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Abstract 
The work described in this technical report falls under the general problem of developing 
methods that would allow us to engineer software systems that are reliable and would offer a 
certain acceptable level of quality in their operation.  This report shows how the analysis and 
refinement of policies for Quality of Service can be carried out within logic by exploiting forms 
of abductive and argumentative reasoning. In particular, it provides two main contributions. The 
first is an extension of earlier work on the use of abductive reasoning for automatic policy 
refinement by exploiting the use of integrity constraints within abduction and its integration with 
constraint solving. This has allowed us to enhance this refinement process in various ways, e.g. 
supporting parameter values derivation to quantify abstract refinement to specific policies ready 
to be put in operation, and calculating utility values to determine optimal refined policies. The 
second contribution is a new approach for modelling and formulating Quality of Service policies, 
and more general policies for software requirements, as preference policies within logical 
frameworks of argumentation. This is shown to be a flexible and declarative approach to the 
analysis of such policies through high-level semantic queries of argumentation, demonstrated 
here for the particular case of network firewall policies where the logical framework of 
argumentation allows us to detect anomalies in the firewalls and facilitates the process of their 
resolution. To our knowledge this is the first time that the link between argumentation and the 
specification and analysis of requirement policies has been studied. 
 
This deliverable describes the work carried out under the visiting fellowship of Professor Kakas at Imperial 

College, London. This fellowship was supported by EPSRC (grant GR/T29246/01) under the project 
“Reasoning Techniques for Analysis and Refinement of Policies for Quality of Service Management”. 

 

1. Introduction 
A key issue in policy-based approaches for systems management is the development of methods 
for analysis and refinement of policy specifications, in particular within the context of policies 
applicable across administrative domain boundaries. Such specifications often include 
authorisation, management policies, and general and/or application-specific constraints. The 
ability to detect domain-independent and application-specific conflicts among policies, identify 
the causes for these conflicts and propose resolutions is crucial. However, most of the research 
effort on policy-based system management has been mainly focused on the development of 
languages for specifying policies and architectures for managing and deploying policies in 
distributed environments. Existing analysis techniques for policies specifications have been 
limited to the study of modality and application-specific conflicts. In the last few years, the 
investigators have successfully shown how abductive reasoning, combined with an Event-
Calculus formalism for specifying policies, can be used to analyse policies, detect different types 
of conflicts and generate explanations in terms of the conditions under which such conflicts arise 
[1]. This logic-based approach has been effectively applied in the context of Quality of Service 
(QoS) provisioning in Differentiated Services (DiffServ) networks for the detection of policy 
conflicts during network dimensioning (i.e. static resource management of QoS provisioning) [6]. 
The first part of this report builds upon this results and shows how to integrate argumentation methods with 
abductive reasoning in order to enable more modular modeling and analysis techniques for policy specifications and 
support resolution of policy conflicts. 



A second critical task in policy-based specifications is the derivation of policies from high-level 
requirement specifications. Within the specific context of network service management, QoS 
policies would need to be derived from given Service Level Agreement (SLA) specifications and 
provider’s business goals in order to provide policy management rules for dynamically 
reconfiguring the routers in a network that enable the desired QoS goals to be achieved. Such 
policies are normally derived manually with no means of verifying their correctness with respect 
to the underlying network devices and the desired QoS goals. The process of deriving policies 
from the SLA specifications in a fully automated way is recognized as a difficult research 
challenge. However, tool support to assist human administrators in the refinement of policies 
from SLAs and enterprise goals would significantly reduce and improve network administration 
tasks especially when combined with analysis tools to ensure that only consistent specifications 
are derived. Policy refinement would in this case require mapping abstract entities, defined as 
part of high-level requirements, to concrete objects/devices of the underlying system, defining 
concrete policies in terms of only operations supported by the underlying system, and ensuring 
that at each stage of refinement the decomposition of abstract requirements into more concrete 
policies is correct and consistent [5; 6]. Although policy refinement cannot be fully automated in 
general, increasing support for policy refinement can be achieved when constraining the problem 
to a well-defined functional area, such as QoS management, where application specific 
knowledge can be encoded and used. In particular in [6] we have shown that abductive reasoning 
can be used to derive sequences of policy-based operations (i.e. strategies) that would allow a given 
system to achieve its high-level desired goal. This provides an initial formal approach and tool 
support for partial policy refinement, in which the derived strategies can be then used to manually 
specifying policies that can be enforced by the system. The second part of this report shows how to fully 
exploit abduction constraint solving to increase automated support for policy refinements.  

 
PART A:  Software Requirements as Argumentation based 

Preference Policies 

The need to use formal techniques for software engineering specifications is now well proven. In 
particular, several studies have shown how formal logic can be used to formalize and analyse 
software requirements. One such work is [1], which investigates the use of abductive reasoning in 
requirements policy analysis and refinement, to address the issues of conflict detection and validation. 
This work has shown how policy analysis can be facilitated greatly when policies are expressed in 
a high-level declarative representation framework such as that of Abductive Logic Programming 
[7, 8, 11, 29] with Event Calculus [5, 6] logical formalization.  

Policy-based approaches to network and system management are particularly important because 
they allow separation of the rules that govern the behavior of a system from the functionality 
provided by that system. Policies allow the behavior of a system to be adapted, without the need 
to recode its functionalities. They capture the relative priority or preference amongst the different 
possible actions that the system can take at any stage in its operation. Expressing policy 
specifications as preference policies provides us with a higher level of abstraction and greater degree 
of flexibility in their formulation and analysis. Indeed, in many cases software requirements 
specifications can be seen naturally as policies of the preferred way of operation that the software 
systems need to follow. For example, we may have requirements policies for quality of service or 
for the security level provided by our software systems. Understanding software requirements as 
preference policies allows us to view these at a higher-level of abstraction and as a result of this 
to have a greater degree of flexibility in the allowed formulation and analysis of the requirements. 
The modularity of such high-level representations can be exploited to facilitate the development 
of our policies.  

Within this context, we have investigated how to model and formulate QoS policies, and other 
policy-based systems managements, as preference policies within logical frameworks where the 
preference reasoning is realised via argumentation, a form of reasoning closely relation to 
abduction, using in particular the framework of Logic Programming with Priorities [27, 28]. We have 



examined how we can exploit the modularity of such high-level logical representations to facilitate 
the editing and updating of given policies. We have explored how argumentative reasoning and 
its combined use with abductive reasoning, can give us a framework for high-level abstract analysis 
of policy specifications through the use of semantic queries based on these forms of reasoning. 
We have then investigated the benefits of this approach by applying it to the context of firewalls 
policies for network security.  

In what follows we will explain our approach and present its main properties within the context 
of firewall policies, but we claim that these are valid more generally for other application domains 
of policy-based system managements. To our knowledge this is the first time that the link 
between argumentation and the specification and analysis of software requirements is proposed 
and explored.  

Section 2.1 gives the necessary background on argumentation and the framework of LPP 
employed in our study. It is then demonstrated how software requirements policies can be 
represented in this framework and discussed a methodology for developing such policies within 
this argumentation-based framework. Section 2.2 presents an extensive study of the application 
of these ideas to the problem of modelling, analyzing and developing network security policies. 

A.1 Argumentation Basics 
Argumentation has been shown to be a useful framework for formalizing non-monotonic 
reasoning and other forms of reasoning (e.g. [33,34,35,36,]). In general, an argumentation 
framework is a pair <T,A> where T is a theory in some background (monotonic) logic, equipped 
with an entailment relation, ╞ , and A is a binary relation on the subsets of T. These subsets of T 
form the arguments of the framework and A is therefore an attacking relation between arguments. 
For any two arguments A1 and A2 we say that A1 attacks A2 when (A1,A2) belongs to the 
attacking relation A. 

The semantics of an argumentation framework is based upon the following central notion of an 
admissible argument. 

Definition (Admissibility of Arguments) 
Given an argumentation framework <T,A>, an argument,  Δ, is admissible if and only if 

1. Δ does not attack itself,  
2. for all arguments Δ', if Δ' attacks Δ then Δ also (counter-)attacks Δ'. ◊ 

We will use a particular framework of argumentation as realized by the framework of Logic 
programming with Priorities (LPP) and its concrete form of Logic Programming without Negation as 
Failure (LPwNF). 

The preference reasoning within LPwNF is based on a model of argumentation where local 
priority information, given at the level of the rules of a theory (or policy), is lifted to give a global 
preference over sets of rules that compose arguments and counter arguments for a certain 
decision. A theory or policy within LPwNF is viewed as a pool of sentences or rules from which 
we need to select a suitable subset, i.e. an argument, in order to support a conclusion. 

In LPwNF a theory or policy, T, is represented in a classical background logic (L, ╞) where the 
language L consists of (Extended) logic programming rules of the form: 

  Name : L ← L1, . . . , Ln, (n ≥ 0) 

Here, L,L1, . . ., Ln are positive or negative (classical) literals. A negative literal is a literal of the 
form ¬A, where A is an atom. As usual in Logic Programming a rule containing variables is a 
compact representation of all the ground rules obtained from this under the Hebrand universe. 
Each ground rule has a unique (parametric) name, Name, given at the front of the rule. The 
background entailment relation, ╞ , of LPwNF is that of monotonic Horn logic given by the 
single inference rule of Modus Ponens, treating negative literals as ordinary atoms.  



In general, we can separate out an auxiliary part, T0, of a given theory, T, from which the other 
rules can draw background information in order to satisfy some of their conditions. The 
reasoning of the auxiliary part of a theory is independent of the main argumentation-based 
preference reasoning of the framework and hence any appropriate logic can be used. The 
auxiliary part contains also the definition of what constitutes a conflict in our theory (over and 
above the standard conflict of classical negation, i.e. between an atom, A and its negation ¬A). 
This is given through the definition of an auxiliary predicate, incompatible/2, of the form 

 incompatible(L1, L2) ← B 

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B. Typically, the 
conditions B are empty and the definition of the incompatible predicate is kept simple. 

The non-auxiliary part of a theory T, which encodes the proper policy part of our theory, is 
separated into two parts: the basic part and the strategy part. The basic part contains rules (of the 
form given above) whose conclusions, L, are any literal except the special predicate, priority/2, 
which is the only predicate that can appear in the conclusion of rules in the strategy part. Hence 
rules in the strategy part take the special form. 

 Name : priority(rule1, rule2) ← L1, . . . ,Ln, (n ≥ 0) 

where rule1 and rule2 are the names of any other two rules in the theory. 

A rule of this form then means that under the conditions L1, . . . ,Ln, the rule with name, rule1, 
has priority over the rule with name, rule2. The role of this priority relation is therefore to 
encode locally the relative strength of (argument) rules in the theory. The priority relation 
priority/2 is required to be irreflexive. The rules rule1 and rule2 can in fact be themselves rules 
expressing priority between other rules and hence the framework allows higher-order priorities. 
For simplicity we will assume that the conditions of any rule in the theory do not refer to the 
predicate priority/2 thus avoiding self-reference problems. Note also that the definition of 
incompatible/2 always includes that any ground atom, priority(rule1, rule2), is incompatible  with 
the atom priority(rule2, rule1) and vice-versa. 

The attacking relation, A, of LPwNF is then given by combining together the conflicts and 
priority relations in our given theory, T. For any two sets ∆, ∆' of sentences in T, ∆ attacks ∆', 
whenever these two sets have some conflicting (i.e. incompatible) conclusion (under the 
background logic ╞ H) and that the rules of ∆ that derive this are rendered by ∆ to have at least 
the same priority as the priority that ∆' renders for its own rules that derive the conflicting 
conclusion. This is formalized by the following definition. 

Definition (Attacking Relation of Arguments in LPwNF) 
Let T be an LPwNF theory and ∆, ∆' subsets of T. Then ∆' attacks ∆ (or ∆' is a counter 
argument of ∆) if and only if there exists a literal, L, and subsets ∆1 of ∆' and ∆2 of ∆ such that: 

(i)   ∆1 ╞  L and ∆2 ╞  LC, minimally 
(ii)  (∃r ∈ ∆1, s ∈ ∆2 s.t. ∆2 ╞  priority(s, r)) ⇒ 
         (∃r ∈ ∆1, s ∈ ∆2 s.t. ∆1 ╞  priority(r, s)) 

where LC is any literal that conflicts L (e.g. LC = ¬L or incompatible(L,LC) holds) and, ∆ ╞ L 
minimally, means that ∆ ╞ L and that L cannot be derived from any proper subset of ∆.  ◊ 

The second condition in the above definition states that an argument ∆' for L attacks an 
argument ∆ for the contrary conclusion only if the set of rules that it uses to prove L are at least 
of the same strength (under the priority relation priority/2) as the set of rules in ∆ used to prove 
the contrary. Note that the attacking relation is typically not symmetric. 

This notion of attack, that lifts the priority relation from the individual rules to sets of rules, then 
gives us the admissible arguments of any LPwNF theory according to the above general 
definition of admissibility.  



Preference reasoning is based on the maximal admissible arguments of a given theory. Usually, two 
preference entailment relations are defined.  

Definition (Preference Entailment in LPwNF) 
Given an LPwNF theory, T, and an atomic goal, G, we define a credulous and a sceptical preference 
entailment as follows: 

• T ╞cpr G means that there is at least one maximal admissible subset of T where G holds 
under the background logic ╞; 

• T ╞spr G means that T ╞cpr G and, that for any GC such that incompatible(GC,G) holds, 
T ╞cpr GC does not hold. ◊ 

We can easily extend this definition, in the obvious way, for goals that are a conjunction of 
literals.  

Hence in the case of a credulous conclusion of our theory or policy we know that there is at least 
one admissible argument that is supporting it but there could also be other admissible arguments 
for conflicting conclusions. The conclusion is possible. When no conflicting conclusion has an 
admissible argument for it we have that the conclusion is sceptically entailed by our theory. The 
conclusion is certain. 

Given a policy theory, T, we can identify three important properties that this policy may have. 
The first one is the property of determinism in its decision, i.e. that the policy always has only one 
sceptically preferred conclusion under any specific background situation that can arise in the 
problem domain for which the policy is to be applied. Equivalently, this means that there is an 
admissible argument for only one conclusion of the policy. In the opposite case we have non-
determinism where the policy can support different incompatible conclusions for the same 
situation at hand. The other important property of a policy theory is that of non-redundancy, i.e. 
that for every subset, S, of the basic part of our theory T, there exists at least one background 
situation, described by an auxiliary theory, S0, under which S belongs to at least one admissible 
subset of T ∪ S0. Hence we do not have parts of our policy that would not apply ever. Finally, 
the third important property is that of exhaustiveness, i.e. that for any background situation, 
described by an auxiliary theory, S0, the theory T ∪ S0 has at least one admissible subset that 
supports a conclusion on some desired goal predicate. 

A.2 Software Requirements as Argumentation theories 
In this section we will illustrate the framework of LPwNF and how its argumentation semantics 
allows us to carry out preference reasoning through a “standard” example of a requirements 
policy. We will show here how we can formulate and analyse within LPwNF an Elevator Policy 
that specifies the (preferred) mode of operation of an elevator. The task of this policy is to 
specify what action the elevator should take at any given instance of its operation. The available 
actions for the elevator are: 

• open_door : Elevator doors open  
• go_up : Elevator goes up one floor 
• go_down : Elevator goes down one floor 

 
The “world situations” of operation are parameterized by the actions executed externally by the 
elevator users. These actions are: 

• press_button_in(Floor) : A user presses a button from inside the elevator for the floor, 
Floor. 

• press_button_floor(Floor, Direction) : A user presses a button at Floor for Direction – 
either up or down. 

These two sets of actions change the state of the world. These states are described using the 
following auxiliary fluent predicates: 



• elevator_position(Floor): Elevator is at Floor 
• activated_button_in(Floor) : The button for Floor inside the elevator is activated 
• activated_button_floor(Floor, Direction): The button at Floor for Direction is activated 

We reason about these fluents and their changes using the Event Calculus (EC), assumed to be 
part of our background auxiliary theory, T0. Therefore, T0 contains the standard domain 
independent axioms of the EC 

• holds(P,T) ← holds-initially(P),T ≥ 0,not broken(P,0,T). 
• holds(P,T) ← happens(A,T'), T'<T, initiates(A,T',P), not broken(P,T',T). 
• broken(P,T’,T) ← happens(A,T''), terminates(A,T'',P), T'<T''<T 

together with domain dependent axioms such as: 

%  When a button is pressed it becomes activated: 
• initiates(happens(press_button_in(Floor)), T, activated_button_in(Floor)). 

% When the elevator arrives at a floor the buttons pressed for that floor stop being  
%  activated: 
• terminates(action(open_door,T), T,activated_button_in(Floor)) ←  
   holds(elevator_position(Floor), T), holds(activated_button_in(Floor), T). 

Similar domain dependent statements, about the initiating and terminating effects of all the 
actions, are included in the background theory T0 and can be found in appendix A, where the full 
elevator policy as a LPwNF theory is given, written in the GORGIAS system that implements 
the framework of LPwNF. 

The background theory T0 also contains the following single statement of incompatibility that 
expresses that any two different actions of the lift are incompatible, or in other words that the lift 
can decide to execute only one action at a time: 

% Different actions are incompatible with each other: 
• ¬ action(A, T) ← action(B, T), A ≠ B  

We are now ready to represent the main part of the policy theory of the elevator, namely the 
rules that specify (generate) under some conditions the possible actions that the elevator can take 
in the basic part of the policy and the relative priority rules on these generation rules and actions 
in the strategy part of the policy. 

The basic part of the policy theory T contains rules of the following form. 

% The elevator can go up one floor when a button is inside the elevator is activated for a % floor higher than 
the elevator's current position: 
• rup_in(Floor1, Floor2):  

  action(go_up, T) ← 
  holds(elevator_position(Floor1), T), 
  holds(activated_button_in(Floor2), T), 
  Floor2 > Floor1. 

% The elevator can go up one floor when a button is at a floor higher that the elevator’s % current position is 
activated: 
• rup_floor(Floor1, Floor2):  

 action(go_up, T) ← 
  holds(elevator_position(Floor1), T), 
  holds(activated_button_floor(Floor2,Dir), T), 
  Floor2 > Floor1. 

Similar rules exist for the action to go down. For the action to open the doors we have rules of 
the form: 



% The elevator’ doors may open when the elevator is at a floor and a button for that  
% floor is activated inside the elevator: 
• ropen_in (Floor):  

 action(open_door, T) ← 
  holds(elevator_position(Floor), T), 
  holds(activated_button_in(Floor), T). 

Turning now to the strategy part we need to specify the priority that our policy should have 
when we have situations where at the same time we have buttons activated both above and 
below the lifts current position. In such situations more than one of the rules in the basic part of 
the policy “fires” and hence we need to specify the preferred action amongst the many actions 
possible. 

Below we give some example priority rules in the strategy part. As mentioned above a full policy 
can be found in appendix A that is executable in the GORGIAS system. When writing these 
rules we exploit the fact that our rules have names and therefore we can refer directly to the 
specific rules and situations of interest when we are specifying priorities amongst possible 
actions. 

% The elevator’ doors should not open (when a button is activated at a floor for a  
% certain direction) if the elevator is moving in the opposite direction 
• Rdown_in|open_floor : 

   rdown_in(Floor1, Floor2) > ropen_floor(Floor1, up) 
• Rdown_floor|open_floor :  

     rdown_floor(Floor1, Floor2) > ropen_floor(Floor1, up) 
• Rup_in|open_floor :  

 rup_in(Floor1, Floor2) > ropen_floor(Floor1, down) 
• Rup_floor|open_floor :  

     rup_floor(Floor1, Floor2) > ropen_floor(Floor1, down) 

Note that in the presentation of these rules we are using instead of the priority/2 predicate the 
infix notation “>”. 

Similarly, we have the following strategy rules that give priority to the action of opening the lift 
doors. 

% Elevator doors should open when the elevator is at a floor and the button of that floor % is activated from 
inside the elevator 
• Ropen_in|up_in : 

 ropen_in (Floor1) > rup_in(Floor1, Floor2) 
• Ropen_in|up_floor : 

 ropen_in (Floor1) > rup_floor(Floor1, Floor2) 
• Ropen_in|down_in : 

 ropen_in (Floor1) > rdown_in(Floor1, Floor2)  
• Ropen_in|down_floor: 

 ropen_in (Floor1) > rdown_floor(Floor1, Floor2 

Note that these four rules could also be written more succinctly as a single rule: 

• R(open_in,Action): 
     r(open_in,Floor1) > r(Action,Floor2) ← Action≠open_in 

where we are using variables to parameterize the names of our rules. 



Another aspect of the strategy part of our policy could give priority to the activation requests 
from inside the elevator over those requests that come from outside the elevator at some floor. 
This is captured by the priority rules: 

• Rup_in|down_floor: 
 rup_in(Floor1, Floor2) > rdown_floor(Floor1, Floor3)  

• Rdown_in|up_floor: 
 rdown_in(Floor1, Floor2) > rup_floor(Floor1, Floor3)  

At this stage we can enquire if the policy is deterministic, i.e. that it has a unique preferred choice 
at any situation. We see though that we have cases of conflict between our priority rules. An 
example is the following where on the one hand we are giving priority to opening the door at 
some floor over going down (due to the priority to open the doors when the lift is at a floor) and 
on the other hand we are giving priority of going down over opening the doors (due to the 
priority that the lift is moving in the opposite direction): 

• Ropen_floor|down_in :  
 ropen_floor (Floor1, Direction) > rdown_in(Floor1, Floor2) 

• Rdown_in|open_floor:  
 rdown_in(Floor1, Floor2) >ropen_floor(Floor1, up) 

Our policy therefore contains a conflict now seen at the level of the priorities in the policy. We 
can resolve such conflicts by employing higher-order priority rules. In our example above we 
can ask the user what is the desired behaviour of the lift by explicitly asking what is meant to be 
stronger “the requirement to stop and open the doors at a floor where there is a request for the 
lift or the requirement to go down past a requested floor when the request is to go up”. Suppose 
that the user answers that “carrying on past the requested floor is stronger” then we can 
represent this with the higher-order priority rules: 

• Pdown_in|open_floor :  
Rdown_in|open_floor > Ropen_floor|down_in 

• Pdown_floor|open_floor :  
Rdown_floor|open_floor > Ropen_floor|down_floor 

• Pup_in|open_floor :  
Rup_in|open_floor > Ropen_floor|up_in 

• Pup_floor|open_floor :  
Rup_floor|open_floor > Ropen_floor|up_floor 

 
A.3 Conflict Detection and Resolution 
As we have seen above some conflicts can be identified during the process of composing the 
policy simply by examining the rules of the policy and checking that there is a common situation 
in which conflicting conclusions can be derived. But once we are satisfied that we have captured 
the policy how can we check that it is in fact conflict free? Is it possible to detect in an automatic 
way the existence of conflicts in the policy? 

To answer this we first need to notice that the existence of a conflict in LPwNF policies 
corresponds to the fact that the policy is non-deterministic, i.e. it has more than one admissible 
recommendation for a specific situation or scenario. So a conflict can be defined at the meta-
level as:  

• conflict(Scenario) if T ∪ Scenario ╞cpr G1,  
 T ∪ Scenario ╞cpr G2, 

     incompatible(G1,G2). 



where Scenario describes a specific situation in which a conflict exists. Under such a conflicting 
scenario therefore we can get two incompatible conclusions. Hence to find such a scenario (if it 
exists) we can follow the following steps: 

1. Query the policy for a certain recommendation, e.g. action(go_up, T) in the lift example. 

2. Get the background scenario that would give this. This can be done by employing 
abduction in the query of step (1). 

3. With this same background scenario query the policy for a different recommendation 
than the one in step (1) which is incompatible with it, e.g. action(go_down, T) in the lift 
example. 

Let us see another example of a conflict in the elevator policy. A conflict scenario is given by: 

• Conflict Scenario: 
• holds_initially(elevator_position(3)) 
• happens(press_button_floor(1, up), T) 
• happens(press_button_floor(5, up), T) 

 
• Conflicting Recommendations & Rules: 

• action(go_up,T) - rup_floor(Floor1, Floor2) 

• action(go_down,T)- rdown_floor(Floor1, Floor3) 

This shows that when we have at the same time a request from above and below the current 
position of the lift the policy is able to recommend either to go up or to go down. In other 
words, we somehow have forgotten to consider this scenario when formulating the policy. 

To resolve this conflict we ask the user what is more important or stronger in this situation. 
Suppose the user replies that the elevator should move in the direction with the closest request. 
Then we can extend our policy with the following rule to capture this and thus resolve the 
conflict: 

• Rup_floor|down_floor : 
 rup_floor(Floor1, Floor2) > rdown_floor(Floor1, Floor3)  
 if abs(Floor2-Floor1) ≥ abs(Floor3-Floor1) 
• Rdown_floor|up_floor : 

 rdown_floor(Floor1, Floor2) > rup_floor(Floor1, Floor3)  
 if abs(Floor2-Floor1) > abs(Floor3-Floor1) 

Note the asymmetry in these two rules where in the first rule we have “≥” in the comparison of 
distances thus giving priority to going up over down when the distance of request from above 
and below is exactly the same.  

In this way we can keep extending our policy in a modular and incremental way until it is conflict 
free. A conflict free policy is characterized by the following two conditions on the form of our 
policy rules:  

• There exist priority rules that decide between any two rules that give conflicting actions 
in the same background scenario. 

• There exist higher-order priority rules that decide between any conflicting priority rules 
in the same background scenario. 



We could do an analogous analysis of our policy to check that it has the other two properties of 
non-redundancy and exhaustiveness. This leads us to the following methodology for developing 
a policy in the LPwNF framework: 

1. Compose Policy rules in Basic and Strategy parts 

2. Analyse Policy for the three main properties of determinism, non-redundancy and 
exhaustiveness. 

3. Resolve (or address the lack of any one of) these properties by modular and incremental 
extensions of the policy guided by the user by presenting to her/him the problematic 
scenarios and the parts of the policy (arguments) that lead to the problem. 

A.3.1 Elevator: Example of Operation 
Let us illustrate here through an extensive example the use of the above elevator policy as a 
preference policy for deciding the action of the lift. Assume that initially we have the following 
situation: 

• Elevator is at floor1 with doors closed 
• No buttons activated inside or outside the elevator 

• John is at floor 1 and has pressed the “up” button. He wants to go to the 3
rd

 floor 

• Mary is at floor 2 and presses the “down” button. She wants to go to the 1
st

 floor. 
Hence at time 1 the following fluents hold: 

• elevator_position(1)  
• activated_button_floor(1, up) 

The only rule in the basic part of the policy that fires is the rule: 

• ropen_floor(1,up) for the action open_door 

and hence the only possible action is to open_door. Then  

• Elevator Doors open 
o activated_button_floor(1, up) no longer holds  

• John enters the elevator 
• John presses the “Floor 3” button. 

As a result now  
• activated_button_in(3)holds 

and the only rule in the basic part the fires is 

• rup_in(1, 3) for the action go_up 

and hence the only possible action is to go_up. Then  

• Elevator goes up one floor 
o elevator_position(1) no longer holds 
o elevator_position(2) holds 

Mary at floor 2 has pressed the “down” button 

• activated_button_floor(2, down) holds 

Now the possible actions are:  



• go_up (from rule  rup_in(2, 3)) 

• open_door (from rule  ropen_floor(3, down)) 

The relevant priorities & priority rules are: 

• rup_in(2, 3) > ropen_floor(3, down)  
 (rule Rup_in|open_floor ) 

• ropen_floor(3, down) > rup_in(2, 3)  
 (rule Ropen_floor|up_in ) 

Higher-order priority rule: 

• Rup_in|open_floor > Ropen_floor|up_in  
 (rule Pup_in|open_floor ) 

Hence the chosen action according to the policy is go_up, past Mary. The elevator goes up one 
floor. 

• Elevator goes up one floor 
• elevator_position(2) no longer holds 
• elevator_position(3) holds 

• Possible actions  
• go_down (rule  rdown_floor(3, 2)) 

• open_door (rule  ropen_in(3)) 

• Priority rules 

• ropen_in(3) > rdown_floor(3, 2)  
 (rule Ropen_in|down_floor)  

• Choosen action: open_door 
 
Then John exits the elevator, activated_button_in(3) no longer holds, and the only possible 
action is go_down since activated_button_floor(2,down) still holds that allows the basic part 
rule, rdown_floor(3, 2)), to fire. The elevator will then go down, open the doors for Mary and 

then when Mary presses the Floor 1 button the elevator will go_down to the first floor. 

A.4. Modeling Firewall Policies 
Security is a major consideration that must be addressed in any modern enterprise network.  
Broadly security can be split into the areas of authentication, authorisation, integrity and 
availability.  Authentication is concerned with verifying a user’s identity; authorisation focuses on 
ensuring that users are only allowed to perform those operations for which they have been 
granted permission (or are not prohibited from doing); integrity refers to ensuring that data is not 
modified without authorisation; and finally availability addresses problems such as denial of 
service where access to a particular resource is denied even though the user is authorised.   

Whilst some of these security considerations are addressed at the application level, in many cases 
the most common tool in the administrators’ arsenal is the network firewall.  Therefore, ensuring 
that the rules that govern the behaviour of the firewalls are consistent and correct with respect to 
the security requirements of the system is critical.  However, in large scale networks with multiple 
firewalls and a range of user security requirements, managing the firewall policies quickly 
becomes a non-trivial task. 



Network Security Policies are typically realized via Firewall Policies [37, 43] that control the 
traffic between two domains on the network. These firewall policies consist of a totally ordered 
set of rules of the form: 

<order> : <action> if <network conditions> 

where the <network conditions> identify a certain type of traffic, typically from one  domain to 
another under some protocol, and the action field, <action>, typically takes the values “accept” 
or “deny” thus specifying if the traffic is to be allowed to flow or stopped.  The semantics of the 
firewall policy is given operationally and it is crucially dependent on the total ordering of its rules. 
The ordering position of a rule is given by a (unique) natural number in <order>. Then for any 
given packet check the rules of the policy according to this priority order. The first rule whose 
network conditions are satisfied by the packet determines through its action field the fate of the 
packet. All other rules that are ordered lower are ignored. 

An important shortcoming of the current methods of developing Firewall Policies is the lack of a 
systematic link between the high-level specification of the security policy requirements and the 
firewall policy that is meant to capture these requirements through its operation. For example, 
how can we capture the requirement that all traffic from a name server should be accepted when 
at the same time we require that traffic from the network in which the server is placed is to be 
restricted depending on the destination by some other policy.  Similarly, how can we reconcile 
two opposing firewall policies both of which are in the path of a certain type of network traffic? 

We will study how such legacy firewall policies can be lifted to a declarative preference policy 
expressed in the argumentation based framework of Logic Programming with Priorities 
presented in section A. Such a lifted representation is high-level and closer to the natural 
specification of security policy requirements. We will show how the standard declarative 
semantics of LPP captures the operational semantics of the legacy firewall policies and then 
examine various possibilities of extending the scope of these firewall policies beyond the current 
realm of applicability of firewall policies. 

A.4.1 Legacy Firewall Policies 
For the purposes of this report and without loss of generality we will confine ourselves to legacy 
firewall policies whose rules have the following form (see [37,43] for details on the syntax and 
table format of presentation of these rules): 

 <order> : <action> if <protocol ><src_ip><src_port><dst_ip><dst_port> 

The network conditions are therefore a 5-tuple filter capturing conditions on any packet: 

<protocol> - on the protocol type 
<src_ip> - on the source IP address 
<src_port> - on the source port 
<dst_ip> - on the destination IP address 
<dst_port> - on the destination port 
 

Conditions on IP addresses can be that this is a particular host (specified either as “192.112.1.1” 
or with a machine name “zeus”) or that it belongs to a network (again specified either as 
“192.112.1.*” or with a network name “net_cs”) or that it can be any (specified by ”any”) 
address. Ports can be required to be either a single specific port number or any port number, 
indicated by “any”, or some range of port numbers. For any given firewall policy, FP, and 
specific packet, Packet, we will write  

 FP(« Packet: Action ») 

to denote that the policy FP recommends the action, Action, for this packet, e.g. if packet, 
pac_13, is denied under FP we will write FP(« pac_13: deny ») and similarly we will write 
FP(« pac_7: accept») when FP recommends to accept packet pac_7. 



It is clear that these network field conditions can be captured directly by binary auxiliary 
predicates in a background logical theory. For example, source IP conditions can be captured by 
the binary relation “src_ip(Packet, IPAddress)”, e.g. we can have “src_ip(pac1,net_cs)” specifying 
that the packet “pac1” has a source IP address from the network “net_cs”, or we can have 
“src_ip(pac2,any)” specifying that packet “pac2” can have any source IP address. 

Definition (Background Network Field Language) 
For any network field, <field_name>, of a legacy firewall policy the binary relation given by, 
field_name(Packet,Value), is the corresponding network field (binary) relation where Packet is a 
packet identifier and Value ranges over the possible values of the given network field. ◊ 

Using these network field binary relations we can capture the network conditions of the firewall 
rules in a simple auxiliary theory specifying when a network field takes its various values. Then 
given such a background auxiliary theory of network conditions we can translate (up-lift) any 
legacy firewall policy to a preference policy in LPP as follows. 

Definition (Corresponding Argumentation Theory) 
Let FP be a legacy firewall policy. Then the corresponding logical preference policy in Logic 
Programming with Priorities, denoted by L(FP), is given as follows. For every filtering rule: 

<order_num> : <action_value>  if  
<protocol_value><src_ip_value><src_port_value> 
<dst_ip_value> <dst_port_value> 

we have the corresponding rule in the basic part of L(FP) given by: 

r(order_num) : action(Packet, action_value) if  
     protocol(Packet,protocol_value), 

scr_ip(Packet, src_ip_value), 
scr_port(Packet, src_port_value), 
dst_ip(Packet, dst_ip_value), 
dst_port(Packet, dst_port_value). 

The priority or strategy part of L(FP) is given by the single priority rule: 

R(total): priority(r(Name1), r(Name2)) if Name1 < Name2.    ◊ 
 
This is a straightforward translation expressing in logical terms each filtering rule and the total 
ordering amongst these rules by giving higher priority to any rule over all the rules that are 
named with a higher number. For example, if our firewall policy has the default rule to deny any 
traffic on some protocol, ptc1, then the corresponding rule in the basic part of L(FP) will be: 

 r(default_num) : action(Packet, deny) if  
     protocol(Packet,ptc1), 

scr_ip(Packet, any), 
scr_port(Packet, any), 
dst_ip(Packet, any), 
dst_port(Packet, any). 

 
Similarly, borrowing the example policy from [37] the following row in this example 

2 : tcp, 140.192.37.2*, any, any, 80, accept 
will be translated to the rule: 

r(2) : action(Packet, accept) if  
    protocol(Packet,tcp), 

scr_ip(Packet, net_140_192_37), 
scr_port(Packet, any), 
dst_ip(Packet, any), 
dst_port(Packet, 80). 



The following theorem shows the inclusion of legacy firewall policies into the framework of 
Logic Programming with Priorities and in particular into the framework of LPwNF. 

Theorem (Inclusion of Legacy Policies) 
Let FP be a legacy firewall policy and L(FP) its corresponding logical preference policy in LPP. Then for any 
given packet of traffic, Packet: 

  FP(« Packet: Action »)  ⇔  L(FP) ╞spr action(Packet, Action). 
 
This theorem therefore tell us that the decision of a firewall policy, to accept or deny any packet 
of traffic, is exactly mirrored by the argumentation based preference reasoning in the 
corresponding logical policy. The operational semantics of a legacy firewall policies is now 
captured declaratively through the logical semantics of argumentation based preference 
reasoning. 

A.4.2 Extending Legacy Firewall Policies 
The inclusion we get by the above theorem of legacy firewall policies into LPP is a proper 
inclusion as we can express policies in LPP that cannot be captured by a legacy policy. Indeed, 
the form of the corresponding preference policies L(FP) in LPP is a very special one in several 
ways such as: 

1. Background Language for Network Conditions 
2. Action Naming Field 
3. Ordering of the Policy Rules 
4. Decomposition of Policy into Components 

The high-level of expressivity afforded by the framework of LPP opens up the possibility to 
consider several types of extension of legacy firewall policies along all the lines indicated above. 
Here we will indicate various different possibilities of extension of legacy firewall policies 
through illustrative examples. Of course, any extension considered should have its practical 
motivation.  

It is important to stress that the main focus of all such extensions is to allow us to represent 
network security policies directly from their high-level specification of security requirements. It is 
a first step towards using the framework of LPP as a tool for the specification of requirements of 
network security software (and, as we will see in the next section, for the analysis of such 
requirements). 

Consider for example a network security policy: 

“Deny traffic from outside, i.e. where the source IP belongs to a network that is different from the 
network of the destination IP, unless this comes from a secure source”.   

In order to capture this policy in a direct way we can define in our background logical theory the 
auxiliary relations “outside_traffic(Packet)” and “secure_source(Packet)” as follows: 

 outside_traffic(Packet) if  
src_ip(Packet, Net1), 
dst_ip(Packet,Net2), 
Net1 ≠ Net2. 
 

secure_source(Packet) if 
src_ip(Packet, Source), 
secure_ip(Source). 
 

where “secure_ip” is given by a set of facts cataloguing which machines or networks are secure. 
Then given these auxiliary definitions we can express the network policy directly through the 
following policy rules: 



r(k) : action(Packet, accept) if  
outside_traffic(Packet),     
secure_source(Packet). 
 

r(k+1) : action(Packet, deny) if  
outside_traffic(Packet).     

 
and the priority that r(k) has over r(k+1). 

This network policy statement is very general and could span over several other policies that we 
want to apply, i.e. that irrespective what the specific policies say we want that outside traffic (inter 
network traffic) to be blocked unless this comes from a secure source. In such a case this would 
mean that in effect we want this policy to be a meta-policy that would have effect over other 
specific policies. We should therefore be able to state a “global” priority of this policy over the 
other policies. In fact, this is a matter of distributed policies and how we compose them together. 
We will address this issue below where we will discuss extending the naming field of the policy 
rules to refer to the policy to which each rule belongs.  

Let us though indicate further the problem by considering that we are given in addition another 
security requirement as follows: 

“Deny traffic from network, net_1, to network, net_2, unless the destination IP is the machine, aias.” 

In a similar way as above this is easily captured by the following two rules: 

r(m) : action(Packet, accept) if  
scr_ip(Packet, net_1),     
dst_ip(Packet, aias). 
 

r(m+1) : action(Packet, deny) if  
scr_ip(Packet, net_1), 
dst_ip(Packet, net_2). 

 
and the priority of r(m) over r(m+1). 

The problem now is the relative ordering between these two sets of two rules, i.e. should this 
latter set of rules be above or below the rules for the policy requirement for outside traffic given 
above? One may be tempted to say that since the latter requirement appears to refer to cases that 
are more specific that they should go above the previous rules, e.g. as: 

r(n) : action(Packet, accept) if  
scr_ip(Packet, net_1),     
dst_ip(Packet, aias). 
 

r(n+1) : action(Packet, deny) if  
scr_ip(Packet, net_1), 
dst_ip(Packet, net_2). 

 
r(n+2) : action(Packet, accept) if  

outside_traffic(Packet),     
secure_source(Packet). 
 

r(n+3) : action(Packet, deny) if  
outside_traffic(Packet).  

 
thus giving a total order amongst these rules with r(n) the strongest and r(n+3) the weakest. 

But this would then have the consequence of denying outside traffic from net_1 to net_2 that 
was coming from a secure source within net_1 (except for the special case where this has 



destination aias). Hence the first requirement would not be correctly represented. The problem 
stems from the fact that in legacy firewall policies the two rules “r(n+1)” and “r(n+2)” need to 
be ordered and this has the unwanted side-effect of “r(n+1)” preventing the operation of 
“r(n+2)”. Similarly, if we used the opposite ordering we would deny traffic from net_1 to aias (in 
net_2) whenever the source (in net_1) of the traffic is not secure. Finally, if we tried to interleave 
the two sets of rules, e.g. as: 

r(n) : action(Packet, accept) if  
scr_ip(Packet, net_1),     
dst_ip(Packet, aias). 

 
r(n+1) : action(Packet, accept) if  

outside_traffic(Packet),     
secure_source(Packet). 
 

r(n+2) : action(Packet, deny) if  
scr_ip(Packet, net_1), 
dst_ip(Packet, net_2). 
 

r(n+3) : action(Packet, deny) if  
outside_traffic(Packet). 

we would get the unwanted behaviour of accepting traffic from net_1 to aias even when this is 
not coming from a secure source in net_1 (going against the secure source policy requirement). 

The above example illustrates the limitation of existing framework for firewall policies where 
policy rules need to be totally ordered. This need of totally ordered rules forces the different rules 
to interact with each other in an ad hoc way (as we have seen a different choice for the total 
order gives a different interaction) when this is not meant by the policy maker. In our proposed 
framework of LPP the ordering amongst the rules is allowed to be partial and this gives us the 
flexibility to capture more complex security requirements. In the above example, we would have 
in the strategic part of the LPP theory, TP, encoding the policy the rules: 

 R(k): r(k) > r(k+1) 
R(m): r(m) > r(m+1). 

Note that here and below we will present priority rules using the infix notation “>” instead of 
the priority/2 predicate.  

Then the decision of which of these two component policies is stronger when they are both 
relevant, e.g. in the case of traffic from net_1 to net_2 which comes from a secure source, 
becomes an explicit part of the policy and is represented by an appropriate rule, e.g.: 

 R(1): r(k) > r(m+1) if secure_source(Packet) 

expressing the fact that traffic from a secure source should be accepted. In effect, we are stating 
that the secure source policy is stronger than the policy for regulating traffic from net_1 to net_2.  

Note here the conditional nature of the ordering of the policy rules. We can use this to provide 
further flexibility in our policy representation. Consider for example that  

 R(2): r(m+1) > r(k) if dst_ip(Packet,mail_server) 

What happens though if we have traffic (from net_1 to net_2) which comes from a secure source 
and is destined for the mail-server? Both these priorities apply and we have a situation where our 
policy has an argument to “accept” and an argument to “deny”: the policy is in a dilemma. To 
resolve this we need to consider which of these two policy orderings is the strongest: is the 
secure source policy stronger than the policy regulating traffic from net_1 to net_2 to the 
mail_server of net_2 or vice versa? Suppose that the latter is true. We can capture this using a 
higher-order priority ordering between these two ordering rules: 



C: R(2) > R(1) 

that would then take us out of the dilemma: only the argument for denying such traffic would be 
admissible and so the policy would now have a deterministic sceptical conclusion for “deny”.  

In fact, such higher order priority rules can themselves be conditional so that R(2) is stronger 
than R(1) in some circumstances and weaker than R(1) in other circumstances. We can then 
repeat the process of detecting dilemmas in the decision of our policy and introduce a rule at a 
new higher level of priority to specify which of these statements is stronger when they both 
apply. So for example, if we have  

C(2): R(2) > R(1) if peak_time_net_2 
C(1): R(1) > R(2) if source_ip(Packet, kronos) 

we would employ, according to the requirement that is very important for traffic from kronos to 
reach its destination as soon as possible even at the peak time for net_2, a rule at one level higher 
in the priority ordering such as: 

D: C(1) > C(2) 
to capture this requirement. 

Appealing to higher levels of ordering can in theory continue at infinitum. In practice, when we 
are developing security policies we can follow a systematic methodology to detect such dilemma 
points and resolve with the help of the user/developer  by referring to a higher level decision of 
which component policy is stronger or under which conditions one policy is stronger and 
weaker. In this way we build a natural hierarchical ordering structure amongst the lower-level 
policy rules that generate the recommendation and the rules that specify the ordering amongst 
these and the ordering rules themselves.  

A.4.3 Composing Policies 
A natural way to facilitate this process of the development of  security policies is to enhance the 
language of representation of policy rules so as to refer explicitly to the policy they belong to and 
then give overall (perhaps conditional) priorities amongst groups of rules. In our approach we 
can do this by extending the naming field of the rules (generation or priority) as allowed naturally 
by the framework of LPP beyond the simple arithmetic name that is essentially the only name 
employed by legacy firewall policies. 

Definition(Naming of Policy Rules) 
The name of a firewall policy rule is a triple: 

 <id><TrafficName><PolicyName > 
where “id” is a unique identifier of the rule, “TrafficName” is a term that names (part of) the 
network traffic and “PolicyName” is a term that names the (component of the) policy to which 
the rule belongs. ◊ 

The specific structure of these naming fields is left open and can be chosen by the developer as 
best suited for the particular policies that are being developed. For our example above in this 
section we could chose the TrafficName field to indicate the source network/machine, the 
destination network/machine and the protocol. Then the rule that we have called r(2) above will 
now be called 

 r(<d(2), traffic(net_140_192_37,any,tcp), policy(basic)>) 

where we have also named the policy to which these rules belong to as “basic”. The identifier, 
d(2), is used also to record that this rule is a denying rule. Similarly, the rules r(k) and r(k+1) 
above will be name as 

 r(<a(k), traffic(any,any,tcp), policy(outside_traffic)>) 
 r(<d(k), traffic(any,any,tcp), policy(outside_traffic)>) 
 



and the rules r(m) and r(m+1) will have names: 

 r(<a(m), traffic(net_1,aias,tcp), policy(net_1net_2)>) 
r(<d(m), traffic(net_1,net_2,tcp), policy(net_1net_2)>) 

With this extension of the naming field we now have the enhanced flexibility of expressing 
directly ordering requirements. For example, if we have a requirement that says “always accept 
traffic that has a certain property, e.g. comes from a secure source” then we would represent this 
with a priority rule of the form: 

R(Id, Traffic, Policy) :  
r(Id1, Traffic, Policy1) > r(Id2, Traffic, Policy2) if 

acceptance_rule(Id1), property(Traffic) 
e.g. when the property is that of secure source this rule will be: 

 R(over(Id1,Id2), Traffic, policy(secure_source)) :  
r(Id1, Traffic,Policy1) > r(Id2, Traffic, Policy2) if  

acceptance_rule(Id1), secure_source(Traffic) 
 

Note that this rule covers the rule R(1) we have above, but now this is expressed in a declarative 
way directly from the specification of the requirement.   

Similarly, we can use the Policy name field to express relative strength requirements amongst 
different components of our policy in a declarative and direct way. For example we could have 
the requirement that “Any Security Policy is stronger than any Business Policy”. We would then 
capture this simply by the rule: 

R(over(Id1,Id2), Traffic, policy(security_over_business)) :  
r(Id1, Traffic,policy(Policy1)) > r(Id2, Traffic, policy(Policy2)) if  

security(Policy1), business(Policy2) 

This requirement may be too general and we may want to apply it only to some specific policy 
components or under some additional conditions. For example, we may want that “policy_1 is 
stronger than policy_2 for traffic coming from net_0. Otherwise, policy_2 is stronger.” We 
would then capture this directly as follows: 

R(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) :  
r(Id1, Traffic, policy(policy_1)) > r(Id2, Traffic, policy(policy_2)) if  

traffic_source(Traffic, net_0) 
 

R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1)) :  
r(Id1, Traffic, policy(policy_2)) > r(Id2, Traffic, policy(policy_1)) if  

traffic_source(Traffic, Net), Net ≠ net_0 

In this case there is no need to go to any higher level of priority ordering as these two rules are 
exclusive in their conditions: only one can apply in any one case. In other cases this may not be 
so. For example, consider that the requirement was instead: “policy_1 is stronger than policy_2 
for traffic coming from net_0. On the other hand policy_2 is stronger when we have 
low_bandwidth.” Then the second rule will be replaced by 

R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1)) :  
r(Id1, Traffic, policy(policy_2)) > r(Id2, Traffic, policy(policy_1)) if  low_bandwidth 

and we would also need a higher-order priority rule to capture the requirement that when both of 
these apply, i.e. we have traffic coming from net_0 at a time of low_bandwidth, policy_1 is 
stronger 

C(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) :  
R(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) >  
     R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1))  



It is clear that the extension of the naming field that we have proposed above can be particularly 
useful when we consider distributed firewall policies and how their component policies should be 
composed together. This composition depends on the topology of the network and the “meta 
policy” that we want to apply in putting these together. The naming of our rules is well suited to 
address this problem. In practice though we would need to tame the expressiveness of our 
naming language and restrict to a useful subset that is sufficient for the needs of real life practical 
applications. A systematic process of naming the rules within such a restricted language needs to 
be developed.  

We close this section by discussing briefly some other possibilities of extending legacy firewall 
policies afforded by the more general framework of LPP into which we have mapped these 
policies. These are extensions that the LPP framework of argumentation gives for free but we 
would need to examine further their practical value in the application of network security 
policies.  

In the same way we have extended the network field of our rules we can consider extending the 
Action Field of our rules. We could for example introduce a third action, called Delay or Suspend 
so that we can capture policy requirements that instead of denying traffic they simply delay this. 
For example, we may want to suspend some type of traffic when the available bandwidth is low 
so that other traffic can move faster. We would then employ rules such as: 

 r(<de(k), traffic(any,any,tcp), policy(delay_outside)>) :  
action(Packet, delay) if outside_traffic(Packet), low_bandwidth. 

to delay outside traffic at a time of low bandwidth so that Intranet traffic is delivered quickly.  

Another extension is to consider policy requirements which link two different policies, i.e. the 
decision of one policy depends on the decision of the other policy. We could have for example 
rules of the form: 

<policy1: action1> if <policy2:action2><network conditions> 

where under certain conditions the action recommended by policy1 depends on the 
recommendation of policy2.  An example, of such a policy rule could be used to represent the 
security requirement that  

“The department’s local firewall should accept any traffic with destination the student sub network if this 
has been accepted through the main university firewall.” 

r(a(k), traffic(any, net_student, policy(Dept_Policy)) :  
action(Dept_Policy, Packet, accept) if action(Uni_Policy, Packet, accept), 

dst_ip(Packet, net_student) 

We can even have more elaborate interactions between policies where the decision of one policy 
depends on the decisions of several other policies, i.e. employing rules of the form: 

 <policy: action> if <policy1:action1><policy2:action2>…<policyk:actionk> 
                  <network conditions> 

An example of such a rule would be useful when we have a cascade of firewall policies, 
generalizing the above example of University Policy and Departmental Policy to a sequence of 
more than two links.  Another possibility would be that a policy is composed of several other 
policies each one taking into account one aspect of the security or other (e.g. economy or quality 
of traffic) desirable properties of the network operation.  For example, we may have a 
requirement: 

 “Any traffic that is denied under policy 1 and policy 2 should be accepted under policy 3.” 

stemming from our network topology that at some point in the network, traffic can be send 
through to one of three possible routes and destination points and that for each of these routes 



we have a separate policy to decide if it can be allowed to take this route. The requirement above 
ensures that in the worst (or default) case traffic will go through the third route as security in this 
sub network is not paramount.  

We can therefore see that such an extension with rules that explicitly represent interdependencies 
of different policies may be useful in capturing distributed polices coming from different 
topologies of networks and the associated requirements of composition of their component 
firewall policies. 

Finally, we note that it is also possible that the ordering rules of one policy can be conditional on 
decisions of other policies, i.e. we can have rules of the form 

 R(over(Id1,Id2), Traffic, policy(Policy1)) : 
 r(Id1, Traffic, policy(Policy1) > r(Id2, Traffic, policy(Policy1) if 
    action(Policy2, Action), network_conds(Traffic). 
 
A.5 Analysis of Firewall Policies 
Firewall policies can suffer from the problem of anomalies. In its most general term this is the 
problem where: 

“one part of a policy is in some way in conflict with another part of the policy”. 

In legacy firewall policies this problem is exasperated by the fact that these policies have a very 
rigid structure where all rules must be in a total order of priority. As the number of rules in the 
policy grows the problem of existence of anomalies becomes more severe. It is therefore 
necessary to develop methods to analyse a policy and detect anomalies and then provide a 
systematic methodology to resolve these anomalies. 

Current studies of this problem defined the anomalies through a syntactic analysis of the policy 
rules and use specialised algorithms to detect such anomalies. Different notions of the possible 
relations between two rules are defined by a purely syntactic comparison of the conditions of 
these rules under which a conflict between the rules can arise. In other words, the general and 
abstract semantic definition of anomaly is reduced to a set of syntactic relations amongst the 
rules which, although in some cases (e.g. isolated firewall policy) can be argued to be complete, as 
we extend our policy framework, e.g. to include distributed firewall policies, this approach of 
projecting the general and intuitive notion of anomaly and conflict onto a set of single rule 
relations becomes ad hoc and incomplete. 

In this section we will show how we can analyse firewall policies using the semantic notions of 
preference reasoning through argumentation capitalizing on the declarative representation and 
semantics for firewall policies that we have developed in the previous section of modelling 
network security policies. Anomalies will thus be captured moving away from the procedural 
interpretation of the policies through  semantic definitions that remain invariant as we develop 
further the type of our policies, e.g. as we consider extensions of policies such as distributed 
policies. 

We will start by showing how the various types of anomalies, as given in [37],  for single legacy 
firewall policies can be captured naturally using the basic notions of argumentation once these 
policies are mapped into theories of LPP.  

• Shadowing Anomaly: A rule, r(n), is never activated (because a previous rule matches 
all its packet cases). The rule therefore appears to be redundant. 

Definition (Shadowing Anomaly 1) 
Let FP be a legacy firewall policy. Then FP contains a shadowing anomaly iff there exists two 
rules, r(n) and r(k), in the corresponding logical preference policy L(FP) such that, for a particular 
network traffic, there exists two admissible arguments one containing r(n) and the other r(k) 
when we have deleted from L(FP) the relative ordering between  these two rules . ◊ 



We can easily see that this is then equivalent to the following definition that refers to the policy 
as given without any alterations. 

Definition (Shadowing Anomaly 2) 
Let FP be a legacy firewall policy. Then FP contains a shadowing anomaly if and only if there 
exists a rule, r(n) in the corresponding logical preference policy L(FP) such that there is no 
admissible argument containing r(n). ◊ 

Note that these definitions require that we consider the conclusions of any two rules in the policy 
to be incompatible with each other. This may be considered as unnatural. We will later see that 
we can avoid it, if we wish, when we give a general definition of anomaly that encompass all 
different existing notions of anomalies into a single notion, where some types of anomalies 
simply do not appear anymore. We are using this incompatibility amongst all rules here to 
capture exactly the existing literature. 

• Correlation Anomaly: The relative order of two rules is significant: two rules have an 
overlap of packets that apply to them both. 

 
Definition (Correlation Anomaly) 
Let FP be a legacy firewall policy. Then FP contains a correlation anomaly if and only there exists 
two rules, r(n) and r(k), in the corresponding logical preference policy L(FP) such that for a 
particular network traffic, there exists two admissible arguments one containing r(n) and the 
other r(k) when we have deleted from L(FP) the relative ordering between  these two rules . ◊ 

An equivalent way to capture this anomaly is to have that in L(FP) there is no admissible 
argument containing a rule r(k) whereas when we remove a rule, r(n) (n<k), from L(FP) (or when 
we remove the ordering, r(n) > r(k), from L(FP)) then there is an admissible argument containing 
r(k). 

• Generalization Anomaly: This is the dual of the Shadowing anomaly. An exception 
rule appears before a general rule (as it should if it is to act as an exception). 

Definition (Generalization Anomaly 1) 
Let FP be a legacy firewall policy. Then FP contains a generalization anomaly if and only if there 
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) such 
that there exists two admissible arguments one containing r(n) and the other containing r(k) 
when the relative ordering of r(n) > r(k) in L(FP) is removed. ◊ 

Equivalently we have the following formulation. 

Definition (Generalization Anomaly 2) 
Let FP be a legacy firewall policy. Then FP contains a generalization anomaly if and only if there 
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) such 
that there exists no admissible argument containing r(n) when the relative ordering of r(n) > r(k) 
in L(FP) is reversed. ◊ 

Finally, let us consider the redundancy anomaly where a rule in the policy never applies. 

• Redundancy Anomaly: A general rule has higher priority than a rule (with the same 
action field) which is a specific case of the general rule. The specific rule is therefore 
redundant as it will never apply.  

Definition (Redundancy Anomaly 1) 
Let FP be a legacy firewall policy. Then FP contains a redundancy anomaly if and only if there 
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) whose 
action field is the same such there exists two admissible arguments one containing r(n) and the 
other r(k) when we have deleted from L(FP) the relative ordering between  these two rules  and 
we  consider the conclusions of these two rules as incompatible. ◊ 
 



Again in the given policy with out any modifications this can be captured equivalently as follows.  

Definition (Redundancy Anomaly 2) 
Let FP be a legacy firewall policy. Then FP contains a redundancy anomaly if and only if there 
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) whose 
action field is the same such that there exists no admissible argument containing r(k) when we 
consider the conclusions of these two rules as incompatible. ◊ 

In other words, if we consider an incompatibility notion that makes only these two rules 
incompatible then one of the rules becomes redundant in the sense that we will never have an 
admissible argument for it. Note that this anomaly is the same as the Shadowing Anomaly but 
where now the conclusions of the rules have the same action.  

The above equivalent semantic reformulation of the anomalies can help us reveal a uniform 
understanding of the notion of anomaly in these policies. On the one hand it helps see the ad 
hoc nature of the decision to select these anomalies over others. For example, we see that 
essentially the two types of Shadowing and Redundancy anomalies are the same. Also why 
should we restrict ourselves to considering only single rules in pairs. We could instead consider 
subsets of rules. We could have a shadowing anomaly where two rules shadow another rule in a 
way that this can not be reduced to shadowing between the single rules. This can happen when 
the network conditions of the rules r(1), r(2) and r(3) have the following set relationship: 

 

 
Then {r(1),r(2)} together shadow {r(3)} but there is no shadowing between {r(1)} and {r(3)} or 
between {r(2)} and {r(3)}. 

The semantic reformulation of the anomalies shows us that their essential aspect is that of the 
existence of different admissible subsets, S1 and S2, of our policy that have incompatible 
conclusions. In the extreme case we have that there is no admissible subset S1 (containing a 
certain rule and its conclusion) but only admissible subsets S2 with incompatible conclusions. In 
fact, we can see that the correlation anomaly captures this central notion with the shadowing and 
redundancy anomalies being extreme cases.  

This leads us to the following general definition of anomaly within the logical framework of LPP 
where we now represent our network security policy as an argumentation-based preference policy 
as described in the previous sections. 

Definition(Anomaly in LPP Firewall Policies) 
Let P be a theory in LPP representing a security policy. Then P contains an anomaly if and only if 

1. [conflict anomaly] either there exists a particular network traffic and two subsets, 
P1 and P2 of P, such that P1 and P2 are admissible arguments and have 
incompatible conclusions, 

r(1) r(2) 

r(3) 



2. [redundancy or extreme conflict anomaly] or there exists a subset P1 of the 
basic part of P such that P1 is not admissible for any particular network traffic that 
satisfies the conditions of P1. ◊ 

As we have shown above it is easy to prove the following result. 

Theorem (Inclusion of Anomalies) 
Let FP be a legacy firewall policy and L(FP) its corresponding logical preference policy. If FP 
contains any one of the four anomalies, shadowing, correlation, generalization and redundancy, 
then L(FP) also contains an anomaly. 

We note that the above definition of anomaly in firewall policies, written as theories of LPP, 
corresponds to what are normally considered as “standard problems”, or lack off desired 
properties (see section A.1), in any argumentation based preference theory. These are on the one 
hand, the existence of non-determinism and hence of a dilemma in deciding what is the 
(preferred) conclusion of the theory and on the other hand the existence of a part of the theory, 
i.e. of some arguments, that will never be applied and hence this part is apparently redundant in 
the theory. 

A.6 Detecting Anomalies – Link with Abduction 
Given the above universal notion of anomaly the task of detecting anomalies in a given policy 
reduces to the simple task of posing a set of semantic queries on the policy. No specialised 
algorithms are needed. Instead we can use the basic semantic query of an argumentation-based 
framework: 

 arg-prove(Goal,Delta) 

of showing the existence (and constructing) of the subset, Delta, of the given policy as an 
admissible argument for the goal, Goal. 

In our case the Goal is of the general form, action(NetTraffic,Action), and based on this we have 
the following general query schema for detecting anomalies: 

anomalous1(NetTraffic,Action) if 
      not arg-prove(action(NetTraffic,Action),Delta) 
 

anomalous2(NetTraffic) if 
   arg-prove(action(NetTraffic,Action1), Delta1), 
  arg-prove(action(NetTraffic,Action2), Delta2), 
  incompatible(Action1,Action2). 

Given a specify network traffic of interest, net_traffic, and a specific action, act_1, of interest for 
this traffic the queries:  

 ? anomalous1(net_traffic, act_1) 

 ? anomalous2(net_traffic) 

show, if anyone of the two succeeds, the existence of an anomaly for this specific network traffic. 
With the first query we detect that for this type of traffic we can never have the action, act_1, 
revealing a redundancy type of anomaly (or as explained above an extreme conflict anomaly). 
With the second query we detect that for this type of traffic we have at least two possible but 
incompatible actions, revealing a conflict anomaly. If both these queries fail then the policy is 
anomaly free. 

Note that the second query when it succeeds gives us also the arguments Delta1 and Delta2 that 
support the conflicting conclusions of the policy. This facilitates the process of resolution of the 
anomaly as we can see in these which subparts of the policy are in conflict (see below the 
subsection on anomaly resolution). 



The above queries assumed that we first select a specific network traffic that we suspect might be 
treated in an anomalous way by the policy or we in some way generated systematically all the 
different possible traffics within our network and we check each one for an anomaly. In order to 
find out automatically such cases of anomalous traffic we can employ, together with 
argumentation, the reasoning process of abduction that would generate (if they indeed exist) the 
specific traffic or scenarios for which the policy has an anomaly. This application of abduction is 
completely analogous to its use in the earlier studies of the problem of policy analysis and 
refinement in [44] and later in the context of  [1]. 

Hence we would employ the semantic query: 

 abd-arg-prove(Goal,Delta,Hypotheses) 

which generates a set of abductive hypotheses, Hypotheses, on a a-priori chosen set of relations 
(in our case the relations describing the network traffic) which when we take as given extend our 
policy such that the goal, Goal, has the admissible argument, Delta. In other words, these 
hypotheses describe a specific scenario under which the Goal is admissible. In our case they will 
describe a specific case of network traffic, in terms of the network conditions which will be our 
abducible predicates, for which the Goal is admissible.  

Our queries for finding anomalies will then be based on extended definitions these. For example, 
the definition of “anomalous2” given above will be extended to: 

anomalous2(NetTraffic) if 
   abd-arg-prove(action(NetTraffic,Action1), Delta1,Hyp), 
   abd-arg-prove(action(NetTraffic,Action2), Delta2,Hyp), 
   incompatible(Action1,Action2). 

showing that under the common hypotheses (scenario), Hyp, that specify the network traffic, 
NetTraffic, we have admissible arguments for two incompatible actions for this traffic. A query  

?anomalous2(NetTraffic) 

that leaves the network traffic open will then generate scenarios, described by the hypotheses 
Hyp, under which the policy has an anomaly. 

We mention here that abduction can be used in order to address other problems than the 
detection of anomalous scenario (traffic). An important such problem would be the task of 
finding under which priority ordering relations of the rules of our policy we could ensure that 
some desired property held true. Suppose for example that we want the safety requirement that 
any traffic that comes from a Domain Name Server (DNS) is to be accepted. How can we ensure 
this? 

We could at first check, using the query  

? arg-prove(action(dns_traffic,accept), Delta), 
  not arg-prove(action(dns_traffic,deny), Delta1) 

to check that there is indeed at least one admissible argument to accept this and that there is no 
admissible argument, Delta1, in our policy that would deny such traffic. If this query succeeds 
then the safety requirement holds and there is nothing else to do. But if it fails we will need to 
edit our policy so that this cannot happen. In particular, as we mentioned above, we may want to 
find under what ordering of the policy rules this can succeed. For this we then declare our 
abducible relation to be the ordering relation amongst rules. We could for example introduce a 
general abducible relation, abd_order(Id1,Id2), which using the general schema rule 

r(Id1) > r(Id2) if  abd_order(Id1,Id2) 

would allow us to generate hypotheses on the ordering of the rules of our policy through ground 
hypothetical facts of abd_order(Id1,Id2). Then by posing the abductive query 

? abd-arg-prove(action(dns_traffic,accept), Delta, Hyp), 



  not abd-arg-prove(action(dns_traffic,deny), Delta1,Hyp) 

we would generate a set of ordering hypotheses, Hyp, that would ensure that this traffic can only 
be accepted as required. 

A.7 Anomalies in Distributed Policies 
With the semantic definition of anomaly defined above, we can now escaped from the 
procedural (and single rule) realm of anomalies and we can easily use (or generalize) this same 
notion to distributed policies, where we will be looking for components of the distributed policy 
that are admiss ibl y  incompati bl e . This has become possible because even in the case of a single 
policy we now view anomalies as cases of conflict between its different parts, i.e. as a policy 
distributed amongst its parts.  

With distributed policies the problem of the existence of anomalies is more severe as there are 
more possibilities for conflict to occur. In fact, in a distributed policy we can have situations 
where one component decides to accept a traffic whereas another component decides to deny it. 
This can not occur in a single legacy firewall policy due to the linear and total order of its parts.  

For example, we can have an upstream firewall blocking a traffic that is permitted by a 
downstream firewall, a type of inter-firewall shadowing anomaly. In a “classical” operational 
approach for anomalies the definition of this anomaly requires a detailed (and somewhat ad hoc) 
examination of the pairs of rules form the two firewalls. In our declarative approach this anomaly 
falls under the same definition given above. Simply, we have for the same traffic an admissible 
subset of the upstream policy that concludes to accept it and at the same time we have an 
admissible subset of the downstream policy that concludes to deny it. 

Our general definition of anomaly is indeed all encompassing, able to capture all other types of 
anomalies of distributed policies. In every case we simply have admissible subsets of two 
different components of the policy that have an opposite or incompatible conclusion. As we 
change the network topology we do not need to change this definition and hence our methods of 
detection of anomalies. We can for any network topology base our investigation of anomalies on 
the same definition of the existence of admissible components that are incompatible.  

For example, instead of a linear network topology where we have cascading firewalls we may 
have a topology that allows alternative routes to some domains through different firewalls. In this 
case, the anomalous situation where the same traffic between two domains (e.g. Dn and Dk in the 
figure below) would be accepted via one route and denied through another route is again simply 
a case where in the distributed firewall policies involved in these two routes there are two 
admissible parts that have the opposite conclusion for this traffic. Hence in the figure below, 
there is a firewall, FWx within one route and a firewall FWy within the other route, such that for 
some traffic the policy FWx admissibly accepts this whereas the policy FWY admissibly denies 
this. This universality of the definition of anomaly which simply formalizes the informal notion 
of “the existence of conflict of opinion between different parts of the policy” is not exhibited by 
the “classical” operational approach where one needs to change and customize its definition of 
anomaly to each different particular network topology. 

 
 
 



 
 
 

A.8 Anomaly Resolution 
The declarative understanding of anomalies and its universality facilitates the problem of their 
resolution. We can address this problem within the general process of the development of the 
security policy following the general methodology that we have proposed in section A of this 
report for the development of specifications of software requirements within the argumentation 
framework of LPP. 

Hence given the existence of an anomaly we would have two parts of the policy that are in 
conflict and we could use our conflict resolution methods to remove this. Each one of these 
admissible parts of the policy would contain not only the basic rules, that fire under the traffic 
conditions for which the anomaly exists, but also the rules that give the priority ordering that 
makes them admissible. The administrator/developer would then be alerted either (a) to the fact 
that some ordering relation is mistaken or (b) that the existing ordering rules are incomplete at 
some level or (c) new ordering rules are needed at one level higher to address the question of 
which rules are stronger.  

In particular, in the case of distributed policies the administrator would be alerted to the fact that 
two component policies are in conflict and would then be able to resolve this using a meta-policy 
of priority amongst the two components. For example, in order to resolve an inter-firewall 
shadowing anomaly, the administrator can apply the meta-policy that the more local 
(downstream) a firewall is in a cascade of firewall policies the stronger it is, by employing the 
priority rule: 

R(over(Id1,Id2), Traffic, policy(downstream_stronger)):  
r(Id1, Traffic, policy(Policy1))  > r(Id2, Traffic, policy(Policy2))  if  

downstream(Policy1, Policy2) 

Another way to represent this meta-policy within LPP would be to state directly the priority on 
the conclusions of the policies as follows: 

R(over(Policy1,Policy2), Traffic, policy(downstream_stronger)):  
action(Policy1, Traffic, Action1)  > action(Policy2, Traffic, Action2)  if  

downstream(Policy1, Policy2) 

More generally, this meta-policy of stronger downstream firewall may apply only under some 
specific circumstances of the traffic for which we have the anomaly and that in the other 
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circumstances the upstream firewall should be stronger. Then these meta-policy rules would be 
further conditioned on these circumstances.   

A.9. Modelling & Analysing Policies in GORGIAS 
The LPP framework of LPwNF is implemented in a system called GORGIAS [45]. This 
supports both the argumentation reasoning of LPwNF and its abductive reasoning. It is build on 
top of Prolog and it is available at: www.cs.ucy.ac.cy/~gorgias. Details of how to use this system 
with tutorial examples can be found at this web page. This system has been used recently in the 
development of an agent architecture  [46] to provide the agent with a flexible goal decision 
mechanism and at the same time a declaratively specified operational model of the agent that is 
adaptable to its external environment. It has also been used in the development of applications of 
automated decision making in the medical domain [47].   

In appendix A the full implementation in GORGIAS of the Elevator Policy presented in section 
A is given, together with some examples scenarios that illustrate its use in the operation of the 
elevator. Implementing legacy firewall policies in GORGIAS can be done in the same way and in 
fact this is simpler due to the simpler nature of these policies. Here are two example rules in the 
basic part of an example policy (taken from [45]): 

% Deny all packets from machine "apollo" to port 80 
rule(basic(1, [tcp,apollo,SrcPort,DstIp,80]), action(deny, Packet),  

[sourceip(Packet,apollo), destinationport(Packet,80)]). 

% Accept all packets from network 1 to port 80. 
rule(basic(2, [tcp,net1,SrcPort,DstIp,80]), action(accept, Packet), 

[sourceip(Packet,net1), destinationport(Packet,80)]).  

Here the predicates sourceip/2, destinationport/2 etc are auxiliary background predicates defined 
by simple rules, e.g.  

sourceip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),net1):-  
ScrIp = [140,192,37,X]. 

sourceip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),apollo):-  
ScrIp = [140,192,37,20]. 

destinationport(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),DstPort). 

destinationip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),zeus):-  
DestIp = [160,120,33,40]. 

Note how the name, e.g.  “basic(1, [tcp,apollo,SrcPort,DstIp,80])”, of the rules in the basic part 
of the policy includes a representation of the traffic for which they apply. The names do not 
include a representation of the policy to which they belong as we are representing here only one 
policy. 

The strategy part of the policy as shown by the results of the translation of legacy firewall policies 
in LPwNF consists simply of the rule: 

% Priority of rule N1 over rule N2 
rule(over(N1,N2),prefer(basic(N1,Packet),basic(N2,Packet)),[N1>N2]). 

The main query predicate of GORGIAS is: 

  ?prove(Goal,Argument) 

which succeeds by finding an admissible argument, Argument, as a list of policy rule names 
under which the goal, Goal, is logically entailed by these rules. 

Hence to find out the recommended action for an example packet of traffic we use queries on 
“find_action/3” defined as: 



find_action(Example, ReccomendedAction, SupportingArguments):-  
 examplePacket(Example, ExamplePacket), 

prove([action(ReccomendedAction, ExamplePacket)], 
   SupportingArguments). 

Automatic detection of anomalies in policies can be carried out using semantic queries on 
predicates such as anomalous/3 defined by: 

anomalous(Traffic, Delta1, Delta2):-  
 examplePacket(Traffic, ExamplePacket), 
 prove([action(ReccomendedAction, ExamplePacket)], Delta1), 

complement(action(ReccomendedAction, Packet), 
     action(CompAction, Packet)), 

 prove([action(CompAction, ExamplePacket)], Delta2). 

Finally, we comment that once a firewall policy is analysed through its GORGIAS 
implementation we can examine ways how to automatically translate these policies into lower 
level specialised procedural languages that could effectively employed on real time traffic. 

A.10 Discussion 
We have studied the use of argumentation based preference policies as a way to specify and 
analyse software requirements policies. We have established this new link between software 
requirements policies and argumentation and have shown important properties of this approach: 

• Declarative modelling of policies where these can now be represented directly from the 
requirements specification exploiting the high-level of expressivity of the adopted logical 
framework of argumentation. 

• Semantic high-level analysis of policies with a uniform formulation of anomalies that is 
invariant as we extend the type of policies that our applications require. 

• Automatic detection of anomalies through semantic queries of integrated abduction and 
argumentation. 

• Modularity of representation and semantic analysis of the policies that facilitates their 
incremental development and the composition of distributed policies. 

In the particular area of network firewall security policies our work gives a declarative meaning to 
these policies and offers a semantic framework for their analysis, that escapes from the low level 
procedural and syntactic analysis of policies that is present in many of the current approaches to 
firewall policies. Unlike these approaches, our formalization does not need to be reconsidered 
and the analysis process does not need to be redefined every time we wish to extend the realm of 
application of the firewall policies. 

In the study of the analysis of firewall policies we have shown specifically that the various types 
of anomalies in firewall policies, identified separately in the literature, can be captured naturally 
under the same and unified definition based on the standard notion of an admissible argument in 
Logic Programming with Priorities (LPP). This high level definition means (a) that we are more 
complete in capturing the notion of anomaly and (b) that our definitions remain invariant as we 
develop further the type of our policies, e.g. as we consider extensions of policies such as 
distributed policies. 

The high-level of expressivity of the LPP framework, particularly its ability to represent explicitly 
orderings which can be conditional on some background properties, facilitates greatly the process 
of conflict resolution within our policies. This can be carried out by modular and incremental 
extensions of the policy guided by the user by presenting to her/him the conflict scenarios and 
the parts of the policy (arguments) that lead to the problem. 

 
 
 



Part B: Abductive Constraint Logic Programming for  
Policy Refinement 

B.1. Introduction 
Effective management of distributed computing resources in an environment with changing 
requirements, having multiple administrative domains and heterogeneous technology is a key 
challenge for today’s system administrators.  Policy-based approaches to systems management 
are gaining widespread interest because they provide the flexibility that result from separating the 
rules that govern the behavioral choices in a system from the underlying functionality.  This 
allows systems to adapt their behavior according to the user’s requirements and the current 
environment. 

To date, the majority of the research into policy-based management has focussed on languages 
for specifying policy rules and architectures for deploying and enforcing policies.  As a result, a 
number of different types of policies have been identified.  Broadly these can be categorised as 
management/behavioral policies, which prescribe how a system should respond in a given 
situation; and security authorisation policies, which define the conditions under which users or 
agents can (or cannot) access particular resources.  When writing policies it is important to ensure 
that they meet the user’s requirement and are consistent with respect to the overall system in 
which they are to be used.  This latter task is referred to as policy analysis and our prior work has 
shown how an Event Calculus based formalisation of policy-managed systems can provide 
administrators with the capability to detect a range of inconsistencies [1]. The requirement of 
translating the high-level requirements of a user into policies that can be enforced by the system 
was identified as early as 1993 by Moffett and Sloman [2]. They described the successive 
refinement of high-level goals in a policy hierarchy, called Policy Refinement, and presented the 
following objectives for a policy refinement process: 

• Determine the resources that are required to satisfy the needs of the policy. 

• Translate high-level policies into operational policies that can be enforced by the system. 

• Allow analysis to verify that the set of lower level policies actually meet the requirements 
of the high-level policy. 
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Figure 1: Relationship between policy refinement techniques 

Since then, a number of researchers have presented techniques for addressing the challenges of 
refinement but in each case a number of limitations had to be imposed in order to develop a 
workable solution.  When developing a policy refinement technique the main compromise is 
between the generality of the technique and the amount of automation.  As illustrated in Figure 
1, this trade-off means that techniques that are highly automated tend to have a very narrow 
domain of applications in which they work.  On the other hand, techniques that have general 
applicability are not particularly automated. 

Our previous work has shown how a formal representation of policy-managed systems can be 
combined with the KAOS goal elaboration technique [3], to provide a framework for policy 
refinement [4].  However, the low-level goals derived using this technique cannot be directly used 
in policies without first identifying the management operations that will achieve them.  To 
support this identification process, we introduce the concept of a strategy, which is the 
mechanism by which a given system can achieve a particular goal, i.e., a strategy is the 



relationship between the system description and the goal.  By having a formal specification of the 
latter two types of information we can use abductive reasoning to infer the strategy.  We use the 
KAOS goal elaboration technique because it provides the concept of domain-specific and 
domain-independent refinement patterns, logically proven goal refinement templates that can be 
easily reused.  We can use such patterns to capture the refinement of goals that are commonly 
encountered in policy-based management, thus simplifying the refinement process for the user.   

Whilst the use of policy refinement patterns offers a degree of automation in the refinement 
process, the need to choose subjects, targets and also specify the parameters to be used in the 
management operations mean that in order to produce an enforceable policy some user input is 
still required.  Additionally, it is necessary to ensure that the policies generated in this manner are 
consistent with respect to the system, and do not conflict with other policies in the system.  In 
this paper we describe how the formalism used to describe the policy-managed system can be 
extended such that the abductive inference procedure not only generates potential strategies for 
achieving a given goal, but also derives the remaining information required to specify a correct 
policy.  We achieve this by using the integrity constraint definition features of the abductive 
inference procedure.  Integrity constraints are rules that specify the conditions under which the 
formal model of the system being analysis is inconsistent.  The main advantage of using integrity 
constraints is that they can be specified in a modular fashion, making them easier to specify, and 
are evaluated in a computationally efficient manner. 

Integrity constraints with respect to allowable subjects, targets, allowable parameter values and 
overall system consistency can ensure that the policies derived from the refinement process are 
correct and complete.  However, this process can still result in multiple derived policies that 
satisfy a given goal.  In order to fully automate the refinement process, it would be desirable to 
have a mechanism to select just one policy from the derived set.  We propose integrating a 
selection algorithm into the automated policy refinement procedure that uses utility functions to 
quantify the appropriateness of the derived policies and pick the best one.   

The remainder of this paper is organised as follows.  Section 2 presents some background 
information about event calculus and abductive reasoning, together with a description of the 
goal-based policy refinement technique we have already developed.   This is followed by a 
description of the formal language used to represent policy-managed systems in section 3.  In 
section 4 we show how integrity constraints can used to automate the policy refinement 
procedure and in the following section we provide a discussion of our work.  Section 6 describes 
some related work in the area of autonomic computing and policy refinement, and finally section 
7 presents our conclusions and future work. 

B.2. Background 

B.2.1. Event Calculus and Abductive Reasoning 
Event Calculus was first presented by Kowalski and Sergot [5] as a logic-based formalism for 
representing and reasoning about dynamic systems.  Because the language includes a 
representation of time that is explicit and independent of any (sequence of) events or actions, it 
has been found suitable for modeling a wide range of event driven systems.  This includes 
systems which are non-deterministic, since it is possible to represent scenarios where multiple 
events occur simultaneously.  Additionally, the implementation does not place any restrictions on 
the size of the state space of the system being modeled.   

Fundamentally, a policy managed system is one whose state changes over time and in response to 
the particular events.  Therefore, the formal representation of such systems must be based on a 
language that supports the notions of events, time and system states that vary over time.  For this 
reason we chose the Event Calculus as the underlying formal notation for representing policy-
based management systems. 

Whilst several variations of the Event Calculus have been presented, here we make use of a 
sorted classical logic form [6], consisting of 3 main sorts: (i) time points that can be mapped to 



the non-negative integers; (ii) properties that can vary over the lifetime of the system, which we 
refer to as fluents; and (iii) events.  In addition the language includes a number of base predicates, 
initiates(A, B, T), terminates(A, B, T), holdsAt(B, T), happens(A, T), which are used to define some auxiliary 
predicates.  These are summarised in Figure 2. 

 Base predicates: 
  initiates(A,B,T)  event A initiates fluent B for all time > T. 
  terminates(A,B,T)  event A terminates fluent B for all time > T. 
  happens(A,T)   event A happens at time point T 
  holdsAt(B,T)   fluent B holds at time point T.  This predicate is useful for  
   defining static rules (state constraints). 
  initiallyTrue(B) fluent B is initially true. 
  initiallyFalse(B) fluent B is initially false. 
 

 Auxillary predicates: 
  clipped(T1,B,T2)  fluent B is terminated between timepoint T1 and T2. 
  declipped(T1,B,T2)  fluent B is initiated between timepoint T1 and T2. 
 

 Domain independent axioms: 
  clipped(T1, B, T2)  terminates(A,B,T) ∧ happens(A,T) ∧ T1 [ T < T2 
  declipped(T1, B, T2)  initiates(A,B,T) ∧ happens(A,T) ∧ T1 [ T < T2 
 
  holdsAt(B, T1)   initiallyTrue(B) ∧ ¬ clipped(0, B, T1). 
  holdsAt(B, T1)   initiates(A, B, T) ∧ happens(A, T)  ∧  
       ¬ clipped(T, B, T1) ∧ T < T1. 
 
  ¬ holdsAt(B, T1)   initiallyFalse(B)  ∧ ¬ declipped(0, B, T1). 
  ¬ holdsAt(B, T1)  terminates(A, B, T) ∧ happens(A, T) ∧  
      ¬ declipped(T, B, T1) ∧ T<T1. 

Figure 2: Event Calculus predicates and axioms 

The Event Calculus supports both deductive and abductive reasoning.  Deduction uses the 
description of the system behavior together with the history of events occurring in the system 
and the domain independent axioms to derive the fluents that will hold at a particular point in 
time.  Whilst deductive reasoning can be used to verify simple properties for a managed system, 
such as checking if a particular policy is applicable at a given point in time, or determine the set 
of access rights granted to a given user, the reasoning technique that is of particular interest to 
our work is abduction.  Abduction can be used, given the descriptions of the behavior of the 
system, to determine the sequence of events that need to occur such that a given set of fluents 
will hold at a specified point in time. Therefore, we define happens(A, T) as the abducible term in the 
language.  

Because Event Calculus is expressed in First Order Logic (FOL), it supports all three modes of 
logical reasoning – deductive, inductive and abductive.  This means that given an Event Calculus 
based representation, it is possible to automate the verification of a range of properties regarding 
the system.  Deduction uses the description of the system behavior together with the history of 
events occurring in the system to derive the fluents1 that will hold at a particular point in time.  
Induction aims to derive the descriptions of the system behavior from a given event history and 
information about the fluents that hold at different points of time.  However, the reasoning 
technique that is of particular interest to our work is abduction.  Abduction can be used, given 
the descriptions of the behavior of the system, to determine the sequence of events that need to 
occur such that a given set of fluents will hold at a specified point in time.  More formally this 
can be described as the derivation of a set of assertions ∆, given a system description D and a 
goal sentence G, such that (D ∪ ∆) ┠ G and (D ∪ ∆) is consistent. The set ∆ should only 
contain sentences that have been defined as abducible, where the exact set of abducible terms will 
be specific to the application domain.  Since an inherent feature of the abductive procedure is to 
derive information that is “missing” in the system description (i.e. the abducibles) in order to 

                                                
1 A fluent is a property that varies over the lifetime of a system 



satisfy the goal, the technique is able to deal with situations where only a partial definition of the 
initial system state is provided. 

From an algorithmic perspective, the process of deriving the set ∆ (called the abductive inference 
procedure) is usually composed of two phases – an abductive phase followed by a consistency phase 
which interleave with each other.  In the first phase a set of temporary abducibles is generated 
and must checked for consistency with respect to the system description in the second phase 
before they can be added to the final solution.  The listing below presents a pseudo-code 
description of a simple abductive proof procedure. 

 
 Assumptions:  
  - The system description, D consists of rules of the form  
    A   L1 .  L2 .  .. .  Ln, where head of the rule A is a positive atom and 
    the clauses in the body of the rule L1 .. Ln, are atoms, Ai (or ¬Ai).    
 
  - An abductive solution is obtained by calling the function,  
    generateAbducibles(Goal, Delta), where the Goal is an atom and Delta will 
    contain the set of abducibles that together with the system description 
    satisfy the goal. 
 
  - Abducible atoms, ∆i, are defined as such using the predicate abducible(∆i). 
 
  - The consistency properties of the system are defined using rules of the form 
    ic   P1 .  P2 .  .. .  Pn, were the conjunction of terms in the body of the  
    rule represent the properties that hold when there is an inconsistency 
 
 Pseudo-code: 
 
   generateAbducibles(G, DELTA) { 
  if (G is an atom that exists as a fact in the system description) 
      Return the solution DELTA. 
      END. 
  else if (abducible(G) is a fact in the description) 
      if not((D 4  DELTA 4  G) δ  ic)         // CONSISTENCY CHECK 
   Add G to the solution DELTA. 
   Return the solution DELTA. 
   END. 
      else 
   Return the solution DELTA 
   END. 
  else if (G is an atom at the head of a rule, G  L1 . .. . Ln)  
      for each clause in the body of the rule, Li 
   Call generateAbducibles(Li, DELTA) 
   } 
 
 

Over the years, many abductive inference procedures have been proposed.  Work by Eshigi and 
Kowalski [7], Kakas and Mancarella [8], together with the techniques SLDNFA [9], IFF [10] and 
ACLP [11] are some of the most influential examples in this arena.  However, none of these 
proposals resulted in an efficient implementation that could serve as a general solver for 
abductive logic programs.  The ASystem, developed by Van Neuffelen [12], addresses the need 
for an abductive proof procedure for use in a framework for policy analysis and refinement 
because it has been shown to provide an efficient implementation of a general abductive 
inference procedure.   Specifically, the ASystem reduces the goal formula that is presented to the 
abductive inference procedure into more basic formulas and then uses a constraint solver to 
evaluate these formulas and infer the set of abducibles that will satisfy the original goal.  The idea 
of reducing a problem so that multiple external solvers can be applied to produce a solution is 
inspired by the Abductive Constraint Logic Programming (ACLP) technique described in [11].   

The current implementation of the ASystem integrates a finite domain constraint solver and a 
(dis)equality constraint solver, and since this is done in a modular way it is possible to extend the 
system’s capabilities or improve them as better solvers are developed.  Also, the use of constraint 
solvers allows the ASystem to evaluate the integrity constraints that ensure the consistency of the 
overall solution more efficiently. 



One significant limitation of the ASystem is that it does not deal with problem specifications that 
include cyclic dependencies and in these cases can get trapped in a loop.  We are able to avoid 
this being a problem by constraining our formal specification to a subset of first order logic 
known as stratified logic.  A stratified program is one where it is possible to order the clauses such 
that for any clause containing a negated literal in its body, there is a clause later in the program 
that defines the negated literal.  Another way of describing stratified theories makes use of 
directed dependency graphs.  These are graphs that comprise a node for each predicate symbol 
appearing in the program and a directed edge from the node representing any predicate that 
appears in the body of a clause to the node representing the predicate defined in the head of the 
clause.  The edges are labelled positively or negatively, where a negative symbol indicates that the 
predicate at the tail end of the edge appear in negated form in a clause of the program.  Using 
this technique, a program is stratified if the dependency graph contains no cycles having a 
negative edge.  Informally, stratified logic programs are those that have a constrained use of 
recursion and negation.  This is desirable because numerous studies have identified stratified 
logic as a class of first order logic that supports logic programs that are decidable in polynomial 
time [13].  

As will be shown in our previous work, Event Calculus can be used to represent the dynamic 
behavior of a policy managed system and abductive reasoning provides a means of deriving the 
sequence of events required to satisfy particular properties of a managed system.  In this context, 
abductive reasoning provides similar capabilities to model checking [], but has the advantage of 
being able to deal with incomplete specifications of the initial state.  Additionally, since the Event 
Calculus representation of a policy managed system is in first order logic, deductive reasoning 
can be used to check static properties of the system.  This makes the use of abductive reasoning 
in conjunction with the Event Calculus preferable to model checking for the types of analysis 
required in a policy analysis and refinement framework.  

B.2.2. Goal-based Approach to Policy Refinement 
The first part of our policy refinement process is a technique for refining high-level goals into 
concrete achievable goals, often referred to as System Requirements. The next part of the 
refinement process maps these system requirements to specific modules/operations that are 
available within the system. In this process, each high-level goal is refined into sub-goals, forming 
a refinement hierarchy where the dependencies between goals at different levels of refinement 
are based on the type of goal decomposition used (AND/OR). Additionally there can be 
dependencies between goals in different hierarchies. The refinement process involves following a 
particular path down the hierarchy, at each stage determining if the goal can be achieved by the 
system. If a particular goal cannot be achieved, then we have to either increase the system’s 
functionality by adding additional management procedures and services, or manually decompose 
the goal into appropriate lower-level goals. In most situations we would expect the user to do the 
latter. 



KAOS [3] is a technique for goal elaboration, where each goal is represented as a Temporal Logic 
rule and elaboration patterns are used to decompose the original goal into a set of sub-goals. 
High-level representations of the goals can be used to shield the users from the formal 
specification and reasoning processes that are used in the background. Whilst KAOS does not 
provide automated support for goal elaboration, it does define a library of application-
independent elaboration patterns that have been logically proved correct. Table I shows some 
patterns of AND-decomposition for goals of the form P → ◊ Q (if P holds, then Q will 
eventually hold in the future).  

In our implementation, these patterns are encoded in the underlying formalism such that when a 
user provides a high-level goal, the system can infer the sub-goals that are valid decompositions.  

For example, given the elaboration patterns presented in Table I, if the user presents the goal “on 
receiving a SLS from AOL, the SLS should be accepted”, the system would suggest the following 
sub-goal decompositions: 

 
 GP1:  on (receive SLS from AOL) then eventually (?Goal1?) AND 
  ?Goal1? then eventually (SLS accepted) 
 
 GP2: ?Goal1? then eventually (SLS accepted) AND 
  ?Goal2? then eventually (SLS accepted) AND 
  on (receive SLS from AOL) then (?Goal1? OR ?Goal2?) 
 
 GP2’: (on (receive SLS from AOL) then eventually (?Goal1?) AND 
  ?Goal1? then eventually (SLS accepted) ) 
    OR (on (receive SLS from AOL) then eventually (?Goal2?) AND  
  ?Goal2? then eventually (SLS accepted) ) 
 
 

The decompositions also have high-level descriptions of the patterns applied.  The user then uses 
his domain knowledge to choose the decomposition for which the missing goals (denoted by 
?GoalX?) can be specified in a meaningful way.  

For a particular application domain, specialised goal elaboration patterns can be defined by an 
expert such that the high-level goals and associated decompositions are expressed using 
application specific terms. Additionally, the expert can specify invalid sub-goal combinations by 
using integrity constraints. Both of these techniques limit the set of derived decompositions to 
those that are applicable and valid for the application domain. This makes it easier for the user to 
select a suitable decomposition without needing to understand the underlying formalisms.  

Whilst the work presented in [3] only considers domain-independent elaboration patterns, it is 
also possible to use these domain-independent results to develop specialised patterns that apply 
to particular application domains.  For example, Figure 3 shows the definition of a goal 
refinement pattern for a user login application. 

This goal hierarchy states that the high-level goal of the application is that when a user attempts 
to login to an application (i.e. loginReq(user, application) occurs) then the loggedIn(user, application) goal is 
eventually achieved.  The next level of the hierarchy shows that in order to satisfy the high-level 
goal it is first necessary to satisfy the sub-goals that the user has been authenticated and 
authorised to login to the application (authenticated(user) . allowed(application, loggedIn, user)).  These two 
sub-goals can be further refined, resulting in two operational goals.  The first states that if there is 

TABLE I 
APPLICATION-INDEPENDENT GOAL ELABORATION PATTERNS 

Ref Goal Subgoals 

GP1 P → ◊ Q (P → ◊ R) ∧ (R → ◊ Q) 

GP2 P → ◊ Q (P1 → ◊ Q) ∧ (P2 → ◊ Q) ∧(P → P1 ∨ P2)  

GP2’ P → ◊ Q (P → P1 ∧ P1 →  ◊ Q) ∨ (P → P2 ∧ P2 → ⊄Q) 

 



an AuthenticationService (as) which has a status indicating that the user is authorised then the goal 
authenticated(user) is satisfied.  The other operational goal states that if there is an AccessController (ac) 
which is responsible for the application (ac.mgdObj = application) and the status of this access 
controller allows the user to login, then the goal allowed(application, loggedIn, user) is satisfied.   

loginReq ( user , application ) = > 

Ë loggedIn ( user , application )

loginReq ( user , application ) = > 
Ë authenticated ( user ) . 

allowed ( application , loggedIn , user )

authenticated ( user ) . 
allowed ( application , loggedIn , user ) = > 

Ë loggedIn ( user , application )

!  as : AuthenticationService : 
( as . status = authenticated ( user )) 

=> authenticated ( user ) 

! ac : AccessController : 
ac . mgdObj = application . 

( ac . status = allowed ( application , loggedIn , user )) 
=> allowed ( application , loggedIn , user )

 

Figure 3: Application-specific goal elaboration pattern 

Having defined this goal hierarchy, an administrator can reuse it to directly obtain the operational 
goals for a login procedure in any login application.  This is possible because the refinement can 
be proven to be correct (using the proofs for the domain-independent patterns), and therefore it 
is no longer necessary to show the intermediate goals in the elaboration process when using it.  

Being able to specify such application specific elaboration patterns allows users to translate high-
level requirements into system requirements by simply instantiating the pattern with the 
information relevant to their particular application.  A particular strength of KAOS is that, 
because the elaboration pattern includes a formal proof, the user can be confident that this 
transformation is correct.  An additional advantage of the KAOS approach is that it is based on a 
formal notation, thus providing the possibility of using automated reasoning techniques for the 
goal elaboration process. 

Having refined the abstract goals into lower-level ones, the next phase of the process is to assign 
each refined goal to a specific object/operation such that the final system will meet the original 
requirements. Since KAOS does not provide support for automating this, we propose the 
following method for inferring the operations that must be performed by the system to achieve a 
particular goal.  

At a given level of abstraction there will be some description of the system (SD) and the goals 
(G) to be achieved by the system. The relationship between the system description and the goals 
is the Strategy (S), i.e. the Strategy describes the mechanism by which the system represented by 
SD achieves the goals denoted by G. Formally this would be stated as: SD, S → G 

This requires a representation of the system description, in terms of the properties and behaviour 
of the components, together with a definition of the goals that the system must satisfy. We use 
Statecharts to describe system behavior, where each transition indicates the invocation of an 
operation and/or the occurrence of a system event. Guards are specified for transitions with pre-
conditions for invoking the operation. We have chosen Statecharts for two reasons: first, because 
it is unlikely that system descriptions will be provided in the underlying formal specification 
language whereas Statecharts are a well-known design level behavioral specification notation and 
second, because it is possible to translate from the Statechart specification to the underlying 
formalism. 



Given the rules describing a system (SD) and the definition of some desired system state (i.e., the 
goal - G), abductive reasoning allows us to derive the facts that must be true for the desired 
system state to be achieved. As the goal is represented by a desired system state the abductive 
reasoning process is essentially deriving a path in the statechart from some initial state to the 
desired one. This path is the derived strategy and can be represented using the following syntax: 

 Strategy AchievedGoal 

   OnEvent         Events derived from transitions with system events. 

   DerivedActions  Actions derived from transitions with operations. 

   Constraints     Constraints derived from guards. 

 

Whether a strategy should be encoded as policy, or as system functionality, will depend on the 
particular application domain. Although there is no obvious way to automate this decision, we 
propose the following guidelines to identify the situations where a policy-based implementation 
would be appropriate: 

• If the goal refinement results in a disjunction of sub-goals (i.e. the high-level goal can be 
achieved by one of an OR-decomposed set of sub-goals), the strategies derived for each 
of the sub-goals could be encoded as policies. 

• If the system supports multiple strategies for achieving a given goal, each of these 
strategies could be encoded in a separate policy. This situation might arise when the 
abductive process yields multiple solutions.  

• If a strategy has parameter values that may need to change in the future, implementing 
the strategy in a policy will provide the flexibility to do this. 

In addition to elaborating goals and deriving strategies, it is necessary to map abstract entities to 
concrete objects/devices in the system. For example, there might be an abstract “Network” 
entity that logically consists of “Routers”, “Links” etc., each consisting of the relevant managed 
objects. A domain hierarchy is used to represent the relationships between the various abstract 
entities and the low-level concrete objects [14]. This domain hierarchy can be derived using 
automated discovery techniques, a capability of commercial tools such as HP OpenView, CA 
UniCentre and IBM Tivoli.  

Additionally, it is possible to use authorisation policy information and object type information to 
identify the concrete objects/devices to be specified in the low-level policy.  Combining this 
approach to identifying the concrete objects with the goal elaboration and strategy derivation 
techniques, the overall policy refinement process can be summarized as follows.  

 

Figure 4:  Overview of Policy Refinement Process 

The user provides the high-level policy they are interested in refining. This policy would be of the 
form “On event, if condition holds then achieve goal”. As described previously, the KAOS 



approach is applied to elaborate the high level policy, making use of both application-
independent and application-specific refinement patterns. At each stage of elaboration, the 
system description and the goals are used to attempt to abduce a strategy for achieving the goal. 
It is important to note that the system description information need not be provided by the user. 
Instead, the statechart description of the system may be part of a standard information model or 
may be provided by equipment vendors. If no strategy can be derived, then the preferred course 
of action is to further elaborate the goals. However, if the existing low-level goals are already 
expressed at the lowest level of abstraction in the system, it is not possible to elaborate the goals 
further. In this situation the system description must be augmented with more detail. This 
involves specifying additional management operations for the system, either as custom-written 
scripts or using functionality of commercial management platforms. The post-conditions of these 
new operations should match the goals for which a strategy is required.  

Once a strategy is identified, it is used in the action clause of the final policy. The domain 
hierarchy is used to identify the subject and target objects in the system for the derived policy 
that correspond to those entities mentioned in the high-level policy. Finally the event and 
constraints of the high-level policy are mapped, by the user, into the final policy which is written 
in a notation that does not require knowledge of the formalisms used (Figure 4).  

This final step is a manual one since there is no easy way to capture the domain information 
necessary for translating high-level events and constraints into lower-level ones. This is not a 
major disadvantage since these mappings can be done once and encoded into application specific 
refinement patterns that are reusable. 

B.3. Formal Representation of Policy Managed Systems 

B.3.1 Example Application Scenario 
In this report, we use an example application taken from the domain of DiffServ QoS 
management [15].  Specifically, we identify goals, strategies and policies in the context of the 
TEQUILA project [16]. TEQUILA uses the DiffServ mechanism, together with Multi-Path 
Labelled Switching (MPLS) [17] to provide a network that can dynamically adapt to meet the 
demands of varying network traffic.  This adaptation is performed using a combination of online 
and offline techniques – from network dimensioning calculations that determine the upper/lower 
bounds of various network parameters based on the Service Level Agreements (SLAs) and traffic 
forecasts; to dynamic resource management and route management modules that make real-time 
changes to the router configuration to meet sudden variations in traffic. 
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Figure 5:  TEQUILA DiffServ QoS Management Framework 

The TEQUILA framework operates in two modes – an offline mode that determines the 
configuration required to meet long-term traffic demands; and a run-time mode that adapts the 
configuration to meet short-term traffic variations. It can be decomposed into three sub-systems: 
SLS subscription, Traffic Engineering and Monitoring. SLS subscription is responsible for 
agreeing the customers’ QoS requirements in terms of SLSs, while Traffic Engineering is 
responsible for fulfilling the contracted SLSs by deriving the network configuration. The 



Monitoring subsystem provides the above systems with the appropriate network measurements 
and assures that the contracted SLSs are indeed delivered at their specified QoS. Figure 5 shows 
a logical representation of this architecture. The TEQUILA framework has been previously 
presented [18], so we describe here only the behaviour of the Service Level Specification 
subscription (SLS-S) and Dynamic Resource Management (DRsM) components which are used 
in the scenarios presented in the next section. 
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Figure 6: Service Level Specification Subscription (SLS-S) Module 

The SLS-S module performs admission control, calculates counter-offers and updates traffic 
forecasts using policies and so is the most relevant component for policy refinement. The SLS-S 
module uses the parameters of each requested SLS to calculate the expected traffic load based on 
traffic demand forecasts. This traffic is then aggregated with the expected traffic accumulated 
from the SLSs established during this Resource Provisioning Cycle (RPC). The resulting 
aggregated traffic defines the maximum potential demand and is mapped against the 
corresponding entries of the resource availability matrix (RA-Matrix). The result of this mapping 
is used by the admission control algorithm, when deciding whether requests should be accepted 
or rejected. Requests are rejected if the risk of overwhelming the network with traffic such that 
QoS cannot be guaranteed is too high. A state chart model of this behaviour is shown in Figure 
6. A more detailed description of the subscription admission control algorithm can also be found 
in [19]. 
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Figure 7: Dynamic Resource Management (DRsM) Module 

The DRsM module is a distributed component responsible for reconfiguring the routers in 
response to short term variations in traffic. It is triggered by network monitors that track PHB 
utilization and raise threshold-crossing alarms when the bandwidth consumed by a PHB exceeds 
an upper threshold or drops below a lower threshold. Two values could be used for each 
threshold (trigger and clear values) to avoid repeated alarms when small oscillations occur. Once 
an alarm is raised, the DRsM calculates a new bandwidth allocation and configures the link 
appropriately; or triggers a new resource provisioning cycle if sufficient bandwidth cannot be 
allocated. Policies determine how to calculate the new values, configure the link or trigger a new 
RPC.  The statechart representation of the behavior of the DRsM module is shown in Figure 7. 



B.3.2 Managed Object Representation 
In our view of a policy-based system, managed objects are organised into logical groups and are 
defined by an associated type.  When adding a managed object to the system, the administrator 
must specify its type and define where the object is to be placed in the organisational model used 
in the system.  In order to represent the organisational model of the managed objects, the 
administrator defines a domain hierarchy.  As described previously, domains logically group 
objects together and can be used in policy specifications to denote that a policy applies to 
multiple objects.  Additionally, domains allow the coupling between policies and managed objects 
to be loosely defined, effectively acting as a dynamic binding mechanism.  Each type of managed 
object in a system can be described using a static model, consisting of the attributes and 
operations supported by the type; and a dynamic model that specifies the runtime behavior of 
objects of this type.  We assume that the administrator specifies the type information using UML. 

Given this description, a formal representation of managed objects must include the 
organisational model specified in terms of domain hierarchies; together with the static and 
dynamic models of the managed object.  In this section we describe how this can be done by 
using the Event Calculus in conjunction with the predicates and functions shown in Table II.  

B.3.2.1 Organ isa t ional  Model  
As mentioned, the organisational model of the system is defined in terms of a domain hierarchy.  
Domains are a means of grouping objects and membership of a domain is explicit and not 
defined in terms of a predicate on object attributes.  Domains can be organised into a hierarchy 
by including one domain in another, but a sub-domain is not a subset of its parent domain, in 
that an object included in a sub-domain is not a direct member of the parent domain.  Also, an 
object or sub-domain may be a member of multiple parent domains i.e. domains can overlap. 

  

TABLE II 
 FUNCTIONS AND PREDICATES FOR REPRESENTING MANAGED OBJECTS 

 
Function Symbol Description 
pot_state(Obj, Attr, Value) Used to represent a potential state of a managed object 

when defining its behavioural model.  The actual state 
of a managed object holds when a policy performs a 
management operation (see state fluent – Table 3.2). 

op(Obj, OperationName, [Parameters]) Used to denote the management operations specified in 
a policy function or event (see below) 

doAction(op(ObjTarg, OpName, [Parms])) Represents the event of the action specified in the op 
term being performed on the target object, ObjTarg. 

 
Predicate Symbol Description 
mgdObj(Obj, ClassName) Used to specify that Obj is an object in the system, with 

the type denoted by ClassName. 

attr(ClassName, AttrName, Type) Defines that the class ClassName has an attribute 
called AttrName of type, Type.  

domain(Obj) Defines that Obj represents a domain.  In order to 
indicate that a domain is a specialisation of an object, 
we also define the following rule: 

  mgdObj(Obj, ‘classDomain’)  domain(Obj). 

isMember(Obj, Dom) Holds if the object, Obj, is a member of the Domain, 
Dom. 

subDomain(Child, Parent)  
  domain(Child), domain(Parent), 

Holds if the domain represented by Child is a sub-
domain of Parent.  The body of the rule is used to 



  isMember(Child, Parent),  
  not(Child=Parent). 
 
subDomain(Child, Parent)  
  domain(Parent), domain(Child), 
  domain(IntParent),  
  not(IntParent=Parent), 
  not(IntParent=Child), 
  isMember(IntParent, Parent), 
  subDomain(Child, IntParent). 
 

ensure that there are no cyclic relationships in the 
domain structure. 

isDerivedMember(Domain, Object)  
  mgdObj(Object, _), 
  isMember(Object, Domain). 
 
isDerivedMember(Domain, Object)  
  domain(Domain), 
  mgdObj(Object, _), 
  subDomain(SubDom, Domain), 
  isDerivedMember(SubDom, Object). 
 

Used to determine membership of a domain across the 
entire domain structure.  This first rule identifies all 
those objects that are direct members of the domain, 
Dom.  The second rule recursively identifies those 
objects that are members of sub-domains of the 
domain, Dom. 

 
We define the predicate domain(DomainName) to represent a domain where the argument is a 
unique identifier.  The absolute domain path expression for an object in the domain hierarchy 
(which take the form /dom1/…/obj) is assumed to be unique.  Domain membership is 
represented using the isMember(ObjName, DomainName) predicate where the first argument is 
the name of the object to be added to the domain named by the second argument.  Finally, 
managed objects are denoted by the mgdObj(ObjName, ClassName) predicate, where the first 
argument is a unique identifier for the managed object instance and the second argument is the 
name of the managed object class. 

B.3.2.2 Stat i c  Model  
The static model of a managed object is represented by its class definition, which specifies a class 
name, a set of attributes, and a set of methods.  As shown in the example in the previous section, 
the mgdObj/2 predicate can be used to represent a managed object instance of a particular type.  
In order to represent the attributes of a class, we define a predicate attr(ClassName, AttrName, 
Type).  The parameters of this predicate are used to specify that a given class (ClassName) has an 
attribute called AttrName of a particular type (Type). 

For the purposes of policy-based management, we are only interested in those methods which 
are part of the management interface of the object.  Since this information is also specified in the 
dynamic model of the object, in order to avoid duplication of information in the formal 
representation, we do not specify a stand-alone representation of the methods of a managed 
object.  Instead, as will be described in the next section, we define predicates that allow a user to 
query the formal specification to determine the operations of a managed object class. 

B.3.2.3 Dynami c Model  
The dynamic model of a managed object describes it’s the run-time behaviour in terms of the 
changes in state caused by performing the operations specified in the management interface of 
the object.  For each type of managed object, the administrator can use an UML state chart to 
specify the state changes that occur when management operations are performed.   

In order to model the behaviour of these operations, it is necessary to specify the pre- and post-
conditions for each operation.  Performing an operation on the system will modify the state of 
the system in such a way that, once the operation is complete, there will be some new fluents that 
hold, and some other fluents that cease to hold.  This is represented using the initiates(A, B, T) 
and terminates(A, B, T) predicates, according to the following schema: 

 
 initiates(doAction(ObjSubj, op(ObjTarg, Action, Parms)), PostTrue, Tm)     
    PreCondition . mgdObj(ObjTarg, ClassName). 
 



 terminates(doAction(ObjSubj, op(ObjTarg, Action, Parms)), PostFalse, Tm)  
    PreCondition . mgdObj(ObjTarg, ClassName). 
 
 
The first rule above states that when the doAction event occurs at time, Tm, if the PreConditions 
are true, then the fluent defined by PostTrue will hold after that time.  Under the same 
conditions, the second rule states that the fluent defined by PostFalse will cease to hold after 
time, Tm.  Typically, the latter rule is used to invalidate the old value of an object attribute when 
it changes as a result of the system moving to a new state.  In both of these rules, the 
PreCondition will be represented by a conjunction of holdsAt(B, T) predicates.  The 
mgdObj(ObjTarg, ClassName) predicate in the body of each rule indicates that this rule defines 
an operation for the type, ClassName. 

The state of a managed object is represented by a conjunction of (Object, Attribute, Value) 
triplets.  To reflect that the state chart is a representation of the potential states of the system, the 
PostTrue and PostFalse fluents are defined using pot_state(Object, Attr, Value) terms.  In a 
policy managed system, a potential state translates into an actual state if there is an obligation to 
perform an action that defines the potential state as a post-condition.  This is explained further in 
the description of the formal representation of the policy enforcement model (Section 3.4.6) 

Building on the example shown previously, it is possible to illustrate the use of these rules for 
modelling system behaviour.  Consider the SLS-S module that has the behaviour shown by the 
statechart in Figure 6.  It is possible to transform this state chart into the Event Calculus notation 
presented previously where the action shown on each transition arrow is the operation being 
performed; for transitions between different states, the old values of any attributes that change 
become the PostFalse fluents; the new values of the attributes become the PostTrue fluents; and 
the current state values, together with any guards, become the PreConditions.  In order to avoid 
problems with recursion and infinite looping, self-transitions are omitted from the formal 
representation. So following this scheme, the state chart can be represented in the formal 
language as shown below. 

 
1- initiallyTrue(pot_state(Obj, status, 'init'))  
  mgdObj(Obj, ‘classSLSModule’). 
   
2- initiates(doAction(_, op(Obj, registerSLS, parms(sls))),  
  pot_state('d_mgdObjsd_slsmgr', status, 'slsRegistered'), T)   
   holdsAt(pos(pot_state(Obj, status, 'init')), T),  
   happens(sysEvent(reqReceived(sls)), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
  
3- terminates(doAction(_, op(Obj, registerSLS, parms(sls))),  
  pot_state(Obj, status, 'init'), T) :-  
   holdsAt(pos(pot_state(Obj, status, 'init')), T),  
   happens(sysEvent(reqReceived(sls)), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
     
4- initiates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),  
  pot_state(Obj, status, 'slsCounterofferMade'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
  
5- terminates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),  
  pot_state(Obj, status, 'slsRegistered'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
     
6- initiates(doAction(_, op(Obj, reject, parms(sls))),  
  pot_state(Obj, status, 'slsReqRejected'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
  



7- terminates(doAction(_, op(Obj, reject, parms(sls))),  
  pot_state(Obj, status, 'slsRegistered'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
     
8- initiates(doAction(_, op(Obj, accept, parms(sls))),  
  pot_state(Obj, status, 'slsReqAccepted'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
  
9- terminates(doAction(_, op(Obj, accept, parms(sls))),  
  pot_state(Obj, status, 'slsRegistered'), T)   
   holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),  
   mgdObj(Obj, ‘classSLSModule’), 
   time(T). 
 
 

B.3.3 Policy Representation 
The next step in describing the formal language is to determine the features of policy rules that 
need to be expressed in the formalism.  Since the scope of this thesis is limited to security 
authorisation and management/behavioural policies, we only consider positive authorisation, 
negative authorisation, obligation and refrain policies.   

Each type of policy contains a number of elements – Subjects, Targets, Actions, Constraints and, 
in the case of obligation policies, Events.  In order to provide a complete formal representation 
of policies, the information contained in each of these elements must be included in the 
formalism.  The detailed formal representation of each of the elements is presented in [20].  In 
this section we provide an overview of the formal representation of the different types of policy 
rule and then proceed to model how enforcing a policy affects the state of the managed system.  
Therefore, we conclude this section with a description of the logic rules used to model the effect 
of the policies on the state of the managed system.  Table III shows the predicates and functions 
used in our formalism. 

TABLE III 
FUNCTIONS AND PREDICATES FOR REPRESENTING POLICIES 

 
Function Symbol Description 
allow(ObjSubj,  
      op(ObjTarg, OpName, Parms)) 

Represents the permission granted to a subject, ObjSubj, 
to perform the action, OpName, on the target, ObjTarg.  
Parms are included in case OpName is overloaded 

deny(ObjSubj,  
     op(ObjTarg, OpName, Parms)) 

Used to denote that the subject, ObjSubj, is denied 
permission to perform the action OpName on the target, 
ObjTarg. 

Oblig(ObjSubj,  
      op(ObjTarg, OpName, Parms)) 

Denotes that the subject, ObjSubj, should perform the 
action specified in the operation term on the target, 
ObjTarg. 

refrain(ObjSubj,  
        op(ObjTarg, OpName, Parms)) 

Denotes that the subject, ObjSubj, should not perform the 
action specified in the operation term on the target, 
ObjTarg. 

state(Obj, Attr, Value) Represents the value of a managed object attribute.  
This fluent holds when an obligation to perform an 
action with the post-condition pot_state(Obj, Attr, Value) is 
enforced. 

sysEvent(E) Represents a system event.  Used in the definition of 
obligation policies. 

clocktick(H,M,S) Event that represents the real-world time having the 
value H:M:S.  E.g using this function, 2pm would be 



represented as clocktick(14,0,0) 

done(Policy, Subj, Op) Event that occurs when an obligation policy, Policy, has 
been enforced by the subject performing the specified 
operation. 

 
Predicate Symbol Description 
requestAction(Policy, Subj, Op, T) Denotes that the specified policy made a request for the 

subject to perform the operation at time, T. 



TABLE IV 
FUNCTIONS AND PREDICATES FOR REPRESENTING GOALS 

 
Function Symbol Description 
achieve(P, Q) Represents a goal expressed using the temporal logic 

formula, P υ ⊄Q, and means that if P holds Q will hold 
at some point in the future. 

maintain(P, Q) Represents a goal expressed using the temporal logic 
formula, P υ ≈Q, and means that if P holds that Q will 
hold at all points in the future. 

cease(P, Q) Represents a goal expressed using the temporal logic 
formula, P υ ⊄¬Q, and means that if P holds ¬Q will 
hold at some point in the future (i.e. Q will cease to 
hold). 

avoid(P, Q) Represents a goal expressed using the temporal logic 
formula, P υ ≈¬Q, and means that if P holds ¬Q will 
hold at all points in the future (i.e. Q will be avoided). 

until(P, Q, R) Represents a goal expressed using the temporal logic 
formula, P υ Q U R, and means that if P holds Q will 
hold for all points until R holds. 

unless(P, Q, R) Represents a goal expressed using the temporal logic 
formula, P υ Q W R, and means that if P holds Q will 
hold unless R holds. 

and(P1, P2) Conjunction of the two goal terms, P1 and P2.  
Indicates that they both hold at a given point in time. 

goalProperty(P) Used to indicate that P is a property that can be used 
as part of a goal definition. 

 
Predicate Symbol Description 
holdsGoal(P, T) Defines that goal P holds at time, T.  The time argument 

is used to determine the relative order of a set of goals 
terms. 

ptnGoal(G) The high-level goal expression for a goal elaboration 
pattern.  Typically, this would be instantiated as:  

 goalPtn(achieve(P,Q))   ... subgoalPtn ... 

 

ptnSubGoal(SubGOal) Represents a sub-goal expression in a goal elaboration 
pattern.  It is used in a body of a rule that defines the 
pattern. 

missingGoalProperty(G) Denotes a property G that must be defined by the user.   

 

B.3.4 Goal Representation 
The formal language presented thus far can be used to represent policy managed systems and 
allows such specifications to be analysed.  However, in order to support policy refinement the 
formalism must also capture information about the high-level goals the administrator wishes to 
achieve and how these relate to lower-level goals that can actually be achieved by the systems.   

The KAOS goal elaboration technique presented in the Chapter 2 provides a formal technique 
for deriving low-level goals from high-level ones. This technique uses goal elaboration patterns 



(proven decompositions of high-level goals) which facilitate the derivation of low-level goals that 
provably satisfy the original high-level goal.  In the KAOS technique, goals and goal elaboration 
patterns are expressed using temporal logic formulae and therefore in order to include this 
information in our formalism we must provide support for expressing the temporal logic 
operators such as eventually, always, unless and until (see Section 2.2). In this section we describe how 
the predicates and functions defined in Table  can be used to represent each of these types of 
information, together with the rules that allow automated reasoning to be used to derive the 
results required for policy refinement. 

B.3.4.1 Basic  Goal s  
In the KAOS technique, a goal is represented by its name, informal description and formal 
definition.  In the broadest sense, there are four types of goal, referred to as achieve, cease, maintain 
and avoid goals, and each of these types can be characterised by a temporal logic formula as 
follows: 

• Achie ve  go al s  specify the requirement that given some initial conditions, P, 
the system should eventually satisfy some property, Q.  This is represented 
in temporal logic as: P υ ⊄ Q. 

• Cease  g oal s  are used to state the requirement that given some initial 
conditions P, the system should eventually satisfy the negation of some 
property, Q.  Formally this is stated as: P υ ⊄ (¬Q). 

• Mainta in goal s  are used to state the requirement that given some initial 
conditions, P, the system should always satisfy some property, Q, in the 
future.  The temporal logic representation of this is: P υ ≈ Q. 

• Avo id goal s  specify the requirement that given some initial conditions P, 
the system should always satisfy the negation of a property, Q.  Formally 
this is stated as: P υ ≈ ¬Q, which is logically equivalent to P υ ¬ ⊄ Q. 

 
 
 T1: holdsgoal(Q, T1)   holdsGoal(achieve(P, Q), T), 
                            holdsGoal(P, T), T1 > T. 
 
 T1: ¬ holdsGoal(Q, T1)  holdsGoal(cease(P,Q), T),  
                             holdsGoal(P, T), T1 > T. 
 
 …T1: holdsGoal(Q, T1)   holdsGoal(maintain(P, Q), T),  
                               holdsGoal(P, T), T1 > T. 
 
 …T1: ¬ holdsGoal(Q, T1)   holdsGoal(avoid(P, Q), T), 
                              holdsGoal(P, T1), T1 > T. 
 
 
In each of these formal expressions, P and Q represent some property (or conjunction of 
properties) that the system must satisfy initially (P) and in the future (Q).  At the lowest level, 
these properties should correspond to potential states of the managed system (i.e. states defined 
in the behavioural model of the managed objects), however at high-levels of abstraction 
properties can be represented by names of other goals that must be satisfied. 

Each type of goal can be represented in the formal language using the terms achieve(P,Q), cease(P,Q), 
maintain(P,Q) and avoid(P,Q) respectively.   These terms can be used in conjunction with the holdsGoal(G, 
T) predicate to specify rules that determine the truth of a given goal (see below).  The holdsGoal(G, 
T) predicate is similar to the holdsAt(B, T) predicate defined as part of the Event Calculus.  It is 
necessary to define this new predicate, rather than simply use holdsAt(…), because the temporal 
logic definitions used in goal elaboration do not have a direct correspondence to the Event 
Calculus axioms. 

 



 
 holdsgoal(Q, T1)   holdsGoal(unless(P, Q, R), T), 
                       holdsGoal(P, T), 
                      ¬ holdsGoal(R, T1), T1 > T. 
 
 holdsgoal(Q, T1)   holdsGoal(until(P, Q, R), T), 
                       holdsGoal(P, T), 
                             holdsGoal(R, T2), T2 > T1 > T. 
 
 holdsGoal(Q, T)    holdsGoal(and(P,Q), T),  
                             holdsGoal(P, T). 
 
 holdsGoal(P, T)    holdsGoal(and(P,Q), T),  
                       holdsGoal(Q, T). 
 
 
Each of the rules above provides an implicit definition of the eventually holds and always holds 
temporal operators.  However, goal descriptions can also involve the other temporal operators, 
unless (if P then Q unless R) and until (if P then Q until R).  Additionally, it is necessary to be able 
to specify conjunctions of goals.  The rules defined in Listing 3.12 extend the formal language to 
allow these additional operators to be included in a goal specification. 

In the formal language, we define the function goalProperty(Name) to represent a named property 
that might be used in a goal definition.  This function can be used in a holdsGoal(G, T) predicate in 
the head of a rule, where the body specifies the goal expression that satisfies the property.  As 
mentioned previously, higher-level goal properties can be defined in terms of other goals.  This 
type of goal property will be represented in the formal language by using holdsGoal(Goal, T) 
predicates in the body of the rule.  In the TEQUILA framework’s SLS subscription example, the 
administrator might specify a high-level goal stating that all incoming SLS requests must be 
processed by the SLS-S module.  In this situation, the administrator might want to represent the 
domain knowledge that the high-level goal “Process SLS Request” can be represented by the two 
sub-goals “Register SLS” and “Accept SLS”.  The formal representation of this decomposition is 
shown below: 

 holdsGoal(goalProperty(process_sls), T)   

  holdsGoal(achieve(receive_sls, register_sls), T), 

  holdsGoal(achieve(register_sls, accept_sls), T). 

In the case of an operational goal, the body of the rule defines the system state that must hold 
for the property to be satisfied, using holdsAt(pot_state(Obj, Attr, Value), T) predicates.  For example, in the 
scenario above, the low-level goal for registering an SLS might be defined as the state where the 
SLS-S manager is in the ‘registered’ status.  This would be represented in the formal notation as: 

 holdsGoal(goalProperty(register_sls), T)   

  mgdObj(SLSMGR, classSLSMgr),  

  holdsAt(pot_state(SLSMGR, status, ‘slsRegistered’), T). 

Alternatively, certain operational properties might be satisfied through the occurrence of an 
event.  In this case, the body of the rule is defined using a happens(A, T) predicate.  In the example 
presented above, if the receive_sls goal property is satisfied when a receiveSLS event occurs, this 
would be represented in the formal language as: 

 holdsGoal(goalProperty(receive_sls), T)   

  happens(sysEvent(receiveSLS), T). 

B.3.4.2 Goal  Elabo rat io n Pa tte rns 
In addition to the goals specific to a particular managed system, if we are to provide some 
automated reasoning support for decomposing goals into sub-goals, the formal language must 



also capture the goal elaboration patterns.  A goal elaboration pattern is represented by a goal, 
together with a set of sub-goals that satisfy the goal.  Formally, the relationship between the 
higher-level goal, G, and its sub-goals, G1 … Gn,  can be expressed as: G1, …, Gn δ G. 

We introduce the predicates ptnGoal(Goal) and ptnSubGoal(SubGoal) which respectively represent the 
high-level goal and the sub-goals of an elaboration.  The Goal/Sub-goal definitions for these 
predicates would be expressed using the goal functions described in the previous section.  For 
example, the domain independent goal elaboration pattern (P υ ⊄R), (R υ ⊄Q) δ (P υ ⊄Q), 
would be specified in this notation as: 

 ptnGoal(achieve(P, Q)) :- ptnSubGoal(achieve(P, R)),  

                           ptnSubGoal(achieve(R, Q)),  

                           missingGoalProperty(R). 

The purpose of decomposing a goal is to identify some new, lower-level, properties in the sub-
goals expressions such that the original high-level goal can be satisfied.  At each stage of the 
elaboration process, the user will be required to define these new properties in terms of other 
goals or as a required system state. Therefore, when specifying a goal elaboration pattern, the 
predicate missingGoalProperty(Name) is used to identify the properties of the sub-goal definitions that 
need to be provided by the user.  In order to provide a means of automatically identifying the 
sub-goals and missing goal properties for a given goal, we extend the set of abducible terms in 
the formal language to include ptnSubGoal(…) and missingGoalProperty(…).  This means that given a 
goal that matches the head of an elaboration rule of the form defined above, the system can 
abduce the sub-goals and missing goal elaboration patterns required for a correct decomposition 
of the goal. 

1 ptnGoal(achieve(loginReq(user, appl), logged_in(user, appl))) :-  

     ptnSubGoal(achieve(loginReq(user,appl), authenticated(user))),  

     ptnSubGoal(achieve(loginReq(user,appl), authorised(user, appl))),  

     ptnSubGoal(achieve(and(authenticated(user), authorised(user, appl)),  

                        logged_in(user, appl))),  

     missingGoalProperty(user), missingGoalProperty(appl). 

 

2 holdsGoal(goalProperty(authenticate(user), T) :- 

 mgdObj(AS, classAuthenticationServer),  

 holdsAt(pot_state(AS, status, authenticated(user)), T). 

 

3 holdsGoal(goalProperty(authorise(user, appl), T) :- 

 mgdObj(AC, classAccessController), 

 holdsAt(pot_state(AC, mgdObj, appl), T). 

 holdsAt(pot_state(AC, status, allowed(appl, loggedIn, user)), T). 

The KAOS technique also supports the use of application-specific goal elaboration patterns.  For 
example, in section 2.2 we presented an elaboration pattern for a user login application which 
stated that for a user to be logged in, the goals for authentication and authorisation must be 
satisfied (see Chapter 2, Section 2.2).  The formal representation of this pattern is shown above.  
Here, Line 1 defines the elaboration pattern which required that the administrator specify the 
user and application definitions for the particular situation in which the pattern is being applied.  
The remaining rules define the system state required to satisfy the authentication and 
authorisations sub-goals specified in the elaboration pattern. 

In this section we extended the formal language to include representations of both goals and goal 
elaboration patterns.  The representation of goal elaboration patterns allows abductive reasoning 
to be used to determine the possible decompositions of a given high-level goal.  Having selected 
a suitable decomposition, the user must then provide a definition for any missing properties in 



the sub-goal definitions.  This process will be repeated until the sub-goals are expressed in terms 
of desired states of managed objects.  We refer to such sub-goals as operational goals.   

Once the low-level operation goals have been defined, it is possible to use this representation in 
conjunction with the system behaviour model to abduce the set of operations required to satisfy 
a particular goal.  We refer to this set of operations as the strategy for achieving the goal. 

B.4. Automated Policy Refinement 
Before detailing the approach to policy refinement that we have developed, it would be useful to 
consider an example that illustrates the procedure that would be followed if an administrator 
were to refine a high-level goal into a policy manually. 

This scenario illustrates how the TEQUILA framework responds to short-term changes in traffic 
from a particular customer.  Taking the same example network as before, consider the situation 
where the network experiences a short-term increase in the traffic pertaining to the SLA 
described in the previous scenario.  The network administrator wants to ensure that when this 
increase occurs during between 11am and 1pm and causes a network utilisation greater than 85% 
of the maximum allocation calculated by the ND module, the bandwidth allocation should be 
increased only by 10% and any spare capacity should be equally split amongst the PHBs.  In this 
situation the Dynamic Resource Management (DRsM) module at each link along the route 
followed by the traffic would respond as follows: 

• Detect the increase in traffic, and decide to raise an alarm if necessary 

• On receiving an alarm relating to an increase in traffic, the DRsM must decide on the 
appropriate action to adapt to the increase.  To help with this, the DRsM has the 
guideline values for maximum, minimum and congestion bandwidth allocations provided 
by the network dimensioning process. 

• Configure the link/PHB with this new value and decide on how to allocate any spare 
link capacity amongst all the link/PHBs 

In this process it can be seen that policies are involved at all three stages, since there are decisions 
to be taken regarding when to raise an alarm, how to determine the new bandwidth allocation, 
and how to distribute the spare link capacity.  As before, in each of these cases the exact policy to 
be used depends on the goal that the administrator is interested in.  In this scenario, the specific 
goal is that an alarm should be raised if the bandwidth utilisation for the link/PHB is above 85% 
of the maximum allocation specified by the ND module.   

G5: Goal BWUtilIncreaseAlarmRaised 

    FormalDef  linkBWUtilIncrease(utilValue, PHB)  
               → ◊ alarmRaised(bwUtilIncr, [utilValue, PHB]). 

 

S4: Strategy G5: BWUtilIncreaseAlarmRaised 

    DerivedActions  monitor.raiseAlarm(alarmType, [alarmParms]). 

As shown above, the strategy for achieving the basic goal of “alarm is raised” (G5) can be 
automatically abduced without the need for elaboration.  Combining this strategy (S4) with the 
constraints, the following policy, that satisfies the overall goal, can be written: 

P2: inst oblig /policies/networkMonitoring/increaseBWUtilAlarm { 

         on    linkBWUtilIncrease(utilValue, PHB); 

         subj  s = /routers/FromR1/ToR6/drsmPMAs/; 

         targ  t = s.monitor; 

         do    t.raiseAlarm(bwUtilIncr, [utilValue, PHB]); 

         when  utilValue > 0.85 * s.ndMaxBWAlloc(PHB); } 



For the remaining policy decisions of determining the new bandwidth allocation value and then 
allocating any spare capacity, the strategy derivation is not as straight forward.  Here the high-
level goal is to achieve the state “adapted configuration” when an alarm is raised.  This can be 
stated as follows: 

G6: Goal ConfigAdaptedForBWUtilIncrease 

    FormalDef  alarmRaised(bwUtilIncr, [utilValue, PHB]) → ◊ configAdapted. 

In this case the abductive analysis of G6 yields no strategy, so it is necessary to elaborate the goal 
further.  As a first step, applying GP2’ yields the sub-goals NewRPCRequested (G7) or 
CalculatedConfiguredNewBWAllocation (G8) and as shown in their formal definitions below, each leads 
to the high-level goal of ConfigAdaptedForBWUtilIncrease being satisfied.   

G7: Goal NewRPCRequested 

    FormalDef  alarmRaised(bwUtilIncr, [utilValue, PHB]) → requestedNewRPC .  

               requestedNewRPC → ◊ configAdapted. 

 

G8: Goal CalculatedConfigNewBWAllocation 

    FormalDef  alarmRaised(bwUtilIncr, [utilValue, PHB])  
               → calcAndConfigNewBWAlloc .  

                calcAndConfigNewBWAlloc → ◊ configAdapted. 

In the scenario under consideration, the high-level policy involves calculating and configuring a 
new bandwidth allocation, a goal represented by G8 above.  However, since it is not possible to 
automatically derive a strategy for this goal, it is necessary to elaborate it further, this time using a 
combination of the patterns GP2’ and GP1.   

Figure 8 shows the goal elaboration hierarchy for this elaboration process, indicating the 
applicable patterns at each stage.  The details of each of the goals in this diagram are as follows: 

G9: Goal calcNewBWAlloc 

    FormalDef  calcNewBWAlloc(newValue) → ◊ configNewBWAlloc. 

 

G10: Goal configNewBWAlloc 
     FormalDef  configNewBWAlloc → ◊ configAdapted. 

 

G11: Goal setCalculatedNewBWAlloc 

     FormalDef  calcNewBWAlloc (newValue) → (newValue = calcValue) . 

                (newValue = calcValue) → ◊ configNewBWAlloc. 
 

G12: Goal overrideNewBWAllocNDMax 
     FormalDef  calcNewBWAlloc (newValue) → (newValue = drsm.ndMaxBWAlloc) .  

                (newValue = drsm.ndMaxBWAlloc) → ◊ configNewBWAlloc. 

 

G13: Goal overrideNewBWAllocNDCong 
     FormalDef  calcNewBWAlloc (newValue) → (newValue = drsm. ndCongBWAlloc) .  

                (newValue  = drsm.ndCongBWAlloc) → ◊ configNewBWAlloc. 

 

G14: Goal propSplitSpareCapacity 
     FormalDef  configNewBWAlloc → spareCapProportionallySplit .  

                spareCapProportionallySplit → ◊ configAdapted. 

 

G15: Goal equalSplitSpareCapacity 



     FormalDef  configNewBWAlloc → spareCapEquallySplit .  

                spareCapEquallySplit → ◊ configAdapted. 

 

G16: Goal explicitySplitSpareCapacity 

     FormalDef  configNewBWAlloc → spareCapExplicitlySplit([splitValues]) .  

                spareCapExplicitlySplit([splitValues]) → ◊ configAdapted. 

In this scenario we assume, the goals of the administrator are namely G11: setCalculatedNewBWAlloc 
and G15: equalSplitSpareCapacity.  So, we are interested in the strategies for setting the new bandwidth 
allocation to the newly calculated value and splitting any spare capacity equally.  Performing the 
abductive analysis on the statechart representation of the DRsM calculation and configuration 
module behaviours yields the following strategy, which in turn can be encoded into a policy as 
shown in P3 below. 

Notice that in this example, the abductive analysis results in a strategy that includes constraints 
which are derived from the guards defined in the state chart of the system behaviour.  In order to 
ensure that the policy is valid with respect to the system behaviour, the administrator must 
include these constraints, together with any others that are manually mapped from the high-level 
policy, whenever the strategy is used.  In the example, this is illustrated in the final policy, P3, 
which combines the constraint from the strategy with the time constraint from the high-level 
policy. 
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Figure 8: Traffic increase scenario goal elaboration hierarchy 

 

 



S5: Strategy G11: setCalculatedNewBWAlloc && G15: equalSplitSpareCapacity 

      OnEvent         alarmRaised(bwUtilIncr, [utilValue, Link, PHB]) 

      DerivedActions  drsm.setBWAllocation(Link, PHB, CalcValue) -> 

                      drsm.handleSpareBW(equally, Link) 

      Constraints     drsm.incrAllocBW(PHB, pct) < drsm.ndMaxBWAlloc(PHB). 

 

P3: inst oblig /policies/adaptTrafficIncreaseAOLSLA_P1 { 

         on    alarmRaised(bwUtilIncr, [utilValue, link, ef]); 

         subj  s = /drsmPMA; 

         targ  t = /routers/FromR1/ToR6/drsm/; 

         do    t.setBWAllocation(link, ef, NewBWValue) ->  

               t. handleSpareBW(equally, link); 

         when  NewBWValue < t.ndMaxBWAlloc(ef) &&  

               time.between(‘11:00’, ‘13:00’); 

    } 

Integrity constraints provide an elaboration tolerant way of specifying the constraints to be 
satisfied by different entities in a system.  Additionally, they allow rules that define the 
consistency requirements of the system to be defined in a modular manner.  This is advantageous 
since it allows the user to maintain the independence between rules that pertain to different 
aspects of a system. In the remainder of this section we show how integrity constraints can be 
used to enhance the policy refinement procedure in a number of different ways: 

B.4.1. Avoiding Inconsistencies 
It is important to ensure that policies derived by the refinement process are consistent with 
respect to other policies and the system itself.  By defining inconsistency conditions as integrity 
constraints it is possible to ensure that the management operations derived as part of the policy 
refinement procedure do not cause any inconsistencies. 

We have also made use of integrity constraints to guarantee that the objects in the derived 
strategies are of correct type. For example, to ensure that the setBWAllocation(Link, PHB, BW) 
operation is only performed by a DiffServRouter object on a DRsM object,  we can specify the 
following constraints: 

1 ic :- happens(doAction(R, op(_, setBWAllocation(_,_,_))), _),  

      not(obj(R, cDiffServRouter)). 

2 ic :- happens(doAction(_, op(D, setBWAllocation(_,_,_))), _), not(obj(D, cDRSM)). 

 

Other types of consistency checks involve ensuring that policies do not conflict, and that 
appropriate constraints are derived so that the derived policy is only applicable if the actions 
specified are valid at the point of enforcement.  In order to avoid simple modality conflicts, we 
can specify integrity constraints of the form: 

1 ic :- happens(doAction(Subj, Op, _), T), not(holdsAt(pos(allow(Subj, Op)), T)). 

2 ic :- happens(doAction(Subj, Op, _), T), holdsAt(pos(refrain(Subj, Op)), T). 

 

Here the first constraint specifies that it is inconsistent for the derived policy to contain any 
actions that are not authorised.  Similarly, the second avoids those actions that would be 
prevented by a refrain policy in the system. It is also possible to specify integrity constraints that 
avoid semantic conflicts, such as conflicts of duty.  For example, in our example scenario, it 
would be incorrect to attempt to allocate two different bandwidth values for the same Link/PHB 
at the same time.  This is captured by the following rule: 



1 ic :- happens(doAction(_, op(_, setBWAllocation(Link,PHB,BW1))), T), 

      happens(doAction(_, op(_, setBWAllocation(Link,PHB,BW2))), T),  

      clp(BW1 <> BW2). 

 

4.2. Deriving Parameter Values for Management Operations 
The implementation of the policy refinement process is only able to derive the set of 
management operations (i.e. the strategy) for achieving a given goal.  This process does not 
provide any suggestions for parameter values that can be used when performing these 
management operations.  By defining integrity constraints that specify the valid ranges for 
particular managed operation parameter values, it is possible to include the derivation of these 
parameter values in the policy refinement process. 

In most cases, these parameters are provided by the events that trigger the policy, or they 
calculated within the context of the subject enforcing the policy.  However, there are cases where 
the parameter values can be determined by other factors, such as values computed using 
attributes of objects and resources.  For example, in the case of the above scenario new 
bandwidth values are required for the setBWAllocation(Link, PHB, NewBW) operation. The 
following constraints specify limits on this parameter:  

1 ic :- happens(doAction(_, op(DRSM, setBWAllocation(Link, PHB, NewBW)), _), T), 

      happens(alarm(incrUtil, Link, PHB), T0), clp(T0<T), 

      holdsAt(pos(state(DRSM, bwAlloc(Link, PHB), CurrBW)), T)), 

      not(clp(NewBW > CurrBW)).  

2 ic :- happens(doAction(_, op(DRSM, setBWAllocation(Link, PHB, NewBW)), _), T), 

      happens(alarm(incrUtil, Link, PHB), T0), clp(T0<T), 

      holdsAt(pos(state(DRSM, ndMAxBW(Link, PHB), NDMaxBW)), T)), 

      not(clp(NewBW =< NDMaxBW)). 

 

Constraint (1) above specifies that in the situation of an increased utilization alarm the new 
bandwidth value should be greater than the current one; and constraint (2) specifies that it should 
not exceed the max value defined by the network dimensioning module (ndMaxBW).   

B.4.3. Utility Functions 
It is possible that even after all the integrity constraints relating to consistency, subject/target 
selection and parameter value derivation are applied, there are still multiple derived policies that 
satisfy the high-level goal.  In this situation it is necessary to compute some measure of the utility 
for each derived policy and have the system enforce the policy with the highest utility.  We can 
define integrity constraints to determine a utility value associated with each management 
operation and then compute an average of these to determine the utility of a given policy. 

Since the policy refinement procedure can generate multiple policies that satisfy a given goal, it is 
useful to have some mechanism for deciding on the most appropriate policy for a given situation.  
One approach for doing this would be to compute a utility value for each policy solution and 
then choose the policy that has the highest utility.  Computation of these utility values can be 
achieved as part of the abductive inference procedure through the use of integrity constraints.  
For example, to specify that the utility of splitting any spare bandwidth proportionally is greater 
than using equal splitting if >50% of traffic is marked for expedited forwarding (EF), we have: 

1 ic :- happens(doAction(_, op(DRSM, handleSpareBW(prop, Link)), Utility), T), 

      holdsAt(pos(state(DRSM, bwUtil(Link, ef), gt(50%))), T), time(T), 

      not(clp(Utility#=<75)). 



2 ic :- happens(doAction(_, op(DRSM, handleSpareBW(equal, Link)), Utility), T), 

      holdsAt(pos(state(DRSM, bwUtil(Link, ef), gt(50%))), T), time(T), 

      not(clp(Utility#=<55)). 

 

The above integrity constraints specify that splitting spare BW equally has utility up to 55%, 
whereas under the same conditions, splitting spare BW proportionally has utility up to 75%.  This 
gives preference to policies where spare bandwidth is split proportionally.   

To summarise, by means of advanced abductive methods and their integration with CLP [ACLP] 
we have been able to enhance considerably our policy refinement methods This enhanced 
refinement process not only ensures that derived policies are consistent, but also provides 
parameter values for management operations and utility values that can be used to rank the 
results. Numerical constraints are formalized in a simple way within the declarative 
representation of the policy allowing us to address optimization requirements with the integrated 
use of CLP constraint solving.   

B.5. Related Work 
There are few practical studies on policy refinement. Power [21] is a policy-authoring 
environment where a domain expert specifies policy templates (as Prolog programs), which guide 
the user in selecting the elements from an information model to be included in the policy. This 
approach lacks any analysis capabilities to evaluate the consistency of the results. Additionally, 
Power does not provide support for automatically deriving the actions to be included in a policy. 
Therefore, domain experts must have a detailed understanding of system and formalism. Our 
refinement patterns are similar to the Power templates, however, our approach incorporates a 
complete analysis technique and provides automated derivation of action sequences.  

Verma presents an approach to policy translation for DiffServ QoS management that is based on 
a set of tables which identify the relationships between Users, Applications, Servers, Routers and 
Classes of Service supported by the network [22]. When presented with new SLSs, the system 
performs a series of table look-ups to identify the correct configuration for the specified user, 
application and service class. This technique can be fully automated, but depends on the 
correctness of the table which requires domain expertise.  

This technique is similar to the case-based reasoning approach to policy transformation proposed 
by researchers at IBM [23] where table look-ups are used to match high-level requirements 
parameters to device level configuration values. For example, by building a database of the 
average response times of a web-server farm containing different numbers of servers, case-based 
reasoning can be used to determine the number of servers that should be activated to satisfy a 
given response time requirement. This approach to policy refinement has limited applicability 
since it can only be used in those cases for which it is feasible to build a database of the 
requirements and configuration parameters. 

B.6. Discussion 
The current state of the art in systems management requires administrators to be familiar with 
the intricate details of the equipment they manage and to often perform configurations manually. 
In enterprise environments where the management tasks span different levels of abstraction from 
applications and services to physical devices; and are highly heterogeneous, administration 
becomes increasingly difficult.  Policy-based management allows administrators to change the 
management strategy of a system by changing policies dynamically rather than reimplementing 
management functionality.  

Effective systems management requires the ability to verify properties of the system. In particular 
it is necessary to analyse policies to detect inconsistencies. After preliminary work on modality 
and application specific conflicts [20], we have shown how an Event Calculus representation of 
both policies and managed systems can be used, together with abductive reasoning for policy 
analysis [14]. Like the refinement technique presented here, the analysis uses a statechart 



representation of system behaviour and the domain hierarchy. The abduction process derives not 
only the presence of conflicts but also a description of the conditions under which the conflicts 
will occur. Since the analysis and refinement techniques are based on the same formalism the two 
can easily be integrated. 

An important consideration when using formal techniques is to ensure that the implementation is 
decidable and computationally feasible. In our implementation, we ensured this by limiting 
ourselves to stratified logic programs. This permits a constrained use of recursion and negation 
while disallowing those combinations that lead to undecidable programs [24]. Stratified logic 
programs are decidable in polynomial time [13].  Additionally, it is possible to show that the 
formal representation satisfies the requirements of a unit-refutable theory [20], a class for which 
the abductive solution derivation has been shown to be computable in polynomial time [7]. 

B.7. Conclusions and Future Work 
The work presented in this report has shown how to automate the refinement of policies 
through the use of abductive constraint logic programming whilst hiding the details of the 
underlying formal techniques from the user.  The technique is not only able to generate the 
management operations that must be performed for achieving a given goal, but can also derive 
the parameter values for the operations and ensure that the derived operations are consistent 
with respect to the overall system.  Additionally, the technique supports the calculation of utility 
values that can be used to determine a preference ranking between multiple refined policies.   

Achieving this functionality whilst also providing some degree of consistency checking and 
automated reasoning capability requires the use of models. The refinement procedure requires 
some user intervention, e.g. to map constraints associated with goals into the final policies. 
However, this only requires users to be familiar with the models of the resources being managed, 
not the underlying formalisms being used to support the refinement process.  This task will 
become easier when standard information models (e.g. CIM [25]) are adopted.   

A key limitation of our approach is the dependence on the correctness of the integrity constraints 
in order to abduce refined policies.  This means that the lack of a solution may simply be due to 
an error in the integrity constraint specification rather than because of a genuine limitation in the 
capabilities of the modelled system.  In order to address this problem it will be necessary to 
investigate techniques for analysing the overall specification to ensure the consistency of integrity 
constraints.  Together with enhancing the tool support for the policy refinement procedure, 
addressing this limitation will be the focus of our future efforts. 
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APPENDIX A: Elevator Policy in GORGIAS 
 
%=================================================================== 
% 
%                ELEVATOR EXAMPLE POLICY  
%==================================================================
  
 
 
% ===================================================================  
% The program will return the moves of the elevator at all time 
% points (0-9) under the policy by using the query:  
% 
% elevator(example_name, Moves). 
% 
% where example_name is the name of the example.  
% Currently two examples exist, example1 and example2. 
% 
% A new example (example3) can be added by using 
% example(example3) :-  assert(rule(example3, happens(....), []), 
%    ....., 
%    assert(rule(example3, happens(....), []). 
% 
% ===================================================================  
 
:- dynamic holds/2. 
:- compile('gorgias'). 
:- compile('lpwnf'). 
:- compile('eres'). 
 
 
% ===================================================================  
%  Temporal Reasoning (Auxiliary background Theory) 
% ===================================================================  
 
% Pressing a button inside the elevator (action press_button_in) 
% initiates activated_button_in 
 
rule(d1(T), initiation(activated_button_in(Floor), T), 
[happens(press_button_in(Floor),T)]). 
 
% Pressing a button at a floor (action press_button_floor) initiates 
% activated_button_floor 
 
rule(d2(T), initiation(activated_button_floor(Floor, Direction), T), 
[happens(press_button_floor(Floor, Direction),T)]). 
 
% When the elevator doors open (action open_door) at a floor, 
% activated_button_in is terminated 
 
rule(d3(T), termination(activated_button_in(Floor), T),  
[happens(action(open_door, T), T)]) :- 

 holds(elevator_position(Floor), T),  
 holds(activated_button_in(Floor), T). 

 
% When the elevator doors open (action open_door) at a floor, 
% activated_button_floor is terminated 
 



rule(d4(T), termination(activated_button_floor(Floor, Direction), T), 
[happens(action(open_door, T), T)]) :- 

holds(elevator_position(Floor), T), 
holds(activated_button_floor(Floor, Direction), T). 

 
% ACtion go_up initiates elevator_position(Floor) where Floor is one  
% floor above the current position of the elevator 
 
rule(d5(T), initiation(elevator_position(Floor1), T), 
[happens(action(go_up, T),T)]) :-  

holds(elevator_position(Floor), T),  
directly_above(Floor, Floor1). 

 
% Action go_up terminates elevator_position(Floor) where Floor is the 
% current position of the elevator 
 
rule(d6(T), termination(elevator_position(Floor), T), 
[happens(action(go_up, T),T)]) :-  

holds(elevator_position(Floor), T). 
 
% ACtion go_down initiates elevator_position(Floor) where Floor is  
% one floor below the current position of the elevator 
 
rule(d7(T), initiation(elevator_position(Floor1), T), 
[happens(action(go_down, T),T)]) :-  

holds(elevator_position(Floor), T),  
directly_below(Floor, Floor1). 

 
% Action go_down terminates elevator_position(Floor) where Floor is % 
% the current position of the elevator 
 
rule(d8(T), termination(elevator_position(Floor), T), 
[happens(action(go_down, T),T)]) :-  

holds(elevator_position(Floor), T). 
 
% ===================================================================  
%  Basic Policy 
% ===================================================================  
 
% Elevator goes up when a button is pressed inside the elevator for a  
% floor which is higher than the elevator's current position: 
 
rule(r_up_in(Floor1, Floor2, T), action(go_up, T), []) :-  

holds(elevator_position(Floor1), T), 
holds(activated_button_in(Floor2), T), above(Floor2,Floor1). 

 
% Elevator goes up when a button is pressed at a floor which is  
% higher than the elevator's current position: 
 
rule(r_up_floor(Floor1, Floor2, T), action(go_up, T), []) :-  

holds(elevator_position(Floor1), T), 
holds(activated_button_floor(Floor2, _), T), 
above(Floor2,Floor1). 

 
% Elevator goes down when a button is pressed inside the elevator for  
% a floor which is lower than the elevator's current position: 
 
rule(r_down_in(Floor1, Floor2, T), action(go_down, T), []) :-  

holds(elevator_position(Floor1), T), 
holds(activated_button_in(Floor2), T), below(Floor2, Floor1). 

 



 
% Elevator goes down when a button is pressed at a floor which is 
lower than the elevator's current position: 
rule(r_down_floor(Floor1, Floor2, T), action(go_down, T), []) :- 
holds(elevator_position(Floor1), T), 
holds(activated_button_floor(Floor2, _), T), below(Floor2, Floor1). 
 
% Elevator' doors open when the elevator is at a floor and the button 
for that floor is pressed from inside the elevator 
rule(r_open_in(Floor, T), action(open_door, T), []) :- 
holds(elevator_position(Floor), T), holds(activated_button_in(Floor), 
T). 
 
% Elevator' doors open when the elvator is at a floor and a button at 
that floor is pressed: 
rule(r_open_floor(Floor, Direction, T), action(open_door, T), []) :- 
holds(elevator_position(Floor), T), 
holds(activated_button_floor(Floor, Direction), T). 
 
% Elevator may remain idle: 
rule(r_idle(T), action(idle, T), []). 
 
% Different actions are incompatible with each other: 
complement(action(go_up, T), action(go_down, T)). 
complement(action(go_up, T), action(open_door, T)). 
complement(action(go_down, T), action(go_up, T)). 
complement(action(go_down, T), action(open_door, T)). 
complement(action(open_door, T), action(go_up, T)). 
complement(action(open_door, T), action(go_down, T)). 
complement(action(go_up, T), action(idle, T)). 
complement(action(go_down, T), action(idle, T)). 
complement(action(open_door, T), action(idle, T)). 
complement(action(idle, T), action(go_down, T)). 
complement(action(idle, T), action(open_door, T)). 
complement(action(idle, T), action(go_up, T)). 
 
 
% ===================================================================  
%  Strategic Part 
% ===================================================================  
 
% The elevator' doors should not open when a button is pressed at a 
floor for a certain direction, 
% if the elevator is moving in the opposite direction: 
 
rule(p_down_in_open_floor, prefer(r_down_in(Floor1, _, T), 
r_open_floor(Floor1, up, T)), []). 
 
rule(p_down_floor_open_floor, prefer(r_down_floor(Floor1, _, T), 
r_open_floor(Floor1, up, T)), []). 
 
rule(p_up_in_open_floor, prefer(r_up_in(Floor1, _, T), 
r_open_floor(Floor1, down, T)), []). 
 
rule(p_up_floor_open_floor, prefer(r_up_floor(Floor1, _, T), 
r_open_floor(Floor1, down, T)), []). 
 
 
% Elevator' doors should open when the elevator is at a floor and the 
button of that floor is pressed 
% from inside the elevator: 



 
rule(p_open_in_up_in, prefer(r_open_in(Floor1, T), r_up_in(Floor1, _, 
T)), []). 
 
rule(p_open_in_up_floor, prefer(r_open_in(Floor1, T), 
r_up_floor(Floor1, _, T)), []). 
 
rule(p_open_in_down_in, prefer(r_open_in(Floor1, T), 
r_down_in(Floor1, _, T)), []). 
 
rule(p_open_in_down_floor, prefer(r_open_in(Floor1, T), 
r_down_floor(Floor1, _, T)), []). 
 
 
% Elevator doors should open when the elevator is at a floor and the 
button for that floor is pressed 
% from inside the elevator: 
 
rule(p_open_floor_up_in, prefer(r_open_floor(Floor1, up, T), 
r_up_in(Floor1, _, T)), []). 
 
rule(p_open_floor_down_in, prefer(r_open_floor(Floor1, down, T), 
r_down_in(Floor1, _, T)), []). 
 
 
% Elevator doors should open at a floor if the button at that floor 
is pressed for the direction 
% in which the elevator is moving : 
 
rule(p_open_floor_up_floor, prefer(r_open_floor(Floor1, up, T), 
r_up_floor(Floor1, _, T)), []). 
 
rule(p_open_floor_down_floor, prefer(r_open_floor(Floor1, down, T), 
r_down_floor(Floor1, _, T)), []). 
 
 
% Buttons pressed inside the elevator have higher priority than 
buttons pressed at a floor: 
 
rule(p_up_in_down_floor, prefer(r_up_in(Floor1, _, T), 
r_down_floor(Floor1, _, T)), []). 
 
rule(p_down_in_up_floor, prefer(r_down_in(Floor1, _, T), 
r_up_floor(Floor1, _, T)), []). 
 
 
% Buttons pressed at a floor above the elevator have higher priority 
than buttons pressed at a floor  
% below the elevator: 
 
rule(p_up_floor_down_floor, prefer(r_up_floor(Floor1, _, T), 
r_down_floor(Floor1, _, T)), []). 
 
 
% Buttons pressed inside the elevator for a floor above the elevator 
have higher priority than buttons 
% pressed inside the elevator for a floor below the elevator 
 
rule(p_up_in_down_in, prefer(r_up_in(Floor1, _, T), r_down_in(Floor1, 
_, T)), []). 
 



 
% Any action has higher priority than idle 
 
rule(p_up_in_idle, prefer(r_up_in(_, _, T), r_idle(T)), []). 
rule(p_up_floor_idle, prefer(r_up_floor(_, _, T), r_idle(T)), []). 
rule(p_down_in_idle, prefer(r_down_in(_, _, T), r_idle(T)), []). 
rule(p_down_floor_idle, prefer(r_down_floor(_, _, T), r_idle(T)), 
[]). 
rule(p_open_in_idle, prefer(r_open_in(_, T), r_idle(T)), []). 
rule(p_open_floor_idle, prefer(r_open_floor(_, _, T),r_idle(T)), []). 
 
 
 
% ===================================================================  
% Other Auxilliary Definitions 
% ===================================================================  
 
above(Floor1, Floor2) :-  

floor(Floor1), floor(Floor2), Floor1 > Floor2. 
 
below(Floor1, Floor2) :-  

floor(Floor1), floor(Floor2), Floor1 < Floor2. 
 
floor(Floor) :-  

member(Floor, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). 
 
 
directly_above(Floor, Floor1) :-  

floor(Floor), floor(Floor1), Floor1 is Floor+1. 
 
directly_below(Floor, Floor1) :-  

floor(Floor), floor(Floor1), Floor1 is Floor-1. 
 
 
% ===================================================================  
% Main functions 
% ===================================================================  
 
% elevator(Example, Moves) :- Returns the set of moves the elevator 
% should make for all time points, when actions of Example take place 
 
elevator(Example, Moves) :-  example(Example),  
    elevator_moves(0, 9, Moves),  
    retractall(holds(_,_)), 
    retractall(rule(Example, _, _)), 
    retractall(rule(newaction, _, _)). 
 
 
%elevator_moves(From, To, Actions) :- Returns the set of moves the 
%elevator should  make between time points From and To in the list  
%Actions 
 
elevator_moves(Time, Time, [Action |[]]) :- 
 !, give_action(Action, Time, _), 
 write('Time '), write(Time), write(': '), write(Action), 
write('\n'). 
 
elevator_moves(From, To, [Action |Rest]) :- 
 give_action(Action, From, _), 
 assert(rule(newaction, happens(action(Action, From), From), 
[])), 



 write('Time '), write(From), write(': '), write(Action), 
write('\n'), 
 Next is From + 1, 
 elevator_moves(Next, To, Rest). 
 
 
 
 
 
% assert_all(List) :- asserts all the rules in List after retracting 
all instances of each item in order 
% to make sure that each rule from list exists only once 
assert_all([], _). 
assert_all([First | Rest], T) :- retractall(holds(First, T)), 
assert(holds(First, T)), assert_all(Rest, T). 
 
 
 
% find_holds(T) :- finds every fact that holds at time T and asserts 
a rule for each one 
find_holds(T) :- findall(Fact, prove([holds(Fact, T)], _), List), 
assert_all(List, T). 
 
% give_action(Action, T, D) :- returns action Action that will be 
executed at time T. 
give_action(Action, T, D) :- find_holds(T), prove([action(Action, 
T)], D). 
 
% ===================================================================  
% Examples 
% ===================================================================  
 
example(example1) :- assert(rule(example1, 
holds(elevator_position(1), 0), [])), 
   assert(rule(example1, 
happens(press_button_floor(1,up), 0), [])), 
   assert(rule(example1, happens(press_button_in(6), 
1), [])), 
   assert(rule(example1, happens(press_button_floor(3, 
up), 0), [])), 
   assert(rule(example1, happens(press_button_in(5), 
4), [])). 
 
example(example2) :- assert(rule(example2, 
holds(elevator_position(1), 0), [])), 
   assert(rule(example2, 
happens(press_button_floor(1,up), 0), [])), 
   assert(rule(example2, happens(press_button_in(3), 
1), [])), 
   assert(rule(example2, happens(press_button_floor(2, 
down), 1), [])), 
   assert(rule(example2, happens(press_button_in(1), 
6), [])). 
 
% ===================================================================  
% Queries 
% ===================================================================  
 
% elevator(example1, Moves). 
% elevator(example2, Moves).  
%=================================================================== 



 

 


