
4 int gcd ( int a, int b) {
5 thunk ( int ) g =
6 freeze [ t ](
7 int x = a;
8 int y = b;
9 int r = 0;

10 while ( true ) {
11 if ( y == 0) {
12 return x;
13 } else {
14 r = y % x;
15 x = y;
16 y = r ;
17 }});
18 return s. compute ( g);
19 }}

Here, the client makes use of thefreeze[t](e) expression of the language. Instead of
sending a class embodying the code for Euclid’s algorithm, the client first creates a
frozen representation of that algorithm, sending this instead. The only minor difference
between the body of thecompute () method ofGcdTask and the thunk is at lines
7 and 8. These two lines simply copy the formal method parametersa andb into the
body of the thunk, so that at the executing site it computes the correct result. Then, the
client supplies the server with the thunkg which the server can defrost and run.

Given this primitive, code passing becomes fully controllable at the user-level: the
server is no longer tied to a particular convention for the shape of tasks, while the client
does not need to create a new class for each individual task. Most importantly, it offers
a natural mechanism for a client to explicitly specify how a piece of code is passed to
a server, using distinct tagt for thunking which we shall explain in Section 3. The cost
of expressiveness is subtlety in its typing, which we shall explore in Section 7.

Finally, good formal semantics should precisely and concisely capture semantic
differences between significant design choices. One such choice arises in the way class
downloading is executed. Ineagerclass downloading, the code for all associated classes
will be sent immediately once and for all. Inlazyclass downloading (which the current
standard implementation employs), each associated class will be fetched one by one as
it becomes necessary at a remote site. This distinction has significant consequences in
failure semantics as well as in efficiency. It is thus desirable that the formal semantics
can cleanly capture these two ideas, just as the formal semantics of sequential languages
can cleanly represent both call-by-name and call-by-value calling conventions.



Formal Analysis of a Distributed Object-Oriented Language and Runtime 7

3 Language

This section presents the formal syntax of the language, which we call DJ. We consider
a configuration consisting of multiple hosts (virtual machines) for a single high-level
class-based language. Inter-host communication is by remote method invocation. Pa-
rameters to remote methods may include base values, references to remote objects, and
most interestingly, references to objects local to the caller. During a remote invocation,
the parameters are implicitly marshaled and unmarshaled by the sending and receiv-
ing sites. In brief, marshaling is the process of transforming parameters from their “in
memory” representation into one suitable for transmission over the network. Unmar-
shaling is the dual to this. We allow the explicit marshaling and unmarhsaling of data
and arbitrary programs carrying local code (classes). Related to all these features is the
provision for automatic, dynamic class downloading from the remote site. The language
demonstrates the key aspects of RMI and code distribution in Java and the CLR [19, 7],
making its operational semantics non-trivial. In spite of the simple syntax extension for
distribution, its operational semantics are largely governed by runtime behaviour hidden
from the programmer. Hence the language DJ is formalised in two kinds of syntax—
that which is used for writing programs at each local site, which we calluser syntax,
and that which occurs only at runtime as intermediate forms, which we callruntime
syntax.

3.1 User syntax

We first introduce the user syntax in Fig. 3.1. The syntax is an extension of FJ [18]
and MJ [4] augmented with basic primitives for distribution, including those for thunks
discussed in Section 2.

The metavariablesT andU range over expression and statement types of the lan-
guage.T represents expression types: booleans (these are the only base values con-
sidered), class names (ranged over byC,D,E,F), thunked expressions of typeU and
serialised objects of typeC. The metavariableU ranges over the same types asT but is
augmented with the special typevoid with the usual empty meaning.

Class declarations are ranged over byL, constructors byK and method declarations
by M. f ranges over field names,m ranges over method names andx is used to denote
both local variables and formal parameters.~f denotes a vector of fields, and~T~f is
short-hand for a sequence of typed field declarations:T1 f1; . . . ;Tn fn. We apply similar
abbreviations to other sequences. We assume sequences contain no duplicate names.

The declarationclassC extends D{~T~f ; K ~M} introduces a class namedC with a
direct superclassD. It has fields~f with types~T, a constructorK and several methods
written ~M. In the Java language, fields may be redeclared in a subclass, with the new
definition shadowing that found in the superclass. To simplify, we assume that any
fields declared inC will have different names to any fields declared in superclasses, an
approach also adopted in FJ. However, we do allow the overriding of methods with the
same names by a subclass and the addition of new methods.

Constructors are written in the formC (~T~f ){super(~f );this.~f := ~f}. This ini-
tialises a new instance of classC by first initialising the fields of the superclasses via
a call tosuper. The fields declared inC itself are then initialised via a sequence of
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T ::= bool |C | thunk(U) | ser(C) Types

U ::= void | T

L ::= classC extends D{~T~f ; K ~M} Classes

K ::= C (~T~f ){super(~f );this.~f := ~f} Constructors

M ::= U m(~T~x){e} Methods

e ::= v | x | this | if ethen eelse e | e.f | e;e | T x= e Expressions

| pe| return e | return | serialize(e) | deserialize(e)
| freeze[t](e) | defrost(e)

pe::= x := e | e.f := e | newC(~e) | e.m(~e) Promotable

v ::= true | false | null Values

t ::= eager | lazy Tags

CSig ::= /0 | CSig ·C : extends D [remote] ~T~f {mi : ~Ti →Ui} Class Signatures

Fig. 3.1.User syntax

the formthis.~f := ~f . There must be precisely the correct number of parameters in the
constructor declaration as there are fields in the class and all superclasses. This ensures
correct initialisation.

Methods are declared asU m(~T~x){e}. This denotes a method calledmthat returns a
value of typeU . It takes parameters~x with types~T. The body of the method is repre-
sented by expressione. Values ranged over byv have standard meaning, as do expres-
sions,e, except for the following important new primitives.

Expressions in the language are denoted bye. The syntax of expressions is standard
except the two pairs of distributed primitives. It consists of values, variables (ranged
overx,y, ..), branchings, field accesses, sequencing and local variable declarations. We
also have a special class of promotable expressions denotedpe [4, 9]; computation of
any expression results in a value, but we allow promotable expressions to be used where
their return value is not needed, such as in sequences of expressions.

We now introduce the two pairs of distributed primitives. The first pair is for se-
rialisation.serialize(e) takes the value computed by the expressione and serialises
it. This produces a new value that is suitable for transfer over the network (in Java,
serialisation writes to a byte stream [25]: while the original form is treatable, the cho-
sen syntax leads to a simpler presentation of typing rules).deserialize(e) takes the
serialised value computed by expressioneand converts it back into a structured form.

The other pair of primitives for distribution are for creating thunks.freeze[t](e)
takes the expressioneand, without evaluating it, produces a frozen representation of its
code. The expression is not evaluated, but is stored for later use as a value. The tagt is
a flag to control the amount of class information sent along withe by the user. If s/he
specifieseager, then the code is automatically frozen together with all classes thatmay
be used. Iflazy is specified, it is the responsibility of the receiving virtual machine to
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obtain missing classes. Dual to freezing, the actiondefrost(e) expects the evaluation
of expressione to produce a piece of frozen code, which will then be executed.

v ranges over values, which consists with boolean constants andnull.
Finally, a class signatureCSig is a mapping from class names to their interface types

(or signatures). We assumeCSig is given globally (this does not lose generality since
uniqueness of each class is maintained through its digital signature in standard imple-
mentations), unlike class tables which are maintained on a per-location basis. Attached
to each signature is the name of a direct superclass, as well as the declaration “remote”
if the class is remote. For a classC, the predicateremote(C) holds iff “remote” appears
in CSig(C); otherwiselocal(C) holds (the formal definition appears in Definition 4.7).
Class signatures contain only the types of fields and expected method signatures, not
their implementation. This provides a lightweight mechanism for determining the type
of remote methods.

For simplicity, we omit casting [18, 4], exceptions [3], synchronisation [12] and
multiple inheritance; adaptations with these features are straightforward.

3.2 Runtime syntax

The runtime syntax in Fig. 3.2 extends the user syntax and represents a distributed state
of multiple sites communicating with each other, including remote operations in transit.

e ::= · · · | newCl (~v) | download ~C from l in e | resolve ~C from l in e Expressions

| await c | Error
v ::= · · · | o | pewith CT from lq | λ~o.(~v,σ , l) | ε |~v Values

u ::= x | n Identifiers

n ::= o | c Names

P ::= 0 | P1 |P2 | (ν u)P Threads

| go ewith c | ewith c | return(c) e | go eto c | Error
F ::= (ν~u)(P,σ ,CT) Configurations

N ::= 0 | l [F ] | N1 |N2 | (ν u)N Networks

σ ::= /0 | σ · [x 7→ v] | σ · [o 7→ (C, ~f :~v)] Stores

CT ::= /0 | CT · [C 7→ L] Class Tables

Fig. 3.2.Runtime Syntax

The syntax useslocation names l,m, . . . which can be thought of as IP addresses
in a network.Tagged class names, written Cl , indicate that the body of classC can
be obtained from locationl . Typically when code is shipped around the network, class
names will be decorated with these labels so that consumers of expressions can safely
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request resources they need for execution [26,§3.4]. We writeC when the treatment of
class nameC is independent of whether it is tagged or not.

The first three extended expressions are used to define the machinery for class down-
loading. The tagged class creation, “new Cl (~v)”, is going to download the classC from
l before executing new operator. “download ~C from l in e” downloads classes~C from
locationl before executinge; “resolve ~C from l in e” checks superclasses of~C at the
location l . These facilitate automatic class downloading and intuitively adopt the task
of theRMIClassLoader class [26,§5.6].

“await c” is used for RMI, which is explained with threads. The distinguished
expressionError is the result of a computation that de-references a null pointer.

The fourth line extends values. Object identifierso, . . . denote references to in-
stances of classes as well as the destination of an RMI call. We shall frequently write
“o-id” for brevity. Channelsc, . . . are fundamental to the mechanism of method invo-
cation and determine the return destination for both remote and local method calls, as
illustrated in the operational semantics later. We callo andc names, ranged overn.

Identifiers,u, range over namesn and variablesx.
The second extended value is athunked expression(or thunkfor brevity), a “frozen”

piece of code that can be passed between methods as a value. Later, it can be “defrosted”
at which point it is executed to compute a value.pe with CT from lq denotes an ex-
pressione frozen with class tableCT from l . CT ships class bodies that may be used
during the execution ofe. If it is empty and the party evaluatinge lacks a required class,
it should attempt to download a copy froml .

The third extended valueλ~o.(~v,σ , l) is a serialised array (orblob for brevity), which
is a flattened data representation suitable for transfer over the network. Inλ~o.(~v,σ , l),~v
contains the values for transfer. Eachvi ∈~v is treated differently according to its nature.
If vi is a base value or the identifier of a remote object then it is included without special
treatment. However for eachoi ∈~v, whereoi is an identifier of a local object then this
object must be flattened for transfer. This creates the object graphσ , containing all
the local objects transitively referenced by eachoi . The final component of a blob is
the location namel , indicating where it was created. The fourth extended value is the
empty valueε used as a placeholder for a return value by methods declared asvoid.

Threads, ranged over byP,Q,R, comprise several expressions that can be evaluated
in parallelP|Q and also the new name operator(ν u)P for restricting identifieru (which
should not be confused with new object creation).0 denotes an empty thread. This
notation comes from theπ-calculus [28]. It also includesError which denotes the
result of communication failure. The last four primitives are essential to represent the
RMI mechanism.c is the channel created at runtime when we spawn a thread for RMI.
“await c” is a placeholder waiting for the result of RMI atc. “go e with c” and are
“ewith c” are messages to access remote methods carrying “return(c) e” is the result
of the method invocation; and “go e to c” is a message going back to “await c” in
the remote location. The detailed explanation of these primitives is given together with
operational semantics in§ 5.6.

We represent an instance of a virtual machine by aconfiguration, ranged over by
metavariableF . A configuration is written(ν~u)(P,σ ,CT) and consists of some threads,
P, a storeσ containing local variables and objects and a class table writtenCT. We
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surround the configuration by a possibly empty vector of restricted names,ν~u which
limits the scope of local names and variables.

Networks, writtenN, comprise zero or more configurations executing in parallel.
0 denotes the empty network.l [F ] denotes a configurationF executing at locationl .
N1|N2 and(ν~u)N are understood as in threads. The scope of restricted identifiers can
be opened across different located configurations using the structural equivalence rules
explained later to permit remote method invocation.

Finally stores, ranged over byσ , σ ′..., consist of a mapping from variable names to
values, written[x 7→ v], or from object identifiers to store objects, written[o 7→ (C, ~f :~v)]
indicating that identifiero maps to an object of classC with a vector of fields with values
~f :~v. Class Tables,CT, are a mapping from undecorated class names to class definitions
(metavariableL in Fig. 3.1).

4 Auxiliary definitions

The operational semantics, typing rules and structural equivalences of DJ depend on
several auxiliary definitions. These are explained in this section. The most important
definitions are the object graph in Definition 4.8 and the class graph in Definition 4.12,
which are used to formulate the operational semantics for serialisation and code-mobility
respectively. The reader can skip this section and come back when necessary.

Definition 4.1 (Domains).The functionsdomv anddomo compute the domain of vari-
able mappings and object mappings of a term respectively. They are inductively defined
over networksN, configurationsF and storesσ , and are given in Fig. 4.1. We adopt the
conventiondom(σ) = domv(σ)∪domo(σ). Similarly for F andN.

The store at a location can be split into two parts—cells containing the values of vari-
ables and cells containing objects. The domains of a given storeσ are denoteddomv(σ)
anddomo(σ) for the variable and object parts respectively. The domains of a configura-
tion are defined as the domains of the store part of that configuration, minus any names
restricted by it, while that of a network are defined as the sum of the domains of all the
configurations making up the network, minus any names restricted at the network level.

Definition 4.2 (Lookup functions). In Fig. 4.2, we provide several functions for deter-
mining the types of fields and methods for a particular class, and for retrieving the code
that forms the body of methods. The distinguished classOb ject contains no fields or
methods, and so forms the base for recursive definitions.

Fields. The fields of a classC, written fields(C) yields a sequence~T~f where fi is the
name of a field andTi is the type of that field according to the class signature forC. We
write • to represent the empty sequence of fields.

Method interface.The type of a particular methodm in classC according to the class
signature is given by the functionmtype(m,C), and is denoted~T →U to indicate that
the method takes a sequence of parameters of type~T and returns a value of typeU . This
corresponds to the interface of the method.
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domv domo

Configurations

(ν~u)(P,σ ,CT) domv(σ)\ fv(~u) domo(σ)\ fn(~u)
Networks

0 /0 /0
l [F ] domv(F) domo(F)
N1 |N2 domv(N1)∪domv(N2) domo(N1)∪domo(N2)
(ν u)N domv(N)\ fv(u) domo(N)\ fn(u)

Stores

/0 /0 /0
σ · [x 7→ v] {x}∪domv(σ) domo(σ)
σ · [o 7→ (C, ~f :~v)] domv(σ) {o}∪domo(σ)

Fig. 4.1.Domains

Method body.Unlike lookup of fields and method types which rely on the lightweight
CSig, the code supplying the body of a method is obtained from the local class table
CT. The function callmbody(m,C,CT) returns a pair(~x,e) where~x denotes the formal
parameters of the method ande is the body of the method.

Valid method overriding.As in the Java language, any overriding method in a subclass
must have the exact same signature as declared for that method by the superclass. If
override(m,D,~T ′→U ′) is defined then this means thats the new signature for methodm
in classD is such a correct overriding.

Definition 4.3 (Free class names).A class nameC is defined asfree if it is the subject
of an instantiation operation (writtennew C(. . .)). The set of free class names for a
given term is given by the functionfcl which is defined over expressions, threads and
class table entries. The free class names of a valuev is defined asfcl(v) = /0. The free
class names of an expression are defined recursively as the union of the free class names
of all sub-expressions, with the exception that:

fcl(newC(~e)) =
⋃

fcl(ei)∪{C} and importantly: fcl(newCl (~e)) =
⋃

fcl(ei)

For threads, the definition is equally obvious:

fcl(0) = /0 fcl(P1 |P2) =
⋃

fcl(Pi) fcl((ν u)P) = fcl(P)

Finally, for class table entries we retrieve the free class names appearing in the bodies
of methods:

fcl(classC extends D{~T~f ; K ~M}) =
⋃

fcl(ei) whereMi = Ui mi (~Ti~xi){ei}
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Field lookup

fields(Ob ject) = •

CSig(C) = extends D ~T~f {mi : ~Ti →Ui}
fields(D) = ~T ′~f ′

fields(C) = ~T ′~f ′,~T~f

Method type lookup

CSig(C)=extends D [remote] ~T~f {mi:~Ti→Ui}

mtype(mi,C) = ~Ti
′→U ′

i

CSig(C)=extends D [remote] ~T~f {mi:~Ti→Ui} m/∈{~m}

mtype(m,C) = mtype(m,D)

Method body lookup

CT(C)=class C extends D{~T~f ;K ~M}
U m(~T~x){e} ∈ ~M

mbody(m,C,CT) = (~x,e)

CT(C)=class C extends D{~T~f ;K ~M}
U m(~T~x){e} /∈ ~M

mbody(m,C,CT) = mbody(m,D,CT)

Valid method overriding

mtype(m,D) = ~T →U implies~T = ~T ′ andU = U ′

override(m,D,~T ′→U ′)

Fig. 4.2.Lookup functions

Definition 4.4 (Free variables and names).The functions for determining free vari-
ablesfv and free namesfn are defined in Fig. 4.3. The functionfnv(N) is defined as
fv(N)∪ fn(N). Variables, represented byx, range over local variables in threads and
variables mentioned in both the domainand the co-domain of store mappings.

Names are more complex—a name can be either an object identifier (usually written
o) or a channel name (writtenc). Object identifiers can appear in both threads and stores
(in both the domain and co-domain), whereas channels are only permitted at the thread
level.

The following definition is used to define the rule for creating thunks.

Definition 4.5 (Free assigned variables).The functionfav(e) returns the free assigned
variables in expressione. Its definition is identical to that offv(e) with the exception
that:

fav(x) = fav(this) = /0

For example,fav(x := y) = {x}, while fv(x := y) = {x,y}. Other cases are omitted for
brevity as they can easily be constructed from Fig. 4.3.

Definition 4.6 (Location names).The location names functionloc(N) is defined over
inductively over the structure of networkN and returns, as a set, the names of the loca-
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fv fn
Values
true,false,null,ε,Error /0 /0
o /0 {o}
pewith CT from lq fv(e)∪ fv(CT) fn(e)∪ fn(CT)
λ~o.(~v,σ , l) fv(~v)∪ fv(σ) (fn(~v)∪ fn(σ))\{~o}
~v

⋃
fv(vi)

⋃
fn(vi)

Expressions
x {x} /0
this {this} /0
if ethen e1 else e2 fv(e)∪ fv(e1)∪ fv(e2) fn(e)∪ fn(e1)∪ fn(e2)
e.f fv(e) fn(e)
e;e′ fv(e)∪ fv(e′) fn(e)∪ fn(e′)
T x= e ; e′ fv(e)∪ (fv(e′)\{x}) fn(e)∪ fn(e′)
x := e {x}∪ fv(e) fn(e)
e.f := e′ fv(e)∪ fv(e′) fn(e)∪ fn(e′)
newC (~e)

⋃
fv(ei)

⋃
fn(ei)

e.m(~e)
⋃

fv(ei)∪ fv(e)
⋃

fn(ei)∪ fn(e)
return e fv(e) fn(e)
return /0 /0
serialize(e) fv(e) fn(e)
deserialize(e) fv(e) fn(e)
freeze[t](e) fv(e) fn(e)
defrost(e) fv(e) fn(e)
return(c) e fv(e) {c}∪ fn(e)
await c /0 {c}
[go] ewith c fv(e) fn(e)∪{c}
go eto c fv(e) fn(e)∪{c}
downloadC from l in e fv(e) fn(e)
resolveC from l in e fv(e) fn(e)

Configurations
(ν n)F fv(F) fn(F)\{n}
(ν x)F fv(F)\{x} fn(F)
(P,σ ,CT) fv(P)∪ fv(σ)∪ fv(CT) fn(P)∪ fn(σ)∪ fn(CT)

Threads
0 /0 /0
P1 |P2 fv(P1)∪ fv(P2) fn(P1)∪ fn(P2)
(ν n)P fv(P) fn(P)\{n}
(ν x)P fv(P)\{x} fn(P)

Networks
0 /0 /0
l [F ] fv(F) fn(F)
N1 |N2 fv(N1)∪ fv(N2) fn(N1)∪ fn(N2)
(ν u)N fv(N)\ fv(u) fn(N)\ fn(u)

Stores
/0 /0 /0
σ · [x 7→ v] {x}∪ fv(v)∪ fv(σ) fn(v)∪ fn(σ)
σ · [o 7→ (C, ~f :~v)] fv(~v)∪ fv(σ) {o}∪ fn(~v)∪ fn(σ)

Class Tables
/0 /0 /0
U m(~T~x){e} fv(e)\{~x} fn(e)
classC extends D{~T~f ; K ~M}

⋃
fv(Mi)

⋃
fn(Mi)

CT · [C 7→ L] fv(L)∪ fv(CT) fn(L)∪ fn(CT)

Fig. 4.3.Free variables and names
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tions comprising a given networkN. It is defined as follows:

loc(0) = /0 loc(l [F ]) = {l}
loc(N1 |N2) = loc(N1)∪ loc(N2) loc((ν u)N) = loc(N)

Definition 4.7 (Local and remote classes).The formal definition of remote and local
classes is as follows: a typeU is said to be local class if thelocal(U) predicate is true.

local(U) =

{
true if CSig(U) = extends D ~T~f {mi : ~Ti →Ui}
false otherwise

If the remote(U) predicate is true, that type is said to be remote class.

remote(U) =

{
true if CSig(U) = extends D remote ~T~f {mi : ~Ti →Ui}
false otherwise

If neither predicate is true, the type is not a class.

The following definition is used for formulating the serialised object identifier.

Definition 4.8 (Object graph). The functionog(σ ,v) computes the object graph of
valuev in storeσ . This is defined as the set of all mappings from object identifier to
store object for every local object transitively referenced by local object identifierv. If
the valuev refers to a remote object, or a base value such as a boolean, then the object
graph is empty. The algorithm is defined as follows:

og(σ ,v) =

{
/0 if v /∈ domo(σ)∨ remote(C)
[v 7→ σ(v)]

⋃
og(σi ,oi) otherwise

whereσ(v) = (C, ~f :~v), {~o}= fn(~v), σ1 = σ \{v} andσi+1 = σi \domo(og(σi ,oi)).

It is easy to show that, givenσ andv, the algorithm always terminates.

Example 4.9(Object graph computation).Suppose:σ = σ ′ · [a 7→ (A, f ′ : b,g : c)] · [b 7→
(B, f ′ : d,g : e)] · [c 7→ (C, f ′ : f ,g : a)] · [d 7→ (D, f ′ : f ,g : a)] · [e 7→ (E, f ′ : f )] · [ f 7→
(F,ε)] wheredom(σ ′)∩{a,b,c,d,e, f ,g} = /0. We assumeD is remote and others are
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local. We computeog(σ ,a) as follows:

og(σ ,a) = [a 7→ (A, f ′ : b,g : c)]∪σ1

∪ og(σ \ ({a}∪domo(σ1)),c)
whereσ1 = og(σ \{a},b)

og(σ \{a},b) = [b 7→ (B, f ′ : d,g : e)]∪σ2

∪ og(σ \ ({a,b}∪domo(σ2)),e)
whereσ2 = og(σ \{a,b},d)

og(σ \{a,b},d) = /0 asremote(D)
og(σ \{a,b},e) = [e 7→ (E, f ′ : f )]∪og(σ \{a,b,e}, f )
og(σ \{a,b,e}, f ) = [ f 7→ (F,ε)]
og(σ \ ({a}∪domo(σ1)),c) = [c 7→ (C, f ′ : f ,g : a)]∪σ3

∪ og(σ \ ({a,b,e, f ,c}∪domo(σ3)),a)
whereσ3 = og(σ \{a,b,e, f ,c}, f )

og(σ \{a,b,e, f ,c}, f ) = /0
og(σ \ ({a,b,e, f ,c}∪domo(σ3)),a) = /0

Therefore we obtain:

og(σ ,a) = [a 7→ (A, f ′ : b,g : c)] · [b 7→ (B, f ′ : d,g : e)] · [e 7→ (E, f ′ : f )]
· [ f 7→ (F,ε)] · [c 7→ (C, f ′ : f ,g : a)]

Figure 4.4 shows the calculation of the above example where the arrow denotes a pointer
to the store which contains the local class, while the dotted arrow shows that to the store
which contains the remote class. The region denoted by the dashed lines represents the
stores which are collected at each step.

We introduce the preliminary notion ofreachability.

Definition 4.10 (Object graph reachability). The predicatereachable(σ ,o,o′) holds
if there exists a path in storeσ from the object with identifiero to the object with
identifiero′. This can be an immediate link (wheno′ is stored in a field ofo), or it can
be via the fields of one or more intermediaries. This is defined below:

reachable(σ ,o,o′) ⇐⇒ (o′ ∈ fn(~v)∨∃o′′ ∈ fn(~v).reachable(σ ,o′′,o′))

whereσ(o) = (C, ~f :~v)

This predicate may be used to construct the relationRCHσ containing all reachable
pairs of objects in a storeσ :

RCHσ = {(o,o′) | ∀o,o′ ∈ domo(σ).o 6= o′∧ reachable(σ ,o,o′)}

Definition 4.10 is important. Our object graph algorithm must, to be correct, pre-
serve the tree structure of the store when copying objects. In other words, it must
preserve this reachability relation. To determine correctness of the algorithm in Def-
inition 4.8, we introduce the notion of acomplete object graphin Definition 4.11.
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[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

(a) Initial store

[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

[a 7→ (A, f ′ : b,g : c)]

(b) a collected

[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

(c) a,b collected

[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

(d) a,b,ecollected

[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

(e)a,b,e, f collected

[a 7→ (A, f ′ : b,g : c)]

[b 7→ (B, f ′ : d,g : e)] [c 7→ (C, f ′ : f ,g : a)]

d [e 7→ (E, f ′ : f )] [ f 7→ (F,ε)]

(f) Completed object graph

Fig. 4.4.Object graph example

Definition 4.11 (Complete object graph).For a storeσ and an object graphσg com-
puted from that store, the predicateog comp(σ ,σg) holds if computed graph preserves
the reachability relation for all object identifiers in its object domain. GivenRCHσ and
RCHσg as in Definition 4.10:

og comp(σ ,σg) if ∀o∈ domo(σ)∩domo(σg).(o,o′) ∈ RCHσ ⇐⇒ (o,o′) ∈ RCHσg
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This property ensures all links are correctly copied to the graphσg, and no new links
are created. An interesting point is that the algorithm used to compute the class graph
can safely add extra objects intoσg without violating this property iff those objects are
unreachablefrom any other that should be in the graph. Intuitively, safety is preserved
since the recipient of such an object graph will merely add an unreachable element to
its store (which could be immediately garbage collected). Of course, such behaviour
may be inefficient because garbage data may be transmitted across the network.

The next definition is used to calculate a class table which is frozen when we create
a thunked expression.

Definition 4.12 (Class graph).The functioncg(CT,T) computes the class graph of
type T in class tableCT. It is defined as the set of all classes referenced transitively
from the typeT in CT. A class name is referenced if it appears in any of the method
bodies defined in a class, or if it is defined as the direct superclass. The algorithm is
defined as follows:

cg(CT,bool) = cg(CT,void) = /0

cg(CT, ~M) =
⋃

cg(CT,Mi)

cg(CT,U m(~T~x){e}) = cg(CT,e)

cg(CT,C) =

{
/0 if C /∈ dom(CT)∨C∈ dom(FCT)
cg(CT,CT(C)) otherwise

cg(CT,Cl ) = /0

cg(CT,~C) =
⋃

cg(CT,Ci)

cg(CT,e) = cg(CT, fcl(e))

cg(CT,classC extends D{~T~f ; K ~M}) = cg(CT\C,D)∪ cg(CT\C, ~M)

∪ [C 7→ classC extends D{~T~f ; K ~M}]

Definition 4.13 (Complete class table).We say a class tableCT is complete with re-
spect toclassC. if the following predicate holds:

comp(C,CT) def= ∀D C <: D. D ∈ dom(CT)

We say a class tableCT is completeif the following predicate holds:

ct comp(CT) def= ∀D ∈ dom(CT). comp(D,CT)

Intuitively a class tableCT is said to be complete if for every classC∈ dom(CT), every
superclass ofC is also available inCT. Completeness is essential for proper instantiation.
Note thatcg(CT,C) generates the transitive closure of the superclasses ofC. Lemma 8.4
shall show that ifCT is typable,cg(CT,C) returns a subset ofCT which is complete
together withFCT.
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Definition 4.14 (Substitutions). In the calculus there are three different kinds of sub-
stitution: those pertaining to the update of the store by assignments, those applied to the
method call mechanism (such as substituting the actual receiver for the distinguished
expressionthis), and those related to class labelling. We show each in turn.

For a store object(C, ~f :~v), the substitution[ f 7→ v] is defined as follows ifff ∈ ~f :

(C, ~f1, f , ~f2 :~v1,v,~v2)[ f 7→ v′] = (C, ~f1, f , ~f2 :~v1,v
′,~v2)

Substitution of objects in the store is defined as follows:

/0[o 7→ (C′, . . .)] = /0

σ · [x 7→ v][o 7→ (C′, . . .)] = σ [o 7→ (C′, . . .)] · [x 7→ v]
σ · [o′ 7→ (C, . . .)][o 7→ (C′, . . .)] = σ [o 7→ (C′, . . .)] · [o′ 7→ (C, . . .)]
σ · [o 7→ (C, . . .)][o 7→ (C′, . . .)] = σ · [o 7→ (C′, . . .)]

For non-object store entries, substitutions are defined as follows:

/0[x 7→ v] = /0

σ · [x 7→ v][x 7→ v′] = σ · [x 7→ v′]
σ · [y 7→ v][x 7→ v′] = σ [x 7→ v′] · [y 7→ v]

σ · [o 7→ (C, . . .)][x 7→ v′] = σ [x 7→ v′] · [o 7→ (C, . . .)]

We now consider the substitutions used in method invocation. Forreceiversubstitution
e[o/this] is defined recursively over all sub-expressions ofe. The only interesting base
case is as follows:

this[o/this] = o

Similarly, returnsubstitutione[return(c)/return] is defined recursively over the sub-
expressions ofewith:

(return e)[return(c)/return] = return(c) (e[return(c)/return])

For example,

(if ethen (e1;return e2) else (return e3))[return(c)/return]
def= if ethen (e1;return(c) e2) else (return(c) e3)

Class labelling substitutions[Cl/C] are defined as follows:

classC extends D{~T~f ; K ~M}[F l/F ] = classC extends D{~T~f ;K (~M[F l/F ])}
U m(~T~x){e}[F l/F ] = U m(~T~x){e[F l/F ]}

As with the other substitutions,e[F l/F ] is defined recursively over all sub-expressions
of e. The only interesting case is:

new F(~e)[F l/F ] = new F l (~e′) wheree′i = ei [F l/F ]
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Configurations

(ν u)P,σ ,CT≡ (ν u)(P,σ ,CT) u /∈ fn(σ)∪ fn(CT)

(ν u)(ν u′)F ≡ (ν u′)(ν u)F

(ν x)(P,σ · [x 7→ v],CT)≡ P,σ ,CT x /∈ fv(P)

(ν o)(P,σ · [o 7→ (C, ~f :~v)],CT)≡ P,σ ,CT o /∈ fn(P)∪ fn(σ)

Threads Networks

P|0≡ P N|0≡ N

P|P0 ≡ P0 |P N|N0 ≡ N0 |N
P|(P0 |P1)≡ (P|P0) |P1 N |(N0 |N1)≡ (N |N0) |N1

(ν u)(P|P0)≡ (ν u)P|P0 u /∈ fn(P0) (ν u)(N |N0)≡ (ν u)N |N0 u /∈ fnv(N0)

(ν c)0≡ 0 (ν c)0≡ 0

(ν u)(ν u′)P≡ (ν u′)(ν u)P (ν u)(ν u′)N≡ (ν u′)(ν u)N

return(d) ε ≡ return(d) l [(ν u)(F)]≡ (ν u)l [F ]

ε;e≡ e

return ε ≡ return

Fig. 5.1.Structural equivalence

5 Operational Semantics

This section presents the operational semantics of DJ. It follows a standard small step
call-by-value semantics [30, 4]. A large step semantics is not suitable due to our con-
sideration of concurrent execution and possible interference between reductions. The
structure of this section follows. We first introduce the structure rules in§ 5.1; then we
define the reduction rules for the standard expressions in§ 5.4, serialisation/deserialisa-
tion in § 5.5, local/remote method invocation in§ 5.6, freezing/defrosting in§ 5.7, class
downloading in§ 5.8, and errors in§ 5.10. Rules in all categories are mutually related.
For reference, Appendix A lists all reduction rules.

5.1 Structural equivalences

This subsection defines the structural equivalences for DJ. They are defined for threads,
networks and configurations in Fig. 5.1. This equivalence relation, which comes fromπ-
calculus, handles scope of identifiers and parallel composition of threads and networks
naturally by regarding two programs as identical. Formally,≡ is an equivalence relation
which includesα-conversion and is generated by the equations in Fig. 5.1.

The last two rules for configurations define garbage collection of useless store en-
tries, while the last three rules for threads are used to erase runtime valueε of the void
type. Others rules, including scope opening, are inherited from those of theπ-calculus
[28], and so are standard.
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5.2 Reduction

Reduction in DJ is expressed by two relations. The first is defined over configurations
executing within an individual location, given by the binary relationF −→l F ′ where
l is the name of the location containingF . The second relation is global, defined over
networks, and writtenN −→ N′. This relation includes the key distributed rules of DJ:
(1) remote method invocation and (2) class downloading between locations.

We also definemulti-stepreduction as the union of the structural equivalence rela-

tion with the transitive closure of the−→ relation as→→ def= (−→ ∪ ≡)∗ and→→l
def=

(−→l ∪ ≡)∗.

5.3 Evaluation contexts

To reduce the number of computation rules, we make use of the evaluation contexts in
Fig. 5.2.

Contexts contain a single hole, written[ ] inside them.E[e] represents the expression
obtained by replacing the hole in contextE with the ordinary expressione. Evaluation
order of terms in the language is determined by the construction of these contexts.

E ::= [ ] | if E then eelse e | E.f | E;e | T x= E | x := E | E.f := e | o.f := E

| newC(~v,E,~e) | E.m(~e) | o.m(~v,E,~e) | defrost(E) | return(c) E

| go E with c | E with c | go E to c

Fig. 5.2.Evaluation contexts

5.4 Standard expressions

In Fig. 5.3 we outline the basic reduction rules for the language. These rules form the
sequential part of the language, and do not mention concurrency or channel-based com-
munication. Most rules are standard [18, 4, 9], except the following three points:

fresh identifier creation When allocating new space on the store byRC-DecandRC-New,
we explicitly restrict identifiers. This operation represents “the freshness” or “unique-
ness” of the address of the new entries. This facility is important for a natural for-
mulation of the distributed reduction relations as well as invariants related to the
locality of identifiers (cf. Section 9).

tagged class creationThe special allocation rule,RC-NewR, is applied whenever ex-
ecution attempts to instantiate an object of a tagged class. Instead of immediately
allocating a new object, this rule first attempts to download the actual body of the
class from the labelled location (the reduction rules for class downloading are dis-
cussed in§. 5.8).
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use of reduction context When expressions are evaluated in contexts, they may create
new identifiers (byRC-Dec andRC-New, for example). The scope of these new
identifiers must be opened over the whole of the context, as shown:

(E[newC(~v)],σ ,CT)−→l (ν o)(E[o],σ ,CT)

This allows newly created identifiers to be successfully propagated to where they
must be used. For example in the case above, ifE ≡ [ ].m(), then without automatic
scope opening the method callo.m() could never be evaluated. The restriction of
RC-Seqis similarly explained.

RC-Var
x,σ ,CT−→l σ(x),σ ,CT

RC-Cond
if true then e1 else e2,σ ,CT−→l e1,σ ,CT
if false then e1 else e2,σ ,CT−→l e2,σ ,CT

RC-Fld
σ(o) = (C, ~f :~v)

o.fi,σ ,CT−→l vi ,σ ,CT

RC-Seq
e1,σ ,CT−→l (ν~u)(v,σ ′,CT′)

e1;e2,σ ,CT−→l (ν~u)(e2,σ
′,CT′)

~u /∈ fnv(e2)

RC-Dec
T x= v ; e,σ ,CT−→l (ν x)(e,σ · [x 7→ v],CT) x /∈ domv(σ)

RC-Ass
x := v,σ ,CT−→l v,σ [x 7→ v],CT

RC-FldAss
σ
′ = σ [o 7→ σ(o)[ f 7→ v]]

o.f := v,σ ,CT−→l v,σ ′,CT
o∈ domo(σ)

RC-New
fields(C) = ~T~f

newC (~v),σ ,CT−→l (ν o)(o,σ · [o 7→ (C, ~f :~v)],CT)
C∈ dom(CT)

RC-NewR
newCm(~v),σ ,CT−→l downloadC from min newC(~v),σ ,CT C /∈ dom(CT)

RC-Cong
e,σ ,CT−→l (ν~u)(e′,σ ′,CT′)

E[e],σ ,CT−→l (ν~u)(E[e′],σ ′,CT′)
~u /∈ fnv(E)

Fig. 5.3.Rules for local expressions

5.5 Serialisation and deserialisation

One of the contributions of DJ is a precise formalisation of the semantics of seriali-
sation. This subsection outlines our interpretation of the JavaserialisationAPI in the
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Serialize
σ
′ =

⋃
og(σ ,vi) {~o}= domo(σ ′)

serialize(~v),σ ,CT−→l λ~o.(~v,σ ′, l),σ ,CT

Deserialize
{~F}= {C | σ

′(oi) = (C, . . .)} ~o /∈ dom(σ)

deserialize(λ~o.(~v,σ ′,m)),σ ,CT−→l (ν~o)(download ~F from min~v,σ ∪σ
′,CT)

Fig. 5.4.Rules for serialisation and deserialisation

form of operational semantics. Serialisation occurs in two situations. In the first situa-
tion, the expressionsserialize(e) anddeserialize(e) allow explicit flattening and
re-inflation of objects by the programmer.

The second instance occurs automatically when values must be transported across
the network. Instances of local classes are incapable of remote method invocation,
and so we cannot pass them by reference as parameters or as return values to remote
method invocations. Should this occur, the remote party would receive the identifier
of an unreachable object. Avoiding this problem involves sending local objects to and
from remote methodsby value, i.e. in serialised form. Thereforeserialize(e) and
deserialize(e) must appear automatically as runtime expressions, to serialise pa-
rameters and return values of remote method invocations.

The reduction rules for (de)serialisation appear in Fig. 5.4. For primitive values such
as integers, producing a serialised representation is straightforward as they have no
significant internal structure. However objects may refer to others in the store, and so
care must be taken when serialising them.

For serialisationwe applySerialize. For remote references or primitives, we as-
sume these values are already of suitable form and so serialisation makes no change.
However if a local object referenceo is passed to a remote method as part of the pa-
rameters~v, it must be sent with all its dependent objects. This means taking a copy
of every local object referenced byo either directly or transitively. For this purpose
we apply the object graph computation algorithm given in Definition 4.8 to obtain
σ ′ =

⋃
og(σ ,vi). Once the graphσ ′ has been constructed, we are able to build a blob

of the formλ~o.(~v,σ ′, l). All parameters must be serialised at the same time, since ref-
erential integrity must be maintained. For instance, in the following code (cf. [37]):
x. f = y; r . m( x, y); , the remote methodr is called with two local object param-
etersx,y. If we serialise each parameter individually then the relationship between the
two values (via the fieldf ) is lost. In this situation two copies ofy are created at the
remote site, violating referential integrity.

The deserialisationoperation is the dual to serialisation. We deserialise a blob by
applyingDeserialize. Remote object identifiers and base values are invariant under this
operation, but local objects contained in the blob must be treated with care. For each
o∈~o we create a new local identifier, renaming all occurrences of the reference within
the object graph to this new identifier, preserving the graph structure. After completing
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go ewith c ewith c

return(c) v

go v to creturn(c) v

Network boundary

serialize deserialize

serializedeserialize

Fig. 5.5.Remote method invocation

this process, we append the resulting data to the local store (“σ ∪σ ′”). The only com-
plication arises whenσ ′ contains instances of classes that are not in the class table of
the deserialising location. These must be retrieved from the serialising locationm by
making a call to download vector~F . This accurately mimics the mechanism employed
by theRMIClassLoader class used in Java RMI. When sending marshaled objects,
RMI implementations annotate the data stream for classes with a codebase URL. This
is a pointer to a remote directory that theRMIClassLoader can refer to download
classes that are not available at the current location.

5.6 Method invocation

A key omission from Fig. 5.3 is the rules formethod invocation. Unlike sequential for-
malisms, DJ describesremote method invocation. To accommodate RMI, the rules for
method call take a novel form employing concepts from theπ-calculus, representing
the context of a call by a local linear channel. While this technique is well-known in
theπ-calculus [27], DJ may be the first to use it to faithfully capture the semantics of
RMI in a Java-like language. Among other benefits, it allows us to define the semantics
of local and remote method calls concisely and uniformly: a method call is local when
the receiver is co-located with the caller; whereas it becomes remote when the receiver
is located elsewhere. Remote calls also differ from local ones because of the need for
parameter serialisation, which is reflected as several extra reduction steps. The general
picture of a remote method invocation is summarised in Fig. 5.5, which starts from dis-
patch of a remote method and ends with delivery of its return value. The corresponding
formal rules are given in Fig. 5.6.

We first start from local method calls. For a method callo.m(~v), if o ∈ domo(σ)
(whereσ is the local heap) then the ruleRC-MethLocal is applied. This indicates a
local method invocation. There are three operations defined in this rule:

1. a new channelc is created to carry the return value of the method;
2. the return point of the method call is replaced with the termawait c which can be

thought of as a receiver waiting for some value to be supplied on channelc;
3. the method call itself is spawned in a new thread and rewritten too.m(~v) with c

which should be read as “the method callo.m(~v) will return its value to channelc”.
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RC-MethLocal
E[o.m(~v)] |P,σ ,CT−→l (ν c)(E[await c] |o.m(~v) with c|P,σ ,CT) c fresh,o∈ domo(σ)

RC-MethRemote
E[o.m(~v)] |P,σ ,CT−→l (ν c)(E[await c] |go o.m(serialize(~v)) with c|P,σ ,CT)

c fresh,o /∈ domo(σ)

RC-MethInvoke
σ(o) = (C, . . .) mbody(m,C,CT) = (~x,e)

o.m(~v) with c,σ ,CT−→l (ν~x)(e[o/this][return(c)/return],σ · [~x 7→~v],CT)

RC-Await
E[await c] |return(c) v,σ ,CT−→l E[v],σ ,CT

RN-SerReturn
l [return(c) v|P,σ ,CT]−→ l [go serialize(v) to c|P,σ ,CT] c /∈ fn(P)

RN-Leave
l1[go o.m(~v) with c|P1,σ1,CT1] | l2[P2,σ2,CT2]

−→ l1[P1,σ1,CT1] | l2[o.m(deserialize(~v)) with c|P2,σ2,CT2]
o∈ domo(σ2)

RN-Return
l1[go v to c|P1,σ1,CT1] | l2[P2,σ2,CT2]

−→ l1[P1,σ1,CT1] | l2[return(c) deserialize(v) |P2,σ2,CT2]
c∈ fn(P2)

Fig. 5.6.Rules for method invocation

The next stage of execution is the application ofRC-MethInvoke, which is recog-
nisable as in the style of a traditional method invocation rule. Both remote and local
method invocations ultimately apply this rule; it contains the common parts required
for method invocation, such as assigning store space for formal parameters, setting the
receiver and gathering the return value. There are three operations defined in this rule:

1. the receiver parameter is substituted[o/this] at invocation time;
2. new store entries for the formal parameters~x are created and initialised to the sup-

plied parameters~v as similar withRC-DecandRC-New.
3. the value returned by the method must be sent along channelc, which is realised

by the substitution[return(c)/return].

The most interesting aspect of method call in DJ is the use of channels as described in
the final step above. This leads to the definition of the method return rule,RC-Await ,
which is also common to remote and local calls. This communicates the return value to
its caller.

For the call shown above, if it is the case thato /∈ domo(σ) then we have aremote
method invocation. In this case the ruleRC-MethRemote is applied. This rule shares
some similarities withRC-MethLocal: it creates a new channel and return point, and
it spawns a new thread to carry the method’s code. However it differs because we can
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no longer assume that any object identifiers in the parameter vector~v can be passed by
reference. For example:

o.m(o′)

Here, if the object identifiero′ does not refer to an instance of a remote class then it
will be essentially meaningless to a remote server. To cope with this, Java RMI makes
use of the serialisation API, and in DJ we employ a similar mechanism. In a nutshell,
when the name of a local object is passed to a remote method as a parameter the entire
object graph it represents must be copied. This means any other local objects referred
as fields must be taken along with the original object to ensure that the remote method
can access any information it needs. This has been discussed in§ 5.5. We note that the
thunked values are also transferred to the remote location without modification (like
base values).

After this serialisation has taken place, we are left with a thread of the form
go o.m(~w) with c where~w is the serialised representation of the original parameters~v.
At this point, the network level ruleRN-Leavetriggers the migration of the method call-
ing thread to the location that holds the receiving object in its local store. After transfer
over the network, any parameters that were previously serialised must be deserialised
and thenRC-MethInvoke is applied.

The return value of a remote method must be serialised usingRN-SerReturn, after
which it crosses the network by application ofRN-Return. After returning to the calling
site, it is again deserialised using the same mechanism. Fig. 5.5 summarises how values
are returned from methods by channel communication.

5.7 Direct code mobility

Before moving to class downloading, we first illustrate the semantics of thunk cre-
ation/resolution. Thunks offer a direct way to manipulate code (classes).

As noted, there are two operations associated with thunks, one for the creation of
thunks and the other for their later use, calledfreezinganddefrosting. Their rules are
given in Fig. 5.7. A notable point is a use of the invariants to design the reduction rule
for freezing, as we illustrate below.

RC-Freeze

{~x}= fv(e) vi = σ(xi) CT′ =

{
cg(CT, fcl(e)) t = eager

/0 t = lazy

freeze[t](e),σ ,CT−→l pe[~v/~x] with CT′ from lq,σ ,CT

RC-Defrost
{~C}= fcl(e)\dom(CT′)

defrost(pewith CT′ from mq),σ ,CT−→l e[ ~Cm/~C],σ ,CT∪CT′

Fig. 5.7.Rules for creating and executing thunked expressions
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Freezing defined byRC-Freezetakes two modes,lazy or eager, and its operation
is divided into two steps.

1. we instantiate values~v stored in the local memoryσ to the free local variablesfv(e)
occurring inecreatinge[~v/~x].

2. when the mode iseager, we calculate the class table using the class graph function
cg(CT, fcl(e)) defined in Definition 4.12, and attach together withe.

The initial step (1) above is the same for the both modes. We take special care of local
variable references made ine. For example, it would be dangerous to freeze an ex-
pression such aso.m(x) because at the eventual point of use, variablex will no longer
be accessible. To avoid this, while still allowing some use of local variables in frozen
expressions, the freeze operation takes the step 1 above. In the above example, if we
suppose that at the point of evaluation offreeze[t](o.m(x)), variablex was mapped
to a valuetrue in the store, then the freezing operation can safely replacex with its
actual value yieldingpo.m(true) with CT from lq which does not contain the obvious
error. Assuming the invariant which states that all values stored are closed (which will
be stated asInv(5) in Definition 9.2 later), we can ensure the newly created thunk is
closed again.

Concerning the mode of freezing, this merely determines the amount of information
sent in the class table fragment that accompanies the expression in the thunk. Inlazy
mode, this is the empty class table (hencepewith /0 from lq)—lazy means that it is the
client’s responsibility to download the classes if it needs them.

In theeager mode, the freeze operation calculates the class dependency graph re-
quired for the expression to evaluate using the class graph function defined in Defi-
nition 4.12. The eager approach is conservative, computing all the classes thatmaybe
used (including all superclasses) rather than those that necessarilyare. For example, the
following expression:

if false then newC(v) else new D(v) with C <: E andD <: F

actually needs only classD and (maybe) its superclassF to execute safely, but the class
graph function includes{C,D,E,F}.

The ruleRC-Defrost is used to defrost a thunkpe with CT from lq. The first step
is to augment the class table of the current location with that provided by the thunk.
All classes mentioned ineare tagged with their originating location:newC(~v) becomes
new Cl (~v). During execution of the newly defrosted thunk, if an expression such as
the abovenew Cl (~v) is encountered thenRC-NewR is applied as explained earlier. It
is possible thatC may not have been downloaded to the execution location (since it
is up to the party who froze the thunk on the contents ofCT). The alternative rule for
new object creation downloads these class table entries only if necessary, giving lazy
semantics. Note that in the eager case, all required classes are attached together asCT′,
hence this substitution is unnecessary (i.e.~C = /0). On the other hand, in the lazy case,
CT′ = /0 always. Note also that a thunk would be shipped to the remote location as the
argument of RMI, and be defrost in that location.
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RC-Resolve
CT(Ci) = classCi extends Di {~T~f ; K ~M} {~F}= ~D\dom(FCT)

resolve ~C from l ′ in e,σ ,CT−→l download ~F from l ′ in e,σ ,CT

RN-Download
{~D}= {~C}\dom(CT1) {~F}= fcl(CT2(~D)) CT′ = CT2(~D)[~F l2/~F ]

l1[E[download ~C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[E[resolve ~D from l2 in e] |P,σ1,CT1∪CT′] | l2[P2,σ2,CT2]

RC-DownloadNothing
Ci ∈ dom(CT)

download ~C from l ′ in e,σ ,CT−→l e,σ ,CT

Fig. 5.8.Rules for class downloading

Remark 5.1.Instead of having only two modes, we can generalise the freeze operator
to ship the user-defined classes as follows.

RC-FreezeC
{~x}= fv(e) vi = σ(xi) CT′ = cg(CT,~C)

freeze[~C](e),σ ,CT−→l pe[~v/~x] with CT′ from lq,σ ,CT

This requires no change to the rule for defrosting. To uniformly prove the correctness
of all three choices, we use the invariant properties introduced in Section 9. Specifically
we use an invariant to guarantee the completeness of class tableCT.

5.8 Class downloading

The formalisation of class downloading is one of the key contributions of DJ. Class
mobility is very important in Java RMI systems, since it reduces the unnecessary cou-
pling between communicating parties. If an interface can be agreed, then any class that
implements the interface can be passed to a remote consumer and type-safety will be
preserved. However this only works if sites are able to dynamically acquire class files
from one another. This hidden behaviour is omitted from known sequential formalisms,
as it is not required in the single-location setting.

The rules for class downloading in DJ are given in Fig. 5.8. Thedownloadexpres-
sion is responsible for the transfer of class table entries from a remote site. The seman-
tics of the operation are given inRN-Download, informally download ~C from l in e
attempts to download the vector of classes~C from locationl for use in expressione. Res-
olution defined byRC-Resolveis the process of examining classes for unmet depen-
dencies and scheduling the download of missing classes. The two rules work together
to iteratively resolve all class dependencies for a given object. Once all dependencies
have been met, normal execution continues afterRC-DownloadNothing.
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For a request to download classes~C by download ~C from l2 in e there are three
actions:

1. ~D is calculated. It comprises the classes in~C less any already available in the local
class table (preventing duplicate downloads);

2. we then compute vector~F . This comprises the free class names contained in all
method bodies of classes in~D;

3. finally, class tableCT′ is copied to the local class table.CT′ comprises the bodies
corresponding to the class names in~D, with any occurrence of a member of~F
tagged with the name of the remote site (l2 in this case).

These rules represent the lazy downloading mechanism, as is standard in Java (they
approximately model the strategy in JDK 1.3 without verification [10]).

Remark 5.2.Eager class downloading, which is effective in a high bandwidth environ-
ment, is easily defined by changingCT2(~D)[~F l2/~F ] in the premise ofRN-Download
into cg(CT2,~D). The correctness is easily proved by the completeness of class tableCT
(in particular, this case is a special case where a chain of download-resolve reductions
does not exist, cf. Lemma 9.4(3,4)).

5.9 Threads and networks

In Fig. 5.9 we give the standard reduction rules for executing threads and networks in
parallel, closed under restricted names and also the execution of configurations within
locations.RN-Conf promotes the local reduction−→l to the network level−→. These
contextual rules are standard, see [28].

RC-Par
P1,σ ,CT−→l (ν~u)(P′1,σ

′,CT′)
P1 |P2,σ ,CT−→l (ν~u)(P′1 |P2,σ

′,CT′)
~u /∈ fnv(P2)

RC-Str
F ≡ F0 −→l F ′

0 ≡ F ′

F −→l F ′

RC-Res
(ν~u)(P,σ ,CT)−→l (ν~u′)(P′,σ ′,CT′)

(ν u~u)(P,σ ,CT)−→l (ν u~u′)(P′,σ ′,CT′)

RN-Conf
F −→l F ′

l [F ]−→ l [F ′]

RN-Par
N−→ N′

N |N0 −→ N′ |N0

RN-Res
N−→ N′

(ν u)N−→ (ν u)N′

RN-Str
N≡ N0 −→ N′

0 ≡ N′

N−→ N′

Fig. 5.9.Rules for network and thread
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5.10 Errors

The final subsection defines two distinct classes of error: those arising from a program-
mer mistake and those arising from some unforeseen system failure. In these rules,
Error represents the state of execution reached when a program goes awry in some
way.

The key programming error that may arise is attempting to dereference a null pointer.
This gives rise to theNullPointerException in Java. The reduction rules con-
cerning these errors are given in Fig. 5.10.Err-NullFld andErr-NullFldAss charac-
terise the error when field access is attempted on a null reference, whileErr-NullMeth
does when a method invocation is attempted on a null reference. It is important to note
that in this situation the parameters of the method invocation are fully computed (even
though it is possible to determine anull receiver before then). These formulations are
consistent with the current Java specification.

Err-NullFld
null.f,σ ,CT−→l Error,σ ,CT

Err-NullFldAss
null.f := v,σ ,CT−→l Error,σ ,CT

Err-NullMeth
null.m(~v),σ ,CT−→l Error,σ ,CT

Fig. 5.10.Programmer errors

Err-Download
{~D}= {~C}\dom(CT1) or CT′ 6= CT2(~D)[~F l2/~F ] {~F}= fcl(CT2(~D))

l1[E[download ~C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[Error |E[resolve ~D from l2 in e] |P,σ1,CT1∪CT′] | l2[P2,σ2,CT2]

Err-MLossLeave
l1[go o.m(~v) with c|P1,σ1,CT1] | l2[P2,σ2,CT2]−→ l1[Error |P1,σ1,CT1] | l2[P2,σ2,CT2]

o∈ domo(σ2)

Err-MLossReturn
l1[go v to c|P1,σ1,CT1] | l2[P2,σ2,CT2]−→ l1[Error |P1,σ1,CT1] | l2[P2,σ2,CT2] c∈ fn(P2)

Fig. 5.11.Network failure errors

The second class of error is a natural consequence of a distributed system - network
failure. Fig. 5.11 outlines three situations when such a failure might exhibit an effect
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on a network. The ruleErr-Download this characterises the corruption of class table
data as it is transmitted over the network. In the case ofErr-MLossLeave, the network
has become partitioned such that a remote method call attempting to reach locationl2
cannot. This results in the calling code reducing toError. Likewise, in the case of
Err-MLossReturn , the return value from a remote method call cannot return to the
original caller located atl2. It too reduces toError.

6 Examples of operational semantics

This section shows examples of operational semantics focussing on RMI with code
mobility and serialisation. The first subsection presents eager and lazy code mobility;
the third one demonstrates code mobility across remote sites; and the final one shows
serialisation. The first example in§ 6.1 corresponds to the second program in Section
2, while the last example in§ 6.3 to the first one in in Section 2. We slightly modify
the programs in Section 2 to demonstrate a non-trivial interplay between RMI, code
mobility, class downloading and serialisation.

6.1 Code mobility

Eager code mobility We writecl for the mobile phone (“client”) site, andsv for the
server. Each site maintains a class table of well-known classes and the specialist classes
in Listing 6.1 and Listing 6.2 respectively. For simplicity we assume that the library
functionmod is available universally. The computation in question is the simple calcu-
lation of the greatest common divisor of two numbers. In the client code the classTask
contains the body of Euclid’s algorithm. As can be seen from Listing 6.1,Client makes
a thunk of the expressionnew Task (). gcd ( a, b) , and, depending on the choice of
tag t, may enclose a copy of theTaskclass so that execution can begin immediately.
In this case, the defrosting operation at the remote locationsv will append the defini-
tion of classTaskto the class table ofsv. It then instantiatesTaskand calls the method
gcd. The parametersa andb are replaced with their actual values bycl at the time of
freezing. Assumeσsv = [s 7→ (Server, . . .)], and that the client code at locationcl has a
reference to the remote objects. We write the network as follows:

(ν s)(cl[return(c) newClient(s).gcd(1071,1029),σcl ,CTcl ] |sv[0,σsv,CTsv])

We consider locationcl initially in isolation, until the remote method calls.cpu(. . .).

return(c) newClient(s).gcd(1071,1029),σcl ,CTcl

−→cl (ν o)(return(c) o.gcd(1071,1029),σ ′
cl ,CTcl) (σ ′

cl = σcl · [o 7→ (Client,s : s)])

−→cl (ν od)(return(c) await d |o.gcd(1071,1029) with d,σ ′
cl ,CTcl)

Now letσ ′′
cl = σ ′

cl · [a,b 7→ 1071,1029] ande≡ new Task().gcd(a,b). Then the last line
reduces to:

(ν odab)(return(c) await d |thunk(int) g = freeze[t](e) ; . . . ,σ ′′
cl ,CTcl)
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1 /* * Local class */
2 class Client extends Object {
3 Server s;
4 Client ( Server s) { this . s = s; }
5 int gcd ( int a, int b) {
6 thunk ( int ) g = freeze [ t ]( new Task (). gcd ( a, b));
7 return s. cpu ( g);
8 }
9 }

10 /* * Local class */
11 class Task extends Object {
12 int gcd ( int a, int b) {
13 if ( b == 0) {
14 return a;
15 } else {
16 return this . gcd ( b, mod( a, b));
17 }
18 }
19 }

Listing 6.1. Class tableCTcl

Let t = eager, thereforeCT′ = [Task 7→ . . . ] and e′ ≡ new Task().gcd(1071,1029).
Thenfreeze[t](e) reduces tope′ with CT′ from clq. Hence it reduces to

(ν odab)(return(c) await d |thunk(int) g = pe′ with CT′ from clq ; . . . ,σ ′′
cl ,CTcl)

≡ (ν d)(return(c) await d |thunk(int) g = pe′ with CT′ from clq ; . . . ,σcl ,CTcl) (6.0.1)

Let σ ′′′
cl = σcl · [g 7→ v] wherev = pe′ with CT′ from clq. Then (6.0.1) reduces to:

(ν dg)(return(c) await d |return(d) o.s.cpu(g),σ ′′′
cl ,CTcl)

−→cl (ν dg)(return(c) await d |return(d) s.cpu(g),σ ′′′
cl ,CTcl)

−→cl (ν dg)(return(c) await d |return(d) s.cpu(v),σ ′′′
cl ,CTcl)

≡ (ν d)(return(c) await d |return(d) s.cpu(v),σcl ,CTcl) (6.0.2)

1 /* * Remote class */
2 class Server {
3 int cpu ( thunk ( int ) t ) {
4 return defrost ( t );
5 }
6 }

Listing 6.2. Class tableCTsv
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Sinces /∈ domo(σcl) we have a remote method call. Hence from (6.0.2), we have:

(ν d f)(return(c) await d |return(d) await f |go s.cpu(serialize(v)) with f ,σcl ,CTcl)

−→cl (ν d f)(return(c) await d |return(d) await f |go s.cpu(v) with f ,σcl ,CTcl)
(6.0.3)

At (6.0.3) the method is ready to move to locationsv by rule RN-Leave. Before this
can happen, the scope of the restricted names must be opened over the network using
≡. After simplifying the network can be written:

(ν csd f)(cl[return(c) await d |return(d) await f |go s.cpu(v) with f ,σcl ,CTcl ]
|sv[0,σsv,CTsv])

After movement this becomes:

(ν csd f)(cl[return(c) await d |return(d) await f ,σcl ,CTcl ]
|sv[s.cpu(deserialize(v)) with f ,σsv,CTsv])

Now consideration turns to locationsv in isolation. Then from the previous line, we
have:

s.cpu(v) with f ,σsv,CTsv

−→sv (ν t)(return( f ) defrost(t),σ ′
sv,CTsv) (σ ′

sv = σsv· [t 7→ v])

−→sv (ν t)(return( f ) defrost(v),σ ′
sv,CTsv)

≡ return( f ) defrost(v),σsv,CTsv

−→sv return( f ) new Task().gcd(1071,1029),σsv,CTsv∪CT′

−→sv (ν o)(return( f ) o.gcd(1071,1029),σ ′′
sv,CTsv∪CT′) σ ′′

sv = σsv· [o′ 7→ (Task,ε)]
(6.0.4)

−→sv (ν oh)(return( f ) await h|o.gcd(1071,1029) with h,σ ′′
sv,CTsv∪CT′)

(6.0.5)

Assuming the calculation goes well, then the greatest common divisor of 1071 and 1029
is 21. Each recursive call generates a new pair of entries on the stack for the parameters
a and b. We denote these by the vector~u. It is interesting to note that each “stack
frame” in the recursive call corresponds to a thread of the formreturn(x) await y for
some channelsx andy. We resume execution at the point where the final stack frame is
removed and the result is returned. We writeσ ′′′

sv to represent the store after execution.
Then from (6.0.5), we have:

(ν oh~u)(return( f ) await h|return(h) 21,σ ′′′
sv,CTsv∪CT′)

≡ (ν h)(return( f ) await h|return(h) 21,σsv,CTsv∪CT′)
−→sv (ν h)(return( f ) 21,σsv,CTsv∪CT′)

≡ return( f ) 21,σsv,CTsv∪CT′

−→sv go serialize(21) to f ,σsv,CTsv∪CT′

−→sv go 21to f ,σsv,CTsv∪CT′ (6.0.6)
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Opening the scope of the restricted names, and applying garbage collection to~u, t,o,
ruleRN-Return is used to give the following network (written in normal form):

(ν csd f)(cl[return(c) await d |return(d) await f ,σcl ,CTcl ] |sv[go 21to f ,σ ′′′
sv,CTsv∪CT′])

After movement this becomes:

(ν csd f)(cl[ return(c) await d |return(d) await f
|return( f ) deserialize(21),σcl ,CTcl ]
|sv[0,σ ′′′

sv,CTsv∪CT′])

Again concentrating on locationcl:

return(c) await d |return(d) await f |return( f ) deserialize(21),σcl ,CTcl

−→cl return(c) await d |return(d) await f |return( f ) 21,σcl ,CTcl

−→cl return(c) await d |return(d) 21,σcl ,CTcl

−→cl return(c) 21,σcl ,CTcl (6.0.7)

Finally, we assume there is a channelc on which another process is waiting for input.
This is used to model the return value of the entire program.

Lazy code mobility At (6.0.1), we chose to assume that the tagt was set toeager
mode. In this mode, every class potentially required to evaluate the thunk at a remote
site is bundled with it. In this case, the only class needed wasTask. However, suppose
we had chosent = lazy, then we would have thatCT′ = /0.

To illustrate lazy downloading, we shall assume thatTask/∈ dom(CTsv). So to ex-
ecute the codee′, locationsv must obtain the classes it needs. At the defrost step, we
have:

return( f ) defrost(v),σsv,CTsv

−→sv return( f ) new Taskcl().gcd(1071,1029),σsv,CTsv

SinceTask/∈ dom(CTsv), the class nameTaskhas been tagged with the location that
created the thunk as specified byRC-Defrost. Then instead of normal instantiation by
RC-New, we must downloadTaskfrom cl usingRC-NewR. Hence the previous line
reduces to:

return( f ) download Taskfrom cl in new Task().gcd(1071,1029),σsv,CTsv (6.0.8)

We now applyRN-Download to retrieve the definition ofTask:

return( f ) resolve Taskfrom cl in new Task().gcd(1071,1029),σsv,CTsv· [Task7→ . . . ]

−→sv return( f ) download Ob jectfrom cl in new Task().gcd(1071,1029),σsv,CTsv· [Task7→ . . . ]
(6.0.9)

Ob ject∈ dom(CTsv) because it is a foundation class, soRC-DownloadNothing is applied:

return( f ) new Task().gcd(1071,1029),σsv,CTsv· [Task7→ . . . ] (6.0.10)

Now all necessary classes are downloaded, execution can resume as before from (6.0.4).
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6.2 Nested code mobility

This example shows the use of thunked process to compute a value incrementally in sev-
eral stages, moving among three different sites. Consider the class table in Listing 6.3.
Suppose there are two remote object identifiers (o andp), both instances of classB, in
scope of the program:

new A(). compute (2,3, o, p);

After execution, this method should return the value 24. The actual computation ap-
proach makes use of the ability to arbitrarily nestfreeze[t](e) expressions to perform
the calculation in two steps at two different locations.

1 class A {
2 int compute ( int a, int b, B o, B p) {
3 return o. execute ( freeze [ eager ](
4 int x = a + 2;
5 int y = b + 3;
6 return p. execute ( freeze [ eager ]( x * y))
7 ));
8 }
9 }

10 class B {
11 int execute ( thunk ( int ) t ) {
12 return defrost ( t );
13 }
14 }

Listing 6.3. Partial computation class table

After the initial freeze[eager](e) operation, we obtain a thunkpe′ with /0 from q
wheree′ denotes:

int x = 2 + 2; int y = 3 + 3; return p. execute ( freeze ( x * y)); .

The remote procedure callo. execute (...); triggersdefrost(e′) at the location
of object identifiero. This means that location begins executing the codee′. After per-
forming the simple calculations in the declarations of variablesx andy, o must create
a new thunk which is sent top. The thunk becomesp4∗6 with /0 from q where we
write for the location as it is not important. The defrost atp then performs the triv-
ial computation of the result, 24, which is returned too which in turn returns it to the
original caller.

6.3 Remote method invocation with object serialisation and class downloading

This subsection gives the outline of the reduction steps for the first example in Section
2. We demonstrate how our operational semantics precisely model RMI with object
serialisation, which is associated with class downloading. We first recall the remote
classes at the server side. To avoid confusion, we append “Trad” to class names in
Section 2 (Trad means “traditional”).
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1 /* * Server */
2 class TradServer {
3 int doTask ( Task t ) {
4 return t . compute ();
5 }
6 }

The following class is shared by the server and client.

1 /* * Server and client */
2 class Task {
3 int compute () { return 0; }
4 }

To show the effect of inheritance on class downloading, we slightly modify the pro-
grams in Section 2 as follows.

1 /* * Server class */
2 class TradClient {
3 TradServer s;
4 TradClient ( TradServer s) { this . s = s; }
5 int gcd ( int a, int b) {
6 Task t = new GcdTask ( a, b);
7 return s. doTask ( t );
8 }
9 }

10 /* * Client classes */
11 class GcdTask extends TaskMod{
12 int a;
13 int b;
14 GcdTask ( int a, int b) { this . a = a; this . b = b; }
15 int compute () {
16 // the same as the example in Section 2
17 }
18 }
19 class TaskMod extends Task {
20 int compute () { return new Mod(). compute ();}
21 }
22 class Mod extends Object {
23 int compute () { return 2;}
24 }

In the client side, (1) there exists an inheritance such thatGcdTask<: TaskMod<: Task;
and (2)TaskModhas a reference to classMod in methodcompute () . We also assume
Task is shared between the server and client, but other classes are local to the client,
hence do not initially exist in the server’s class table. In summary, we have:

σsv = [s 7→ (TradServer, ..)] dom(CTsv) = {TradServer,Task}
σcl = /0 dom(CTcl) = {GcdTask,TaskMod,Mod,Task}
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As in the previous example in§ 6.1, we consider the following initial network:

(ν s)(cl[return(c) new TradClient(s).gcd(1071,1029), /0,CTcl ] |sv[0,σsv,CTsv])

The intermediate reduction steps are essentially similar to the reductions in§ 6.1 until
(6.0.3). We restart from the following configuration at the client side, focussing on the
serialisation and deserialisation of the local object with identifiero.

go s.doTask(serialize(o)) with f , ...,σcl · [o 7→ (GcdTask,a : 1071,b : 1029)],CTcl

Let σ = [o 7→ (GcdTask,a : 1071,b : 1029)]. SinceGcdTaskis local, o method must
be serialised for network transfer. Using the procedure outlined in Definition 4.8 (and
illustrated in Example 4.9), serialisation takes a copy of the storeσ . Hence we have:

go s.doTask(λo.(o,σ ,cl)) with f , ...,σcl · [o 7→ (GcdTask,a : 1071,b : 1029)],CTcl

Now go moves to the server, and at the same, the blob is deserialised, invoking class
download.

sv[s.doTask(deserialize(λo.(o,σ ,cl))) with f ,σsv,CTsv]
−→sv sv[(ν o)(s.doTask(download GcdTaskfrom cl in o),σsv·σ ,CTsv)] (6.0.11)

Note that the name restriction operator guarantees the freshness of the o-ido in σ .
Similarly to (6.0.8) in§ 6.1, downloading calls a series of iteration betweenresolve
anddownload as follows.

s.doTask(resolve GcdTaskfrom cl in o),σsv·σ ,CTsv· [GcdTask7→ ..]
−→sv s.doTask(download TaskModfrom cl in o),σsv·σ ,CTsv· [GcdTask7→ ..]

→→sv s.doTask(o),σsv·σ ,CTsv· [GcdTask7→ ..] · [TaskMod7→ L[Modcl/Mod]]

whereL is the body of classTaskMod. We note that (1) all superclasses ofGcdTaskare
downloaded before executings.doTask(o); (2) Mod doesnot have to be downloaded,
but it is replaced byModcl to allow further lazy downloading fromcl. For example, if
new TaskMod(). compute () is performed at the server side, then we can lazily
download the classMod usingRC-NewR from cl. The rest of this reduction is similar
to the local method invocation in§ 6.1.

7 Typing system

This section presents the typing system for DJ. There are three technical key points for
typing.

Linearity of channels Linear channel types guarantee determinacy of the destination
of RMI and a return point.

Class signature its use offers the lightweight type checking for RMI and preserves
consistency for serialisation and code freezing.

Freezing and thunks a special care is required for freezing and thunking expressions
which contain free variables and object ids.
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T ::= bool |C | thunk(U) | ser(~U) Types

U ::= void | T Returnable types

S::= U | ret(U) Return types

τ ::= chan | chanI(U) | chanO(U) Channel types

Γ ::= /0 | Γ ,x : T | Γ ,o : C | Γ ,this : C Expression environment

∆ ::= /0 | ∆ ,c : τ Channel environment

Fig. 7.1.Syntax of types and environments

7.1 Syntax of types and environments

First we introduce the syntax of types and environments in Fig. 7.1.
T represents expression types: booleans, class names, thunked expressions of typeU
and serialised objects of typeC. The metavariableU ranges over the same types asT
but is augmented with the special typevoid with the usual empty meaning. We write
C <: D when classC is a subtype of classD. Our notion of subtyping is mostly standard
(we assume<: causes no cycle as in [18, 4]), and is judged on the class signature.

Two runtime types (which do not appear in programs) are newly introduced.Return
typesare ranged over byS are used to denote the type of value returned by a method
invocation (U m(~T~x){e} is well-typed if e has the typeret(U)). The metavariableτ
ranges over types for the channels used in method calls, which is explained in the next
subsection. There are two different kinds of environment. The environment for typing
expressions, writtenΓ , is a finite map from variables, o-ids andthis to types ranged
over by T. ∆ is a finite map from channel names to channel types, and appears in
judgements for method calls and those involving multiple threads and locations.

7.2 Linear channel types

One of the key tasks of the typing rules is to ensurelinear use of channels. This means
that for every channelc there is exactly one process waiting to input fromc and one to
output toc. In terms of DJ, this ensures that a method receiver always returns its value
(if ever) to the correct caller, and that a returned value always finds the initial caller
waiting for it. In Fig. 7.1,chanI(U) is linear inputof a value of typeU ; chanO(U) is
the opponent calledlinear output. The typechan is given to channels that have matched
input and output types.chanI(U) is assigned toawait, while chanO(U) is to threads
with/to c (eitherreturn(c) eor [go] ewith/to c). Note that since channels only appear
at runtime, channels do not carry channels.

To see the use of linear types, consider the following network; the return expression
cannot determine the original location if we have twoawaits at the same channelc,
violating the linearity ofc.

l1[E1[await c],σ1,CT1] | l2[E2[await c],σ2,CT2] | l3[go v to c,σ3,CT3] (7.0.12)
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The uniqueness of the returned answer is also lost if return channelc appears twice.

l1[return(c) e1,σ1,CT1] | l2[return(c) e2,σ2,CT2] (7.0.13)

The aim of introducing linear channels is to avoid these situations during executions of
runtime method invocations. The following binary operation� is used for controlling
the composition of threads and networks.

Definition 7.1 (Channel environment composition).The commutative, partial, bi-

nary composition operator on channel types,�, is defined aschanI(U)�chanO(U) def=
chan. Then we define the composition of two channel environments∆1�∆2 as:

∆1�∆2
def= {∆1(c)�∆2(c) | c∈ dom(∆1)∩dom(∆2)}∪∆1 \dom(∆2)∪∆2 \dom(∆1)

Two channel types,τ andτ ′ arecomposableiff their composition is defined:τ � τ ′ ⇐⇒
τ� τ ′ is defined. Similarly for∆1 � ∆2.

Note that� and� are partial operators. Hence the composition of other combinations
is not allowed. Once we compose linear input and output types, then it is typed by
chan, hence it becomes uncomposable becausechan 6� τ for anyτ. Intuitively if P is
typed by environment∆1 andQ by ∆2, and if ∆1 � ∆2, then we can composeP and
Q asP|Q safely, preserving channel linearity. Hence (7.0.12) is untypable because of
chanI(U) 6� chanI(U) atc. (7.0.13) is too bychanO(U) 6� chanO(U) atc.

7.3 Subtyping

The notion of subtyping in DJ is mostly standard. The judgements are shown in Fig. 7.2.

ST-Refl
T <: T

ST-Trans
C <: D D <: E

C <: E

ST-Expr
U ′ <: U

thunk(U ′) <: thunk(U)
ret(U ′) <: ret(U)

ST-Vec
U ′

i <: Ui 0≤ i � n
~U ′ <: ~U

ST-Ser
~U ′ <: ~U

ser(~U ′) <: ser(~U)

ST-Class
CSig(C) = extends D ...

C <: D

Fig. 7.2.Subtyping

The ruleST-Refl is a reflexive subtyping judgement—any type is a trivial subtype of
itself.ST-Transensures that the subtyping relation is transitive with respect to classes—
if classC is a subtype of classD and classD is a subtype of classE, thenC is said to
be a subtype ofE. We assume there is no atomic subtyping. InST-Expr, expression
subtyping is introduced. For example,thunk(U ′) <: thunk(U) ensures that a thunk
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that computes a more precise value can be safely used in place of a thunk of a coarser
type. Likewise, the judgementret(U ′) <: ret(U) is essential for assigning types to
method bodies for the same reason. We make a similar argument forST-Ser.

Importantly, ruleST-Classis used to judge subtypes between classes. It is entirely
based upon the class signatureCSig, rather than any particular class table entries. This
allows judgements in the type system to be more lightweight. For example, if we had
opted to judge subtypes based on the knowledge held only in class tables this would
have required typing judgements of the formΓ `CT e : U , with the current class table
CT augmented each time new classes were downloaded or discovered.

7.4 Well-formedness

Well-formedness is defined for types, environments, stores and class tables. There are
six kinds of judgement, and all are interrelated. Below we assumeα ranges over either
τ,S,U,~U or extends D [remote] ~T~f {mi : ~Ti →Ui}.

Γ ;∆ ` Env Γ ;∆ are well-formed environments

` α : tp α is a well-formed type

Γ ` σ : ok σ is a well-formed store in environmentΓ

` CSig : ok CSig is a well-formed signature

` CT : ok CT is a well-formed class table

The first judgement ensures that the two environments respect several rules. We first
consider the expression environment,Γ . This environment is completely separate from
the notion of channels in the language, and stores three kinds of information: mappings
from object identifiers to classeso :C, mappings from local variables to other typesx : T
and the mapping from the special expressionthis to the class of the current receiver
this : C. The channel environment may only contain mappings of channel names to
channel types (ranged overτ).

To construct well-formed environments, only well-formed types and class types
may be used. The judgement` α : tp provides this and is defined in Fig. 7.4 Note that
CSig only contains well-formed types; andC is well-formed if itsCSig entry is so.

E-Nil
/0` Env

E-Var
` T : tp x /∈ dom(Γ )

Γ ,x : T ` Env

E-Oid
`C : tp o /∈ dom(Γ )

Γ ,o : C ` Env

E-This
`C : tp this /∈ dom(Γ )

Γ ,this : C ` Env

E-CNil
Γ ` Env

Γ ; /0` Env

E-Chan
` τ : tp Γ ;∆ ` Env c /∈ dom(∆)

Γ ;∆ ,c : τ ` Env

Fig. 7.3.Well-formed environments
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Wf-Base
` Env

` void : tp
` bool : tp
` chan : tp

Wf-SC
`U : tp∨U ∈ CSig

` chanI(U) : tp
` chanO(U) : tp
` thunk(U) : tp
` ret(U) : tp

Wf-Vec
`Ui : tp

` ~U : tp

Wf-Ser
` ~U : tp

` ser(~U) : tp

Wf-Sig
override(mi,Di ,~Ti →Ui) ` D : tp

∀S∈ {~T,~U ,~Ti} ` S: tp∨S∈ dom(CSig)

` extends D [remote] ~T~f {mi : ~Ti →Ui} : tp

Wf-Csig
∀C∈ dom(CSig) `C : tp

` CSig : ok

Wf-Ctp
` CSig(C) : tp

`C : tp

Fig. 7.4.Well-formed types

7.5 Value and expression typing

Types are assigned to values and expressions using only the expression environmentΓ .
They have judgements of the form:

Γ ` e : α ehas typeα in expression environmentΓ

whereα ranges overT, U andS.
The typing rules for values are given in Fig. 7.7. The ruleTV-Null allows the as-

signment of any well-formed class type to the valuenull. TV-Thunk states that a
thunked expression is typedthunk(U) if the class tableCT that it was packaged with is
well-formed, and if the expression itself is of typeU . A serialised object is well-typed
by ruleTV-Blob if the values it contains are well-typed, and if the store is well-typed
according to the types of the object identifiers it contains. It must also be the case that
every bound object identifieroi has the type of alocal class.

The rules for assigning types to expressions are given in Fig. 7.8. They rely only on
the expression environmentΓ and so should be very similar in form to the typing rules
of other Java languages [18, 4, 9]. Note that there is no subsumption rule in the type

S-Nil
Γ ` /0 : ok

S-Var
Γ ` σ : ok Γ ` x : T
Γ ` v : T ′ T ′ <: T

x /∈ domv(σ)
Γ ` σ · [x 7→ v] : ok

S-Oid
Γ ` σ : ok Γ ` o : C

Γ ` vi : T ′i T ′i <: Ti

o /∈ domo(σ) fields(C) = ~T~f

Γ ` σ · [o 7→ (C, ~f :~v)] : ok

Fig. 7.5.Well-formed stores
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M-ok
this : C,~x : ~T ` e : ret(U ′)

mtype(m,C) = ~T →U U ′ <: U

this : C `U m(~T~x){e} : ok inC

C-ok
this : C ` ~M : ok inC

fields(D) = ~T ′~f ′ fields(C) = ~T~f
K = C (~T ′~f ′,~T~f ){super(~f ′);this.~f := ~f}
` classC extends D{~T~f ; K ~M} : ok

CT-Nil
` /0 : ok

CT
` classC extends D{~T~f ; K ~M} : ok ` CT : ok

` CT · [C 7→ classC extends D{~T~f ; K ~M}] : ok

Fig. 7.6.Well-formed class tables

system. Instead we explicitly annotate each place where subtypes can be used in place
of a supertype. We only explain the rules which differ from [18, 4, 9].

TE-Fld restricts field accesses only for local classes ife is neitherthis or o. On
the other hand, we can allowthis has a remote class becausethis is always instan-
tiated by the o-id whose store exists in that location (seeRC-MethInvoke). This con-
straint, together with the initial condition defined in Section 9 guarantees that field
access is always local.TE-Return andTE-ReturnVoid ensure that a return statement
has the return type. The rule for serialisation,TE-Serialize, assigns types to the term
serialize(e). The rule for deserialisation,TE-Defrost, is the dual to this.

Among all typing rules, the most complicated rule isTE-Freeze. For an expression
freeze[t](e) to be well-typed with typethunk(U), several conditions must hold:

– Firstly, the expressionemust have the typeU in environmentΓ , writtenΓ ` e : U .
– Secondly, every free name or variable mentioned in the expression must have a

primitive type or be a reference to an object identifier of a remote class This is
guaranteed by{~u}= fnv(e), ¬local(Ti) andΓ ` ui : Ti . This requirement simplifies

TV-Bool
Γ ` Env

Γ ` true : bool
Γ ` false : bool

TV-Null
`C : tp

Γ ` null : C

TV-Oid
Γ ,o : C,Γ ′ ` Env

Γ ,o : C,Γ ′ ` o : C

TV-Empty
Γ ` Env

Γ ` ε : void

TV-Thunk
` CT : ok Γ ` e : U

Γ ` pewith CT from lq : thunk(U)

TV-Blob
Γ ,~o : ~C `~v : ~U local(Ci)

Γ ,~o : ~C ` σ : ok {~o}= domo(σ)

Γ ` λ~o.(~v,σ , l) : ser(~U)

Fig. 7.7.Rules for values
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TE-Var
Γ ,x : T,Γ ′ ` Env

Γ ,x : T,Γ ′ ` x : T

TE-This
Γ ,this : C,Γ ′ ` Env

Γ ,this : C,Γ ′ ` this : C

TE-Cond
∃S: S1 <: S∧S2 <: S

Γ ` e : bool
Γ ` e1 : S1 Γ ` e2 : S2

Γ ` if ethen e1 else e2 : S

TE-Fld
Γ ` e : C `C : tp

e 6= this,o =⇒ local(C)
fields(C) = ~T~f

Γ ` e.fi : Ti

TE-Seq
Γ ` e : void Γ ` e′ : S

Γ ` e;e′ : S

TE-Dec
Γ ` e : T ′

Γ ,x : T ` e0 : S T′ <: T

Γ ` T x= e ; e0 : S

TE-Ass
T ′ <: T

Γ ` e : T ′ Γ ` x : T

Γ ` x := e : T ′

TE-FldAss
T ′ <: T

Γ ` e.f : T Γ ` e′ : T ′

Γ ` e.f := e′ : T ′

TE-New
fields(C) = ~T~f T ′i <: Ti
Γ ` ei : T ′i `C : tp

Γ ` newC (~e) : C

TE-Meth
mtype(m,C) = ~T →U

~T ′ <: ~T
Γ ` e0 : C Γ `~e : ~T ′

Γ ` e0.m(~e) : U

TE-Return
Γ ` e : U

Γ ` return e : ret(U)

TE-ReturnVoid
Γ ` Env

Γ ` return : ret(void)

TE-Serialize
Γ ` e : ~U

Γ ` serialize(e) : ser(~U)

TE-Deserialize
Γ ` e : ser(~U)

Γ ` deserialize(e) : ~U

TE-Freeze
{~u}= fnv(e)

fav(e) = /0 ¬local(Ti)
Γ ` e : U Γ ` ui : Ti

Γ ` freeze[t](e) : thunk(U)

TE-Defrost
Γ ` e : thunk(U)

Γ ` defrost(e) : U

TE-Pe
Γ ` pe: T

Γ ` pe: void

TE-ClassLoad
` ~C : tp Γ ` e : ~U

Γ ` download ~C from l in e : ~U
resolve ~C from l in e : ~U

TE-Hole
`U : tp

Γ ` [ ]U : U

Fig. 7.8.Rules for expressions

the burden of the freezing operation - if local object identifiers were allowed to be
passed as part of thunks then there would be the heavy requirement of serialising
every object identifier in a similar fashion to remote method invocation.

– Finally, in order to prevent the variable replacement strategy ofRC-Freezefrom
being too näıve (for example,freeze[t](x := 5) could be re-written to
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freeze[t](6 := 5) using straight substitutions), we require that the expression to be
frozen containno free assigned variables. This condition is written byfav(e) = /0
which was defined in Definition 4.5.

The last two conditions are designed to ensure that a shipped thunk does not leak free
local object identifiers and variables, satisfying the variable and o-id invariants defined
in Definition 9.2.TE-Defrost is the dual to this.

TE-Pe is a rule for typing a sequential composition [4]. The typed context which
starts fromTE-Hole is used to typeawait c as explained in the next subsection. Other
rules are obvious.

Remark 7.2(Freezing).The operational semantics as well as the typing system offreeze
is simplified assuminge does not contain any free variables as shown in the following
rules.

CT′ =

{
cg(CT, fcl(e)) t = eager

/0 t = lazy

freeze[t](e),σ ,CT−→l pewith CT′ from lq,σ ,CT

fv(e) = /0 {~u}= fn(e) remote(Ci)
Γ ` ui : Ci Γ ` e : U

Γ ` freeze[t](e) : thunk(U)

One can check these rules satisfy the same invariants specified in Section 9.
Also, for simplification, the current typing ruleTE-Freezedoes not allow creating

code which contains free local object ids. However, by combining with serialisation
primitives, we can type code which contains serialised object graph like:

T x= serialize(o) ; freeze[t](e′)

Note thatserialize(o) creates a closed value. As such, combination of two kinds of
distributed primitives offers a flexible high-level programming style.

7.6 Threads typing

Threads are assigned a type based on both the expression environmentΓ and the chan-
nel environment∆ . The judgement takes a form of:

Γ ;∆ `P : thread P is well-typed (has typethread) in environmentΓ ;∆

The rules for assigning types to threads are shown in Fig. 7.9.TT-Nil states that the
inactive process is well-typed in any well-formed environment. The key rule isTT-Par ;
we type a parallel compositions of threads if a composition of two channel environments
preserve the linearity of channels. This is checked by∆1 � ∆2 (see§ 7.2).TT-Res is a
standard rule for typing restricted channel names [21, 15]. We only allow new channels
to be assigned the typechan. Similarly we restrict a variable when it exists in the store.
Related to this definition are the ruleTT-Weak which states that it is safe to add as
many “matched” channels to the environment, provided of course those names are not
already present in the environment.

The ruleTT-Await types theawait c expression, which corresponds to the return
point for method calls. It expects the channelc to be expecting an input of typeU , which
can be safely plugged into the waiting context.TT-Return types method bodies and can
be thought of as the dual toTT-Await - it expects channelc to be used for output of a
typeU which can carry a supertype of return value of the method. The remainder of the
rules handle the formalities of method call and remote invocation.
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TT-Nil
Γ ; /0` Env

Γ ; /0` 0 : thread

TT-Par
Γ ;∆i ` Pi : thread ∆1 � ∆2

Γ ;∆1�∆2 ` P1 |P2 : thread

TT-Res
Γ ;∆ ,c : chan ` P : thread

Γ ;∆ ` (ν c)P : thread

TT-Weak
Γ ;∆ ` P : thread c /∈ dom(∆)

Γ ;∆ ,c : chan ` P : thread

TT-Await
Γ ;∆ ` E[ ]U : thread c /∈ dom(∆)

Γ ;∆ ,c : chanI(U) ` E[await c]U : thread

TT-Return
Γ ` e : ret(U ′) U ′ <: U

Γ ;c : chanO(U) ` e[return(c)/return] : thread

TT-GoSer
Γ ` o : C Γ `~v : ~T ′ ~T ′ <: ~T remote(C) mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` go o.m(serialize(~v)) with c : thread

TT-MethWith
Γ ` o : C Γ `~v : ~T ′ ~T ′ <: ~T mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` o.m(~v) with c : thread

TT-DeserWith
Γ ` o : C

Γ ` λ~o.(~v,σ , l) : ser(~T ′) ~T ′ <: ~T remote(C) mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` o.m(deserialize(λ~o.(~v,σ , l))) with c : thread
Γ ;c : chanO(U) ` go o.m(λ~o.(~v,σ , l)) with c : thread

TT-ValTo
Γ ` v : U ′ U ′ <: U ¬local(U ′)

Γ ;c : chanO(U) ` go serialize(v) to c : thread
Γ ;c : chanO(U) ` go v to c : thread

TT-GoTo
Γ ` e : ser(C′) C′ <: C

Γ ;c : chanO(C) ` go eto c : thread

Fig. 7.9.Rules for threads

7.7 Networks typing

Like threads, networks and configurations are typed in both the expression and channel
environment. There are two judgements:

Γ ;∆ ` F : conf F is a well-typed configuration in environmentΓ ;∆ .

Γ ;∆ ` N : net N is a well-typed network in environmentΓ ;∆ .

The typing rules are given in Fig. 7.10.
Restricted identifiers in configurations and networks are typed by the rulesTC-ResId

andTN-ResId respectively. They share a side-condition of a common form:u∈ dom(F)
ensures that we do not create spurious new identifiers that do not correspond to an el-
ement of the domain of the store ofF , and likewiseu ∈ dom(N) ensures a similar
condition at the network level.
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TC-ResC
Γ ;∆ ,c : chan ` F : conf

Γ ;∆ ` (ν c)F : conf

TC-ResId
Γ ,u : T;∆ ` F : conf

u∈ dom(F)
Γ ;∆ ` (ν u)F : conf

TC-Conf
Γ ;∆ ` P : thread

Γ ` σ : ok
` CT : ok FCT⊆ CT

Γ ;∆ ` P,σ ,CT : conf

TN-Nil
Γ ; /0` Env

Γ ; /0` 0 : net

TN-Conf
Γ ;∆ ` F : conf

Γ ;∆ ` l [F ] : net

TN-Par
Γ ;∆i ` Ni : net ∆1 � ∆2
dom(N1)∩dom(N2) = /0

loc(N1)∩ loc(N2) = /0

Γ ;∆1�∆2 ` N1 |N2 : net

TN-ResC
Γ ;∆ ,c : chan ` N : net

Γ ;∆ ` (ν c)N : net

TN-ResId
Γ ,u : T;∆ ` N : net

u∈ dom(N)
Γ ;∆ ` (ν u)N : net

TN-Weak
Γ ;∆ ` N : net

c /∈ dom(∆)
Γ ;∆ ,c : chan ` N : net

Fig. 7.10.Rules for networks and configurations

The ruleTC-Conf states that a configuration is only well-typed in an environment
Γ ;∆ if its threads,P and storeσ are well-typed in the same environment. Its class table
must also be well-formed, and must contain a copy of the foundation classesFCT.

The ruleTN-Nil has the standard meaning - an inactive network is well-typed in any
well-formed environment. The ruleTN-Par states that the parallel composition of two
networks is well-typed if their typing environments are composable, if they share no
identifiers of stores and if they have disjoint sets of location names. The first condition
∆1 � ∆2 is understood asTT-Par . The rest of the rules,TN-ResCandTN-Weak are
understood asTC-ResCandTT-Weak, respectively.

8 Basic Properties

In this section we shall show some key properties and lemmas that are necessary for the
proof of our network invariance conditions and type soundness theorem. Hereafter we
often writeα for U , ~U or S. We also adopt the convention thatΓ ; /0 can be written as
simplyΓ .

In the subsequent proofs, we uselength functionsfor stores and class tables defined
by:

length( /0) = 0 length(σ · [o 7→ (C, ~f :~v)]) = length(σ · [x 7→ v]) = length(σ)+1

length( /0) = 0 length(CT · [C 7→ classC extends D{~T~f ; K ~M}]) = length(CT)+1

The first lemma we introduce is Lemma 8.1. This concerns thecanonical formsof
DJ. We prove that every typable network can be written in such a form. Intuitively, a
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canonical form is one in which all restricted identifiers are moved out to the network
level.

Lemma 8.1 (Canonical forms).Suppose thatΓ ;∆ ` N : net then

N≡ (ν~u)( ∏
0≤i<n

l i [Pi ,σi ,CTi ])

where n denotes the number of locations in N.

Proof. By induction on the number of networks in parallel,n. Supposen is 0. Then
by our assumptionsΓ ;∆ ` 0 : net. This is trivially equivalent to the zero-product:
(ν~u)(∏0≤i<0 l i [Pi ,σi ,CTi ]).

For the inductive step, we suppose that the statement holds forn networks and show
that by adding then+1, it is still equivalent to a normal form by the structural rules in
Fig. 5.1. Suppose then, by assumption:

Γ ;∆ ` (ν~un+1)ln+1[Pn+1,σn+1,CTn+1] |N′ : net

By the inductive hypothesis, we have that:

N′ ≡ (ν~un)( ∏
0≤i<n

l i [Pi ,σi ,CTi ])

We can apply alpha-equivalence to the restricted names(ν~un+1) to ensure that they
do not clash with any of those names inN′. This allows us to apply scope opening to
obtain:

(ν~un+1)(ln+1[Pn+1,σn+1,CTn+1] |N′)

Again, we can apply alpha equivalence this time to ensure the names bound in~un do
not clash with those in locationln+1. Apply structural equivalence to obtain:

(ν~un+1~un)(ln+1[Pn+1,σn+1,CTn+1] | ∏
0≤i<n

l i [Pi ,σi ,CTi ])

This can be straightforwardly rewritten to:

(ν~un+1~un)( ∏
0≤i<n+1

l i [Pi ,σi ,CTi ])

This completes the case. ut

8.1 Judgements

Lemma 8.2 lists some useful properties about judgements. We writeJ to stand for any
one of the following judgements:

J ::= Env | σ : ok | e : α | P : thread | F : conf | N : net

Lemma 8.2(3) has the useful property of ensuring that any channels appearing in the
channel environment∆ and not in the judgementJ must have the linear typechan.
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Lemma 8.2 (Judgements).

– (Permutation of environments)
1. Γ ;∆ ,c : τ,c′ : τ ′,∆ ′ ` J =⇒ Γ ;∆ ,c′ : τ ′,c : τ,∆ ′ ` J.
2. Γ ,u : T,u′ : T ′,Γ ′;∆ ` J =⇒ Γ ,u′ : T ′,u : T,Γ ′;∆ ` J. Similarly forthis.

– (Linearity of channels)
3. Γ ;∆ ,c : τ,∆ ′ ` J∧c /∈ fn(J) =⇒ τ = chan.

– (Weakening)
4. Γ ;∆ ` J∧c /∈ dom(∆) =⇒ Γ ;∆ ,c : chan ` J.
5. Γ ;∆ ` J∧ ` T : tp∧x /∈ dom(Γ ) =⇒ Γ ,x : T;∆ ` J.
6. Γ ;∆ ` J∧ `C : tp∧this /∈ dom(Γ ) =⇒ Γ ,this : C;∆ ` J.

– (Strengthening)
7. Γ ;∆ ,c : τ ` J∧c /∈ fn(J) =⇒ Γ ;∆ ` J.
8. Γ ,u : T;∆ ` J∧u /∈ fnv(J) =⇒ Γ ;∆ ` J.

– (Implied judgements)
9. Γ ,Γ ′;∆ ,∆ ′ ` J =⇒ Γ ;∆ ` Env.

Proof. By induction on the size of the judgementJ. All cases are straightforward. We
only list the proof for weakening with the caseJ = P1 |P2 : thread. After applying
rule TT-Par we have two cases; we can apply the inductive hypothesis to either the
left branch or the right branch of the parallel composition. For example, choose the left
branch. ThereforeΓ ;∆1,c : chan ` P1 : thread and∆1,c : chan� ∆2 asc /∈ dom(∆2).
Apply TT-Par to yield Γ ;∆1,c : chan� ∆2 ` P1 |P2 : thread. ThenΓ ;∆1� ∆2,c :
chan ` P1 |P2 : thread by definition of�. The other case proceeds similarly. ut

8.2 Stores

Lemma 8.3 states properties about the type-safety of store access. Store access are de-
fined as adding new variable and object identifier mappings, updating the fields of ob-
jects and the value held by a variable, and also retrieving information from variables and
object fields. Lemma 8.3(7) allows the concatenation of disjoint stores and is useful in
typing thedeserialize(e) operation.

Lemma 8.3 (Stores).

1. AssumeΓ ` σ : ok, Γ ` v : T ′ with x 6∈ dom(Γ ) and T′ <: T. ThenΓ ,x : T ` σ · [x 7→
v] : ok.

2. AssumeΓ ` σ : ok, Γ ` x : T andΓ ` v : T ′ with T′ <: T. ThenΓ ` σ [x 7→ v] : ok.
3. Γ ` x : T andΓ ` σ : ok implyΓ ` σ(x) : T ′ with T′ <: T.
4. AssumeΓ ` σ : ok, Γ `~v : ~T ′ with fields(C) = ~T~f , T′i <: Ti and o/∈ dom(Γ ). Then

we haveΓ ,o : C ` σ · [o 7→ (C, ~f :~v)] : ok.
5. If Γ ` σ : ok, Γ ` o : C andΓ ` v : T ′

i with fields(C) = ~T~f and T′i <: Ti , then
Γ ` σ [o 7→ σ(o)[ fi 7→ v]] : ok.

6. AssumeΓ ` σ : ok andΓ ` o.fi : Ti with σ(o) = (C, ~f :~v). ThenΓ ` vi : T ′
i where

T ′
i <: Ti .

7. SupposeΓ ` σ : ok andΓ ,Γ ′ ` σ ′ : ok with dom(σ)∩dom(σ ′) = /0, thenΓ ,Γ ′ `
σ ∪σ ′ : ok.

Proof. By induction on the length of storeσ , written length(σ). We only prove (4) and
(7). Others are similar.
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(4)

Case length(σ) = 0: Trivially, o /∈ domo( /0) and by our assumptions we can immedi-
ately concludeΓ ,o : C ` /0· [o 7→ (C, ~f :~v)] : ok as required.

Case length(σ)= n+1: Suppose thatσ ′ = σ ·[. . . 7→ . . . ] (thus length(σ ′)= length(σ)+
1). Then the premises of the lemma state:

Γ ` σ
′ : ok with o /∈ dom(Γ ) (8.3.1)

Γ `~v : ~T ′ with fields(C) = ~f~T andT ′
i <: Ti (8.3.2)

Γ ,o : C ` σ · [o 7→ (C, ~f :~v)] : ok by the assumption (8.3.3)

(8.3.3) must have been derived byS-Oid with premises:

Γ ,o : C ` σ : ok with o /∈ domo(σ) (8.3.4)

Γ ,o : C ` o : C (8.3.5)

Γ ,o : C `~v : ~T ′ with fields(C) = ~f~T andT ′
i <: Ti (8.3.6)

Applying Lemma 8.2(9) to (8.3.4) we obtainΓ ,o : C ` Env which must have been de-
rived from ruleE-Oid with premiseΓ `C : tp with o /∈ dom(Γ ). By this side condition
and (8.3.1), we can apply Lemma 8.2(5) to obtain:

Γ ,o : C ` σ
′ : ok with o /∈ dom(σ ′) (8.3.7)

To complete the case, we applyS-Oid to (8.3.5), (8.3.6) and (8.3.7), obtainingΓ ,o :
C ` σ ′ · [o 7→ (C, ~f :~v)] : ok, as required.

(7)

Case length(σ ′) = 0: This is the base case. If length(σ ′) = 0 it must be the case thatσ ′

is empty, and this means thatσ ∪σ ′ = σ . By Lemma 8.2(9), we can takeΓ ,Γ ′ ` σ ′ : ok
and deduceΓ ,Γ ′ ` Env. ThereforeΓ ,Γ ′ ` σ ∪σ ′ : ok as required.

Case length(σ ′) = n+1: The inductive step. We assume that for a store of length(σ ′) =
n the statement holds, and prove for length(σ ′ · [. 7→ ...]) = n+ 1. We must perform a
case analysis on the last item appended to the store. This can either be a variable to
value mapping, or an object identifier to store object mapping. We shall only consider
the case for variables; the other case is similar. Suppose, by the assumption:

Γ ,Γ ′ ` σ ∪σ
′ : ok with dom(σ)∩dom(σ ′) = /0 (8.3.8)

Now assuming the last item appended toσ ′ was a variable mapping, then by the premises
of S-Var we have:

Γ ,Γ ′,x : T ` σ
′ : ok with x /∈ domv(σ ′) (8.3.9)

Γ ,Γ ′,x : T ` x : T (8.3.10)

Γ ,Γ ′,x : T ` v : T ′ andT ′ <: T (8.3.11)
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We apply weakening to (8.3.11) to obtain:

Γ ,Γ ′ ` v : T ′ andT ′ <: T (8.3.12)

From (8.3.9) we can apply Lemma 8.2(9) to deduce thatΓ ,Γ ′,x : T ` Env. This means
thatx /∈ dom(Γ ,Γ ′). Given this fact, (8.3.8) and (8.3.12), we can apply Lemma 8.3(1)
to obtainΓ ,Γ ′,x : T ` σ ∪σ ′ · [x 7→ v] : ok, as required. ut

8.3 Graphs

In DJ, two kinds of graph are computed: object graphs and class graphs. Lemma 8.4
proves the correctness of the algorithms presented in Definition 4.8 and Definition 4.12
respectively. These properties are the key to prove the type soundness theorem. Note
that the definition of “complete” appears in Definition 4.12.

Lemma 8.4 (Graph computation).

1. AssumeΓ ` σ : ok, Γ ` o : C andσ ′ = og(σ ,o). Then we haveΓ ` σ ′ : ok. Also,
for all o′ ∈ domo(σ ′) such thatσ ′(o′) = (C, . . .), we havelocal(C).

2. σ ′ = og(σ ,v) impliesog comp(σ ,σ ′).
3. Supposè CT : ok with C∈ dom(CSig). Then we havè cg(CT,C) : ok.
4. ct comp(CT) andCT′ = cg(CT,C) imply ct comp(CT′∪FCT).

Proof. We show (1), (2) by induction on the length ofσ , and (3), (4) by induction on
the length ofCT.

(1) We shall assume thatΓ ` og(σ0,o) : ok such that length(σ0) < n and prove for
length(σ) = n.

We shall also show that all objects inσ ′ are instances oflocalclasses. Examining the
definition of the object graph calculation algorithm we see there are two distinct cases.
The base case, where the graph is the empty store /0 is straightforward asΓ ` /0 : ok
always. The case where some computation happens is more difficult. Examining the
definition ofog(σ ,o) from Definition 4.8 we have thatσ1 = σ \ {o}. We can trivially
re-orderσ to ensureo is the last item. To infer the assumptionΓ ` σ : ok, S-Oid must
have been used with the premise that:Γ ` σ1 : ok.

Examining the body of the algorithm we see length(σi+1)< length(σi)< length(σ1)
whereσ ′ =

⋃
og(σi ,oi)∪σ(o) with σi+1 = σi \domo(og(σi ,oi)). By the inductive hy-

pothesis, we immediately conclude that:Γ ` σi : ok wherei > 1. The singleton store
σ(o) is trivially well-formed inΓ . Therefore we can takeΓ ` σ(o) : ok by Γ ` σi : ok,
in order to apply Lemma 8.3(7) obtainingΓ ` σ ′ : ok, as required.

(2) Assumeσ ′ = og(σ ,v). The base case is where length(σ) = 0 i.e.σ = /0. Examining
the algorithm we see thatσ ′ = /0. Therefore triviallyog comp(σ ,σ ′).

For the inductive step, assume thatσ ′ = og(σ ,v) andog comp(σ ,σ ′) for length(σ)<
n. Now setting length(σ) = n there are two sub-cases:

(a) σ ′ = /0. Trivially, there are no pairs in the reachability relationRCHσ ′ and so we
haveog comp(σ ,σ ′) vacuously.
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(b) σ ′ = [v 7→ σ(v)]
⋃

og(σi ,oi), whereσ(v) = (C, ~f :~v), {~o} = fn(~v), σ1 = σ \ {o}
andσi+1 = σi \domo(og(σi ,oi)).
Clearly, length(σi) < n by the initial removal ofo from σ1. Write σ ′

i = og(σi ,oi).
Further examination of the algorithm shows thatσ ′

i+1 is computed fromσi less
the elements collected inσ ′

i . Thereforedomo(σ ′
i )∩domo(σ ′

i+1) = /0 so by the in-
ductive hypothesisog comp(σ1,

⋃
og(σi ,oi)). Recall thatσ1 = σ \{v}. By adding

[v 7→ σ(v)] to each side, we add the same number of reachable states and therefore
og comp(σ ,σ ′).

(3) By induction on length(CT). First consider a class graph of length 0, i.e.CT =
/0. SupposeCT′ = cg( /0,C), then by definition of the class graph algorithmCT′ = /0.
Clearly ` /0 : ok by CT-Nil . For the inductive step, assume that` cg(CT,C) : ok for
length(CTn) = n and show for length(CTn+1) = n+1. Suppose:

` CTn+1 : ok with C∈ dom(CSig) (8.4.1)

` cg(CTn,C) : ok by the assumption (8.4.2)

We consider only the case whereC ∈ dom(CT) andC /∈ dom(FCT); the other is trivial.
We shall prove:̀ cg(CTn+1,C) : ok. Expanding the class graph algorithm by two steps,
cg(CTn+1,C) is obtained as:

cg(CTn+1\C,D)∪ cg(CTn+1\C, ~M)∪ [C 7→ classC extends D{~T~f ; K ~M}] (8.4.3)

First we note thatΓ ` [C 7→ classC extends D{~T~f ; K ~M}] : ok byC∈ dom(CTn) and
Γ ` CTn : ok. Also Γ ` cg(CTn+1 \C,D) is proved by the inductive hypothesis. For the
second item in the union,cg(CTn+1 \C, ~M), we check for each methodMi in ~M. Then
we computecg(CTn+1 \C,U mi (~T~x){e}) by expanding the algorithm by one step here
yields:

cg(CTn+1\C,e) (8.4.4)

Then by inductive hypothesis,cg(CTn+1 \C, ~M) is well-defined. Finally by applying
CT, we conclude the proof.

(4) Suppose length(CT0)= 0 then by definition,CT′ is complete. Now, take length(CTn)=
n. GivenCT′ = cg(CTn,C) for someC is complete by assumption, we either have that
C ∈ dom(CTn) andCT′ 6= /0, orC /∈ dom(CTn) andCT′ = /0. For the inductive step we
must show that when the length of the class table isn+ 1 the computed class graph
remains complete. Extending the class table can be achieved by appending a new entry
giving CTn+1 = CTn · [C′ 7→ L] for someC′ /∈ dom(CTn). We assume that the superclass
of C′ is present inCTn, otherwise the new class table would not be complete and so the
conclusion would hold by default. Then givenCT′ = cg(CTn+1,C), if C 6= C′ then again
CT′ is complete by virtue of being empty. IfC =C′ then by our assumption that the class
tableCTn+1 contains the direct superclass ofC′ thenCT′ must also becomplete. ut

Lemma 8.5 (Method body). Supposembody(m,C,CT) = (~x,e) and mtype(m,C) =
~T →U with ` CT : ok. Then for some C′ where C<: C′ and some U′ where U′ <: U
then we have~x : ~T,this : C′ ` e : ret(U ′).
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Proof. Straightforward. ut

Lemma 8.6 (Context). Γ ` E[ ]U : α andΓ ` e : U ′ with U′ <: U iff Γ ` E[e]U : α.

Proof. By induction on the structure onE. ut

8.4 Structural equivalence

An important property to be shown is that the application of the structural equality
rules given in Fig. 5.1 preserves the typing of a term. This is proved in Lemma 8.8,
but in order to do so we must make use of the equally important property shown in
Lemma 8.7.

This lemma yields natural properties for the composability of environments and is
used in many of the later proofs.

Lemma 8.7 (Commutativity of composition and composability).

1. ∆1 � ∆2 and(∆1�∆2)� ∆3 ⇐⇒ ∆2 � ∆3 and∆1 � (∆2�∆3).
2. ∆1 � ∆2 and(∆1�∆2)� ∆3 =⇒ (∆1�∆2)�∆3 = ∆1� (∆2�∆3).

Proof. In both proofs, without loss of generality we consider singleton environments
such that∆1 = {c : chanI(U)} and∆2 = {c : chanO(U)} with ∆1�∆2 = {c : chan}.

(1) For this case we show only the left-to-right direction, the opposite direction is
similar. The only interesting case is that∆1 and∆2 share the same channels.

By the definition of�, we knowc /∈ dom(∆3). Since∆2�∆3 = {c : chanO(U)}∪∆3,
we have that∆2 � ∆3 as required. We can also easily check∆1� (∆2�∆3) is defined,
thus by definition of�, we have∆1 � (∆2�∆3), as desired.

(2) Proceeds in a similar manner to (1), adopting the same singleton environments.
We can easily check(∆1�∆2)�∆3 is defined and is equal to{c : chan}∪∆3. Since
c /∈ dom(∆3) then∆2�∆3 = {c : chanO(T)}∪∆3. By definition of�, ∆1�(∆2�∆3) =
{c : chan}∪∆3 = (∆1�∆2)�∆3 as required.

Lemma 8.8 (Structural equivalence preserves typability).

1. If Γ ;∆ ` F : conf and F≡ F ′ thenΓ ;∆ ` F ′ : conf.
2. AssumeΓ ;∆ ` P : thread and P≡ P′, then we haveΓ ;∆ ` P′ : thread.
3. If Γ ;∆ ` N : net and N≡ N′ thenΓ ;∆ ` N′ : net.

Proof. By induction on typing derivations paying attention to the last rule applied. Most
cases are straightforward. We show one from each sub-lemma.
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(1) We show the case(ν c)P,σ ,CT≡ (ν c)(P,σ ,CT). Suppose:

Γ ;∆ ` (ν c)P,σ ,CT : conf c /∈ fn(σ)∪ fn(CT) (8.8.1)

We shall prove:

Γ ;∆ ` (ν c)(P,σ ,CT) : conf (8.8.2)

To infer (8.8.1), ruleTC-Conf was applied with the premises:

Γ ;∆ ` (ν c)P : thread (8.8.3)

Γ ` σ : ok (8.8.4)

` CT : ok (8.8.5)

(8.8.3) must have been derived by applyingTT-Reswith the following premise:

Γ ;∆ ,c : chan ` P : thread (8.8.6)

Applying TC-Conf to (8.8.6), (8.8.4) and (8.8.5), we obtain:

Γ ;∆ ,c : chan ` P,σ ,CT : conf (8.8.7)

To complete the case, applyTC-ResCto obtain (8.8.2) as required.

(2) An interesting case isP1 |(P2 |P3)≡ (P1 |P2) |P3. The work associated with proving
this case is handled by Lemma 8.7 as follows. Suppose:

Γ ;∆1� (∆2�∆3) ` P1 |(P2 |P3) : thread with ∆1 � (∆2�∆3) (8.8.8)

We shall prove:

Γ ;∆1� (∆2�∆3) ` (P1 |P2) |P3 : thread (8.8.9)

To derive (8.8.8), ruleTT-Par must have been applied with premises:

Γ ;∆1 ` P1 : thread (8.8.10)

Γ ;∆2�∆3 ` P2 |P3 : thread where∆2 � ∆3 (8.8.11)

By the side conditions of (8.8.8) and (8.8.11) we can apply Lemma 8.7(1) to obtain

∆1 � ∆2 and(∆1�∆2)� ∆3 (8.8.12)

To derive (8.8.11),TT-Par was also used, with premises:

Γ ;∆2 ` P2 : thread (8.8.13)

Γ ;∆3 ` P3 : thread (8.8.14)
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By (8.8.12), we can applyTT-Par to (8.8.10) and (8.8.13) to yield:

Γ ;∆1�∆2 ` P1 |P2 : thread (8.8.15)

Again by (8.8.12), we can take and (8.8.14) as the premises to ruleTT-Par to obtain:

Γ ;(∆1�∆2)�∆3 ` (P1 |P2) |P3 : thread (8.8.16)

Since (8.8.12), we can apply Lemma 8.7(2) to obtain (8.8.9) as required.

(3) An interesting case isN ≡ N |0. Below we prove the right to left direction. The
other direction is similar. Suppose:

Γ ;∆1�∆2 ` N |0 : net with ∆1 � ∆2 (8.8.17)

We shall prove:

Γ ;∆1�∆2 ` N : net (8.8.18)

To infer (8.8.17), ruleTN-Par must have been applied with the premises:

Γ ;∆1 ` N : net (8.8.19)

Γ ;∆2 ` 0 : net (8.8.20)

Then, by Lemma 8.2(3) we have:

∆2 = {~c : ~chan} (8.8.21)

∆1�∆2 = ∆1∪∆2 with dom(∆1)∩dom(∆2) = /0 (8.8.22)

By (8.8.22), there are no overlapping channels between∆1 and∆2. Therefore we can
apply Lemma 8.2 to (8.8.19) to obtain (8.8.18) as required. ut

Lemma 8.9 (Substitution).

1. AssumeΓ ,x : T ` e : α andΓ ` v : T ′ with x /∈ fav(e) and T′ <: T. Then we have
Γ ` e[v/x] : α ′ for someα ′ <: α.

2. Γ ,this : C ` e : α andΓ ` o : C′ with C′ <: C implyΓ ` e[o/this] : α ′ for some
α ′ <: α.

Proof. By induction on the structure of the expressioneusing Lemma 8.2 and Lemma 8.8.

(1) Below we will show the most interesting two cases.

Case e
def= freeze[t](e0): SupposeΓ ,x : T ` freeze[t](e0) : thunk(U). Then this is

derived fromTE-Freezewith premises:Γ ,x : T ` e0 : U with fav(e0) = /0 andΓ ,x : T `
ui : Ti with {~u}= fnv(e0) and¬local(Ti). Sincefav(e0) = /0, we can apply the inductive
hypothesis to the former premise to obtainΓ ` e0[v/x] : U ′ for someU ′ <: U . To apply
the ruleTE-Freeze to e0[v/x], we have to havefav(e0[v/x]) = /0 andΓ ` u′i : T ′

i with
{~u′} = fnv(e0[v/x]) and¬local(T ′

i ). Note thatfv(v) = /0 implies fav(e0[v/x]) = /0 and
~u′ =~u\{x}. Hence by the premise, we have¬local(u′i). Now we can applyTE-Freeze
to e0[v/x] in order to obtainΓ ` freeze[t](e0[v/x]) : thunk(U ′). Sincethunk(U ′) <:
thunk(U), this completes the case.
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Case e
def= E[await c]: SupposeΓ ,x : T;∆ ,c : chanI(U) ` E[await c]U : thread.

Then this is derived fromTT-Await with the premise:Γ ,x : T;∆ ` E[ ]U : thread
with c /∈ dom(∆). By assumption,fav(E[await c]U ) = /0, so by definition,fav(e) =
fav(E[ ]U ) = /0. Therefore we can apply the inductive hypothesis obtainingΓ ;∆ `
E[ ]U [v/x] : thread. Since∆ is unchanged, the side conditionc /∈ dom(∆) still holds,
and we can apply ruleTT-Await to yield Γ ;∆ ,c : chanI(U) ` E[await c]U [v/x] :
thread, as required.

(2) Most cases are trivially similar to those of (1). The key difference is in the base

case, wheree
def= this. However the proof remains straightforward. ut

9 Network Invariants

This section studies the network invariants. We show that, if an initial network satisfies
the initial conditions then well-typed reduction will preserve run-time invariants. These
are important in showing safety and establishing the subject reduction theorem.

9.1 Network invariants and initial networks

We start from the definition of a property over networks, given in Definition 9.1.

Definition 9.1 (Properties).Let ψ denote a property over networks (i.e.ψ is a subset
of networks). We writeN |= ψ if N satisfiesψ (i.e. if N ∈ ψ); we also writeN 6|= ψ if
N does not satisfyψ. We define the error propertyErr as the set of the networks which
containError as subexpression, i.e.Err = {N | N ≡ (ν~u)(l [E[Error] |P,σ ,CT] |N′)}.
We sayψ is reduction closed, if, wheneverN |= ψ andN →→ N′ such thatN′ 6|= Err,
we haveN′ |= ψ. We defineψ is a network invariant with an initial propertyψ0 if
ψ = {N | ∃N0.(N0 |= ψ0, N0 →→ N, N 6|= Err)} and, moreover,ψ is reduction-closed.

In order to ensure the correct execution of networks and the preservation of safety, we
require certain properties to remain invariant. One of the key invariants in the presence
of distribution of classes is that, when a class isactuallycalled, it and all its superclasses
must be present in the local class table. This requirement eliminates erroneous networks
containing locations such as:l [E[new C(~v)],σ , /0] where classC is not present inl ’s
empty class table, so the initial step of execution will cause a crash. Note that even if
C is present inl ’s class table, if its superclassD is not then this is also an unexpected
state. This property is formalised by the completeness of the class tablecomp(C,CT)
defined in Definition 4.13.

The following definition formally states the above class invariant and others. Below
domv(σ) (resp.domo(σ)) denotes variables (resp. o-ids) of the domain ofσ . Also we
saythread P inputs at cif P≡E[await c] |R for someE andR; dually thread P outputs
at c if P≡ R|Q with R≡ return(c) eor R≡ [go] ewith/to c for someQ ande.

Definition 9.2 (Network invariants). Given networkN≡ (ν~u)(∏0≤i<n l i [Fi ]) with Fi =
(Pi ,σi ,CTi), and assuming 0≤ j < n, i 6= j where required, we define propertyInv(r) as
a set of networks which satisfy the conditionr (with 1≤ r ≤ 18) as defined as follows:
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Class invariants
1. FCT⊆ CTi

2. Pi ≡ E[newC(~v)] |Qi =⇒ comp(C,CTi)
3. C∈ dom(CTi)∩dom(CT j) =⇒ CTi(C) = CT j(C)

∨ CTi(C) = CT j(C)[~Dl i /~D] with fcl(CTi(C)) = {~D}
Value invariants

4. Pi ≡ E[v] |P′i thenfv(v) = /0
5. σi(x) = v =⇒ fv(v) = /0
6. σi(o) = (C, ~f :~v) =⇒ fv(vi) = /0

State invariants
7. fv(Pi)⊆ domv(σi)⊆ {~u}
8. fv(Pi)∩ fv(Pj) = /0
9. domv(σi)∩domv(σ j) = /0

Object identifier invariants
10. o∈ fn(Fi)∩ fn(Fj) =⇒ ∃!k. σk(o) = (C, ..)∧ remote(C)
11. o∈ fn(Fi)∧∃k. σk(o) = (C, ..)∧ local(C) =⇒ k = i
12. o∈ fn(Fi) =⇒ ∃k 1≤ k≤ n. o∈ domo(σk)
13. domo(σi)∩domo(σ j) = /0

Method-invocation invariants
14. Pi ≡ o.m(~v) with c|Qi =⇒ σi(o) = (C, ..)∧ comp(C,CTi)

Field invariants
15. Pi ≡ E[o.f] |Qi =⇒ σi(o) = (C, ..)∧ comp(C,CTi).
16. Pi ≡ E[o.f := v] |Qi =⇒ σi(o) = (C, ..)∧ comp(C,CTi).

Linearity invariants
17. Pi ≡Qi |Ri andQi inputs atc =⇒ neitherRi norPj inputs atc.
18. Pi ≡Qi |Ri and andQi outputs atc =⇒ neitherRi norPj outputs atc.

Each invariant has a clear operational (and arguably engineering) meaning, as we illus-
trate below (each number corresponds to the invariant of the same number above).

Class invariants
1. (Availability of foundation classes) The class table at every location must con-

tain a copy of the foundation classes.
2. (Class availability) Any class instantiated at a location as well as its all super-

classes must be available in that location’s class table.
3. (Class name coherence) Two classes with the same name distributed in the

two different locations must have (1) the exactly same definition or (2) the
same definition up to location tagging for that class name.

Value invariants
4. (Value-closedness) Values must not contain unbound variables.
5. (Value-closedness in stores) Store entries may not contain open variables.
6. (Field value-closedness in stores) Objects in a location’s store must have

closed fields.
State invariants

7. (Availability of variable stores) Programs at a locationi must not mention
variables that are not inσi . Also, all variables must be accounted for in the list
of restricted names~u for the entire network.
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8. (Locality of variables) Local variables should not be shared between threads
at different locations.

9. (Locality of variable stores) Local variables in the store should have globally
unique names.

Object identifier invariants
10. (Locality of local object ids) If an object is referenced by threads in two dif-

ferent locations, it must be the case that the identifier is of a remote class.
11. (Availability of local object ids) If a thread ati has a reference to an instance

of a local class, that object must necessarily be co-located in the store ati.
12. (Availability of object ids) An object must be located in the store at some

remote or local locationk.
13. (Unicity of o-id stores) Every object identifier in the system has a unique store.

This ensures that there can be no ambiguity when determining the location that
holds the store entry of a particular remote object reference.

Method-invocation invariants
14. (Availability of a store and classes for method calls) Any thread attempting to

perform a method call will have the store and the code for that method body
available.

Field invariants
15. (Field access availability and locality) Any field access always succeeds and

will be made on objects local to the executing code.1

16. (Field assignment availability and locality) Any field assignment always suc-
ceeds and will be made to objects local to the executing code.

Linearity invariants
17. (Unicity of await) The network has a unique await for each name. This ensures

that there can be no ambiguity when determining the place that a (remote)
method invocation happened.

18. (Unicity of output) The network has a unique output thread for each name.
This ensures that there is a unique return value for each method invocation.

Before proving the network invariants, we define the initial network configurations.
Roughly speaking an initial configuration contains no runtime values and expressions
except o-ids. It can, however, contain parallel threads distributed among locations; these
have been generated by compiling multiple user-defined main programs. Definition 9.3
states these conditions formally.

Definition 9.3 (Initial network). We call networkN≡ (ν~u)(∏0≤i<n l i [Pi ,σi ,CTi ]) ini-
tial networkif it satisfies the following conditions (calledinitial properties).

– it contains no runtime expressions or values except o-ids and parallel compositions
of return(c) e; ande in freeze[t](e) does not contain free o-ids, i.e.fn(e) = /0.

– it satisfies all propertiesInv(i) exceptInv(2), which is replaced by:
Class invariants

2′. (a) fcl(Pi)⊆ dom(CTi),
(b) C∈ fcl(CTi)∪dom(CTi) =⇒ comp(C,CTi) and
(c) σi(o) = (C, . . .) =⇒ comp(C,CTi).

1 Note thato∈ fn(Pi) by the form ofE[ ]. Similarly for Inv(16), Inv(15′) andProg(4)–Prog(7).
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– We also strengthen the field invariantsInv(15) andInv(16) by replacing by:

Field invariants
15′. Let C be an arbitrary context. ThenPi ≡ C [o.f] =⇒ o∈ dom(σi).

We denote the set of networks satisfying these conditions byInit.

Note that, by combiningInv(2′), the above condition subsumesInv(15) andInv(16).
The extra requirement states that all initial class tables are complete w.r.t. classes in

the program and stores. For example, suppose

new A().m(), /0,CT
with CT(A) = class A extends B{; void m(){newC();return }}

First A should be defined inCT (this is ensured by (a) inInv(2′)); secondlyD should
be also defined inCT (this is ensured by (a) and (b): sinceA ∈ dom(CT), we have
comp(A,CT), which impliesD ∈ dom(CT)); and thirdly,C should be defined inCT too
sincenewC() appears after the method invocation atm. This condition is ensured by (b)
sinceC∈ fcl(CT). The condition (c) is similarly understood.

We also note that during runs of programs, the initial properties maynotbe satisfied
since classes can be downloaded lazily. A typical example is

(new F l (),σ ,CT) −→ (download F from l in new F(),σ ,CT)

whereF appears free in the r.l.s. expression, butF 6∈ dom(CT), hence it does not satisfy
(b). Later we formalise this situation in Lemma 9.4 and prove the invariantInv(2). The
initial condition ofInv(15) is similarly understood as (c).

Proof method for invariants Some of the invariant properties are required for proofs
of the subject reduction shown in the next section. This means type preservation must
not be assumed to prove the invariant ofInv(r). Therefore for the inductive step goes
through, we need to divide the proof routine into the following three steps:

Step 1 We prove one step invariant property for a typed network starting from the initial
properties. This step has two sub-cases:
(i) AssumeΓ ;∆ `N0 : net and N0 satisfies the initial properties. Then N0 −→N1

implies N1 |= Inv(r) for each1≤ r ≤ 18 if N1 6|= Err.
(ii) AssumeΓ ;∆ ` Nm : net (m≥ 1) and Nm |= Inv(r) for all 1≤ r ≤ 18. Then

Nm−→ Nm+1 implies Nm+1 |= Inv(r) for each1≤ r ≤ 18 if Nm+1 6|= Err.
Step 2 We prove the subject reduction theorem using Step 1, i.e.Γ ;∆ ` N : net and

N−→ N′ impliesΓ ;∆ ` N′ : net.
Step 3 Then invariant ofInv(r) is a corollary of Steps 1 and 2.

The following lemma lists key additional invariants related to dynamic downloading
of classes, which are used for the main proofs of class invariants. We shall use the
notationPim to denote the threads at locationi afterm reduction steps.
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Lemma 9.4 (Class invariants). AssumeΓ ;∆ ` Nk : net (0 ≤ k ≤ m) and N0 satis-
fies the initial condition and Nk ∈ Inv(r) for 1≤ r ≤ 18 (when k≥ 1). Assume N0 −→
N1 −→ N2 −→ ·· · −→ Nm−1 −→ Nm ≡ (ν ~um)(∏0≤i<n l i [Pim,σim,CTim]) −→ Nm+1 ≡
(ν~um+1)(∏0≤i<n l i [Pim+1,σim+1,CTim+1]) with (m≥ 1). Assuming0≤ j < n where re-
quired then we have:

1. (Monotonicity of class tables)CTim ⊆ CTim+1.
2. (Eager thunks and class tables)

Pim+1 ≡ E[pewith CT′ from l jq] |Qim+1 =⇒ CT′ ⊆ CT jm+1.
3. (Remote downloading of class tables)

Pim+1 ≡ E[download ~C from l j in e] |Qim+1 =⇒ {~C} ⊆ dom(CT jm+1) and;
Pim+1 ≡ E[resolve ~C from l j in e] |Qim+1 =⇒ {~C} ⊆ dom(CT jm+1).

4. (Class downloading and availability of class tables)
C∈ fcl(Pim+1) =⇒ (C∈ dom(CTim+1)∨

Pim+1 ≡ E[downloadC from l j in newC(~v)] |Qim+1).
5. (Availability of local classes)

o∈ fn(Pim+1)∧σim+1(o) = (C, . . .)
=⇒ ((C∈ dom(CTim+1)∧∀D C <: D.D ∈ dom(CTim+1))

∨Pim+1 ≡ E[download ~C from l j in o] |Qim+1

∨Pim+1 ≡ E[resolve ~C from l j in o] |Qim+1).
6. (Availability of superclass tables)∃Nk ≡ (ν~uk)(∏0≤i<n l i [Pik,σik,CTik]) with Pik ≡

E[download ~C from l j in e] |Qik and 0 ≤ j < n. Then for each Cz ∈ {~C} we
have∀C′ Cz <: C′.∃Nm≡ (ν~um)(∏0≤i<n l i [Pim,σim,CTim]) such that Nk →→Nm and
Pim ≡ E[resolve ~D from l j in e] |Qim with C′ ∈ {~D} and C′ ∈ dom(CTim).

Remark:The final statement requires slightly different conditions from others as we
need to track a sequence of download-and-resolve reductions.

Proof. Induction onk. Below we omitσ and/orCT from the reduction step if they are
not used for it.

(1) Straightforward by examiningRN-Download andRC-Defrost since class tables
are only changeable by either rule.

(2),(3) Obvious by investigatingRC-NewR, RN-DownloadandRC-Defrost together
with the inductive hypothesisNk satisfies (1) monotonicity of the class table.

(4) For the base case, wherek = 0 we have that byInv(2′) if C ∈ fcl(Pi0) then it must
be the case thatC∈ dom(CTi0). If C /∈ fcl(Pi0) then the property holds trivially. For the
inductive step, wherek = m, we can assume that the property holds afterm reduction
steps. There are three sub-cases to considers:

(a) C∈ fcl(Pim) andC∈ dom(CTim). Then by (1) we haveC∈ dom(CTim+1) as required.
(b) C ∈ fcl(Pim) andPim ≡ E[download C from l j in new C(~v)] |Qim. By (3) we have

C∈ dom(CT jm). By ruleRN-Downloadwe have that{~D}= {C}\dom(CTim). As-
sumeC /∈ dom(CTim) then we haveC∈ {~D} and soC∈ dom(CT′) with CT′ ⊆ CT jm.
By definition of downloading,CTim+1 = CTim∪CT′ and thereforeC∈ dom(CTim+1)
as required.



60 Alexander Ahern and Nobuko Yoshida

(c) AssumeC /∈ fcl(Pim), but C ∈ fcl(Pim+1). Examining the definition of free class
names and the reduction rules, we see that the only reduction that generates a new
free class name isRC-NewR. Therefore we can deduce that:

Pim≡E[newCl j (~v)] |Qim−→l i Pim+1≡E[downloadCfrom l j in newC(~v)] |Qim+1

as required.

(5) Supposeo∈ fn(Pim+1)∧σim+1(o) = (C, . . .). We have three situations.

(a) If o is created locally by evaluation ofnew C(~v) from the original program text,
then by Lemma 9.4(1) andInv(2) we have that∀D C <: D.D ∈ dom(CTim+1).

(b) If o is created by the deserialisation of an object, there exists somek such that
Pik ≡ E[download ~F from l j in o] |Qik where~F contains all the classes of the
objects inσ ′ as defined inRN-Download. Then by Lemma 9.4(6) we have that
∀D C <: D.D ∈ dom(CTil ) for somek < l ≤ m as required. By Lemma 9.4(1) the
multi-step reductionNl →→ Nm cannot have removed class table entries, and so
∀D C <: D.D ∈ dom(CTim+1) as required.

(c) The case (b) reduces toE[resolve ~D from l j in o] |Qik by RC-Resolve. The
reasoning is the same as (b) by using Lemma 9.4(6).

(6) Obvious by repeatingRN-DownloadandRC-Resolveuntil we reach to resolveC′.
Note that these reductions terminates as the inheritance relations in a well-formed class
table is acyclic. ut

9.2 Proofs of the network invariants

Now we are ready to proveStep 1using Lemma 9.4. It is only necessary to show sub-
case (ii) of this step for each invariant,Inv(2), Inv(15) and Inv(16) excepted. For the
cases ofInv(15) and Inv(16), we prove the stronger initial conditionInv(15′) always
hold. HenceInv(15) and Inv(16) are derived as a corollary. On the other hand, in the
case ofInv(2), we cannot assume that this particular invariant holds — it may be the
case that the previous network wasN0 whereInv(2′) holds instead. However, we must
still show thatInv(2) is established by the reduction step.

CaseInv(1): By Lemma 9.4(1).

CaseInv(2): SupposePim 6≡ E[newC(~v)] |Qim −→l i Pim+1 ≡ E[newC(~v)] |Qim.
There are two candidates for the reduction rule applied above:

(a) Suppose the rule applied wasRC-Cong. ThereforePim≡E[newC(~v′,e)] |Qim. This
structure indicates that this expression was part of the original program text and so
by Lemma 9.4(4) we have thatC∈ dom(CTim) and soC∈ dom(CTi0). By Inv(2′) we
have that∀D C<: D.D∈ dom(CTi0) and so all super-classes ofC must be present in
CTi0. Then by Lemma 9.4(1) we have that∀D C<: D.D∈ dom(CTim+1) as required.

(b) Suppose that the rule applied wasRC-DownloadNothing. Therefore we set
Pim ≡ E[downloadC from l j in newC(~v)] |Qim. This means there is a sequence of
download-resolve-download steps. Considering this pattern of behaviour, we can
conclude that the chain must have started by the application of ruleRC-NewR. By
Lemma 9.4(6) we have that all super-classes ofC must have been downloaded into
CTim. Therefore by Lemma 9.4(1) these classes are also inCTim+1 as required.
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CaseInv(3): We prove by the rule induction of−→. We have two sub-cases.

(a) The last applied rule isRN-Download. Assume, with{~D}= {~C}\dom(CTim) and
CT′ = CT jm(~D) we have:

l i [E[download ~C from l j in e] |P,σim,CTim] | l j [Pjm,σ jm,CT jm]−→
l i [E[resolve ~C from l j in e] |P,σim+1,CTim∪CT′] | l j [Pjm+1,σ jm+1,CT jm+1]

First we note that, by the same reasoning as the proof of Lemma 9.4(4),CT′ is well-
defined. Here we have to showC∈ dom(CTim∪CT′)∩dom(CT jm) implies(CTim∪
CT′)(C) = CT jm(C). However byCT′ ⊆ CT jm and the inductive hypothesis such that
CTim(C) = CT jm(C), it is obvious that(CTim∪CT′)(C) = CT jm(C), concluding the
case.

(b) The last applied rule isRC-Defrost. Similar with the above with Lemma 9.4(2).

CaseInv(4): The only interesting cases are when values are newly created by the
reduction. Hence we only have to investigateRC-Var , RC-Fld, RC-Ass, Serialize,
RC-FreezeandRC-Defrost. CasesRC-Var andRC-Fld are proved by the induction
such thatNm∈ Inv(5) andNm∈ Inv(6). The only interesting case is the last applied rule
wasRC-Freeze. Assume

freeze[t](e),σ ,CT−→l i pe[~v/~x] with CT′ from iq,σ ,CT

Sincefv(vi) = /0 by induction such thatNm∈ Inv(5), we know, by the side condition of
{~x} = fv(e), fv(e[~v/~x]) = /0. Hencefv(pe[~v/~x] with CT′ from iq) = /0. Other cases are
straightforward by induction such thatNm∈ Inv(4).

CaseInv(5): We only have to consider the rules where a store whose domain is a
variable is modified, i.e.RC-Dec, RC-AssandRC-FldAss. All are straightforward by
induction.

CaseInv(6): We only have to consider rules where a store with an object id and field
variables is modified, i.e.RC-Fld, RC-FldAss, RC-FldAss andDeserialize. The only
interesting case is the last applied rule wasDeserialize. Assume:

deserialize(λ~o.(~v,σ ′,m)),σim,CTim

−→l i (ν~o)(downloadC from min~v,σ ∪σ
′,CTim+1)

Without loss of generality, consider someo ∈ ~v such thatσ ′(o) = (C, . . .) and~o /∈
domo(σ). Since the store fragmentσ ′ is generated in some networkNk (wherek < m)
andNk ∈ Inv(6) by induction. Therefore we see that adding this closed fragment to an
already closed storeσim, it must be the case thatσim+1 is also closed. HenceNm+1 ∈
Inv(6) as required.

CaseInv(7): We only have to check the last applied rule which changes a store.

(a) The last applied rule wasRC-Dec. Suppose for some 0≤ i < n we have
Γ ;∆ ` (ν~um)l i [E[T x := v ; e] |Qim,σim,CTim] : net. Without loss of generality we
can assumeE ≡ [ ] andQim ≡ 0. Then after reduction, we have
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(ν x~um)l [e,σim · [x 7→ v],CTim+1]. We must show thatfv(e)⊆ domv(σim · [x 7→ v])⊆
{x~u}. SinceInv(4) holds by assumption, then by definitionfv(T x:= v ; e) = fv(e)\
{x}. If x∈ fv(e), then clearlyx∈ domv(σim · [x 7→ v]) by definition of the variable
domain, and so we havefv(e)⊆ domv(σim · [x 7→ v]). If x /∈ fv(e) then the argument
is similar. The vector of restricted names,~um, is extended withx. Therefore we also
have thatdomv(σim · [x 7→ v])⊆ {x~um} as required.

(b) The last applied rule wasRC-Ass. By assumption we have that
Γ ;∆ ` (ν~um)l i [E[x := v] |Qim,σim,CTim] : net; and
(ν~um)l i [E[x := v] |Qim,σim,CTim]−→l i (ν~um+1)l i [E[v] |Qim+1,σim+1,CTim+1].

Without loss of generality, letQim ≡ 0 and E ≡ [ ]. We must show thatfv(v) ⊆
domv(σ) ⊆ {~u}. From Inv(4), fv(v) = /0 and sofv(x := v) = {x}. By assumption
{x} ⊆ domv(σim)⊆ {~um}. After reduction, triviallyfv(v)⊆ domv(σim[x 7→ v]), and
given that the vector of restricted names is preserved,domv(σim[x 7→ v])⊆ {~um+1}.

(c) The last applied rule wasDeserialize. This case is straightforward—although the
store changes we know by Lemma 8.4 (the graph computation lemma) that the
store appended contains no variables. Thereforedomv(σim∪σ ′) = domv(σim), and
becausefv(download C from min~v) = /0, we have /0⊆ domv(σim∪σ ′)⊆ {~o~um}
as required.

(d) The last applied rule wasRC-MethInvoke. Again, without loss of generality take

Qim ≡ 0 andE ≡ [ ]. GivenΓ ;∆ ` (ν~um)l i [o.m(~v) with c,σim,CTim](def= N) : net
andN−→ (ν~x~um)l i [e[o/this][return(c)/return],σim ·[~x 7→~v],CTim+1], we must
show that

fv(e[o/this][return(c)/return])⊆ domv(σim · [~x 7→~v])⊆ {~x~um}.
Note thatfv(e[o/this][return(c)/return]) = fv(e) by definition of substitution.
Givendomv(σim · [~x 7→~v]) = domv(σim)∪{~x} anddomv(σim)⊆ {~u} then we have
that domv(σim · [~x 7→~v]) ⊆ {~x~um}. By our assumption that the initial network is
well-typed, we can concludèCTim : ok. Since(~x,e) = mbody(m,C,CT) for some
C, we must have thatfv(e) = {~x}. Clearly{~x} ⊆ domv(σim · [~x 7→~v]), finishing the
case.

CaseInv(8): SinceNm∈ Inv(5), we only have to investigate that the last applied rules
where terms, values or classes are transferred across the different locations. Then there
are two sub-cases.

(a) The last applied rule wasRN-Leave. Suppose thatPim ≡ go o.m(~v) with c|Qim.
Then we have, for someΓ ′ = ∆ ,~x : ~T and∆ ′ = ∆ ,~c : ~chan,
(i) Γ ′;∆ ′ ` o : C andremote(C).

(ii) (a)vi = oi andΓ ′;∆ ′ ` oi : Ci or (b) fnv(vi) = /0.
Note that (ii-b) uses the induction such thatNm ∈ Inv(4). Hence after applying
RN-Leave, fv(vi) = /0 still holds, completingNm+1 ∈ Inv(8).

(b) The last applied rule wasRN-Return. Similar with the above sub-case.

CaseInv(9): By Inv(7), Inv(8) and the inductive hypothesis.

CaseInv(10): Again, as in the proof ofInv(8), we only have to consider the cases the
last applied rule is eitherRN-Leaveor RN-Return. But this is again derived from (i)
and (ii-a) in the proof ofInv(8).
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CaseInv(11): We only have to investigate the case that the last applied rule is
Deserialize. It is mechanical by a similar reasoning with the caseInv(6).

CaseInv(12): Obvious since we cannot apply the garbage collection.

CaseInv(13): By Inv(10) andInv(11).

CaseInv(14): SupposePim+1 ≡ o.m(~v) with c|Qim+1. Then byRC-MethInvoke, we
haveσim+1(o) = (C, . . .). Now we knowo∈ fn(Pim+1) and so by Lemma 9.4(5) and the
shape ofPim+1, we haveC∈ dom(CTim+1)∧∀D C <: D.D ∈ dom(CTim+1), as required.

CaseInv(15′): We only consider the case for the field access. The case for the field
assignment is just the same. There are three cases:

(1) The casePim ≡ C [o.f] andPim+1 ≡ C ′[o.f]. I.e.−→ is applied for the context or
other networks. This case is obvious by the assumption.

(2) The casePim ≡ E[e.f] |Qim andPim+1 ≡ E[o.f] |Qim with e 6= o ande 6= this. The
only interesting cases are the last applied rule is eitherRC-Var , RC-Fld, RC-New
or Deserialize. We only show the cases ofRC-Var andRC-New.
(a) Suppose the last applied rule isRC-Var . Then:

(E[x.f] |Qim,σim,CTim)−→l i (E[o.f] |Qim,σim,CTim)

with σim(x) = o. Forx.f typable, byTE-Fld , we knowΓ ` x : C with local(C)
andΓ ` σim : ok for someΓ . Since[x 7→ o] ∈ σim by RC-Var , we haveΓ `
o : C with local(C). Also by the indctive hypothesis,Pim satisfiesInv(11) and
Inv(12). By Inv(12), there exists 1≤ k≤ n such that[o 7→ (C, ..)] ∈ σkm. Then
by Inv(11), o∈ fn(σim) implies i = k, which meanso∈ dom(σim), as desired.

(b) Suppose the last applied rule isRC-New. Then:

(E[newC(~v).f] |Qim,σim,CTim)
−→l i (ν o)(E[o.f] |Qim,σim · [o 7→ (C, ~f :~v)],CTim)

Then obviouslyo∈ dom(σim). The case forDeserializeis similar.
(3) The last applied rule isRC-MethInvoke. I.e. we have:

o′.m(~v) with c,σim,CTim

−→l i (ν~x)(e[o′/this][return(c)/return],σim · [~x 7→~v],CTim)

with σim(o′) = (C, . . .) andmbody(m,C,CTim) = (~x,e). Sincefn(e) = /0, Pim+1 ≡
C [o.f] implieso′ = o andthis is substituted byo. This meansσim(o) = (C, . . .),
as required.

CaseInv(17), Inv(18): Straightforward by the definition of∆1 � ∆2 and the analysis
onTT-Res, TT-Await , TT-Return andTT-GoSer. ut

We can derive the following progress properties immediately from the invariants. Note
that the linear invariants also guarantee the determinacy of remote method invocation
and return points, strengthening usual progress properties as found inProg(10).
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Definition 9.5 (Progress invariants).Given networkN ≡ (ν~u)(∏0≤i<n l i [Pi ,σi ,CTi ]),
and assuming 0≤ k< n, we define propertyProg(r) as a set which satisfy the following
condition.

Class
1. Pi ≡ E[newC(~v)] |Qi =⇒ C∈ dom(CTi)
2. Pi ≡ E[download ~C from lk in e] |Qi =⇒ Ci j ∈ dom(CTi)∪dom(CTk).
3. Pi ≡ E[resolve ~C from min e] |Qi =⇒ Ci j ∈ dom(CTi).

Field
4. Pi ≡ E[o.fi ] |Qi =⇒ [o 7→ (C, ..)] ∈ σi ∧fields(C) = ~T~f .
5. Pi ≡ E[o.fi := v] |Qi =⇒ [o 7→ (C, ..)] ∈ σi ∧fields(C) = ~T~f .

Variable
6. Pi ≡ E[x] |Qi =⇒ x∈ dom(σi)
7. Pi ≡ E[x := v] |Qi =⇒ x∈ dom(σi)

Method-invocation
8. Pi ≡ o.m(~v) with c|Qi ∧σi(o) = (C, . . .) =⇒ mbody(m,C,CTi) defined.
9. Pi ≡ go o.m(~v) with c|Qi =⇒ ∃!k. o∈ dom(CTk).

Return
10. Pi ≡ go v to c|Qi ∧ c∈ {~u} =⇒ ∃!k. Pk ≡ E[await c] |Qk.

We explain these properties briefly below:

Class
1. (Class availability) Classes are always available for instantiation.
2. (Download locates required classes) Download operations always succeed in

retrieving the required classes from the specified location.
3. (Resolution is coherent) No attempt is made to resolve classes that are not

available in the local class table.
Field

4. (Field access availability and locality) No attempt is made to invoke a field
access on the store if the class of the store does not provide that field.

5. (Field assignment availability and locality) No attempt is made to invoke a
field access on the store if the class of the store does not provide that field.

Variable
6. (Variable access availability and locality) Expressions only access variables

they are local to.
7. (Variable assignment availability and locality) Expressions only assign to vari-

ables they are local to.
Method-invocation

8. (Objects understand messages) No attempt is made to invoke a method on an
object of a given class if that class does not provide that method.

9. (Remote invocations have a destination) Remote method invocations always
refer to a unique live location in the network.

Return
10. (Linear return) If a method return exists, there must be exactly one location

waiting for it on that channel.
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Proposition 9.6 (Progress).Assume N0 |= Init and N0→→Nm with Γ ;∆ `Nk : net for
all 0≤ k≤m. Then Nm−→ Nm+1 implies Nm+1 |= Prog(r) (1≤ r ≤ 10).

Proof. ImmediatelyProg(1) is derived fromInv(2). Prog(2) is by the monotonicity
of the class tables.Prog(3) is obvious byRN-Download. Prog(4) andProg(5) are
proved byInv(15) and byInv(16), respectively.Prog(6) andProg(7) are obvious by
Inv(7). Prog(8) is derived fromInv(14). Prog(9) is by combiningInv(12) andInv(13).
Prog(10) is straightforward by combiningInv(17) andInv(18). ut

10 Type Soundness

This section proves the subject reduction theorem. As a corollary, we derive the net-
work invariants and progress properties. There are three key points on the proof of the
theorem, which are not found in those for the sequential languages [18, 4, 9]; first we
directly use the network invariants (Definition 9.1 in Section 9) for the cases of code
mobility (freeze and defrost), remote method invocations and field access; secondly we
use the linearity of channels for the cases of parallel compositions of threads and net-
works; finally we use the correctness of class and object graphs (Lemmas 8.4 in§ 8.3)
to ensure the typability of thunks and serialised objects.

Following the proof method in Section 9, we assumeStep 1in the paragraphProof
method for invariants to proveStep 2 (i.e. Subject Reduction Theorems). We start
from the expression.

Theorem 10.1 (Subject reduction for expressions).AssumeΓ ,~u : ~T ` e : α,
Γ ,~u : ~T ` σ : ok and` CT : ok. Suppose(ν~u)(e,σ ,CT)−→l (ν~u′)(e′,σ ′,CT′) and e′ 6|=
Err. Then we haveΓ ,~u′ : ~T ′ ` e′ : α ′ for someα ′ <: α, Γ ,~u′ : ~T ′ ` σ ′ : ok and` CT′ : ok.

Proof. By induction on the derivationF −→l F ′ with a case analysis on the final typ-
ing rules. Proofs are laid out in the following manner: definition of the configuration
F (before reduction), definition of the configurationF ′ after reduction and finally the
premises and conditions that must have held for the reduction to take place. We omit
to proveΓ ,~u′ : ~T ′ ` σ ′ : ok and/or` CT′ : ok when the stores and/or class tables are
unchanged during the reduction.

CaseRC-Var:

F
def= x,σ ,CT

F ′ def= σ(x),σ ,CT

From the shape ofF , the last expression typing rule applied wasTE-Var . This states
that Γ ` x : T and, with the assumption thatΓ ` σ : ok, we can immediately apply
Lemma 8.3(3) to concludeΓ ` σ(x) : T ′ for someT ′ <: T.

CaseRC-Cond:

F
def= if true then e1 else e2,σ ,CT

F ′ def= e1,σ ,CT

We consider only the case where the boolean test istrue; the case forfalse is identi-
cal. From the structure ofF , the last typing rule applied must have beenTE-Cond with
premiseΓ ` e1 : S′ andS′ <: S. HenceΓ ` e1 : S, as required.
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CaseRC-Fld:

F
def= o.fi,σ ,CT

F ′ def= vi ,σ ,CT

First by assumingF satisfiesProg(4), we haveo ∈ dom(σ). Then by the premise of
RC-Fld, σ(o) = (C, ~f : ~v). Then the proof is straightforward by Lemma 8.3(6), the
assumptionsΓ ` o.fi : Ti andΓ ` σ : ok with the side conditionσ(o) = (C, ~f :~v). We
obtain the judgementΓ ` vi : T ′

i for someT ′
i <: Ti , completing the case.

CaseRC-Seq:

F
def= e1;e2,σ ,CT

F ′ def= (ν~u)(e2,σ
′,CT′)

The premise ofRC-Seqstates thate1,σ ,CT−→l (ν~u)(v,σ ′,CT′) with~u /∈ fnv(e2). From
structure ofF , the last typing rule applied must have beenTE-Seqwith premises:Γ `
e1 : void andΓ ` e2 : S. By the side condition~u /∈ fnv(e2), we can apply Lemma 8.2(5)
to obtainΓ ,~u : ~T ` e2 : S. By the inductive hypothesis, we haveΓ ` σ ′ : ok and` CT′ :
ok, finishing the case.

CaseRC-Dec:

F
def= T x= v ; e,σ ,CT

F ′ def= (ν x)(e,σ · [x 7→ v],CT)

By the premise ofRC-Decwe havex /∈ domv(σ). From the shape ofF , the last typing
rule applied wasTE-Dec, with the premises:Γ ,x : T ` e : S andΓ ` v : T ′ such that
T ′ <: T. The latter gives us type preservation immediately. Then by assumptionΓ ` σ :
ok and by side conditionx /∈ domv(σ), we can apply Lemma 8.3(1) to obtainΓ ,x : T `
σ · [x 7→ v] : ok.

CaseRC-Ass:

F
def= x := v,σ ,CT

F ′ def= v,σ [x 7→ v],CT

ExaminingF , the last typing rule applied wasTE-Ass, Γ ` x := v : T ′, with premises
Γ ` v : T ′ andΓ ` x : T such thatT ′ <: T. By the former, type preservation is immediate.
Also by applying Lemma 8.3(2) to these premises and assumptionΓ ` σ : ok, we can
deriveΓ ` σ [x 7→ v] : ok.

CaseRC-FldAss:

F
def= o.fi := v,σ ,CT

F ′ def= v,σ [o 7→ σ(o)[ fi 7→ v]],CT

From the shape ofF , the last typing rule applied to the expression wasTE-FldAss
giving judgementΓ ` o.fi := v : T ′

i with the premises:Γ ` o.fi : Ti andΓ ` v : T ′
i

with T ′
i <: Ti . The latter immediately derives type preservation. Hence we only have

to show that the new store is well-formed. In order to derive the former premise, the
rule TE-Fld must have been used, with premises:Γ ` o : C with fields(C) = ~T~f and
`C : tp. Note assumingF satisfiesProg(5), we haveo∈ dom(σ). Then together with
assumptionsΓ ` σ : ok, Γ ` v : T ′

i and byRC-FldAss, we can apply Lemma 8.3(5) to
obtainΓ ` σ [o 7→ σ(o)[ fi 7→ v]] : ok, finishing the case.
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CaseRC-New:

F
def= newC (~v),σ ,CT

F ′ def= (ν o)(o,σ · [o 7→ (C, ~f :~v)],CT)

The premise ofRC-New states thatfields(C) = ~T~f andC /∈ dom(CT). By examining
the structure ofF , the last rule applied in the derivationΓ ` newC (~v) :C wasTE-New,
with premises:̀ C : tp with fields(C) = ~T~f andΓ `~v : ~T ′ such thatT ′

i <: Ti . By this,
E-Oid derivesΓ ,o : C` Env. It is then possible to applyTV-Oid to deriveΓ ,o : C` o :
C, which shows type preservation. It remains to show that the new store is well-formed.
Given the premises and assumptionΓ ` σ : ok, we can apply Lemma 8.3(4) to obtain
Γ ,o : C ` σ · [o 7→ (C, ~f :~v)] : ok, as required.

CaseRC-NewR:

F
def= newCm(~v),σ ,CT

F ′ def= downloadC from min newC(~v),σ ,CT

By the premise ofRC-NewR, we also have thatC /∈ dom(CT). However, this case is
straightforward: by examining the structure ofF , the last rule applied wasTE-New.
This judgement is of the formΓ ` new Cm(~v) : C. Its premises can be used for the
application ofTE-ClassLoad to deriveΓ ` download C from m in new C(~v) : C,
concluding the case.

CaseRC-Cong:

F
def= E[e],σ ,CT

F ′ def= (ν~u)(E[e′],σ ′,CT′)

RC-Cong has side conditionse,σ ,CT −→l (ν~u)(e′,σ ′,CT′) and~u /∈ fnv(E). Straight-
forward by Lemma 8.6.

CaseSerialize:

F
def= serialize(~v),σ ,CT

F ′ def= λ~o.(~v,σ ′, l),σ ,CT

By the premises ofSerializewe also have thatσ ′ =
⋃

og(σ ,vi) and{~o}= domo(σ ′).
From the shape ofF , and by the assumptions, we conclude that the last typing

rule applied wasTE-Serialize. This gives the judgementΓ ` serialize(~v) : ser(~U)
with the conditionΓ ` ~v : ~U . By this together with the assumptionsΓ ` σ : ok and
σ ′ =

⋃
og(σ ,vi), we can apply Lemma 8.4(1) (soundness of object graph computation)

to obtainΓ ` σ ′ : ok.
SetΓ = Γ ′,~o : ~C. Then we haveΓ ′,~o : ~C ` σ ′ : ok andΓ ′,~o : ~C `~v : ~U . Note that,

by Lemma 8.4(1), all object identifiers in storeσ ′ must be instances of local classes,
establishinglocal(Ci). ThenTV-Blob gives usΓ ′ ` λ~o.(~v,σ ′, l) : ser(~U). Finally by
the weakening lemma, we deriveΓ ` λ~o.(~v,σ ′, l) : ser(~U) as desired.
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CaseDeserialize:

F
def= deserialize(λ~o.(~v,σ ′,m)),σ ,CT

F ′ def= (ν~o)(download ~F from min~v,σ ∪σ ′,CT)

with {~F}= {C | σ ′(oi) = (C, . . .)} and~o /∈ dom(σ).
The structure ofF shows that the last expression typing rule applied wasTE-Deserialize,

giving the judgementΓ ` deserialize(λ~o.(~v,σ ′,m)) : ~U . This is derived from the
premiseΓ ` λ~o.(~v,σ ′,m) : ser(~U).

To infer this,TV-Blob must have been employed, with premises:Γ ,~o : ~C `~v : ~U ,
local(Ci), Γ ,~o : ~C` σ : ok and{~o}= domo(σ). By Lemma 8.2(9) (implied judgement),
we haveΓ ,~o : ~C ` Env, which is derived fromΓ ` oi : Ci by TV-Oid . We can also
check by~F ⊆ ~C andΓ ,~o : ~C ` σ ′ : ok imply ` Fi : tp by S-Oid andTV-Oid . Now the
application ofTE-ClassLoad leads toΓ ,~o : ~C ` download ~F from min~v : ~U .

For the well-formedness of the store, we noteΓ ` σ : ok and{~o}= domo(σ ′) imply
domo(σ)∩domo(σ ′) = /0. Hence by Lemma 8.3(7), we can obtainΓ ,~o : ~C`σ ∪σ ′ : ok,
completing the case.

CaseRC-Resolve:

F
def= resolve ~C from l ′ in e,σ ,CT

F ′ def= download ~D from l ′ in e,σ ,CT

By premise ofRC-Resolvewe haveCT(Ci) = class Ci extends Di {~T~f ; K ~M} and
C ∈ dom(CT). ExaminingF , the last typing rule applied wasTE-ClassLoad, Γ `
resolve ~C from m in e : ~U , with the conditions̀ ~C : tp, Γ ` e : ~U and` CT : ok.
To applyTE-ClassLoad, we have to shoẁ ~D : tp, which is proved immediately by
the premise ofWf-Sig.

CaseRC-Freeze:

F
def= freeze[eager](e),σ ,CT

F ′ def= pe[~v/~x] with CT′ from lq,σ ,CT

The side conditions of this rule state that{~x}= fv(e), vi = σ ′(xi) andCT′ = cg(CT, fcl(e)).
We assume theeager mode of operation: the case forlazy is similar. In this proof, we
use network invariant propertyInv(4) in Definition 9.2.

Examining the structure ofF , we see that the last typing judgement for expres-
sions wasΓ ` freeze[eager](e) : thunk(U) as a result of application ofTE-Freeze.
This rule has the premises,Γ ` e : U with fav(e) = /0 andΓ ` ui : Ti with {~u} =
fnv(e) and¬local(Ti). From our initial assumptions thatΓ `σ : ok and{~x}= domv(σ ′),
it must be the case thatΓ is of the formΓ1,~x : ~T,Γ2. Knowing this, we can apply
Lemma 8.3(3) to deriveΓ ` vi : T ′

i where vi = σ(xi) and T ′
i <: Ti . From this and

Γ ` e : U , we can apply Lemma 8.9(1) (substitution) to obtainΓ ` e[~v/~x] : U ′ and
fav(e[~v/~x]) = /0, U ′ <: U . Note that by network invariant property,Inv(4), ~v must be
closed, which allows us to conclude the above side condition.

To complete the case we must finally show that` CT′ : ok. By the assumptions,
we know` CT : ok andCT′ = cg(CT, fcl(e)). From this and the fact that all classes in
fcl(e) must be well-formed in the class signatureCSig, we can apply Lemma 8.4(3)
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(correctness of class graph computation) to deduce` CT′ : ok. Now we can apply
TV-Thunk to obtainΓ ` pe[~v/~x] with CT′ from lq : thunk(U ′). SinceU ′ <: U then
thunk(U ′) <: thunk(U) so this concludes the case.

CaseRC-Defrost:

F
def= defrost(pewith CT′ from mq),σ ,CT

F ′ def= e[~Cm/~C],σ ,CT∪CT′

The premises ofRC-Defrost state{~C} = fcl(e) \ dom(CT′). From the structure of the
expression inF , we see that the last typing rule applied wasTE-Defrost giving the
judgementΓ ` defrost(pe with CT′ from mq) : U . This derives from the premise
Γ ` pe with CT′ from mq : thunk(U ′) with U ′ <: U . In order to infer this thunk,
TV-Thunk was used with conditions̀ CT′ : ok andΓ ` e : U ′. Straightforwardly we
can deduce thatΓ ` e[~Cm/~C] : U ′.

In order to complete the case, first we must show that` ~C : tp where~C was obtained
from the side condition ofRC-Defrost above.` CT∪ CT′ : ok follows directly from
network invariantInv(3) in Definition 9.2.

CaseRC-DownloadNothing:

F
def= download ~C from l ′ in e,σ ,CT

F ′ def= e,σ ,CT

The premise ofRC-DownloadNothing has thatCi ∈ dom(CT). Proof is straightfor-
ward. ExaminingF we see that the last typing rule applied wasTE-ClassLoad with
the premiseΓ ` e : ~U . This immediately yields type preservation.

Theorem 10.2 (Subject reduction for threads). AssumeΓ ;∆ ` F : conf, F −→l F ′

and F′ 6|= Err. Then we haveΓ ;∆ ` F ′ : conf.

Proof. By induction on the derivationF −→l F ′ with a case analysis on the final typing
rules.

CaseRC-Res:

F
def= (ν u~u)(P,σ ,CT)

F ′ def= (ν u~u′)(P′,σ ′,CT′)

We consider only the case where the reduction occurs under a restricted channel name,
i.e.u= c. The cases for object identifiers and variables are similar. Let∆ = ∆ ,c : chan.
By the premisesRC-Reswe have(ν u~u)(P,σ ,CT)−→l (ν u~u′)(P′,σ ′,CT′). Examining
the shape ofF , there are two cases.

The first case is that the last applied rule wasTC-ResC. Then we haveΓ ;∆ ′,c :
chan ` (ν~u)(P,σ ,CT) : conf By the inductive hypothesis, we haveΓ ;∆ ′,c : chan `
(ν u~u)(P′,σ ′,CT′) : conf. Then we can applyTC-ResCto obtain the required result.

The second case is that the last applied rule wasTT-Weak, i.e. we haveΓ ;∆ ′,c′ :
chan ` F : conf with the premiseΓ ;∆ ′ ` F : conf. Then by inductive hypothesis,
we haveΓ ;∆ ′ ` F ′ : conf. Noting c /∈ fn(F ′), the application ofTT-Weak gives us
Γ ;∆ ′,c : chan ` F ′ : conf.

Remark Since the case that the last applied rule isTT-Weak is trivial, hereafter we
omit this case from analysis.
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CaseRC-Str: Suppose thatF ≡ F0 −→l F ′
0 ≡ F ′. This case follows straightforwardly

from the proof of Lemma 8.8(1) (structural equivalence preserves typing).

CaseRC-Par:

F
def= P1 |P2,σ ,CT

F ′ def= (ν~u)(P′1 |P2,σ
′,CT′)

By the premises ofRC-Par we have that~u /∈ fnv(P2) andP1,σ ,CT−→l (ν~u)(P′1,σ
′,CT′).

This case is similar toRC-Congexcept a treatment on channel environments. Examin-
ing the structure of the configurationF we see that the last thread typing rule applied
wasTT-Par . Let~u =~o~x~c. This gives a judgement of the formΓ ;∆ ` P1 |P2 : thread,
with the premiseΓ ;∆i `Pi : thread with ∆1� ∆2. By the premise of the rule, we know
Γ ,~o : ~C,~x : ~T;∆1,~c : ~chan ` P′1 : thread. Note thatui 6∈ fnv(P2). Hence we can apply
the weakening lemma in order to obtainΓ ,~o : ~C,~x : ~T;∆2 ` P2 : thread.

Since∆1�∆2, we can applyTT-Par andTT-Res, to deriveΓ ;∆ ` (ν~u)(P1 |P2,σ ,CT′).

CaseRC-MethLocal:

F
def= E[o.m(~v)],σ ,CT

F ′ def= (ν c)(E[await c] |o.m(~v) with c,σ ,CT)

By RC-MethLocal we havec fresh with o /∈ domo(σ). Inspecting the structure of
configurationF , the last rule applied was that for contexts giving rise to the judgement
Γ ;∆ ` E[o.m(~v)] : thread. By Lemma 8.6, we can assume this rule has the premises
Γ ` o.m(~v) : U andΓ ;∆ ` E[ ]U : thread.

Choosing a fresh channel namec, we can applyTT-Await to E[ ] to infer:Γ ;∆ ,c :
chanI(U) ` E[await c]U : thread with c /∈ dom(∆).

Next we see that the first premise must have been inferred from ruleTE-Meth with
conditionsΓ ` o : C with mtype(m,C) = ~T →U andΓ `~v : ~T ′ such thatT ′

i <: Ti . From
these, and by picking the same channel namec as before, we can applyTT-MethWith
in order to deriveΓ ;c : chanO(U) ` o.m(~v) with c : thread.

It is important to note that∆ ,c : chanI(U) � c : chanO(U) by definition and the
fact thatc /∈ dom(∆). By this, we can now applyTT-Par to obtainΓ ;∆ ,c : chan `
E[await c]U |o.m(~v) with c : thread.

CaseRC-MethRemote:

F
def= E[o.m(~v)],σ ,CT

F ′ def= (ν c)(E[await c] |go o.m(serialize(~v)) with c,σ ,CT)

By the premises ofRC-MethRemote c is fresh ando /∈ domo(σ). Without loss of
generality, we setP≡ 0. The initial parts of this case are very similar to the case for
RC-MethLocal. Here we use the network invariant propertyInv(10) in Definition 9.2.

From the shape ofF , and the similarity to the case for local method calls, we can
choose a similarly “fresh”c and immediately conclude:

Γ ;∆ ,c : chanI(U) ` E[await c]U : thread with c /∈ dom(∆)

Again, we see thatTE-Meth was applied in the derivation, with premises:Γ ` o : C
with mtype(m,C) = ~T →U andΓ `~v : ~T ′ with T ′

i <: Ti .
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Given the assumption thato /∈ domo(σ), then by the network invariant property
Inv(10), it must be the case thatremote(C). With this and the above premises, we can
apply ruleTT-GoSer to derive:Γ ;c : chanO(U) ` go o.m(serialize(~v)) with c :
thread with remote(C).

Now by ∆ ,c : chanI(U)� c : chanO(U), we can applyTT-Par to derive
Γ ;∆ ,c : chan ` E[await c] |go o.m(serialize(~v)) with c : thread, completing the
case.

CaseRC-MethInvoke:

F
def= o.m(~v) with c,σ ,CT

F ′ def= (ν~x)(e[o/this][return(c)/return],σ · [~x 7→~v],CT)

By the application ofRC-MethInvoke, we have thatσ(o) = (C, . . .) and
mbody(m,C,CT) = (~x,e). From the shape ofF , the last rule applied to type the thread
component must have beenTT-MethWith , Γ ;∆ ` o.m(~v) with c : thread. This is
inferred from the premisesΓ ` o : C with mtype(m,C) = ~T →U andΓ ` vi : T ′

i such
thatT ′

i <: Ti .
From our assumption thatΓ ` σ : ok, we can apply Lemma 8.2 to obtainΓ ` Env.

Then, choosing~x /∈ dom(Γ ), from the assumption thatΓ ` σ : ok, Γ ` vi : T ′
i and

T ′
i <: Ti , Lemma 8.3(1) extends the store with the new variable bindings toΓ ,~x : ~T `

σ · [~x 7→~v] : ok.
Now we must show preservation of the thread type. By our assumption` CT : ok,

we have that~x : ~T,this : C ` e : ret(U ′) with U ′ <: U . By alpha conversion, we can
choose~x to be the same vector chosen to prove well-formedness of the new store, and
so we can apply weakening toΓ ` o : C to obtainΓ ,~x : ~T ` o : C. Assumethis 6∈
dom(Γ ). Then again we can apply weakening toΓ ,this : C ` e : ret(U ′) to derive
Γ ,~x : ~T,this : C ` e : ret(U ′). With these two premises, we can apply Lemma 8.9(2)
to obtain:Γ ,~x : ~T ` e[o/this] : ret(U ′′) whereU ′′ <: U ′ <: U . Now we can apply
TT-Return , giving Γ ,~x : ~T;c : chanO(U) ` e[o/this][return(c)/return] : thread
to complete the case. The casethis ∈ dom(Γ ) is similar by using Lemma 8.2(3) to
obtainΓ ,~x : ~T ` e[o/this] : ret(U ′).

CaseRC-Await:

F
def= E[await c] |return(c) v,σ ,CT

F ′ def= E[v],σ ,CT

Examining the structure ofF , the last thread typing rule applied wasTT-Par . So sup-
posing∆ = ∆ ′,c : chan = ∆1�∆2 we haveΓ ;∆1�∆2 ` E[await c] |return(c) v :
thread with ∆1� ∆2. In order for this to be derived, the following premises must hold:
Γ ;∆1`E[await c] : threadwith ∆1 = ∆ ′

1,c : chanI(U),∆ ′′
1 ; andΓ ;∆2` return(c) v :

thread with ∆2 = c : chanO(U).
The environment∆1 can be trivially reordered (using the reordering lemma) to the

form ∆ ′
1,∆

′′
1 ,c : chanI(U). To derive the first premise,TT-Await must have been used,

with the conditionsΓ ,∆ ′
1,∆

′′
1 ` E[ ]U : thread andc /∈ dom(∆ ′

1,∆
′′
1 ).

To derive the second premise,TT-Return must have been used with the premise
Γ ` return v : ret(U ′) andU ′ <: U . Likewise, for this to be derived,TE-Return was
used with this premiseΓ ` v : U ′ andU ′ <: U .



72 Alexander Ahern and Nobuko Yoshida

We can apply reordering to environment∆ ′
1,∆

′′
1 to obtain∆ ′. Then we can use

Lemma 8.6 and Weakening to obtainΓ ;∆ ′ ` E[v] : thread, finishing the case.

Theorem 10.3 (Subject reduction for networks). AssumeΓ ;∆ ` N : net, N−→ N′

and N′ 6|= Err. Then we haveΓ ;∆ ` N′ : net.

Proof. By induction on the derivationN−→N′ with a case analysis on the final typing
rule applied.

CaseRN-Conf:

N
def= l [F ]

N′ def= l [F ′]

By the premises ofRN-Conf, F −→l F ′. From the structure ofN, we see that the last
typing rule applied must have beenTN-Conf with premiseΓ ;∆ ` F : conf. Given this
and the assumption thatF −→l F ′ we can apply Theorem 10.2 to obtainΓ ;∆ ` F ′ :
conf. We can then re-applyTN-Conf to deduceΓ ;∆ ` l [F ′] : net as required.

CaseRN-Par:

N
def= N1 |N2

N′ def= N′
1 |N2

By structure ofN we see that the last typing rule applied wasTN-Par. This is inferred
from the following premises:Γ ;∆1 ` N1 : net andΓ ;∆2 ` N2 : net, supposing that
∆ = ∆1�∆2. We can apply the inductive hypothesis to obtainΓ ;∆1 ` N′

1 : net. Then
we can applyTN-Par to deriveΓ ;∆ ` N′

1 |N2 : net, completing the case.

CaseRN-Res:

N
def= (ν c)N0

N′ def= (ν c)N′
0

By RN-Res, N0 −→ N′
0. We consider the case where the restricted name is a channel.

The case for identifiers is similar. Suppose the last typing rule applied wasTN-ResC.
This is inferred from the premiseΓ ;∆ ,c : chan ` N0 : net. We can apply the inductive
hypothesis givingΓ ;∆ ,c : chan `N′

0 : net. Apply TN-ResCto obtainΓ ;∆ ` (ν c)N′
0 :

net as required.

CaseRN-Str: SupposeN ≡ N0 −→ N′
0 ≡ N′. Follow straightforwardly from the proof

of Lemma 8.8.

CaseRN-Download:

N
def= l1[E[download ~C from l2 in e],σ1,CT1] | l2[P2,σ2,CT2]

N′ def= l1[E[resolve ~D from l2 in e],σ1,CT1∪CT′] | l2[P2,σ2,CT2]

By the premises ofRN-Download {~D} = {~C} \ dom(CT1) andCT′ = CT2(~D)[~Cl2/~C].
Without loss of generality, we assumeP1 ≡ P2 ≡ 0. This case uses the invarianceInv(3)
in Definition 9.2.
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Examining the structure ofN, the last typing rule applied wasTN-Par. Supposing
∆ = ∆1�∆2 with ∆1 � ∆2, then the following premises must hold:
Γ ;∆1 ` l1[E[download ~C from l2 in e],σ1,CT1] : net andΓ ;∆2 ` l2[P2,σ2,CT2] : net.
From the first premise, we see that this is derived (eventually) from the facts that
Γ ;∆1 ` E[download ~C from l2 in e] : thread and` CT1 : ok. From the structure
of these judgements we can deduce that ruleTE-ClassLoadwas used with the condi-
tion that` ~C : tp. The second premise is ultimately derived from` CT2 : ok. From the
condition thatCT′ ⊆ CT2, we can infer̀ CT′ : ok because the renaming[Cl2

i /Ci ] does
not affect well-formedness. Also from invariantInv(3) in Definition 9.2, we know that
if dom(CT′)∩dom(CT1) is non-empty, then all overlapping classes must have the same
definition. This means we can immediately derive that` CT1∪CT′ : ok. To complete the
case, we rebuild the network usingTC-Conf andTN-Par.

CaseRN-Leave:

N
def= l1[go o.m(~v) with c|P1,σ1,CT1] | l2[P2,σ2,CT2]

N′ def= l1[P1,σ1,CT1] | l2[o.m(deserialize(~v)) with c|P2,σ2,CT2]

The premise ofRN-Leavestates thato∈ domo(σ2).We shall prove:

Γ ;∆ ` l1[P1,σ1,CT1] | l2[o.m(deserialize(~v)) with c|P2,σ2,CT2] : net (10.3.1)

To deriveΓ ;∆ ` N : net, the last typing rule applied must have beenTN-Par with the
following premises:

Γ ;∆1 ` l1[go o.m(~v) with c|P1,σ1,CT1] : net (10.3.2)

Γ ;∆2 ` l2[P2,σ2,CT2] : net (10.3.3)

We have, by assumption that∆ = ∆1�∆2 and∆1 � ∆2. In order to derive (10.3.2) and
(10.3.3) we must have ultimately shown that:

Γ ;∆11 ` go o.m(~v) with c : thread with ∆11� ∆2 (10.3.4)

Γ ;∆12 ` P1 : thread (10.3.5)

Γ ;∆2 ` P2 : thread (10.3.6)

It is then straightforward to constructl1 by ruleTC-Conf:

Γ ;∆12 ` l1[P1,σ1,CT1] : net (10.3.7)

Constructing the second locationl2 is more difficult. By using Lemma 8.7, we obtain
that∆11� ∆2. Given (10.3.4) and (10.3.6) and this fact, we can applyTT-Par to obtain
Γ ;∆11�∆2 ` go o.m(~v) with c|P2 : thread. We can then applyTC-Conf followed by
TN-Par to obtain (10.3.1) as required.

CaseRN-Return:

N
def= l1[go v to c|P1,σ1,CT1] | l2[P2,σ2,CT2]

N′ def= l1[P1,σ1,CT1] | l2[return(c) deserialize(v) |P2,σ2,CT2]
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We also have thatc ∈ fn(P2) by the premise ofRN-Return. This case issimilar to
RN-Leave.

Finally we achieve:

Corollary 10.4 (Network invariants and progress properties).Inv(r) (1≤ r ≤ 18)
andProg(r) (1≤ r ≤ 10) are network invariants with the initial propertyInit defined in
Definition 9.3.

The final corollary specifies the form of the network when all threads terminate.

Corollary 10.5 (Normal Forms). Assume N0 |= Init and N0 →→ N 6−→ and N 6|= Err.
Then we have N≡ (ν~u)(∏0≤i<n l i [Pi ,σi ,CTi ]) with Pi ≡∏0≤ j i<ni

go v j i to c j i .

Proof. By induction onN. By the initial conditionInit, we can set∆ =~c′ : ~chan∪~ci :
chanO(~Ui). The proof is direct from the progress properties. We only investigate the
cases that the reduction happens across different networks. Suppose, for example, by
contradiction, thatN 6−→ but there existsPi such thatPi ≡ o.m(~v) with c|Qi . If o is
the local object id, thenN −→ N′ by Prog(8). Assume thato is a remote o-id and
o 6∈ domo(σi). This time byRC-MethRemote, N −→ N′, contradiction. Next suppose
there existsPi such thatPi ≡ go v to c|Qi with c ∈ {~u} or c : chan ∈ ∆ . Then by
Prog(10), there existsk such thatPk ≡E[await c] |Qk. Then we can applyRN-Return,
hence a contradiction. The unicity ofgo v j i to c j i is derived byInv(18). Other cases
are also mechanical. ut

11 Related Work

Obliq [6] is a distributed object-based, lexically scoped language proposed by Cardelli.
One key feature of the language is that methods are stored within objects—there is no
hierarchy of tables to inspect as in most class-based languages. As such, there is no class
loading mechanism to consider, which forms an important part of DJ. On the other hand,
Obliq has code-passing primitives, as procedures and agents can be passed by value and
then executed (Obliq treats local variable assignment within passed code: this feature
can also be consistently added to DJ by relaxingTE-Freezeand the variable and store
invariants in Definition 9.2). DJ models two important concerns in distributed class-
based OOPL missing from Obliq, that is dynamic class loading and serialisation (the
same term used in [6] refers to serialisation in the sense of transaction theory). Another
important difference is that the semantics of Obliq is given in an informal manner in
terms of examples, whereas DJ is given a formal operational semantics, which is used
for precise examination of new primitives. As a result we have established a typing
system and its type soundness, which may not have been done for Obliq so far.

Merro et al [24] encode Obliq into the untypedπ-calculus. They use their encoding
to show a flaw in part of the original migration semantics and propose a repair. Their
work is orthogonal to the present work, in the sense that ours offers a direct formal
semantics and typing system at the language level, by which a detailed analysis on a
subtle interplay between distributed OOPL features (including inheritance) is possible.
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Yet it would be interesting to find appropriate typed (HO)π-calculi [32] into which
dynamics and types of DJ can be encoded faithfully.

Gordon and Hankin [13] extend the object calculus [2] with explicit concurrency
primitives from theπ-calculus. Their focus is synchronisation primitives (such as fork
and join) rather than distribution so that they only use a single location. For this reason
and because the calculus is not class-based, they do not treat dynamic class loading or
serialisation, which are among the main interests of the present work. Jeffrey [20] treats
an extension of [13] for the study of locality with static and dynamic type checking.
The aim of his work is quite different, and he does not treat dynamic class loading and
object serialisation (though he treats transactional serialisation as in [6]).

Zhao et al [40] propose the SJ calculus for a study of containment in real-time Java.
They provide primitives for explicit memory management, which are crucial in the
context of their work. The SJ calculus proposes a new typing discipline based on the
idea ofscoped types—memory in real-time applications is allocated in a strict hierarchy
of scopes. Using the existing Java package structure to divide such scopes, they propose
a typing system that can statically prevent some scope invariants being broken. Their
formalism has similarities with DJ in that it also models an extension of the imperative
Java calculus based on FJ [18]. However their study focuses on real-time concurrency
in a single location, while ours on dynamic distribution of code in multiple locations.
DJ also guarantees similar scoping properties by invariants, for exampleInv(10) in
Definition 9.2 ensures that identifiers for local objects do not leak to other locations.

Ohori and Kato [29] extend a purely functional part of ML with two primitives for
remote higher-order code evaluation via channels, and show that the type system of
this language is sound with respect to a low-level calculus. The low-level calculus is
equipped with runtime primitives such as closures of functions and creation of names.
Their focus is pure polymorphic functions, hence they treat neither side-effects nor (dis-
tributed) object-oriented features such as serialisation and the code passing associated
with inheritance and class downloading, whose subtle interplay is a main concern of
our paper.

The representation of runtime in formal semantics is not limited to distributed pro-
grams, as found in the analysis of an execution model of the .NET CLR by Gordon and
Syme [14] and Yu et al [39].

The JavaSeal [34] project is an implementation of the Seal calculus for Java. It is
realised as an API and run-time system inside the JVM, targeted as a programming
framework for building multi-agent systems. The semantics of these APIs depend on
distributed primitives in the implementation language, which are precisely the target
of the formal analysis in the present paper. JavaSeal may offer a suggestion for the
implementation and security treatment of thunk passing proposed in the present paper.

Class loading and downloading are crucial to many useful Java RMI applications,
since they offer a convenient mechanism for distributing code to remote consumers
while preserving type-safety. An orthogonal subject is class verification and the main-
tenance of type safety during linking [23, 31].

Our formulation of class loading is simple, but modular; for example, modifying
the class graph definition in Definition 4.12, which follows the “verificationoff” frame-
work in [10, 11], can be consistently replaced by another class loading mechanism such
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as “verificationon” in [10, 11]. For example, in ruleRC-Resolvethe vector~F is con-
structed from the direct superclasses of the classes being resolved. Java verification
checks subtypes for method receivers and method parameters, therefore as a first ap-
proximation we could extend~F to include class names of a method declaration’s formal
parameters.

Relatedly, we set the class invariantInv(3) in Definition 9.2 for simplicity, but we
can easily relax it so as to allow the situation where programs can take advantage of
(for example) the latest version of a library without recompilation if the new version is
binary compatible with the old. We can control different situations in distributed binary
compatibility using invariants as a guidance for consistent refinements of operational
semantics and the typing systems.

Most of the literature surrounding class loading in practice takes the lazy approach.
As we discussed earlier, in the setting of remote method invocation laziness can be ex-
pensive due to delay involved in retrieving a large class hierarchy over the network.
Krintz et al [22] propose a class splitting and pre-fetching algorithm to reduce this la-
tency. Their specific example is applet loading: if the time spent in an interactive portion
of an applet could be used to download classes that may be needed in future, it is bet-
ter to download them ahead of time so that the user does not encounter a large delay,
sharing the motivation for our (eager) thunk primitive. The partly eager class loading
in their approach is implicit, but requires control flow information about the program
in question in order to determine where to insert instructions to trigger ahead-of-time
fetching. This framework may be difficult to apply in a general distributed setting, since
clients may not have access to the code of a remote server. Also their approach merely
mitigates the effect of network delay rather than removing it; it still requires the sequen-
tial request of a hierarchy of superclasses. We believe an explicit thunk primitive as we
proposed in the present work may offer an effective alternative in such situations.

12 Conclusions and Further Work

This paper introduced a Java-like core language with constructs for distribution includ-
ing dynamic class loading and serialisation, presented its formal semantics and typing
system, and established its basic safety properties through the use of invariants. A new
language primitive for distribution, thunk passing, was proposed and consistently inte-
grated into the language with a simple typing rule.

The invariants can be used as a “prescription” of global and local state of a language
and runtime which a system designer expects to be guaranteed; if it is not satisfied by his
implementation, he can correct or strengthen the typing rules or relax the prescription
itself. For example, to make the field access local, we modified the ordinal field access
typing rule by adding one constraint (e 6= this,o =⇒ local(C) in TE-Fld ), guided by
the value and object identifiers invariants in Section 9.

The class-based language considered in the present work does not include such lan-
guage features as casting [18, 4], exceptions [3], synchronisation and polymorphism
[18, 5]. These features can be represented by straightforward enrichment of the present
syntax and types, even though their precise interplay with distributed language con-
structs needs examination. An important topic is enrichment of invariants and type
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structures to strengthen safety properties (e.g. for security). There are two orthogo-
nal directions. The first concerns mobility. As can be seen in the second example in
Section 2, the current type structure of a thunk (e.g.thunk(int)) tells the consumer
little about the behaviour of the code s/he is about to execute, which can be dangerous.
In Java, theRMISecurityManager can be used with an appropriate policy file to
ensure that code downloaded from remote sites has restricted capability. By extending
DJ with principals, we can examine the originator of a piece of code, and prior execu-
tion, to determine suitable privileges [35, 36]. To ensure the integrity of resources, we
can dynamically check an invariant when code arrives (e.g. by adding the constraint in
RC-Defrost), or adding more fine-grained information on accessibility of methods in
the class signatures along the line of [38] for static checking.

The second issue is to extend the syntax and operational semantics to allow com-
plex, structured, communications. For this purpose we have been studyingsession types
[16, 33] for ensuring correct pattern matching of sequences of socket communications,
incorporating a new class of channels at the user syntax level. Our operational semantics
for RMI is smoothly extensible to model advanced communication protocols. Session
types are designed using class signatures, and safety is proved together with the same
invariance properties developed in this paper.

Study of the semantics of failure and recovery in our framework is an important
topic. So far we have incorporated the possibility of failures in remote invocation due
to network partition (defined byErr -rules in Fig. 5.11), but there is no consideration of
how to recover from such errors. Also, the class of network errors considered does not
cover problems such as the duplication of method calls, return values being lost, etc. In
the latter situation, some notion of time-out is generally used to determine whether to
re-transmit or fail, and different invocation semantics (for example at-most-once) can
be investigated using DJ.

In the future we intend to implement our new primitives for code mobility. An ini-
tial version will probably take the form of a source-to-source translator, compiling the
freeze[t](e) anddefrost(e) operations into standard Java source. Eager class load-
ing via RMI will most likely require modification to the class loading mechanism by
installing a custom class loader to work in conjunction with our translated source. This
approach has the advantage that we can use an ordinary Java compiler and existing
tools, and that the JVM would not need modification. However a more direct approach
(for example extending the virtual machine) may yield better performance.

The two examples in Section 2 lead to a question on expressiveness between se-
rialisation and freezing constructs: are these two programs semantically equivalent in
the sense that all executions which do not involve an error state, can derive the same
result? As ongoing work, we are investigating behavioural equivalences in our language
using the technique established in theπ-calculus [17]. The correctness of the source-
to-source translation mentioned above can be investigated using the developed theory.
Study along this line would be worthwhile when considering optimisations of RMI in-
teraction patterns [37] or articulations and comparisons of newly proposed language
constructs on the basis of formal semantic foundations.
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A Operational Semantics

This appendix lists the operational semantics presented in Section 5 and the look-up
functions defined in Section 4.

[Structual Equivalences]

Configurations

(ν u)P,σ ,CT≡ (ν u)(P,σ ,CT) u /∈ fn(σ)∪ fn(CT)

(ν u)(ν u′)F ≡ (ν u′)(ν u)F

(ν x)(P,σ · [x 7→ v],CT)≡ P,σ ,CT x /∈ fv(P)

(ν o)(P,σ · [o 7→ (C, ~f :~v)],CT)≡ P,σ ,CT o /∈ fn(P)∪ fn(σ)

Threads Networks

P|0≡ P N|0≡ N

P|P0 ≡ P0 |P N|N0 ≡ N0 |N
P|(P0 |P1)≡ (P|P0) |P1 N |(N0 |N1)≡ (N |N0) |N1

(ν u)(P|P0)≡ (ν u)P|P0 u /∈ fn(P0) (ν u)(N |N0)≡ (ν u)N |N0 u /∈ fnv(N0)

(ν c)0≡ 0 (ν c)0≡ 0

(ν u)(ν u′)P≡ (ν u′)(ν u)P (ν u)(ν u′)N≡ (ν u′)(ν u)N

return(d) ε ≡ return(d) l [(ν u)(F)]≡ (ν u)l [F ]

ε;e≡ e

return ε ≡ return

[Lookup Functions]

Field lookup

fields(Ob ject) = •

CSig(C) = extends D ~T~f {mi : ~Ti →Ui}
fields(D) = ~T ′~f ′

fields(C) = ~T ′~f ′,~T~f

Method type lookup

CSig(C)=extends D [remote] ~T~f {mi:~Ti→Ui}

mtype(mi,C) = ~Ti
′→U ′

i

CSig(C)=extends D [remote] ~T~f {mi:~Ti→Ui} m/∈{~m}

mtype(m,C) = mtype(m,D)

Method body lookup

CT(C)=class C extends D{~T~f ;K ~M}
U m(~T~x){e} ∈ ~M

mbody(m,C,CT) = (~x,e)

CT(C)=class C extends D{~T~f ;K ~M}
U m(~T~x){e} /∈ ~M

mbody(m,C,CT) = mbody(m,D,CT)

Valid method overriding

mtype(m,D) = ~T →U implies~T = ~T ′ andU = U ′

override(m,D,~T ′→U ′)
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[Expression]

RC-Var
x,σ ,CT−→l σ(x),σ ,CT

RC-Cond
if true then e1 else e2,σ ,CT−→l e1,σ ,CT
if false then e1 else e2,σ ,CT−→l e2,σ ,CT

RC-Fld
σ(o) = (C, ~f :~v)

o.fi,σ ,CT−→l vi ,σ ,CT

RC-Seq
e1,σ ,CT−→l (ν~u)(v,σ ′,CT′)

e1;e2,σ ,CT−→l (ν~u)(e2,σ
′,CT′)

~u /∈ fnv(e2)

RC-Dec
T x= v ; e,σ ,CT−→l (ν x)(e,σ · [x 7→ v],CT) x /∈ domv(σ)

RC-Ass
x := v,σ ,CT−→l v,σ [x 7→ v],CT

RC-FldAss
σ
′ = σ [o 7→ σ(o)[ f 7→ v]]

o.f := v,σ ,CT−→l v,σ ′,CT
o∈ domo(σ)

RC-New
fields(C) = ~T~f

newC (~v),σ ,CT−→l (ν o)(o,σ · [o 7→ (C, ~f :~v)],CT)
C∈ dom(CT)

RC-NewR
newCm(~v),σ ,CT−→l downloadC from min newC(~v),σ ,CT C /∈ dom(CT)

RC-Cong
e,σ ,CT−→l (ν~u)(e′,σ ′,CT′)

E[e],σ ,CT−→l (ν~u)(E[e′],σ ′,CT′)
~u /∈ fnv(E)

[Method Invocation]

RC-MethLocal
E[o.m(~v)] |P,σ ,CT−→l (ν c)(E[await c] |o.m(~v) with c|P,σ ,CT) c fresh,o∈ domo(σ)

RC-MethRemote
E[o.m(~v)] |P,σ ,CT−→l (ν c)(E[await c] |go o.m(serialize(~v)) with c|P,σ ,CT)

c fresh,o /∈ domo(σ)

RC-MethInvoke
σ(o) = (C, . . .) mbody(m,C,CT) = (~x,e)

o.m(~v) with c,σ ,CT−→l (ν~x)(e[o/this][return(c)/return],σ · [~x 7→~v],CT)

RC-Await
E[await c] |return(c) v,σ ,CT−→l E[v],σ ,CT

RN-SerReturn
l [return(c) v|P,σ ,CT]−→ l [go serialize(v) to c|P,σ ,CT] c /∈ fn(P)

RN-Leave
l1[go o.m(~v) with c|P1,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[P1,σ1,CT1] | l2[o.m(deserialize(~v)) with c|P2,σ2,CT2]

o∈ domo(σ2)

RN-Return
l1[go v to c|P1,σ1,CT1] | l2[P2,σ2,CT2]

−→ l1[P1,σ1,CT1] | l2[return(c) deserialize(v) |P2,σ2,CT2]
c∈ fn(P2)
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[Serialisation]

Serialize
σ
′ =

⋃
og(σ ,vi) {~o}= domo(σ ′)

serialize(~v),σ ,CT−→l λ~o.(~v,σ ′, l),σ ,CT

Deserialize
{~F}= {C | σ

′(oi) = (C, . . .)} ~o /∈ dom(σ)

deserialize(λ~o.(~v,σ ′,m)),σ ,CT−→l (ν~o)(download ~F from min~v,σ ∪σ
′,CT)

[Code Creation]

RC-Freeze

{~x}= fv(e) vi = σ(xi) CT′ =

{
cg(CT, fcl(e)) t = eager

/0 t = lazy

freeze[t](e),σ ,CT−→l pe[~v/~x] with CT′ from lq,σ ,CT

RC-Defrost
{~C}= fcl(e)\dom(CT′)

defrost(pewith CT′ from mq),σ ,CT−→l e[ ~Cm/~C],σ ,CT∪CT′

[Class Downloading]

RC-Resolve
CT(Ci) = classCi extends Di {~T~f ; K ~M} {~F}= ~D\dom(FCT)

resolve ~C from l ′ in e,σ ,CT−→l download ~F from l ′ in e,σ ,CT

RN-Download
{~D}= {~C}\dom(CT1) {~F}= fcl(CT2(~D)) CT′ = CT2(~D)[~F l2/~F ]

l1[E[download ~C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[E[resolve ~D from l2 in e] |P,σ1,CT1∪CT′] | l2[P2,σ2,CT2]

RC-DownloadNothing
Ci ∈ dom(CT)

download ~C from l ′ in e,σ ,CT−→l e,σ ,CT

[Threads]

RC-Par
P1,σ ,CT−→l (ν~u)(P′1,σ

′,CT′)
P1 |P2,σ ,CT−→l (ν~u)(P′1 |P2,σ

′,CT′)
~u /∈ fnv(P2)

RC-Str
F ≡ F0 −→l F ′

0 ≡ F ′

F −→l F ′

RC-Res
(ν~u)(P,σ ,CT)−→l (ν~u′)(P′,σ ′,CT′)

(ν u~u)(P,σ ,CT)−→l (ν u~u′)(P′,σ ′,CT′)
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[Network]

RN-Conf
F −→l F ′

l [F ]−→ l [F ′]

RN-Par
N−→ N′

N |N0 −→ N′ |N0

RN-Res
N−→ N′

(ν u)N−→ (ν u)N′

RN-Str
N≡ N0 −→ N′

0 ≡ N′

N−→ N′

[Errors]

Err-NullFld
null.f,σ ,CT−→l Error,σ ,CT

Err-NullFldAss
null.f := v,σ ,CT−→l Error,σ ,CT

Err-NullMeth
null.m(~v),σ ,CT−→l Error,σ ,CT

Err-Download
{~D}= {~C}\dom(CT1) or CT′ 6= CT2(~D)[~F l2/~F ] {~F}= fcl(CT2(~D))

l1[E[download ~C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[Error |E[resolve ~D from l2 in e] |P,σ1,CT1∪CT′] | l2[P2,σ2,CT2]

Err-MLossLeave
l1[go o.m(~v) with c|P1,σ1,CT1] | l2[P2,σ2,CT2]−→ l1[Error |P1,σ1,CT1] | l2[P2,σ2,CT2]

o∈ domo(σ2)

Err-MLossReturn
l1[go v to c|P1,σ1,CT1] | l2[P2,σ2,CT2]−→ l1[Error |P1,σ1,CT1] | l2[P2,σ2,CT2] c∈ fn(P2)

B Typing System

This appendix presents the typing systems.

[Types] ` S: tp

Wf-Base
−

` void : tp
` bool : tp
` chan : tp

Wf-SC
`U : tp∨U ∈ CSig

` chanI(U) : tp
` chanO(U) : tp
` ret(U) : tp
` thunk(U) : tp

Wf-Vec
`Ui : tp

` ~U : tp

Wf-Ser
` ~U : tp

` ser(~U) : tp

Wf-Sig
override(mi,Di ,~Ti →Ui) ` D : tp
∀S∈ {~T,~U ,~Ti}. ` S: tp∨S∈ dom(CSig)

` extends D [remote] ~T~f {mi : ~Ti →Ui} : tp

Wf-Ctp
` CSig(C) : tp

`C : tp

Wf-Csig
∀C∈ dom(CSig)
`C : tp

` CSig : ok
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[Subtyping] C <: D

ST-Refl
−

T <: T

ST-Trans
C <: D
D <: E

C <: E

ST-Vec
U ′

i <: Ui
0≤ i � n

~U ′ <: ~U

ST-Ser
~U ′ <: ~U

ser(~U ′) <: ser(~U)

ST-Expr
U ′ <: U

thunk(U ′) <: thunk(U)
ret(U ′) <: ret(U)

ST-Class
CSig(C) = extends D [remote] ~T~f {mi : ~Ti →Ui}

C <: D

[Environments] Γ ;∆ ` Env

E-Nil
−

/0` Env

E-Var
` T : tp
x /∈ dom(Γ )

Γ ,x : T ` Env

E-Oid
`C : tp
o /∈ dom(Γ )

Γ ,o : C ` Env

E-This
`C : tp
this /∈ dom(Γ )

Γ ,this : C ` Env

E-CNil
−

Γ ; /0` Env

E-Chan
` τ : tp
Γ ;∆ ` Env

c /∈ dom(∆)

Γ ;∆ ,c : τ ` Env

[Stores] Γ ;∆ ` Env

S-CNil
−

Γ ` /0 : ok

S-Var
Γ ` σ : ok
Γ ` x : T x /∈ domv(σ)
Γ ` v : T ′ T ′ <: T

Γ ` σ · [x 7→ v] : ok

S-Var
Γ ` σ : ok o /∈ domo(σ)
Γ ` o : C fields(C) = ~T~f
Γ ` vi : T ′i T ′i <: Ti

Γ ` σ · [o 7→ (C, ~f :~v)]

[Values] Γ ` v : U

TV-Bool
Γ ` Env

Γ ` true : bool
Γ ` false : bool

TV-Null
`C : tp

Γ ` null : C

TV-Oid
Γ ,o : C,Γ ′ ` Env

Γ ,o : C,Γ ′ ` o : C

TV-Empty
Γ ` Env

Γ ` ε : void

TV-Thunk
` CT : ok
Γ ` e : U

Γ ` pewith CT from lq : thunk(U)

TV-Blob
Γ ,~o : ~C `~v : ~U local(Ci)
Γ ,~o : ~C ` σ : ok o∈ {~o}= domo(σ)

Γ ` λ~o.(o,σ , l) : ser(C)
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[Expressions] Γ ` e : S

TE-Var
Γ ,x : T,Γ ′ ` Env

Γ ,x : T,Γ ′ ` x : T

TE-This
Γ ,this : C,Γ ′ ` Env

Γ ,this : C,Γ ′ ` this : C

TE-Cond
∃S: S1 <: S∧S2 <: S
Γ ` e : bool
Γ ` e1 : S1 Γ ` e2 : S2

Γ ` if ethen e1 else e2 : S

TE-Fld
Γ ` e : C `C : tp
e 6= this,o =⇒ local(C)
fields(C) = ~T~f

Γ ` e.fi : Ti

TE-Seq
Γ ` e : void
Γ ` e′ : S

Γ ` e;e′ : S

TE-Dec
Γ ` e : T T <: T ′

Γ ,x : T ` e0 : S

Γ ` T ′ x = e ; e0 : S

TE-Ass
Γ ` e : T ′ T ′ <: T
Γ ` x : T

Γ ` x := e : T ′

TE-FldAss
Γ ` e.f : T T′ <: T
Γ ` e′ : T ′

Γ ` e.f := e′ : T ′

TE-New
fields(C) = ~T~f T ′i <: Ti
Γ ` ei : T ′i `C : tp

Γ ` newC (~e) : C

TE-Meth
mtype(m,C) = ~T →U
Γ ` e0 : C
Γ `~e : ~T ′ T ′i <: Ti

Γ ` e0.m(~e) : U

TE-Return
Γ ` e : U

Γ ` return e : ret(U)

TE-ReturnVoid
Γ ` Env

Γ ` return : ret(void)

TE-Serialize
Γ ` e : ~U

Γ ` serialize(e) : ser(~U)

TE-Deserialize
Γ ` e : ser(~U)

Γ ` deserialize(e) : ~U

TE-DeserVal
Γ ` e : U
U 6= ser(C)

Γ ` deserialize(e) : U

TE-Freeze
{~u}= fnv(e) fav(e) = /0
Γ ` e : U
Γ ` ui : Ti ¬local(Ti)

Γ ` freeze[t](e) : thunk(U)

TE-Defrost
Γ ` e : thunk(U)

Γ ` defrost(e) : U

TE-ClassLoad
Γ ` e : ~U ` ~C : tp

Γ ` download ~C from l in e : ~U
Γ ` resolve ~C from l in e : ~U

TE-Pe
Γ ` pe: T

Γ ` pe: void

TE-Hole
`U : tp

Γ ` [ ]U : U
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[Threads] Γ ;∆ ,c : chan ` P : thread

TT-Nil
Γ ; /0` Env

Γ ; /0` 0 : thread

TT-Par
Γ ;∆i ` Pi : thread
∆1 � ∆2

Γ ;∆1�∆2 ` P1 |P2 : thread

TT-Weak
Γ ;∆ ` P : thread
c /∈ dom(∆)

Γ ;∆ ,c : chan ` P : thread

TT-Await
Γ ;∆ ` E[ ]U : thread c /∈ dom(∆)

Γ ;∆ ,c : chanI(U) ` E[await c]U : thread

TT-Res
Γ ;∆ ,c : chan ` P : thread

Γ ;∆ ` (ν c)P : thread

TT-Return
Γ ` e : ret(U ′) U ′ <: U

Γ ;c : chanO(U) ` e[return(c)/return] : thread

TT-GoSer
Γ ` o : C Γ `~v : ~T ′ ~T ′ <: ~T remote(C) mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` go o.m(serialize(~v)) with c : thread

TT-MethWith
Γ ` o : C Γ ` vi : T ′i T ′i <: Ti mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` o.m(~v) with c : thread

TT-DeserWith
Γ ` o : C Γ ` λ~o.(~v,σ , l) : ser(~T ′) ~T ′ <: ~T remote(C) mtype(m,C) = ~T →U

Γ ;c : chanO(U) ` o.m(deserialize(λ~o.(~v,σ , l))) with c : thread
Γ ;c : chanO(U) ` go o.m(λ~o.(~v,σ , l)) with c : thread

TT-ValTo
Γ ` v : U ′ U ′ <: U ¬local(U ′)

Γ ;c : chanO(U) ` go serialize(v) to c : thread
Γ ;c : chanO(U) ` go v to c : thread

TT-GoTo
Γ ` e : ser(C′) C′ <: C

Γ ;c : chanO(C) ` go eto c : thread

[Configuration] Γ ;∆ ,c : chan ` F : conf

TC-ResC
Γ ;∆ ,c : chan ` F : conf

Γ ;∆ ` (ν c)F : conf

TC-ResId
Γ ,u : T;∆ ` F : conf
u∈ dom(F)

Γ ;∆ ` (ν u)F : conf

TC-Conf
Γ ;∆ ` P : thread
Γ ` σ : ok
` CT : ok FCT⊆ CT

Γ ;∆ ` P,σ ,CT : conf
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[Network] Γ ;∆ ,c : chan ` N : net

TN-Nil
Γ ; /0` Env

Γ ; /0` 0 : net

TN-Conf
Γ ;∆ ` F : conf

Γ ;∆ ` l [F ] : net

TN-Par
Γ ;∆i ` Ni : net ∆1 � ∆2
dom(N1)∩dom(N2) = /0
loc(N1)∩ loc(N2) = /0

Γ ;∆1�∆2 ` N1 |N2 : net

TN-Weak
Γ ;∆ ` N : net
c /∈ dom(∆)

Γ ;∆ ,c : chan ` N : net

TN-ResId
Γ ,u : T;∆ ` N : net
u∈ dom(N)

Γ ;∆ ` (ν u)N : net

TN-ResC
Γ ;∆ ,c : chan ` N : net

Γ ;∆ ` (ν c)N : net

[Method] Γ `M : ok inC [Class] ` L : ok

M-ok
mtype(m,C) = ~T →U
U ′ <: U
this : C,~x : ~T ` e : ret(U ′)

this : C `U m(~T~x){e} : ok inC

C-ok
fields(D) = ~T ′~f ′ fields(C) = ~T~f
K = C (~T ′~f ′,~T~f ){super(~f ′);this.~f := ~f}
this : C ` ~M : ok inC

` classC extends D{~T~f ; K ~M} : ok

[Class Table] ` CT : ok

CT-Nil
−

` /0 : ok

CT
` classC extends D{~T~f ; K ~M} : ok ` CT : ok

` CT · [C 7→ classC extends D{~T~f ; K ~M}] : ok


