# Modelling and Analysis of PKI-based Systems Using Process Calculi

Benjamin  $Aziz^{\dagger}$  Geoff Hamilton<sup>‡</sup>

<sup>†</sup>Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2RH, UK ‡School of Computing, Dublin City University, Dublin 9, Ireland

#### Abstract

In this technical report, we present a process algebra aimed at modelling PKI-based systems. The new language, SPIKY, extends the spi-calculus by adding primitives for the retrieval of certified/uncertified public keys as well as private keys belonging to users of the PKI-based system. SPIKY also formalises the notion of process ownership by PKI users, which is necessary in controlling the semantics of the key retrieval capabilities. We also construct a static analysis for SPIKY that captures the property of term substitutions resulting from message-passing and PKI/cryptographic operations. This analysis is shown to be safe and computable. Finally, we use the analysis to define the term secrecy and peer participation properties for a couple of examples of authentication protocols.

# 1 Introduction

To specify a security protocol, it is necessary to give details of the exchanges between the entities participating in the protocol. Typically these exchanges will include both plaintext and ciphertext produced using various keys. Much of the literature on security protocols uses informal notations in which each entity is identified by a name (A, B, ...) and the protocol is defined as a series of numbered steps naming the sending and receiving entities. Each step also specifies the data transferred. For example, in the following 2-step protocol between agents A and B:

(1.) 
$$A \rightarrow B$$
 :  $A, N_A$   
(2.)  $B \rightarrow A$  :  $B, N_B, \{N_A\}_{K_{AB}}$ 

A sends its identity A and a nonce  $N_A$  to B in step (1). B responds by sending its identity B, a nonce  $N_B$  and A's nonce  $N_A$  encrypted by a shared symmetric key  $K_{AB}$  to A in step (2). There are two major shortcomings with this type of notation:

- 1. The *internal* behaviours of entities are not specified directly and typically such specifications need accompanying natural language text to explain how entities generate and process data. In addition, how keys are generated, protected and handled is normally explained as accompanying natural language text.
- 2. These notations are informal and have no underlying theory that can be used to prove properties of such protocols.

As an alternative to these informal notations, process algebras such as CSP [21] and nominal calculi [17] based on the  $\pi$ -calculus [27, 28, 33] can be used to give formal specifications (or models) for security protocols. With these specifications, each entity is modelled as a process that describes (at some level of abstraction) the entity's behaviour. Because process algebras have underlying theories, it is possible to verify that security protocols exhibit appropriate security properties [1, 32].

While process algebras are normally computationally complete, i.e., they can be used to specify behaviour that is Turing-computable [35], they do not allow all the behaviour required of a protocol to be captured. For example, it may not be possible to capture requirements on how secret keys should be handled by an entity. In addition, there may be behaviour that is too complex to be captured succinctly in some algebra or which is not central to the behaviour of the protocol. When dealing with public-key cryptography, the correctness of protocols depends on public keys being correctly associated with their owners. It is common in literature [1] to do this informally by using subscripted names for keys. For example, the key  $k_A$  might be designated as the public key belonging to the user A. While these sorts of approaches help a reader understand a specification, they are not amenable formal treatment.

In this technical report we explore a simple extension to the spi-calculus [1] called SPIKY, which allows us to specify protocols that use *Public Key Infrastructures* (PKIs). More specifically, this extension allows us to formalize the binding of public keys to their owners and to give a more complete formal account of how PKI-based protocols behave. PKIs such as X.509 [36] are designed to allow *public keys* to be securely bound to their owners. In the case of X.509, this is achieved by naming each entity and using *certificates* to bind names to public keys. Our extension is intended to be independent of any particular PKI technology, so we use an abstract view of the functionality of PKIs in general.

We also construct a non-uniform static analysis for SPIKY that captures the property of term substitutions occurring in PKI systems [5] as a result of agents exchanging messages and performing PKI-related and cryptographic operations over those messages. In particular, the analysis captures PKI users sending and obtaining the substituted terms. Based on this information, it is possible to formalise security properties like for example, whether a user is capable of learning a term, and whether (un)certified public keys were used to arrive at the fact that B (respectively A) participated in the protocol.

The work presented in this report is an extension of previous works, [5, 19, 6]. In [19], we presented a previous version of the SPIKY language, its syntax and structural operational semantics, and gave a couple of examples for simple and mobile authentication protocols. The version of SPIKY defined in [19] used a typing system for names, in order to distinguish cryptographic key pairs, channels, nonces and PKI users. In the current version, we have removed this classification except for PKI user names, which are taken as a mutually exclusive set. In [5], a static analysis for capturing name substitutions was presented. This analysis was used to further define certified and uncertified peer-entity participation properties.

Other related works in the area of the formal verification of PKI-based systems include [8, 20, 22, 23]. In [20], control flow analysis techniques [11, 30] based on flow logics [29] are used to validate the security properties of the SAML Single Sign-On Protocol [24, 25] within the LYSA calculus [9]. In [22], model checking techniques are used to analyse access control properties of SPKI/SDSI name certificates [15] specified in the pushdown systems representation [12, 16]. In [8], a model for the analysis of trust-based properties in PKI systems is constructed based on a predicate logic similar to belief logics. Finally, [23] provides a validation analysis of X-509 certificates based on the HOL theorem prover [18].

The rest of the report is structured as follows. In Section 2, we discuss issues related to scope and ciphertext equality in nominal calculi. In Section 3, we introduce the syntax and structural operational semantics of the SPIKY language. In Section 4, we specify a couple of authentication protocols in the new language. In Section 5, we define a domain-theoretic model of the SPIKY language and define a denotational semantics. In Section 6, we define a nonstandard semantics which captures the term-substitution property. In Section 7, we introduce an approximation which limits the number of new names generated in the semantics thus ensuring termination. In Section 8, we define the specification of Dolev-Yao's most general intruder. In Section 9, we define a couple of security properties on the results of the abstract semantics: the term secrecy and peer-entity participation properties. In Section 10, we analyse the two authentication protocols introduced earlier. Finally, in Section 11, we conclude the report and discuss future work.

# 2 On Scope and Ciphertext Equality

### 2.1 Scope

In nominal calculi, a restriction  $(\nu n)P$  introduces a new (fresh) name with scope P. Of course, with a concrete representation of a nominal calculus, the same *identifier* may be used in non-overlapping or nested restrictions. For example, the identifier n represents multiple names in the following processes.

- $(\nu n)P \mid (\nu n)Q \tag{1}$
- $(\nu n)(\bar{c}\langle n\rangle.(\nu n)P) \tag{2}$ 
  - $!(\nu n)P\tag{3}$

Since processes are equal up to the renaming of bound names and variables, we can use  $\alpha$ -conversion to avoid name clashes. However, the usual presence of replication and recursive abstractions makes it necessary to perform renaming dynamically during runtime, as a process evolves, if one is to obtain a clash-free semantics. For example, we can statically rename multiple occurrences of nin (1) and (2), but for (3), since there is an infinite number of occurrences of  $(\nu n)P$ , renaming must occur dynamically as the process evolves. One solution to this problem that we adopt in Section 5 onwards is to subscript occurrences of n with the number of the copy of the replicated process to which they belong, as  $n_1, n_2$ , etc.

### 2.2 Ciphertext Equality

Encryption schemes may either be randomised or deterministic [26]. With a deterministic scheme the same plaintext and key will always produce the same ciphertext, e.g., DES in ECB mode is deterministic. With a randomised scheme the same plaintext and key will produce different ciphertexts each time the scheme is applied, e.g., DES in CBC mode is randomised as we do not consider the Initialisation Vector (IV) to be part of the key. On the other hand, given two identical ciphertexts, they will have been produced by two applications of a deterministic scheme using the same plaintext and key, or they will be copies of the ciphertext produced by a single application of a scheme. However, given two different ciphertexts produced by a randomised scheme, they may represent the encryption of the same plaintext with the same key. In their presentations of the spi-calculus [1], Abadi and Gordon specify that a match [M is N]P behaves as P if the terms M and N are the same. As we have seen, for terms representing names, M and N must be the same name and for terms representing pairs, we can use element-wise equality. However, for terms representing ciphertexts, Abadi and Gordon do not give an explicit definition of what constitutes a match (although later works, such as [10], seem to adopt a randomised view of ciphertexts).

Equality of the terms  $\{M_1\}_{k_1}$  and  $\{M_2\}_{k_2}$  can be defined in a number of ways:

- 1. Strong Equality:  $\{M_1\}_{k_1} = \{M_2\}_{k_2}$  if  $M_1 = M_2$  and  $k_1 = k_2$ .
- 2. Ciphertext Equality:  $\{M_1\}_{k_1} = \{M_2\}_{k_2}$  if  $\{M_1\}_{k_1}$  and  $\{M_2\}_{k_2}$  are the same ciphertext.
- 3. No Equality:  $\{M_1\}_{k_1} = \{M_2\}_{k_2}$  is always considered false.

For deterministic schemes, strong and ciphertext equality are identical, but for randomised schemes they are different since strongly equal terms may yield different ciphertexts. When dealing with the meaning of a process, strong equality is an appropriate definition of equality and it can be used in the definition of bisimilarity. However, because of randomised encryption schemes, this definition of equality is non-computable and is therefore inappropriate for defining a match. Ciphertext equality is computable but when used to define a match, it may make the behaviour of a process depending on the particular encryption scheme being used. This makes it difficult to reason about the behaviour of processes and leads to a situation in which testing equivalence is more fine-gained than bisimilarity.

Given the problems with strong and ciphertext equalities, we select option (3) for the semantics of a match; any attempt to compare two encryption terms becomes stuck. Of course, this does not reflect reality as we cannot capture an intruder's ability to compare ciphertexts. However, since in practice ciphertexts are rarely the same<sup>1</sup>, we will ignore this problem.

# 3 SPIKY

In this section, we define the syntax and structural operational semantics of SPIKY.

### 3.1 Syntax

The syntax of the SPIKY language is shown in Figure 1. This syntax consists of *terms*, *processes*, *systems* and *protocols*. The main building blocks of this syntax are terms,  $L, M, N \in \mathcal{T}$ . Terms are essentially composed from sets of names,  $a, b, c, k, m, n \in \mathcal{N}$ , variables,  $v, x, y, z \in \mathcal{V}$  and PKI users (agents),  $A, B, C, U \in \mathcal{AG}$ . Additionally, a term may be a pair, (M, L), a symmetric ciphertext,  $\{M\}_N$ , a public-key ciphertext,  $\{[M]\}_N$  and a digital signature,  $[\{M\}]_N$ . For convenience, we also refer to the private (public) component of a key pair as  $M^ (M^+)^2$ .

Processes,  $P, Q, R \in \mathcal{P}$ , are defined as follows. An output process,  $\overline{M}\langle N \rangle P$ , is ready to emit N over channel M and continue as P. An input, M(x).P, is ready to input a message, L, over channel M and continue as P[L/x]. The parallel composition,  $P \mid Q$ , interleaves processes P and Q together. A restriction,  $(\nu n)P$ , creates a new name, n, and restricts its scope to P. A replicated process, !P, is capable of spawning infinitely many copies of P. Hence, replication is used to model infinite behaviour in SPIKY specifications. A match,  $[M \ is \ N]P$ , proceeds as P if M is the same as N, else it blocks. Due to the problems associated with matching ciphertexts and digital signatures as discussed in [19], we avoid any attempt to match these and restrict ourselves to name comparison. A null

<sup>&</sup>lt;sup>1</sup>For example, nonces are widely used to make ciphertexts different.

 $<sup>^2\</sup>mathrm{These}$  components are defined more formally in the semantics of protocols in the next section.

| TAAN    |     |                                            |                                             |
|---------|-----|--------------------------------------------|---------------------------------------------|
| L, M, N | ::= |                                            | terms                                       |
|         |     | $a, b, c, k, m, n \in \mathcal{N}$         | names                                       |
|         |     | $x, y, z, v, w \in V$                      | variables                                   |
|         |     | $A, B, C, U \in \mathcal{AG}$              | agents                                      |
|         |     | $\{M\}_N$                                  | symmetric encryption                        |
|         |     | $\{[M]\}_N$                                | public-key encryption                       |
|         |     | $[\{M\}]_N$                                | digital signature                           |
|         |     | (M,N)                                      | pair                                        |
|         |     | $M^+$                                      | public key component                        |
|         |     | $M^{-}$                                    | private key component                       |
| P,Q,R   | ::= |                                            | processes                                   |
|         |     | $\overline{M}\langle N\rangle.P$           | output                                      |
|         |     | M(x).P                                     | input                                       |
|         |     | $P \mid Q$                                 | parallel composition                        |
|         |     | $(\nu n)P$                                 | restriction                                 |
|         |     | P                                          | replication                                 |
|         |     | [M is N]P                                  | match                                       |
|         |     | 0                                          | null                                        |
|         |     | let $(x, y) = M$ in P                      | pair splitting                              |
|         |     | case L of $\{x\}_N$ in P                   | symmetric decryption                        |
|         |     | case L of $\{[x]\}_N$ in P                 | public-key decryption                       |
|         |     | case L of $[x]_N$ in P                     | signature with recovery validation          |
|         |     |                                            | l def () D                                  |
|         |     | A(M)                                       | abstraction instantiation, where $A = (x)P$ |
|         |     | let $x = \operatorname{private}(M)$ in P   | private key retrieval                       |
|         |     | let $x = \operatorname{public}(M)$ in P    | public key retrieval                        |
|         |     | let $x = \operatorname{certified}(M)$ in P | certified public key retrieval              |
| E, F, G | ::= |                                            | systems                                     |
|         |     | $E \mid F$                                 | parallel composition                        |
|         |     | $(\nu n)E$                                 | restriction                                 |
|         |     | $P^{N}$                                    | process ownership                           |
|         |     | 1 1                                        | r · · · · · · · · · · · · · · · · · · ·     |
| Prot    | ::= |                                            | protocols                                   |
|         |     | $(\theta, E)$                              | (PKI state, system) pair                    |
| L       |     | (*, -)                                     | (1 111 State, System) Pan                   |

Figure 1: The syntax of the SPIKY language.

process, **0**, cannot evolve any further. Pair splitting, let (x, y) = M in P, attempts to split a pair, M, into its first and second elements. It then assigns the first element to x and the second to y. Both x and y are bound variables. A symmetric decryption process, case L of  $\{x\}_N$  in P, attempts to decrypt L using the key, N. If this is successful, the result instantiates x, whose scope is P, otherwise, the process blocks. Similarly, case L of  $\{[x]\}_N$  in P, attempts to decrypt L using the public key, N, and the result instantiates x, which is a bound variable. The signature with recovery validation process, case L of  $\{[x]\}_N$  in P, behaves as P[L/x] only if L is the signature  $[\{M\}]_{k^-}$  and where N must be the public component of k. The abstraction instantiation, A(M), assumes that a corresponding non-recursive definition,  $A \stackrel{\text{def}}{=} (x)P$ , where M replaces x in P whenever the instantiation is called. Finally, the PKI operations, let x = private(M) in P, let x = public(M) in P and let x = certified(M) in P, attempt to perform

the PKI operations of retrieving private, uncertified public and certified public key components, respectively, of a PKI agent, M. The result of the operation is bound to x whose scope is P. Intuitively, the difference between **certified**(M)and **public**(M) is that the former corresponds to the PKI user effectively obtaining a valid public key of M at real time by validating the certification path all the way up to a root authority trusted by the user. This will insure that, for example, the key has not been revoked recently. On the other hand, the latter does not necessarily perform this validation at real time, i.e. it may return on an old copy of the public key of M without checking any recent revocation lists. In general, the use of **public**(M) is needed to account for any functional uncertainties in the PKI. The success or failure of the PKI operations depends on the ownership of the process.

Systems,  $E, F \in \mathcal{E}$ , are defined in order to model processes that run on behalf of PKI users, written as  $[P]^M$ , where M is an agent name. Hence, Mmay be regarded as the *owner* of P. Like processes, systems may be composed in parallel,  $E \mid F$ , and may have a name restriction,  $(\nu n)E$ . Finally, protocols,  $Prot \in \mathcal{PR}$ , are defined as pairs whose first element is a *PKI state*,  $\theta : \mathcal{AG} \to \mathcal{N}$ , mapping a PKI user to its key pair name. Intuitively, a protocol expresses the fact that every system, E, must be running over some PKI state,  $\theta$ , in order for E to use its PKI operations.

In the rest of the report, we assume the reader to be familiar with the standard notions of  $\alpha$ -conversion, term substitution and free/bound names and free/bound variables (referred to as  $\mathbf{fn}(), \mathbf{bn}(), \mathbf{fv}(), \mathbf{bv}()$ , respectively). The name, n, is bound in  $(\nu n)P$  and in  $(\nu n)E$ . Otherwise, n is a free name. On the other hand, the variables, x and y, are bound in M(x).P,  $A \stackrel{\text{def}}{=} (x)P$ , let (x, y) = M in P, case L of  $\{x\}_N$  in P, case L of  $\{[x]\}_N$  in P, case L of  $\{x\}_N$  in P, let  $x = \mathbf{public}(M)$  in P and finally in let  $x = \mathbf{certified}(M)$  in P. Otherwise, x and y are free variables. In general, we write,  $\mathbf{n}(e) = \mathbf{fn}(e) \cup \mathbf{bn}(e)$ , to denote the set of all names of some entity, e (term, process, system or protocol). We also write  $\mathbf{term}(e)$  to refer to the set of all terms appearing in e. Finally, we only deal with normal protocols.

**Definition 1** A protocol, Prot, is said to be normal if the following holds:

- The protocol is closed, i.e.  $\mathbf{fv}(Prot) = \{\},\$
- There are no occurrences of homonymous bound names or homonymous bound variables in Prot, i.e. ∀x, y ∈ bv(Prot), n, m ∈ bn(Prot) : x ≠ y ∧ n ≠ m,
- $\mathbf{bv}(Prot) \cap \mathbf{bn}(Prot) \cap \mathbf{fn}(Prot) = \{\}.$

### 3.2 Structural Operational Semantics

We define in this section a structural operational semantics for SPIKY. In general, this semantics is based on three main relations: the *reduction*, *structural*  congruence and reaction relations, each defined for the cases of processes, systems and protocols. First, we define the semantics of processes as in Figure 2. These rules are standard, however, note that in (RedMatch), the rule is only defined for names, n, as expected. Next, we define the semantics of systems

|                   | 18                                                               |                     | 2112                                 |
|-------------------|------------------------------------------------------------------|---------------------|--------------------------------------|
| (RedRepl)         | !P                                                               | >                   | $P \mid !P$                          |
| (RedMatch)        | $[n \ is \ n]P$                                                  | >                   | P                                    |
| (RedLet)          | $let (x_1, x_2) = (M_1, M_2) in P$                               | >                   | $P[M_1/x_1][M_2/x_2]$                |
| (RedDecryptSymm)  | case $\{M\}_k$ of $\{x\}_k$ in P                                 | >                   | P[M/x]                               |
| (RedDecryptAsym)  | case $\{[M]\}_{k+}$ of $\{[x]\}_{k-}$ in P                       | >                   | P[M/x]                               |
| (RedRecValidate)  | case $[M]_{k-}$ of $[x]_{k+}$ in P                               | >                   | P[M/x]                               |
| (RedAbstraction)  | A(M)                                                             | >                   | P[M/x]                               |
| ()                | where $A \stackrel{\text{def}}{=} (r) P$                         | -                   | - [/]                                |
|                   | where, $M = (x)T$                                                |                     |                                      |
| (StructNil)       | $P \mid 0 \equiv P$                                              |                     |                                      |
| (StructComm)      | $P \mid Q \equiv Q \mid P$                                       |                     |                                      |
| (StructAssoc)     | $P \mid (Q \mid R) \equiv (P \mid Q) \mid R$                     |                     |                                      |
| (StructSwitch)    | $(\nu n)(\nu m)P \equiv (\nu m)(\nu n)P$                         |                     |                                      |
| (StructDrop)      | $( u n)0 \equiv 0$                                               |                     |                                      |
| (StructExtrusion) | $n \notin \mathbf{fn}(P) \Rightarrow (\nu n)(P \mid Q) \equiv P$ | $P \mid (\nu n)$    | n)Q                                  |
| (StructRed)       | P > Q                                                            | $\Rightarrow$       | $P \equiv Q$                         |
| (StructRefl)      | $P \equiv P$                                                     |                     |                                      |
| (StructSymm)      | $P \equiv Q$                                                     | $\Rightarrow$       | $Q \equiv P$                         |
| (StructTrans)     | $P \equiv Q \land Q \equiv R$                                    | $\Rightarrow$       | $P \equiv R$                         |
| (StructPar)       | $P \equiv P'$                                                    | $\Rightarrow$       | $P \mid Q \equiv P' \mid Q$          |
| (StructRes)       | $P \equiv Q$                                                     | $\Rightarrow$       | $(\nu n)P \equiv (\nu n)Q$           |
|                   |                                                                  | r / 1               |                                      |
| (ReactInter)      | $m\langle M\rangle.P \mid m(x).Q \longrightarrow P \mid Q[M]$    | $\lfloor x \rfloor$ |                                      |
| (ReactStruct)     | $P \equiv P' \land P' \longrightarrow Q' \land Q' \equiv Q$      | $\Rightarrow$       | $P \longrightarrow Q$                |
| (ReactPar)        | $P \longrightarrow P'$                                           | $\Rightarrow$       | $P \mid Q \longrightarrow P' \mid Q$ |
| (ReactRes)        | $P \longrightarrow P'$                                           | $\Rightarrow$       | $(\nu n)P \longrightarrow (\nu n)P'$ |

Figure 2: Rules of the >,  $\equiv$  and  $\longrightarrow$  relations on processes

as in Figure 3. Given systems  $\lceil P \rceil^A$  and  $\lceil Q \rceil^B$  it may be necessary for P and  ${\cal Q}$  to react with each other. To achieve this we introduce a new extrusion rule (StructExtrusion) that allows restrictions to be moved in or out of systems, and a new reaction rule (ReactionInter) that permits input/output to occur between processes acting on behalf of different users. Finally, we define the semantics of protocols as in Figure 4. The reduction relation defines rules for all the PKI primitives. Rule (PRedPrivate) allows the private key of a user A to be retrieved by a process acting on behalf of A, whereas rule (PRedCertified) allows any process acting on behalf of any user B to obtain the (certified) public key for any other user, A. The process primitive **public** is somewhat more complex and is captured by three rules. Rule (PRedPublic#1) allows a process acting on behalf of a user, A, to obtain A's public key (this is similar to performing certified(A)). Rules (PRedPublic#2) and (PRedPublic#3) capture the possible reactions when a process acting on behalf of a user, B, attempts to obtain the public key of a different user, A. In this case, the result of executing public(A)may not yield the desired result (i.e. A's public key). Rule (RedPublic#2) says

| (SySRedRed)       | P > Q =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ⇒                   | $[P]^A >_E [Q]^A$                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|
| (SySRedComm)      | $[P \mid Q]^A >_E [P]^A \mid [Q]^A $ | $Q]^A$              |                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                |
| (SySStructProc)   | $P \equiv Q =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⇒                   | $[P]^A \equiv_E [Q]^A$                         |
| (SySStructNil)    | $E \mid [0]^A \equiv_E E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                |
| (SySStructComm)   | $E \mid F \equiv_E F \mid E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                |
| (SySStructAssoc)  | $E \mid (F \mid G) \equiv_E (E \mid F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G                   |                                                |
| (SySStructSwitch) | $(\nu n)(\nu m)E \equiv_E (\nu m)(\nu m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n E                 |                                                |
| (SySStructExtr#1) | $(\nu m) [P]^A \equiv_E [(\nu m) P]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                   |                                                |
| (SySStructExtr#2) | $n \not\in \mathbf{fn}(E) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⇒                   | $(\nu n)(E \mid F) \equiv_E E \mid (\nu n)F$   |
| (SySStructRed)    | $E >_E F$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ⇒                   | $E \equiv_E F$                                 |
| (SySStructRefl)   | $E \equiv_E E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                |
| (SySStructSymm)   | $E \equiv_E F$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⇒                   | $F \equiv_E E$                                 |
| (SySStructTrans)  | $E \equiv_E F \land F \equiv_E G =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⇒                   | $E \equiv_E G$                                 |
| (SySStructPar)    | $E \equiv_E E' =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒                   | $E \mid F \equiv_E E' \mid F$                  |
| (SySStructRes)    | $E \equiv_E E' =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒                   | $(\nu n)E \equiv_E (\nu n)E'$                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                |
| (SySReactInter)   | $\lceil \overline{m} \langle M \rangle . P \rceil^A \mid \lceil m(x) . Q \rceil$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $]^B -$             | $\rightarrow_E [P]^A \mid [Q[M/x]]^B$          |
| (SySReactProc)    | $P \longrightarrow Q \Rightarrow [P]^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\rightarrow E [0]$ | $2]^A$                                         |
| (SySReactStruct)  | $E \equiv_E E' \wedge E' \longrightarrow_E F'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\wedge F'$         | $\equiv_E F \Rightarrow E \longrightarrow_E F$ |
| (SySReactPar)     | $E \longrightarrow_E E' \Rightarrow E \mid F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\longrightarrow E$ | $E E' \mid F$                                  |
| (SySReactRes)     | $E \longrightarrow_E E' \Rightarrow (\nu n)E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\longrightarrow$   | $E(\nu n)E'$                                   |

Figure 3: Rules of the  $>_E$ ,  $\equiv_E$  and  $\longrightarrow_E$  relations on systems

| (PRedRed)       | $E >_E F$                                                                            | $\Rightarrow$                | $(\theta, E) >_{Prot} (\theta, F)$               |
|-----------------|--------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|
| (PRedPrivate)   | $A \in \mathbf{dom} \ \theta \ \Rightarrow$                                          |                              |                                                  |
|                 | $(\theta, \lceil let \ x = \mathbf{private}(A) \ in \ P \rceil^A) >_{Prot} (\theta)$ | $\theta, \lceil P[\theta]$   | $\theta(A)^{-}/x]^{A}$                           |
| (PRedCertified) | $A \in \mathbf{dom} \ \theta \ \Rightarrow$                                          |                              |                                                  |
|                 | $(\theta, \lceil let \ x = \mathbf{certified}(A) \ in \ P \rceil^B) >_{Prot}$        | $(\theta, \lceil P$          | $P[\theta(A)^+/x]]^B$                            |
| (PRedPublic#1)  | $A \in \mathbf{dom} \ \theta \ \Rightarrow$                                          |                              |                                                  |
|                 | $(\theta, \lceil let \ x = \mathbf{public}(A) \ in \ P \rceil^A) >_{Prot} (\theta)$  | $, \lceil P[\theta]$         | $(A)^+/x]^A$                                     |
| (PRedPublic#2)  | $C \in \mathbf{dom} \ \theta \ \land B \neq A \ \Rightarrow$                         |                              |                                                  |
|                 | $(\theta, \lceil let \ x = \mathbf{public}(A) \ in \ P \rceil^B) >_{Prot} (\theta)$  | $, \left[ P[\theta \right] $ | $(C)^{+}/x]^{B}$                                 |
| (PRedPublic#3)  | $k \notin \mathbf{fn}(P) \land B \neq A  \Rightarrow $                               |                              |                                                  |
|                 | $(\theta, \lceil let \ x = \mathbf{public}(A) \ in \ P \rceil^B) >_{Prot} (\theta)$  | $,(\nu k) $                  | $\left[P[k^+/x]\right]^B)$                       |
| (PStructSvs)    | $E \equiv_E F$                                                                       | $\Rightarrow$                | $(\theta, E) \equiv_{Prot} (\theta, F)$          |
| (PStructRed)    | $Prot_1 >_{Prot} Prot_2$                                                             | $\Rightarrow$                | $Prot_1 \equiv_{Prot} Prot_2$                    |
| (PStructReff)   | $Prot \equiv_{Prot} Prot$                                                            |                              |                                                  |
| (PStructSymm)   | $Prot \equiv_{Prot} Prot'$                                                           | $\Rightarrow$                | $Prot' \equiv_{Prot} Prot$                       |
| (PStructTrans)  | $Prot \equiv_{Prot} Prot' \land Prot' \equiv_{Prot} Prot''$                          | $\Rightarrow$                | $Prot \equiv_{Prot} Prot''$                      |
|                 |                                                                                      |                              |                                                  |
| (PReactSys)     | $E \longrightarrow_E F$                                                              | $\Rightarrow$                | $(\theta, E) \longrightarrow_{Prot} (\theta, F)$ |
| (PReactStruct)  | $Prot_1 \equiv_{Prot} Prot'_1 \land Prot'_1 \longrightarrow_{Prot} Prot'_1$          | $pt_2' \wedge l$             | $Prot_2' \equiv_{Prot} Prot_2 \Rightarrow$       |
|                 | $Prot_1 \longrightarrow_{Prot} Prot_2$                                               |                              |                                                  |

Figure 4: Rules of the  $>_{Prot}$ ,  $\equiv_{Prot}$  and  $\longrightarrow_{Prot}$  relations on protocols

that executing  $\operatorname{public}(A)$  by B may return the public key of any of the PKI users, C, currently registered in dom  $\theta$  (where C may or may not be A). Rule (PRedPublic#3) states that the returned result of the above operation may as

well be the public component of a fresh key pair, not belonging to any of  $\theta$ 's current registered users (this may be thought of as being a revoked key pair that is no more held in  $\theta$ , or a key pair that was corrupted by noise while being retrieved).

### 4 Examples

We consider here a couple of examples of public-key authentication protocols [19], in order to demonstrate the use of SPIKY as a specification language. Sometimes, for the sake of simplicity, we write the pair (M, (N, L)) as (M, N, L) and we assume that c(x, y, z).P stands for c(u).let(x, u') = u in let (y, z) = u' in P.

### 4.1 A Simple Authentication Protocol

The first protocol establishes mutual authentication between two agents, A and B:

| (1.) | $A \to B$ | : | $A, N_A$                    |
|------|-----------|---|-----------------------------|
| (2.) | $B \to A$ | : | $B, N_B, [\{N_A\}]_{K_B^-}$ |
| (3.) | $A \to B$ | : | $[\{N_B\}]_{K_A^-}$         |

In step 1, A sends B its identity and a nonce,  $N_A$ . B signs this nonce and returns the signature together with its identity and a nonce  $N_B$  to A. Finally, A signs B's nonce and returns it to B. Of course, the entities A and B must validate signatures, handle public and private keys properly, etc. In Figure 5 we present a system (abstraction) SYST that specifies communication between an initiator, A, and a responder, B, using a free channel, ch. The behaviour of

| INIT | $\begin{array}{l} (xa, xb, xch) \\ (\nu n_a) \overline{xch} \langle xa, n_a \rangle .ch(xb', xn_b, xsig). \\ [xb \ is \ xb'] let \ xk_b = \mathbf{certified}(xb) \ in \ case \ xsig \ of \ [[x]]_{xk_b} \ in \\ [x \ is \ n_a] \ let \ xk_a = \mathbf{private}(xa) \ in \ \overline{xch} \langle [[xn_b]]_{xk_a} \rangle.0 \end{array}$ |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESP | $ \begin{array}{l} (yb,ych) \\ ych(ya,yn_a).let \; yk_b = \mathbf{private}(yb) \; in \\ (\nu n_b)ych\langle yb,yn_b, [\!\{yn_a\}\!]_{yk_b}\rangle.ych(ysig). \\ let \; yk_a = \mathbf{certified}(ya) \; in \; case \; ysig \; of \; [\!\{y\}\!]_{yk_a} \; in \; [y \; is \; yn_b] 0 \end{array} $                                       |
| SYST | $[INIT(A, B, ch)]^A \mid [RESP(B, ch)]^B$                                                                                                                                                                                                                                                                                               |

Figure 5: SPIKY definition of the simple authentication protocol

the initiator is captured by the abstraction INIT and that of the responder by the abstraction RESP. The protocol as a whole is defined for some PKI state,  $\theta$ , as  $(\theta, SYST)$ .

#### 4.2 A Mobile Authentication Protocol

We have again the two agents, A and B, trying to establish mutual authentication:

(1.) 
$$A \to B$$
 :  $A, N_A$   
(2.)  $B \to A$  :  $B, N_B, [\{N_A\}]_{K_B^-}$   
(3.)  $A \to S$  :  $\{[[\{N_B\}]_{K_A^-}, B, {K_B^+}]\}_{K_S^+}$   
(4.)  $S \to B$  :  $[[N_B]]_{K_A^-}$ 

However, in this case, entity A is assumed to execute on a small, mobile device that has insufficient capacity to obtain a certified copy of B's public key. Instead, A relies on a trusted server, S, to ensure that the copy of the public key it has just used to authenticate B is *indeed* B's public key. This is achieved in step 3 when A sends its signature of the nonce  $N_B$ , the name of the responder, B, and the key  $K_B^+$  to S encrypted with S's public key. S checks this key and if it is B's public key, it *releases* A's signature of  $N_B$ . Note that:

- 1. The behaviour of B is the same as for the simple authentication protocol specified in the previous section.
- 2. It is assumed that A can obtain a certified copy of S's public key. This may, for example, be achieved by having a copy of this key placed onto the mobile device during manufacture.

In Figure 6 we present a system, SYST, that specifies communication between an initiator A, a responder B and a server S using channels, ch and ch'.

The extra channel ch' is used for communications from A to S. The behaviour of the initiator is captured by the abstraction *INIT*, the responder by the abstraction *RESP* and the server by the abstraction *SERV*. The protocol is defined for a particular instance of PKI state,  $\theta$ , as  $(\theta, SYST)$ .

# 5 A Domain-Theoretic Model

In this section, we define a domain-theoretic semantics for the SPIKY language that is based on the model of processes originally defined by Stark [34] for the  $\pi$ -calculus and that was further extended for the case of the spi-calculus in [7] to deal with cryptographic processes. Our new model is based on the following



Figure 6: SPIKY definition of the mobile authentication protocol.

predomain equations, which describe what a closed process can do in SPIKY:

$$Spiky \cong 1 + \mathbb{P}(Spiky_{\perp} + In + Out)$$
 (4)

$$In \cong N \times (T \to Spiky_{\perp}) \tag{5}$$

$$Out \cong N \times (T \times Spiky_{\perp} + N \to \dots N \to (T \times Spiky_{\perp}))$$
(6)

$$T \cong AG + N + Sec + Pub + Sig + Pair \tag{7}$$

$$Sec \cong T \times N$$
 (8)

$$Pub \cong T \times N \tag{9}$$

$$Sig \cong T \times N$$
 (10)

$$Pair \cong T \times T \tag{11}$$

Where  $Spiky_{\perp}$  is the domain of processes, In and Out are the predomains of input and output actions, respectively. Input actions are modelled as pairs; a name, N (the channel), and a function,  $T \to Spiky_{\perp}$ , that can be instantiated with a term, T, yielding a process in  $Spiky_{\perp}$ . Output actions are divided into free and bound output actions. These are pairs consisting of the channel, N, and either another pair,  $T \times Spiky_{\perp}$ , denoting the message, T, and the residue  $Spiky_{\perp}$  (free outputs), or composed functions,  $N \to \ldots N \to (T \times Spiky_{\perp})$ , that introduce new names to the message, T, and the residue,  $Spiky_{\perp}$  (bound outputs).  $\mathbb{P}(-)$  is Plotkin's powerdomain [31] applied to the disjoint union of input, output and silent actions (the latter represented by  $Spiky_{\perp}$ ) to construct Spiky. The one-element predomain, 1, representing terminated (deadlocked) processes is adjoined as in [2]. The flat predomain of closed terms, T, is defined as the disjoint union of the predomains of PKI users, AG, names, N, secretkey ciphers, *Sec*, public-key ciphers, *Pub*, digital signatures, *Sig*, and pairs, *Pair*. The predomains *Sec*, *Pub* and *Sig* are represented as pairs,  $T \times N$ , where the term, T, is encrypted/signed using the key, N. There is no predomain of variables since we only deal with closed terms.

In order to be able to define a denotational semantics for the SPIKY language, we need to define concrete elements of each of the (pre)domains of (4)-(11). These elements are defined in Figure 7, where  $\mathcal{K}$  is the set underlying any (pre)domain. Clearly from the definition of Figure 7, the domain  $Spiky_{\perp}$  is a

- Elements of AG:  $U \in \mathcal{AG} \Rightarrow U \in \mathcal{K}(AG)$ - Elements of N:  $a \in \mathcal{N} \Rightarrow a \in \mathcal{K}(N)$ - Elements of Sec:  $k \in \mathcal{K}(N), t \in \mathcal{K}(T) \Rightarrow sec(t,k) \in \mathcal{K}(Sec)$ - Elements of Pub:  $k \in \mathcal{K}(N), t \in \mathcal{K}(T) \Rightarrow pub(t,k) \in \mathcal{K}(Pub)$ - Elements of Sig:  $k \in \mathcal{K}(N), t \in \mathcal{K}(T) \Rightarrow sig(t,k) \in \mathcal{K}(Sig)$ Elements of Pair:  $t \in \mathcal{K}(T), t' \in \mathcal{K}(T) \Rightarrow (t, t') \in \mathcal{K}(Pair)$ - Elements of T:  $\mathcal{K}(T) = \mathcal{K}(AG) + \mathcal{K}(N) + \mathcal{K}(Sec) \cup \mathcal{K}(Pub) \cup \mathcal{K}(Sig) \cup \mathcal{K}(Pair)$ - Elements of In:  $a \in \mathcal{K}(N), p \in \mathcal{K}(Spiky_{\perp}) \; \Rightarrow \; (a, \lambda x.p) \in \mathcal{K}(In)$ – Elements of Out :  $a \in \mathcal{K}(N), t \in \mathcal{K}(T), p \in \mathcal{K}(Spiky_{\perp}) \implies (a, t, p) \in \mathcal{K}(Out)$  $a \in \mathcal{K}(N), t \in \mathcal{K}(T), p \in \mathcal{K}(Spiky_{\perp}) \implies (a, \lambda n_1, \dots, \lambda n_m.(t, p)) \in \mathcal{K}(Out)$ Elements of  $Spiky_{\perp}$ :  $\{|\perp|\} \in \mathcal{K}(Spiky_{\perp})$  $\tilde{\emptyset} \in \mathcal{K}(Spiky_{\perp})$  $p, q \in \mathcal{K}(Spiky_{\perp}) \Rightarrow p \uplus q \in \mathcal{K}(Spiky_{\perp})$  $p \in \mathcal{K}(Spiky_{\perp}) \Rightarrow \{ tau(p) \} \in \mathcal{K}(Spiky_{\perp})$  $e \in \mathcal{K}(In) \Rightarrow \{|in(e)|\} \in \mathcal{K}(Spiky_{\perp})$  $e \in \mathcal{K}(Out) \implies \{|out(e)|\} \in \mathcal{K}(Spiky_{\perp})$  $x \in \mathcal{K}(N), p \in \mathcal{K}(Spiky_{\perp}) \ \Rightarrow \ new(\lambda x, p) \in \mathcal{K}(Spiky_{\perp})$ 

Figure 7: Elements of AG, N, Sec, Pub, Sig, T, In, Out and  $Spiky_{\perp}$ .

multiset of semantic processes (ref. to similar treatments in [3, 7]). The definition of this multiset utilises the usual multiset operations such as the empty multiset,  $\emptyset$ , the singleton multiset, {||}, and the union of multisets,  $\exists$ . The  $\emptyset$  operation denotes inactive processes and the {||} operation creates elements of  $Spiky_{\perp}$  from single elements of input, output and silent actions. On the other hand,  $\exists$  is needed to capture non-determinism in the semantics of processes.

In addition to the above standard multiset operations, we also introduce a special operator, *new*, which is needed to interpret the effects of restricting a name to a process. These effects are formalised in the definition of *new* in Figure 8 over fully evaluated elements of  $Spiky_{\perp}$ . In general, *new* blocks any attempts to communicate over fresh non-extruded channels. It also turns a free output into a bounded output whenever the message of communication is restricted. In all other cases, *new* has no effect and it is simply distributed over  $\uplus$  or passed on to the residual process.

The denotational semantics for the SPIKY language is given as a semantic

| $new(\lambda n. \emptyset)$                                                                                                                                                                        | =           | Ø                                                                                                                |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| $new(\lambda n.\{ \perp\})$                                                                                                                                                                        | =           | { ⊥ }                                                                                                            |                                                              |
| $new(\lambda n.\{\![in(a,\lambda x.p)]\!\})$                                                                                                                                                       | =           | $\begin{cases} \emptyset, \\ \{[in(a, \lambda x.new(\lambda n.p))]\}, \end{cases}$                               | if $a = n$<br>otherwise                                      |
| $new(\lambda n. \{  out(a,t,p)  \})$                                                                                                                                                               | =           | $\begin{cases} \emptyset, \\ \{ out(a, \lambda n.(t, p)) \}, \\ \{ out(a, t, new(\lambda n. p)) \}, \end{cases}$ | if $a = n$<br>if $n \in n(t)$<br>and $n \neq a$<br>otherwise |
| $new(\lambda n.\{ out(a, \lambda m_1 \dots \lambda m_k.(t, p)) \})$                                                                                                                                | =           |                                                                                                                  |                                                              |
| ( Ø,                                                                                                                                                                                               | if          | a = n                                                                                                            |                                                              |
| $\left\{\begin{array}{l} \left\{ out(a,\lambda n.\lambda m_{1}\ldots\lambda m_{k}.(t,p))\right\},\\ \left\{ out(a,\lambda m_{1}\ldots\lambda m_{k}.(t,new(\lambda n.p)))\right[\end{array}\right.$ | if<br>}, ot | $n \in n(t)$ and $n \neq a$<br>therwise                                                                          |                                                              |
| $new(\lambda n.\{ tau(p) \})$                                                                                                                                                                      | =           | $\{ tau(new(\lambda n.p)) \}$                                                                                    |                                                              |
| $new(\lambda n.(p_1 \uplus p_2))$                                                                                                                                                                  | =           | $new(\lambda n.p_1) \uplus new(\lambda n.p_2)$                                                                   |                                                              |

Figure 8: The concrete definition of *new* over elements  $p \in Spiky_{\perp}$ .

function,  $\mathcal{S}([E]) \rho \phi_{\mathcal{S}} \theta \in Spiky_{\perp}$ , defined by the set of rules of Figure 9. The  $\theta$  environment is defined as the PKI state of some protocol, such that  $\theta(U)^+$  is the public key of U and  $\theta(U)^-$  is its private key. The multiset,  $\rho$ , is used to hold systems composed in parallel with the analysed system. Furthermore, rule ( $\mathcal{R}0$ ) is used to interpret the contents of  $\rho$ . The environment,  $\phi_{\mathcal{S}}: V \to T$ , where V is the flat predomain of variables, captures any term substitutions that occur in the semantics. Note that initially,  $\forall u \in V + N + AG : \phi_{\mathcal{S}0}(u) = u$ .. The special function,  $\varphi_{\mathcal{S}}$ , returns the semantic value of a term:

$$\forall \phi_{\mathcal{S}}, M : \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M) = \begin{cases} \phi_{\mathcal{S}}(M), & \text{if } M \in (AG + N + V) \\ sec(\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M'), \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N)), & \text{if } M = \{M'\}_{N} \\ pub(\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M'), \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N)), & \text{if } M = \{[M']\}_{N} \\ sig(\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M'), \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N)), & \text{if } M = [\{M'\}]_{N} \\ (\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N), \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L)), & \text{if } M = (N, L) \end{cases}$$

Rules (S0A) and (S0B) interpret parallelism and restriction between two systems by joining the parallel systems to  $\rho$  and using the *new* operator, respectively. Rules  $(S_1)$ - $(S_{15})$  deal with process ownership by cases. Rule  $(S_1)$ . deals with output actions taking into consideration any communications that may occur between the output channel and appropriate input channels guarding processes in  $\rho$ . The  $\phi_S$  is updated appropriately with the substituted semantic elements. Rule  $(S_2)$  deals with input functions leaving out communications since these are considered in (S1). Rule (S3) interprets directly parallel composition by the addition of the parallel subprocesses to  $\rho$ . In the semantics of [34], a different operator called *par* is defined to interpret the meaning of parallel process, which also takes care of communications between output and input guarded processes. However the use of this operator would complicate the definition of our abstract semantics later in Section 7. Rule (S4) uses new to interpret the meaning of a restriction. Rule  $(\mathcal{S}_5)$  interprets a replication,  $[!P]^U$ , as the least upper bound of the infinite poset  $\mathcal{F}$ . This least upper bound represents the least fixed point meaning of !P. Due to the fact that the seman-

| $(\mathcal{S}0A)$ | $\mathcal{S}(\llbracket E \mid F) \rho \phi_{\mathcal{S}} \theta = \mathcal{R}(\llbracket E] \uplus \llbracket F \rrbracket \uplus \rho) \phi_{\mathcal{S}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\mathcal{S}0B)$ | $\mathcal{S}([(\nu n)E]) \rho \phi_{\mathcal{S}} \theta = new(\lambda n.\mathcal{R}([\{E\}] \uplus \rho)) \phi_{\mathcal{S}} \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (S1)              | $\mathcal{S}([\overline{M}\langle L\rangle, P]^U) \rho \phi_S \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | $(  +  \{ tau(\mathcal{R}(\{ [P]^U]\} \uplus \rho[[P']^{U'}/[M'(z), P']^{U'}])\} \phi'_{\alpha} \theta\})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | $[M'(z),P']^{U'} \in \rho: \varphi_{S}(\phi_{S},M) = \varphi_{S}(\phi_{S},M') \in N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $ = \{ out(\varphi_{S}(\phi_{S}, M), \varphi_{S}(\phi_{S}, L), \mathcal{R}(\{ [P]^{U} \} \neq \rho \} \phi_{S}) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | where, $\phi'_{2} = \phi_{S}[z \mapsto \phi_{S}(\phi_{S}, L)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (S2)              | $\mathcal{S}([M(u) P]^U) \circ \phi_{\mathcal{S}} \theta = \{ \lim_{x \to 0} (\cos(\phi_{\mathcal{S}} M)) \lambda_{\mathcal{U}} \mathcal{R}([P]^U] \mid \phi \} \phi_{\mathcal{S}} \theta \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0-)              | where $\omega_{S}(\phi_{S}, M) \in N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (S3)              | $\mathcal{S}(\llbracket P \mid O \rrbracket^U \rrbracket a  ds  \theta = \mathcal{R}(\llbracket P \rrbracket^U \rrbracket \boxplus \varPi \llbracket O \rrbracket^U \rrbracket \boxplus a \rrbracket  ds  \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (S4)              | $S([(un)P]^U) \circ \phi_S \theta = new(\lambda n \mathcal{R}(\{[P]^U\} + a)) \phi_S \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (S5)              | $S([ P ^U]) \circ \phi_S \circ = I \mathcal{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $(\mathbf{U}0)$   | where $\mathcal{F} = \{ \{ l \mid l \} S \  [\Pi P[\mathbf{hny}; (P) / \mathbf{hny}(P)]]^U \} a \phi_S \theta \mid i = 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | where, $\mathcal{I} = \{ \{j, \mathcal{S}\} \mid \prod_{i} [DHV_{i}(I) / DHV(I)] \mid j \neq \emptyset $ or $i = 0 \dots \infty \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | and, $\mathbf{bnv}_i(P) = \{x_i \mid x \in \mathbf{bnv}(P)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\mathcal{S}6)$  | $S([[M \text{ is } L]P]^U) \rho \phi_S \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | $\begin{cases} \mathcal{R}(\{[P]^U\} \uplus \rho]) \phi_{\mathcal{S}} \theta, & \text{if } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M) = \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L) \in N \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | $\left( \emptyset, \right)$ otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (S7)              | $\mathcal{S}(\llbracket 0 \rrbracket^U \rrbracket) \rho \phi_{\mathcal{S}} \theta \qquad = \qquad \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathcal{S}8)$  | $\mathcal{S}(  let(x,y)  = M \text{ in } P ^{U})) \rho \phi_{\mathcal{S}} \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | $\begin{cases} \mathcal{R}(\{ P ^U\} \uplus \rho) \ \phi_{\mathcal{S}}[x \mapsto t, y \mapsto t'] \ \theta,  \text{if } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M) = (t, t') \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | $(\emptyset, $ otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (S9)              | $S(   case \ L \ of \ \{x\}_N \ in \ P ^{\mathcal{O}})) \ \rho \ \phi_S \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | $\begin{cases} \mathcal{R}([\{ P ^{C} \} \uplus \rho]) \ \phi_{\mathcal{S}}[x \mapsto t] \ \theta,  \text{if } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L) = sec(t, k) \text{ and } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N) = k \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2.2)             | $\left( \emptyset, \right)$ otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (S10)             | $\mathcal{S}(\  case \ L \ of \ \{\ x\ \}_N \ in \ P\ ^{\mathcal{O}} \ ) \ \rho \ \phi_S \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $\begin{cases} \mathcal{R}([\{ P ^{\mathcal{O}} \} \oplus \rho]) \ \phi_{\mathcal{S}}[x \mapsto t] \ \theta, & \text{if } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L) = pub(t, k^{+}) \text{ and } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N) = k^{-} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (C11)             | $\left( \begin{array}{c} \psi, & \text{otherwise} \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (311)             | $S([case \ L \ of \ [x]]_N \ in \ P   \circ ]) \ \rho \ \phi_S \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | $\mathcal{K}[[\{ P ^{\circ} \} \oplus \rho]] \ \phi_{\mathcal{S}}^{\circ} \ \theta,  \text{if } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L) = sig(t, k^{\circ}) \text{ and } \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, N) = k^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | where, $\phi_{\mathcal{S}} = \phi_{\mathcal{S}}[x \mapsto t]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (\$19)            | (V, Otherwise)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (012)             | $\mathcal{O}([A(M)] = p  \psi_S  \psi = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | $\begin{cases} \mathcal{K}[[\{ P ^* \} \oplus \rho]] \ \phi_{\mathcal{S}} \ \theta, & \text{where } A(x) = P \text{ and } \phi_{\mathcal{S}} = \phi_{\mathcal{S}}[x \mapsto \phi_{\mathcal{S}}(\phi_{\mathcal{S}}, M)] \\ \phi & \text{otherwise} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (\$12)            | $(\psi, 0)$ otherwise<br>$S([lot m - private(M) in P]U) \circ \phi \circ \theta - \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (013)             | $\int \left( \frac{\partial F}{\partial t} \right) \left[ \frac{\partial F}{\partial t} \right] dt = \int \left( \frac{\partial F}{\partial t} \right) dt = \int$ |
|                   | $\int \mathcal{K}[\{1  F  \mid \beta \oplus \beta] \ \phi S[x \mapsto \theta(C) \mid b,  \text{if } \varphi S(\phi S, M) = \varphi S(\phi S, C) \in AG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (S14)             | $S([let x - public(M) in P]^U) a \phi_{\alpha} \theta_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (014)             | $\mathcal{R}[\mathcal{J}[\mathcal{P}]^{U}[\mathbb{R} \models \sigma] \phi_{\sigma}[r \mapsto \theta(U)^{+}] \theta_{\sigma}[r \mapsto \theta(U)$                                                                                                                                                                                                                                                                                                                |
|                   | $ H  = \mathcal{R}[I[P]^U] + I[\mathfrak{g}] = I[I[P]^U] + I[I[P]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $U' \in dom(\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | $\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M) \in AG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (S15)             | $\mathcal{S}(\llbracket let \ x = \mathbf{certified}(M) \ in \ P \rceil^U) \ \rho \ \phi_{\mathcal{S}} \ \theta = \mathcal{R}(\llbracket \llbracket P \rceil^U] \ \uplus \ \rho) \ \phi_{\mathcal{S}}[x \mapsto \theta(M)^+] \ \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | where, $\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, M) \in AG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathcal{R}0)$  | $\mathcal{R}([\rho]) \phi_{\mathcal{S}} \theta =  \begin{array}{l} \begin{array}{c} \\ \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | $E\!\in\! ho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Figure 9: The standard denotational semantics of the SPIKY language.

tic domain,  $Spiky_{\perp}$ , is infinite, the calculation of this least fixed point may not terminate within finite limits. The rule also uses a labelling mechanism to rename all the bound variables and names,  $\mathbf{bnv}(P)$ , of the spawned processes by subscripting those variables and names with a number signifying process copy.

This maintains the normality requirement of Definition 1.

Rule (S6) compares the meaning of two terms as given by  $\varphi_{S}$ . As we mentioned earlier in Section 3, we restrict this comparison to names. Rule (S7)interprets the meaning of a null system as the empty set mapping,  $\emptyset$ . Rule (S8) splits the elements of a pair term. Rules (S9)–(S11) deal with cryptographic systems for the decryption of symmetric and public-key ciphertexts and signatures with recovery and appendix validations. A residual system,  $[P]^U$ . signifying the success of the operation is added to  $\rho$ , else, if the operation fails,  $\emptyset$  is returned instead. Rule (S12) interprets the meaning of abstraction instantiations directly by adding the definition to  $\rho$  and updating  $\phi_{S}$  with the substituted term. Rules (S13)–(S15) deal with PKI operations for retrieving private, uncertified and certified public keys. This is done using the PKI state,  $\theta$ , and the user owning the system, U. The uncertified public key operation offers less guarantees (if the owner of the process requires other users' keys), therefore, it may return the public key of any PKI user, U', in  $dom(\theta)$ . On the other hand, the certified version is always guaranteed to return a valid public key, regardless of the owner's identity.

### 6 Non-Standard Semantics

We extend here the standard semantics of the previous section to a non-standard semantics that captures the property of term substitutions. For example, in:

$$(\theta, [\overline{c}\langle k \rangle P]^U | [c(x).Q]^{U'})$$

We are interested in capturing the information that key, k, substitutes variable, x, and that this substitution happened due a communication from user U to user U'. In another example:

$$(\theta, \lceil let \ x = \mathbf{private}(U) \ in \ P \rceil^U)$$

Here, we are interested in capturing the fact that variable x will inevitably be instantiated with the private key of U, i.e.  $\theta(U)^-$ , and that this happens within a process owned by U. To be able to capture this kind of information, we need to define a new meaning for our systems in terms of a new special environment,  $\phi_{\mathcal{E}}: V \to \wp(T \times AG \times AG)$ , which maps each variable of a closed system to a set of triples representing semantic terms that may substitute the variable, and names of PKI users that instantiate and own that variable.

A non-standard semantic domain,  $D_{\perp} = V \rightarrow \wp(T \times AG \times AG)$ , can be constructed, ordered by subset inclusion as follows:

$$\forall \phi_{\mathcal{E}1}, \phi_{\mathcal{E}2} \in D_{\perp} : \phi_{\mathcal{E}1} \sqsubseteq_{D_{\perp}} \phi_{\mathcal{E}2} \Leftrightarrow \forall x \in V : \phi_{\mathcal{E}1}(x) \subseteq \phi_{\mathcal{E}2}(x)$$

with the bottom element,  $\perp_{D_{\perp}}$ , being the null environment,  $\phi_{\mathcal{E}0}$ , that maps each variable to the empty set. The union of environments operation,  $\cup_{\phi}$ , is defined as:

$$\forall \phi_{\mathcal{E}1}, \phi_{\mathcal{E}2} \in D_{\perp}, x \in V : (\phi_{\mathcal{E}1} \cup_{\phi} \phi_{\mathcal{E}2})(x) = \phi_{\mathcal{E}1}(x) \cup \phi_{\mathcal{E}2}(x)$$

The non-standard semantics of the SPIKY language is defined using the semantic function,  $\mathcal{E}([E]) \rho \phi_{\mathcal{E}} \theta \in D_{\perp}$ , as illustrated in Figure 10. The definitions of

 $(\mathcal{E}0A)$  $\mathcal{E}([E \mid F]) \rho \phi_{\mathcal{E}} \theta$  $\mathcal{R}(\![\{E]\} \uplus \{\![F]\} \uplus \rho \!]) \phi_{\mathcal{E}} \theta$ =  $(\mathcal{E}0B)$  $\mathcal{E}([(\nu n)E]) \rho \phi_{\mathcal{E}} \theta$  $\mathcal{R}(\![\{\![E]\!] \uplus \rho]\!] \phi_{\mathcal{E}} \ \theta$  $\mathcal{E}([\overline{M}\langle L\rangle,P]^U]) \ \rho \ \phi_{\mathcal{E}} \ \theta$ Uφ  $(\mathcal{E}1)$ =  $\phi_{\mathcal{E}}' \cup_{\phi} \phi_{\mathcal{E}}$  $[M'(z).P']^{U'} \in \rho: \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) = \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M') \in N$ where,  $\phi'_{\mathcal{E}} = \mathcal{R}([\{[P]^{U}]\} \uplus \rho[[P']^{U'}/[M'(z).P']^{U'}]]) \phi_{\mathcal{E}}[z \mapsto \{(\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L), U, U')\}] \theta$  $\begin{aligned} &\mathcal{E}([M(y).P]^U) \ \rho \ \phi_{\mathcal{E}} \ \theta \ = \\ &\mathcal{E}([P \mid Q]^U) \ \rho \ \phi_{\mathcal{E}} \ \theta \ = \\ \end{aligned}$  $(\mathcal{E}2)$  $\phi_{\varepsilon}$  $\mathcal{R}(\{[P]^U\} \uplus \{[Q]^U\} \uplus \rho) \phi_{\mathcal{E}} \theta$  $(\mathcal{E}3)$  $\mathcal{E}(\llbracket [1 + \mathcal{Q}] - \mathcal{D} \rho \phi_{\mathcal{E}} \theta \\ \mathcal{E}(\llbracket [(\nu n)P]^U] \rho \phi_{\mathcal{E}} \theta \\ \mathcal{E}(\llbracket [!P]^U] \rho \phi_{\mathcal{E}} \theta$  $(\mathcal{E}4)$  $= \mathcal{R}([\{[P]^U] \uplus \rho]) \phi_{\mathcal{E}} \theta$  $(\mathcal{E}5)$ =  $\sqcup \mathcal{F}$ where,  $\mathcal{F} = \{ \perp_{D_{\perp}}, \mathcal{E}([\prod_{i=1}^{n} P[\mathbf{bnv}_{i}(P)/\mathbf{bnv}(P)]]^{U} ]) \rho \phi_{\mathcal{E}} \theta \mid i = 0 \dots \infty \}$ and,  $\mathbf{bnv}_i(P) = \{x_i \mid x \in \mathbf{bnv}(P)\}$  $\mathcal{E}(\llbracket[M \text{ is } L]P]^U) \rho \phi_{\mathcal{E}} \theta = \begin{cases} \mathcal{R}(\llbracket[P]^U] \uplus \rho) \phi_{\mathcal{E}} \theta, & \text{if } \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) = \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L) \in N \\ \phi_{\mathcal{E}}, & \text{otherwise} \end{cases}$  $(\mathcal{E}6)$ 
$$\begin{split} & \mathcal{E}(\llbracket \mathbf{0} \rrbracket^U ) \rho \ \phi \varepsilon \ \theta = \begin{matrix} \varphi \varepsilon \\ \phi \varepsilon \\ \mathcal{E}(\llbracket [let \ (x, y) = M \ in \ P \rrbracket^U ) \rho \ \phi \varepsilon \ \theta = \\ & \int \mathcal{R}(\llbracket [P \rrbracket^U ] \ \forall \rho ) \ \phi \varepsilon [x \mapsto \{(t, U, U)\}, y \mapsto \{(t', U, U)\}] \ \theta, \quad \text{if } \varphi \varepsilon (\phi \varepsilon, M) = (t, t') \\ & \text{ there is a product of } \end{split}$$
 $(\mathcal{E}7)$  $(\mathcal{E}8)$ otherwise  $\phi_{\mathcal{E}},$  $\hat{\mathcal{E}}(\lceil case \ L \ of \ \{x\}_N \ in \ P \rceil^U) \ \rho \ \phi_{\mathcal{E}} \ \theta =$  $(\mathcal{E}9)$  $\mathcal{R}(\![\{[P]^U]\} \uplus \rho]\!) \phi_{\mathcal{E}}[x \mapsto \{(t, U, U)\}] \theta,$ if  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L) = sec(t, k)$ and  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N) = k$ otherwise  $\phi_{\mathcal{E}},$  $\dot{\mathcal{E}}(\![\operatorname{case}\ L\ of\ \{\![x]\!]_N\ in\ P\!\!\rceil^U]\!)\ \rho\ \phi_{\mathcal{E}}\ \theta =$  $(\mathcal{E}10)$  $\mathcal{R}(\![\{[P]^U]\} \uplus \rho]\!] \phi_{\mathcal{E}}[x \mapsto \{(t, U, U)\}] \theta,$ if  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L) = pub(t, k^+)$ and  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N) = k^{-}$ otherwise  $\phi_{\mathcal{E}},$  $\begin{aligned} & \mathcal{E}(\lceil case \ L \ of \ [\![x]\!]_N \ in \ P \rceil^U ]\!) \ \rho \ \phi_{\mathcal{E}} \ \theta = \\ & \int \mathcal{R}(\!\{\![P]^U ]\!\} \ \uplus \ \rho )\!) \ \phi_{\mathcal{E}}[x \mapsto \{(t,U,U)\}] \ \theta, \end{aligned}$  $(\mathcal{E}11)$ if  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L) = sig(t, k^-)$ and  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N) = k^+$  $\phi_{\mathcal{E}},$ otherwise  $\mathcal{E}([A(M)]^U) \rho \phi_{\mathcal{E}} \theta =$  $(\mathcal{E}12)$  $\mathcal{R}(\!\{\![P]^U]\!\} \uplus \rho \!]\!) \phi_{\mathcal{E}}[x \mapsto \{(\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M), U, U)\}] \theta, \text{ where } A(x) \triangleq P$ otherwise  $\phi_{\mathcal{E}},$  $\begin{aligned} & \mathcal{E}(\llbracket [let \ x = \mathbf{private}(M) \ in \ P \rceil^U]) \ \rho \ \phi_{\mathcal{E}} \ \theta = \\ & \int \ \mathcal{R}(\llbracket [P \rceil^U] \ \uplus \ \rho) \ \phi_{\mathcal{E}}[x \mapsto \{(\theta(U)^-, U, U)\}] \ \theta, \end{aligned}$  $(\mathcal{E}13)$ if  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) = \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, U) \in AG$ otherwise  $\begin{cases} \mathcal{F}_{\mathcal{C}}, & \text{otherwise} \\ \mathcal{E}(\lceil \det x = \mathbf{public}(M) \text{ in } P \rceil^U) \rho \phi_{\mathcal{E}} \theta = \\ \begin{cases} \mathcal{R}(\{\!\!\{\lceil P \rceil^U\} \oplus \rho \!\}) \phi_{\mathcal{E}}[x \mapsto \{(\theta(U)^+, U, U)\}] \theta, & \text{if } \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) = \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, U) \in AG \\ \bigcup_{\phi} \mathcal{R}(\{\!\!\{\lceil P \rceil^U\} \oplus \rho \!\}) \phi_{\mathcal{E}}[x \mapsto \{(\theta(U')^+, U, U)\}] \theta, & \text{if } \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) \neq \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, U) \land \\ U' \in dom(\theta) \end{cases}$  $\phi_{\mathcal{E}},$  $(\mathcal{E}14)$  $\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) \in AG$ 
$$\begin{split} \mathcal{E}(\llbracket[let \ x = \ \mathbf{certified}(M) \ in \ P]^{U}]) \ \rho \ \phi_{\mathcal{E}} \ \theta = \\ \mathcal{R}(\llbracket\{[P]^{U}]\} \ \uplus \ \rho) \ \phi_{\mathcal{E}}[x \mapsto \{(\theta(M)^{+}, U, U)\}] \ \theta, \text{ where, } \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) \in AG \end{split}$$
 $(\mathcal{E}15)$  $(\mathcal{R}0)$  $\mathcal{R}([\rho]) \phi_{\mathcal{E}} \theta$  $\bigcup_{\phi} \mathcal{E}(\![E]\!] \ (\rho \backslash \{\![E]\!]) \ \phi_{\mathcal{E}} \ \theta$ =  $E \in \rho$ 

Figure 10: The non-standard semantics of the SPIKY language.

 $\rho$  and  $\theta$  are as in Section 5. The definition of the special function,  $\varphi_{\mathcal{E}}$  allows for the meaning of a closed term to be computed under some  $\phi_{\mathcal{E}}$ :

$$\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M) = \begin{cases} t, & \text{if } M \in V \land \phi_{\mathcal{E}}(M) = \{(t, U, U')\} \\ M, & \text{if } M \in (N + AG) \\ sec(\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M'), \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N)), & \text{if } M = \{M'\}_{N} \\ pub(\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M'), \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N)), & \text{if } M = \{[M']\}_{N} \\ sig(\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M'), \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, N)), & \text{if } M = [\{M'\}]_{N} \\ (\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M'), \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M'')), & \text{if } M = (M', M'') \end{cases}$$

Note that  $\varphi_{\mathcal{E}}$  is only defined for the case of variables where the variable has only been instantiated with a singleton in  $\phi_{\mathcal{E}}$ . This is due to the fact that the non-standard semantics is a precise semantics, i.e. each variable is instantiated at most once per choice of control flow. This is clear from rule ( $\mathcal{R}0$ ), where the  $\phi_{\mathcal{E}}$  environment is passed unchanged from LHS to RHS of the rule. It is only at the top level (i.e. when computing  $\cup_{\phi}$  in ( $\mathcal{R}0$ )) are the different instantiations of the same variable (due to non-determinism) combined together in a set.

The main difference in this semantics as compared to the standard semantics of the previous section is the fact that the meaning of a process is a  $\phi_{\mathcal{E}}$ environment rather than an element of  $Spiky_{\perp}$ . Note again the difference in performing uncertified versus certified public key retrieval in rules ( $\mathcal{E}14$ ) and ( $\mathcal{E}15$ ), respectively. In the former case, the owner of a process may obtain any public key stored in  $\theta$  when asking for some other user's public key without any guarantees as to the validity of the key-user binding (unless the owner asks for its own public key). In the latter case, this requirement is always guaranteed to return a public key that is validly bound to its user.

The following theorem establishes a correctness relation with respect to the standard denotational semantics of the previous section.

#### Theorem 1 (Correctness of the Non-Standard Semantics)

 $\begin{array}{l} \forall (\theta, E), \phi_{\mathcal{S}}, \phi_{\mathcal{E}}, x, \mathcal{S}[\![E]\!] \ \rho \ \phi_{\mathcal{S}} \ \theta = p(\mathcal{R}(\![\rho']\!] \ \phi_{\mathcal{S}}' \ \theta), \mathcal{E}(\![E]\!] \ \rho \ \phi_{\mathcal{E}} \ \theta = \begin{array}{c} \\ \mathcal{R}(\![\rho']\!] \ \phi_{\mathcal{E}}' \ \theta : \\ \exists U, U' : (\phi_{\mathcal{S}}(x), U, U') \in \phi_{\mathcal{E}}(x) \end{array} \end{array}$ 

*Proof.* The proof of the theorem is by structural induction on the structure of P. We only provide a proof sketch here of the most interesting cases. The base case is the case of the null protocol,  $(\theta, [\mathbf{0}]^U)$  and this is satisfied from the antecedent of the theorem since neither rule (S7) nor (E7) change the initial  $\phi_S$ and  $\phi_{\mathcal{E}}$  environments on LHS of the rule. The other interesting case is that of rules ( $\mathcal{E}1$ ) and ( $\mathcal{S}1$ ) where  $\phi_{\mathcal{S}}$  and  $\phi_{\mathcal{E}}$  are changed. In rule ( $\mathcal{S}1$ ),  $\phi_{\mathcal{S}}$  is changed on RHS to  $\phi'_{\mathcal{S}} = \phi_{\mathcal{S}}[x \mapsto \varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L)]$ . It is trivial to show from the antecedent that  $\varphi_{\mathcal{S}}(\phi_{\mathcal{S}}, L) = \varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, L)$ , which leads to the changing of  $\phi_{\mathcal{E}}$  on RHS of rule  $(\mathcal{E}_1)$  to  $\phi'_{\mathcal{E}} = \phi_{\mathcal{E}}[x \mapsto \{(\phi'_{\mathcal{S}}(x), U, U')\}]$ . This further leads to the conclusion above. Similar line of reasoning can be followed in the cases of rules  $(\mathcal{E}8)$ - $(\mathcal{E}15)$ with respect to rules  $(\mathcal{S}8)$ - $(\mathcal{S}15)$ . The case for replication in rules  $(\mathcal{E}5)$  and  $(\mathcal{S}5)$ requires the use of mathematical induction on the number of copies of P, with the basis being the case of zero copies and the inductive step proving that if the property holds for n copies of P, then it holds for n + 1 copies as well. Finally, in all other cases, neither  $\phi_S$  nor  $\phi_{\mathcal{E}}$  change, so the conclusion is reached in a straightforward manner with the use of the antecedent. 

### 7 Abstract Semantics

One problem with the non-standard semantics of the previous section is that the calculation of the meaning of a protocol is not guaranteed to terminate due to the presence of replication in the definition of processes. Therefore, it is necessary to introduce a safe abstraction that limits the size of the semantic domain. This abstraction is a variation of the abstraction used in [3, 7].

In order to arrive a simple abstraction for terms later on, we begin first by assuming a predomain of tags, Tag, ranged over by  $t, \dot{t}, \ddot{t}$ , where t is the tag of a generic term,  $\dot{t}$  is the tag of a name or a variable, and  $\ddot{t}$  is the tag of a complex term (ciphertext, signature, pair). Next, we tag each M, M' in the processes  $\overline{N}\langle M \rangle P$ , let (x, y) = (M, M') in P, case  $\{M\}_N$  of  $\{x\}_{N'}$  in P, case  $\{[M]\}_N$  of  $\{[x]\}_{N'}$  in P, case  $\{[M]\}_N$  of  $\{[x]\}_{N'}$  in P, A(M), and tag each of **private**(M), **public**(M) and **certified**(M) in the syntax.

The following functions are defined over tags and systems:

-  $value_of(\{t_1, \ldots, t_n\}) = \{M_1, \ldots, M_n\}$ , which when applied to a set of tags,  $\{t_1, \ldots, t_n\}$ , returns the corresponding set of syntactic terms,  $\{M_1, \ldots, M_n\}$ . -  $tags_of(E) = \{t_1, \ldots, t_n\}$ , which when applied to a system, E, returns its set of tags,  $\{t_1, \ldots, t_n\}$ .

We now introduce the  $\alpha_{k,k'}$  abstraction function, which keeps to a finite level, the number of copies of bound variables, bound names and tags, which will be indexed when interpreting replication.

**Definition 2** Define  $\alpha_{k,k'} : \mathbb{N} \times \mathbb{N} \times (V + N + Tag) \rightarrow (V^{\sharp} + N^{\sharp} + Tag^{\sharp}):$ 

$$\forall M \in (V+N+Tag), i, k, k' \in \mathbb{N} : \alpha_{k,k'}(M) = \begin{cases} \dot{t}_k, & \text{if } M = \dot{t}_i \in Tag \text{ and } i > k \\ \ddot{t}_{k'}, & \text{if } M = \ddot{t}_i \in Tag \text{ and } i > k' \\ x_k, & \text{if } M = x_i \in V \text{ and } i > k \\ a_k, & \text{if } M = a_i \in N \text{ and } i > k \\ M, & \text{otherwise} \end{cases}$$

The resulting abstract predomains,  $V^{\sharp}$ ,  $N^{\sharp}$  and  $Tag^{\sharp}$ , can be defined as  $V^{\sharp} = V \setminus \{x_j \mid j > k\}$ ,  $N^{\sharp} = N \setminus \{a_j \mid j > k\}$  and  $Tag^{\sharp} = Tag \setminus (\{\dot{t}_j \mid j > k\} \cup \{\ddot{t}_i \mid i > k'\})$ . Informally, k constrains the number of bound variables and names, and tags of primitive terms, whereas k' constrains the number of tags of complex terms. In effect, constraining the tags of primitive terms implies limiting the copies of bound names and variables carrying the tags, whereas constraining the number of tags of complex terms.

For example, in the process  $!(\nu n)\overline{a}\langle n_1^t \rangle | !a(x)$ , it is possible to spawn infinite copies of each replication,  $(\nu n_1)\overline{a}\langle n_1^{i_1} \rangle | a(x_1) | (\nu n_2)\overline{a}\langle n_2^{i_2} \rangle | a(x_2) |$ .... It is clear that the number labelling on  $\dot{t}$  is an indicator to the number of the copy of message n after each process has been spawned. On the other hand, the process  $!a(x).\overline{a}\langle \{x\}_k^{\tilde{t}}\rangle | \overline{a}\langle b\rangle$ , which also spawns the copies  $a(x_1).\overline{a}\langle \{x_1\}_k^{\tilde{t}_1}\rangle | a(x_2).\overline{a}\langle \{x_2\}_k^{\tilde{t}_2}\rangle | \overline{a}\langle b\rangle | \ldots$ , demonstrates the role of  $\ddot{t}$  as an indicator to the number of times the ciphertext,  $\{x\}_k$ , is applied to b.

It is essential to note at this stage that the usage of  $\alpha_{k,k'}$  will inevitably reduce the precision of the semantics as a result of introducing approximate behaviour. For example, the abstract meaning of the protocol based on the abstraction function,  $\alpha_{1,1}$ :

$$(\theta, \lceil \overline{c_1} \langle k \rangle P \rceil^U \mid \lceil c_2(x) Q \rceil^{U'})$$

will include the false information that k substitutes x, since the calculation of the meaning will be based on abstracting both  $c_1$  and  $c_2$  to  $c_1$ . Therefore, a communication between either sides of the parallel composition will occur in the abs tart semantics, even though such a communication is not possible in the concrete (i.e. standard and non-standard) semantics.

Using  $\alpha_{k,k'}$ , we construct  $\phi_{\mathcal{A}} : V^{\sharp} \to \wp(Tag^{\sharp} \times AG \times AG)$ , with a meaning similar to  $\phi_{\mathcal{E}}$  in the previous section. Furthermore, a domain,  $D_{\perp}^{\sharp} = V^{\sharp} \to \wp(Tag^{\sharp} \times AG \times AG)$  is formed as follows:

$$\forall \phi_{\mathcal{A}1}, \phi_{\mathcal{A}2} \in D^{\sharp}_{\perp}, x \in V^{\sharp} : \phi_{\mathcal{A}1} \sqsubseteq_{D^{\sharp}_{-}} \phi_{\mathcal{A}2} \Leftrightarrow \phi_{\mathcal{A}1}(x) \subseteq \phi_{\mathcal{A}2}(x)$$

with a bottom element,  $\perp_{D_{\perp}^{\sharp}}$ , representing the null environment,  $\phi_{\mathcal{A}0}$ . Taking  $D_{\perp}^{\sharp}$  as the abstract semantic domain, we can define the abstract semantics of the SPIKY language using the function,  $\mathcal{A}(\![E]\!] \rho \phi_{\mathcal{A}} \theta \in D_{\perp}^{\sharp}$ , as shown in Figure 11. The definitions of  $\rho$  and  $\theta$  are as in the previous sections. The special function,  $\varphi_{\mathcal{A}}$ , returns a set of terms corresponding to a term, M, given substitutions captured by  $\phi_{\mathcal{A}}$ , as follows, where fst(a, b, c) = a:

$$\begin{aligned} \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M) &= \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, M[\alpha_{k,k'}(t)/t][\alpha_{k,k'}(x)/x][\alpha_{k,k'}(n)/n])_{\{\}}, \\ \text{where, } \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, M)_{s} &= if \ M \in s \ then \ \{\} \ else \\ \begin{cases} \bigcup \qquad \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L)_{s\cup\{M\}} & \text{if } M \in \mathcal{V} \\ L \in value_of(fst(\phi_{\mathcal{A}}(M))) & \text{if } M \in \{\mathcal{N}\}_{L'} \\ \{M\}, & \text{if } M \in (\mathcal{N} \cup \mathcal{A}\mathcal{G}) \\ \{N'\}_{L'}^{t} \mid N' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, N)_{s\cup\{M\}}, L' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L)_{s\cup\{M\}}\}, & \text{if } M = \{N\}_{L}^{t} \\ \{\{N'\}_{L'}^{t} \mid N' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, N)_{s\cup\{M\}}, L' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L)_{s\cup\{M\}}\}, & \text{if } M = \{[N]\}_{L}^{t} \\ \{\{N'\}_{L'}^{t} \mid N' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, N)_{s\cup\{M\}}, L' \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L)_{s\cup\{M\}}\}, & \text{if } M = [\{N\}]_{L}^{t} \\ \{(L'_{1}, L'_{2})^{t} \mid L'_{1} \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L_{1})_{s\cup\{M\}}, L'_{2} \in \varphi'_{\mathcal{A}}(\phi_{\mathcal{A}}, L_{2})_{s\cup\{M\}}\}, & \text{if } M = [L_{1}, L_{2}) \end{cases} \end{cases}$$

t

We describe a few rules here. Rule  $(\mathcal{A}1)$  deals with the case of output actions, dealing with possible communications with appropriate input actions in  $\rho$ . The tag of the output message is registered in  $\phi_{\mathcal{A}}$  as a value for the input variable. The semantics is imprecise, since  $\phi_{\mathcal{A}}$  only captures an abstract tag as a value for an abstract variable. Rule  $(\mathcal{A}5)$  introduces the functions:

$$ren(x,i) = fold \ sub_i \ (fold \ sub_i \ x \ \mathbf{bnv}(x)) \ tags\_of(x)$$
  
fold  $f \ e \ \{x_1, \dots, x_n\} = f(x_n, \dots, f(x_1, e) \dots)$   
sub\_i  $x \ y = y[x_i/x]$ 

that are used in the definition of the least fixed point meaning of a replicated process. This meaning is defined as the least upper bound of the set  $\mathcal{F}$ , which can only be finite in this semantic. As a result, the termination of the least fixed point is formalised as follows.

| $(\mathcal{A}0A)$    | $\mathcal{A}\llbracket E \mid F \rrbracket \rho \phi_{\mathcal{A}} \theta = \mathcal{R}\llbracket \llbracket E \rrbracket \uplus \llbracket F \rrbracket \uplus \rho \rrbracket \phi_{\mathcal{A}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\mathcal{A}0B)$    | $\mathcal{A}([(\underline{m})E]) \rho \phi_{\mathcal{A}} \theta = \mathcal{R}(\{ E \} \uplus \rho) \phi_{\mathcal{A}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(\mathcal{A}1)$     | $\mathcal{A}(\llbracket [M \langle L^t \rangle P]^U) \rho \phi_{\mathcal{A}} \theta = \bigcup_{\phi} \phi'_{\mathcal{A}} \cup_{\phi} \phi_{\mathcal{A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | $\lceil M'(z).P' \rceil U' \in \rho: \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M) \cap \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M') \cap \mathcal{N} \neq \{\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | where, $\phi'_{\mathcal{A}} = \mathcal{R}([\{[P]^U]\} \uplus \rho[[P']^U' / [M'(z).P']^U']]) \phi''_{\mathcal{A}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (                    | and $\phi_{\mathcal{A}}' = \phi_{\mathcal{A}}[\alpha_{k,k'}(z) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(z)) \cup \{(\alpha_{k,k'}(t), U, U')\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathcal{A}2)$     | $\mathcal{A}([ M(y).P ^{U})) \rho \phi_{\mathcal{A}} \theta = \phi_{\mathcal{A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $(\mathcal{A}3)$     | $\mathcal{A}([ P  \cup Q ^{\mathcal{O}}]) \rho \phi_{\mathcal{A}} \theta = \mathcal{R}([ P ^{\mathcal{O}}]) \oplus [ Q ^{\mathcal{O}}]) \oplus \rho \phi_{\mathcal{A}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathcal{A}4)$     | $\mathcal{A}([ \mathcal{D} ^{2}]) \rho \phi_{\mathcal{A}} \theta = \mathcal{R}([ \mathcal{D} ^{2}]) \phi_{\mathcal{A}} \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathcal{A}3)$     | where $\mathcal{F} = \{ \downarrow \downarrow \downarrow A \mid \prod ren(P_i) \} \circ \phi \downarrow A \mid i = 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | where, $\mathbf{y} = (\mathbf{x}_{D_{\perp}}^{\mu}, \mathbf{y}_{l}, \mathbf$ |
| ( 10)                | $\left\{ \begin{array}{c} \mathcal{R}(\{[P]^U\} \uplus \rho) \phi_{\mathcal{A}} \theta, \\ \mathcal{R}(\{[P]^U\} \sqcup \rho) \phi_{\mathcal{A}} \theta, \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(\mathcal{A}6)$     | $\mathcal{A}([[M \ is \ N]P]^{\circ}]) \ \rho \ \phi_{\mathcal{A}} \ \theta = \{ \begin{array}{c} \text{if } \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M) \cap \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, N) \cap \mathcal{N} \neq \{ \} \\ \downarrow \qquad \text{otherwise} \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (17)                 | $(\phi_{\mathcal{A}}, \text{ otherwise})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (A1)                 | $\mathcal{A}([0]  p  \varphi_{\mathcal{A}}  \phi  =  \varphi_{\mathcal{A}}$ $\mathcal{A}([let (x \ u) = M \ in \ P]^{U})  o  \phi_{\mathcal{A}}  \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (310)                | $f([P] \models a) \phi', \theta = \text{if } \exists (L^t \ N^t') \in (a, (\phi \land M))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | $(I^{t} N^{t'}) \subset \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | $\begin{cases} (D, N) \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M) \\ \text{where, } \phi'_{\mathcal{A}} = \phi_{\mathcal{A}}[\alpha_{k-k'}(x) \mapsto \phi_{\mathcal{A}}(\alpha_{k-k'}(x)) \cup \{\alpha_{k-k'}(t), U, U\}, \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | $\alpha_{k,k'}(y) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(y)) \cup \{\alpha_{k,k'}(t'), U, U\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | $\phi_{\mathcal{A}}$ , otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathcal{A}9)$     | $\mathcal{A}([[case \ L \ of \ \{x\}_N \ in \ P]^U]) \ \rho \ \phi_{\mathcal{A}} \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | $\bigcup_{\phi} \qquad \mathcal{R}([\{ P \} \uplus \rho]) \ \phi'_{\mathcal{A}} \ \theta,  \text{if, } n \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | $\begin{cases} \{M^t\}_n \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, L) \\ \text{where } d' = d \cdot [a - (a) + d \cdot (a - (a)) + b ((a - (d), U, U))] \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | where, $\psi_{\mathcal{A}} = \psi_{\mathcal{A}}[\alpha_{k,k'}(x) \mapsto \psi_{\mathcal{A}}(\alpha_{k,k'}(x)) \cup \{(\alpha_{k,k'}(t), 0, 0)\}]$<br>otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (.A10)               | $\mathcal{A}([case \ L \ of \ \{[x]\}_N \ in \ P]^U) \ o \ \phi \land \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ()                   | $\int \bigcup_{\phi} \mathcal{R}(\{P\} \uplus \rho) \phi'_{\mathcal{A}} \theta,  \text{if, } n^{-} \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | $\{[M^t]\}_{n+} \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | where, $\phi'_{\mathcal{A}} = \phi_{\mathcal{A}}[\alpha_{k,k'}(x) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(x)) \cup \{(\alpha_{k,k'}(t), U, U)\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | $\left( \phi_{\mathcal{A}}, \right)$ otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\mathcal{A}^{11})$ | $\mathcal{A}(   case \ L \ of \   x  _N \ in \ P ^{\circ})) \ \rho \ \phi_{\mathcal{A}} \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | $\bigcup_{\phi} \mathcal{K}[[\{P\} \oplus \rho]] \ \phi_{\mathcal{A}} \ \theta,  \Pi, \ \eta^{+} \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | where $\phi'_{n} = \phi_{\mathcal{A}}(\phi_{\mathcal{A}}, L)$<br>where $\phi'_{n} = \phi_{\mathcal{A}}(\phi_{\mathcal{A}}, L) \mapsto \phi_{\mathcal{A}}(\phi_{\mathcal{A}}, \iota_{\mathcal{A}}(r)) \sqcup \{(\phi_{\mathcal{A}}, \iota_{\mathcal{A}}(t), U, U)\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | $ \phi_{\mathcal{A}}, \qquad \text{otherwise} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\mathcal{A}12)$    | $\mathcal{A}(\lceil A(M^t) \rceil^U) \rho \phi_{\mathcal{A}} \theta = \mathcal{R}(\{\lceil P \rceil^U \mid \forall \rho \}) \phi'_{\mathcal{A}} \theta \text{ where, } A(x) \triangleq P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | and $\phi'_{\mathcal{A}} = \phi_{\mathcal{A}}[\alpha_{k,k'}(x) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(x)) \cup \{(\alpha_{k,k'}(t), U, U)\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\mathcal{A}13)$    | $\mathcal{A}(\lceil let \ x = \mathbf{private}(M)^t \ in \ P \rceil^U) \ \rho \ \phi_{\mathcal{A}} \ \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | $\left\{ \begin{array}{c} \mathcal{R}(\left\{ \left\  P \right\ ^{U} \right\} \not \oplus \rho \right) \phi_{\mathcal{A}}[\alpha_{k,k'}(x) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(x)) \cup \left\{ (\alpha_{k,k'}(t), U, U) \right\} \right] \theta, \\ \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | $\begin{cases} \text{if } U \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M), \text{ where, } \mathbf{private}(U) = \theta(U)^{-1} \\ \phi = \phi_{\mathcal{A}}(\phi_{\mathcal{A}}, M), \text{ where, } \mathbf{private}(U) = \theta(U)^{-1} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (414)                | $\int (\phi_A, \text{ otherwise}) d \left[ [let x - \text{public}(M)^t in P]^U \right] a \phi + \theta - \mathcal{R} \left[ \left\{ \left[ P \right]^U \right\} + a \right] \phi' = \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (0111)               | where, $\phi'_{A} = \phi_{A}[\alpha_{k,k'}(x) \mapsto \phi_{A}(\alpha_{k,k'}(x)) \cup \{(\alpha_{k,k'}(t), U, U)\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | and unlike of ((4)) = $ \begin{cases} \{\theta(U)^+\}, & \text{if } U \in \varphi_{\mathcal{A}}(\phi_{\mathcal{A}}, M) \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | and, $varue_of(\{t\}) = \{ \{\theta(U')^+ \mid U' \in dom(\theta) \}, \text{ otherwise} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(\mathcal{A}15)$    | $\mathcal{A}(\llbracket let x = \mathbf{certified}(M)^t \text{ in } P \rceil^U) \rho \phi_{\mathcal{A}} \theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | $\mathcal{K}(\{  P ^{\cup}\} \not \oplus \rho]) \phi_{\mathcal{A}}[\alpha_{k,k'}(x) \mapsto \phi_{\mathcal{A}}(\alpha_{k,k'}(x)) \cup \{(\alpha_{k,k'}(t), U, U)\}] \theta,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $(\mathcal{P}_{0})$  | where, $\operatorname{certinea}(M) = \theta(M)^{\vee}$<br>$\mathcal{P}(a) \to A$<br>$(a) \int [\mathcal{P}^{\dagger}U(a)] \to A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathcal{N}_{0})$  | $- \bigcup_{\phi} \mathcal{A}( I    j (p)) \varphi_{\mathcal{A}} \psi$ $[P]^{U_{co}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Figure 11: The abstract semantics of the SPIKY language.

#### Theorem 2 (Termination of the least fixed point calculation)

The calculation of rule (A5) terminates.

Proof. We provide here a sketch of the termination property. To prove this, it is necessary to show that the following two requirements hold. First, that the semantic domain is finite. This is satisfied by the definition of  $D_{\perp}^{\sharp}$ , where  $Tag^{\sharp}$  and AG are both finite, and so is  $\wp(Tag^{\sharp} \times AG \times AG)$ . The second requirement is that  $\mathcal{A}(\llbracket \Pi P \rrbracket^U) \rho \phi_{\mathcal{A}} \theta$  is monotonic over P, i.e.  $\mathcal{A}(\llbracket \Pi P \rrbracket^U) \rho \phi_{\mathcal{A}} \theta \sqsubseteq_{D_{\perp}^{\sharp}} \mathcal{A}(\llbracket \Pi P \rrbracket^U) \rho \phi_{\mathcal{A}} \theta \subseteq_{D_{\perp}^{\sharp}} \mathcal{A}(\llbracket \Pi P \rrbracket^U) \rho \phi_{\mathcal{A}} \theta \subseteq_{D_{\perp}^{\sharp}} \mathcal{A}(\llbracket P \rrbracket^U) \rho \phi_{\mathcal{A}} \theta, where <math>E = \llbracket P \rrbracket^U$ . This is further simplified to become  $\mathcal{A}(\llbracket P \rho \phi_{\mathcal{A}} \theta \subseteq_{D_{\perp}^{\sharp}} \mathcal{A}(\llbracket E) \rho' \phi_{\mathcal{A}} \theta, \phi)$ , where  $\rho' = \rho \uplus \llbracket^V$ . This can be proven by considering every case of E in particular, the case of rule ( $\mathcal{A}1$ ), which deals with output action is an interesting case, since it is possible to compare the communications with systems in  $\rho$  and in  $\rho'$ . When comparing these two multisets, we find that  $\phi_{\mathcal{A}}$  for the former is a subset of the latter, i.e. the larger the  $\rho$  is, the more communications we have.

We can state the safety of the abstract semantics by the following theorem.

#### Theorem 3 (Safety of the abstract semantics)

 $\begin{array}{l} \forall P, \theta, \rho, \phi_{\mathcal{E}}, \phi_{\mathcal{A}}, k, k', U, \phi_{\mathcal{E}}' = \mathcal{E}(\llbracket P \rrbracket^{U} \rrbracket) \ \rho \ \phi_{\mathcal{E}} \ \theta, \phi_{\mathcal{A}}' = \mathcal{A}(\llbracket P \rrbracket^{U} \rrbracket) \ \rho \ \phi_{\mathcal{A}} \ \theta : \\ (\exists M, x, U, U' : (\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}, M), U, U') \in \phi_{\mathcal{E}}(x) \Rightarrow \\ \exists (t, U, U') \in \phi_{\mathcal{A}}(\alpha_{k,k'}(x)) : M^{\sharp} \in value\_of(\{t\}) \land M^{\sharp} = fold \ sub_{k,k'} \ M \ nv(M)) \\ \Rightarrow \\ (\exists M, x, U, U' : (\varphi_{\mathcal{E}}(\phi_{\mathcal{E}}', M), U, U') \in \phi_{\mathcal{E}}'(x) \Rightarrow \\ \exists (t, U, U') \in \phi_{\mathcal{A}}'(\alpha_{k,k'}(x)) : M^{\sharp} \in value\_of(\{t\}) \land M^{\sharp} = fold \ sub_{k,k'} \ M \ nv(M)) \\ where, \ sub_{k,k'} \ x \ y = y[\alpha_{k,k'}(x)/x] \\ and, \ nv(M) \ is \ the \ set \ of \ names \ and \ variables \ of \ M \end{array}$ 

Proof. The proof is by the induction on the structure of systems. We provide a sketch of the proof as follows. The base case is that for E = [0], where the values of  $\phi_{\mathcal{A}}$  and  $\phi_{\mathcal{E}}$  are left intact in rules ( $\mathcal{A}$ 7) and ( $\mathcal{E}$ 7) moving from LHS to RHS of each rule. The antecedent is needed in this case to reach to the conclusion. The inductive step considers every other case of a system. The most interesting cases are those where the values of  $\phi_{\mathcal{A}}$  and  $\phi_{\mathcal{E}}$  are changed. These include the cases of rules, (A1), (A8)–(A15) and their concrete parts,  $(\mathcal{E}1)$ ,  $(\mathcal{E}8)$ – $(\mathcal{E}15)$ , respectively. In each of these cases, it is possible to show that if  $\phi_{\mathcal{A}}$  satisfies the antecedent requirement initially with respect to some  $\phi_{\mathcal{E}}$ , then the new  $\phi'_{\mathcal{A}}$ will satisfy the conclusion with respect to the new  $\phi'_{\mathcal{E}}$ , where  $\phi'_{\mathcal{A}}$  and  $\phi'_{\mathcal{E}}$  contain the changes dictated by the rule. In the case of every other rule where neither  $\phi_{\mathcal{A}}$  nor  $\phi_{\mathcal{E}}$  change, then the antecedent guarantees that the conclusion of the safety requirement is reachable. The most difficult case is that of replication, where additional mathematical induction reasoning is applied over the number of copies of the replicated system. 

The theorem states that for any term, M, captured in the non-standard semantics by including its  $\varphi_{\mathcal{E}}(\phi'_{\mathcal{E}}, M)$  value in the value of a variable,  $\phi'_{\mathcal{E}}(x)$ ,

then that corresponds to capturing a tag, t, in the abstract semantics, by  $\phi'_{\mathcal{A}}(\alpha_{k,k'}(x))$ . The appropriateness of t is expressed by the ability to obtain (by folding) an abstract form,  $M^{\sharp} = fold \ sub_{k,k'} \ M \ \mathbf{nv}(M)$ , of the concrete term, M, by evaluating t using  $value_of$ . More concisely, every concrete term, M, captured in the non-standard semantics is also captured in the form of the corresponding abstract tag, t, in the abstract semantics. From now on, we shall use the following predicate, to denote the property of term capturing.

**Definition 3 (Term capturing)** A term, M, is captured by an agent, B, sent by another agent, A, if given the results of an abstract interpretation,  $\phi_A$ , and the integer constraints, k and k', then the following holds true:

 $\begin{array}{l} captured^{\sharp}(M, A, B, \phi_{\mathcal{A}}, k, k') \stackrel{\textit{def}}{=} \\ \exists t \in Tag^{\sharp}, x \in dom(\phi_{\mathcal{A}}) : (t, A, B) \in \phi_{\mathcal{A}}(x) \land M^{\sharp} \in value\_of(t) \end{array}$ 

We also provide a more precise version of  $captured^{\sharp}$ , which we term  $only\_captured^{\sharp}$  and that signifies the fact that a variable is instantiated with exactly one term.

**Definition 4 (Precise term capturing)** A term, M, is "only" captured by an agent, B, sent by another agent, A, if given the results of an abstract interpretation,  $\phi_A$ , and the integer constraints, k and k', then the following holds true:

 $\begin{array}{l} \textit{onlycaptured}^{\sharp}(M, A, B, \phi_{\mathcal{A}}, k, k') \stackrel{\textit{def}}{=} \\ \exists t \in \mathit{Tag}^{\sharp}, x \in \mathit{dom}(\phi_{\mathcal{A}}) : (t, A, B) \in \phi_{\mathcal{A}}(x) \ \land \ |\phi_{\mathcal{A}}(x)| = 1 \ \land \ M^{\sharp} \in \mathit{value\_of}(t) \end{array}$ 

Where the extra condition that  $|\phi_{\mathcal{A}}(x)| = 1$  implies that x can only ever be replaced by a single term (M in this case).

# 8 The Intruder

There are often two approaches to the modelling of intruders in any security analysis: the first approach aims at encoding the behaviour of the intruder into the semantic rules describing the analysis itself, and the second models the intruder as any other process. Each approach has its advantages. The first approach results in an analysis that is specialised to deal with the intruder without the need to explicitly model the intruder. However, this approach is rigid. The second approach offers more flexibility in considering any intruder from the simplest passive intruders to Dolev-Yao's most powerful intruder [14].

In this report, we adopt the second approach in modelling the intruder within our analysis. The model describes the general guidelines along which the most general attacker in cryptographic protocols can be specified. This model was shown by [13] to be sufficient to subsume any other adversary. Informally, a specification of the Dolev-Yao attacker should adhere to the following criteria:

• The attacker can read, learn, modify and block any messages passed over the network's public channels, as well as create fresh messages. It can also send the messages it has in its knowledge to other processes.

- The attacker can compose tuples from learnt messages and can decompose learnt tuples to their basic elements.
- The attacker can apply cryptographic operations to any of the messages it has in its knowledge using any of the keys it knows about.
- The intruder will always attempt to retrieve the public/private keys of any of the agent names it knows about from the underlying PKI.

The above features can be stated more formally in the SPIKY language by the specification of the intruder's system, ISYS, as illustrated in Figure 12, where  $\prod$  denotes the parallel composition of several processes.

$$\begin{split} &ISYS \stackrel{\text{def}}{=} \frac{\left[(\nu i)\left(\overline{i}\langle\kappa_{init}\rangle \mid |!i(\kappa).(\nu net)\overline{i}\langle\kappa, net\rangle \mid \right)\right]}{\overline{M}\langle N\rangle.\overline{i}\langle\kappa\rangle \mid \prod_{\forall M \in set(\kappa)} M(x).\overline{i}\langle\kappa, x\rangle \mid M(x).\overline{i}\langle\kappa, x\rangle$$

Figure 12: Specification of the system of the Dolev-Yao attacker in SPIKY.

In this specification, I is the name of the intruder agent and  $\kappa_{init}$  is the initial knowledge of the intruder represented as a pair,  $((M1, M_2), \ldots), M_n)$ . If n = 0, then we write  $\kappa_{init} = (,)$ . Usually,  $\kappa_{init}$  is initialised with elements from the set of free names of the system, E, running in parallel with the intruder, i.e.  $\kappa_{init} = ((M_1, M_2), \ldots), M_n)$ , where  $\mathbf{fn}(E) = \{M_1, M_2, \ldots, M_n\}^3$ . The specification also contains the subprocess,  $i\langle\kappa_{init}\rangle$ , which initialises the knowledge of the intruder by communicating with the input process,  $i(\kappa)$ , and hence, yielding the substitution,  $\kappa = \kappa_{init}$ .

Moreover, we refer to the set of terms underlying  $\kappa$  (resp.  $\kappa_{init}$ ) as  $set(\kappa)$  (resp.  $set(\kappa_{init})$ ). The knowledge of the intruder,  $\kappa$ , is increased due to the value-passing behaviour whenever input actions occur or fresh data are created as part of bound output actions.  $\kappa$  also increases due to the value-processing behaviour whenever decryption, signature verification, pair-splitting or any of the PKI-based operations succeed. In any case, standard pair concatenation, (-, -):  $Term \times Term \rightarrow Term$ , is used to model the knowledge increase.

<sup>&</sup>lt;sup>3</sup>Note that the order of the pair elements in  $\kappa_{init}$  is not important since  $\kappa_{init}$  is used to merely simulate a set.

Apart from the initialisation process  $i\langle \kappa_{init} \rangle$ , the rest of the specification consists of a replication of processes each of which is guarded by an input action,  $i(\kappa)$ , over the special channel *i*. The input parameter  $\kappa$  is updated with a pair of terms, which is a necessary behaviour in order to be able to express the fact that *I* can learn from its own behaviour. For example, in order for  $\kappa$  to obtain the new name, *net*, without necessarily outputting *net* to external processes, *I* sends *net* over channel *i*. Similarly, in order for  $\kappa$  to learn all the terms it has encrypted, signed etc., it needs to send them again over channel *i*. On the other hand, the main body of the process consists of the parallel composition of all the possible input/output actions and cryptographic/PKI operations quantified over all the terms in  $\kappa$ .

An important point to note at this stage is that the specification of Figure 12 is not unique. It is possible to adopt other specifications of the intruder. Among these,  $ISYS \stackrel{\text{def}}{=} [\mathbf{0}]^I$  is the weakest intruder, which is incapable of performing any action and,

$$ISYS \stackrel{\text{def}}{=} \lceil (\bar{i} \langle \kappa_{init} \rangle \mid !i(\kappa). (\prod_{\forall M, N \in set(\kappa)} \overline{M} \langle N \rangle. \bar{i} \langle \kappa \rangle \mid \prod_{\forall M \in set(\kappa)} M(x). \bar{i} \langle \kappa, x \rangle) \rceil^{I}$$

defines the passive intruder, which can only input and output messages without performing any actions on them.

# 9 Abstract Security Properties

In this section, we define the security properties of abstract term secrecy and abstract peer-entity participation in light of the results of our abstract semantics.

### 9.1 Abstract Term Secrecy

Term secrecy refers to the property that a particular term is never leaked to some agent during the execution of a protocol. Using the *captured*<sup>#</sup> predicate defined in Definition (3), we formalise abstract term secrecy of a term, M, with respect to an agent, U, written as  $secret^{\sharp}(M, U)$ , as follows.

#### Definition 5 (Abstract term secrecy)

We say that a term, M, remains abstractly secret with respect to an agent, U, written as secret<sup> $\sharp$ </sup>(M,U), if the following holds true:

 $\nexists U' \in AG: \ captured^{\sharp}(M, U', U, \phi_{\mathcal{A}}, k, k')$ 

### 9.2 Abstract Peer-Entity Participation

Peer-entity participation means that an agent, A, knows to a certain degree of certainty that another agent, B, has participated in a session of some protocol in which A is also a participant. In reality, there are many scenarios that this property could be established, both in its one-way and two-way forms. In this

section, we discuss one such scenario, where A creates a nonce, n, and n is signed by B, then, provided that only B has the knowledge of its own private key, A knows that B has just participated in the protocol if it receives back a signed term, M, containing n and is able to verify it with B's public key. We define here three cases of the abstract peer-entity participation property.

#### Definition 6 (Abstract peer-entity participation)

Given the abstract interpretation,  $\phi_{\mathcal{A}} = \mathcal{A}([C(\lceil (\nu n)P \rceil^A)]) \rho_0 \phi_{\mathcal{A}0} \theta$ , for some context, C, and process, P, then we say that the agent, A, is said to be sure to a certain degree that another agent, B, has participated in the protocol,  $(\theta, C((\nu n)\lceil P \rceil^A)))$ , written as participated<sup>‡</sup>(A, B), if the following holds true:

 $\begin{array}{ll} \exists U, U', L, k, k': & captured^{\sharp}(n, U, B, \phi_{\mathcal{A}}, k, k') \wedge captured^{\sharp}(\theta(B)^{-}, B, B, \phi_{\mathcal{A}}, k, k') \wedge captured^{\sharp}([\{L\}]_{\theta(B)^{-}}, U', A, \phi_{\mathcal{A}}, k, k') \wedge captured^{\sharp}(L, A, A, \phi_{\mathcal{A}}, k, k') \wedge (\forall U'': U'' \neq B \Rightarrow secret^{\sharp}(\theta(B)^{-}, U'')) \wedge n \in \mathbf{n}(L) \end{array}$ 

And either one of the following three requirements:

- 1- captured<sup>#</sup>( $\theta(B)^+, A, A, \phi_A, k, k'$ ) (Non-certified case)
- 2- only captured  ${}^{\sharp}(\theta(B)^+, A, A, \phi_{\mathcal{A}}, k, k')$  (Certified case)
- 3-  $\exists S$ : onlycaptured<sup>#</sup>( $\theta(B)^+, S, S, \phi_A, k, k'$ ) (Delegated case) where S is a server trusted by A

The definition of  $participated^{\sharp}$  essentially states that B must obtain n as well as its own private key, signs a term, L, containing n with the private key and finally, A must obtain this term and correctly verifies it with the public key of B. This is of course based on the condition that B keeps its own private key secret. The degree at which A is certain of the participation of B depends on whether the public key of B was *captured* (i.e., using **public**(B) since **public**(B) may return an invalid key) or *only captured* (i.e. using **certified**(B) since **certified**(B) always returns a valid key) and whether A trusts in some third party, S. Three scenarios then arise: the certified case, the uncertified case and the delegated case.

### 10 Examples

We consider here again the two examples introduced earlier in Section 4, where we apply the abstract interpretation developed in Section 7 to these protocols and analyse their abstract term secrecy and peer-entity participation properties.

### 10.1 The Simple Authentication Protocol

We apply the abstract interpretation,  $\mathcal{A}([SYST(A, B)])$  {|ISYS|}  $\phi_{\mathcal{A}0} \theta$ , to the specification of the simple authentication protocol,  $(\theta, SYST(A, B))$ , for some two agents, A and B, and for the uniform case where k = k' = 1. The final

fixed point value for  $\phi_{\mathcal{A}}$  is given as follows, after we have applied the *value\_of* function to retrieve the values of terms from their tags:

 $\phi_{\mathcal{A}} = \begin{bmatrix} yb \mapsto \{(B, B, B)\} & xb \mapsto (B, A, A) & xa \mapsto \{(A, A, A)\} \\ ych \mapsto \{(ch, B, B)\} & xch \mapsto \{(ch, A, A)\} \\ ya \mapsto \{(A, A, B)\} & xb' \mapsto \{(B, B, A)\} \\ yn_a \mapsto \{(n_a, A, B)\} & xn_b \mapsto \{(n_b, B, A)\} \\ yk_b \mapsto \{(\theta(B)^-, B, B)\} & xsig \mapsto \{([[n_a]]_{\theta(B)^-}, B, A)\} \\ ysig \mapsto \{([[n_b]]_{\theta(A)^-}, A, B)\} & xk_b \mapsto \{(\theta(B)^+, A, A)\} \\ yk_a \mapsto \{(\theta(A)^+, B, B)\} & x \mapsto \{(n_a, A, A)\} \\ y \mapsto \{(n_b, B, B)\} & xk_a \mapsto \{(\theta(A)^-, A, A)\} \\ \kappa \mapsto \{(I, I, I), (A, A, I), (N_A, A, I), (B, B, I), (N_B, B, I), \\ (\theta(A)^+, I, I), (\theta(B)^+, I, I), (\theta(I)^+, I, I), (\theta(I)^-, I, I)\} \end{bmatrix}$ 

According to Definition (5), the results confirm that  $secret^{\sharp}(U, \theta(A)^{-})$  and  $secret^{\sharp}(U', \theta(B)^{-})$  for any  $U \in \{B, I\}$  and  $U' \in \{A, I\}$ . This implies that neither agent was able to obtain the other agent's private key nor that the intruder was able to obtain the secret keys. Furthermore, one can also see that  $participated^{\sharp}(A, B)$  and  $participated^{\sharp}(B, A)$  are true, since both fulfil case 2 of Definition (6).

### 10.2 The Mobile Authentication Protocol

For the case of the mobile authentication protocol, we apply the abstract interpretation,  $\mathcal{A}([SYST(A, B, S)])$  {|ISYS|}  $\phi_{A0} \theta$ , for the uniform case, i.e. where k = k' = 1. The fixed point results for  $\phi_A$  after the application of the *value\_of* function are:

 $\phi_{\mathcal{A}} =$  $xs\mapsto \{(S,A,A)\}$  $xa \mapsto \{(A, A, A)\}$  $xb \mapsto \{(B, A, A)\}$  $yb \mapsto \{(B, B, B)\}$  $ych \mapsto \{(ch, B, B)\}$  $xch \mapsto \{(ch, A, A)\} \quad xch' \mapsto \{(ch', A, A)\}$  $zch \mapsto \{(ch, S, S)\} \quad zch' \mapsto \{(ch', S, S)\}$  $zs \mapsto \{(S, S, S)\}$  $ya \mapsto \{(A, A, B)\}$  $xb' \mapsto \{(B, B, A)\}$  $x_{n_{b}} \mapsto \{(n_{b}, B, A)\}$   $x_{sig} \mapsto \{([\{n_{a}\}]_{\theta(B)^{-}}, B, A)\}$   $x_{k_{b}} \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^{+}, A, A)\}$  $yn_a \mapsto \{(n_a, A, B)\}$  $yk_b \mapsto \{(\theta(B)^-, B, B)\}$  $\begin{array}{ll} yk_b \mapsto \{(\theta(B)^-, B, B)\} & xsig \mapsto \{([\{n_a\}]_{\theta(B)^-}, B, A)\} \\ ysig \mapsto \{([\{n_b\}]_{\theta(A)^-}, A, B)\} & xk_b \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, A, A)\} \\ yk_a \mapsto \{(\theta(A)^+, B, B)\} & x \mapsto \{(n_a, A, A)\} & y \mapsto \{(n_b, B, A)\} \\ xk_a \mapsto \{(\theta(A)^-, A, A)\} & xk_s \mapsto \{(\theta(S)^-, S, S)\} \\ zk_s \mapsto \{(\theta(S)^-, S, S)\} \\ zc \mapsto \sum_{U \in dom(\theta)} \{(\{[\{[n_b\}]_{\theta(A)^-}, B, \theta(U)^+)]\}_{\theta(S)^+}, A, S)\} \\ zp \mapsto \{(([\{n_b\}]_{\theta(A)^-}, B, \theta(U)^+), S, S)\} & zsig \mapsto \{([\{n_b\}]_{\theta(A)^-}, S, S)\} \\ zb \mapsto \{(B, S, S)\} & zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)} \{(\theta(U)^+, S, S)\} \\ zkey \mapsto \sum_{U \in dom(\theta)}$  $\begin{array}{l} x \mapsto \{(n_a, A, A)\} \quad y \mapsto \{(n_b, B, B)\} \\ xk_s \mapsto \{(\theta(S)^+, A, A)\} \end{array}$  $zk_{b} \mapsto \{(\theta(B)^{+}, S, S)\}$   $\kappa \mapsto \{(I, I, I), (A, A, I), (N_{A}, A, I), (B, B, I), (N_{B}, B, I), (S, I, I), (\theta(A)^{+}, I, I), (\theta(B)^{+}, I, I), (\theta(S)^{+}, I, I), (\theta(I)^{+}, I, I), (\theta(I)^{-}, I, I)\}$ 

From these results, it is possible to verify that the secrecy requirement on all the private keys of the protocol i.e.,  $secret^{\sharp}(U, \theta(A)^{-})$ ,  $secret^{\sharp}(U', \theta(B)^{-})$  and  $secret^{\sharp}(U'', \theta(S)^{-})$ , where  $U \in \{B, S, I\}$ ,  $U' \in \{A, S, I\}$  and  $U'' \in \{A, B, I\}$ . In the case of B, we find that  $participated^{\sharp}(B, A)$  can be shown to hold according to case (2) of Definition (6), however, in the case of the verification of B's participation by A, i.e.  $participated^{\sharp}(A, B)$ , it is only possible to show that case (1) holds true in Definition (6)  $participated^{\sharp}(A, B)$ , but that case (2) is impossible to prove. However, we find that case (3) can be proven for the case of A, since A relies on S.

# 11 Conclusion

In this technical report, we reviewed the process algebraic language, SPIKY, which is used for the modelling of systems that use Public-Key Infrastructures (PKIs). SPIKY formalises the notion of *process ownership* by PKI agents as well as the operations of (un)certified public and private key retrievals, which constitute an essential element of any PKI-based protocol. We then developed a domain-theoretic model for protocols in SPIKY and used the model to construct a non-uniform static analysis for capturing the property of term-substitutions. These substitutions appear as a result of message-passing and the application of cryptographic/PKI operations within protocols. The results of the static analysis were used to formalise two security properties: term secrecy and peerentity participation. Finally we used these formalisations to reason about the security properties of a couple of simple authentication protocols assumed to be running in parallel with Dolev-Yao's attacker.

For future work, we would like to apply the analysis to more complicated protocols, such as the Internet Key Exchange protocol (IETF RFC 2409) and the Transport Layer Security protocol (IETF RFC 2246). We would also like to investigate the quantitative aspects of PKI-based operations by introducing a theory of constraint semirings in a manner similar to [4], which deals with the cost of mobility and message-passing. Such analyses are of particular interest when comparing the cost of security against the quantitative capabilities of the different models of intruders, e.g. the weakest, passive and the most powerful intruder.

### References

- Martín Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi calculus. In Proceedings of the 4<sup>th</sup> ACM Conference on Computer and Communications Security, pages 36–47, Zurich, Switzerland, April 1997. ACM Press.
- [2] Samson Abramsky. A domain equation for bisimulation. Information and Computation, 92(2):161–218, June 1991.

- [3] B. Aziz. A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems. PhD thesis, School of Computing, Dublin City University, Dublin, Ireland, 2003.
- [4] Benjamin Aziz. A semiring-based quantitative analysis of mobile systems. In Proceedings of the 3<sup>rd</sup> International Workshop on Software Verification and Validation, volume 157(1) of Electronic Notes in Theoretical Computer Science, pages 3–21, Manchester, UK, October 2005. Elsevier.
- [5] Benjamin Aziz, David Gray, and Geoff Hamilton. A static analysis of pkibased systems. In Proceedings of the 9<sup>th</sup> Italian Conference on Theoretical Computer Science, volume 3701 of Lecture Notes in Computer Science, pages 51–65, Siena, Italy, October 2005. Springer Verlag.
- [6] Benjamin Aziz and Geoff Hamilton. The modelling and analysis of pkibased systems using process calculi. *International Journal of Foundations* of Computer Science, 2007 (to appear).
- [7] Benjamin Aziz, Geoff Hamilton, and David Gray. A static analysis of cryptographic processes: The denotational approach. *Journal of Logic and Algebraic Programming*, 64(2):285–320, August 2005.
- [8] Hanane El Bakkali and Bahia Idrissi Kaitouni. A predicate calculus logic for the pki trust model analysis. In *Proceedings of the IEEE International Symposium on Network Computing and Applications*, pages 368–371, Cambridge, MA, USA, October 2001. IEEE Computer Society.
- [9] Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Automatic validation of protocol narration. In Proceedings of the 16<sup>th</sup> IEEE Computer Security Foundations Workshop, pages 126–140, Pacific Grove, CA, USA, June 2003. IEEE Computer Society.
- [10] Chiara Bodei, Pierpaolo Dagano, Flemming Nielson, and Hanne Riis Nielson. Static analysis for secrecy and non-interference in networks of processes. In *Proceedings of the* 6<sup>th</sup> *International Conference in Parallel Computing Technologies*, volume 2127 of *Lecture Notes in Computer Science*, pages 27–41, Novosibirsk, Russia, September 2001. Springer Verlag.
- [11] Chiara Bodei, Pierpaolo Dagano, Flemming Nielson, and Hanne Riis Nielson. Static analysis for the π-calculus with applications to security. *Information and Computation*, 168(1):68–92, July 2001.
- [12] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown automata: Application to model-checking. In Antoni W. Mazurkiewicz and Jzef Winkowski, editors, *Proceedings of the* 8<sup>th</sup> International Conference on Concurrency Theory, volume 1243 of Lecture Notes in Computer Science, pages 135–150, Warsaw, Poland, July 1997. Springer Verlag.

- [13] Iliano Cervesato. The dolev-yao intruder is the most powerful attacker. In J. Halpern, editor, *Proceedings of the* 16<sup>th</sup> Annual Symposium on Logic in Computer Science, pages 246–265, Boston, MA, U.S.A., June 2001. IEEE Computer Society Press.
- [14] Danny Dolev and A. Yao. On the security of public key protocols. In Proceedings of the 22<sup>nd</sup> Annual Symposium on Foundations of Computer Science, pages 350–357, October 1981.
- [15] C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M. Thomas, and T. Ylonen. Spki certificate theory. RFC 2693, September 1999.
- [16] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient algorithms for model checking pushdown systems. In E. Allen Emerson and A. Prasad Sistla, editors, *Proceedings of the* 12<sup>th</sup> International Conference on Computer-Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 232–247, Chicago, IL, USA, July 2000. Springer Verlag.
- [17] Andrew Gordon. Nominal calculi for security and mobility. In D. Volpano, C. Irvine, and G. Smith, editors, *Proceedings of the DARPA Workshop on Foundations for Secure Mobile Code*, pages 10–14, Monterey, California, USA, 1997. US Naval Postgraduate School.
- [18] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University Press, Cambridge, UK, 1993.
- [19] David Gray, Benjamin Aziz, and Geoff Hamilton. Spiky: A nominal calculus for modelling protocols that use pkis. In *Proceedings of the International Workshop on Security Analysis of Systems: Formalism and Tools*, Orléans, France, June 2004.
- [20] Steffen M. Hansen, Jakob Skriver, and Hanne Riis Nielson. Using static analysis to validate the saml single sign-on protocol. In *Proceedings of the* 2005 workshop on Issues in the theory of security, pages 27–40, Long Beach, California, USA, 2005. ACM Press.
- [21] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666-677, August 1978.
- [22] Somesh Jha and Thomas W. Reps. Analysis of spki/sdsi certificates using model checking. In *Proceedings of the* 15<sup>th</sup> *IEEE Computer Security Foundations Workshop*, pages 129–147, Cape Breton, Nova Scotia, Canada, June 2002. IEEE Computer Society.
- [23] T. Ksiyatrakul, S. Older, and S.-K. Chin. Formal analysis of x.509 certificates. Technical Report TR DII 08/01, Universit degli studi di Siena, 2001.

- [24] Eve Maler, Prateek Mishra, and Rob Philpott. Assertions and protocol for the oasis security assertion markup language, version 1.1 edition. Technical Report oasis-sstc-saml-core-1.1, OASIS, September 2003.
- [25] Eve Maler, Prateek Mishra, and Rob Philpott. Bindings and proles for the oasis security assertion markup language, version 1.1 edition. Technical Report sstc-saml-bindings-1.1-cs-01, OASIS, May 2003.
- [26] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC Press, October 1996.
- [27] Robin Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press, 1999.
- [28] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes (parts I & II). Information and Computation, 100(1):1–77, September 1992.
- [29] Flemming Nielson and Hanne Riis Nielson. Flow logic and operational semantics. In Andrew Pitts Andrew Gordon and Carolyn Talcott, editors, *Electronic Notes in Theoretical Computer Science*, volume 10. Elsevier Science Publishers, 2000.
- [30] Flemming Nielson, Hanne Riis Nielson, and René Rydhof Hansen. Validating firewalls using flow logics. *Theoretical Computer Science*, 283(1):381– 418, June 2002.
- [31] Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452–487, September 1976.
- [32] P.Y.A. Ryan and S.A. Schnieder. Modelling and Analysis of Security Protocols. Addison-Weslley, 2001.
- [33] Davide Sangiorgi and David Walker. The Pi-Calculus A Theory of Mobile Processes. Cambridge University Press, Cambridge, UK, 2001.
- [34] Ian Stark. A fully abstract domain model for the π-calculus. In Proceedings of the 11<sup>th</sup> Annual IEEE Symposium on Logic in Computer Science, pages 36–42, New Brunswick, New Jersey, USA, July 1996. IEEE Computer Society.
- [35] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1937.
- [36] CCITT Rec. X.509. ISO/IEC 9594-8:1994 information technology open systems interconnection - the directory: Authentication framework, 1994.