
Variables as Resource in Hoare Logics

Matthew Parkinson and Richard Bornat
School of Computing
Middlesex University

LONDON, UK
mjp41@cam.ac.uk, richard@bornat.me.uk

Cristiano Calcagno
Department of Computing

Imperial College
University of London, LONDON, UK

ccris@doc.ic.ac.uk

Abstract

Hoare logic is bedevilled by complex and unmemorable
side conditions on the use of variables. We define a logic
free of side conditions, and show that it admits translations
of proofs in Hoare logic, thereby showing that nothing is
lost. Our work draws on ideas from separation logic: pro-
gram variables are treated as resource and separated with
?, rather than as logical variables in disguise. For clarity
we exclude a treatment of the heap.

1. Introduction

The glory of Hoare logic [8] is the variable-assignment
axiom, which converts difficult semantic arguments about
program state into simple syntactic substitutions. That suc-
cess depends on punning program variables in commands
with identically-named logical variables in assertions, but
program variables are not logical variables: they have loca-
tion (lvalue or lv in Strachey’s classification [17], otherwise
‘address’) as well as value (Strachey’s rvalue or rv, other-
wise ‘content’).

The price of the pun is a proliferation of well-chosen but
complex side conditions, notably on procedure-call [9, 7, 6]
and concurrency [14]. Most of those who have worked in
Hoare logic find them unpleasant and unmemorable.

Consider, for example, the concurrency rule, from [14],

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∧ P2}C1‖C2 {Q1 ∧Q2}(

mods(C1) ∩ (FV(P2) ∪ FV(Q2)) = ∅,
mods(C2) ∩ (FV(P1) ∪ FV(Q1)) = ∅

)
In addition to the side condition, soundness requires us to
rule out data races. This demands restrictions on the pro-
gramsC1 andC2 which are too complex to explain in this
introduction.

We want a Hoare logic without side conditions which
allows us to prove all the programs that the original can

prove. The second part of this requirement is the hard bit.
The first is trivial if we abandon the variable-assignment
axiom and make assignment alter locations rather than pro-
gram/logical variables. This is the approach taken by sepa-
ration logic [15, 11, 16] towards the heap. It has led to an
elegant solution to the difficult problem of reasoning about
mutation of heap data structures. But, if we were to follow
that path to a treatment of variables, there would be specifi-
cations which we would not be able to prove but which can
be proved in Hoare logic: for example,

{y = 3}x := y || z := y {x = y = z = 3}

That is, we would fail the second part of our requirement.
Furthermore, our specifications would involved more com-
plicated assertions than hitherto.

Bornat has described a Hoare logic with trivial well-
formedness side conditions [3] and showed by example that
it could support local formal proofs of shared-variable con-
currency without restrictions on the actions of programs. In
this work we build upon this to define a logic which:

1. has no side conditions; and

2. accepts a translation of any Hoare logic proof.

Our work draws on ideas from separation logic: program
variables are treated as resource and separated with?. For
clarity we exclude a treatment of the heap. Our logic can
be extended to to deal with it, and this would eliminate the
embarrassment of using two mechanisms to deal with sep-
aration: side conditions to deal with the stack, and(?) to
deal with the heap.

2. Variables as resource

Before setting out the formal details, we describe some
intuitive notions behind variables as resource. Hoare logic
does not deal with the ownership of variables, as illustrated
by the triple

{y = 0}x := 7 {y = 0}

1

which altersx but disingenuously avoids mentioning the
fact. Butx should be mentioned, because to executex := 7
there must be a variablex in the stack. Furthermore, the
assignment mustownthat variable, in the sense that no con-
current program can safely be permitted to read it. We must
also know that variabley cannot be altered by some other
program, else the assertiony = 0 cannot be assumed to be
invariant. And then there is the matter of variable aliasing:
x and y, distinct as names and as logical variables, must
name distinct program variables – that is, distinct locations
in the stack.

Assignment requires total ownership, and must be ex-
clusive. But read access need not be exclusive, and can
be shared. We use the notion ofpermission[2] to perform
the necessary resource accounting. A total permission may
be split into two read permissions, which may themselves
be split further, and split permissions may be recombined
(p~ p′). Any permission at all gives read access and at the
same time denies that any other program can hold a total
permission.

3. A logic of variables as resource

The syntax of assertionsΦ is

Φ ::= E = E | emps | Ownp(x) | π = π |
Φ ⇒ Φ | false | ∀X · Φ | Φ ? Φ | Φ−? Φ

We distinguish integer logical variablesX,Y, . . . , permis-
sion logical variablesp, . . . and integer program variables
x, y, We do not quantify over the values of program
variables.E andπ ranges over integer and permission ex-
pressions respectively.

3.1. Model

Stackss are finite partial maps from program variable
names to pairs of an integer and a permission.1 Interpreta-
tionsi are finite partial maps from logical variable names to
integers.

s : S def= PVarNames ⇀fin Int× Perms

i : R def= LVarNames ⇀fin Int ∪ Perms

We useJEK(s,i) for the evaluation of expressions, andJEKs

will do whenE does not contain logical variables.
We useι to range over elements of the permissions set.

We require that the set of permissions is equipped with a

1 Permissions are integral to our logic. They allow shared reading and
without them we would not be able to emulate Hoare logic side condi-
tions.

partial function~ : Perms× Perms ⇀ Perms and a distin-
guished element> ∈ Perms, such that(Perms,~) forms
a partial cancellative commutative semigroup with the fol-
lowing properties:

DIVISIBILITY ∀ι · ∃ι′, ι′′ · (ι′ ~ ι′′ = ι)
TOTAL PERMISSION ∀ι · (>~ ι is undefined)

NO UNIT ∀ι, ι′ · (ι~ ι′ 6= ι)

Permissions expression are taken from the following
grammar:

π ::= ι | p | π ~ π

We define a (partial) evaluation operation on permissions
expressions in the obvious way.

A forcing semantics is given in table 1.s#s′ asserts
that two stacks are compatible, agreeing about values where
their domains intersect and not claiming too much permis-
sion; s ? s′ expresses separation;〈a, b〉 is an element of a
function;⊕ is function update;] is disjoint function exten-
sion.

Ownπ(x) asserts ownership of a stack containing a vari-
able calledx and permissionπ to access it. Crucially it
also asserts that this isall that the stack contains. It says
nothing about the content of the variable; it is purely about
the lvalue ofx (cf. E 7→ F in separation logic, which
asserts a single-cell heap).Own>(x) asserts total permis-
sion, i.e. ownership, andOwn (x) means∃p · (Ownp(x)).
emps asserts the empty stack, andtrue holds of any stack
at all. Following separation logic,(?) combines stack
assertions:Own (x) ? Own (y) is a two-variable stack;
Ownπ(x) ? Ownπ′(x) is equivalent toOwnπ~π′(x) and
thereforeOwn>(x) ? Ownπ(x) is false; Own (x) ? true
is a stack which contains at least the variablex.

Arithmetic equality and inequality imply a level of own-
ership but arelooseabout the stack in which they operate:
x = 1, for example, implicitly asserts

(Own (x) ? true) ∧ rv(x) = 1

Our logic does not admit as a tautologyE 6= F ⇐⇒
¬(E = F). x 6= 1, for example, is satisfied by any stack in
which there is a cell calledx which contains 1;¬(x = 1),
on the other hand, is satisfied by the same stacks and by
those (for exampleemps) in whichx does not occur at all.

Definition 1.
x1π1, . . . , xnπn P

def
=

(Ownπ1(x1) ? . . . ?Ownπn(xn)) ∧ P

3.2. Rules

Our programming language is the language of Hoare
logic plus variable declarations ‘local - in -end’ and pro-
cedure declarations ‘let -=- in -end’. For simplicity we

2

Table 1. Forcing Semantics (s, i) � Φ

(s, i) � E1 = E2 ⇐⇒ JE1 K(s,i) = JE2 K(s,i) ∧ FV(E1 = E2) ⊆ dom s ∪ dom i
(s, i) � Φ ⇒ Φ′ ⇐⇒ ((s, i) � Φ) ⇒ ((s, i) � Φ′)
(s, i) � Φ ? Φ′ ⇐⇒ ∃s1 , s2 · (s = s1 ? s2 ∧ ((s1 , i) � Φ) ∧ ((s2 , i) � Φ′))
(s, i) � Φ−? Φ′ ⇐⇒ ∀s1 · (s#s1 ∧ ((s1 , i) � Φ) ⇒ ((s ? s1 , i) � Φ′))
(s, i) � Ownπ(x) ⇐⇒ JπK(s,i)is defined ∧ s = {〈x, (, JπK(s,i))〉}
(s, i) � emps ⇐⇒ s = {}
(s, i) � false ⇐⇒ false
(s, i) � ∀X · Φ ⇐⇒ ∀v · ((s, i⊕ 〈X, v〉) � Φ)

We encodetrue, ∧, ∨, ∃ and¬: e.g.A ∨B is (A⇒ false) ⇒ B.

s#s′ ⇐⇒ ∀x, v, v′, ι, ι′ · (s(x) = (v, ι) ∧ s′(x) = (v′, ι′) ⇒ v = v′ ∧ ∃ι′′ · (ι′′ = ι~ ι′))

s ? s′ =

〈x, (v, p)〉

(s(x) = (v, ι) ∧ x /∈ dom(s′))
∨(s′(x) = (v, ι) ∧ x /∈ dom(s))
∨(s(x) = (v, ι′) ∧ s′(x) = (v, ι′′) ∧ ι = ι′ ~ ι′′)

 , wheres#s′;

undefined, otherwise.

consider procedures each of which have a single call-by-
reference parameterx and a single call-by-value parameter
y. It would be straightforward to extend this treatment to
deal with other cases. The rules of our program logic are
given in table 2.Γ is the function context, a set of function
specifications{Φ}f(x, Y){Φ′}, andO ranges over owner-
ship assertionsx1π1, . . . , xnπn.

The first assignment axiom can be used in forward rea-
soning. The second is a weakest pre-condition version
which can be derived from the first. Theif andwhile rules
have an antecedentΦ ⇒ B = B, which ensures that vari-
ables mentioned inB are in the stack. In thelet rule we give
the function bodyC total permission to access the value pa-
rametery. The first function-call rule deals with reference
arguments by straightforwardα-conversion. The second,
an axiom, deals with value arguments, and is subtle. You
might have expected to see

Γ, {Φ} f(x;Y) {Φ′} v̀r {Φ[E/Y]} f(x;E) {Φ′[E/Y]}

But suppose thatΦ is Y = 3 ∧ emps: thenΦ claims no
stack, butΦ[E/Y] is E = 3 ∧ emps, which is false ifE
mentions any program variables. Or you you might have
expected

Γ, {Φ} f(x;Y) {Φ′} v̀r {Φ ∧ Y = E]} f(x;E) {Φ′}

But if Φ is Y = 3 ∧ Own>(x), then the preconditionY =
3 ∧Own>(x) ∧ Y = E is false ifE mentions any program
variables other thanx. In the axiom of table 2Ψ claims the
stack thatE claims butΦ does not, and(Φ ? Ψ) ∧ Y = E
allows the procedure call to read and/or write variables that
are mentioned both inE andΦ as well as to be provided
with a value to use in place ofY .

3.3. Soundness

An operational semantics is given in table 3. Ins
C−→n

ρ s
′

• s ands′ are stacks;

• C is a command;

• ρ maps procedure names to a triple(x, y, C ′) of
reference-parameter namex, value-parameter namey
and commandC ′; and

• n is a recursion-depth counter.

A safe computation– the top part of the table and defini-
tion 2 – does not access stack locations that are undefined.
The lower part of the table deals with unsafe computations,
which access variables for which they have no permission.

Definition 2. s C−→n
ρ safe iff ∀n.¬(s C−→n

ρ unsafe)

Lemma 3. If s
C−→n

ρ safe ands′#s thens ? s′
C−→n

ρ safe

Proof. By induction on the evaluation rules.

Lemma 4(Locality). If s
C−→n

ρ safe ands′#s ands?s′
C−→n

ρ

s1 then∃s2 · s C−→n
ρ s2 ands2 ? s′ = s1 .

Proof. By induction on the evaluation rules.

Choice of fresh variable does not affect the reduction,
and hence the semantics are deterministic with respect to
the stack.

Definition 5 (↔).

((y ↔ x)s) x
def
= ((x↔ y)s) x

def
= s y;

((x↔ y)s) z
def
= s z.

3

Table 2. Axioms and Rules Γ v̀r {Φ} C {Φ}

Γ v̀r {x>, O X = E} x := E {x>, O x = X}

Γ v̀r {∃X ·X = E ∧ (Own>(x) ? ((x = X ∧Own>(x))−? Φ))} x := E {Φ} (X fresh forΦ)

Φ ⇒ B = B Γ v̀r {Φ ∧B} C1 {Φ′} Γ v̀r {Φ ∧ ¬B} C2 {Φ′}
Γ v̀r {Φ} if B then C1 else C2 fi {Φ′}

Φ ⇒ B = B Γ v̀r {Φ ∧B} C {Φ}
Γ v̀r {Φ} while B do C od {Φ ∧ ¬B}

Γ v̀r {Own>(z) ? Φ} C[z/x] {Own>(z) ? Φ′}
Γ v̀r {Φ} local x in C end {Φ′}

(freshz)

Φ ⇒ Φ′ Γ v̀r {Φ′} C {Ψ′} Ψ′ ⇒ Ψ

Γ v̀r {Φ} C {Ψ}
Γ v̀r {Φ} C {Ψ}

Γ v̀r {∃X · Φ} C {∃X ·Ψ}
Γ v̀r {Φ} C {Φ′}

Γ v̀r {Φ ?Ψ} C {Φ′ ?Ψ}

Γ′
v̀r {Φ} C1 {Φ′} Γ′

v̀r ({Ψ ?Own>(y) ∧ y = Y } C {Ψ′ ?Own>(y)})[w, z/x, y]
Γ v̀r {Φ} let f(x; y) = C in C1 end {Φ′}

(freshw, z; Γ′ = Γ, {Ψ} f(x;Y) {Ψ′})

Γ, ({Ψ1} f(x;Y) {Ψ2})[z/x] v̀r {Φ} C {Φ′}
Γ, {Ψ1} f(x;Y) {Ψ2} v̀r {Φ} C {Φ′}

(z fresh for{Ψ1} f(x;Y) {Ψ2})

Γ v̀r {(Φ ?Ψ) ∧ Y = E} f(x;E) {Φ′ ?Ψ} ({Φ} f(x;Y) {Φ′} ∈ Γ)

Lemma 6.
(z ↔ x)s

C[z/x]−−−−→n

ρ (z ↔ x)s′ ⇒ s
C−→n

ρ s
′

(z ↔ x)s
C[z/x]−−−−→n

ρ unsafe ⇐⇒ s
C−→n

ρ unsafe
,

(z fresh forC andρ, x /∈ dom(s)).

Proof. By induction on the evaluation rules.

Lemma 7 (Determinacy).

If s
C−→n

ρ s1 ands
C−→n

ρ s2 thens1 = s2 .

Proof. By induction on the evaluation rules. The rules for
local require lemma 6. Other rules hold trivially.

In the semantics of triples, the precondition implies a
safe computation, in contrast to the semantics of standard
Hoare logic.

Definition 8.
ρ �n {Φ}C{Φ′} def

= ∀s, s′, i ·(
(s, i) � Φ ⇒

(
s

C−→n
ρ safe ∧(

s
C−→n

ρ s
′ ⇒ (s′, i) � Φ′

)))

Definition 9.
ρ �n Γ

def
= for every{Φ} f(x;Y) {Φ′} in Γ, 〈f, (x′, y, C)〉

is in ρ such that, for freshz andw,

ρ �n

 {Φ ? (y>y=X)}
C[x/x′]

{Φ′ ?Own>(y)}

 [z, w/x, y]

Definition 10 (Semantics of judgements).

Γ �n {Φ}C{Φ′} def
=

∀ρ ·
(

(ρ �n Γ) ⇒ (ρ �n+1 {Φ}C{Φ′})
)

Theorem 11. If Γ v̀r {Φ} C {Φ′} is derivable then
∀n · (Γ �n {Φ}C{Φ′})
Proof. By induction on the derivation.

4. Substitution

In Hoare logic substitution is used to model assignment
and parameter passing, but simple properties of substitution
do not hold in our logic. In particular, substitution of for-
mulae can affect ownership.X = E ∧ Φ ⇒ Φ[E/X], for
example, is not a tautology. (Here is a counter-example:

X = E ∧ ((X = X ∧ emps) ? E = E)
6⇒ (E = E ∧ emps) ? E = E)

– the left side of the implication is satisfiable, while the right
is false ifE contains program variables.) In the rest of this
section we consider a subset of the logic in which substitu-
tion is well-behaved. As a result, we derive an assignment
axiom that uses substitution.

A stack-imprecise formula does not notice extension of
the stack and does not care about the quantity of permission
it has for any variable.

Definition 12. Φ is stack imprecise
def
=

∀s, s′, i ·(
((s, i) � Φ) ∧ bsc ⊆ bs′c ⇒ ((s′, i) � Φ)

)
4

Table 3. Operational semantics s
C−→n

ρ s
′ and s

C−→n
ρ unsafe

s
skip−−→n

ρ s

s(x) = (,>)

s
x:=E−−−→n

ρ s⊕ 〈x, (JEKs,>)〉

JBKs = true s
Ctrue−−−→n

ρ s
′

s
if B then Ctrue else Cfalse fi fi−−−−−−−−−−−−−−−−−−→n

ρ s
′

JBKs = false s
Cfalse−−−→n

ρ s
′

s
if B then Ctrue else Cfalse fi fi−−−−−−−−−−−−−−−−−−→n

ρ s
′

s
if B then (C;while B do C od) else skip fi−−−−−−−−−−−−−−−−−−−−−−−−−−→n

ρ s
′

s
while B do C od−−−−−−−−−−→n

ρ s
′

s
C1−−→n

ρ s
′ s′

C2−−→n
ρ s

′′

s
C1 ;C2−−−−→n

ρ s
′′

s] 〈z, (,>)〉 C[z/x]−−−−→n

ρ s
′] 〈z, (,>)〉

s
local x in C end−−−−−−−−−−→n

ρ s
′

(freshz)
s

C′

−→n
ρ⊕〈f,(y,z,C)〉 s

′

s
let f(y;z)=C in C′ end−−−−−−−−−−−−−−→

n

ρ s
′

ρ(f) = (y, z, C) s
local z in z:=E; C[x/y] end−−−−−−−−−−−−−−−−−→n

ρ s
′

s
f(x;E)−−−−→n + 1

ρ s′
(freshz′)

〈x, (,>)〉 /∈ s

s
x:=E−−−→n

ρ unsafe

JEKs is undefined

s
x:=E−−−→n

ρ unsafe

JBKs is undefined

s
if B then C1 else C2 fi−−−−−−−−−−−−−−→n

ρ unsafe

wherebsc = {〈x, v〉 | 〈x, (v, p)〉 ∈ s}

Lemma 13. If Φ andΨ are stack imprecise, then
� Φ ? Ψ ⇔ Φ ∧ Ψ

Corollary 14. If Φ is stack imprecise, then
� Φ ? E = E′ ⇔ Φ ∧ E = E′

We define implication in the same way as when intu-
itionistic implication is encoded into classical separation
logic [10].

Definition 15 (Stack-imprecise⇒ and¬).

Φ s⇒ Φ′ def
= true−? (Φ ⇒ Φ′) and

s¬Φ
def
= Φ s⇒ false.

Note: E 6= E′ ⇐⇒ s¬(E = E′) is a tautology.
If we restrict the syntax of formulae our logic can use

substitution of equals for equals.

Definition 16 (restricted formulae).
φ ::= E=E | φ ∧ φ | φ ∨ φ | φ s⇒ φ | φ−? φ | π = π |

φ ? φ | ∀X.φ | ∃X.φ | false | true | s¬φ

Lemma 17. Restricted formulae are stack imprecise.

Proof. Structural induction onφ.

Lemma 18.
(s, i) � X = E ⇒ JE′K(s,i) = JE′[E/X]K(s,i)

Proof. By induction on structure ofE′

Lemma 19. � X = E ⇒ (φ⇔ φ[E/X])

Proof. By structural induction onφ. The (?) and (−?) cases
require lemma 14, and the (=) case requires lemma 18.

Definition 20. vars(O)
def
= {x | (x)p ∈ O}

Lemma 21. (O1 φ1) ? (O2 φ2) ⇒ (O1 ,O2
φ1 ? φ1)

Lemma 22. If FV(φ1) ⊆ vars(O1) and FV(φ2) ⊆
vars(O2) and� O true ⇐⇒ O1 true ?O2 true
then� (O φ1 ? φ2) ⇒ (O1 φ1) ? (O2 φ2).

Lemma 23. � (yπ φ ? ψ) ⇐⇒ ∃p1, p2 · ((yp1
φ) ? (yp1 ψ)) ∧ (π = p1 ~ p2)

Theorem 24 (Assignment by substitution). Γ v̀r

{x>, O φ[E/x] ∧ E = E} x := E {x>, O φ} is
derivable

5

Proof. n
x>, yp1 E=X

o
x := E

n
x>, yp1 x=X

o

(x>, yp1 E=X) ?

„
(yp2 φ[X/x])

∧(p1 ~ p1 = π)

«ff
x := E

(x>, yp1 x=X) ?

„
(yp2 φ[X/x])

∧(p1 ~ p1 = π)

«ff

∃p1, p2. (x>, yp1 E=X) ?

„
(yp2 φ[X/x])

∧(p1 ~ p1 = π)

«ff
x := E

∃p1, p2. (x>, yp1 x=X) ?

„
(yp2 φ[X/x])

∧(p1 ~ p1 = π)

«ff
{x>, yπ E=X ∧ φ[E/x]}x := E {x>, yπ φ}

{∃X · x>, yπ E=X ∧ φ[E/x]}x := E {∃X · x>, yπ φ}
{x>, yπ E=E ∧ φ[E/x]}x := E {x>, yπ φ}

The first use of the rule of consequence requires

x>, yπ E=X ∧ φ[E/x]
⇒ x>, yπ E=X ∧ φ[X/x][E/X] (X /∈ φ)

⇒ x>, yπ (E=X) ? φ[X/x] (Lemmas 19,14)

⇒ ∃p, p′, p1, p2.
((xp, yp1 E=X) ? (xp′ , yp2 φ[X/x]))
∧(p~ p′ = >) ∧ (p1 ~ p2 = π) (Lemma 23)

⇒ ∃p1, p2. ((x>, yp1 E=X) ? (yp2 φ[X/x]))
∧(p1 ~ p2 = π) (Lemma 21)

⇒ ∃p1, p2. (x>, yp1 E=X)
?((yp2 φ[X/x]) ∧ (p1 ~ p2 = π))

and

∃p1, p2. (x>, yp1 x=X)
?((yp2 φ[X/x]) ∧ (p1 ~ p2 = π))

⇒ x>, yπ (x=X) ? φ[X/x] (Lemma 21)
⇒ x>, yπ x=X ∧ φ[X/x] (Lemma 14)
⇒ x>, yπ φ (Lemma 19)

The second use of the rule of consequence requires

E = E ⇒ ∃X · E = X

5. Encoding Hoare logics

Our logic accepts translations of Hoare logic proofs. We
present a translation of a Hoare logic with reference and
value parameters in procedure definitions. We useφ andψ
to range over Hoare logic assertions since there is an im-
plicit translation to restricted formulae:

s⇒ for ⇒,
s¬ for ¬.

A Hoare-logic function contextF (cf. Γ) is a set of func-
tion specifications{φ} f(x; y)[u; v] {ψ} where

• f is a function name,x a reference-parameter name
andy a value-parameter name;

• φ is the precondition andψ the postcondition of
f(x; y);

• u is a set of the names of the global variables modifed
by f(x; y) andv a set of the names of global variables
it reads;

• u ⊆ v.

Table 4 definesmods(F, C), the variables written byC, and
free(F, C), its free variables: because of the complexities of
thelet definition we require two definitions for function call
but, becauselet declares functions one at a time, we do not
need a fixed-point iteration. Table 5 gives the rules of the
Hoare logic which we encode.

Lemma 25 (The logics are equivalent on defined asser-
tions).

FV(φ) ⊆ dom(s) ⇒ ((bsc, i) �H φ ⇐⇒ (s, i) �vr φ)

Proof. Structural induction onφ. The interesting case is?,
which requires thatφ is stack imprecise.

Definition 26 (Supporting write and read variables).

supportsp(u; v)
def
= (u1)>, . . . , (um)>, (w1)p1

, . . . , (wn)pn

where w = v \ u

Definition 27 (Supporting a command).

supportsp(F, C)
def
= supportsp(mods(F, C); free(F, C))

In Hoare logic program variables and logical variables
are conflated. In our translation of{φ}C {ψ} we turn all
the free variables ofφ andψ that are not used inC into
logical variables.

Definition 28 (Triple translation).

J{φ}C {ψ}KF
def
=
{
O φ[U/u]

}
C
{
O ψ[U/u]

}
where O = supportsp(F, C);

u = FV(φ, ψ) \ vars(O);
fresh p, U

(Herep andU are sets of fresh logical variables, implic-
itly quantified at the level of the triple: that is, because of
the semantics of triples, the freshp, U can be thought of as
universally quantified.

∀p, U ·
{
O φ[U/u]

}
C
{
O ψ[U/u]

}
Clearly, the translation is deterministic.)

6

Table 4. Modified and free variables of commands mods(F, C), free(F, C)

C mods(F, C) free(F, C)

x := E {x} FV(E) ∪ {x}

C1;C2 mods(F, C1) ∪mods(F, C2) free(F, C1) ∪ free(F, C2)

skip ∅ ∅

while B do C od mods(F, C) FV(B) ∪ free(F, C)

local x in C end mods(F, C) \ {x} free(F, C) \ {x}

if B then C1 else C2 fi mods(F, C1) ∪mods(F, C2) FV(B) ∪ free(F, C1) ∪ free(F, C2)

let f(x; y) = C in C′ end

where F′ = F, { }f(x; y)[u; v]{ };
u = mods(F, C) \ {x, y};
v = free(F, C) \ {x, y}

mods(F′, C′) free(F′, C′)

f(x;E) (normal case,{ }f(x; y)[u; v]{ } ∈ F) {x} ∪ u {x} ∪ FV(E) ∪ v

f(x;E) (bootstrap case,{ }f(;)[;]{ } /∈ F) {x} {x} ∪ FV(E)

Table 5. Hoare logic rules: F
H̀
{φ} C {φ}

F
H̀
{φ[E/x]} x := E {φ} F

H̀
{φ} skip {φ}

F
H̀
{φ ∧B} C1 {ψ} F

H̀
{φ ∧ ¬B} C2 {ψ}

F
H̀
{φ} if B then C1 else C2 fi {ψ}

F
H̀
{φ ∧B} C {φ}

F
H̀
{φ} while B do C od {φ ∧ ¬B}

φ′ ⇒ φ F
H̀
{φ} C {ψ} ψ ⇒ ψ′

F
H̀
{φ′} C {ψ′}

F
H̀
{φ} C {φ′}

F
H̀
{φ ∧ ψ} C {φ′ ∧ ψ}

mods(F, C) ∩ FV(ψ) = ∅

F
H̀
{φ} C {ψ}

F
H̀
{∃x.φ} C {∃x.ψ}

x /∈ free(F, C)
F

H̀
{φ} C[y/x] {ψ}

F
H̀
{φ} local x in C end {ψ}

y fresh

F
H̀
{φ[w, Y/x, y] ∧ E = Y } f(w;E) {ψ[w, Y/x, y]}

w /∈ u, v; {φ} f(x; y)[u; v] {ψ} ∈ F

F′
H̀
{φ} C {ψ} F′

H̀
({φ′} local z in z := y;C′[z/y] end {ψ′})[w/x]

F
H̀
{φ} let f(x; y) = C′ in C end {ψ}

F′ = F, {φ′} f(x; y)[u; v] {ψ′};
u = free(F, C′) \ {x, y}; v = mods(F, C′) \ {x, y}
freshw

Although our translation replaces some integer program
variables with new logical variables, we can always re-
trieve the original specification by extendingO and using
the frame rule to enforce an invariant which equates the val-
ues of new and old variables.

Lemma 29 (From proof with logical variables infer proof
with program variables.).
Proof.

{O φ[Z/z]} C {O ψ[Z/z]}
(zπ Z = z)
? (O φ[Z/z])

ff
C

(zπ Z = z)
? (O ψ[Z/z])

ff

∃Z ·

„
(zπ Z = z)
? (O φ[Z/z])

«ff
C

∃Z ·

„
(zπ Z = z)
? (O ψ[Z/z])

«ff
{O, zπ φ} C {O, zπ ψ}

Definition 30 (Translation of procedure environment).

JFK def
=

u

v
{φ[Y/y]}
f(x;Y)
{ψ[Y/y]}

}

~

F

{φ}f(x; y)[u; v]{φ} ∈ F

Note: For convenience, we assume that triple translation
treatsY in f(x;Y) as a constant.

Theorem 31(Completeness of encoding).

(F
H̀
{φ}C {ψ}) ⇒ (JFK v̀r J{φ}C {ψ}KF)

Proof. By induction on the Hoare-logic derivation.

Theorem 32(Soundness of encoding).

(JFK �vr J{φ}C {ψ}KF) ⇒ (F �
H
{φ} C {ψ})

7

Proof.

(F �vr J{φ}C {ψ}KF)
⇒ (F �vr {O,O′ φ} C {O,O′ ψ})

where O = supportsp(F, C), and vars(O,O′) ⊇
FV(φ, ψ), follows directly from repeated application of
lemma 29. Then

(F �vr {O,O′ φ} C {O,O′ ψ})
⇒ (F �

H
{φ} C {ψ})

follows directly from lemma 25.

6. Concurrency

Hoare-logic concurrency rules have complex side condi-
tions and restrictions constraining the use of variables. In
our logic we do not need any of that. The rules are given
with respect to a resource context,∆, which maps a re-
source identifierb to its corresponding invariant. The in-
variants must be precise [5]. Table 6 gives the rules.

6.1. Soundness

Brookes has shown this logic to be sound [4].

6.2. Translation

We can translate Brookes’s rules for concurrent separa-
tion logic [5] into our own (we omit his treatment of the
heap). The key to his soundness proof is the notion of crit-
ical variable. A variable is critical if it is modified in one
thread and free in another: inx := y‖y := z, for example,
y is critical.

Each critical variable is associated with aresourceand
each access must be within a critical region for that re-
source. A resource contextR maps a resource nameb to
a critical-variable listu and an invariantψ. There are two
operations on these contexts: (1)crit(R) delivers the criti-
cal variables inR; and (2)FV(R) the variables free in the
invariants as well as all critical variables. Brookes’s parallel
rule has a side condition:

FV(Φ1,Φ1′) ∩mods(C2) = ∅
FV(Φ2,Φ2′) ∩mods(C1) = ∅
FV(C1) ∩mods(C2) ⊆ crit(R)
FV(C2) ∩mods(C1) ⊆ crit(R)

Thex := E rule has the side conditionx /∈ FV(R). There
is also an additional constraint on the well-formedness of
judgementsR

H̀
{Φ} C {Φ′}: the critical variables

may not be mentioned in the pre- or post-condition, i.e.
crit(R) ∩ FV(Φ,Φ′) = ∅.

Definition 33.
supportsp(R, C)

def
=

supportsp((mods(C) \ FV(R)); (free(C) \ crit(R)))

Definition 34 (Triple translation).

J{φ}C {ψ}KR
def
=
{
O φ[U/u]

}
C
{
O ψ[U/u]

}
whereO = supportsp(R, C), u = FV(φ, ψ) \ vars(O),
andp, U are sets of fresh logical variables.

Definition 35 (Context translation,JRK). We translate each
element of the context to

Jr[u] : ψK = r : supportsp(u,FV(ψ)) ψ

Lemma 36.

supportsp(R, C) ? supportsp(u,FV(ψ))

= supportsp(R] 〈b, (u, ψ)〉, C)

Theorem 37(Completeness of encoding).

R
H̀
{φ}C {ψ} ⇒ JRK v̀r J{φ}C {ψ}KR

Proof. By induction on the derivation for Brookes’s rules.

Theorem 38(Soundness of encoding).

Proof. Same as theorem 32

7. Conclusions

We have a logic which admits translations of all Hoare
logic proofs and in which there are no side conditions on
the use of variables or restrictions on the action of concur-
rent programs. In addition we are able (though not within
the space constraints of this presentation) to deal with the
heap in the same way. By working through several exam-
ples, Bornat has previously shown that this kind of logic
deals conveniently with the verification of shared-variable
concurrency programs [3]. His logic can be translated into
our own, and its soundness is a consequence of the sound-
ness of our own.

In all other previous Hoare logics a simultaneous treat-
ment of concurrency, procedure call and the heap requires
complex side conditions on the use of variables, as well as
restrictions on the action of programs which are extremely
difficult to check in a mechanical proof tool. Smallfoot [1],
for example, uses a treatment of concurrency based on
Brookes’ and O’Hearn’s treatment in separation logic, and
must make a completely global static analysis when dealing
with the restrictions on concurrent programs. The analysis

8

Table 6. Variables as resource rules for concurrency

∆ v̀r {Φ1} C1 {Φ1′} ∆ v̀r {Φ2} C2 {Φ2′}
∆ v̀r {Φ1 ? Φ2} C1‖C2 {Φ1′ ? Φ2′}

∆, b : Ψ v̀r {Φ} C {Φ′}
∆ v̀r {Φ ?Ψ} resource b in C end {Φ′ ?Ψ}

∆ v̀r {(Φ ?Ψ) ∧B} C {Φ′ ?Ψ} Φ ?Ψ ⇒ B = B

∆, b : Ψ v̀r {Φ} with b when B do C od {Φ′}

takes several pages to describe, and is extremely intricate to
implement. No such analysis would be required in a tool
based on our new logic.

Acknowledgements

Like much of our previous work in program logic,
this paper emerges from repeated rumbustious discussions
within the East London Massive, a frequent but irregular
gathering at Queen Mary, University of London. We ac-
knowledge in particular the seminal contribution of Peter
O’Hearn in proposing that we undertake this work and then
attempting to trip us up at ever turn, right up to the very
last. Hongseok Yang, from outside the Massive, provided a
model for Bornat’s logic and inspired us towards the elimi-
nation of all side conditions in our own work.

The landlord of L’Oasis in the Mile End Road fed us
well before every Massive meeting. Parkinson and Bor-
nat are grateful to WAGN plc for the several occasions
on which they ran to time over the last few months, and
hope for several more surprises of the same kind before the
well-deserved, long-awaited and surely now inevitable re-
nationalisation of all British railways.

This work was supported by EPSRC grants
EP/C523997/1 (Parkinson and Bornat) and EP/C544757/1
(Calcagno). Parkinson and Bornat also thank Intel Research
Cambridge for their support.

References

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. Modular auto-
matic assertion checking with separation logic. Draft, Nov.
2005.

[2] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Per-
mission accounting in separation logic. InPOPL ’05: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT sysposium on
Principles of programming languages, pages 259–270, New
York, NY, USA, Jan. 2005. ACM Press.

[3] R. Bornat, C. Calcagno, and H. Yang. Variables as resource
in separation logic. Presented at MFPS XXI, Birmingham,
May 2005. To appear in Electronic Notes in Computer Sci-
ence, 2005.

[4] S. Brookes. Variables as resource for shared-memory pro-
grams: Semantics and soundness. InProceedings of MFPS
XXII. Elsevier ENTCS., May 2006.

[5] S. D. Brookes. A semantics for concurrent separation logic.
In CONCUR’04: 15th International Conference on Concur-
rency Theory, volume 3170 ofLecture Notes in Computer
Science, pages 16–34, London, Aug. 2004. Springer. Ex-
tended version to appear inTheoretical Computer Science.

[6] R. Cartwright and D. Oppen. Unrestricted procedure calls
in hoare’s logic. InPOPL ’78: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 131–140, New York, 1978. ACM
Press.

[7] D. Gries and G. Levin. Assignment and procedure call proof
rules. ACM Transactions on Programming Languages and
Systems, 2(4), Oct. 1980.

[8] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[9] C. A. R. Hoare. Towards a theory of parallel programming.
Operating Systems Techniques, 1971.

[10] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. InSymposium on Principles of
Programming Languages, pages 14–26, 2001.

[11] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In L. Fribourg, ed-
itor, CSL 2001, pages 1–19. Springer-Verlag, 2001. LNCS
2142.

[12] P. W. O’Hearn. Resources, concurrency and local reason-
ing. To appear inTheoretical Computer Science; prelimi-
nary version published as [13].

[13] P. W. O’Hearn. Resources, concurrency and local reasoning.
In CONCUR’04: 15th International Conference on Concur-
rency Theory, volume 3170 ofLecture Notes in Computer
Science, pages 49–67, London, Aug. 2004. Springer. Ex-
tended version is [12].

[14] S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs.Acta Informatica, 19:319–340, 1976.

[15] J. C. Reynolds. Intuitionistic reasoning about shared muta-
ble data structure. In J. Davies, B. Roscoe, and J. Woodcock,
editors,Millennial Perspectives in Computer Science, pages
303–321. Palgrave, 2000.

[16] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. InLICS ’02: Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 55–
74, Washington, DC, USA, 2002. IEEE Computer Society.

[17] C. Strachey. Fundamental concepts in programming lan-
guages.Higher Order Symbolic Computation, 13(1-2):11–
49, 2000.

9

