Typed Event Structures and the 7-Calculus

Daniele Varacca, Nobuko Yoshida
Imperial College London

November 8, 2005

Abstract. We propose a typing system for the true concurrent model of event
structures that guarantees an interesting behavioural property known as confu-
sion freeness. A system is confusion free if nondeterministic choices are localised
and do not depend on the scheduling of independent components. It is a gener-
alisation of confluence to systems that allow nondeterminism. Ours is the first
typing system to control behaviour in a true concurrent model. To demonstrate
its applicability, we show that typed event structures give a semantics of linearly
typed version of the mt-calculi with internal mobility. The semantics we provide
is the first event structure semantics of the m-calculus and generalises Winskel’s
original event structure semantics of CCS.

1 Introduction

Models for concurrency can be classified according to different criteria. One possi-
ble classification distinguishes between inferleaving models and causal models (also
known as true concurrent models). In interleaving models, concurrency is reduced to
the nondeterministic choice between all possible sequential schedulings of the concur-
rent actions. Instances of such models are traces and labelled transition systems [39]. In
casual models, causality, concurrency and conflict are explicitly represented. Instances
of such models are Petri nets [30], Mazurkiewicz traces [23] and event structures [28].

Interleaving models are very successful in defining observational equivalence, by
means of bisimulation [25]. Although bisimulation can be defined for true concurrent
models too [19], it has not been used to characterise interesting observational con-
gruences. The reason lies in the fact that true concurrent models explicitly represent
causality, which is arguably not an observable property. On the other hand, true concur-
rent models can easily represent interesting behavioural properties of a given system:
absence of conflict, independence of the choices and sequentiality [30]. Some of these
properties are complicated to express in interleaving models.

In this paper we address a particular true concurrent model: the model of event
structures [28,36]. Event structures have been used to give semantics to concurrent
process languages. Possibly the earliest and the most intuitive is Winskel’s semantics
of Milner’s CCS [35].

The first contribution of this paper is to present a compositional typing system for
event structures that ensures an important behavioural property: confusion freeness.
This property was first identified in the context the theory of Petri nets [30]. It has
been studied in that context, in the form of free choice nets [12]. Confusion free event
structures are also known as concrete data structures [4], and their domain-theoretic
counterpart are the concrete domains [20]. Finally, confusion freeness has been recog-
nised as an important property in the context of probabilistic models [32, 1].

To illustrate this important notion, let us suppose that a system is composed of two
processes P and Q. Suppose the system can reach a state where P has a choice between
two different actions a1,a;, and where Q, independently, can perform action b. We say
that such a state is confused if the occurrence of b changes the choices available to P
(for instance by disabling a;, or by enabling a third action a3). Intuitively the choice
of process P is not local to that process in that it can be influenced by an independent

action. We say that a system is confusion free if none of its reachable states is confused.
Confusion freeness is a generalisation of confluence to systems that allow nondeter-
minism. It is best expressed within a true concurrent model. The new typing system
guarantees that all typable event structures are confusion free. Moreover, a restricted
form of types guarantees the stronger property of conflict freeness, which is, in a sense,
the true concurrent version of confluence.

The second contribution of this paper is to give the first sound event structure seman-
tics of a fragment of the mt-calculus [26]. Various causal semantics of the mt-calculus ex-
ist[18,8, 13,5, 11, 9], but none is given in terms of event structures. The technical diffi-
culty in extending CCS semantics to the m-calculus lies in the handling of a-conversion,
which is the main ingredient to represent dynamic creation of names. We are able to
solve this problem for a restricted version of the m-calculus, a linearly typed version
of Sangiorgi’s ml-calculus [31,41]. This fragment is expressive enough to encode the
typed A-calculus (in fact, to encode it fully abstractly [41]). We argue that in this frag-
ment, oi-conversion need not be performed dynamically (at “run time”), but can be done
during the typing (at “compile time”), by choosing in advance all the names that will be
created during the computation. This is possible because the typing system guarantees
that, in a sense, every process knows in advance which processes it will communicate
with.

To substantiate this intuition, we soundly encode the linearly typed fragment of the
m-calculus into an intermediate process language, which is syntactically similar to the
m-calculus except that o-conversion is not allowed. We devise a typing system for this
language that makes use of the event structure types. We then provide the language
with a semantics in terms of typed event structures. Via this intermediate translation,
we thus obtain a sound event structure semantics of the m-calculus, which follows the
same lines as Winskel’s; syntactic nondeterministic choice is modelled by conflict, pre-
fix is modelled using causality, and parallel composition generates concurrent events.
Moreover, since our semantics is given in terms of typed event structures, we obtain that
all processes of this fragment are confusion free, and this is the first time a causal model
has been used to prove a behavioural property of a process language. Our typing sys-
tem generalises an early idea by Milner, who devised a syntactic restriction of CCS (a
kind of a typing system) that guarantees confluence of the interleaving semantics [25].
As a corollary of our work we show that a similar restriction applied to the w-calculus
guarantees the property of conflict freeness.

The tight correspondence between the linear t-calculus and programming language
semantics opens the door for event structure semantics to the A-calculus and other func-
tional and imperative languages.

Structure of the paper Section 2 introduces the basic definitions of event structures
and defines formally the notion of confusion freeness. The original work of the section
consists in the description of a novel characterisation of the product in the category of
event structures. The product of event structures is one of the base ingredients in the
definition of the parallel composition. Our characterisation allows us to carry out the
proofs in the following sections. Section 3 presents our new typing system and an event
structure semantics of the types. We then define a notion of typing of event structures
by means of the morphisms of the category of event structures. Typed event structures
are confusion free by definition. The main theorem of this section is that the parallel
composition of typed event structures is again typed, and thus confusion free. In Sec-
tion 4, we present the intermediate process language which is used to bridge between
the typed event structures and the linear 7-calculus. We call this calculus Name Sharing
CCS or NCCS. We define a notion of typing for NCCS processes and its typed opera-
tional semantics. In Section 5, we give a semantics of typed NCCS processes in terms
of event structures. The main result of this section is that the semantics of a typed pro-
cess is a typed event structure. We also show that this semantics is sound with respect to
bisimulation. Section 6 presents a linearly typed version of the wtl-calculus. This section

is inspired from [41], but our fragment is extended to allow nondeterministic choice. In
Section 7, we provide a sound translation of the the typed ml-calculus, into NCCS.
Through the sound event structure semantics of NCCS, we obtain a sound semantics of
the m-calculus in terms of event structures. All proofs can be found in the Appendix.

2 Event structures

Event structures were introduced by Nielsen, Plotkin and Winskel [28, 34], and have
been subject of several studies since. They appear in different forms. The one we in-
troduce in this work is sometimes referred to as prime event structures [36]. For the
relations of event structures with other models for concurrency, the standard reference
is [39].

2.1 Basic definitions
An event structure is a triple & = (E, <,—) such that

— FE is a countable set of events;

(E,<) is a partial order, called the causal order;

for every e € E, the set [e¢) := {e | € < e}, called the enabling set of e, is finite;

— — is an irreflexive and symmetric relation, called the conflict relation, satisfying
the following: for every ej,es,e3 € E if 1 < e and e; ~— e3 then ey — e3.

The reflexive closure of conflict is denoted by <. We say that the conflict e, — e3 is
inherited from the conflict e — e3, when e; < e. If a conflict e¢; — e5 is not inherited
from any other conflict we say that it is immediate, denoted by e —,, e>. The reflexive
closure of immediate conflict is denoted by =<,,. Causal order and conflict are mutu-
ally exclusive. If two events are not causally related nor in conflict they are said to be
concurrent. The set of maximal elements of [e) is denoted by parents(e).

A configuration x of an event structure & is a conflict free downward closed subset
of E, i.e. a subset x of E satisfying: (1) if e € x then [¢) C x and (2) for every e, e’ € x, it
is not the case that e — ¢’. Therefore, two events of a configuration are either causally
dependent or concurrent, i.e., a configuration represents a run of an event structure
where events are partially ordered. The set of configurations of &, partially ordered by
inclusion, is denoted as . (&). It is a coherent w-algebraic domain [28], whose compact
elements are the finite configurations.

If x is a configuration and e is an event such that e ¢ x and xU {e} is a configuration,
then we say that e is enabled at x. Two configurations x,x’ are said to be compatible
if xUx" is a configuration. For every event e of an event structure &, we define [e] :=
[e) U{e}. It is easy to see that both [e] and [e) are configurations for every event e and
that therefore any event e is enabled at [e).

A labelled event structure is an event structure & together with a labelling function
A: E — L, where L is a set of labels. Events should be though of as occurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. Labels are also essential in defining the parallel composition, and will also
play a major role in the typed setting. Given a labelled event structure & = (E, <,—, A)
we generate a labelled transition system 7'S(&) as follows: states are configurations,
and x—5x’ if X' = xW {e} and A(e) = a.

2.2 Conflict free and confusion free event structures
A interesting subclass of event structures is the following.
Definition 2.1. An event structure is conflict free if its conflict relation is empty.

It is easy to verify that in conflict free event structures, every two configurations
are compatible. More generally, if & is conflict free, then £ (&) is a complete lattice.
Conflict freeness is the true concurrent version of confluence. Indeed it is easy to verify
that if & is conflict free, then T'S(&) is confluent.

We introduce another interesting class of event structures where every choice is
localised. To specify what “local” means in this context, we need the notion of cell, a
set of events that are pairwise in immediate conflict and have the same enabling sets.

Definition 2.2. A partial cell is a set ¢ of events such that e,e’ € c implies e <, ¢
and [e) = [¢'). A maximal partial cell is called a cell. We say that =, is cellular if
ex, e = le)=[¢).

To avoid this, it is enough to assume that cells are closed under immediate conflict.

Definition 2.3. An event structure is confusion free if its cells are closed under imme-
diate conflict.

The above definition was introduced in [32]. It is equivalent to the more traditional
definition, which we state below.

Proposition 2.4. An event structure is confusion free if and only if the relation <, is
transitive and cellular.

It follows that, in a confusion free event structure, the relation <, is an equivalence
with cells being its equivalence classes.

2.3 A category of event structures

Event structures form the class of objects of a category [39]. The morphisms are de-
fined as follows. Let &1 = (E1,<1,—1), & = (E»,<3,~—2) be two event structures. A
morphism f : & — & is a partial function f : E} — Ej such that

— f preserves configurations: if x is a configuration of &7, then f(x) is a configuration
of &;

— fis locally injective: let x be a configuration of &, if e,¢’ € x and f(e), f(e') are
both defined with f(e) = f(¢'), thene =¢'.

It is straightforward to verify that the identity is a morphism and that morphisms
compose, so that what we obtain is indeed a category.

Morphisms reflect conflict and causality and preserve concurrency. They can be
equivalently characterised as follows.

Proposition 2.5 ([39]). A partial function f : E| — Ej is a morphism of event structures
f: 8 — & if and only if the following are satisfied:

— [preserves downward closure: if f(e1) is defined, then [f(e1)] C f([e1]);

— f reflect reflexive conflict: if f(e1), f(e2) are defined, and if f(e1) < f(e2), then
e <X ej.

There are various ways of dealing with labels. For the general treatment we refer
to [39]. Here we present the simplest notion: take two labelled event structures &) =
(E1,<1,~1,A1), & = (E2,<2,~2,A2) on the same set of labels L. A morphism f :
&1 — &, is said to be label preserving if, whenever f (e) is defined, A>(f(e1)) = A1 (e1).

2.4 Operators on event structures
We can define several operations on labelled event structures.

— prefixing a.&, where & = (E,<,~—,A). It is the event structure (E’', <’/ L"),
where E' = EW{e’} for some new event ¢/, <’ coincides with < on E and moreover,
for every e € E we have ¢’ < e, the conflict relation ' coincides with ~—, that is
¢’ is in conflict with no event. Finally A’ coincides with A on E and A'(¢’) = a.
Intuitively, we add a new initial event, labelled by a.

— prefixed sum Y,;c;a;.&;, where & = (E;, <;,—;, ;). This is obtained by disjoint
union of copies of the event structures a;.&;, where the order relation is the disjoint
union of the orders, the labelling function is the disjoint union of the labelling func-
tions, and the conflict is the disjoint union of the conflicts extended by putting in
conflict every two events in two different copies. This is a generalisation of prefix-
ing, where we add an initial cell, instead of an initial event.

— restriction &\ X where & = (E,<,~—,\) and X C A is a set of labels. This is ob-
tained by removing from E all events with label in X and all events that are above
one of those. On the remaining events, order, conflict and labelling are unchanged.

— relabelling &[f]. This is just composing the labelling function A with a function
f L — L. The new event structure has thus labelling function foA.

It is easy to verify that all these constructions preserve the class of confusion free
event structures. Also, with the obvious exception of the prefixed sum, they preserve
the class of conflict free event structures

2.5 The parallel composition

The parallel composition of event structures is difficult to define. In [39] is defined as
the categorical product followed by restriction and relabelling. The existence of the
product is deduced via general categorical arguments, but not explicitly constructed. In
order to carry out our proofs, we needed a more concrete representation of the product.
We have devised such a representation, which is inspired by the one given in [10], but
which is more suitable to an inductive reasoning.

Let &1 := (E1,<i,~—1) and & := (E»,<2,~—2) be two event structures. Let E :=
E;W{x}. Consider the set £ obtained as the initial solution of the equation X = & fin(X) X
E} x E3. Its elements have the form (x,e;,e>) for x finite, x C E. Initiality allows us to
define inductively a notion of height of an element of E.

h(0,e1,e2) =0
h(x,er,e3) = max{h(e) |e€x}+1

Most of our reasoning will be by induction on the height of the elements. We now carve
out of E a set E which will be the support of our product event structure &. At the same
time we define the order relation and the conflict relation on &'

Base: we have that (0,e1,e)) € E if

— e1 € E|,e; € Ey, and e minimal in Ey, e, minimal in E; or
— e1 € Ej,ep = * and e minimal in E; or
— e] = *,ep € Ej and ey minimal in E,.

The order on the elements of height O is trivial.
Finally we have (0,e;1,e2) < (0,d,,d>) if e} < d or e < ds.

Inductive Case: assume that all elements in E of height < n have been defined. Assume
that an order relation and a conflict relation has been defined on them. Let (x,e;,ez) of
height n+ 1. Let y be the set of maximal elements of x. Let y; = {d; € E| | (z,d1,d2) €
v} andyr» = {ds € E» | (z,d1,d2) € y}, be the projections of y onto the two components.
We have that (x,e;,ez) € E if x is downward closed and conflict free, and furthermore:

— Suppose e; € Ej, ey = *. Then it must be the case that y; = parents(ey).
— Suppose e, € Ep,e; = *. Then it must be the case that y, = parents(e).
— Suppose e; € Ej,e; € E>. Then

e if (z,dy,dy) €y, then either d| € parents(e;) or dy € parents(es);

e forall d; € parents(ey), there exists (z,dy,d>) € x;

o for all dy € parents(e;) there exists (z,dy,da) € x.

- Letx; ={d| €E| | (z,d1,d2) € x} and xp = {d» € E» | (z,d1,d2) € x}. Then for no
di €x1,d; <ej and forno dp € xp, dy < e3.

The partial order is extended by e < (x,e1,e2) if ¢ € x, or e = (x,¢1,e2). Note that
if e < ¢ then h(e) < h(e').

Finally for the conflict, take e = (x,e1,e2) and d = (z,d1,dz), where either h(e) =
n+ 1 or h(d) =n+ 1 or both. Then we define e — d if one of the following holds:

— e; <djorey <dy,and e #d,

there exists ¢’ = (x', ¢/, ¢}) € x such that €] < d or ¢, < d, and ¢’ # d;
there exists d' = (/,d},d) € zsuch that ey < dj ore, < dj, and e # d’;
there exists e € x,d € z such that e — d.

As the following lemma shows, some of the clauses above are redundant, but are
kept for simplicity.

Lemma 2.6 (Stability). If (x,eq,e2),(x,e1,e2) € E and x # X', then there exist d €
x,d" € x' suchthatd — d'.

Now we are ready to state the main new result of this section: take two event struc-
tures &1, 6, and let & = (E, <,~—) be defined as above. Then we have:

Theorem 2.7. The structure & is an event structure and it is the categorical product of
é1,6).

We will not make use of this fact, except that projections preserve configurations.
However this theorem is necessary to fit in the general framework of models for con-
currency, and to avoid building “ad hoc” models.

For event structures with labels in L, we make the convention that the labelling
function of the product takes on the set L, X L., where L, := LW {x}. We define
A(x,e1,e2) = (A} (e1),A;(e2)), where A} (e;) = Ai(e;) if e; # *, and A (x) = *. A synchro-
nisation algebra § is given by a partial binary operation eg defined on L, [39]. Given
two labelled event structures &7, &3, the parallel composition &7||s&> is defined as the
categorical product followed by restriction and relabelling: (& x & \ X)[f] where X is
the set of pairs (/1,/2) € L. x L, for which [, eg 1, is undefined, while the function f :
is defined as f(I1,l,) = | e5l,. The subscripts S are omitted when the synchronisation
algebra is clear from the context.

The simplest possible synchronisation algebra is defined as /e« = x e[=/, and
undefined in all other cases. In this particular case, the induced parallel composition
can be represented as the disjoint union of the sets of events, of the causal orders, and
of the conflict. This can be also generalised to an arbitrary family of event structures
(&})ier- In such a case we denote the parallel composition as [[;; &;.

Parallel composition does not preserve in general the classes of conflict free and
confusion free event structures. New conflict can be created through synchronisation.
One of the main reasons to devise a typing system for event structures is to guarantee
the preservation of these two important behavioural properties.

2.6 Examples
We collect in this section a series of examples, with graphical representation.

Example 2.8. Consider the following event structures &7, &3, &3, defined on the same set
of events E := {a,b,c,d,e}. In &, we have a < b,c,d,eand b —, ¢, c —,d, b—,d.
In &, we do not have a < d, while in &3, we do not have b —, d. The three event
structures are represented in Figure 1, where curly lines represent immediate conflict,
while the causal order proceeds upwards along the straight lines.

The event structure & is confusion free, with three cells: {a},{b,c,d},{e}. In &,
there are four cells: {a},{b,c},{d},{e}. & is not confusion free, because immediate
conflict is not cellular. This is an example of asymmetric confusion [29]. In &3 there are
four cells: {a},{b,c},{c,d},{e}. &3 is not confusion free, because immediate conflict
is not transitive. This is an example of symmetric confusion.

& 1 6‘72 6)3

Fig. 1. Event structures

& & &

a a a~1T~a

Fig. 2. Parallel composition of event structures

b/ ~ c/ d/ ~ e/ b” ~ C” dll b
. :’._a’ "\/\/\f\/\f\m a”_.". a
PR T S W
& b~ c¢ d ~ e 10 a b

Fig. 3. Morphisms of event structures

Example 2.9. Next we show an example of parallel composition, see Figure 2. Consider
the two labelled event structures &4, &5, where Eq = {e4,ds},Es = {es}, conflict and or-
der being trivial, and A(e4) = a,A(ds) = b,A(es) = a. Consider the symmetric synchro-
nisation algebraaea =1, aex = a, aex = a, b e x = b and undefined otherwise. Then
& = &4|| &5 is as follows: Eg = {e := (0,e4,%),€ := (0,,E5),e" := (0,ea,e5),d :=
({e},ds,*),d" := ({€"},ds,)}, with the ordering defined as e < d,e” < d”, while the
conflictis defined as e — ¢”, ¢’ — ", e — d", e —d", e’ — d,d — d". The labelling
function is A(e) = a,A(e') =a, (") = 1,A(d) = A(d") = b. Note that, while &4, &5 are
confusion free, & is not, since reflexive immediate conflict is not transitive. Note also
an instance of the stability for d,d".

Example 2.10. Finally we show an example of morphism. Consider the two event struc-
tures &7, &y defined as follows:

_ / /] ! ! 1 " 1 : / /N, / !/ / 1 /!
- E;={d .V, ded b " ,d"} withd —,d" b —,,d —, e b —, " and
d<b.c.deandd <b " d".
- Eg={b,c,d,e} with b —, c,d —, e, and trivial ordering.

Note that both &7 and &3 are confusion free.

We define a morphism f : & — & by putting f(x') = f(x") = x for x = b,c,d, e
while f is undefined on a’,a”. Note that »’ and b” are mapped to the same element b,
and they are indeed in conflict, because they inherit the conflict a’ — a”.

For another example consider the two event structures &y, 819, where Eg = E1g =
{a,b}, both have empty conflict, and in & we have a < b. The identity function on
{a,b} is a morphism & — &9 but not vice versa. We can say that the causal order of
&9 refines the causal order of &¢.

3 Typed event structures

In this section we present a notion of types for an event structure, which are inspired
from the types for the linear m-calculus [41, 3,21]. We will clearly see this connection
later, when we devise a process calculus that makes use of these types. The event struc-
ture which interprets a type records the causality between the names contained in the
types. We then assign types to event structures by allowing a more general notion of
causality.

3.1 Types and environments

We assume a countable set of names, ranged over by a, b, c,x,y, z. In this setting, names
are used to identify “clusters” of events. Names will also be used in generating the labels
of the event structure. Types, type environments, and the mode of a type are generated
by the following grammar

A=y, :061,...,y,:0, type environment

7,6 == & Li branching !
| BT selection T
| RiciTi offer !
| Wi T request ?
\ closed type 1

An environment can be thought of as a partial function from names to types. In this
view we will talk of domain and range of an environment. A type environment I” is
well formed if any name appears at most once. In the following we consider only well
formed environments.

We say a name is confidential for a type environment I" if it appears inside a type
in the range of I'. A name is public if it is in the domain of I'. Intuitively, confidential
names are used to identify different occurrences of events that have the same public
label. We will see this explicitly when we introduce the event structure semantics.

Branching types represent the notion of “environmental choice”: several choices are
available for the environment to choose. Selection types represent the notion of “process
choice”: some choice is made by the process. In both cases the choice is alternative: one
excludes all the others. Server types represent the notion of “available resource”: I offer
to the environment something that is available regardless of whatever else happens.
Client types represent the notion of “concurrent request”: I want to reserve a resource
that I may use at any time.

It is straightforward to define duality between types by exchanging branching and
offer, with selection and request, respectively. Therefore, for every type T and environ-
ment I, we can define their dual T, I'. However types and environments enjoy a more
general notion of duality that is expressed by the following definition. We define a no-
tion of matching for types. The matching of two types also produces a set of names that
are to be considered as “closed”, as they have met their dual. Finally, after two types
have matched, they produce a “residual” type.

We define the relations match[t,6| — S, match[[', A] — S symmetric in the first two
arguments, and the partial function res|t, 6] as follows:

—letI'=x;:0y...x,: 06, and A=y : Ty ...V : Tmy. Then match[[',A] — S if n=m,
for every i < nx; =y;, match[c;,t;] — S; and S = U;<,, Si U {xi};

- let 1= &;; i and 6 = @ A;. Then match[t,6] — S if [=J, for all i € I,
match[[;,A;] — S; and S = U;¢; S In such a case res[t,0] =] ;

- let T = Qi and 6 = ¥, [; Then matchlt,c] — S if J C I, for all j € J,
match[L'j,Aj] — Sj, and S = ¢, S; In such a case res[t,6] = ;e\ L.
- match[],]] — 0, res[],]] =].

A branching type matches a corresponding selection types, all their names are
closed and the residual type is the special type recording that the matching has taken
place. A client type matches a server type if every request corresponds to an available
resource. The residual type records which resources are still available.

We now define the composition of two environments. Two environments can be
composed if the types of the common names match. Such names are given the residual
type by the resulting environment. All the closed names are recorded. Client types can

by joined, so that the two environments are allowed to independently reserve some

def
resources. Given two type environments I';,I"> we define the environment I'; T, = T’

and the set of names c/(I'1,T72) as follows:

- if x € Dom(T"1) and no name in I'; (x) appears in I'j, then I'(x) = I'»(x), Sy = 0 and
symmetrically;

- if I'1(x) = 1,I2(x) = 6 and match[t, 6] — S, then I'(x) = res[t,c] and S, = S;

— if '} (x) = l¥);c; Ai and T2 (x) = W ;, A; and no name appears in both A; and A; for
every i, j € IUJ we have then I'(x) = ;c; ;A and S, = 0;

— if any of the other cases arises, then I is not defined;

- Cl(rl’r2) = UxeDom(Fl,l"z) Sy

We can perform injective renaming on environments: if p is an injective endofunction
on names which leaves Dom(I") alone, then I'[p] is the environment where every name
x has been replaced with p(x).

3.2 Semantic of types

Type environments are given a semantics in terms of labelled confusion free event struc-
tures. Labels have the following form:

o, B :=xin;(§) branching 1= (x,X)in;(¥)
| xin;(§) selection | (x,X)pr; ()
| apr,ls) offer
| Xpr;(5) request
| 1 synchronisation

Given a branching B = xin;(J), we say that x is the subject of the label, written x =
subj(B), the index i is the branch (for branching/selection only) and = y,...,y, are
the confidential names written § = conf(p). Similarly for selection, offer and request.
The notation “in;” comes from the injection of the typed A-calculus. The notation “pr;”
is to suggest duality with the notation for branching. We will use a set of names S also
to denote the set of non-synchronisation labels whose subject is in S.

We now define what it means for a label o to be allowed by a type environment I".
Suppose I'(x) = o, then:

- if « =xin;(§), and if 6 = &, I'i where § is the domain of I}, then o, is allowed;

(v
- if o =Xin;(y), and if 6 = @,; I'; where j is the domain of I'; then o is allowed;
- if o= xpr;(§), and if 6 = @,¢, I where J is the domain of I'; then a is allowed;
- if o =Xpr;(§), and if 6 = W, I'; where j is the domain of I'; then a is allowed;

ifa=r, then o is allowed.

Finally, o is allowed by I' if a is allowed by any of the environments appearing in the
types in the range of I'. Note that if a label is allowed, the definition of well-formedness
guarantees that it is allowed in a unique way. Note also that if a label o has subject x
and x does not appear in I, then o is not allowed by I. Let Dis(T") be the set of labels
that are not allowed by the environment I'.

161,y :0n]l = [y : o]l [[yn : 6a]
[x: &ies il = Lierxini(Fi).[Ii] [x: @icsTill = LierXini(5:).[Ii]

[QiciTill = Micrxpr; 5i)- [T [: Wigr Till = TierXpr(3i)- [Tl [x:]] = 0

Fig. 4. Denotational semantics of types

To define the parallel composition, we use the following symmetric synchronisation
algebra: ote + = o, xin () e Xini(5) = (x,%)iny (), xpr, (5) # 3pr,(5) = (x.¥)pr;(5),
and undefined otherwise. The semantics of an environment is the parallel composition
of the semantics of the types, with initial events labelled using the corresponding names.
The parallel composition is also used to give semantics to client and server types. Such
parallel compositions do not involve synchronisation due to the condition on uniqueness
of names and thus, as we already explained, they can be thought of as disjoint unions.

The semantics of selection and branching is obtained using the sum of event struc-
tures. The semantics is presented in Figure 4, where we assume that j; represents the
sequence of names in the domain of I';. A name used for branching/selection identifies
a cell. A name used for offer/request identifies a “cluster” of parallel events.

The following result is a sanity check for our definitions. It shows that matching of
types corresponds to parallel composition with synchronisation.

Lemma 3.1. Take two environments I'1 and I'y and suppose I'y © 1% is defined. Then
cl(F1 ,Fz) g DiS(Fl © Fz).

Proposition 3.2. Take two environments I'1,1"5, and suppose I'1 © 1", is defined. Then
([T N\ (Dis(Ty ©T2) Ut) = [© .

In particular, we have that for every environment I', T® T is defined and [T ©] = 0.

3.3 Typing event structures

Given a labelled confusion free event structure & on the same set of labels as above, we
define when & is typed in the environment I', written as & >1". A type environment "
defines a general behavioural pattern via its semantics [I']]. The intuition is that for an
event structure & to have type I, & should follow the pattern of [[I']], possibly “refining”
the causal structure of [[I']] and possibly omitting some of its actions. We will strengthen
the notion of typing later, when standard typing rules allow a finer tuning on the notion
of typing.

Definition 3.3. We say that &> T, if the following conditions are satisfied.:

— each cell in & is labelled by x, X or (x,X), and labels of the events correspond to the
label of their cell in the obvious way;

— there exists a label-preserving morphism of labelled event structures f : & — [I']
such that f(e) is undefined if and only if A(e) € T.

Roughly speaking a confusion free event structure & has type I' if cells are parti-
tioned in branching, selection, request, offer and synchronisation cells, all the non-
synchronisation events of & are represented in I" and causality in & refines causality
in [7.

As we said, the parallel composition of confusion free event structures is not confu-
sion free in general. The main result of this section shows that the parallel composition
of typed event structures is still confusion free, and moreover is typed.

Lemma 3.4. Suppose &>T, and let e,e’ € E be distinct events.

10

& (ww) bpri(zi) bpri(zr) >x >y >7
AN - Iy
ainl(x> '\, ainp <y> o > aing (x) ’; ain <y> . bPrl <Z]>

Fig. 5. Typed event structure

- IfMe) =Me') £, thene— €.

- IfMe),\(e') #1and M(e) and M(e') have the same subject and different branch,then
e—¢.

- Ife—, €, then A(e) and L(¢') have the same subject and different branch.

Theorem 3.5. Take two labelled confusion free event structures &1, &. Suppose &1>1')
and &> Ty, Assume T'y O T is defined. Then (&61||&) \ (Dis(T'} ©1%)) is confusion free
and

(é"l ||é"2) \ (DiS(Fl ® Fz)) >IN oI .

The proof relies on the fact that the typing system, in particular the uniqueness
condition on well formed environments, guarantees that no new conflict is introduced
through synchronisation. Key role is played by Lemma 3.4, see the Appendix.

A special case is obtained when the selection cells are all singletons. We call an
event structure deterministic if its selection cells and its 1 cells are singletons. In partic-
ular if all events are labelled 1, a deterministic event structure is conflict free.

Theorem 3.6. Take two labelled deterministic confusion free event structures &,6.
Suppose & >T'| and & >Ty. Suppose Ty @ Ty is defined. Then (&1||&) \ Dis(T'y © ')
is deterministic.

3.4 Examples

In the following, when the indexing set of a branching type is a singleton, we use the
abbreviation (I')!. Similarly, for a singleton selection type we write (I')!. Also, when
the indexing set of a type is {1,2}, we write (I'1&I"2) or (I' ®I'), etc...

Example 3.7. Consider the types 1) = (x: ()} & y: ()}), 01 = Wiery(zi:]), 12 =
(x:()Tey:(O),02 =21 :] ®22 :]. We have match[t,7,] — 0, with res[t1,T,] =]; and
match[o1,0,) — {z1}, with res[01,0,] = ®i€{2}(z,~ :]). Thusif weput'y =a:1y,b: 0y,
andTy, =a: 1,05, wehave thatI'y @I, =a:],b: ®i€{2}(zi D).

Example 3.8. As an example of typed event structures, consider the environment
F=a:(x:) &y:()"),b: Wieq1y (zi: (). Figure 5 shows an event structure &, such
that & >T', together with a morphism & — [I']]. Note that the two events in & labelled
with bpr | (z;) are mapped to the same event and indeed they are in conflict.

4 Name sharing CCS
4.1 Syntax

We introduce a variant of CCS that will be interpreted using typed event structures.
Our language differs from CCS in many technical details, but the only relevant differ-
ence is that synchronisation between actions happens only if the actions share the same

11

ain;(y;) ain;(¥;)

aA@icrini(5i).P —"'P; a&icini(Vi).Pi —"P;

apr (¥, apr (¥,
Eprj(f)).P —’<>>P aprj<)7>.P —j<>>P

p-Pp subj(B) &S p_t.p/

P\SPP\s P\S-LP\S

p p

PP PP P,P

Tien P (it oy PO 1P Thicrs P (Mo oy Pi) | P P

Fig. 6. Labelled Transition System for Name Sharing CCS

confidential names. Syntactically this looks like name passing, with the difference that
processes decide their confidential names before communicating, and there is not o-
conversion. If the chosen names do not coincide, the processes do not synchronise. We
will formalise the relation between our calculus and the typed ®-calculus later.

Another minor difference with standard CCS is that we allow infinite parallel com-
position and infinite restriction. The former is necessary in order to translate replicated
processes of the mt-calculus. The standard intuition in the mt-calculus is that the process
!P represents the parallel composition of infinitely many copies of P. We need to rep-
resent this explicitly in order to be able to provide each copy with different confidential
names. Infinite restriction is also necessary, because we need to restrict all confiden-
tial names that are shared between two processes in parallel, and these are in general
infinitely many.

We call this language Name Sharing CCS, or NCCS. The syntax is as follows:

P ::= a&r;c; in;(yi).P; branching

aP;c; in;(;).P; selection

|

| aprj<)7>.P single offer

| apr;(y).P single request

| TlierPi parallel composition
| P\S restriction

| 0 zZero

We sometime denote parallel composition where the indexing set is {1,2}, by P;||P>.
When the indexing set of branching is a singleton, we sometimes write a(¥).P, and
similarly for selection, offer and requests. As before j denotes a finite sequence of
distinct names y; ...y,, whenever the length of the sequence and the identity of the
individual names do not matter. We will also sometimes abuse the notation by using
set theoretic notions applied to the sequences. So, for instance, N7’ = @ means that
for all i,j y; # y'j. S denotes a set of names. Finally, processes are identified up to a
straightforward structural congruence, which includes the rule (P\S)\T =P\ (SUT),
but no notion of a-equivalence.

A name is confidential in P if it appears in a confidential position inside P.

We want to identify different fragments of the language. The fragment where the
indexing sets of branching and selection are always singleton is called simple. The
fragment when the selection is always a singleton, but the branching is arbitrary is
called deterministic. The general language is for clarity denoted as the nondeterministic
fragment.

12

The operational semantics is completely analogous to the one of CCS, and it is
shown in Figure 6. Labels are the same as the one we have seen for event structures.
Again, pair labels are globally denoted by 7.

As in CCS, prefixes generate the labelled actions. Processes in parallel can proceed
independently or synchronise over complementary actions. Restriction inhibits actions
over a particular set of names, but not T. The main difference with CCS is the presence
of “confidential names” that are used only for synchronisation. Note also that only the
subject of an action is taken into account for restriction.

Example 4.1. For instance the process

(a(x).Plaly).R)\{a}

cannot perform any transition, because x and y do not match. The process

(a(x).P|a(x).Qa(x).R)\ {a}

can perform two different initial T transitions. Since the name x is not bound, it does not
become private to the subprocesses involved in the communication. The process

(@&icqi 2y ini()-Pi[a@Dieqr 2y ini()-Ri) \ {a}

can perform, nondeterministically, two T transitions to (Py |R;) \ {a} orto (P2 |R2)\ {a}.

4.2 Typing Rules

Before introducing the typing rules, we have to define the operation of “parallel
composition of environments”.

If I', h € H is a family of types such that for every name x, either for every #,
[y(x) = Wy, ek, Ak,» Or x € Dom(T,) for at most one h. We define I' = []jcy Iy as
follows. If for every h, I (x) = W, ck, A, » then T'(x) = Wy, ck, nen Ak,» assuming all
the names involved are distinct. If x € Dom(T"};) for at most one A, then T'(x) = T (x).

A special case is when all the I'j, are different instances of the same environment,
up to renaming of the confidential names. For any set K, let Fx : Names — &7 (Names)
be a function such that, for every name x, there is a bijection between K and Fx(x).
Concretely we can represent Fx(x) = {x* | k € K}. In the following we assume that
each set K is associated to a unique Fx, and that for distinct x,y, Fx(x) N Fx(y) = 0.

Given a type T, and an index k, define ¢ as follows:

© Qe (Fn:)" = Quen (7 : T,), where 5, = (yin)ier and jj = (yffh)ieﬁ
e and similarly for all other types.

Given an environment I', we define I'* were for every name x € Dom(T"), [*(x) =
['(x)k. The environment I'[K] is defined as [Ticx I', and is thus defined only when for
every x € Dom(T"), MD(I'(x)) = ?. We will also assume that all names in the range of
the substitution are fresh, in the sense that no name in the range of Fx appears in the
domain of I'. Under this assumption we easily have that if T is well formed and if ['[K]
is defined, then I'[K] is also well formed.

We are now ready to write the rules. The rule for weakening of the client type tells
us that we can request a resource even if we are not actually using it. The rule for
the selection tells us that we can choose less than what the types offers. The parallel
composition is well typed only if the names used for communication have matching
types, and if the matched names are restricted. This makes sure that communication
can happen, and that the shared names are indeed private to the processes involved. The
rules are shown in Figure 7.

13

PoT agl PoT a¢l

— ————— WeakReq ————
050 Zero Poloa: When s eakReq T a WeakCl

P>T,a:t MD(t)=",]
P\avT
Pol,y;:% a¢Tl
a&icrini(5i) PivT,a: &ic (5i 2 %i) Branch
Poly;:% a¢l ICJ
a@ijerinipi(3i)-PivT,a: Dic; (5i : 1)
PoT,w;:%j,a: Wpey(Wy 1 %) w; fresh

Res

Sel

— — — Req
aprj<wj-).P>F,a : wheHLﬂ{j}(Wh %)

Pyl 3%, agl
= ——— Offer
[nen apr),Fn) P> Tlher Tnia - Quen (T Th)
P,'l>F,' (i:1,2) S:Cl(rl,rz)
(PL|P)\S>T 0T,

ar

Fig. 7. Typing Rules for NCCS

4.3 Typed Semantics

The relation I' allows B was defined in Section 3. We also need a definition of the
environment I"\ B, which is as follows.
-T\t=I;
- if T =Ax: & (i : Ti), then T\ xin (5;) = A, 3 : T
= ifI'=Ax: @i (5 :), then I'\ Xin;(5;) = A, 9 : T3
=i T =Ax: Querwgjy O :),
then '\ xpr ;(¥;) = A, 9 : Tj, nery (Fn : Tn);
=it T =Ax: Whepw(jy Fn :),
then I'\Xpr ;(§;) = A, 5 : T, When (9 : T)-
Note that I'\ B is defined precisely when I" allows 3. We have the following

Proposition 4.2. [f P>T, P-"~0 and T allows B, then Q> T'\ .

Corollary 4.3 (Subject Reduction). If P>T, P——Q then Q>T.

Proposition 4.2 allows us to define the notion of typed transition, written P>I" L
O>T" by adding the constraint:

PLQ I allows B

Por-PoeT\ B
The relations of bisimulation and bisimilarity between typed processes are defined
as usual, using typed transitions. Bisimilarity is denoted as P>I"~ QT
5 Event structure semantics of Name Sharing CCS

5.1 Semantics of nondeterministic NCCS

The semantics of a typed NCCS process is given in terms of labelled event struc-
tures, using the operations, in particular the parallel composition, as defined in Sec-
tion 2.5. This construction is perfectly analogous to the one in [39], the only difference

14

[o>0] =0
[PoT,x: When Tnl = [PeI]
[Pel,x:]]] = [PoTT]
[P\avT] = [P>T,a: 1]\ {a}
[aDic ini(5i)-Pi>T.a: @iy (5i : % Yicrain;(3i).[Pio T, 5 : 1]
la&siciini(Fi)-PicT,a: & e (5i 1 % Yicrain(§).[Pi>T,5i : %]
[apr;(7).P>T,a: Wregwj) Ok : T T (9).[PoT,a: Week 5k : T), ¥ %)
[Mkex apri (Fx)Pet> Tkek Tra : @rex 9k :)] = Tkek apri(Fe)-[Pe> Tk, 3 : U]l
[(PIP)\ ST O] = [ProT] | [Pa>T2]\ (Dis(T) ©172))

| =
| =

u)l
@l
Il
©)]
2]

Fig. 8. Denotational semantics of simple Name Sharing CCS

being the synchronisation algebra. However, since the synchronisation algebra is the
same for both the operational and the denotational semantics, we obtain automatically
the correspondence between the two, as in [39].

The semantic is presented in Figure 8.

In the parallel composition, we have to restrict all the channels that are subject of
communication. More generally, we need to restrict all the actions that are not allowed
by the new type environment.

The main property of the typed semantics is that all denoted event structures are
confusion free. More generally the semantics of a typed process is a typed event struc-
ture

Theorem 5.1. Let P be a process and I" an environment such that P>1". Then

— [P>T) is confusion free;
- [PeIT>[I].

5.2 Semantics of deterministic NCCS

The syntax of NCCS introduces the conflict explicitly, therefore we cannot obtain
conflict free event structures. The result above shows that no new conflict is introduced
through synchronisation. Moreover, in the deterministic fragment, synchronisation does
indeed resolve the conflicts.

First it is easy to show that the semantics of deterministic NCCS is in term of deter-
ministic event structures:

Proposition 5.2. Suppose P is a deterministic process, and that P>T. Then [P>T] is
deterministic.

The main theorem is the following, which justifies the term “deterministic”. It states
that once all choices have been matched with selections, or cancelled out, what remains
is a conflict free event structure.

Theorem 5.3. If let X be the set of names in P, then [P>T]|\ X is a conflict free event
structure

Corollary 5.4. If [I']| = 0, then [P is conflict free.
5.3 Semantics of simple NCCS

Although the syntax of NCCS does not introduce directly any conflict, there is in
principle the possibility that conflict is introduced by the parallel composition. The
typing system is designed in such a way that this is not the case.

Theorem 5.5. Suppose P is a simple process such that P>T. Then [P>T]| is conflict
free.

15

5.4 Correspondence between the semantics

In order to show the correspondence between the operational and the denotational
semantics, we invoke Winskel and Nielsen’s handbook chapter [39]. Note that our se-
mantics are a straightforward modification of the standard CCS semantics. This is the
main reason why we chose the formalism presented in this paper: we wanted to depart
as little as possible from the treatment of [39].

The main difference is that typed semantics modifies the behaviour, by forbidding
some of the actions. However this modification acts precisely as a special form of name
restriction: in the labelled transition system it blocks some action, while in event struc-
ture it cancel them out (together with all events enabled by them). With a straightfor-
ward generalisation of the notion of restriction, we then preserve the correspondence
between the two semantics and the technique of [39] carries over.

A denotational model which is very close to the operational semantics is that of syn-
chronisation trees. Synchronisation trees are just labelled transition system structured
as trees, with an initial state as the root. They form a category in a straightforward way,
and they support constructions similar to the one used for event structures (prefixing,
hiding, product). Using these constructions, we can define a new semantics of NCCS in
terms of synchronisation trees [[P]]7.

There is a functor F between the category of labelled event structures and the cate-
gory of synchronisation trees that unfolds event structures into trees. F is right adjoint
of the functor that sees trees as event structures (where every two events are causally
related or in conflict). It can be shown that ' commutes with the semantics, that is
F[[P] = [P]r, the key point being that F is right adjoint and therefore preserves prod-
ucts. Then, it can be shown that the synchronisation tree [P] 7 is bisimilar to the oper-
ational semantics described in Section 4. The proof of this is quite technical, and can
be found in [39]. Recall that the typing restrict the behaviour in the same way as the
hiding.

Using this correspondence it is easy to prove that the semantics in terms of event
structures is sound with respect to bisimilarity.

Theorem 5.6. Take two typed NCCS processes P>T',Q>T. Suppose that [P>T] =
[Ov>T], then PrT' =~ Q>T.

Proof. If [P>T] = [QvT], then [PoT] 7 = [Q>T]r, and thus P>T ~ O>T. O
This theorem is the best result we can get: indeed, as for standard CCS, we cannot
expect the event structure semantics to be fully abstract. Bisimilarity is a “interleaving”
semantics, equating the two processes @||@ and a@.a, which have different event structure
semantics.
A more direct correspondence is described in the following.

Definition 5.7. Let & = (E,<,~—,A) be a labelled event structure and let e be one
of its minimal events. The event structure & |e = (E',<',~~' XN} is defined as follows:
E = {6’ EE] e #* e}, SIZS\EH \//:\/‘E/, and N = Ag.

Roughly speaking, &|e is & minus the event e, and minus all events that are in
conflict with e. We can then generate a labelled transition system as follows: if A(e) =3,
then

eL.gle.
We can therefore state the following correspondence:
Theorem 5.8. Let = denote isomorphism of labelled event structures;

— if P> TSP/ o T\ B, then [PoT] 5 = [P/sT\ B.

i [PoT] -6 then PoT-PoP s\ B and & = [P'>T\ .

The proof can be found in the appendix. It is by induction on the operational rules.
The only difficult case is the parallel composition.

16

6 A linear version of the t-calculus

This section briefly summarises an extension of linear version of the w-calculus in [3] to
non-determinism [40]. Although this summary is technically self-contained, the reader
may refer to [3,40] for detailed illustration and more examples.

6.1 Syntax and reduction

The following gives the reduction rule of the standard wt-calculus:

x(7)-P|x(r).0 — P{v/5}|Q

Operationally, this reduction represents the consumption of a message by a receptor.
As anticipated, we consider a restricted version of the m-calculus, where only bound
names are passed in interaction. Besides producing a simpler and more elegant theory,
this restriction allows tighter control of sharing and aliasing without losing essential
expressiveness, making it easier to administer name usage in more stringent ways. The
resulting calculus is called the wl-calculus in the literature [31] and has the same ex-
pressive power as the version with free name passing (as proved Section 6 in [41]).
Syntactically we restrict an output to the form (v§)x(§).P (where names in ¥ are pair-
wise distinct), which we henceforth write X(¥).P. For dynamics, we have the following
forms of reduction by the restriction — to the bound output.

x(9).P|x(5).Q0 — (v)(P|Q)
x(5).P|x(5).Q — x(9)-P| (v3)(P[Q)

After communication, y are shared between P and Q. Our framework is applicable to
more general nondeterministic version of the calculus, where input and output can be
non-deterministic branching and selection. Branching is similar to the “case” construct
and selection is “injection” in the typed A-calculi; these constructs have been studied in
other typed m-calculi [33]. The branching variant of the reduction becomes:

x&icrini(9i)-Pi | ¥@je; inj(5,).Q5 | — (Vi) (Pr|On)

where we assume i € J N1, with I,J denoting finite or countably infinite indexing sets.
The formal grammar of the calculus is defined below.

P = x&icsini(0)-Pi | ¥@igrini(i)-Fi | PIQ | (vo)P [0 | x(5).P

x&icrini(¥i).P; (resp. X@;e; in;(¥;).P;) is a branching input (resp. selecting output).
P|Qis aparallel composition, (vx)P is arestriction and !x(¥).P is a replicated input. We
omit the empty vector: for example, a stands for @(). When the index in the branching
or selection indexing set is a singleton we use the notation x(§).P or X(¥).P; when it
is binary, we use x((1).P1&(¥2).Pa2) or X((y1).P1 @ (¥2).P2). The bound/free names are
defined as usual. We assume that names in a vector ¥ are pairwise distinct. We use =,
and = for the standard o and structured equivalences [26,3,41, 17].

We can identify important fragments of the calculus. Processes where all selection
indexing sets are singletons are called deterministic. Deterministic processes where also
branching indexing sets are singletons are called simple.

6.2 Types and typings

This subsection reviews the basic idea of the linear type discipline in [3]. We can easily
extend the result in this paper to other family of the linear calculi studied in [3, 41, 17].
The linear type discipline restricts the behaviour of processes as follows.

(A) for each linear name there are a unique input and a unique output; and
(B) for each replicated name there is a unique stateless replicated input with zero or
more dual outputs.

17

In the context of deterministic processes, the typing system guarantees confluence. We
will see that in the presence of nondeterminism this typing system guarantees confusion
freeness.

Example 6.1. As an example for the first condition, let us consider:

def _ def , | =1 —i_

Q1 = ablacla Q> = ba|c.b|a.(¢|e)
Then Q; is not typable as a appears twice as output, while Q> is typable since each
channel appears at most once as input and output. Typability of simple processes such
as O, offers only deterministic behaviour. However branching and selection can provide
non-deterministic behaviour, preserving linearity:

0; Y a(boc)|a(d&e)
Q3 is typable, and we have either Q3 — (b|d) or Q3 — (c|@). As an example of the
second constraint, let us consider the following two processes:

0s ¥ 1vallve 0s 1pa|b|lch
Q4 is untypable because b is associated with two replicators: but Qs is typable since,
while output at b appears twice, a replicated input at b appears only once.

Types Channel types are inductively made up from type variables and action modes.
The four action modes |,T,!,? where introduced in Section 3. Input modes are |,!,
while T,? are output modes. We let p, p’, ... denote modes. We define P, the dual of p,
by: | =7, T=?and 7 = p. Then the syntax of types are given as follows:

6 ::= &ric; (6;)' branching
@ic; ()1 selection
]

|

| (6) offer

| (6) request
Ti=0|]

where & is a vector of types. We write MD(t) for the outermost mode of t. The dual of
T, written T, is the result of dualising all action modes, with | being self-dual. A type
environment I' is a finite mapping from channels to channel types. Sometimes we will
write x € I" to mean x € Dom(I').

Types restrict the composability of processes: for example, for parallel composition,
if P is typed under environment I'j, Q is under I'; and I'y © I, is defined for a partial
operator ® with the resulting I, then we assign I to P| Q. If '] ® T, is not defined, the
composition is not allowed. Formally, ® is the partial commutative operation on I'; and

I'; where I'y © 1, &ef I' is defined as follows:
(1) o if Ty (x) = &y () and Ta(x) = @j; (i) then I'(x) =], and symmetrically;
o if I'(x) = &;c; (%) and x & Dom(T5) then T'(x) = &, (%)}, and symmetri-
cally;
o if T'1(x) = @iy (%)! and x € Dom(T) then T'(x) = @;; (%;)!, and symmetri-
cally;
(2) e if I (x) = (%) and 2 (x) = ()’ then I'(x) = (%)', and symmetrically;
o if I (x) = (¥)” and T2 (x) = (%)” then T'(x) = (%).
(3) undefined in any other cases (if any of the other cases arises, then the whole I') ©®17
is not defined).

Intuitively, the rules in (2) say that a server should be unique, but an arbitrary number
of clients can request interactions. The rules in (1) say that once we compose input-
output linear channels, the channel becomes uncomposable. Note that (3) says other
compositions are undefined. (1) and (2) ensure the two constraints (A) and (B) in § 6.2,
respectively.

18

Pl (i=1,2) PoTa:t a¢l MD(t)=,]

050 2 P pem o TN (va)PoT Res
Pl x&T wearon, FET X£T
—— WeakOut ——————
P x: (%) PoT,x:] WeakCl
Pol§i:% agl PoT,i:% agl 1CJ
—— 1 LIn — — . LOut
a&iciini(Fi)-PivTa: &icr(Ti) a®icrini(7i).PivT,a: B;c; (%)
Pel,5:% a¢T V(x:t)el'.MD(t)=? Pola: (7)’,5:%
— RIn — ROut
la(3).PoTa: (R) a().Pela: (k)

Fig. 9. Linear Typing Rules

Typing system is defined in Figure 9. These are identical to the affine m-calculus [3]
except the non-deterministic linear output rule. The (Zero) rule types 0. As 0 has no
free names, it is not being given any channel types. In (Par), I' ® I, guarantees the
consistent channel usage like linear inputs being only composed with linear outputs,
etc. In (Res), we do not allow T, ? or |-channels to be restricted since they carry actions
which expect their dual actions to exist in the environment. (WeakOut) and (WeakCl)
weaken with ?-names or [-names, respectively, since these modes do not require further
interaction. (LIn) ensures that x occurs precisely once. (LOut) is dual. (RIn) is the same
as (LIn) except that no free linear channels are suppressed. This is because a linear
channel under replication could be used more than once. (ROut) is similar with (LOut).
Note we need to apply (WeakOut) before the first application of (ROut).

6.3 A typed labelled transition relation

Typed transitions describe the observations a typed observer can make of a typed pro-
cess. The typed transition relation is a proper subset of the untyped transition relation,
while not restricting T-actions: hence typed transitions restrict observability, not com-
putation. Let the set of labels o, P, ... be the one defined in Section 3. For a label 3
we denote its subject as subj(P) and its names as conf(p); the operation o.e B was
introduced in § 3.2.

The standard untyped transition relation is defined in Figure 10. We define the pred-
icate “T" allows 3”” which represents how an environment restricts observability;

forall I', I" allows «;

if MD(I'(x)) =], then T allows xin;(§);
if MD(I'(x)) =1, then I" allows Xin;(j);
if MD(I'(x)) = !, then I allows xpr;(¥);
if MD(I'(x)) = “7 then I" allows Xpr; ().

Intuitively, labels only allowed when the type environment is coherent with them.
Whenever I allows 3, we define I'\ B as follows:

forallI, T\1=T
ifT=A,x: &;c; (%), then T\ xin;(5) =
if T =Ax: @ (%), then T'\ ¥in;{
ifT=A,x: (%), then T\ xpr;(j) =T,5: %;
if T =A,x: (%)?, then '\ Xpr;(§) =T,5: %.

<
~
Il

The environment I'\ § is what remains after the transition labelled by [has hap-
pened. Linear channels are consumed, while replicated channels are not consumed.
The new previously bound channels are released. Then the typed transition, written

PoT A, 0> T is defined by adding the constraint:

19

a@,-e,(y,»).géiiqﬁp, a&ie,(yi)ﬂ“iﬂﬁpj !a(y).P“‘ﬂf>P| la(5).P 6()7).Paw>P
PP subjB) £x pbp PP 020 conflw)=5 P=qP PL

worLwvnpr plo-tro P1o%E(v5)(P' Q) PP

0

Fig. 10. Labelled Transition System for the l-Calculus

if P20 and Tallows B then PoT—-QnT\B

The above rule does not allow a linear input action and an output action when there
is a complementary channel in the process. For example, if a process has x: (%)' in its
action type, then output at x is excluded since such actions can never be observed in a
typed context — cf. [3]. For a concrete example, consider the process @.b | b.a which is
typed in the environment a :],b :]. Although the process has some untyped transition,
none of them is allowed by the environment.

By induction on the rules in Figure 10, we can obtain:

Proposition 6.2. 1. IfP>T, P—"~Q and T allows B, then Q>T'\ B.

2. (Subject reduction) If P>T and P——Q, then Qi T.
3. (Church Rosser for deterministic processes) Suppose P>1" and P is deterministic.

Assume PL>Q1, and P—t>Q1. Then Q1 =q Q> or there exists R such that Q1 SR
and Q> R

This is proved by induction on the rules in Figure 10.

Finally we define the notion of typed bisimulation. Let % be a symmetric relation
between judgements such that if (P>T) % (P'>T"), then I =I”. We say that Z is a
bisimulation if the following is satisfied:

- whenever (P>I') Z (P'>T), PDFLQDF\ B, then there exists Q' such that P’ >
r=-Q/> T\ B.and (Q>T'\B)# (Q'>T'\ B).

If there exists a bisimulation between two judgements, we say that they are bisimilar
(P>T) =~ (P'pT).
Then we have:

Proposition 6.3. ~ is congruent.

The proof is the same as the proof of Proposition 4.4 in Appendix C.3 of [41].

7 Correspondence between the calculi

7.1 Translation

We are now ready to translate the m-calculus into Name Sharing CCS. The translation
is parametrised over a fixed choice for the confidential names. This parametrisation is
necessary because m-calculus terms are identified up to oi-conversion, and so the identity
of bound names is irrelevant, while in Name Sharing CCS, the identity of confidential
names is important.

The translation is a family of partial functions pc[—]4, indexed by a NCCS type
environment A, that take a judgment of the mt-calculus and return a judgment of NCCS.
The functions are only partial because for some choice of names, the parallel composi-
tion in NCCS will not be typed.

20

pc[[ODxi : (Ti)?,yj' :I]]xi:w”EHr"'yf:I = ODxi : trjheyl"h,yj :I
pe[(va)P>T]A = P\avA
pela@ic; ini(5) PioToa: iy (8) A4 @58 = Gy imi () Bz /5] A iy i+
pela&icini(yi)-PivTa: &iel(fi)l}]AVa:&’e’Z’:%‘ = a⁣ini(Z) P75 > Aa: &icpZit R
pe[la(3).PoT,a: (7)) JAK @@l F) =
kek apry (7°) P* /51YE /Y]o AK], @ - @peg (7 : 1)
pc[[a()P[>1" a: ()7]]A:‘15L+Jhemﬂ{*)(leiflx> —
apr ; (). /5101, a: Whe o) (9 2 %)

pC[[Pl HP2I>F1 @FzHA'@AZ = (151 Hﬁz) \SI>A1 OA

Fig. 11. Translation from 7 to NCCS

We define the translation by induction on the derivation of the typing judgment.
Without loss of generality, we will assume that all the weakenings are applied to the
empty process.

The translation is defined in Figure 11. There, we assume that pc[P>T]4 = PrA,
and that y € Dom(I') =y € Dom(A). In particular, in the translation of the replicated
output we assume pc[[PeTa: (%),5: T]}A”* @lhen ()’ = PoA 51, a: Wher (Wi :

%,)’. When the assumptions are not satisfied, the translation is not defined. We also put
Y = conf(P), and S = cl(A; ® Ay). Note the way bound variables become confidential
information.

We said that the translation is only a partial function. In particular, for the wrong
choice of Ay, Ay, the translation of the parallel composition could be undefined, because
Ay ® A> may be undefined. However it is always possible to find suitable Aj, A,. Intu-
itively we can say that in translating typed 7 into typed NCCS, we perform o.-conversion
“at compile time”.

Lemma 7.1. For every judgment P>1 in the m-calculus, there exists an environment
A such that pc[[P>T]2 is defined. Moreover, for every injective fresh renaming p, if
pc[P>T] is defined then pc[[P>T]2P is defined.

Example 7.2. We demonstrate how the process which generates an infinite behaviour
with infinite new name creation is interpreted into NCCS. Consider the process Fw(ab) =
la(x).b(y).y.X . This agent links two locations a and b and it is called a forwarder.
It can be derived that Fu(ab)>a : T,b: T with T = (()!)'. Consider the process Py, =
Fu(ab) | Fu(ba) so that Py>(a:T,b:T)® (b:T,a:7), that is Py>a,b : T. One possible
translation for Fw(ab)>a: (()1)',b: (()})’ is

= [kex ald) DY) Y T o a: ek (71 01,61 Wher 01 : 01)
while for Fw(ba>l>b: (ONa: (04 is

0> =ren b .aw") wh 2o b @puen (" 1)@ : When ()W)

Assuming there are two “ synchronising injective functions f : K — H,g: H — K,
such that y* = z/®) wh = x8(") (if not, we can independently perform a fresh injective
renaming on both env1ronments), we obtain that the corresponding types for a,b match,
so that we can compose the two environments. Therefore the translation of Py>a,b : T
is (Q1|Q2) \ S>A for

21

A=a: Qrexrgmn)* 1 01,0 Qpern) (@2 O1).

The reader can check that any transition of P, is matched by a corresponding tran-
sition of its translation. This is what we formally show next.

7.2 Adequacy

To show the correctness of the translation, we first prove the correspondence between
the labelled transition semantics.

Theorem 7.3. Suppose por-tp >\ B in the T-calculus, and that pc[P>TT2 is de-

fined. Then for every injective fresh renaming p pc|[P>T]AP! mpc[[P’ >\ BAPNBIPI,

Conversely, suppose pc[[PDF]]ALQDA\ B. Then there exists P’ such that P>

TP T\ B and pe[[P' T\]2 = 05 A\ B.

The soundness is then a corollary.

Corollary 7.4 (Soundness). Suppose that for some A, pc[P>T]* = pc[P'>T]2. Then
P>T~P>T.

Despite Theorem 7.3, full abstraction fails. This happens for subtle reasons, and
we conjecture that the translation is fully abstract if we consider some “observational
congruence” for NCCS.

However, soundness is precisely what we needed to obtain a sound semantics in
terms of event structures. Moreover we have already argued that we cannot expect the
event structure semantics to be fully abstract.

7.3 Event structure semantics of the t-calculus

By composing the translation obtained in this section with the event structure semantics
of Section 5, we obtain an event structure semantics of the m-calculus.
Given a m-calculus judgment P>T', we define

[P>T]* = [pe[P-T]4]

We thus have

Lemma 7.5. For every judgment P>1 in the T-calculus, there exists an environment A
such that [P>T]|* is defined. When this is the case [P>T]? is a confusion free event
structure, and [P>T]% > A.

Proposition 7.6 (Soundness). Suppose that for some A, [P>T]* = [P'>T]*. Then
P>~ P'bT.

Note that the event structure semantics of CCS is already not fully abstract with
respect to bisimulation [35], hence the other direction does not hold in our case either.

However, there is another kind of correspondence between the labelled transition
systems and the event structures, analogous to the one discussed in Section 5.4. Com-
bining Theorem 5.8 with Theorem 7.3, we obtain:

Theorem 7.7. Suppose P DFLP'DF\B in the T-calculus, and that [P>T]2 is defined.

Then for every injective fresh renaming p [P>T]2P! Pl o [P'>T\ BJAPIBIPI,

Conversely, suppose [P DF}]ALéa !. Then there exists P’ such thatPDFLP’DF\B

and [[P'>T\ BA\B = &7,

22

8 Conclusions and related work

This paper has provided a typing system for event structures and exploited it to give
an event structure semantics of the m-calculus. As far as we know, this work offers the
first formalisation of a notion of types in event structures, and the first event structure
semantics of the mt-calculus.

There are several causal models for the m-calculus, that use different techniques.
In [5, 11], the causal relations between transitions are represented by “proofs” of the
transitions which identify different occurrences of the same transition. In our case a
similar role is played by names in types. In [9], a more abstract approach is followed,
which involves indexed transition systems. In [18], a semantics of the m-calculus in
terms of pomsets is given, following ideas from dataflow theory. The two papers [8, 13]
present Petri nets semantics of the mt-calculus. Since we can unfold Petri nets into event
structures, these could indirectly provide event structure semantics of the mt-calculus.
In [2], an event structure unfolding of double push-out rewriting systems is studied, and
this also could indirectly provide an event structure semantics of the m-calculus via the
double push-out semantics of the m-calculus presented in [27]. In [6], Petri Nets are
used to provide a type theory for the Join-calculus, a language with several features in
common with the 7-calculus. None of the above semantics directly uses event structures
and no notion of compositional typing systems in true concurrent models is presented.
In addition, none of them is used to study a correspondence between semantics and
behavioural properties of the mt-calculus in our sense.

In [38], event structures are used in a different way to give semantics to a process
language, a kind of value passing CCS. That technique does not apply yet to the 7-
calculus where we need to model creation of new names, although recent work [37] is
moving in that direction.

A syntactic condition that imposes a similar restriction to our typing system was
first introduced by Milner, in his confluent CCS [25]. The typing system we introduce
is inspired by the linear typing system for the w-calculus [21, 41, 3].

Infinite behaviour is introduced in our version of CCS by means of the infinite
parallel composition. NCCS does not support recursion. Infinite parallel composition
is similar to replication in that it provides infinite behaviour “in width” rather that “in
depth”. Recent studies on recursion versus replication are [7, 15].

Future works include extending this approach to a probabilistic framework, for in-
stance the probabilistic 7-calculus [16], by using a typed version of probabilistic event
structures [32]. The typed A-calculus can be encoded into the typed m-calculus. This
provides an event structure semantics of the A-calculus, that we want to study in details.
Also the types of the A-calculus are given an event structure semantics. We aim at com-
paring this “true concurrent” semantics of the A-types with concurrent games [24,22],
and with ludics nets [14].

An event structure terminates if all its maximal configurations are finite. It would
be interesting to study a typing system of event structures that guarantees termination
applying the idea of the strongly normalising typing system of the ®-calculus [41].

A Proofs

Proof of Lemma 2.6 We prove it by induction on the joint size of x,x’. The base case is
vacuously true. Now take (x,e1,e2), (X, e1,e2) € E with x # x'. Since x,x’ are downward
closed sets, if their maximal elements coincide, they coincide. Therefore, w.l.0.g. there
must be a maximal element (y,d;,d2) € x such that (y,d;,dz) € x'. By definition of
E, and without loss of generality, we can assume that d; € parents(e;). Therefore, by
definition of E, there must be a (y',d;,d}) € x'. Suppose d» # d),. Then by definition
of conflict (y,dy,d>) — (y',d1,d5). If d» = d) then it must be y # y". Then by induction
hypothesis there exist f € y, f €y’ such that f — f’. And since x,x’ are downward
closed, we have f € x, f' € X

23

Proof of Theorem 2.7 Recall the the definition of (E, <, —). In order to show that it is
an event structure, we first o have to show that the relation < is a partial order. We have
that

— it is reflexive by construction;

— it is antisymmetric: suppose ¢’ < e = (x,ej,e3). If ¢’ # e, then, by construction
h(e') < h(e), so that it cannot be e < ¢’

— it is transitive: suppose ¢’ < e < d = (y,d;,d). This means that e € y. Since, by
construction, y is downward closed, this means that ¢’ € y, so that ¢/ < d.

Next, for every event e = (x,e1,e2), we have that [e) is finite, as it coincides with x.

Then we need to show that the conflict is irreflexive and hereditary. It is hereditary
essentially by definition: suppose e := (x,e1,e2) — d := (y,d1,da), and let d < d' :=
(y/,d},d5). By considering all the cases of the definition of e — d, we derive e — d’.
For instance, suppose there exists ¢’ := (x', €}, €5) < e such that ¢} < d;, and ¢’ # d. This
means that ¢’ — d. Notice that ¢’ < e, and d < d’. By the fourth clause of the definition,
e — d'. The other cases are analogous.

To prove that the conflict relation is irreflexive, suppose (x,e1,ez) — (x,e1,ez). This
cannot be because there are e,d € x such that ¢ — d, as it contradicts the fact that x
is a configuration. Therefore, there must exist (x',¢},e}) € x such that (x',¢/,e}) —
(x,e1,e2). Take a minimal such. Then it must be ¢} < e; or ¢}, < e,. But this contradicts
the definition of E.

Now we have to show that such event structure is the categorical product of &7,
&,. First thing to show is that projections are morphisms. Using Proposition 2.5, it is
enough to show that they reflect reflexive conflict and preserves downward closure.

— Take e,e’ € E and suppose by that ©;(e) < m;(¢’). Then, by definition we have
exe.

— To show that 7; preserves downward closure let e = (x,eq,e;) suppose 3/1 <e =
71 (e). Then we show that there is a ¢’ < e such that T; (¢/) = ¢}. By induction on the
height of e: the basis is vacuously true, since e is minimal. For the step, consider
first the case where ¢/ € parents(e;). Then, by definition of E, we have that there
exists ¢’ = (¥, ¢}, €}) € x. Therefore ¢’ < e and 7, (¢') = €. If €| & parents(e;), then
there is a e € parents(e;) such that ¢} < e <e; so that there is ¢’ = (x”, €], €}) €
x. By induction hypothesis there is ¢’ € x” such that ; (¢) = €. And by transitivity,
e <e.

Now we want to show that & enjoys the universal property that makes it a cat-
egorical product. That is for every event structure 2, such that there are morphisms
f1: 9 — &, D — &, there exists a unique f: Z — & such that Ty o f = f} and
o f = fa

Clearly, if such f exists, it must be defined as f(d) = (x, f1(d), f2(d)), for some x.
By this we mean f(d) = (x, f1(d), %), if f2(d) is undefined, f(d) = (x,*, f2(d)), if f1(d)
is undefined, and undefined if both are undefined. We now define x, by induction on the
size of [d). Suppose d is minimal. Then, since f, f> are morphisms and in particular
preserve downward closure, we have that fi(d), f2(d) are both minimal. Since every
maximal element of x must contain the parent of at least one of them, the only possibility
is that x be empty.

Putting f(d) = (0, f1(d), f2(d)), we obtain, that, on element of height 0,

— f(d) is uniquely defined: we have seen that all choices are forced

— f reflects reflexive conflict: suppose (0, f1(d), f>(d)) < (0, fi(d'), f2(d")), then ei-
ther f1(d) < f1(d’) or fo(d) < f>(d’). In the first case, since f; is a morphism, and
thus reflects reflexive conflict, we have d < d’. Symmetrically for the other case.

— f preserves downward closure vacuously

24

Now suppose f is uniquely defined for all elements of height less or equal than 7, it
reflects reflexive conflict and preserves downward closure. Consider d of height n+ 1.
We want to define f(d) = (x, fi(d), f2(d)). Define x as follows. For a set A, let | A be the
downward closure of A. Let X = {f(d') | d' <d & [f1(d’) € parents(fi1(d)) or f>(d') €
parents(fa(d))]} and define x as | X. First of all we should check that this is indeed
an element of E. x is downward closed by definition. It is finite because X is and each
element of X has finitely many predecessors. Suppose there are d’,d” < d such that
f(d") — f(d"). We know by induction that f reflects reflexive conflict on elements of
height smaller than d, which means that d’ — d”, contradiction.

Now the maximal elements of x contain either a parent of f(d) or a parent of f>(d)
by construction. Take a parent e of fj(d). I claim that e is of the form fi(d’) for
some d’ < d. Since e € parents(fi(d)), in particular e; < fi(d). since f; preserves
downward closure, there must exists d’ as above. Thus all parents are represented in X.
Finally, suppose there is (z,e1,e2) € x such that e < f(d) or ez < fo(d). If (z,e1,e2) €
X, then (z,e1,ez) = f(d') for some d’ < d. So that e; = f(d’), and e; = f>(d’). Since
f1, f> reflect reflexive conflict, we would have d’ — d, contradiction. Otherwise there
must be f(d’) € X such that (z,e1,e2) < f(d’). Since f preserves downward closure
on elements of height less or equal than n, there must be d” < d’ such that f(d") =
(z,e1,e2). As above we conclude d” — d, contradiction.

Thus putting f(d) = (x, f1(d), f2(d)), we have that f is well defined on d. Moreover

— f(d) is uniquely defined: suppose we have another possible x. Since f must pre-
serve downward closure, for all e € x, we have that e = f(d’) for some d’ < d.
Now, suppose there is an element f(d’) € X which is not in x. W.Lo.g assume that
fi(d") € parents(fi(d)). Then, there must be an element ¢’ = (y, fi(d"),d}) maxi-
mal in x. By the observation above it must be ¢’ = f(d’), contradiction.

— f preserves downward closure: take d, and consider e < f(d). By construction, ei-
ther e € X, in which case we have e = f(d’) for some d’ < d, of e < ¢ € X, in
which case we have ¢’ = f(d’) for d’ < d. Since, by induction f preserves down-
ward closure, we have e = f(d”) ford” < d' < d.

— f reflects reflexive conflict: suppose (x, f1(d), f2(d)) < (X', f1(d’), f2(d’)), then

e either f1(d) =< fi1(d") or fo(d) < f2(d’). In either case, since f, f» reflects re-
flexive conflict, we have d < d’.

o there exists (x”,e1,e2) < (', f1(d'), f2(d'), such that f1(d) < ey or fo(d) < e;.
Since f preserves downward closure, we have (x” e1,e;) = f(d”) for some
d” < d’ and we reason as above.

e the symmetric case is similar

o there exists (y,e1,e2) < (xfi(d),fo(d)) and there exists
(Y, el,ey) < (¥, fi(d'), f>(d")), and the reasoning is as above, using that f pre-
serves downward closure.

Thus f is a morphism, is uniquely defined for every d € D, and commutes with the
projections. This concludes the proof.

Proof of Lemma 3.1 Suppose 'y ©I'; is defined. Take a name x in ¢/(I'y © ;). Then
there must exist a name y such that 'y (y) = t; and I'»(y) = T2 and match[t),T2] — S
and x € S. Then it means that x appears in Ty, T, and by uniqueness it cannot be in the
domain of either I'j or I';, so it cannot appear in the domain of I'j ® I',. Furthermore
x cannot appear within any other type. If T;,T, are branching/selection types, then I'; ®
I'2(y) =], so that x does not appear in I';y © I';. If 11,7, are offer/request types, then
the residual type does not contain x, which again implies x does not appear in 'y © 1.
Therefore x is not allowed.

Proof of Proposition 3.2 Consider a minimal element of [I'].

— If it synchronises, by the condition on the definition of I'y ©® I, it must synchronise
with a dual minimal element in [I';]. Every event above these two events is either
a T, or it is not allowed, therefore it is deleted by the restriction.

25

— If it does not synchronise it is left alone, with all above it not synchronising either,
and not being restricted.

Thus we can think of [I'; ®I;], as a disjoint union of [[I';]] and [I2]), plus some
hiding.

Proof of Lemma 3.4 Suppose & T, witnessed by a morphism f : & — [[I]].

— Let e,e’ € E be such that A(e) = A(e’) # 1. Therefore, by uniqueness of the labels
in [T, f(e) = f(¢), and since f reflects reflexive conflict, we have e — ¢’

- A similar reasoning applies for the case when A(e) = ain;(%) and A(¢') = ain;(y).
Then f(e), f(e') belong to the same cell, and thus they are in conflict. Since f
reflects conflict, we have e — ¢’.

— Suppose E>T', and let e, ¢’ € E be such that e —, ¢’. Then they belong to the same
cell, and by definition they must have same subject but different branch.

Proof of Theorem 3.5 Define I' =I') ©I'; Suppose & >1'|, and &> 15. Let & =
(&1]|62) \ Dis(T"). We invite the reader to review the definition of the product of event
structures, and the consequent definition of parallel composition.

Lemma A.1. Let (x,e;,e3),(y,d1,da) be two events in &. Suppose (x,e1,e2) — (y,d1,da).
Then there exists (x',€,e,) € x,(y',d},d5) € y such that either ¢\ —, d} or d} — d}.

We check this by cases, on the definition of conflict.

- e; ~— d,. In this case there must exists €] < e; and €} < e, such that e} —, €.
Since projection are morphisms of event structures, and since in particular pre-
serve configurations, for every event f below e; there must be an event in E be-
low (x,eq,ez) that is projected onto f. And similar for d;. Therefore there are
(x,e),e5) € x,(y.d},d}) €y for some X',y ¢}, d}. Note also that (x',e],e5) —
(', dy.dj).

— e — dj is symmetric.

— e1 =d; and e, # d,. This is the crucial case, where we use the typing. In this case
it is not possible that e; = * and dp # * (nor symmetrically). This is because of the
typing. If the label dual of e; is not in I'; then both e;,d, = *. If the label dual of ¢,
is in I, then the label of ¢ is matched and thus it becomes disallowed, so that the
event (x,eq,) is removed. So both e and d; have the same label (the dual of the
label of e;). Thus they are mapped on the same event in [[I'2]), and thus they must
be in conflict. Then we reason as above.

— ep = dp and e # dj is symmetric.

— e1 =d; and ep = d;. Then the conclusion follow from stability (Lemma 2.6).

— suppose there exists (¥,€],¢3 € x such that €; < d; or é; < d,. Then we reason as
above to find (x',¢},€}) € %, (y,d},d}) € y such that either e} ~—, d} or d| —, dj.
Note that, by transitivity, (x',¢],€5) € x.

— the symmetric case is analogous.

— Suppose there is e € x, and d € y such that ¢ — d. By wellfoundedness this case
can be reduce to one of the previous ones.

Lemma A.2. If (x,e1,e2) =<, (y,d1,d>), then their labels have the same subject, but
different branch and different confidential names.

By Lemma A.1, either e; <, d; or e <, d> (or both). In the first case, the labels of
e1,d; have the same subject. Thus the labels of (x,e1,e2), (y,d1,d2) also have the same

subject (whether they are synchronisation labels or not). The second case is symmetric.

Lemma A.3. If (x,eq,e2) <, (y,d1,d>), thenx =y

26

First suppose e2 = dp = . Then e1 <, dy. Dually when ey = d; = x. Finally, suppose
e1,d1,ez,dr # . Without loss of generality we have e1 <, di. But then e, < d>, because
they have dual labels. Then it must be e, <, d> because otherwise we would not have
(x,e1,e2) <, (v,d1,da).

In any cases we have that (x,d,d») € E. Indeed it satisfies the condition for being in
the product (because parents(e)) = parents(d,) and parents(ey) = parents(ds)), and
it is allowed if and only if (x,e;,ez) is allowed. Suppose x # y. By stability we have
that there are ¢’ € x,d’ € y such that ¢’ — d’. Which contradicts (x,e,e2) =<, (y,d1,d>).

Lemma A.4. The relation <, is transitive in &.

Suppose (x,e1,e2) <, (v,d1,d2), and (y,d1,d>) =<, (z,81,82), Then reasoning as
above we have that e; <, di <, g1 and e; <, d» <, g»o. Which implies e; <, g1 and
s =<, &, from which we derive (x,e1,e2) =, (z,81,82)-

Lemmas A.3, and A.4 together prove that & is confusion free.

To prove that &>T, suppose f| : E; — [['1] and f> : E; — [I'2]]- Recall that [[I']] =
(T2 \ (Dis(T) Ut). As we observed we can think of [[I']] as the disjoint union
of [I'1]] and [I'2]}, plus some hiding.

We define the following partial function f: & — [[[']. f(x,e1,*) = fi(e1), f(x,*,e2) =
f2(e2) (where by equality we mean weak equality), and undefined otherwise. We have
to check that f satisfies the conditions required. The first two conditions are a conse-
quence of (the proof) of the first part of the theorem. It remains to show that f is a
morphism of event structures. This follows from general principles, but we repeat the
proof here.

We have to check thatif d < f(x,e;,ez) in [I']], then there exists (y,d1,d2) in & such
that f(y,d;,d>) = d. Without loss of generality, we assume e = *, so that f(x,ej,e;) =
fi(er).Letd < fi(er). Since f; is a morphism, then there is d; < e; such that f(d;) =
d. Since projections are morphisms, there must be a (y,d1,dz) < (x,e1,e2). I claim that
d> must be equal to *, so that f(y,di,d») = fi(d,) = d. If d, were not *, then its label
would be dual to label of d;. This means that both labels are in Dis(T"), and that no
event in [I'], and in particular the d, can be labelled by either of them. This contradicts
fild1) =d.

Then we have to check that f reflects <. So, suppose f(x,e,e2) =< f(x',€],€}).
By the structure of [[I7] it cannot be that f(x,ej,*) =< f(x',*,€}), because they are
mapped to disjoint concurrent components. Therefore, w.l.o.g, the only case to con-
sider is f(x,e1,*) =< f(x',€},*). This means fi(e;) < fi(¢}). Since f; is a morphism,
then e; < ¢}, which implies (x,e;,*) < (X', €], *).

Proof of Proposition 4.2 By a straightforward case analysis.

Proof of Theorem 5.1 The proof is by induction on the semantics. All the cases are
easily done directly, with the exception of the parallel composition. The case of the
parallel composition is a direct consequence of Theorem 3.5.

Proof of Theorem 5.8 The proof is by induction on the rules of the operational se-
mantics. All cases are rather straightforward, except the parallel composition. For this
we need the following lemma. To avoid distinguishing different cases, lets say that, for
every event structure &, we have & ——& |* = &.

Lemma A.5. Let = denote isomorphism of event structures. We have that &, 2.8 ler,

and & L@“’z lea if and only if £1|| 6> 0L—.Bné?’l |1€21(0,e1,e2). Moreover, in such a case, we
have (501 Héaz _(0,61,62) = (éal _el)|| (éaz _62).

The first part of theorem is straightforward: if e;,e; are minimal in &],&3, then
(0,e1,e7) is a minimal event in &7||&3, and vice versa. Assuming this is the case, we

27

are now going to prove that & ||&2[(0,e1,e2) = (&1]e1)]|(&2]e2). We will define a bi-
jective function f : &1|&>[(0,e1,e2) — (&1]e1)||(62|e2), such that both f and f~! are
morphism of event structure. We define f by induction on the height of the events. Also
by induction we show the properties required. That is we prove that

— for every n, f is bijective on elements of height n;

— f preserves and reflects the conflict relation;

— f preserves and reflects the order relation;

— IT; o f =11; and I, o f = I, where I1;,IT, denote the projections in the parallel
composition.

In particular. the above properties imply that both f, and f~! are morphisms of event

structure. The preservation of the labels follows from the last point, noting that the

labels of an event in the product depend only on the labels of the projected events.
Base: height =0

Events of height 0 in &7 ||&2[(0,e1,e2) are of two forms:

— the form (0,d;,d,), with d; minimal in &} and d, minimal in &, (when different
from *)!. In such a case we define f(0,d;,d>) = (0,d,d>).

— the form ((0,e1,e2),d1,ds), with e; < d; and d minimal in &, or e; < d, and d;
minimal in &}, or both e; < dj,e; < db. In such a case we define f(0,d;,ds) =
(0,d,,d>).

Note that from the discussion above, it follows that (0,d,d>) and ((0,e;,e2),d1,d>)
cannot be both events in & ||£|(0,e1,e2). We prove that f is well defined on events
of height 0. Consider d = (0,d},d>). Then both d,d, are minimal in &}, respec-
tively. Also it is not the case that d| < ey, nor d» < e;, as otherwise we would have
(0,dy,dr) < (0,e1,e2). This means that d,d, belong to & |e,4>| e, and are minimal
there. So that f(d) = (0,d;,d2) € (&1]e1)]|(62]e2). A similar reasoning applies when
d=((0,ey,e2),d1,d>). Now we prove

— f is bijective on events of height 0; it is surjective: take an event (0,d;,d;) in
(&1]e1)]|(&2]e2). There are several cases. If both d; is minimal in & and d; is
minimal in &, and it is not the case that ¢; =< d; nor e; < dy, then (0,d;,d,) €
&1]|62|(0,e1,e2). Similarly, in the other cases, it is easy to see that ((0,e;,e2),d,d2) €
&1]|62|(0,e1,e2). Also f is injective. The only thing to check is that (0,d;,d>) and
((0,e1,e2),d1,dy) cannot be both events in & ||&|(0,e1,e2), which, as we have
observed, is the case.

— f preserves and reflects conflict on events of height 0. This is easily verified by
checking all the cases of definition of conflict. Note that it cannot be the case that
(0,d,,d>) < (0,e1,e2), as such events do not belong to &7/&2[(0, e1,e2).

— f preserves and reflects order on events of height 0, trivially.

— IT; o f =11 and I1; o f =I1,, by definition.

Step: height=n+1

We assume that f is defined for all events of height < n, and that it satisfies the re-
quired properties there. On events of height n+ 1, we define f as follows. f(x,d,d») =
(f(x),d,d>). We prove that f is well defined. Note that in order to show that (f(x),d;,d>)
is an event, we only use properties of IT; (f(x)) and IT,(f(x)), by induction hypothesis
they coincide with IT; (x),IT(x) respectively. We consider one case, the others being
similar. Suppose d; € E1,d, € E;. Then let y be the set of maximal elements of x. Since
f preserves and reflects order, we have that f(y) is the set of maximal elements of f(x).
Let y; = I1;(y),y2, = IIx(y). Note that we also have y; = I (f(y)),y2 = I (f(y)).
Since (x,d;,d;) is an event, we have

— if (z,dy,d>) € y, then either d| € parents(ey) ordy € parents(es);

! We omit this remark in the following, but it has to be considered implicit throughout

28

— for all di € parents(ey), there exists (z,d1,d2) € x;
— for all dy € parents(e;) there exists (z,d,d) € x.
— forno d; € I (x), d; < e; and for no dy € I (x), dp < e;.

These conditions, show that (f(x),d,d>) is also an event.
We now prove that

— f is bijective on event of height n + 1. First, if (x,d;,d) is of height n+ 1, so is
(f(x),d,d>), because by induction hypothesis, f is bijective on events of height
n, so that x contains one such event if and only if f(x) does. To prove that f is
surjective, consider now an event (y,d;,dz) € (&1]e1)||(62|e2). Since f is biejctive
on events of height < n, we have that there exists x such that y = f(x), and moreover
since f preserves and reflects order and conflict, x is a configuration if and only if
f(x) is. We have to argue that if (f(x),d,d,) is an event of (&} |e;||&2|e2) then
(x,d1,d>) is an event of &1]|62|(0,e;,ez). This is done in a similar way than the
base case. To prove that f is injective, consider (x,dy,d>),(x,d},d>), such that
f(x) = f(x). By induction hypothesis f is injective, so that x = x" and we are done.

— f preserves and reflects conflict. This is done as in the base case.

— f preserves and reflects order. In fact by definition d € x if and only if f(d) € f(x),
which is precisely what we need.

— IT; o f =11 and IT; o f =TI, by definition.

This concludes the proof.

Proof of Lemma 7.1 Given a NCCS type ¢, we define its erasure er(c) to be the 7 type
obtained from ¢ by removing all confidential names. It is a partial function defined as
follows

— er(y1:61,...,¥n : On) = er(C1),...,er(Gy,)

- er(&iciTi) = (&gicr er(Ti))?

We have the following lemma.

Lemma A.6. Suppose er(G) = er(t), and suppose 6,7 have disjoint sets of names. Sup-
pose for every type of the form Qcx Ik, the set K is infinite. Then there is a renaming
p, such that match[t,o[p]] — S and if res[t,0[p]] = Qrex Ik, then K is infinite.

By induction on the structure of the types.

We want to prove that for every judgement P>T, there exists a environment A such
that [P>T7* is defined. We will prove it by induction on the typing rules. However we
need a stronger statement for the induction to go through. We prove such a A exists that
has the following properties

— if A(x) =7, then I'(x) = er(7)

— if ['(x) = 7, then there exists T’ such that A(x) = 1’ and er(7’ ? =1
— if [PoTT2 is defined, for every fresh renaming p, [P>TT2! is also defined.
— for every type of the form @ cx I'k, the set K is infinite.

The proof is trivial for Zero, WeakCl, WeakOut, Res, LIn, LOut, Rout. For Rin, one
has just to take care to choose K to be infinite. For the parallel composition, assume
[P >T] and [[P,>T3]%2 are defined. First rename all the variables in A1, Ay, so that
they are disjoint. In this way we can substitute a name of A; for a name in A, and A;
would still be well formed.

Then consider a judgement a : T in I'; such that there is a matching judgement a : ¢
in I'y. Consider the type T’ such that a : T’ is in A;. Since er(t) = er(t'), by Lemma A.6
we find a p, such that match[t,6[p,)] — S. For every matching name, we obtain such a
renaming. All renamings can be joined to obtain a fresh injective renaming p, because
no name is involved in two different renamings. Therefore I'; ® T'; [p] is defined.

29

Proof of Theorem 7.3 The proof is by structural induction on P>T".

All the cases are rather easy, taking into account that m-calculus terms can perform
any fresh o-variant of an action.

For the parallel composition, one has to notice that names that are closed after the
transition in the m-calculus are closed before the transition in NCCS.

References

1. Samy Abbes and Albert Benveniste. Branching cells as local states for event structures and
nets: Probabilistic applications. In Proceedings of 8th FoSSaCS, volume 3441 of LNCS,
pages 95-109. Springer, 2005.

2. Paolo Baldan, Andrea Corradini, and Ugo Montanari. Unfolding and event structure seman-
tics for graph grammars. In Proceedings of 2nd FoSSaCS, volume 1578 of LNCS, pages
73-89. Springer, 1999.

3. Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the m-calculus. In
Procceedingss of TLCA’01, volume 2044 of LNCS, pages 29-45, 2001.

4. Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20(265-321), 1982.

5. Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the 7t-
calculus. Acta Inf., 35(5):353-400, 1998.

6. Maria Grazia Buscemi and Vladimiro Sassone. High-level petri nets as type theories in
the join calculus. In Proceedings of 4th FOSSACS, volume 2030 of LNCS, pages 104—120.
Springer, 2001.

7. Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Replication vs. recursive defini-
tions in channel based calculi. In Proceedings of 30th ICALP, volume 2719 of LNCS, pages
133-144. Springer, 2003.

8. Nadia Busi and Roberto Gorrieri. A petri net semantics for pi-calculus. In Proceedings of
6th CONCUR, pages 145-159, 1995.

9. Gian Luca Cattani and Peter Sewell. Models for name-passing processes: Interleaving and
causal. In Proceedings of 15th LICS, pages 322-332, 2000.

10. Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. On the consistency of “truly
concurrent” operational and denotational semantics (extended abstract). In Proceedings of
3rd LICS, pages 133-141, 1988.

11. Pierpaolo Degano and Corrado Priami. Non-interleaving semantics for mobile processes.
Theoretical Computer Science, 216(1-2):237-270, 1999.

12. Jorg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University Press, 1995.

13. Joost Engelfriet. A multiset semantics for the pi-calculus with replication. Theoretical Com-
puter Science, 153(1&2):65-94, 1996.

14. Claudia Faggian and Francois Maurel. Ludics nets, a game model of concurrent interaction.
In Proceedings of 20th LICS, pages 376-385, 2005.

15. Pablo Giambiagi, Gerardo Schneider, and Frank D. Valencia. On the expressiveness of infi-
nite behavior and name scoping in process calculi. In Proceedings of 7th FoSSaCS, volume
2987 of LNCS, pages 226-240. Springer, 2004.

16. Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous m-calculus. In Pro-
ceedings of 3rd FoSSaCS$, volume 1784 of LNCS, pages 146—160. Springer, 2000.

17. Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. 7CS, 151, 1995.

18. Lalita Jategaonkar Jagadeesan and Radha Jagadeesan. Causality and true concurrency: A
data-flow analysis of the pi-calculus (extended abstract). In Proceedings of 4th AMAST,
volume 936 of LNCS, pages 277-291. Springer, 1995.

19. André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Informa-
tion and Computation, 127(2):164—185, 1996.

20. Gilles Kahn and Gordon D. Plotkin. Concrete domains. Theoretical Computer Science,
121(1-2):187-277, 1993.

21. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914-947, 1999.

22. Jim Laird. A game semantics of the asynchronous 7t-calculus. In Proceedings of 16th CON-
CUR, pages 51-65, 2005.

23. Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, volume 255 of LNCS, pages 279-324. Springer, 1986.

30

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Paul-André Mellies. Asynchronous games 4: A fully complete model of propositional linear
logic. In Proceedings of 20th LICS, pages 386-395, 2005.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambrige University
Press, 1999.

Ugo Montanari and Marco Pistore. Concurrent semantics for the m-calculus. Electr. Notes
Theor. Comput. Sci., 1, 1995.

Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and
domains, part I. Theoretical Computer Science, 13(1):85-108, 1981.

Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Dagstuhl Lecturs on
Petri Nets, volume 1491 of LNCS, pages 12—121. Springer, 1996.

Grzegorz Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure, behaviour. In
Current Trends in Concurrency, volume 224 of LNCS, pages 585-668. Springer, 1986.
Davide Sangiorgi. Internal mobility and agent passing calculi. In Proc. ICALP ‘95, 1995.
Daniele Varacca, Hagen Volzer, and Glynn Winskel. Probabilistic event structures and do-
mains. In Proceedings of 15th CONCUR, volume 3170 of LNCS, pages 481-496. Springer,
2004.

Vasco Vasconcelos. Typed concurrent objects. In Proc. ECOOP’94, 1994.

Glynn Winskel. Events in Computation. Ph.D. thesis, Dept. of Computer Science, University
of Edinburgh, 1980.

Glynn Winskel. Event structure semantics for CCS and related languages. In Proceedings
of 9th ICALP, volume 140 of LNCS, pages 561-576. Springer, 1982.

Glynn Winskel. Event structures. In Advances in Petri Nets 1986, Part Il; Proceedings of an
Advanced Course, volume 255 of LNCS, pages 325-392. Springer, 1987.

Glynn Winskel. Name generation and linearity. In Proceedings of 20th LICS, pages 301-310.
IEEE Computer Society, 2005.

Glynn Winskel. Relations in concurrency. In Proceedings of 20th LICS, pages 2—-11. IEEE
Computer Society, 2005.

Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic in
Computer Science, volume 4. Clarendon Press, 1995.

Nobuko Yoshida. Type-based liveness guarantee in the presence of nontermination and non-
determinism. Technical Report 2002-20, MCS Technical Report, University of Leicester,
2002.

Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong Normalisation in the w-Calculus.
In Proceedings of LICS 01, pages 311-322. IEEE, 2001. The full version in Journal of Inf. &
Comp.., 191 (2004) 145-202, Elsevier.

31

