
Reasoning Techniques for Analysis and Refinement of
Policies for Service Management

Antonis Kakas, Arosha K Bandara, Alessandra Russo, Emil C Lupu,

Morris Sloman, Naranker Dulay

Technical Report 2005/7
Department of Computing, Imperial College London

Abstract
The work described in this technical report falls under the general problem of developing
methods that would allow us to engineer software systems that are reliable and would offer a
certain acceptable level of quality in their operation. This report shows how the analysis and
refinement of policies for Quality of Service can be carried out within logic by exploiting forms
of abductive and argumentative reasoning. In particular, it provides two main contributions. The
first is an extension of earlier work on the use of abductive reasoning for automatic policy
refinement by exploiting the use of integrity constraints within abduction and its integration with
constraint solving. This has allowed us to enhance this refinement process in various ways, e.g.
supporting parameter values derivation to quantify abstract refinement to specific policies ready
to be put in operation, and calculating utility values to determine optimal refined policies. The
second contribution is a new approach for modelling and formulating Quality of Service policies,
and more general policies for software requirements, as preference policies within logical
frameworks of argumentation. This is shown to be a flexible and declarative approach to the
analysis of such policies through high-level semantic queries of argumentation, demonstrated
here for the particular case of network firewall policies where the logical framework of
argumentation allows us to detect anomalies in the firewalls and facilitates the process of their
resolution. To our knowledge this is the first time that the link between argumentation and the
specification and analysis of requirement policies has been studied.

This deliverable describes the work carried out under the visiting fellowship of Professor Kakas at Imperial

College, London. This fellowship was supported by EPSRC (grant GR/T29246/01) under the project
“Reasoning Techniques for Analysis and Refinement of Policies for Quality of Service Management”.

1. Introduction
A key issue in policy-based approaches for systems management is the development of methods
for analysis and refinement of policy specifications, in particular within the context of policies
applicable across administrative domain boundaries. Such specifications often include
authorisation, management policies, and general and/or application-specific constraints. The
ability to detect domain-independent and application-specific conflicts among policies, identify
the causes for these conflicts and propose resolutions is crucial. However, most of the research
effort on policy-based system management has been mainly focused on the development of
languages for specifying policies and architectures for managing and deploying policies in
distributed environments. Existing analysis techniques for policies specifications have been
limited to the study of modality and application-specific conflicts. In the last few years, the
investigators have successfully shown how abductive reasoning, combined with an Event-
Calculus formalism for specifying policies, can be used to analyse policies, detect different types
of conflicts and generate explanations in terms of the conditions under which such conflicts arise
[1]. This logic-based approach has been effectively applied in the context of Quality of Service
(QoS) provisioning in Differentiated Services (DiffServ) networks for the detection of policy
conflicts during network dimensioning (i.e. static resource management of QoS provisioning) [6].
The first part of this report builds upon this results and shows how to integrate argumentation methods with
abductive reasoning in order to enable more modular modeling and analysis techniques for policy specifications and
support resolution of policy conflicts.

A second critical task in policy-based specifications is the derivation of policies from high-level
requirement specifications. Within the specific context of network service management, QoS
policies would need to be derived from given Service Level Agreement (SLA) specifications and
provider’s business goals in order to provide policy management rules for dynamically
reconfiguring the routers in a network that enable the desired QoS goals to be achieved. Such
policies are normally derived manually with no means of verifying their correctness with respect
to the underlying network devices and the desired QoS goals. The process of deriving policies
from the SLA specifications in a fully automated way is recognized as a difficult research
challenge. However, tool support to assist human administrators in the refinement of policies
from SLAs and enterprise goals would significantly reduce and improve network administration
tasks especially when combined with analysis tools to ensure that only consistent specifications
are derived. Policy refinement would in this case require mapping abstract entities, defined as
part of high-level requirements, to concrete objects/devices of the underlying system, defining
concrete policies in terms of only operations supported by the underlying system, and ensuring
that at each stage of refinement the decomposition of abstract requirements into more concrete
policies is correct and consistent [5; 6]. Although policy refinement cannot be fully automated in
general, increasing support for policy refinement can be achieved when constraining the problem
to a well-defined functional area, such as QoS management, where application specific
knowledge can be encoded and used. In particular in [6] we have shown that abductive reasoning
can be used to derive sequences of policy-based operations (i.e. strategies) that would allow a given
system to achieve its high-level desired goal. This provides an initial formal approach and tool
support for partial policy refinement, in which the derived strategies can be then used to manually
specifying policies that can be enforced by the system. The second part of this report shows how to fully
exploit abduction constraint solving to increase automated support for policy refinements.

PART A: Software Requirements as Argumentation based

Preference Policies

The need to use formal techniques for software engineering specifications is now well proven. In
particular, several studies have shown how formal logic can be used to formalize and analyse
software requirements. One such work is [1], which investigates the use of abductive reasoning in
requirements policy analysis and refinement, to address the issues of conflict detection and validation.
This work has shown how policy analysis can be facilitated greatly when policies are expressed in
a high-level declarative representation framework such as that of Abductive Logic Programming
[7, 8, 11, 29] with Event Calculus [5, 6] logical formalization.

Policy-based approaches to network and system management are particularly important because
they allow separation of the rules that govern the behavior of a system from the functionality
provided by that system. Policies allow the behavior of a system to be adapted, without the need
to recode its functionalities. They capture the relative priority or preference amongst the different
possible actions that the system can take at any stage in its operation. Expressing policy
specifications as preference policies provides us with a higher level of abstraction and greater degree
of flexibility in their formulation and analysis. Indeed, in many cases software requirements
specifications can be seen naturally as policies of the preferred way of operation that the software
systems need to follow. For example, we may have requirements policies for quality of service or
for the security level provided by our software systems. Understanding software requirements as
preference policies allows us to view these at a higher-level of abstraction and as a result of this
to have a greater degree of flexibility in the allowed formulation and analysis of the requirements.
The modularity of such high-level representations can be exploited to facilitate the development
of our policies.

Within this context, we have investigated how to model and formulate QoS policies, and other
policy-based systems managements, as preference policies within logical frameworks where the
preference reasoning is realised via argumentation, a form of reasoning closely relation to
abduction, using in particular the framework of Logic Programming with Priorities [27, 28]. We have

examined how we can exploit the modularity of such high-level logical representations to facilitate
the editing and updating of given policies. We have explored how argumentative reasoning and
its combined use with abductive reasoning, can give us a framework for high-level abstract analysis
of policy specifications through the use of semantic queries based on these forms of reasoning.
We have then investigated the benefits of this approach by applying it to the context of firewalls
policies for network security.

In what follows we will explain our approach and present its main properties within the context
of firewall policies, but we claim that these are valid more generally for other application domains
of policy-based system managements. To our knowledge this is the first time that the link
between argumentation and the specification and analysis of software requirements is proposed
and explored.

Section 2.1 gives the necessary background on argumentation and the framework of LPP
employed in our study. It is then demonstrated how software requirements policies can be
represented in this framework and discussed a methodology for developing such policies within
this argumentation-based framework. Section 2.2 presents an extensive study of the application
of these ideas to the problem of modelling, analyzing and developing network security policies.

A.1 Argumentation Basics
Argumentation has been shown to be a useful framework for formalizing non-monotonic
reasoning and other forms of reasoning (e.g. [33,34,35,36,]). In general, an argumentation
framework is a pair <T,A> where T is a theory in some background (monotonic) logic, equipped
with an entailment relation, ╞ , and A is a binary relation on the subsets of T. These subsets of T
form the arguments of the framework and A is therefore an attacking relation between arguments.
For any two arguments A1 and A2 we say that A1 attacks A2 when (A1,A2) belongs to the
attacking relation A.

The semantics of an argumentation framework is based upon the following central notion of an
admissible argument.

Definition (Admissibility of Arguments)
Given an argumentation framework <T,A>, an argument, Δ, is admissible if and only if

1. Δ does not attack itself,
2. for all arguments Δ', if Δ' attacks Δ then Δ also (counter-)attacks Δ'. ◊

We will use a particular framework of argumentation as realized by the framework of Logic
programming with Priorities (LPP) and its concrete form of Logic Programming without Negation as
Failure (LPwNF).

The preference reasoning within LPwNF is based on a model of argumentation where local
priority information, given at the level of the rules of a theory (or policy), is lifted to give a global
preference over sets of rules that compose arguments and counter arguments for a certain
decision. A theory or policy within LPwNF is viewed as a pool of sentences or rules from which
we need to select a suitable subset, i.e. an argument, in order to support a conclusion.

In LPwNF a theory or policy, T, is represented in a classical background logic (L, ╞) where the
language L consists of (Extended) logic programming rules of the form:

 Name : L ← L1, . . . , Ln, (n ≥ 0)

Here, L,L1, . . ., Ln are positive or negative (classical) literals. A negative literal is a literal of the
form ¬A, where A is an atom. As usual in Logic Programming a rule containing variables is a
compact representation of all the ground rules obtained from this under the Hebrand universe.
Each ground rule has a unique (parametric) name, Name, given at the front of the rule. The
background entailment relation, ╞ , of LPwNF is that of monotonic Horn logic given by the
single inference rule of Modus Ponens, treating negative literals as ordinary atoms.

In general, we can separate out an auxiliary part, T0, of a given theory, T, from which the other
rules can draw background information in order to satisfy some of their conditions. The
reasoning of the auxiliary part of a theory is independent of the main argumentation-based
preference reasoning of the framework and hence any appropriate logic can be used. The
auxiliary part contains also the definition of what constitutes a conflict in our theory (over and
above the standard conflict of classical negation, i.e. between an atom, A and its negation ¬A).
This is given through the definition of an auxiliary predicate, incompatible/2, of the form

 incompatible(L1, L2) ← B

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B. Typically, the
conditions B are empty and the definition of the incompatible predicate is kept simple.

The non-auxiliary part of a theory T, which encodes the proper policy part of our theory, is
separated into two parts: the basic part and the strategy part. The basic part contains rules (of the
form given above) whose conclusions, L, are any literal except the special predicate, priority/2,
which is the only predicate that can appear in the conclusion of rules in the strategy part. Hence
rules in the strategy part take the special form.

 Name : priority(rule1, rule2) ← L1, . . . ,Ln, (n ≥ 0)

where rule1 and rule2 are the names of any other two rules in the theory.

A rule of this form then means that under the conditions L1, . . . ,Ln, the rule with name, rule1,
has priority over the rule with name, rule2. The role of this priority relation is therefore to
encode locally the relative strength of (argument) rules in the theory. The priority relation
priority/2 is required to be irreflexive. The rules rule1 and rule2 can in fact be themselves rules
expressing priority between other rules and hence the framework allows higher-order priorities.
For simplicity we will assume that the conditions of any rule in the theory do not refer to the
predicate priority/2 thus avoiding self-reference problems. Note also that the definition of
incompatible/2 always includes that any ground atom, priority(rule1, rule2), is incompatible with
the atom priority(rule2, rule1) and vice-versa.

The attacking relation, A, of LPwNF is then given by combining together the conflicts and
priority relations in our given theory, T. For any two sets ∆, ∆' of sentences in T, ∆ attacks ∆',
whenever these two sets have some conflicting (i.e. incompatible) conclusion (under the
background logic ╞ H) and that the rules of ∆ that derive this are rendered by ∆ to have at least
the same priority as the priority that ∆' renders for its own rules that derive the conflicting
conclusion. This is formalized by the following definition.

Definition (Attacking Relation of Arguments in LPwNF)
Let T be an LPwNF theory and ∆, ∆' subsets of T. Then ∆' attacks ∆ (or ∆' is a counter
argument of ∆) if and only if there exists a literal, L, and subsets ∆1 of ∆' and ∆2 of ∆ such that:

(i) ∆1 ╞ L and ∆2 ╞ LC, minimally
(ii) (∃r ∈ ∆1, s ∈ ∆2 s.t. ∆2 ╞ priority(s, r)) ⇒
 (∃r ∈ ∆1, s ∈ ∆2 s.t. ∆1 ╞ priority(r, s))

where LC is any literal that conflicts L (e.g. LC = ¬L or incompatible(L,LC) holds) and, ∆ ╞ L
minimally, means that ∆ ╞ L and that L cannot be derived from any proper subset of ∆. ◊

The second condition in the above definition states that an argument ∆' for L attacks an
argument ∆ for the contrary conclusion only if the set of rules that it uses to prove L are at least
of the same strength (under the priority relation priority/2) as the set of rules in ∆ used to prove
the contrary. Note that the attacking relation is typically not symmetric.

This notion of attack, that lifts the priority relation from the individual rules to sets of rules, then
gives us the admissible arguments of any LPwNF theory according to the above general
definition of admissibility.

Preference reasoning is based on the maximal admissible arguments of a given theory. Usually, two
preference entailment relations are defined.

Definition (Preference Entailment in LPwNF)
Given an LPwNF theory, T, and an atomic goal, G, we define a credulous and a sceptical preference
entailment as follows:

• T ╞cpr G means that there is at least one maximal admissible subset of T where G holds
under the background logic ╞;

• T ╞spr G means that T ╞cpr G and, that for any GC such that incompatible(GC,G) holds,
T ╞cpr GC does not hold. ◊

We can easily extend this definition, in the obvious way, for goals that are a conjunction of
literals.

Hence in the case of a credulous conclusion of our theory or policy we know that there is at least
one admissible argument that is supporting it but there could also be other admissible arguments
for conflicting conclusions. The conclusion is possible. When no conflicting conclusion has an
admissible argument for it we have that the conclusion is sceptically entailed by our theory. The
conclusion is certain.

Given a policy theory, T, we can identify three important properties that this policy may have.
The first one is the property of determinism in its decision, i.e. that the policy always has only one
sceptically preferred conclusion under any specific background situation that can arise in the
problem domain for which the policy is to be applied. Equivalently, this means that there is an
admissible argument for only one conclusion of the policy. In the opposite case we have non-
determinism where the policy can support different incompatible conclusions for the same
situation at hand. The other important property of a policy theory is that of non-redundancy, i.e.
that for every subset, S, of the basic part of our theory T, there exists at least one background
situation, described by an auxiliary theory, S0, under which S belongs to at least one admissible
subset of T ∪ S0. Hence we do not have parts of our policy that would not apply ever. Finally,
the third important property is that of exhaustiveness, i.e. that for any background situation,
described by an auxiliary theory, S0, the theory T ∪ S0 has at least one admissible subset that
supports a conclusion on some desired goal predicate.

A.2 Software Requirements as Argumentation theories
In this section we will illustrate the framework of LPwNF and how its argumentation semantics
allows us to carry out preference reasoning through a “standard” example of a requirements
policy. We will show here how we can formulate and analyse within LPwNF an Elevator Policy
that specifies the (preferred) mode of operation of an elevator. The task of this policy is to
specify what action the elevator should take at any given instance of its operation. The available
actions for the elevator are:

• open_door : Elevator doors open
• go_up : Elevator goes up one floor
• go_down : Elevator goes down one floor

The “world situations” of operation are parameterized by the actions executed externally by the
elevator users. These actions are:

• press_button_in(Floor) : A user presses a button from inside the elevator for the floor,
Floor.

• press_button_floor(Floor, Direction) : A user presses a button at Floor for Direction –
either up or down.

These two sets of actions change the state of the world. These states are described using the
following auxiliary fluent predicates:

• elevator_position(Floor): Elevator is at Floor
• activated_button_in(Floor) : The button for Floor inside the elevator is activated
• activated_button_floor(Floor, Direction): The button at Floor for Direction is activated

We reason about these fluents and their changes using the Event Calculus (EC), assumed to be
part of our background auxiliary theory, T0. Therefore, T0 contains the standard domain
independent axioms of the EC

• holds(P,T) ← holds-initially(P),T ≥ 0,not broken(P,0,T).
• holds(P,T) ← happens(A,T'), T'<T, initiates(A,T',P), not broken(P,T',T).
• broken(P,T’,T) ← happens(A,T''), terminates(A,T'',P), T'<T''<T

together with domain dependent axioms such as:

% When a button is pressed it becomes activated:
• initiates(happens(press_button_in(Floor)), T, activated_button_in(Floor)).

% When the elevator arrives at a floor the buttons pressed for that floor stop being
% activated:
• terminates(action(open_door,T), T,activated_button_in(Floor)) ←
 holds(elevator_position(Floor), T), holds(activated_button_in(Floor), T).

Similar domain dependent statements, about the initiating and terminating effects of all the
actions, are included in the background theory T0 and can be found in appendix A, where the full
elevator policy as a LPwNF theory is given, written in the GORGIAS system that implements
the framework of LPwNF.

The background theory T0 also contains the following single statement of incompatibility that
expresses that any two different actions of the lift are incompatible, or in other words that the lift
can decide to execute only one action at a time:

% Different actions are incompatible with each other:
• ¬ action(A, T) ← action(B, T), A ≠ B

We are now ready to represent the main part of the policy theory of the elevator, namely the
rules that specify (generate) under some conditions the possible actions that the elevator can take
in the basic part of the policy and the relative priority rules on these generation rules and actions
in the strategy part of the policy.

The basic part of the policy theory T contains rules of the following form.

% The elevator can go up one floor when a button is inside the elevator is activated for a % floor higher than
the elevator's current position:
• rup_in(Floor1, Floor2):

 action(go_up, T) ←
 holds(elevator_position(Floor1), T),
 holds(activated_button_in(Floor2), T),
 Floor2 > Floor1.

% The elevator can go up one floor when a button is at a floor higher that the elevator’s % current position is
activated:
• rup_floor(Floor1, Floor2):

 action(go_up, T) ←
 holds(elevator_position(Floor1), T),
 holds(activated_button_floor(Floor2,Dir), T),
 Floor2 > Floor1.

Similar rules exist for the action to go down. For the action to open the doors we have rules of
the form:

% The elevator’ doors may open when the elevator is at a floor and a button for that
% floor is activated inside the elevator:
• ropen_in (Floor):

 action(open_door, T) ←
 holds(elevator_position(Floor), T),
 holds(activated_button_in(Floor), T).

Turning now to the strategy part we need to specify the priority that our policy should have
when we have situations where at the same time we have buttons activated both above and
below the lifts current position. In such situations more than one of the rules in the basic part of
the policy “fires” and hence we need to specify the preferred action amongst the many actions
possible.

Below we give some example priority rules in the strategy part. As mentioned above a full policy
can be found in appendix A that is executable in the GORGIAS system. When writing these
rules we exploit the fact that our rules have names and therefore we can refer directly to the
specific rules and situations of interest when we are specifying priorities amongst possible
actions.

% The elevator’ doors should not open (when a button is activated at a floor for a
% certain direction) if the elevator is moving in the opposite direction
• Rdown_in|open_floor :

 rdown_in(Floor1, Floor2) > ropen_floor(Floor1, up)
• Rdown_floor|open_floor :

 rdown_floor(Floor1, Floor2) > ropen_floor(Floor1, up)
• Rup_in|open_floor :

 rup_in(Floor1, Floor2) > ropen_floor(Floor1, down)
• Rup_floor|open_floor :

 rup_floor(Floor1, Floor2) > ropen_floor(Floor1, down)

Note that in the presentation of these rules we are using instead of the priority/2 predicate the
infix notation “>”.

Similarly, we have the following strategy rules that give priority to the action of opening the lift
doors.

% Elevator doors should open when the elevator is at a floor and the button of that floor % is activated from
inside the elevator
• Ropen_in|up_in :

 ropen_in (Floor1) > rup_in(Floor1, Floor2)
• Ropen_in|up_floor :

 ropen_in (Floor1) > rup_floor(Floor1, Floor2)
• Ropen_in|down_in :

 ropen_in (Floor1) > rdown_in(Floor1, Floor2)
• Ropen_in|down_floor:

 ropen_in (Floor1) > rdown_floor(Floor1, Floor2

Note that these four rules could also be written more succinctly as a single rule:

• R(open_in,Action):
 r(open_in,Floor1) > r(Action,Floor2) ← Action≠open_in

where we are using variables to parameterize the names of our rules.

Another aspect of the strategy part of our policy could give priority to the activation requests
from inside the elevator over those requests that come from outside the elevator at some floor.
This is captured by the priority rules:

• Rup_in|down_floor:
 rup_in(Floor1, Floor2) > rdown_floor(Floor1, Floor3)

• Rdown_in|up_floor:
 rdown_in(Floor1, Floor2) > rup_floor(Floor1, Floor3)

At this stage we can enquire if the policy is deterministic, i.e. that it has a unique preferred choice
at any situation. We see though that we have cases of conflict between our priority rules. An
example is the following where on the one hand we are giving priority to opening the door at
some floor over going down (due to the priority to open the doors when the lift is at a floor) and
on the other hand we are giving priority of going down over opening the doors (due to the
priority that the lift is moving in the opposite direction):

• Ropen_floor|down_in :
 ropen_floor (Floor1, Direction) > rdown_in(Floor1, Floor2)

• Rdown_in|open_floor:
 rdown_in(Floor1, Floor2) >ropen_floor(Floor1, up)

Our policy therefore contains a conflict now seen at the level of the priorities in the policy. We
can resolve such conflicts by employing higher-order priority rules. In our example above we
can ask the user what is the desired behaviour of the lift by explicitly asking what is meant to be
stronger “the requirement to stop and open the doors at a floor where there is a request for the
lift or the requirement to go down past a requested floor when the request is to go up”. Suppose
that the user answers that “carrying on past the requested floor is stronger” then we can
represent this with the higher-order priority rules:

• Pdown_in|open_floor :
Rdown_in|open_floor > Ropen_floor|down_in

• Pdown_floor|open_floor :
Rdown_floor|open_floor > Ropen_floor|down_floor

• Pup_in|open_floor :
Rup_in|open_floor > Ropen_floor|up_in

• Pup_floor|open_floor :
Rup_floor|open_floor > Ropen_floor|up_floor

A.3 Conflict Detection and Resolution
As we have seen above some conflicts can be identified during the process of composing the
policy simply by examining the rules of the policy and checking that there is a common situation
in which conflicting conclusions can be derived. But once we are satisfied that we have captured
the policy how can we check that it is in fact conflict free? Is it possible to detect in an automatic
way the existence of conflicts in the policy?

To answer this we first need to notice that the existence of a conflict in LPwNF policies
corresponds to the fact that the policy is non-deterministic, i.e. it has more than one admissible
recommendation for a specific situation or scenario. So a conflict can be defined at the meta-
level as:

• conflict(Scenario) if T ∪ Scenario ╞cpr G1,
 T ∪ Scenario ╞cpr G2,

 incompatible(G1,G2).

where Scenario describes a specific situation in which a conflict exists. Under such a conflicting
scenario therefore we can get two incompatible conclusions. Hence to find such a scenario (if it
exists) we can follow the following steps:

1. Query the policy for a certain recommendation, e.g. action(go_up, T) in the lift example.

2. Get the background scenario that would give this. This can be done by employing
abduction in the query of step (1).

3. With this same background scenario query the policy for a different recommendation
than the one in step (1) which is incompatible with it, e.g. action(go_down, T) in the lift
example.

Let us see another example of a conflict in the elevator policy. A conflict scenario is given by:

• Conflict Scenario:
• holds_initially(elevator_position(3))
• happens(press_button_floor(1, up), T)
• happens(press_button_floor(5, up), T)

• Conflicting Recommendations & Rules:

• action(go_up,T) - rup_floor(Floor1, Floor2)

• action(go_down,T)- rdown_floor(Floor1, Floor3)

This shows that when we have at the same time a request from above and below the current
position of the lift the policy is able to recommend either to go up or to go down. In other
words, we somehow have forgotten to consider this scenario when formulating the policy.

To resolve this conflict we ask the user what is more important or stronger in this situation.
Suppose the user replies that the elevator should move in the direction with the closest request.
Then we can extend our policy with the following rule to capture this and thus resolve the
conflict:

• Rup_floor|down_floor :
 rup_floor(Floor1, Floor2) > rdown_floor(Floor1, Floor3)
 if abs(Floor2-Floor1) ≥ abs(Floor3-Floor1)
• Rdown_floor|up_floor :

 rdown_floor(Floor1, Floor2) > rup_floor(Floor1, Floor3)
 if abs(Floor2-Floor1) > abs(Floor3-Floor1)

Note the asymmetry in these two rules where in the first rule we have “≥” in the comparison of
distances thus giving priority to going up over down when the distance of request from above
and below is exactly the same.

In this way we can keep extending our policy in a modular and incremental way until it is conflict
free. A conflict free policy is characterized by the following two conditions on the form of our
policy rules:

• There exist priority rules that decide between any two rules that give conflicting actions
in the same background scenario.

• There exist higher-order priority rules that decide between any conflicting priority rules
in the same background scenario.

We could do an analogous analysis of our policy to check that it has the other two properties of
non-redundancy and exhaustiveness. This leads us to the following methodology for developing
a policy in the LPwNF framework:

1. Compose Policy rules in Basic and Strategy parts

2. Analyse Policy for the three main properties of determinism, non-redundancy and
exhaustiveness.

3. Resolve (or address the lack of any one of) these properties by modular and incremental
extensions of the policy guided by the user by presenting to her/him the problematic
scenarios and the parts of the policy (arguments) that lead to the problem.

A.3.1 Elevator: Example of Operation
Let us illustrate here through an extensive example the use of the above elevator policy as a
preference policy for deciding the action of the lift. Assume that initially we have the following
situation:

• Elevator is at floor1 with doors closed
• No buttons activated inside or outside the elevator

• John is at floor 1 and has pressed the “up” button. He wants to go to the 3
rd

 floor

• Mary is at floor 2 and presses the “down” button. She wants to go to the 1
st

 floor.
Hence at time 1 the following fluents hold:

• elevator_position(1)
• activated_button_floor(1, up)

The only rule in the basic part of the policy that fires is the rule:

• ropen_floor(1,up) for the action open_door

and hence the only possible action is to open_door. Then

• Elevator Doors open
o activated_button_floor(1, up) no longer holds

• John enters the elevator
• John presses the “Floor 3” button.

As a result now
• activated_button_in(3)holds

and the only rule in the basic part the fires is

• rup_in(1, 3) for the action go_up

and hence the only possible action is to go_up. Then

• Elevator goes up one floor
o elevator_position(1) no longer holds
o elevator_position(2) holds

Mary at floor 2 has pressed the “down” button

• activated_button_floor(2, down) holds

Now the possible actions are:

• go_up (from rule rup_in(2, 3))

• open_door (from rule ropen_floor(3, down))

The relevant priorities & priority rules are:

• rup_in(2, 3) > ropen_floor(3, down)
 (rule Rup_in|open_floor)

• ropen_floor(3, down) > rup_in(2, 3)
 (rule Ropen_floor|up_in)

Higher-order priority rule:

• Rup_in|open_floor > Ropen_floor|up_in
 (rule Pup_in|open_floor)

Hence the chosen action according to the policy is go_up, past Mary. The elevator goes up one
floor.

• Elevator goes up one floor
• elevator_position(2) no longer holds
• elevator_position(3) holds

• Possible actions
• go_down (rule rdown_floor(3, 2))

• open_door (rule ropen_in(3))

• Priority rules

• ropen_in(3) > rdown_floor(3, 2)
 (rule Ropen_in|down_floor)

• Choosen action: open_door

Then John exits the elevator, activated_button_in(3) no longer holds, and the only possible
action is go_down since activated_button_floor(2,down) still holds that allows the basic part
rule, rdown_floor(3, 2)), to fire. The elevator will then go down, open the doors for Mary and

then when Mary presses the Floor 1 button the elevator will go_down to the first floor.

A.4. Modeling Firewall Policies
Security is a major consideration that must be addressed in any modern enterprise network.
Broadly security can be split into the areas of authentication, authorisation, integrity and
availability. Authentication is concerned with verifying a user’s identity; authorisation focuses on
ensuring that users are only allowed to perform those operations for which they have been
granted permission (or are not prohibited from doing); integrity refers to ensuring that data is not
modified without authorisation; and finally availability addresses problems such as denial of
service where access to a particular resource is denied even though the user is authorised.

Whilst some of these security considerations are addressed at the application level, in many cases
the most common tool in the administrators’ arsenal is the network firewall. Therefore, ensuring
that the rules that govern the behaviour of the firewalls are consistent and correct with respect to
the security requirements of the system is critical. However, in large scale networks with multiple
firewalls and a range of user security requirements, managing the firewall policies quickly
becomes a non-trivial task.

Network Security Policies are typically realized via Firewall Policies [37, 43] that control the
traffic between two domains on the network. These firewall policies consist of a totally ordered
set of rules of the form:

<order> : <action> if <network conditions>

where the <network conditions> identify a certain type of traffic, typically from one domain to
another under some protocol, and the action field, <action>, typically takes the values “accept”
or “deny” thus specifying if the traffic is to be allowed to flow or stopped. The semantics of the
firewall policy is given operationally and it is crucially dependent on the total ordering of its rules.
The ordering position of a rule is given by a (unique) natural number in <order>. Then for any
given packet check the rules of the policy according to this priority order. The first rule whose
network conditions are satisfied by the packet determines through its action field the fate of the
packet. All other rules that are ordered lower are ignored.

An important shortcoming of the current methods of developing Firewall Policies is the lack of a
systematic link between the high-level specification of the security policy requirements and the
firewall policy that is meant to capture these requirements through its operation. For example,
how can we capture the requirement that all traffic from a name server should be accepted when
at the same time we require that traffic from the network in which the server is placed is to be
restricted depending on the destination by some other policy. Similarly, how can we reconcile
two opposing firewall policies both of which are in the path of a certain type of network traffic?

We will study how such legacy firewall policies can be lifted to a declarative preference policy
expressed in the argumentation based framework of Logic Programming with Priorities
presented in section A. Such a lifted representation is high-level and closer to the natural
specification of security policy requirements. We will show how the standard declarative
semantics of LPP captures the operational semantics of the legacy firewall policies and then
examine various possibilities of extending the scope of these firewall policies beyond the current
realm of applicability of firewall policies.

A.4.1 Legacy Firewall Policies
For the purposes of this report and without loss of generality we will confine ourselves to legacy
firewall policies whose rules have the following form (see [37,43] for details on the syntax and
table format of presentation of these rules):

 <order> : <action> if <protocol ><src_ip><src_port><dst_ip><dst_port>

The network conditions are therefore a 5-tuple filter capturing conditions on any packet:

<protocol> - on the protocol type
<src_ip> - on the source IP address
<src_port> - on the source port
<dst_ip> - on the destination IP address
<dst_port> - on the destination port

Conditions on IP addresses can be that this is a particular host (specified either as “192.112.1.1”
or with a machine name “zeus”) or that it belongs to a network (again specified either as
“192.112.1.*” or with a network name “net_cs”) or that it can be any (specified by ”any”)
address. Ports can be required to be either a single specific port number or any port number,
indicated by “any”, or some range of port numbers. For any given firewall policy, FP, and
specific packet, Packet, we will write

 FP(« Packet: Action »)

to denote that the policy FP recommends the action, Action, for this packet, e.g. if packet,
pac_13, is denied under FP we will write FP(« pac_13: deny ») and similarly we will write
FP(« pac_7: accept») when FP recommends to accept packet pac_7.

It is clear that these network field conditions can be captured directly by binary auxiliary
predicates in a background logical theory. For example, source IP conditions can be captured by
the binary relation “src_ip(Packet, IPAddress)”, e.g. we can have “src_ip(pac1,net_cs)” specifying
that the packet “pac1” has a source IP address from the network “net_cs”, or we can have
“src_ip(pac2,any)” specifying that packet “pac2” can have any source IP address.

Definition (Background Network Field Language)
For any network field, <field_name>, of a legacy firewall policy the binary relation given by,
field_name(Packet,Value), is the corresponding network field (binary) relation where Packet is a
packet identifier and Value ranges over the possible values of the given network field. ◊

Using these network field binary relations we can capture the network conditions of the firewall
rules in a simple auxiliary theory specifying when a network field takes its various values. Then
given such a background auxiliary theory of network conditions we can translate (up-lift) any
legacy firewall policy to a preference policy in LPP as follows.

Definition (Corresponding Argumentation Theory)
Let FP be a legacy firewall policy. Then the corresponding logical preference policy in Logic
Programming with Priorities, denoted by L(FP), is given as follows. For every filtering rule:

<order_num> : <action_value> if
<protocol_value><src_ip_value><src_port_value>
<dst_ip_value> <dst_port_value>

we have the corresponding rule in the basic part of L(FP) given by:

r(order_num) : action(Packet, action_value) if
 protocol(Packet,protocol_value),

scr_ip(Packet, src_ip_value),
scr_port(Packet, src_port_value),
dst_ip(Packet, dst_ip_value),
dst_port(Packet, dst_port_value).

The priority or strategy part of L(FP) is given by the single priority rule:

R(total): priority(r(Name1), r(Name2)) if Name1 < Name2. ◊

This is a straightforward translation expressing in logical terms each filtering rule and the total
ordering amongst these rules by giving higher priority to any rule over all the rules that are
named with a higher number. For example, if our firewall policy has the default rule to deny any
traffic on some protocol, ptc1, then the corresponding rule in the basic part of L(FP) will be:

 r(default_num) : action(Packet, deny) if
 protocol(Packet,ptc1),

scr_ip(Packet, any),
scr_port(Packet, any),
dst_ip(Packet, any),
dst_port(Packet, any).

Similarly, borrowing the example policy from [37] the following row in this example

2 : tcp, 140.192.37.2*, any, any, 80, accept
will be translated to the rule:

r(2) : action(Packet, accept) if
 protocol(Packet,tcp),

scr_ip(Packet, net_140_192_37),
scr_port(Packet, any),
dst_ip(Packet, any),
dst_port(Packet, 80).

The following theorem shows the inclusion of legacy firewall policies into the framework of
Logic Programming with Priorities and in particular into the framework of LPwNF.

Theorem (Inclusion of Legacy Policies)
Let FP be a legacy firewall policy and L(FP) its corresponding logical preference policy in LPP. Then for any
given packet of traffic, Packet:

 FP(« Packet: Action ») ⇔ L(FP) ╞spr action(Packet, Action).

This theorem therefore tell us that the decision of a firewall policy, to accept or deny any packet
of traffic, is exactly mirrored by the argumentation based preference reasoning in the
corresponding logical policy. The operational semantics of a legacy firewall policies is now
captured declaratively through the logical semantics of argumentation based preference
reasoning.

A.4.2 Extending Legacy Firewall Policies
The inclusion we get by the above theorem of legacy firewall policies into LPP is a proper
inclusion as we can express policies in LPP that cannot be captured by a legacy policy. Indeed,
the form of the corresponding preference policies L(FP) in LPP is a very special one in several
ways such as:

1. Background Language for Network Conditions
2. Action Naming Field
3. Ordering of the Policy Rules
4. Decomposition of Policy into Components

The high-level of expressivity afforded by the framework of LPP opens up the possibility to
consider several types of extension of legacy firewall policies along all the lines indicated above.
Here we will indicate various different possibilities of extension of legacy firewall policies
through illustrative examples. Of course, any extension considered should have its practical
motivation.

It is important to stress that the main focus of all such extensions is to allow us to represent
network security policies directly from their high-level specification of security requirements. It is
a first step towards using the framework of LPP as a tool for the specification of requirements of
network security software (and, as we will see in the next section, for the analysis of such
requirements).

Consider for example a network security policy:

“Deny traffic from outside, i.e. where the source IP belongs to a network that is different from the
network of the destination IP, unless this comes from a secure source”.

In order to capture this policy in a direct way we can define in our background logical theory the
auxiliary relations “outside_traffic(Packet)” and “secure_source(Packet)” as follows:

 outside_traffic(Packet) if
src_ip(Packet, Net1),
dst_ip(Packet,Net2),
Net1 ≠ Net2.

secure_source(Packet) if
src_ip(Packet, Source),
secure_ip(Source).

where “secure_ip” is given by a set of facts cataloguing which machines or networks are secure.
Then given these auxiliary definitions we can express the network policy directly through the
following policy rules:

r(k) : action(Packet, accept) if
outside_traffic(Packet),
secure_source(Packet).

r(k+1) : action(Packet, deny) if
outside_traffic(Packet).

and the priority that r(k) has over r(k+1).

This network policy statement is very general and could span over several other policies that we
want to apply, i.e. that irrespective what the specific policies say we want that outside traffic (inter
network traffic) to be blocked unless this comes from a secure source. In such a case this would
mean that in effect we want this policy to be a meta-policy that would have effect over other
specific policies. We should therefore be able to state a “global” priority of this policy over the
other policies. In fact, this is a matter of distributed policies and how we compose them together.
We will address this issue below where we will discuss extending the naming field of the policy
rules to refer to the policy to which each rule belongs.

Let us though indicate further the problem by considering that we are given in addition another
security requirement as follows:

“Deny traffic from network, net_1, to network, net_2, unless the destination IP is the machine, aias.”

In a similar way as above this is easily captured by the following two rules:

r(m) : action(Packet, accept) if
scr_ip(Packet, net_1),
dst_ip(Packet, aias).

r(m+1) : action(Packet, deny) if
scr_ip(Packet, net_1),
dst_ip(Packet, net_2).

and the priority of r(m) over r(m+1).

The problem now is the relative ordering between these two sets of two rules, i.e. should this
latter set of rules be above or below the rules for the policy requirement for outside traffic given
above? One may be tempted to say that since the latter requirement appears to refer to cases that
are more specific that they should go above the previous rules, e.g. as:

r(n) : action(Packet, accept) if
scr_ip(Packet, net_1),
dst_ip(Packet, aias).

r(n+1) : action(Packet, deny) if
scr_ip(Packet, net_1),
dst_ip(Packet, net_2).

r(n+2) : action(Packet, accept) if

outside_traffic(Packet),
secure_source(Packet).

r(n+3) : action(Packet, deny) if
outside_traffic(Packet).

thus giving a total order amongst these rules with r(n) the strongest and r(n+3) the weakest.

But this would then have the consequence of denying outside traffic from net_1 to net_2 that
was coming from a secure source within net_1 (except for the special case where this has

destination aias). Hence the first requirement would not be correctly represented. The problem
stems from the fact that in legacy firewall policies the two rules “r(n+1)” and “r(n+2)” need to
be ordered and this has the unwanted side-effect of “r(n+1)” preventing the operation of
“r(n+2)”. Similarly, if we used the opposite ordering we would deny traffic from net_1 to aias (in
net_2) whenever the source (in net_1) of the traffic is not secure. Finally, if we tried to interleave
the two sets of rules, e.g. as:

r(n) : action(Packet, accept) if
scr_ip(Packet, net_1),
dst_ip(Packet, aias).

r(n+1) : action(Packet, accept) if

outside_traffic(Packet),
secure_source(Packet).

r(n+2) : action(Packet, deny) if
scr_ip(Packet, net_1),
dst_ip(Packet, net_2).

r(n+3) : action(Packet, deny) if
outside_traffic(Packet).

we would get the unwanted behaviour of accepting traffic from net_1 to aias even when this is
not coming from a secure source in net_1 (going against the secure source policy requirement).

The above example illustrates the limitation of existing framework for firewall policies where
policy rules need to be totally ordered. This need of totally ordered rules forces the different rules
to interact with each other in an ad hoc way (as we have seen a different choice for the total
order gives a different interaction) when this is not meant by the policy maker. In our proposed
framework of LPP the ordering amongst the rules is allowed to be partial and this gives us the
flexibility to capture more complex security requirements. In the above example, we would have
in the strategic part of the LPP theory, TP, encoding the policy the rules:

 R(k): r(k) > r(k+1)
R(m): r(m) > r(m+1).

Note that here and below we will present priority rules using the infix notation “>” instead of
the priority/2 predicate.

Then the decision of which of these two component policies is stronger when they are both
relevant, e.g. in the case of traffic from net_1 to net_2 which comes from a secure source,
becomes an explicit part of the policy and is represented by an appropriate rule, e.g.:

 R(1): r(k) > r(m+1) if secure_source(Packet)

expressing the fact that traffic from a secure source should be accepted. In effect, we are stating
that the secure source policy is stronger than the policy for regulating traffic from net_1 to net_2.

Note here the conditional nature of the ordering of the policy rules. We can use this to provide
further flexibility in our policy representation. Consider for example that

 R(2): r(m+1) > r(k) if dst_ip(Packet,mail_server)

What happens though if we have traffic (from net_1 to net_2) which comes from a secure source
and is destined for the mail-server? Both these priorities apply and we have a situation where our
policy has an argument to “accept” and an argument to “deny”: the policy is in a dilemma. To
resolve this we need to consider which of these two policy orderings is the strongest: is the
secure source policy stronger than the policy regulating traffic from net_1 to net_2 to the
mail_server of net_2 or vice versa? Suppose that the latter is true. We can capture this using a
higher-order priority ordering between these two ordering rules:

C: R(2) > R(1)

that would then take us out of the dilemma: only the argument for denying such traffic would be
admissible and so the policy would now have a deterministic sceptical conclusion for “deny”.

In fact, such higher order priority rules can themselves be conditional so that R(2) is stronger
than R(1) in some circumstances and weaker than R(1) in other circumstances. We can then
repeat the process of detecting dilemmas in the decision of our policy and introduce a rule at a
new higher level of priority to specify which of these statements is stronger when they both
apply. So for example, if we have

C(2): R(2) > R(1) if peak_time_net_2
C(1): R(1) > R(2) if source_ip(Packet, kronos)

we would employ, according to the requirement that is very important for traffic from kronos to
reach its destination as soon as possible even at the peak time for net_2, a rule at one level higher
in the priority ordering such as:

D: C(1) > C(2)
to capture this requirement.

Appealing to higher levels of ordering can in theory continue at infinitum. In practice, when we
are developing security policies we can follow a systematic methodology to detect such dilemma
points and resolve with the help of the user/developer by referring to a higher level decision of
which component policy is stronger or under which conditions one policy is stronger and
weaker. In this way we build a natural hierarchical ordering structure amongst the lower-level
policy rules that generate the recommendation and the rules that specify the ordering amongst
these and the ordering rules themselves.

A.4.3 Composing Policies
A natural way to facilitate this process of the development of security policies is to enhance the
language of representation of policy rules so as to refer explicitly to the policy they belong to and
then give overall (perhaps conditional) priorities amongst groups of rules. In our approach we
can do this by extending the naming field of the rules (generation or priority) as allowed naturally
by the framework of LPP beyond the simple arithmetic name that is essentially the only name
employed by legacy firewall policies.

Definition(Naming of Policy Rules)
The name of a firewall policy rule is a triple:

 <id><TrafficName><PolicyName >
where “id” is a unique identifier of the rule, “TrafficName” is a term that names (part of) the
network traffic and “PolicyName” is a term that names the (component of the) policy to which
the rule belongs. ◊

The specific structure of these naming fields is left open and can be chosen by the developer as
best suited for the particular policies that are being developed. For our example above in this
section we could chose the TrafficName field to indicate the source network/machine, the
destination network/machine and the protocol. Then the rule that we have called r(2) above will
now be called

 r(<d(2), traffic(net_140_192_37,any,tcp), policy(basic)>)

where we have also named the policy to which these rules belong to as “basic”. The identifier,
d(2), is used also to record that this rule is a denying rule. Similarly, the rules r(k) and r(k+1)
above will be name as

 r(<a(k), traffic(any,any,tcp), policy(outside_traffic)>)
 r(<d(k), traffic(any,any,tcp), policy(outside_traffic)>)

and the rules r(m) and r(m+1) will have names:

 r(<a(m), traffic(net_1,aias,tcp), policy(net_1net_2)>)
r(<d(m), traffic(net_1,net_2,tcp), policy(net_1net_2)>)

With this extension of the naming field we now have the enhanced flexibility of expressing
directly ordering requirements. For example, if we have a requirement that says “always accept
traffic that has a certain property, e.g. comes from a secure source” then we would represent this
with a priority rule of the form:

R(Id, Traffic, Policy) :
r(Id1, Traffic, Policy1) > r(Id2, Traffic, Policy2) if

acceptance_rule(Id1), property(Traffic)
e.g. when the property is that of secure source this rule will be:

 R(over(Id1,Id2), Traffic, policy(secure_source)) :
r(Id1, Traffic,Policy1) > r(Id2, Traffic, Policy2) if

acceptance_rule(Id1), secure_source(Traffic)

Note that this rule covers the rule R(1) we have above, but now this is expressed in a declarative
way directly from the specification of the requirement.

Similarly, we can use the Policy name field to express relative strength requirements amongst
different components of our policy in a declarative and direct way. For example we could have
the requirement that “Any Security Policy is stronger than any Business Policy”. We would then
capture this simply by the rule:

R(over(Id1,Id2), Traffic, policy(security_over_business)) :
r(Id1, Traffic,policy(Policy1)) > r(Id2, Traffic, policy(Policy2)) if

security(Policy1), business(Policy2)

This requirement may be too general and we may want to apply it only to some specific policy
components or under some additional conditions. For example, we may want that “policy_1 is
stronger than policy_2 for traffic coming from net_0. Otherwise, policy_2 is stronger.” We
would then capture this directly as follows:

R(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) :
r(Id1, Traffic, policy(policy_1)) > r(Id2, Traffic, policy(policy_2)) if

traffic_source(Traffic, net_0)

R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1)) :
r(Id1, Traffic, policy(policy_2)) > r(Id2, Traffic, policy(policy_1)) if

traffic_source(Traffic, Net), Net ≠ net_0

In this case there is no need to go to any higher level of priority ordering as these two rules are
exclusive in their conditions: only one can apply in any one case. In other cases this may not be
so. For example, consider that the requirement was instead: “policy_1 is stronger than policy_2
for traffic coming from net_0. On the other hand policy_2 is stronger when we have
low_bandwidth.” Then the second rule will be replaced by

R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1)) :
r(Id1, Traffic, policy(policy_2)) > r(Id2, Traffic, policy(policy_1)) if low_bandwidth

and we would also need a higher-order priority rule to capture the requirement that when both of
these apply, i.e. we have traffic coming from net_0 at a time of low_bandwidth, policy_1 is
stronger

C(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) :
R(over(Id1,Id2), Traffic, policy(policy_1_over_policy_2)) >
 R(over(Id1,Id2), Traffic, policy(policy_2_over_policy_1))

It is clear that the extension of the naming field that we have proposed above can be particularly
useful when we consider distributed firewall policies and how their component policies should be
composed together. This composition depends on the topology of the network and the “meta
policy” that we want to apply in putting these together. The naming of our rules is well suited to
address this problem. In practice though we would need to tame the expressiveness of our
naming language and restrict to a useful subset that is sufficient for the needs of real life practical
applications. A systematic process of naming the rules within such a restricted language needs to
be developed.

We close this section by discussing briefly some other possibilities of extending legacy firewall
policies afforded by the more general framework of LPP into which we have mapped these
policies. These are extensions that the LPP framework of argumentation gives for free but we
would need to examine further their practical value in the application of network security
policies.

In the same way we have extended the network field of our rules we can consider extending the
Action Field of our rules. We could for example introduce a third action, called Delay or Suspend
so that we can capture policy requirements that instead of denying traffic they simply delay this.
For example, we may want to suspend some type of traffic when the available bandwidth is low
so that other traffic can move faster. We would then employ rules such as:

 r(<de(k), traffic(any,any,tcp), policy(delay_outside)>) :
action(Packet, delay) if outside_traffic(Packet), low_bandwidth.

to delay outside traffic at a time of low bandwidth so that Intranet traffic is delivered quickly.

Another extension is to consider policy requirements which link two different policies, i.e. the
decision of one policy depends on the decision of the other policy. We could have for example
rules of the form:

<policy1: action1> if <policy2:action2><network conditions>

where under certain conditions the action recommended by policy1 depends on the
recommendation of policy2. An example, of such a policy rule could be used to represent the
security requirement that

“The department’s local firewall should accept any traffic with destination the student sub network if this
has been accepted through the main university firewall.”

r(a(k), traffic(any, net_student, policy(Dept_Policy)) :
action(Dept_Policy, Packet, accept) if action(Uni_Policy, Packet, accept),

dst_ip(Packet, net_student)

We can even have more elaborate interactions between policies where the decision of one policy
depends on the decisions of several other policies, i.e. employing rules of the form:

 <policy: action> if <policy1:action1><policy2:action2>…<policyk:actionk>
 <network conditions>

An example of such a rule would be useful when we have a cascade of firewall policies,
generalizing the above example of University Policy and Departmental Policy to a sequence of
more than two links. Another possibility would be that a policy is composed of several other
policies each one taking into account one aspect of the security or other (e.g. economy or quality
of traffic) desirable properties of the network operation. For example, we may have a
requirement:

 “Any traffic that is denied under policy 1 and policy 2 should be accepted under policy 3.”

stemming from our network topology that at some point in the network, traffic can be send
through to one of three possible routes and destination points and that for each of these routes

we have a separate policy to decide if it can be allowed to take this route. The requirement above
ensures that in the worst (or default) case traffic will go through the third route as security in this
sub network is not paramount.

We can therefore see that such an extension with rules that explicitly represent interdependencies
of different policies may be useful in capturing distributed polices coming from different
topologies of networks and the associated requirements of composition of their component
firewall policies.

Finally, we note that it is also possible that the ordering rules of one policy can be conditional on
decisions of other policies, i.e. we can have rules of the form

 R(over(Id1,Id2), Traffic, policy(Policy1)) :
 r(Id1, Traffic, policy(Policy1) > r(Id2, Traffic, policy(Policy1) if
 action(Policy2, Action), network_conds(Traffic).

A.5 Analysis of Firewall Policies
Firewall policies can suffer from the problem of anomalies. In its most general term this is the
problem where:

“one part of a policy is in some way in conflict with another part of the policy”.

In legacy firewall policies this problem is exasperated by the fact that these policies have a very
rigid structure where all rules must be in a total order of priority. As the number of rules in the
policy grows the problem of existence of anomalies becomes more severe. It is therefore
necessary to develop methods to analyse a policy and detect anomalies and then provide a
systematic methodology to resolve these anomalies.

Current studies of this problem defined the anomalies through a syntactic analysis of the policy
rules and use specialised algorithms to detect such anomalies. Different notions of the possible
relations between two rules are defined by a purely syntactic comparison of the conditions of
these rules under which a conflict between the rules can arise. In other words, the general and
abstract semantic definition of anomaly is reduced to a set of syntactic relations amongst the
rules which, although in some cases (e.g. isolated firewall policy) can be argued to be complete, as
we extend our policy framework, e.g. to include distributed firewall policies, this approach of
projecting the general and intuitive notion of anomaly and conflict onto a set of single rule
relations becomes ad hoc and incomplete.

In this section we will show how we can analyse firewall policies using the semantic notions of
preference reasoning through argumentation capitalizing on the declarative representation and
semantics for firewall policies that we have developed in the previous section of modelling
network security policies. Anomalies will thus be captured moving away from the procedural
interpretation of the policies through semantic definitions that remain invariant as we develop
further the type of our policies, e.g. as we consider extensions of policies such as distributed
policies.

We will start by showing how the various types of anomalies, as given in [37], for single legacy
firewall policies can be captured naturally using the basic notions of argumentation once these
policies are mapped into theories of LPP.

• Shadowing Anomaly: A rule, r(n), is never activated (because a previous rule matches
all its packet cases). The rule therefore appears to be redundant.

Definition (Shadowing Anomaly 1)
Let FP be a legacy firewall policy. Then FP contains a shadowing anomaly iff there exists two
rules, r(n) and r(k), in the corresponding logical preference policy L(FP) such that, for a particular
network traffic, there exists two admissible arguments one containing r(n) and the other r(k)
when we have deleted from L(FP) the relative ordering between these two rules . ◊

We can easily see that this is then equivalent to the following definition that refers to the policy
as given without any alterations.

Definition (Shadowing Anomaly 2)
Let FP be a legacy firewall policy. Then FP contains a shadowing anomaly if and only if there
exists a rule, r(n) in the corresponding logical preference policy L(FP) such that there is no
admissible argument containing r(n). ◊

Note that these definitions require that we consider the conclusions of any two rules in the policy
to be incompatible with each other. This may be considered as unnatural. We will later see that
we can avoid it, if we wish, when we give a general definition of anomaly that encompass all
different existing notions of anomalies into a single notion, where some types of anomalies
simply do not appear anymore. We are using this incompatibility amongst all rules here to
capture exactly the existing literature.

• Correlation Anomaly: The relative order of two rules is significant: two rules have an
overlap of packets that apply to them both.

Definition (Correlation Anomaly)
Let FP be a legacy firewall policy. Then FP contains a correlation anomaly if and only there exists
two rules, r(n) and r(k), in the corresponding logical preference policy L(FP) such that for a
particular network traffic, there exists two admissible arguments one containing r(n) and the
other r(k) when we have deleted from L(FP) the relative ordering between these two rules . ◊

An equivalent way to capture this anomaly is to have that in L(FP) there is no admissible
argument containing a rule r(k) whereas when we remove a rule, r(n) (n<k), from L(FP) (or when
we remove the ordering, r(n) > r(k), from L(FP)) then there is an admissible argument containing
r(k).

• Generalization Anomaly: This is the dual of the Shadowing anomaly. An exception
rule appears before a general rule (as it should if it is to act as an exception).

Definition (Generalization Anomaly 1)
Let FP be a legacy firewall policy. Then FP contains a generalization anomaly if and only if there
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) such
that there exists two admissible arguments one containing r(n) and the other containing r(k)
when the relative ordering of r(n) > r(k) in L(FP) is removed. ◊

Equivalently we have the following formulation.

Definition (Generalization Anomaly 2)
Let FP be a legacy firewall policy. Then FP contains a generalization anomaly if and only if there
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) such
that there exists no admissible argument containing r(n) when the relative ordering of r(n) > r(k)
in L(FP) is reversed. ◊

Finally, let us consider the redundancy anomaly where a rule in the policy never applies.

• Redundancy Anomaly: A general rule has higher priority than a rule (with the same
action field) which is a specific case of the general rule. The specific rule is therefore
redundant as it will never apply.

Definition (Redundancy Anomaly 1)
Let FP be a legacy firewall policy. Then FP contains a redundancy anomaly if and only if there
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) whose
action field is the same such there exists two admissible arguments one containing r(n) and the
other r(k) when we have deleted from L(FP) the relative ordering between these two rules and
we consider the conclusions of these two rules as incompatible. ◊

Again in the given policy with out any modifications this can be captured equivalently as follows.

Definition (Redundancy Anomaly 2)
Let FP be a legacy firewall policy. Then FP contains a redundancy anomaly if and only if there
exists two rules, r(n) and r(k) (n <k), in the corresponding logical preference policy L(FP) whose
action field is the same such that there exists no admissible argument containing r(k) when we
consider the conclusions of these two rules as incompatible. ◊

In other words, if we consider an incompatibility notion that makes only these two rules
incompatible then one of the rules becomes redundant in the sense that we will never have an
admissible argument for it. Note that this anomaly is the same as the Shadowing Anomaly but
where now the conclusions of the rules have the same action.

The above equivalent semantic reformulation of the anomalies can help us reveal a uniform
understanding of the notion of anomaly in these policies. On the one hand it helps see the ad
hoc nature of the decision to select these anomalies over others. For example, we see that
essentially the two types of Shadowing and Redundancy anomalies are the same. Also why
should we restrict ourselves to considering only single rules in pairs. We could instead consider
subsets of rules. We could have a shadowing anomaly where two rules shadow another rule in a
way that this can not be reduced to shadowing between the single rules. This can happen when
the network conditions of the rules r(1), r(2) and r(3) have the following set relationship:

Then {r(1),r(2)} together shadow {r(3)} but there is no shadowing between {r(1)} and {r(3)} or
between {r(2)} and {r(3)}.

The semantic reformulation of the anomalies shows us that their essential aspect is that of the
existence of different admissible subsets, S1 and S2, of our policy that have incompatible
conclusions. In the extreme case we have that there is no admissible subset S1 (containing a
certain rule and its conclusion) but only admissible subsets S2 with incompatible conclusions. In
fact, we can see that the correlation anomaly captures this central notion with the shadowing and
redundancy anomalies being extreme cases.

This leads us to the following general definition of anomaly within the logical framework of LPP
where we now represent our network security policy as an argumentation-based preference policy
as described in the previous sections.

Definition(Anomaly in LPP Firewall Policies)
Let P be a theory in LPP representing a security policy. Then P contains an anomaly if and only if

1. [conflict anomaly] either there exists a particular network traffic and two subsets,
P1 and P2 of P, such that P1 and P2 are admissible arguments and have
incompatible conclusions,

r(1) r(2)

r(3)

2. [redundancy or extreme conflict anomaly] or there exists a subset P1 of the
basic part of P such that P1 is not admissible for any particular network traffic that
satisfies the conditions of P1. ◊

As we have shown above it is easy to prove the following result.

Theorem (Inclusion of Anomalies)
Let FP be a legacy firewall policy and L(FP) its corresponding logical preference policy. If FP
contains any one of the four anomalies, shadowing, correlation, generalization and redundancy,
then L(FP) also contains an anomaly.

We note that the above definition of anomaly in firewall policies, written as theories of LPP,
corresponds to what are normally considered as “standard problems”, or lack off desired
properties (see section A.1), in any argumentation based preference theory. These are on the one
hand, the existence of non-determinism and hence of a dilemma in deciding what is the
(preferred) conclusion of the theory and on the other hand the existence of a part of the theory,
i.e. of some arguments, that will never be applied and hence this part is apparently redundant in
the theory.

A.6 Detecting Anomalies – Link with Abduction
Given the above universal notion of anomaly the task of detecting anomalies in a given policy
reduces to the simple task of posing a set of semantic queries on the policy. No specialised
algorithms are needed. Instead we can use the basic semantic query of an argumentation-based
framework:

 arg-prove(Goal,Delta)

of showing the existence (and constructing) of the subset, Delta, of the given policy as an
admissible argument for the goal, Goal.

In our case the Goal is of the general form, action(NetTraffic,Action), and based on this we have
the following general query schema for detecting anomalies:

anomalous1(NetTraffic,Action) if
 not arg-prove(action(NetTraffic,Action),Delta)

anomalous2(NetTraffic) if
 arg-prove(action(NetTraffic,Action1), Delta1),
 arg-prove(action(NetTraffic,Action2), Delta2),
 incompatible(Action1,Action2).

Given a specify network traffic of interest, net_traffic, and a specific action, act_1, of interest for
this traffic the queries:

 ? anomalous1(net_traffic, act_1)

 ? anomalous2(net_traffic)

show, if anyone of the two succeeds, the existence of an anomaly for this specific network traffic.
With the first query we detect that for this type of traffic we can never have the action, act_1,
revealing a redundancy type of anomaly (or as explained above an extreme conflict anomaly).
With the second query we detect that for this type of traffic we have at least two possible but
incompatible actions, revealing a conflict anomaly. If both these queries fail then the policy is
anomaly free.

Note that the second query when it succeeds gives us also the arguments Delta1 and Delta2 that
support the conflicting conclusions of the policy. This facilitates the process of resolution of the
anomaly as we can see in these which subparts of the policy are in conflict (see below the
subsection on anomaly resolution).

The above queries assumed that we first select a specific network traffic that we suspect might be
treated in an anomalous way by the policy or we in some way generated systematically all the
different possible traffics within our network and we check each one for an anomaly. In order to
find out automatically such cases of anomalous traffic we can employ, together with
argumentation, the reasoning process of abduction that would generate (if they indeed exist) the
specific traffic or scenarios for which the policy has an anomaly. This application of abduction is
completely analogous to its use in the earlier studies of the problem of policy analysis and
refinement in [44] and later in the context of [1].

Hence we would employ the semantic query:

 abd-arg-prove(Goal,Delta,Hypotheses)

which generates a set of abductive hypotheses, Hypotheses, on a a-priori chosen set of relations
(in our case the relations describing the network traffic) which when we take as given extend our
policy such that the goal, Goal, has the admissible argument, Delta. In other words, these
hypotheses describe a specific scenario under which the Goal is admissible. In our case they will
describe a specific case of network traffic, in terms of the network conditions which will be our
abducible predicates, for which the Goal is admissible.

Our queries for finding anomalies will then be based on extended definitions these. For example,
the definition of “anomalous2” given above will be extended to:

anomalous2(NetTraffic) if
 abd-arg-prove(action(NetTraffic,Action1), Delta1,Hyp),
 abd-arg-prove(action(NetTraffic,Action2), Delta2,Hyp),
 incompatible(Action1,Action2).

showing that under the common hypotheses (scenario), Hyp, that specify the network traffic,
NetTraffic, we have admissible arguments for two incompatible actions for this traffic. A query

?anomalous2(NetTraffic)

that leaves the network traffic open will then generate scenarios, described by the hypotheses
Hyp, under which the policy has an anomaly.

We mention here that abduction can be used in order to address other problems than the
detection of anomalous scenario (traffic). An important such problem would be the task of
finding under which priority ordering relations of the rules of our policy we could ensure that
some desired property held true. Suppose for example that we want the safety requirement that
any traffic that comes from a Domain Name Server (DNS) is to be accepted. How can we ensure
this?

We could at first check, using the query

? arg-prove(action(dns_traffic,accept), Delta),
 not arg-prove(action(dns_traffic,deny), Delta1)

to check that there is indeed at least one admissible argument to accept this and that there is no
admissible argument, Delta1, in our policy that would deny such traffic. If this query succeeds
then the safety requirement holds and there is nothing else to do. But if it fails we will need to
edit our policy so that this cannot happen. In particular, as we mentioned above, we may want to
find under what ordering of the policy rules this can succeed. For this we then declare our
abducible relation to be the ordering relation amongst rules. We could for example introduce a
general abducible relation, abd_order(Id1,Id2), which using the general schema rule

r(Id1) > r(Id2) if abd_order(Id1,Id2)

would allow us to generate hypotheses on the ordering of the rules of our policy through ground
hypothetical facts of abd_order(Id1,Id2). Then by posing the abductive query

? abd-arg-prove(action(dns_traffic,accept), Delta, Hyp),

 not abd-arg-prove(action(dns_traffic,deny), Delta1,Hyp)

we would generate a set of ordering hypotheses, Hyp, that would ensure that this traffic can only
be accepted as required.

A.7 Anomalies in Distributed Policies
With the semantic definition of anomaly defined above, we can now escaped from the
procedural (and single rule) realm of anomalies and we can easily use (or generalize) this same
notion to distributed policies, where we will be looking for components of the distributed policy
that are admiss ibl y incompati bl e . This has become possible because even in the case of a single
policy we now view anomalies as cases of conflict between its different parts, i.e. as a policy
distributed amongst its parts.

With distributed policies the problem of the existence of anomalies is more severe as there are
more possibilities for conflict to occur. In fact, in a distributed policy we can have situations
where one component decides to accept a traffic whereas another component decides to deny it.
This can not occur in a single legacy firewall policy due to the linear and total order of its parts.

For example, we can have an upstream firewall blocking a traffic that is permitted by a
downstream firewall, a type of inter-firewall shadowing anomaly. In a “classical” operational
approach for anomalies the definition of this anomaly requires a detailed (and somewhat ad hoc)
examination of the pairs of rules form the two firewalls. In our declarative approach this anomaly
falls under the same definition given above. Simply, we have for the same traffic an admissible
subset of the upstream policy that concludes to accept it and at the same time we have an
admissible subset of the downstream policy that concludes to deny it.

Our general definition of anomaly is indeed all encompassing, able to capture all other types of
anomalies of distributed policies. In every case we simply have admissible subsets of two
different components of the policy that have an opposite or incompatible conclusion. As we
change the network topology we do not need to change this definition and hence our methods of
detection of anomalies. We can for any network topology base our investigation of anomalies on
the same definition of the existence of admissible components that are incompatible.

For example, instead of a linear network topology where we have cascading firewalls we may
have a topology that allows alternative routes to some domains through different firewalls. In this
case, the anomalous situation where the same traffic between two domains (e.g. Dn and Dk in the
figure below) would be accepted via one route and denied through another route is again simply
a case where in the distributed firewall policies involved in these two routes there are two
admissible parts that have the opposite conclusion for this traffic. Hence in the figure below,
there is a firewall, FWx within one route and a firewall FWy within the other route, such that for
some traffic the policy FWx admissibly accepts this whereas the policy FWY admissibly denies
this. This universality of the definition of anomaly which simply formalizes the informal notion
of “the existence of conflict of opinion between different parts of the policy” is not exhibited by
the “classical” operational approach where one needs to change and customize its definition of
anomaly to each different particular network topology.

A.8 Anomaly Resolution
The declarative understanding of anomalies and its universality facilitates the problem of their
resolution. We can address this problem within the general process of the development of the
security policy following the general methodology that we have proposed in section A of this
report for the development of specifications of software requirements within the argumentation
framework of LPP.

Hence given the existence of an anomaly we would have two parts of the policy that are in
conflict and we could use our conflict resolution methods to remove this. Each one of these
admissible parts of the policy would contain not only the basic rules, that fire under the traffic
conditions for which the anomaly exists, but also the rules that give the priority ordering that
makes them admissible. The administrator/developer would then be alerted either (a) to the fact
that some ordering relation is mistaken or (b) that the existing ordering rules are incomplete at
some level or (c) new ordering rules are needed at one level higher to address the question of
which rules are stronger.

In particular, in the case of distributed policies the administrator would be alerted to the fact that
two component policies are in conflict and would then be able to resolve this using a meta-policy
of priority amongst the two components. For example, in order to resolve an inter-firewall
shadowing anomaly, the administrator can apply the meta-policy that the more local
(downstream) a firewall is in a cascade of firewall policies the stronger it is, by employing the
priority rule:

R(over(Id1,Id2), Traffic, policy(downstream_stronger)):
r(Id1, Traffic, policy(Policy1)) > r(Id2, Traffic, policy(Policy2)) if

downstream(Policy1, Policy2)

Another way to represent this meta-policy within LPP would be to state directly the priority on
the conclusions of the policies as follows:

R(over(Policy1,Policy2), Traffic, policy(downstream_stronger)):
action(Policy1, Traffic, Action1) > action(Policy2, Traffic, Action2) if

downstream(Policy1, Policy2)

More generally, this meta-policy of stronger downstream firewall may apply only under some
specific circumstances of the traffic for which we have the anomaly and that in the other

 Dn

Dk

FWx
FWy

circumstances the upstream firewall should be stronger. Then these meta-policy rules would be
further conditioned on these circumstances.

A.9. Modelling & Analysing Policies in GORGIAS
The LPP framework of LPwNF is implemented in a system called GORGIAS [45]. This
supports both the argumentation reasoning of LPwNF and its abductive reasoning. It is build on
top of Prolog and it is available at: www.cs.ucy.ac.cy/~gorgias. Details of how to use this system
with tutorial examples can be found at this web page. This system has been used recently in the
development of an agent architecture [46] to provide the agent with a flexible goal decision
mechanism and at the same time a declaratively specified operational model of the agent that is
adaptable to its external environment. It has also been used in the development of applications of
automated decision making in the medical domain [47].

In appendix A the full implementation in GORGIAS of the Elevator Policy presented in section
A is given, together with some examples scenarios that illustrate its use in the operation of the
elevator. Implementing legacy firewall policies in GORGIAS can be done in the same way and in
fact this is simpler due to the simpler nature of these policies. Here are two example rules in the
basic part of an example policy (taken from [45]):

% Deny all packets from machine "apollo" to port 80
rule(basic(1, [tcp,apollo,SrcPort,DstIp,80]), action(deny, Packet),

[sourceip(Packet,apollo), destinationport(Packet,80)]).

% Accept all packets from network 1 to port 80.
rule(basic(2, [tcp,net1,SrcPort,DstIp,80]), action(accept, Packet),

[sourceip(Packet,net1), destinationport(Packet,80)]).

Here the predicates sourceip/2, destinationport/2 etc are auxiliary background predicates defined
by simple rules, e.g.

sourceip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),net1):-
ScrIp = [140,192,37,X].

sourceip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),apollo):-
ScrIp = [140,192,37,20].

destinationport(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),DstPort).

destinationip(packet(Protocol,ScrIp,SrcPort,DstIp,DstPort),zeus):-
DestIp = [160,120,33,40].

Note how the name, e.g. “basic(1, [tcp,apollo,SrcPort,DstIp,80])”, of the rules in the basic part
of the policy includes a representation of the traffic for which they apply. The names do not
include a representation of the policy to which they belong as we are representing here only one
policy.

The strategy part of the policy as shown by the results of the translation of legacy firewall policies
in LPwNF consists simply of the rule:

% Priority of rule N1 over rule N2
rule(over(N1,N2),prefer(basic(N1,Packet),basic(N2,Packet)),[N1>N2]).

The main query predicate of GORGIAS is:

 ?prove(Goal,Argument)

which succeeds by finding an admissible argument, Argument, as a list of policy rule names
under which the goal, Goal, is logically entailed by these rules.

Hence to find out the recommended action for an example packet of traffic we use queries on
“find_action/3” defined as:

find_action(Example, ReccomendedAction, SupportingArguments):-
 examplePacket(Example, ExamplePacket),

prove([action(ReccomendedAction, ExamplePacket)],
 SupportingArguments).

Automatic detection of anomalies in policies can be carried out using semantic queries on
predicates such as anomalous/3 defined by:

anomalous(Traffic, Delta1, Delta2):-
 examplePacket(Traffic, ExamplePacket),
 prove([action(ReccomendedAction, ExamplePacket)], Delta1),

complement(action(ReccomendedAction, Packet),
 action(CompAction, Packet)),

 prove([action(CompAction, ExamplePacket)], Delta2).

Finally, we comment that once a firewall policy is analysed through its GORGIAS
implementation we can examine ways how to automatically translate these policies into lower
level specialised procedural languages that could effectively employed on real time traffic.

A.10 Discussion
We have studied the use of argumentation based preference policies as a way to specify and
analyse software requirements policies. We have established this new link between software
requirements policies and argumentation and have shown important properties of this approach:

• Declarative modelling of policies where these can now be represented directly from the
requirements specification exploiting the high-level of expressivity of the adopted logical
framework of argumentation.

• Semantic high-level analysis of policies with a uniform formulation of anomalies that is
invariant as we extend the type of policies that our applications require.

• Automatic detection of anomalies through semantic queries of integrated abduction and
argumentation.

• Modularity of representation and semantic analysis of the policies that facilitates their
incremental development and the composition of distributed policies.

In the particular area of network firewall security policies our work gives a declarative meaning to
these policies and offers a semantic framework for their analysis, that escapes from the low level
procedural and syntactic analysis of policies that is present in many of the current approaches to
firewall policies. Unlike these approaches, our formalization does not need to be reconsidered
and the analysis process does not need to be redefined every time we wish to extend the realm of
application of the firewall policies.

In the study of the analysis of firewall policies we have shown specifically that the various types
of anomalies in firewall policies, identified separately in the literature, can be captured naturally
under the same and unified definition based on the standard notion of an admissible argument in
Logic Programming with Priorities (LPP). This high level definition means (a) that we are more
complete in capturing the notion of anomaly and (b) that our definitions remain invariant as we
develop further the type of our policies, e.g. as we consider extensions of policies such as
distributed policies.

The high-level of expressivity of the LPP framework, particularly its ability to represent explicitly
orderings which can be conditional on some background properties, facilitates greatly the process
of conflict resolution within our policies. This can be carried out by modular and incremental
extensions of the policy guided by the user by presenting to her/him the conflict scenarios and
the parts of the policy (arguments) that lead to the problem.

Part B: Abductive Constraint Logic Programming for
Policy Refinement

B.1. Introduction
Effective management of distributed computing resources in an environment with changing
requirements, having multiple administrative domains and heterogeneous technology is a key
challenge for today’s system administrators. Policy-based approaches to systems management
are gaining widespread interest because they provide the flexibility that result from separating the
rules that govern the behavioral choices in a system from the underlying functionality. This
allows systems to adapt their behavior according to the user’s requirements and the current
environment.

To date, the majority of the research into policy-based management has focussed on languages
for specifying policy rules and architectures for deploying and enforcing policies. As a result, a
number of different types of policies have been identified. Broadly these can be categorised as
management/behavioral policies, which prescribe how a system should respond in a given
situation; and security authorisation policies, which define the conditions under which users or
agents can (or cannot) access particular resources. When writing policies it is important to ensure
that they meet the user’s requirement and are consistent with respect to the overall system in
which they are to be used. This latter task is referred to as policy analysis and our prior work has
shown how an Event Calculus based formalisation of policy-managed systems can provide
administrators with the capability to detect a range of inconsistencies [1]. The requirement of
translating the high-level requirements of a user into policies that can be enforced by the system
was identified as early as 1993 by Moffett and Sloman [2]. They described the successive
refinement of high-level goals in a policy hierarchy, called Policy Refinement, and presented the
following objectives for a policy refinement process:

• Determine the resources that are required to satisfy the needs of the policy.

• Translate high-level policies into operational policies that can be enforced by the system.

• Allow analysis to verify that the set of lower level policies actually meet the requirements
of the high-level policy.

Domain

Specific

Domain

Independent

Policy Refinement Techniques

Table Lookup Case based

Reasoning

Predefined

Templates

Goal

Elaboration

More

Automation

Less

Automation

Figure 1: Relationship between policy refinement techniques

Since then, a number of researchers have presented techniques for addressing the challenges of
refinement but in each case a number of limitations had to be imposed in order to develop a
workable solution. When developing a policy refinement technique the main compromise is
between the generality of the technique and the amount of automation. As illustrated in Figure
1, this trade-off means that techniques that are highly automated tend to have a very narrow
domain of applications in which they work. On the other hand, techniques that have general
applicability are not particularly automated.

Our previous work has shown how a formal representation of policy-managed systems can be
combined with the KAOS goal elaboration technique [3], to provide a framework for policy
refinement [4]. However, the low-level goals derived using this technique cannot be directly used
in policies without first identifying the management operations that will achieve them. To
support this identification process, we introduce the concept of a strategy, which is the
mechanism by which a given system can achieve a particular goal, i.e., a strategy is the

relationship between the system description and the goal. By having a formal specification of the
latter two types of information we can use abductive reasoning to infer the strategy. We use the
KAOS goal elaboration technique because it provides the concept of domain-specific and
domain-independent refinement patterns, logically proven goal refinement templates that can be
easily reused. We can use such patterns to capture the refinement of goals that are commonly
encountered in policy-based management, thus simplifying the refinement process for the user.

Whilst the use of policy refinement patterns offers a degree of automation in the refinement
process, the need to choose subjects, targets and also specify the parameters to be used in the
management operations mean that in order to produce an enforceable policy some user input is
still required. Additionally, it is necessary to ensure that the policies generated in this manner are
consistent with respect to the system, and do not conflict with other policies in the system. In
this paper we describe how the formalism used to describe the policy-managed system can be
extended such that the abductive inference procedure not only generates potential strategies for
achieving a given goal, but also derives the remaining information required to specify a correct
policy. We achieve this by using the integrity constraint definition features of the abductive
inference procedure. Integrity constraints are rules that specify the conditions under which the
formal model of the system being analysis is inconsistent. The main advantage of using integrity
constraints is that they can be specified in a modular fashion, making them easier to specify, and
are evaluated in a computationally efficient manner.

Integrity constraints with respect to allowable subjects, targets, allowable parameter values and
overall system consistency can ensure that the policies derived from the refinement process are
correct and complete. However, this process can still result in multiple derived policies that
satisfy a given goal. In order to fully automate the refinement process, it would be desirable to
have a mechanism to select just one policy from the derived set. We propose integrating a
selection algorithm into the automated policy refinement procedure that uses utility functions to
quantify the appropriateness of the derived policies and pick the best one.

The remainder of this paper is organised as follows. Section 2 presents some background
information about event calculus and abductive reasoning, together with a description of the
goal-based policy refinement technique we have already developed. This is followed by a
description of the formal language used to represent policy-managed systems in section 3. In
section 4 we show how integrity constraints can used to automate the policy refinement
procedure and in the following section we provide a discussion of our work. Section 6 describes
some related work in the area of autonomic computing and policy refinement, and finally section
7 presents our conclusions and future work.

B.2. Background

B.2.1. Event Calculus and Abductive Reasoning
Event Calculus was first presented by Kowalski and Sergot [5] as a logic-based formalism for
representing and reasoning about dynamic systems. Because the language includes a
representation of time that is explicit and independent of any (sequence of) events or actions, it
has been found suitable for modeling a wide range of event driven systems. This includes
systems which are non-deterministic, since it is possible to represent scenarios where multiple
events occur simultaneously. Additionally, the implementation does not place any restrictions on
the size of the state space of the system being modeled.

Fundamentally, a policy managed system is one whose state changes over time and in response to
the particular events. Therefore, the formal representation of such systems must be based on a
language that supports the notions of events, time and system states that vary over time. For this
reason we chose the Event Calculus as the underlying formal notation for representing policy-
based management systems.

Whilst several variations of the Event Calculus have been presented, here we make use of a
sorted classical logic form [6], consisting of 3 main sorts: (i) time points that can be mapped to

the non-negative integers; (ii) properties that can vary over the lifetime of the system, which we
refer to as fluents; and (iii) events. In addition the language includes a number of base predicates,
initiates(A, B, T), terminates(A, B, T), holdsAt(B, T), happens(A, T), which are used to define some auxiliary
predicates. These are summarised in Figure 2.

 Base predicates:
 initiates(A,B,T) event A initiates fluent B for all time > T.
 terminates(A,B,T) event A terminates fluent B for all time > T.
 happens(A,T) event A happens at time point T
 holdsAt(B,T) fluent B holds at time point T. This predicate is useful for
 defining static rules (state constraints).
 initiallyTrue(B) fluent B is initially true.
 initiallyFalse(B) fluent B is initially false.

 Auxillary predicates:
 clipped(T1,B,T2) fluent B is terminated between timepoint T1 and T2.
 declipped(T1,B,T2) fluent B is initiated between timepoint T1 and T2.

 Domain independent axioms:
 clipped(T1, B, T2)  terminates(A,B,T) ∧ happens(A,T) ∧ T1 [T < T2
 declipped(T1, B, T2)  initiates(A,B,T) ∧ happens(A,T) ∧ T1 [T < T2

 holdsAt(B, T1)  initiallyTrue(B) ∧ ¬ clipped(0, B, T1).
 holdsAt(B, T1)  initiates(A, B, T) ∧ happens(A, T) ∧
 ¬ clipped(T, B, T1) ∧ T < T1.

 ¬ holdsAt(B, T1)  initiallyFalse(B) ∧ ¬ declipped(0, B, T1).
 ¬ holdsAt(B, T1)  terminates(A, B, T) ∧ happens(A, T) ∧
 ¬ declipped(T, B, T1) ∧ T<T1.

Figure 2: Event Calculus predicates and axioms

The Event Calculus supports both deductive and abductive reasoning. Deduction uses the
description of the system behavior together with the history of events occurring in the system
and the domain independent axioms to derive the fluents that will hold at a particular point in
time. Whilst deductive reasoning can be used to verify simple properties for a managed system,
such as checking if a particular policy is applicable at a given point in time, or determine the set
of access rights granted to a given user, the reasoning technique that is of particular interest to
our work is abduction. Abduction can be used, given the descriptions of the behavior of the
system, to determine the sequence of events that need to occur such that a given set of fluents
will hold at a specified point in time. Therefore, we define happens(A, T) as the abducible term in the
language.

Because Event Calculus is expressed in First Order Logic (FOL), it supports all three modes of
logical reasoning – deductive, inductive and abductive. This means that given an Event Calculus
based representation, it is possible to automate the verification of a range of properties regarding
the system. Deduction uses the description of the system behavior together with the history of
events occurring in the system to derive the fluents1 that will hold at a particular point in time.
Induction aims to derive the descriptions of the system behavior from a given event history and
information about the fluents that hold at different points of time. However, the reasoning
technique that is of particular interest to our work is abduction. Abduction can be used, given
the descriptions of the behavior of the system, to determine the sequence of events that need to
occur such that a given set of fluents will hold at a specified point in time. More formally this
can be described as the derivation of a set of assertions ∆, given a system description D and a
goal sentence G, such that (D ∪ ∆) ┠ G and (D ∪ ∆) is consistent. The set ∆ should only
contain sentences that have been defined as abducible, where the exact set of abducible terms will
be specific to the application domain. Since an inherent feature of the abductive procedure is to
derive information that is “missing” in the system description (i.e. the abducibles) in order to

1 A fluent is a property that varies over the lifetime of a system

satisfy the goal, the technique is able to deal with situations where only a partial definition of the
initial system state is provided.

From an algorithmic perspective, the process of deriving the set ∆ (called the abductive inference
procedure) is usually composed of two phases – an abductive phase followed by a consistency phase
which interleave with each other. In the first phase a set of temporary abducibles is generated
and must checked for consistency with respect to the system description in the second phase
before they can be added to the final solution. The listing below presents a pseudo-code
description of a simple abductive proof procedure.

 Assumptions:
 - The system description, D consists of rules of the form
 A  L1 . L2 Ln, where head of the rule A is a positive atom and
 the clauses in the body of the rule L1 .. Ln, are atoms, Ai (or ¬Ai).

 - An abductive solution is obtained by calling the function,
 generateAbducibles(Goal, Delta), where the Goal is an atom and Delta will
 contain the set of abducibles that together with the system description
 satisfy the goal.

 - Abducible atoms, ∆i, are defined as such using the predicate abducible(∆i).

 - The consistency properties of the system are defined using rules of the form
 ic  P1 . P2 Pn, were the conjunction of terms in the body of the
 rule represent the properties that hold when there is an inconsistency

 Pseudo-code:

 generateAbducibles(G, DELTA) {
 if (G is an atom that exists as a fact in the system description)
 Return the solution DELTA.
 END.
 else if (abducible(G) is a fact in the description)
 if not((D 4 DELTA 4 G) δ ic) // CONSISTENCY CHECK
 Add G to the solution DELTA.
 Return the solution DELTA.
 END.
 else
 Return the solution DELTA
 END.
 else if (G is an atom at the head of a rule, G  L1 Ln)
 for each clause in the body of the rule, Li
 Call generateAbducibles(Li, DELTA)
 }

Over the years, many abductive inference procedures have been proposed. Work by Eshigi and
Kowalski [7], Kakas and Mancarella [8], together with the techniques SLDNFA [9], IFF [10] and
ACLP [11] are some of the most influential examples in this arena. However, none of these
proposals resulted in an efficient implementation that could serve as a general solver for
abductive logic programs. The ASystem, developed by Van Neuffelen [12], addresses the need
for an abductive proof procedure for use in a framework for policy analysis and refinement
because it has been shown to provide an efficient implementation of a general abductive
inference procedure. Specifically, the ASystem reduces the goal formula that is presented to the
abductive inference procedure into more basic formulas and then uses a constraint solver to
evaluate these formulas and infer the set of abducibles that will satisfy the original goal. The idea
of reducing a problem so that multiple external solvers can be applied to produce a solution is
inspired by the Abductive Constraint Logic Programming (ACLP) technique described in [11].

The current implementation of the ASystem integrates a finite domain constraint solver and a
(dis)equality constraint solver, and since this is done in a modular way it is possible to extend the
system’s capabilities or improve them as better solvers are developed. Also, the use of constraint
solvers allows the ASystem to evaluate the integrity constraints that ensure the consistency of the
overall solution more efficiently.

One significant limitation of the ASystem is that it does not deal with problem specifications that
include cyclic dependencies and in these cases can get trapped in a loop. We are able to avoid
this being a problem by constraining our formal specification to a subset of first order logic
known as stratified logic. A stratified program is one where it is possible to order the clauses such
that for any clause containing a negated literal in its body, there is a clause later in the program
that defines the negated literal. Another way of describing stratified theories makes use of
directed dependency graphs. These are graphs that comprise a node for each predicate symbol
appearing in the program and a directed edge from the node representing any predicate that
appears in the body of a clause to the node representing the predicate defined in the head of the
clause. The edges are labelled positively or negatively, where a negative symbol indicates that the
predicate at the tail end of the edge appear in negated form in a clause of the program. Using
this technique, a program is stratified if the dependency graph contains no cycles having a
negative edge. Informally, stratified logic programs are those that have a constrained use of
recursion and negation. This is desirable because numerous studies have identified stratified
logic as a class of first order logic that supports logic programs that are decidable in polynomial
time [13].

As will be shown in our previous work, Event Calculus can be used to represent the dynamic
behavior of a policy managed system and abductive reasoning provides a means of deriving the
sequence of events required to satisfy particular properties of a managed system. In this context,
abductive reasoning provides similar capabilities to model checking [], but has the advantage of
being able to deal with incomplete specifications of the initial state. Additionally, since the Event
Calculus representation of a policy managed system is in first order logic, deductive reasoning
can be used to check static properties of the system. This makes the use of abductive reasoning
in conjunction with the Event Calculus preferable to model checking for the types of analysis
required in a policy analysis and refinement framework.

B.2.2. Goal-based Approach to Policy Refinement
The first part of our policy refinement process is a technique for refining high-level goals into
concrete achievable goals, often referred to as System Requirements. The next part of the
refinement process maps these system requirements to specific modules/operations that are
available within the system. In this process, each high-level goal is refined into sub-goals, forming
a refinement hierarchy where the dependencies between goals at different levels of refinement
are based on the type of goal decomposition used (AND/OR). Additionally there can be
dependencies between goals in different hierarchies. The refinement process involves following a
particular path down the hierarchy, at each stage determining if the goal can be achieved by the
system. If a particular goal cannot be achieved, then we have to either increase the system’s
functionality by adding additional management procedures and services, or manually decompose
the goal into appropriate lower-level goals. In most situations we would expect the user to do the
latter.

KAOS [3] is a technique for goal elaboration, where each goal is represented as a Temporal Logic
rule and elaboration patterns are used to decompose the original goal into a set of sub-goals.
High-level representations of the goals can be used to shield the users from the formal
specification and reasoning processes that are used in the background. Whilst KAOS does not
provide automated support for goal elaboration, it does define a library of application-
independent elaboration patterns that have been logically proved correct. Table I shows some
patterns of AND-decomposition for goals of the form P → ◊ Q (if P holds, then Q will
eventually hold in the future).

In our implementation, these patterns are encoded in the underlying formalism such that when a
user provides a high-level goal, the system can infer the sub-goals that are valid decompositions.

For example, given the elaboration patterns presented in Table I, if the user presents the goal “on
receiving a SLS from AOL, the SLS should be accepted”, the system would suggest the following
sub-goal decompositions:

 GP1: on (receive SLS from AOL) then eventually (?Goal1?) AND
 ?Goal1? then eventually (SLS accepted)

 GP2: ?Goal1? then eventually (SLS accepted) AND
 ?Goal2? then eventually (SLS accepted) AND
 on (receive SLS from AOL) then (?Goal1? OR ?Goal2?)

 GP2’: (on (receive SLS from AOL) then eventually (?Goal1?) AND
 ?Goal1? then eventually (SLS accepted))
 OR (on (receive SLS from AOL) then eventually (?Goal2?) AND
 ?Goal2? then eventually (SLS accepted))

The decompositions also have high-level descriptions of the patterns applied. The user then uses
his domain knowledge to choose the decomposition for which the missing goals (denoted by
?GoalX?) can be specified in a meaningful way.

For a particular application domain, specialised goal elaboration patterns can be defined by an
expert such that the high-level goals and associated decompositions are expressed using
application specific terms. Additionally, the expert can specify invalid sub-goal combinations by
using integrity constraints. Both of these techniques limit the set of derived decompositions to
those that are applicable and valid for the application domain. This makes it easier for the user to
select a suitable decomposition without needing to understand the underlying formalisms.

Whilst the work presented in [3] only considers domain-independent elaboration patterns, it is
also possible to use these domain-independent results to develop specialised patterns that apply
to particular application domains. For example, Figure 3 shows the definition of a goal
refinement pattern for a user login application.

This goal hierarchy states that the high-level goal of the application is that when a user attempts
to login to an application (i.e. loginReq(user, application) occurs) then the loggedIn(user, application) goal is
eventually achieved. The next level of the hierarchy shows that in order to satisfy the high-level
goal it is first necessary to satisfy the sub-goals that the user has been authenticated and
authorised to login to the application (authenticated(user) . allowed(application, loggedIn, user)). These two
sub-goals can be further refined, resulting in two operational goals. The first states that if there is

TABLE I
APPLICATION-INDEPENDENT GOAL ELABORATION PATTERNS

Ref Goal Subgoals

GP1 P → ◊ Q (P → ◊ R) ∧ (R → ◊ Q)

GP2 P → ◊ Q (P1 → ◊ Q) ∧ (P2 → ◊ Q) ∧(P → P1 ∨ P2)

GP2’ P → ◊ Q (P → P1 ∧ P1 → ◊ Q) ∨ (P → P2 ∧ P2 → ⊄Q)

an AuthenticationService (as) which has a status indicating that the user is authorised then the goal
authenticated(user) is satisfied. The other operational goal states that if there is an AccessController (ac)
which is responsible for the application (ac.mgdObj = application) and the status of this access
controller allows the user to login, then the goal allowed(application, loggedIn, user) is satisfied.

loginReq (user , application) = >

Ë loggedIn (user , application)

loginReq (user , application) = >
Ë authenticated (user) .

allowed (application , loggedIn , user)

authenticated (user) .
allowed (application , loggedIn , user) = >

Ë loggedIn (user , application)

! as : AuthenticationService :
(as . status = authenticated (user))

=> authenticated (user)

! ac : AccessController :
ac . mgdObj = application .

(ac . status = allowed (application , loggedIn , user))
=> allowed (application , loggedIn , user)

Figure 3: Application-specific goal elaboration pattern

Having defined this goal hierarchy, an administrator can reuse it to directly obtain the operational
goals for a login procedure in any login application. This is possible because the refinement can
be proven to be correct (using the proofs for the domain-independent patterns), and therefore it
is no longer necessary to show the intermediate goals in the elaboration process when using it.

Being able to specify such application specific elaboration patterns allows users to translate high-
level requirements into system requirements by simply instantiating the pattern with the
information relevant to their particular application. A particular strength of KAOS is that,
because the elaboration pattern includes a formal proof, the user can be confident that this
transformation is correct. An additional advantage of the KAOS approach is that it is based on a
formal notation, thus providing the possibility of using automated reasoning techniques for the
goal elaboration process.

Having refined the abstract goals into lower-level ones, the next phase of the process is to assign
each refined goal to a specific object/operation such that the final system will meet the original
requirements. Since KAOS does not provide support for automating this, we propose the
following method for inferring the operations that must be performed by the system to achieve a
particular goal.

At a given level of abstraction there will be some description of the system (SD) and the goals
(G) to be achieved by the system. The relationship between the system description and the goals
is the Strategy (S), i.e. the Strategy describes the mechanism by which the system represented by
SD achieves the goals denoted by G. Formally this would be stated as: SD, S → G

This requires a representation of the system description, in terms of the properties and behaviour
of the components, together with a definition of the goals that the system must satisfy. We use
Statecharts to describe system behavior, where each transition indicates the invocation of an
operation and/or the occurrence of a system event. Guards are specified for transitions with pre-
conditions for invoking the operation. We have chosen Statecharts for two reasons: first, because
it is unlikely that system descriptions will be provided in the underlying formal specification
language whereas Statecharts are a well-known design level behavioral specification notation and
second, because it is possible to translate from the Statechart specification to the underlying
formalism.

Given the rules describing a system (SD) and the definition of some desired system state (i.e., the
goal - G), abductive reasoning allows us to derive the facts that must be true for the desired
system state to be achieved. As the goal is represented by a desired system state the abductive
reasoning process is essentially deriving a path in the statechart from some initial state to the
desired one. This path is the derived strategy and can be represented using the following syntax:

 Strategy AchievedGoal

 OnEvent Events derived from transitions with system events.

 DerivedActions Actions derived from transitions with operations.

 Constraints Constraints derived from guards.

Whether a strategy should be encoded as policy, or as system functionality, will depend on the
particular application domain. Although there is no obvious way to automate this decision, we
propose the following guidelines to identify the situations where a policy-based implementation
would be appropriate:

• If the goal refinement results in a disjunction of sub-goals (i.e. the high-level goal can be
achieved by one of an OR-decomposed set of sub-goals), the strategies derived for each
of the sub-goals could be encoded as policies.

• If the system supports multiple strategies for achieving a given goal, each of these
strategies could be encoded in a separate policy. This situation might arise when the
abductive process yields multiple solutions.

• If a strategy has parameter values that may need to change in the future, implementing
the strategy in a policy will provide the flexibility to do this.

In addition to elaborating goals and deriving strategies, it is necessary to map abstract entities to
concrete objects/devices in the system. For example, there might be an abstract “Network”
entity that logically consists of “Routers”, “Links” etc., each consisting of the relevant managed
objects. A domain hierarchy is used to represent the relationships between the various abstract
entities and the low-level concrete objects [14]. This domain hierarchy can be derived using
automated discovery techniques, a capability of commercial tools such as HP OpenView, CA
UniCentre and IBM Tivoli.

Additionally, it is possible to use authorisation policy information and object type information to
identify the concrete objects/devices to be specified in the low-level policy. Combining this
approach to identifying the concrete objects with the goal elaboration and strategy derivation
techniques, the overall policy refinement process can be summarized as follows.

Figure 4: Overview of Policy Refinement Process

The user provides the high-level policy they are interested in refining. This policy would be of the
form “On event, if condition holds then achieve goal”. As described previously, the KAOS

approach is applied to elaborate the high level policy, making use of both application-
independent and application-specific refinement patterns. At each stage of elaboration, the
system description and the goals are used to attempt to abduce a strategy for achieving the goal.
It is important to note that the system description information need not be provided by the user.
Instead, the statechart description of the system may be part of a standard information model or
may be provided by equipment vendors. If no strategy can be derived, then the preferred course
of action is to further elaborate the goals. However, if the existing low-level goals are already
expressed at the lowest level of abstraction in the system, it is not possible to elaborate the goals
further. In this situation the system description must be augmented with more detail. This
involves specifying additional management operations for the system, either as custom-written
scripts or using functionality of commercial management platforms. The post-conditions of these
new operations should match the goals for which a strategy is required.

Once a strategy is identified, it is used in the action clause of the final policy. The domain
hierarchy is used to identify the subject and target objects in the system for the derived policy
that correspond to those entities mentioned in the high-level policy. Finally the event and
constraints of the high-level policy are mapped, by the user, into the final policy which is written
in a notation that does not require knowledge of the formalisms used (Figure 4).

This final step is a manual one since there is no easy way to capture the domain information
necessary for translating high-level events and constraints into lower-level ones. This is not a
major disadvantage since these mappings can be done once and encoded into application specific
refinement patterns that are reusable.

B.3. Formal Representation of Policy Managed Systems

B.3.1 Example Application Scenario
In this report, we use an example application taken from the domain of DiffServ QoS
management [15]. Specifically, we identify goals, strategies and policies in the context of the
TEQUILA project [16]. TEQUILA uses the DiffServ mechanism, together with Multi-Path
Labelled Switching (MPLS) [17] to provide a network that can dynamically adapt to meet the
demands of varying network traffic. This adaptation is performed using a combination of online
and offline techniques – from network dimensioning calculations that determine the upper/lower
bounds of various network parameters based on the Service Level Agreements (SLAs) and traffic
forecasts; to dynamic resource management and route management modules that make real-time
changes to the router configuration to meet sudden variations in traffic.

SLS

Subscription

Traffic

Forecasting

Network

Dimensioning

SLS

Invocation

CUSTOMER

SLS-Matrix
T-Matrix

RA-Matrix

NETWORK MONITORING

ND
ND

Dynamic

Route Mgmt ND
ND

Dynamic

Resource Mgmt

SLS

Invocation

OFFLINE

ONLINE

Figure 5: TEQUILA DiffServ QoS Management Framework

The TEQUILA framework operates in two modes – an offline mode that determines the
configuration required to meet long-term traffic demands; and a run-time mode that adapts the
configuration to meet short-term traffic variations. It can be decomposed into three sub-systems:
SLS subscription, Traffic Engineering and Monitoring. SLS subscription is responsible for
agreeing the customers’ QoS requirements in terms of SLSs, while Traffic Engineering is
responsible for fulfilling the contracted SLSs by deriving the network configuration. The

Monitoring subsystem provides the above systems with the appropriate network measurements
and assures that the contracted SLSs are indeed delivered at their specified QoS. Figure 5 shows
a logical representation of this architecture. The TEQUILA framework has been previously
presented [18], so we describe here only the behaviour of the Service Level Specification
subscription (SLS-S) and Dynamic Resource Management (DRsM) components which are used
in the scenarios presented in the next section.

idle slsRegistered

slsReq

Accepted

slsReq

Rejected

Event(slsReqReceived(SLS)),

Action(slsm.registerSLS(SLS))

Action(slsm.accept(SLS)) Action(slsm.reject(SLS))

slsCounter

OfferMade

Action(slsm.makeCounteroffer(SLS))

Figure 6: Service Level Specification Subscription (SLS-S) Module

The SLS-S module performs admission control, calculates counter-offers and updates traffic
forecasts using policies and so is the most relevant component for policy refinement. The SLS-S
module uses the parameters of each requested SLS to calculate the expected traffic load based on
traffic demand forecasts. This traffic is then aggregated with the expected traffic accumulated
from the SLSs established during this Resource Provisioning Cycle (RPC). The resulting
aggregated traffic defines the maximum potential demand and is mapped against the
corresponding entries of the resource availability matrix (RA-Matrix). The result of this mapping
is used by the admission control algorithm, when deciding whether requests should be accepted
or rejected. Requests are rejected if the risk of overwhelming the network with traffic such that
QoS cannot be guaranteed is too high. A state chart model of this behaviour is shown in Figure
6. A more detailed description of the subscription admission control algorithm can also be found
in [19].

PostProcessing

bwAlloc (Link , PHB) =

CurrBW

bwAlloc (Link , PHB) =

NewBW

Action (setBWAllocation (Link , PHB, NewBW))

[NewBW <>CurrBW] / Action (CalcTotalAlloc (Link))

spareBWSplit excessAllocReduced

Action (handleSpareBW (Method , Link))

[totalAlloc (Link) < capacity (Link)]

Action (handleExcessAlloc (Method , Link))

[totalAlloc (Link) > capacity (Link)]

Event (doneConfig (Link))

Event (doneConfig (Link))

[totalAlloc (Link) == capacity (Link)]

Figure 7: Dynamic Resource Management (DRsM) Module

The DRsM module is a distributed component responsible for reconfiguring the routers in
response to short term variations in traffic. It is triggered by network monitors that track PHB
utilization and raise threshold-crossing alarms when the bandwidth consumed by a PHB exceeds
an upper threshold or drops below a lower threshold. Two values could be used for each
threshold (trigger and clear values) to avoid repeated alarms when small oscillations occur. Once
an alarm is raised, the DRsM calculates a new bandwidth allocation and configures the link
appropriately; or triggers a new resource provisioning cycle if sufficient bandwidth cannot be
allocated. Policies determine how to calculate the new values, configure the link or trigger a new
RPC. The statechart representation of the behavior of the DRsM module is shown in Figure 7.

B.3.2 Managed Object Representation
In our view of a policy-based system, managed objects are organised into logical groups and are
defined by an associated type. When adding a managed object to the system, the administrator
must specify its type and define where the object is to be placed in the organisational model used
in the system. In order to represent the organisational model of the managed objects, the
administrator defines a domain hierarchy. As described previously, domains logically group
objects together and can be used in policy specifications to denote that a policy applies to
multiple objects. Additionally, domains allow the coupling between policies and managed objects
to be loosely defined, effectively acting as a dynamic binding mechanism. Each type of managed
object in a system can be described using a static model, consisting of the attributes and
operations supported by the type; and a dynamic model that specifies the runtime behavior of
objects of this type. We assume that the administrator specifies the type information using UML.

Given this description, a formal representation of managed objects must include the
organisational model specified in terms of domain hierarchies; together with the static and
dynamic models of the managed object. In this section we describe how this can be done by
using the Event Calculus in conjunction with the predicates and functions shown in Table II.

B.3.2.1 Organ isa t ional Model
As mentioned, the organisational model of the system is defined in terms of a domain hierarchy.
Domains are a means of grouping objects and membership of a domain is explicit and not
defined in terms of a predicate on object attributes. Domains can be organised into a hierarchy
by including one domain in another, but a sub-domain is not a subset of its parent domain, in
that an object included in a sub-domain is not a direct member of the parent domain. Also, an
object or sub-domain may be a member of multiple parent domains i.e. domains can overlap.

TABLE II
 FUNCTIONS AND PREDICATES FOR REPRESENTING MANAGED OBJECTS

Function Symbol Description
pot_state(Obj, Attr, Value) Used to represent a potential state of a managed object

when defining its behavioural model. The actual state
of a managed object holds when a policy performs a
management operation (see state fluent – Table 3.2).

op(Obj, OperationName, [Parameters]) Used to denote the management operations specified in
a policy function or event (see below)

doAction(op(ObjTarg, OpName, [Parms])) Represents the event of the action specified in the op
term being performed on the target object, ObjTarg.

Predicate Symbol Description
mgdObj(Obj, ClassName) Used to specify that Obj is an object in the system, with

the type denoted by ClassName.

attr(ClassName, AttrName, Type) Defines that the class ClassName has an attribute
called AttrName of type, Type.

domain(Obj) Defines that Obj represents a domain. In order to
indicate that a domain is a specialisation of an object,
we also define the following rule:

 mgdObj(Obj, ‘classDomain’)  domain(Obj).

isMember(Obj, Dom) Holds if the object, Obj, is a member of the Domain,
Dom.

subDomain(Child, Parent) 
 domain(Child), domain(Parent),

Holds if the domain represented by Child is a sub-
domain of Parent. The body of the rule is used to

 isMember(Child, Parent),
 not(Child=Parent).

subDomain(Child, Parent) 
 domain(Parent), domain(Child),
 domain(IntParent),
 not(IntParent=Parent),
 not(IntParent=Child),
 isMember(IntParent, Parent),
 subDomain(Child, IntParent).

ensure that there are no cyclic relationships in the
domain structure.

isDerivedMember(Domain, Object) 
 mgdObj(Object, _),
 isMember(Object, Domain).

isDerivedMember(Domain, Object) 
 domain(Domain),
 mgdObj(Object, _),
 subDomain(SubDom, Domain),
 isDerivedMember(SubDom, Object).

Used to determine membership of a domain across the
entire domain structure. This first rule identifies all
those objects that are direct members of the domain,
Dom. The second rule recursively identifies those
objects that are members of sub-domains of the
domain, Dom.

We define the predicate domain(DomainName) to represent a domain where the argument is a
unique identifier. The absolute domain path expression for an object in the domain hierarchy
(which take the form /dom1/…/obj) is assumed to be unique. Domain membership is
represented using the isMember(ObjName, DomainName) predicate where the first argument is
the name of the object to be added to the domain named by the second argument. Finally,
managed objects are denoted by the mgdObj(ObjName, ClassName) predicate, where the first
argument is a unique identifier for the managed object instance and the second argument is the
name of the managed object class.

B.3.2.2 Stat i c Model
The static model of a managed object is represented by its class definition, which specifies a class
name, a set of attributes, and a set of methods. As shown in the example in the previous section,
the mgdObj/2 predicate can be used to represent a managed object instance of a particular type.
In order to represent the attributes of a class, we define a predicate attr(ClassName, AttrName,
Type). The parameters of this predicate are used to specify that a given class (ClassName) has an
attribute called AttrName of a particular type (Type).

For the purposes of policy-based management, we are only interested in those methods which
are part of the management interface of the object. Since this information is also specified in the
dynamic model of the object, in order to avoid duplication of information in the formal
representation, we do not specify a stand-alone representation of the methods of a managed
object. Instead, as will be described in the next section, we define predicates that allow a user to
query the formal specification to determine the operations of a managed object class.

B.3.2.3 Dynami c Model
The dynamic model of a managed object describes it’s the run-time behaviour in terms of the
changes in state caused by performing the operations specified in the management interface of
the object. For each type of managed object, the administrator can use an UML state chart to
specify the state changes that occur when management operations are performed.

In order to model the behaviour of these operations, it is necessary to specify the pre- and post-
conditions for each operation. Performing an operation on the system will modify the state of
the system in such a way that, once the operation is complete, there will be some new fluents that
hold, and some other fluents that cease to hold. This is represented using the initiates(A, B, T)
and terminates(A, B, T) predicates, according to the following schema:

 initiates(doAction(ObjSubj, op(ObjTarg, Action, Parms)), PostTrue, Tm) 
 PreCondition . mgdObj(ObjTarg, ClassName).

 terminates(doAction(ObjSubj, op(ObjTarg, Action, Parms)), PostFalse, Tm) 
 PreCondition . mgdObj(ObjTarg, ClassName).

The first rule above states that when the doAction event occurs at time, Tm, if the PreConditions
are true, then the fluent defined by PostTrue will hold after that time. Under the same
conditions, the second rule states that the fluent defined by PostFalse will cease to hold after
time, Tm. Typically, the latter rule is used to invalidate the old value of an object attribute when
it changes as a result of the system moving to a new state. In both of these rules, the
PreCondition will be represented by a conjunction of holdsAt(B, T) predicates. The
mgdObj(ObjTarg, ClassName) predicate in the body of each rule indicates that this rule defines
an operation for the type, ClassName.

The state of a managed object is represented by a conjunction of (Object, Attribute, Value)
triplets. To reflect that the state chart is a representation of the potential states of the system, the
PostTrue and PostFalse fluents are defined using pot_state(Object, Attr, Value) terms. In a
policy managed system, a potential state translates into an actual state if there is an obligation to
perform an action that defines the potential state as a post-condition. This is explained further in
the description of the formal representation of the policy enforcement model (Section 3.4.6)

Building on the example shown previously, it is possible to illustrate the use of these rules for
modelling system behaviour. Consider the SLS-S module that has the behaviour shown by the
statechart in Figure 6. It is possible to transform this state chart into the Event Calculus notation
presented previously where the action shown on each transition arrow is the operation being
performed; for transitions between different states, the old values of any attributes that change
become the PostFalse fluents; the new values of the attributes become the PostTrue fluents; and
the current state values, together with any guards, become the PreConditions. In order to avoid
problems with recursion and infinite looping, self-transitions are omitted from the formal
representation. So following this scheme, the state chart can be represented in the formal
language as shown below.

1- initiallyTrue(pot_state(Obj, status, 'init')) 
 mgdObj(Obj, ‘classSLSModule’).

2- initiates(doAction(_, op(Obj, registerSLS, parms(sls))),
 pot_state('d_mgdObjsd_slsmgr', status, 'slsRegistered'), T) 
 holdsAt(pos(pot_state(Obj, status, 'init')), T),
 happens(sysEvent(reqReceived(sls)), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

3- terminates(doAction(_, op(Obj, registerSLS, parms(sls))),
 pot_state(Obj, status, 'init'), T) :-
 holdsAt(pos(pot_state(Obj, status, 'init')), T),
 happens(sysEvent(reqReceived(sls)), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

4- initiates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),
 pot_state(Obj, status, 'slsCounterofferMade'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

5- terminates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

6- initiates(doAction(_, op(Obj, reject, parms(sls))),
 pot_state(Obj, status, 'slsReqRejected'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

7- terminates(doAction(_, op(Obj, reject, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

8- initiates(doAction(_, op(Obj, accept, parms(sls))),
 pot_state(Obj, status, 'slsReqAccepted'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

9- terminates(doAction(_, op(Obj, accept, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) 
 holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
 mgdObj(Obj, ‘classSLSModule’),
 time(T).

B.3.3 Policy Representation
The next step in describing the formal language is to determine the features of policy rules that
need to be expressed in the formalism. Since the scope of this thesis is limited to security
authorisation and management/behavioural policies, we only consider positive authorisation,
negative authorisation, obligation and refrain policies.

Each type of policy contains a number of elements – Subjects, Targets, Actions, Constraints and,
in the case of obligation policies, Events. In order to provide a complete formal representation
of policies, the information contained in each of these elements must be included in the
formalism. The detailed formal representation of each of the elements is presented in [20]. In
this section we provide an overview of the formal representation of the different types of policy
rule and then proceed to model how enforcing a policy affects the state of the managed system.
Therefore, we conclude this section with a description of the logic rules used to model the effect
of the policies on the state of the managed system. Table III shows the predicates and functions
used in our formalism.

TABLE III
FUNCTIONS AND PREDICATES FOR REPRESENTING POLICIES

Function Symbol Description
allow(ObjSubj,
 op(ObjTarg, OpName, Parms))

Represents the permission granted to a subject, ObjSubj,
to perform the action, OpName, on the target, ObjTarg.
Parms are included in case OpName is overloaded

deny(ObjSubj,
 op(ObjTarg, OpName, Parms))

Used to denote that the subject, ObjSubj, is denied
permission to perform the action OpName on the target,
ObjTarg.

Oblig(ObjSubj,
 op(ObjTarg, OpName, Parms))

Denotes that the subject, ObjSubj, should perform the
action specified in the operation term on the target,
ObjTarg.

refrain(ObjSubj,
 op(ObjTarg, OpName, Parms))

Denotes that the subject, ObjSubj, should not perform the
action specified in the operation term on the target,
ObjTarg.

state(Obj, Attr, Value) Represents the value of a managed object attribute.
This fluent holds when an obligation to perform an
action with the post-condition pot_state(Obj, Attr, Value) is
enforced.

sysEvent(E) Represents a system event. Used in the definition of
obligation policies.

clocktick(H,M,S) Event that represents the real-world time having the
value H:M:S. E.g using this function, 2pm would be

represented as clocktick(14,0,0)

done(Policy, Subj, Op) Event that occurs when an obligation policy, Policy, has
been enforced by the subject performing the specified
operation.

Predicate Symbol Description
requestAction(Policy, Subj, Op, T) Denotes that the specified policy made a request for the

subject to perform the operation at time, T.

TABLE IV
FUNCTIONS AND PREDICATES FOR REPRESENTING GOALS

Function Symbol Description
achieve(P, Q) Represents a goal expressed using the temporal logic

formula, P υ ⊄Q, and means that if P holds Q will hold
at some point in the future.

maintain(P, Q) Represents a goal expressed using the temporal logic
formula, P υ ≈Q, and means that if P holds that Q will
hold at all points in the future.

cease(P, Q) Represents a goal expressed using the temporal logic
formula, P υ ⊄¬Q, and means that if P holds ¬Q will
hold at some point in the future (i.e. Q will cease to
hold).

avoid(P, Q) Represents a goal expressed using the temporal logic
formula, P υ ≈¬Q, and means that if P holds ¬Q will
hold at all points in the future (i.e. Q will be avoided).

until(P, Q, R) Represents a goal expressed using the temporal logic
formula, P υ Q U R, and means that if P holds Q will
hold for all points until R holds.

unless(P, Q, R) Represents a goal expressed using the temporal logic
formula, P υ Q W R, and means that if P holds Q will
hold unless R holds.

and(P1, P2) Conjunction of the two goal terms, P1 and P2.
Indicates that they both hold at a given point in time.

goalProperty(P) Used to indicate that P is a property that can be used
as part of a goal definition.

Predicate Symbol Description
holdsGoal(P, T) Defines that goal P holds at time, T. The time argument

is used to determine the relative order of a set of goals
terms.

ptnGoal(G) The high-level goal expression for a goal elaboration
pattern. Typically, this would be instantiated as:

 goalPtn(achieve(P,Q))  ... subgoalPtn ...

ptnSubGoal(SubGOal) Represents a sub-goal expression in a goal elaboration
pattern. It is used in a body of a rule that defines the
pattern.

missingGoalProperty(G) Denotes a property G that must be defined by the user.

B.3.4 Goal Representation
The formal language presented thus far can be used to represent policy managed systems and
allows such specifications to be analysed. However, in order to support policy refinement the
formalism must also capture information about the high-level goals the administrator wishes to
achieve and how these relate to lower-level goals that can actually be achieved by the systems.

The KAOS goal elaboration technique presented in the Chapter 2 provides a formal technique
for deriving low-level goals from high-level ones. This technique uses goal elaboration patterns

(proven decompositions of high-level goals) which facilitate the derivation of low-level goals that
provably satisfy the original high-level goal. In the KAOS technique, goals and goal elaboration
patterns are expressed using temporal logic formulae and therefore in order to include this
information in our formalism we must provide support for expressing the temporal logic
operators such as eventually, always, unless and until (see Section 2.2). In this section we describe how
the predicates and functions defined in Table can be used to represent each of these types of
information, together with the rules that allow automated reasoning to be used to derive the
results required for policy refinement.

B.3.4.1 Basic Goal s
In the KAOS technique, a goal is represented by its name, informal description and formal
definition. In the broadest sense, there are four types of goal, referred to as achieve, cease, maintain
and avoid goals, and each of these types can be characterised by a temporal logic formula as
follows:

• Achie ve go al s specify the requirement that given some initial conditions, P,
the system should eventually satisfy some property, Q. This is represented
in temporal logic as: P υ ⊄ Q.

• Cease g oal s are used to state the requirement that given some initial
conditions P, the system should eventually satisfy the negation of some
property, Q. Formally this is stated as: P υ ⊄ (¬Q).

• Mainta in goal s are used to state the requirement that given some initial
conditions, P, the system should always satisfy some property, Q, in the
future. The temporal logic representation of this is: P υ ≈ Q.

• Avo id goal s specify the requirement that given some initial conditions P,
the system should always satisfy the negation of a property, Q. Formally
this is stated as: P υ ≈ ¬Q, which is logically equivalent to P υ ¬ ⊄ Q.

 T1: holdsgoal(Q, T1)  holdsGoal(achieve(P, Q), T),
 holdsGoal(P, T), T1 > T.

 T1: ¬ holdsGoal(Q, T1)  holdsGoal(cease(P,Q), T),
 holdsGoal(P, T), T1 > T.

 …T1: holdsGoal(Q, T1)  holdsGoal(maintain(P, Q), T),
 holdsGoal(P, T), T1 > T.

 …T1: ¬ holdsGoal(Q, T1)  holdsGoal(avoid(P, Q), T),
 holdsGoal(P, T1), T1 > T.

In each of these formal expressions, P and Q represent some property (or conjunction of
properties) that the system must satisfy initially (P) and in the future (Q). At the lowest level,
these properties should correspond to potential states of the managed system (i.e. states defined
in the behavioural model of the managed objects), however at high-levels of abstraction
properties can be represented by names of other goals that must be satisfied.

Each type of goal can be represented in the formal language using the terms achieve(P,Q), cease(P,Q),
maintain(P,Q) and avoid(P,Q) respectively. These terms can be used in conjunction with the holdsGoal(G,
T) predicate to specify rules that determine the truth of a given goal (see below). The holdsGoal(G,
T) predicate is similar to the holdsAt(B, T) predicate defined as part of the Event Calculus. It is
necessary to define this new predicate, rather than simply use holdsAt(…), because the temporal
logic definitions used in goal elaboration do not have a direct correspondence to the Event
Calculus axioms.

 holdsgoal(Q, T1)  holdsGoal(unless(P, Q, R), T),
 holdsGoal(P, T),
 ¬ holdsGoal(R, T1), T1 > T.

 holdsgoal(Q, T1)  holdsGoal(until(P, Q, R), T),
 holdsGoal(P, T),
 holdsGoal(R, T2), T2 > T1 > T.

 holdsGoal(Q, T)  holdsGoal(and(P,Q), T),
 holdsGoal(P, T).

 holdsGoal(P, T)  holdsGoal(and(P,Q), T),
 holdsGoal(Q, T).

Each of the rules above provides an implicit definition of the eventually holds and always holds
temporal operators. However, goal descriptions can also involve the other temporal operators,
unless (if P then Q unless R) and until (if P then Q until R). Additionally, it is necessary to be able
to specify conjunctions of goals. The rules defined in Listing 3.12 extend the formal language to
allow these additional operators to be included in a goal specification.

In the formal language, we define the function goalProperty(Name) to represent a named property
that might be used in a goal definition. This function can be used in a holdsGoal(G, T) predicate in
the head of a rule, where the body specifies the goal expression that satisfies the property. As
mentioned previously, higher-level goal properties can be defined in terms of other goals. This
type of goal property will be represented in the formal language by using holdsGoal(Goal, T)
predicates in the body of the rule. In the TEQUILA framework’s SLS subscription example, the
administrator might specify a high-level goal stating that all incoming SLS requests must be
processed by the SLS-S module. In this situation, the administrator might want to represent the
domain knowledge that the high-level goal “Process SLS Request” can be represented by the two
sub-goals “Register SLS” and “Accept SLS”. The formal representation of this decomposition is
shown below:

 holdsGoal(goalProperty(process_sls), T) 

 holdsGoal(achieve(receive_sls, register_sls), T),

 holdsGoal(achieve(register_sls, accept_sls), T).

In the case of an operational goal, the body of the rule defines the system state that must hold
for the property to be satisfied, using holdsAt(pot_state(Obj, Attr, Value), T) predicates. For example, in the
scenario above, the low-level goal for registering an SLS might be defined as the state where the
SLS-S manager is in the ‘registered’ status. This would be represented in the formal notation as:

 holdsGoal(goalProperty(register_sls), T) 

 mgdObj(SLSMGR, classSLSMgr),

 holdsAt(pot_state(SLSMGR, status, ‘slsRegistered’), T).

Alternatively, certain operational properties might be satisfied through the occurrence of an
event. In this case, the body of the rule is defined using a happens(A, T) predicate. In the example
presented above, if the receive_sls goal property is satisfied when a receiveSLS event occurs, this
would be represented in the formal language as:

 holdsGoal(goalProperty(receive_sls), T) 

 happens(sysEvent(receiveSLS), T).

B.3.4.2 Goal Elabo rat io n Pa tte rns
In addition to the goals specific to a particular managed system, if we are to provide some
automated reasoning support for decomposing goals into sub-goals, the formal language must

also capture the goal elaboration patterns. A goal elaboration pattern is represented by a goal,
together with a set of sub-goals that satisfy the goal. Formally, the relationship between the
higher-level goal, G, and its sub-goals, G1 … Gn, can be expressed as: G1, …, Gn δ G.

We introduce the predicates ptnGoal(Goal) and ptnSubGoal(SubGoal) which respectively represent the
high-level goal and the sub-goals of an elaboration. The Goal/Sub-goal definitions for these
predicates would be expressed using the goal functions described in the previous section. For
example, the domain independent goal elaboration pattern (P υ ⊄R), (R υ ⊄Q) δ (P υ ⊄Q),
would be specified in this notation as:

 ptnGoal(achieve(P, Q)) :- ptnSubGoal(achieve(P, R)),

 ptnSubGoal(achieve(R, Q)),

 missingGoalProperty(R).

The purpose of decomposing a goal is to identify some new, lower-level, properties in the sub-
goals expressions such that the original high-level goal can be satisfied. At each stage of the
elaboration process, the user will be required to define these new properties in terms of other
goals or as a required system state. Therefore, when specifying a goal elaboration pattern, the
predicate missingGoalProperty(Name) is used to identify the properties of the sub-goal definitions that
need to be provided by the user. In order to provide a means of automatically identifying the
sub-goals and missing goal properties for a given goal, we extend the set of abducible terms in
the formal language to include ptnSubGoal(…) and missingGoalProperty(…). This means that given a
goal that matches the head of an elaboration rule of the form defined above, the system can
abduce the sub-goals and missing goal elaboration patterns required for a correct decomposition
of the goal.

1 ptnGoal(achieve(loginReq(user, appl), logged_in(user, appl))) :-

 ptnSubGoal(achieve(loginReq(user,appl), authenticated(user))),

 ptnSubGoal(achieve(loginReq(user,appl), authorised(user, appl))),

 ptnSubGoal(achieve(and(authenticated(user), authorised(user, appl)),

 logged_in(user, appl))),

 missingGoalProperty(user), missingGoalProperty(appl).

2 holdsGoal(goalProperty(authenticate(user), T) :-

 mgdObj(AS, classAuthenticationServer),

 holdsAt(pot_state(AS, status, authenticated(user)), T).

3 holdsGoal(goalProperty(authorise(user, appl), T) :-

 mgdObj(AC, classAccessController),

 holdsAt(pot_state(AC, mgdObj, appl), T).

 holdsAt(pot_state(AC, status, allowed(appl, loggedIn, user)), T).

The KAOS technique also supports the use of application-specific goal elaboration patterns. For
example, in section 2.2 we presented an elaboration pattern for a user login application which
stated that for a user to be logged in, the goals for authentication and authorisation must be
satisfied (see Chapter 2, Section 2.2). The formal representation of this pattern is shown above.
Here, Line 1 defines the elaboration pattern which required that the administrator specify the
user and application definitions for the particular situation in which the pattern is being applied.
The remaining rules define the system state required to satisfy the authentication and
authorisations sub-goals specified in the elaboration pattern.

In this section we extended the formal language to include representations of both goals and goal
elaboration patterns. The representation of goal elaboration patterns allows abductive reasoning
to be used to determine the possible decompositions of a given high-level goal. Having selected
a suitable decomposition, the user must then provide a definition for any missing properties in

the sub-goal definitions. This process will be repeated until the sub-goals are expressed in terms
of desired states of managed objects. We refer to such sub-goals as operational goals.

Once the low-level operation goals have been defined, it is possible to use this representation in
conjunction with the system behaviour model to abduce the set of operations required to satisfy
a particular goal. We refer to this set of operations as the strategy for achieving the goal.

B.4. Automated Policy Refinement
Before detailing the approach to policy refinement that we have developed, it would be useful to
consider an example that illustrates the procedure that would be followed if an administrator
were to refine a high-level goal into a policy manually.

This scenario illustrates how the TEQUILA framework responds to short-term changes in traffic
from a particular customer. Taking the same example network as before, consider the situation
where the network experiences a short-term increase in the traffic pertaining to the SLA
described in the previous scenario. The network administrator wants to ensure that when this
increase occurs during between 11am and 1pm and causes a network utilisation greater than 85%
of the maximum allocation calculated by the ND module, the bandwidth allocation should be
increased only by 10% and any spare capacity should be equally split amongst the PHBs. In this
situation the Dynamic Resource Management (DRsM) module at each link along the route
followed by the traffic would respond as follows:

• Detect the increase in traffic, and decide to raise an alarm if necessary

• On receiving an alarm relating to an increase in traffic, the DRsM must decide on the
appropriate action to adapt to the increase. To help with this, the DRsM has the
guideline values for maximum, minimum and congestion bandwidth allocations provided
by the network dimensioning process.

• Configure the link/PHB with this new value and decide on how to allocate any spare
link capacity amongst all the link/PHBs

In this process it can be seen that policies are involved at all three stages, since there are decisions
to be taken regarding when to raise an alarm, how to determine the new bandwidth allocation,
and how to distribute the spare link capacity. As before, in each of these cases the exact policy to
be used depends on the goal that the administrator is interested in. In this scenario, the specific
goal is that an alarm should be raised if the bandwidth utilisation for the link/PHB is above 85%
of the maximum allocation specified by the ND module.

G5: Goal BWUtilIncreaseAlarmRaised

 FormalDef linkBWUtilIncrease(utilValue, PHB)
 → ◊ alarmRaised(bwUtilIncr, [utilValue, PHB]).

S4: Strategy G5: BWUtilIncreaseAlarmRaised

 DerivedActions monitor.raiseAlarm(alarmType, [alarmParms]).

As shown above, the strategy for achieving the basic goal of “alarm is raised” (G5) can be
automatically abduced without the need for elaboration. Combining this strategy (S4) with the
constraints, the following policy, that satisfies the overall goal, can be written:

P2: inst oblig /policies/networkMonitoring/increaseBWUtilAlarm {

 on linkBWUtilIncrease(utilValue, PHB);

 subj s = /routers/FromR1/ToR6/drsmPMAs/;

 targ t = s.monitor;

 do t.raiseAlarm(bwUtilIncr, [utilValue, PHB]);

 when utilValue > 0.85 * s.ndMaxBWAlloc(PHB); }

For the remaining policy decisions of determining the new bandwidth allocation value and then
allocating any spare capacity, the strategy derivation is not as straight forward. Here the high-
level goal is to achieve the state “adapted configuration” when an alarm is raised. This can be
stated as follows:

G6: Goal ConfigAdaptedForBWUtilIncrease

 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) → ◊ configAdapted.

In this case the abductive analysis of G6 yields no strategy, so it is necessary to elaborate the goal
further. As a first step, applying GP2’ yields the sub-goals NewRPCRequested (G7) or
CalculatedConfiguredNewBWAllocation (G8) and as shown in their formal definitions below, each leads
to the high-level goal of ConfigAdaptedForBWUtilIncrease being satisfied.

G7: Goal NewRPCRequested

 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) → requestedNewRPC .

 requestedNewRPC → ◊ configAdapted.

G8: Goal CalculatedConfigNewBWAllocation

 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB])
 → calcAndConfigNewBWAlloc .

 calcAndConfigNewBWAlloc → ◊ configAdapted.

In the scenario under consideration, the high-level policy involves calculating and configuring a
new bandwidth allocation, a goal represented by G8 above. However, since it is not possible to
automatically derive a strategy for this goal, it is necessary to elaborate it further, this time using a
combination of the patterns GP2’ and GP1.

Figure 8 shows the goal elaboration hierarchy for this elaboration process, indicating the
applicable patterns at each stage. The details of each of the goals in this diagram are as follows:

G9: Goal calcNewBWAlloc

 FormalDef calcNewBWAlloc(newValue) → ◊ configNewBWAlloc.

G10: Goal configNewBWAlloc
 FormalDef configNewBWAlloc → ◊ configAdapted.

G11: Goal setCalculatedNewBWAlloc

 FormalDef calcNewBWAlloc (newValue) → (newValue = calcValue) .

 (newValue = calcValue) → ◊ configNewBWAlloc.

G12: Goal overrideNewBWAllocNDMax
 FormalDef calcNewBWAlloc (newValue) → (newValue = drsm.ndMaxBWAlloc) .

 (newValue = drsm.ndMaxBWAlloc) → ◊ configNewBWAlloc.

G13: Goal overrideNewBWAllocNDCong
 FormalDef calcNewBWAlloc (newValue) → (newValue = drsm. ndCongBWAlloc) .

 (newValue = drsm.ndCongBWAlloc) → ◊ configNewBWAlloc.

G14: Goal propSplitSpareCapacity
 FormalDef configNewBWAlloc → spareCapProportionallySplit .

 spareCapProportionallySplit → ◊ configAdapted.

G15: Goal equalSplitSpareCapacity

 FormalDef configNewBWAlloc → spareCapEquallySplit .

 spareCapEquallySplit → ◊ configAdapted.

G16: Goal explicitySplitSpareCapacity

 FormalDef configNewBWAlloc → spareCapExplicitlySplit([splitValues]) .

 spareCapExplicitlySplit([splitValues]) → ◊ configAdapted.

In this scenario we assume, the goals of the administrator are namely G11: setCalculatedNewBWAlloc
and G15: equalSplitSpareCapacity. So, we are interested in the strategies for setting the new bandwidth
allocation to the newly calculated value and splitting any spare capacity equally. Performing the
abductive analysis on the statechart representation of the DRsM calculation and configuration
module behaviours yields the following strategy, which in turn can be encoded into a policy as
shown in P3 below.

Notice that in this example, the abductive analysis results in a strategy that includes constraints
which are derived from the guards defined in the state chart of the system behaviour. In order to
ensure that the policy is valid with respect to the system behaviour, the administrator must
include these constraints, together with any others that are manually mapped from the high-level
policy, whenever the strategy is used. In the example, this is illustrated in the final policy, P3,
which combines the constraint from the strategy with the time constraint from the high-level
policy.

GP2'

GP1

GP2'GP2'

G6: ConfigAdaptedForBWUtil

Increase

G7: NewRPCRequested
G8: CalculatedConfig

NewBWAllocation

G9: calcNewBWAlloc G10: configNewBWAlloc

G12: overrideNewBWAlloc

NDMax

G13: OverrideNewBWAlloc

NDCong

G11: setCalculated

NewBWAlloc

G15: equalSplit

SpareCapacity

G16: explicitySplit

SpareCapacity

G14: propSplit

SpareCapacity

AND

OR

OR OR

Figure 8: Traffic increase scenario goal elaboration hierarchy

S5: Strategy G11: setCalculatedNewBWAlloc && G15: equalSplitSpareCapacity

 OnEvent alarmRaised(bwUtilIncr, [utilValue, Link, PHB])

 DerivedActions drsm.setBWAllocation(Link, PHB, CalcValue) ->

 drsm.handleSpareBW(equally, Link)

 Constraints drsm.incrAllocBW(PHB, pct) < drsm.ndMaxBWAlloc(PHB).

P3: inst oblig /policies/adaptTrafficIncreaseAOLSLA_P1 {

 on alarmRaised(bwUtilIncr, [utilValue, link, ef]);

 subj s = /drsmPMA;

 targ t = /routers/FromR1/ToR6/drsm/;

 do t.setBWAllocation(link, ef, NewBWValue) ->

 t. handleSpareBW(equally, link);

 when NewBWValue < t.ndMaxBWAlloc(ef) &&

 time.between(‘11:00’, ‘13:00’);

 }

Integrity constraints provide an elaboration tolerant way of specifying the constraints to be
satisfied by different entities in a system. Additionally, they allow rules that define the
consistency requirements of the system to be defined in a modular manner. This is advantageous
since it allows the user to maintain the independence between rules that pertain to different
aspects of a system. In the remainder of this section we show how integrity constraints can be
used to enhance the policy refinement procedure in a number of different ways:

B.4.1. Avoiding Inconsistencies
It is important to ensure that policies derived by the refinement process are consistent with
respect to other policies and the system itself. By defining inconsistency conditions as integrity
constraints it is possible to ensure that the management operations derived as part of the policy
refinement procedure do not cause any inconsistencies.

We have also made use of integrity constraints to guarantee that the objects in the derived
strategies are of correct type. For example, to ensure that the setBWAllocation(Link, PHB, BW)
operation is only performed by a DiffServRouter object on a DRsM object, we can specify the
following constraints:

1 ic :- happens(doAction(R, op(_, setBWAllocation(_,_,_))), _),

 not(obj(R, cDiffServRouter)).

2 ic :- happens(doAction(_, op(D, setBWAllocation(_,_,_))), _), not(obj(D, cDRSM)).

Other types of consistency checks involve ensuring that policies do not conflict, and that
appropriate constraints are derived so that the derived policy is only applicable if the actions
specified are valid at the point of enforcement. In order to avoid simple modality conflicts, we
can specify integrity constraints of the form:

1 ic :- happens(doAction(Subj, Op, _), T), not(holdsAt(pos(allow(Subj, Op)), T)).

2 ic :- happens(doAction(Subj, Op, _), T), holdsAt(pos(refrain(Subj, Op)), T).

Here the first constraint specifies that it is inconsistent for the derived policy to contain any
actions that are not authorised. Similarly, the second avoids those actions that would be
prevented by a refrain policy in the system. It is also possible to specify integrity constraints that
avoid semantic conflicts, such as conflicts of duty. For example, in our example scenario, it
would be incorrect to attempt to allocate two different bandwidth values for the same Link/PHB
at the same time. This is captured by the following rule:

1 ic :- happens(doAction(_, op(_, setBWAllocation(Link,PHB,BW1))), T),

 happens(doAction(_, op(_, setBWAllocation(Link,PHB,BW2))), T),

 clp(BW1 <> BW2).

4.2. Deriving Parameter Values for Management Operations
The implementation of the policy refinement process is only able to derive the set of
management operations (i.e. the strategy) for achieving a given goal. This process does not
provide any suggestions for parameter values that can be used when performing these
management operations. By defining integrity constraints that specify the valid ranges for
particular managed operation parameter values, it is possible to include the derivation of these
parameter values in the policy refinement process.

In most cases, these parameters are provided by the events that trigger the policy, or they
calculated within the context of the subject enforcing the policy. However, there are cases where
the parameter values can be determined by other factors, such as values computed using
attributes of objects and resources. For example, in the case of the above scenario new
bandwidth values are required for the setBWAllocation(Link, PHB, NewBW) operation. The
following constraints specify limits on this parameter:

1 ic :- happens(doAction(_, op(DRSM, setBWAllocation(Link, PHB, NewBW)), _), T),

 happens(alarm(incrUtil, Link, PHB), T0), clp(T0<T),

 holdsAt(pos(state(DRSM, bwAlloc(Link, PHB), CurrBW)), T)),

 not(clp(NewBW > CurrBW)).

2 ic :- happens(doAction(_, op(DRSM, setBWAllocation(Link, PHB, NewBW)), _), T),

 happens(alarm(incrUtil, Link, PHB), T0), clp(T0<T),

 holdsAt(pos(state(DRSM, ndMAxBW(Link, PHB), NDMaxBW)), T)),

 not(clp(NewBW =< NDMaxBW)).

Constraint (1) above specifies that in the situation of an increased utilization alarm the new
bandwidth value should be greater than the current one; and constraint (2) specifies that it should
not exceed the max value defined by the network dimensioning module (ndMaxBW).

B.4.3. Utility Functions
It is possible that even after all the integrity constraints relating to consistency, subject/target
selection and parameter value derivation are applied, there are still multiple derived policies that
satisfy the high-level goal. In this situation it is necessary to compute some measure of the utility
for each derived policy and have the system enforce the policy with the highest utility. We can
define integrity constraints to determine a utility value associated with each management
operation and then compute an average of these to determine the utility of a given policy.

Since the policy refinement procedure can generate multiple policies that satisfy a given goal, it is
useful to have some mechanism for deciding on the most appropriate policy for a given situation.
One approach for doing this would be to compute a utility value for each policy solution and
then choose the policy that has the highest utility. Computation of these utility values can be
achieved as part of the abductive inference procedure through the use of integrity constraints.
For example, to specify that the utility of splitting any spare bandwidth proportionally is greater
than using equal splitting if >50% of traffic is marked for expedited forwarding (EF), we have:

1 ic :- happens(doAction(_, op(DRSM, handleSpareBW(prop, Link)), Utility), T),

 holdsAt(pos(state(DRSM, bwUtil(Link, ef), gt(50%))), T), time(T),

 not(clp(Utility#=<75)).

2 ic :- happens(doAction(_, op(DRSM, handleSpareBW(equal, Link)), Utility), T),

 holdsAt(pos(state(DRSM, bwUtil(Link, ef), gt(50%))), T), time(T),

 not(clp(Utility#=<55)).

The above integrity constraints specify that splitting spare BW equally has utility up to 55%,
whereas under the same conditions, splitting spare BW proportionally has utility up to 75%. This
gives preference to policies where spare bandwidth is split proportionally.

To summarise, by means of advanced abductive methods and their integration with CLP [ACLP]
we have been able to enhance considerably our policy refinement methods This enhanced
refinement process not only ensures that derived policies are consistent, but also provides
parameter values for management operations and utility values that can be used to rank the
results. Numerical constraints are formalized in a simple way within the declarative
representation of the policy allowing us to address optimization requirements with the integrated
use of CLP constraint solving.

B.5. Related Work
There are few practical studies on policy refinement. Power [21] is a policy-authoring
environment where a domain expert specifies policy templates (as Prolog programs), which guide
the user in selecting the elements from an information model to be included in the policy. This
approach lacks any analysis capabilities to evaluate the consistency of the results. Additionally,
Power does not provide support for automatically deriving the actions to be included in a policy.
Therefore, domain experts must have a detailed understanding of system and formalism. Our
refinement patterns are similar to the Power templates, however, our approach incorporates a
complete analysis technique and provides automated derivation of action sequences.

Verma presents an approach to policy translation for DiffServ QoS management that is based on
a set of tables which identify the relationships between Users, Applications, Servers, Routers and
Classes of Service supported by the network [22]. When presented with new SLSs, the system
performs a series of table look-ups to identify the correct configuration for the specified user,
application and service class. This technique can be fully automated, but depends on the
correctness of the table which requires domain expertise.

This technique is similar to the case-based reasoning approach to policy transformation proposed
by researchers at IBM [23] where table look-ups are used to match high-level requirements
parameters to device level configuration values. For example, by building a database of the
average response times of a web-server farm containing different numbers of servers, case-based
reasoning can be used to determine the number of servers that should be activated to satisfy a
given response time requirement. This approach to policy refinement has limited applicability
since it can only be used in those cases for which it is feasible to build a database of the
requirements and configuration parameters.

B.6. Discussion
The current state of the art in systems management requires administrators to be familiar with
the intricate details of the equipment they manage and to often perform configurations manually.
In enterprise environments where the management tasks span different levels of abstraction from
applications and services to physical devices; and are highly heterogeneous, administration
becomes increasingly difficult. Policy-based management allows administrators to change the
management strategy of a system by changing policies dynamically rather than reimplementing
management functionality.

Effective systems management requires the ability to verify properties of the system. In particular
it is necessary to analyse policies to detect inconsistencies. After preliminary work on modality
and application specific conflicts [20], we have shown how an Event Calculus representation of
both policies and managed systems can be used, together with abductive reasoning for policy
analysis [14]. Like the refinement technique presented here, the analysis uses a statechart

representation of system behaviour and the domain hierarchy. The abduction process derives not
only the presence of conflicts but also a description of the conditions under which the conflicts
will occur. Since the analysis and refinement techniques are based on the same formalism the two
can easily be integrated.

An important consideration when using formal techniques is to ensure that the implementation is
decidable and computationally feasible. In our implementation, we ensured this by limiting
ourselves to stratified logic programs. This permits a constrained use of recursion and negation
while disallowing those combinations that lead to undecidable programs [24]. Stratified logic
programs are decidable in polynomial time [13]. Additionally, it is possible to show that the
formal representation satisfies the requirements of a unit-refutable theory [20], a class for which
the abductive solution derivation has been shown to be computable in polynomial time [7].

B.7. Conclusions and Future Work
The work presented in this report has shown how to automate the refinement of policies
through the use of abductive constraint logic programming whilst hiding the details of the
underlying formal techniques from the user. The technique is not only able to generate the
management operations that must be performed for achieving a given goal, but can also derive
the parameter values for the operations and ensure that the derived operations are consistent
with respect to the overall system. Additionally, the technique supports the calculation of utility
values that can be used to determine a preference ranking between multiple refined policies.

Achieving this functionality whilst also providing some degree of consistency checking and
automated reasoning capability requires the use of models. The refinement procedure requires
some user intervention, e.g. to map constraints associated with goals into the final policies.
However, this only requires users to be familiar with the models of the resources being managed,
not the underlying formalisms being used to support the refinement process. This task will
become easier when standard information models (e.g. CIM [25]) are adopted.

A key limitation of our approach is the dependence on the correctness of the integrity constraints
in order to abduce refined policies. This means that the lack of a solution may simply be due to
an error in the integrity constraint specification rather than because of a genuine limitation in the
capabilities of the modelled system. In order to address this problem it will be necessary to
investigate techniques for analysing the overall specification to ensure the consistency of integrity
constraints. Together with enhancing the tool support for the policy refinement procedure,
addressing this limitation will be the focus of our future efforts.

Acknowledgements
We acknowledge financial support for this work from the EPSRC (Grant Nos: GR/R31409/01
and GR/S79985/01), CISCO Systems Inc. and IBM Research. This deliverable reports on the
work carried out under the visiting fellowship of Professor Kakas at Imperial College, London.
This fellowship was supported by EPSRC (grant GR/T29246/01) under the project “Reasoning
Techniques for Analysis and Refinement of Policies for Quality of Service Management.
References
1. Bandara, A.K., E.C. Lupu, and A. Russo. Using Event Calculus to Formalise Policy

Specification and Analysis. in 4th IEEE International Workshop on Policies for Networks
and Distributed Systems (Policy 2003). 2003. Lake Como, Italy: IEEE.

2. Moffett, J. and M.S. Sloman, Policy Hierarchies for Distributed Systems Management. IEEE
Journal on Selected Areas in Communications, 1993. 11(9 - Special Issue on Network
Management): p. 1404-14.

3. Darimont, R. and A. van Lamsweerde, Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. 4th ACM Symposium on the Foundations of Software
Engineering (FSE4), 1996: p. 179-190.

4. Bandara, A.K., E.C. Lupu, and A. Russo. A Goal-based Approach to Policy Refinement. in
5th IEEE International Workshop on Policies for Distributed Systems and Networks. 2004.
IBM TJ Watson Research Centre, New York, USA: IEEE Press.

5. Kowalski, R.A. and M.J. Sergot, A logic-based calculus of events. New Generation
Computing, 1986. 4: p. 67-95.

6. Miller, R. and M. Shanahan, The Event Calculus in Classical Logic - Alternative
Axiomatisations, in Computational Logic: Logic Programming and Beyond, Essays in
Honour of Robert A. Kowalski, Part II., A. Kakas and F. Sadri, Editors. 1999, Springer. p.
452-490.

7. Eshghi, K. A Tractable Class of Abduction Problems. in International Joint Conference on
Artificial Intelligence. 1993. Chambery, France: Morgan-Kaufmann.

8. Kakas, A. and P. Mancerella. Abductive Logic Programming. in International Workshop on
Non-monotonic Reasoning and Logic Programming. 1990. Austin, Texas.

9. Denecker, M. and D. De Schreye, SLDNFA: an abductive procedure for normal abductive
prorgamming. Journal of Logic Programming, 1998. 34(2): p. 111-167.

10. Fung, T.H. and R.A. Kowalski, The IFF Proof Procedure for Abductive Logic
Programming. Journal of Logic Programming, 1997. 33(2): p. 151-165.

11. Kakas, A., A. Michael, and C. Mourlas, ACLP: Abductive constraint logic programming.
Journal of Logic Programming, 2000. 44(1-3): p. 129-177.

12. van Nuffelen, B. and A. Kakas. A-System : Programming with abduction. in Logic
Programming and Nonmonotonic Reasoning (LPNMR 2001). 2001: Springer-Verlag.

13. Jager, G. and R.F. Stark, The Defining Power of Stratified and Hierarchical Logic Programs.
Journal of Logic Programming, 1993. 15(1 & 2): p. 55-77.

14. Damianou, N., et al. Tools for Domain-based Policy Management of Distributed Systems. in
8th IEEE/IFIP Network Operations and Management Symposium. 2002a. Florence, Italy.

15. Carlson, M., et al., An Architecture for Differentiated Services, in Network Working Group -
RFC2475, http://www.ietf.org/rfc/rfc2475.txt. 1998.

16. Flegkas, P., P. Trimintzios, and G. Pavlou, A Policy-based Quality of Service Management
Architecture for IP DiffServ Networks. IEEE Network Magazine Special Issue on Policy
Based Networking, 2002. 16(2): p. 50-56.

17. Rosen, E., A. Viswanathan, and R. Callon, Multiprotocol Label Switching Architecture, in
Network Working Group - RFC3031, http://www.ietf.org/rfc/rfc3031.txt. 2001.

18. Trimintzios, P., et al., Service-driven Traffic Engineering for Intra-domain Quality of Service
Management. IEEE Network Magazine Special Issue on Network Management of
Multiservice, Multimedia, IP-based Networks, 2003. 17(3): p. 29-36.

19. Mykoniati, E., et al., Admission Control for Providing QoS in IP DiffServ Networks: the
TEQUILA Approach. IEEE Communications Magazine, 2003. 41(1).

20. Bandara, A.K., A Formal Approach to Analysis and Refinement of Policies, in Computing.
2005, Imperial College London: London. p. 184.

21. Casassa Mont, M., A. Baldwin, and C. Goh, POWER Prototype: Towards Integrated Policy-
Based Management. 1999, HP Laboratories Bristol: Bristol, UK.

22. Verma, D.C., Policy-Based Networking: Architecture and Algorithms. 2001: New Riders
Publishing.

23. Beigi, M.S., S. Calo, and D. Verma. Policy Transformation Technqiues in Policy-based
Systems Management. in International Workshop on Policies for Distributed Systems and
Networks. 2004. Yorktown Heights, New York: IEEE.

24. Apt, K.R., H.A. Blair, and A. Walker, Towards a Theory of Declarative Knowledge, in
Foundations of Deductive Databases, J. Minker, Editor. 1988, Morgan Kaufmann: San
Mateo, CA. p. 89-148.

25. DMTF, Common Information Model (CIM) Specification, version 2.2. 1999a.

26. M. Charalambides, P. Flegkas, G. Pavlou, A. Bandara, E. Lupu, A. Russo, N. Dulay, M.
Sloman, J. Rubio-Loyola, “Policy Conflict Analysis for Quality of Service Management”, in
Proc. of 6th IEEE Int. Workshop on Policies for Distributed Systems and Networks,
Sweden, June 2005.

27. G. Brewka. Well-founded semantics for extended logic programs with dynamic preferences.
Artificial Intelligence Research, 4:19-36, 1996.

28. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In Logic
Programming, Proceedings of the 1995 International Symposium, Portland, Oregon, pages
369-384, 1995.

29. A.C. Kakas, R.A. Kowalski and F. Toni, “The Role of Abduction in Logic Programming”,
Handbook of Logic in Artificial Intelligence and Logic Programming, 5:235-324, D.M. Gabbay, C.J.
Hogger and J.A. Robinson eds., Oxford University Press, 1998.

30. M. Denecker and A.C. Kakas, Abduction in Logic Programming, in Computational Logic:
Logic Programming and Beyond, LNAI Vol, 2407, pp. 402-437, Springer Verlag, 2002.

31. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. In A. G. Cohn,
L. Schubert, and S. C. Shapiro, editors, KR'98: Principles of Knowledge Representation and
Reasoning, pages 86{97. Morgan Kaufmann, San Francisco, California, 1998.

32. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In Logic
Programming, Proceedings of the 1995 International Symposium, Portland, Oregon, pages
369-384, 1995.

33. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentationtheoretic approach to default reasoning. Arti_cial Intelligence, 93:63-101,
1997.

34. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Arti_cial Intelligence, 77:321-357, 1995.

35. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for logic programs.
In Proceedings of the Eleventh International Conference on Logic Programming, Santa
Marherita Ligure, Italy, pages 504-519, 1994.

36. H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible priorities.
In International Conference on Formal and Applied Practical Reasoning, LNAI 1085, pages
510-524. Springer-Verlag, 1996.

37. Ehab Al-Shaer and Hazem Hamed, "Firewall Policy Advisor for Anomaly Detection and
Rule Editing", IEEE/IFIP Integrated Management (IM'2003), 2003.

38. D. Chapman and E. Zwicky. Building Internet Firewalls, Second Edition, Orielly & Associates
Inc.,2000.

39. W. Cheswick and S. Belovin. Firewalls and Internet Security, Addison-Wesley, 1995.

40. L.Qiu, G. Varghese and S. Suri, Fast Firewall Implementations for Soiftware and Hardware
Routers, Proceedings of the 9th International Conference on Network Protocols (ICNP’
2001), 2001.

41. A. Mayer, A. Wool and E. Ziskind, Fang: A Firewall Analysis Engine, Proceedings of 2000
IEEE Symposium on Security and Privacy, 2000.

42. C.Basile, A.Lioy, Towards an algebraic approach to solve policy conflicts,
FCS'04: Foundations of Computer Security, WOLFASI sub-workshop (Workshop On Logical
Foundations of an Adaptive Security Infrastructure), Turku (Finland), July 12-13, 2004,
pp. 319-338.

43. Ehab Al-Shaer and Hazem Hamed, Discovery of Policy Anomalies in Distributed Firewalls,
In Proceedings of IEEE INFOCOM'04, March 2004.

44. Russo, A. et al. “An Abductive Approach for Analysing Event-Driven Requirements
Specifications”, in Proceedings of International Conference on Logic Programming, LNCS
2401, 22-37, 2002.

45. Gorgias: Argumentation and Abduction, http://www2.cs.ucy.ac.cy/~nkd/gorgias/.

46. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, F.Toni. The KGP model of agency. Proceedings of
the 16th European Conference of Artificial Intelligence (ECAI'04),Valencia, Spain, August
24-27, 2004.

47. I. A. Letia, M. Acalovschi: Achieving Competence by Argumentation on Rules for Roles.
ESAW 2004: 45-59.

APPENDIX A: Elevator Policy in GORGIAS

%===
%
% ELEVATOR EXAMPLE POLICY
%==

% ===
% The program will return the moves of the elevator at all time
% points (0-9) under the policy by using the query:
%
% elevator(example_name, Moves).
%
% where example_name is the name of the example.
% Currently two examples exist, example1 and example2.
%
% A new example (example3) can be added by using
% example(example3) :- assert(rule(example3, happens(....), []),
% ,
% assert(rule(example3, happens(....), []).
%
% ===

:- dynamic holds/2.
:- compile('gorgias').
:- compile('lpwnf').
:- compile('eres').

% ===
% Temporal Reasoning (Auxiliary background Theory)
% ===

% Pressing a button inside the elevator (action press_button_in)
% initiates activated_button_in

rule(d1(T), initiation(activated_button_in(Floor), T),
[happens(press_button_in(Floor),T)]).

% Pressing a button at a floor (action press_button_floor) initiates
% activated_button_floor

rule(d2(T), initiation(activated_button_floor(Floor, Direction), T),
[happens(press_button_floor(Floor, Direction),T)]).

% When the elevator doors open (action open_door) at a floor,
% activated_button_in is terminated

rule(d3(T), termination(activated_button_in(Floor), T),
[happens(action(open_door, T), T)]) :-

 holds(elevator_position(Floor), T),
 holds(activated_button_in(Floor), T).

% When the elevator doors open (action open_door) at a floor,
% activated_button_floor is terminated

rule(d4(T), termination(activated_button_floor(Floor, Direction), T),
[happens(action(open_door, T), T)]) :-

holds(elevator_position(Floor), T),
holds(activated_button_floor(Floor, Direction), T).

% ACtion go_up initiates elevator_position(Floor) where Floor is one
% floor above the current position of the elevator

rule(d5(T), initiation(elevator_position(Floor1), T),
[happens(action(go_up, T),T)]) :-

holds(elevator_position(Floor), T),
directly_above(Floor, Floor1).

% Action go_up terminates elevator_position(Floor) where Floor is the
% current position of the elevator

rule(d6(T), termination(elevator_position(Floor), T),
[happens(action(go_up, T),T)]) :-

holds(elevator_position(Floor), T).

% ACtion go_down initiates elevator_position(Floor) where Floor is
% one floor below the current position of the elevator

rule(d7(T), initiation(elevator_position(Floor1), T),
[happens(action(go_down, T),T)]) :-

holds(elevator_position(Floor), T),
directly_below(Floor, Floor1).

% Action go_down terminates elevator_position(Floor) where Floor is %
% the current position of the elevator

rule(d8(T), termination(elevator_position(Floor), T),
[happens(action(go_down, T),T)]) :-

holds(elevator_position(Floor), T).

% ===
% Basic Policy
% ===

% Elevator goes up when a button is pressed inside the elevator for a
% floor which is higher than the elevator's current position:

rule(r_up_in(Floor1, Floor2, T), action(go_up, T), []) :-

holds(elevator_position(Floor1), T),
holds(activated_button_in(Floor2), T), above(Floor2,Floor1).

% Elevator goes up when a button is pressed at a floor which is
% higher than the elevator's current position:

rule(r_up_floor(Floor1, Floor2, T), action(go_up, T), []) :-

holds(elevator_position(Floor1), T),
holds(activated_button_floor(Floor2, _), T),
above(Floor2,Floor1).

% Elevator goes down when a button is pressed inside the elevator for
% a floor which is lower than the elevator's current position:

rule(r_down_in(Floor1, Floor2, T), action(go_down, T), []) :-

holds(elevator_position(Floor1), T),
holds(activated_button_in(Floor2), T), below(Floor2, Floor1).

% Elevator goes down when a button is pressed at a floor which is
lower than the elevator's current position:
rule(r_down_floor(Floor1, Floor2, T), action(go_down, T), []) :-
holds(elevator_position(Floor1), T),
holds(activated_button_floor(Floor2, _), T), below(Floor2, Floor1).

% Elevator' doors open when the elevator is at a floor and the button
for that floor is pressed from inside the elevator
rule(r_open_in(Floor, T), action(open_door, T), []) :-
holds(elevator_position(Floor), T), holds(activated_button_in(Floor),
T).

% Elevator' doors open when the elvator is at a floor and a button at
that floor is pressed:
rule(r_open_floor(Floor, Direction, T), action(open_door, T), []) :-
holds(elevator_position(Floor), T),
holds(activated_button_floor(Floor, Direction), T).

% Elevator may remain idle:
rule(r_idle(T), action(idle, T), []).

% Different actions are incompatible with each other:
complement(action(go_up, T), action(go_down, T)).
complement(action(go_up, T), action(open_door, T)).
complement(action(go_down, T), action(go_up, T)).
complement(action(go_down, T), action(open_door, T)).
complement(action(open_door, T), action(go_up, T)).
complement(action(open_door, T), action(go_down, T)).
complement(action(go_up, T), action(idle, T)).
complement(action(go_down, T), action(idle, T)).
complement(action(open_door, T), action(idle, T)).
complement(action(idle, T), action(go_down, T)).
complement(action(idle, T), action(open_door, T)).
complement(action(idle, T), action(go_up, T)).

% ===
% Strategic Part
% ===

% The elevator' doors should not open when a button is pressed at a
floor for a certain direction,
% if the elevator is moving in the opposite direction:

rule(p_down_in_open_floor, prefer(r_down_in(Floor1, _, T),
r_open_floor(Floor1, up, T)), []).

rule(p_down_floor_open_floor, prefer(r_down_floor(Floor1, _, T),
r_open_floor(Floor1, up, T)), []).

rule(p_up_in_open_floor, prefer(r_up_in(Floor1, _, T),
r_open_floor(Floor1, down, T)), []).

rule(p_up_floor_open_floor, prefer(r_up_floor(Floor1, _, T),
r_open_floor(Floor1, down, T)), []).

% Elevator' doors should open when the elevator is at a floor and the
button of that floor is pressed
% from inside the elevator:

rule(p_open_in_up_in, prefer(r_open_in(Floor1, T), r_up_in(Floor1, _,
T)), []).

rule(p_open_in_up_floor, prefer(r_open_in(Floor1, T),
r_up_floor(Floor1, _, T)), []).

rule(p_open_in_down_in, prefer(r_open_in(Floor1, T),
r_down_in(Floor1, _, T)), []).

rule(p_open_in_down_floor, prefer(r_open_in(Floor1, T),
r_down_floor(Floor1, _, T)), []).

% Elevator doors should open when the elevator is at a floor and the
button for that floor is pressed
% from inside the elevator:

rule(p_open_floor_up_in, prefer(r_open_floor(Floor1, up, T),
r_up_in(Floor1, _, T)), []).

rule(p_open_floor_down_in, prefer(r_open_floor(Floor1, down, T),
r_down_in(Floor1, _, T)), []).

% Elevator doors should open at a floor if the button at that floor
is pressed for the direction
% in which the elevator is moving :

rule(p_open_floor_up_floor, prefer(r_open_floor(Floor1, up, T),
r_up_floor(Floor1, _, T)), []).

rule(p_open_floor_down_floor, prefer(r_open_floor(Floor1, down, T),
r_down_floor(Floor1, _, T)), []).

% Buttons pressed inside the elevator have higher priority than
buttons pressed at a floor:

rule(p_up_in_down_floor, prefer(r_up_in(Floor1, _, T),
r_down_floor(Floor1, _, T)), []).

rule(p_down_in_up_floor, prefer(r_down_in(Floor1, _, T),
r_up_floor(Floor1, _, T)), []).

% Buttons pressed at a floor above the elevator have higher priority
than buttons pressed at a floor
% below the elevator:

rule(p_up_floor_down_floor, prefer(r_up_floor(Floor1, _, T),
r_down_floor(Floor1, _, T)), []).

% Buttons pressed inside the elevator for a floor above the elevator
have higher priority than buttons
% pressed inside the elevator for a floor below the elevator

rule(p_up_in_down_in, prefer(r_up_in(Floor1, _, T), r_down_in(Floor1,
_, T)), []).

% Any action has higher priority than idle

rule(p_up_in_idle, prefer(r_up_in(_, _, T), r_idle(T)), []).
rule(p_up_floor_idle, prefer(r_up_floor(_, _, T), r_idle(T)), []).
rule(p_down_in_idle, prefer(r_down_in(_, _, T), r_idle(T)), []).
rule(p_down_floor_idle, prefer(r_down_floor(_, _, T), r_idle(T)),
[]).
rule(p_open_in_idle, prefer(r_open_in(_, T), r_idle(T)), []).
rule(p_open_floor_idle, prefer(r_open_floor(_, _, T),r_idle(T)), []).

% ===
% Other Auxilliary Definitions
% ===

above(Floor1, Floor2) :-

floor(Floor1), floor(Floor2), Floor1 > Floor2.

below(Floor1, Floor2) :-

floor(Floor1), floor(Floor2), Floor1 < Floor2.

floor(Floor) :-

member(Floor, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

directly_above(Floor, Floor1) :-

floor(Floor), floor(Floor1), Floor1 is Floor+1.

directly_below(Floor, Floor1) :-

floor(Floor), floor(Floor1), Floor1 is Floor-1.

% ===
% Main functions
% ===

% elevator(Example, Moves) :- Returns the set of moves the elevator
% should make for all time points, when actions of Example take place

elevator(Example, Moves) :- example(Example),
 elevator_moves(0, 9, Moves),
 retractall(holds(_,_)),
 retractall(rule(Example, _, _)),
 retractall(rule(newaction, _, _)).

%elevator_moves(From, To, Actions) :- Returns the set of moves the
%elevator should make between time points From and To in the list
%Actions

elevator_moves(Time, Time, [Action |[]]) :-
 !, give_action(Action, Time, _),
 write('Time '), write(Time), write(': '), write(Action),
write('\n').

elevator_moves(From, To, [Action |Rest]) :-
 give_action(Action, From, _),
 assert(rule(newaction, happens(action(Action, From), From),
[])),

 write('Time '), write(From), write(': '), write(Action),
write('\n'),
 Next is From + 1,
 elevator_moves(Next, To, Rest).

% assert_all(List) :- asserts all the rules in List after retracting
all instances of each item in order
% to make sure that each rule from list exists only once
assert_all([], _).
assert_all([First | Rest], T) :- retractall(holds(First, T)),
assert(holds(First, T)), assert_all(Rest, T).

% find_holds(T) :- finds every fact that holds at time T and asserts
a rule for each one
find_holds(T) :- findall(Fact, prove([holds(Fact, T)], _), List),
assert_all(List, T).

% give_action(Action, T, D) :- returns action Action that will be
executed at time T.
give_action(Action, T, D) :- find_holds(T), prove([action(Action,
T)], D).

% ===
% Examples
% ===

example(example1) :- assert(rule(example1,
holds(elevator_position(1), 0), [])),
 assert(rule(example1,
happens(press_button_floor(1,up), 0), [])),
 assert(rule(example1, happens(press_button_in(6),
1), [])),
 assert(rule(example1, happens(press_button_floor(3,
up), 0), [])),
 assert(rule(example1, happens(press_button_in(5),
4), [])).

example(example2) :- assert(rule(example2,
holds(elevator_position(1), 0), [])),
 assert(rule(example2,
happens(press_button_floor(1,up), 0), [])),
 assert(rule(example2, happens(press_button_in(3),
1), [])),
 assert(rule(example2, happens(press_button_floor(2,
down), 1), [])),
 assert(rule(example2, happens(press_button_in(1),
6), [])).

% ===
% Queries
% ===

% elevator(example1, Moves).
% elevator(example2, Moves).
%===

