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Abstract

We present in this technical report a non-uniform static analysis for
detecting the term-substitution property in systems specified in the lan-
guage of the applied pi calculus. The analysis implements a denotational
framework that has previously introduced analyses for the pi calculus and
the spi calculus. The main novelty of this analysis is its ability to deal with
systems specified in languages with non-free term algebras, like the ap-
plied pi calculus, where non-identity equations may relate different terms
of the language. We demonstrate the applicability of the analysis to one
famous security protocol, which uses non-identity equations, namely the
Diffie-Hellman protocol.

1 Introduction

In previous works [9, 10, 11, 12], we defined a non-uniform static analysis frame-
work for capturing the property of term substitutions in processes modelled by
the pi calculus [26] and the spi calculus [6]. We demonstrated that this property
was essential in understanding certain types of secrecy and authenticity threats,
in particular, whenever processes classified at low secrecy levels obtained high-
level data, or when highly trusted processes obtain low-level data.

In this report, we extend the static analysis framework to include systems
modelled in the applied pi calculus [5]. The applied pi calculus was introduced
primarily as a generalisation of the spi calculus incorporating non-free term
algebras, where, non-identity equations may exist relating the different terms of
the language. Hence, in the spi calculus, the only equations available are of the
form M = M , and therefore, it is not possible to handle protocols with terms
related by equations like f(x, g(y)) = f(y, g(x)). Such equations are popular
in security protocols and form the basis, for example, of all the Diffie-Hellman
protocol variants. As a result, the applied pi calculus equips terms with general
equational theories that can either reshape or deconstruct the original term.
Moreover, the applied pi calculus emphasizes the openness of processes by giving
their contexts the ability to perform active substitutions (i.e. substitutions on
the fly). This latter feature of the language seems to render the static analysis
of [10] a suitable framework based on capturing the term substitutions property.
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The area of the static analysis of cryptographic processes has been researched
intensively in recent years using a variety of techniques, for which one can only
mention a few examples here. These include types [1, 2, 13], symbolic methods
[8, 18, 19, 23, 25], abstract interpretation [9, 10, 12, 27], control flow analysis
[14, 15, 16, 17, 32] and other techniques [3, 4, 13, 22]. In particular, [4] uses a
specific variation of the applied pi calculus to model Just-Fast-Keying, a protocol
for the establishment of secure session keys using Diffie-Hellman exchanges and
public-key cryptography. Also, [22] gives an analysis for the authentication
properties of a protocol similar to SKEME [24], however, the analysis is based
on equivalence relations and is not automatic. Finally, [32] constructs a control-
flow analysis of a primitive version of the applied pi calculus with only free term
algebra. The analysis is uniform in its term capturing and cannot therefore
distinguish properties that may change with the different runs of a protocol.

The rest of the report is structured as follows. In Section 2, we review
the syntax of the applied pi language and in Section 3, we develop a domain-
theoretic model, which is used then to define a standard denotational semantics
for the applied pi calculus. The standard semantics is extended in Section 4
to capture the property of term substitutions and in Section 5, we define an
abstraction, which safely constrains the size of the semantic domain to a finite
limit. In Section 6, we define secrecy and authenticity properties and in Section
7, we apply the analysis to the Diffie-Hellman protocol. Finally, in Section 8,
we conclude the report and give directions for future work.

2 The Applied Pi Calculus

The syntax of the applied pi calculus is summarized in Figure 1.

L, M, N, T, U, V ∈ T ::= Terms
a, b, c, . . . , s ∈ N Names
x, y, z ∈ V Variables
f(M1, . . . , Mn) Function application

P, Q, R ∈ P ::= Processes
0 Null process
P | Q Parallel composition
!P Replication
νn.P Name restriction
if M = N then P else Q Conditional
M(x).P Input

M〈N〉.P Output
A, B, C ∈ EP ::= Extended processes

P Process
A | B Parallel composition
νn.A Name restriction
νx.A Variable restriction
{M/x} Active substitution

Figure 1: The syntax of the applied pi calculus.
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This syntax is similar to that of [5] with which we assume the reader to
be familiar. Functions are assumed to be taken from a finite signature, Σ,
equipped with an equational theory that is used to infer when two terms are
equal, Σ ` M = L, such as for example, decrypt(encrypt(x, y), y) = x. We also
assume that the usual notions of free and bound names and variables of terms,
processes and extended processes, as well as α-conversion all apply. Initially, we
require that α-conversion be used to achieve the following property on extended
processes.

Property 1 For any extended process, A ∈ EP, there are no occurrences of
homonymous bound names and variables, such as for example, a(x).P | b(x).Q,
or νn.A | νn.B. Moreover, the following holds:
∀s, s′ ∈ {bn(A), fn(A), bv(A), fv(A)} : s ∩ s′ = {}.

We also define the set of bound names and variables for any entity, e, as bnv(e) =
bn(e)∪bv(e), and the set of free names and variables of e as fnv(e) = fn(e)∪fv(e).

The structural operational semantics of the applied pi calculus is defined
in terms of the structural congruence (≡) relation (Figure (2)) and reaction
( aπ−→) relation (Figures (3). In this semantics, we have replaced early input

transitions, A
a(M)−→A′ as they appeared in [5, §4.4], with the late version, A

a(x)−→A′.
This implies that input actions are only be instantiated through reductions,
a〈x〉.P | a(x).Q τ−→ P | Q, and active substitutions, {M/x}.

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P
New-0 νn.0 ≡ 0
New-C νu.νv.A ≡ νv.νu.A
New-Par A | νv.B ≡ νu.(A | B) when, u /∈ fv(A) ∪ fn(A)
Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} when, Σ ` M = N

Figure 2: Rules of the structural congruence relation, ≡.
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Comm a〈x〉.P | a(x).Q
τ−→ P | Q

Then if M = M then P else Q
τ−→ P

Else if M = N then P else Q
τ−→ Q

for any ground terms M and N such that Σ 0 M = N

Late-In a(x).P
a(x)−→ P

Out-Term a〈M〉.P a〈M〉−→ P

Lim-Scope A
aπ′−→A′

where, aπ′ ∈ {a(x), a〈M〉, τ}

and, u /∈ n(aπ′) ⇒ νu.A
aπ′−→ νu.A′

Par A
aπ−→A′ ∧

bv(aπ) ∩ fv(B) = bn(aπ) ∩ fn(B) = {} ⇒ A | B aπ−→A′ | B

Open-Channel A
a〈b〉−→A′ ∧ b 6= a ⇒ νb.A

νb.a〈b〉−→ A′

Open-Variable A
ν u1...ν uk.a〈M〉−→ A′ ∧

x ∈ fv(M)\{u1, . . . , uk} ∧
x can be derived from

(νu1 . . . νuk.{M/z} | A′) ⇒ νx.A
νx.ν u1...ν uk.a〈M〉−→ A′

Struct A ≡ B ∧ B
aπ−→B′ ∧ B′ ≡ A′ ⇒ A

aπ−→A′

Figure 3: Rules of the refined late labelled transition relation, aπ−→.

3 A Domain-Theoretic Model

Following the approach of [9, 10, 11, 12, 31], we define the following predomain
equations, which describe what an extended process can do:

Api ∼= 1 +
P(Api⊥ + In + Out + Sub) (1)

In ∼= Pmv × (T → Api⊥) (2)
Out ∼= Pmv × (T ×Api⊥ + Pmv → . . .

Pmv → (T ×Api⊥)) (3)
Sub ∼= Api⊥ → (Api⊥ + Pmv → . . .

Pmv → Api⊥) (4)
T ∼= Pmv + Cpx (5)

Pmv ∼= N + V (6)
Cpx ∼= T × . . .× T (7)

Where Api⊥ is the domain of extended processes, In, Out and Sub are the pre-
domains of input/output actions and active substitutions, respectively. P(−) is
Plotkin’s powerdomain [29] applied to the disjoint union of input/output/silent
actions (the latter represented by Api⊥) and active substitutions to construct
Api . The single element predomain, 1, representing terminated (deadlocked)
processes is adjoined as in [7, Def. 3.4]. Input actions are modelled as pairs;
a primitive term (the channel), Pmv , and a function, T → Api⊥, that can be
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instantiated with a term, T , yielding a process in Api⊥. Output actions are
divided into free and bound output actions. These are pairs consisting of a
primitive term (the channel), Pmv , and either another pair, T ×Api⊥, denoting
the message, T , and the residue, Api⊥ (free outputs), or composed functions,
Pmv → . . .Pmv → (T ×Api⊥), that introduce new primitive terms to the mes-
sage, T , and the residue, Api⊥ (bound outputs). These functions express the
output of a complex term with several bound names or variables. Active substi-
tutions are modelled as a function which accepts an extended process, Api⊥, and
returns either another extended process, Api⊥ (free substitution), or a number
of composed functions leading to an extended process, Pmv → . . .Pmv → Api⊥
(bound substitution, e.g. A

def= νn1 . . . νnk.{M/x}, where n1 . . . nk ∈ fn(M)).
The predomain of terms, T , is defined as the disjoint union of the flat predo-
mains of primitive terms, Pmv , and complex terms, Cpx . Primitive terms are
either names, N (flat predomain), or variables, V (flat predomain), whereas
complex terms are essentially tuples, T × . . . × T , that cannot be reduced to
elements of N or V under Σ.

The main difference between the above equations and the predomain equa-
tions of [10] is the presence of the predomain of active substitutions, Sub, and
the generalisation of complex terms as tuples. Also, the predomain of variables,
V , permits dealing with open terms and open extended processes.

The following functions are defined as usual [7, Def. 3.3], leading to Api⊥:

∅ : 1 → Api⊥ (8)
{| − |} : (Api⊥ + In + Out + Sub)⊥ →

Api⊥ (9)
] : (Api⊥ ×Api⊥) → Api⊥ (10)

new : (Pmv → Api⊥) → Api⊥ (11)

The empty set, ∅, is required to represent inactive processes. The singleton map,
{| − |}, creates elements of Api⊥ from elements of input/output/silent actions
and active substitutions. ], is the standard multiset union operator representing
non-determinism. Finally, new is used to interpret the effects of restricting a
primitive term to the scope of an extended process.

Next, we define concrete elements of the (pre)domains of equations (1)–(7),
as in Figure 4, where K is the set of elements underlying any (pre)domain. This
definition leads ultimately to the definition of elements p, q ∈ Api⊥. Note that,
for simplicity, we assume that elements t, t′ ∈ T are taken directly from the set
of syntactic terms, T . Also, we have {|⊥|} v ∅.

The effects of restriction are interpreted by concretely defining new as in
Figure 5. These effects lead to the blocking of processes attempting to commu-
nicate over fresh, non-extruded channels and the transformation of free outputs
to bound outputs whenever the message of communication is restricted in some
(all) of its primitive terms. Similarly, substitutions involving restricted vari-
ables are blocked. Alternatively, if the primitive term being restricted belongs
to the free names and variables of the substituting term, then the substitution
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Elements of N , V and Cpx :
n ∈ N ⇒ n ∈ K(N)
x ∈ V ⇒ x ∈ K(V )
f ∈ Σ, t1, . . . , tar(f) ∈ T, @u ∈ Pmv :

Σ ` f(t1, . . . , tar(f)) = u ⇒ f(t1, . . . , tar(f)) ∈ K(Cpx)

Elements of In :
u ∈ K(Pmv), λy.p ∈ K(T → Api⊥) ⇒ (u, λy.p) ∈ K(In)

Elements of Out :
u ∈ K(Pmv), t ∈ K(T ), p ∈ K(Api⊥) ⇒ (u, t, p) ∈ K(Out)
u ∈ K(Pmv), λu1 . . . λum.(t, p) ∈
K(Pmv →1 . . .Pmv →m (T ×Api⊥)) ⇒ (u, λu1 . . . λum.(t, p)) ∈ K(Out)

Elements of Sub :
x ∈ K(V ), t ∈ K(T ), λy.((λx.y)t) ∈ K(Api⊥ → Api⊥) ⇒ λy.((λx.y)t) ∈ K(Sub)
x ∈ K(V ), t ∈ K(T ), λy.((λx.λu1 . . . λuk.y)t) ∈
K(Api⊥ → Pmv →1 . . . →m Pmv → Api⊥) ⇒ λy.((λx.λu1 . . . λuk.y)t) ∈ K(Sub)

Elements of Api⊥ :
{|⊥|} ∈ K(Api⊥), ∅ ∈ K(Api⊥)
p, q ∈ K(Api⊥) ⇒ p ] q ∈ K(Api⊥)
p ∈ K(Api⊥) ⇒ {|tau(p)|} ∈ K(Api⊥)
i ∈ K(In) ⇒ {|in(i)|} ∈ K(Api⊥)
o ∈ K(Out) ⇒ {|out(o)|} ∈ K(Api⊥)
s ∈ K(Sub) ⇒ {|s|} ∈ K(Api⊥)

Figure 4: Elements of the domain Api⊥.

new(λu.∅) = ∅
new(λu.{|⊥|}) = {|⊥|}

new(λu.{|in(u′, λx.p)|}) =

�
∅, if u = u′

{|in(u′, λx.new(λu.p))|}, otherwise

new(λu.{|out(u′, t, p)|}) =

8<
:

∅, if u = u′

{|out(u′, λu.(t, p))|}, if u ∈ fnv(t) ∧ u 6= u′

{|out(u′, t,new(λu.p))|}, otherwise
new(λu.{|out(u′, λu1 . . . λuk.(t, p))|}) =8<
:

∅, if u = u′

{|out(u′, λu.λu1 . . . λuk.(t, p))|}, if u ∈ fnv(t) ∧ u 6= u′

{|out(u′, λu1 . . . λuk.(t,new(λu.p)))|}, otherwise

new(λu.λy.((λx.y)t)) =

8<
:

∅, if u = x
λy.((λx.λu.y)t) if u ∈ fnv(t) ∧ u 6= x
λy.((λx.new(λu.y))t), otherwise

new(λu.λy.((λx.λw1 . . . λwk.y)t)) =

8>><
>>:

∅, if u = x
λy.((λx.λu.λw1 . . . λwk.y)t), if u ∈ fnv(t) ∧ u 6= x
λy.((λx.λw1 . . . λwk.new(λu.y))t),

otherwise
new(λu.{|tau(p)|}) = {|tau(new(λu.p))|}
new(λu.(p1 ] p2)) = new(λu.p1) ] new(λu.p2)

Figure 5: The concrete definition of new over elements p ∈ Api⊥.
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becomes bound, i.e. it involves bound names and/or variables.
The denotational semantics for the applied pi calculus are defined using a

semantic function, S([A]) ρ φS ∈ Api⊥, as shown in Figure 6. The multiset,

(S1) S([A | B]) ρ φS = R([{|A|} ] {|B|} ] ρ]) φS
(S2) S([νn.A]) ρ φS = new(λn.R([{|A|} ] ρ]) φS)
(S3) S([νx.A]) ρ φS = new(λx.R([{|A|} ] ρ]) φS)
(S4) S([{M/x}]) ρ φS = {|λy.((λx.y)ϕS(φS , M))|} ] R([ρ]) φS [x 7→ ϕS(φS , M)]
(S5) S([0]) ρ φS = ∅
(S6) S([!P ]) ρ φS =

F
F

where, F = {{|⊥|},S([
Q
i

P [bnv i(P )/bnv(P )] ]) ρ φS | i = 0 . . .∞}

and, bnv i(P ) = {xi | x ∈ bnv(P )}
(S7) S([if M = L then P else Q]) ρ φS =�

R([{|P |} ] ρ]) φS , if Σ ` ϕS(φS , M) = ϕS(φS , L)
R([{|Q|} ] ρ]) φS , otherwise

(S8) S([M(y).P ]) ρ φS = {|in(u, λy.R([{|P |} ] ρ]) φS)|}
where, Σ ` ϕ(φE , M) = u ∈ Pmv

(S9) S([M〈L〉.P ]) ρ φS =U
M′(z).P ′∈ρ

{|tau(R([{|P |} ] ρ[P ′/M ′(z).P ′]]) φS [z 7→ ϕS(φS , L)]|} ]

{|out(u, ϕS(φS , L),R([{|P |} ] ρ]) φS)|}
where, Σ ` ϕS(φS , M) = ϕS(φS , M ′) ∈ Pmv
and, Σ ` ϕS(φS , M) = u ∈ Pmv

(R0) R([ρ]) φS =
U

A∈ρ
S([A]) (ρ\{|A|}) φS

Figure 6: The standard denotational semantics of the applied pi calculus.

ρ, is used to hold extended processes composed in parallel with the analysed
extended process. For simplicity, the standard singleton, {| − |} : EP → ℘(EP),
and the multiset union, ] : ℘(EP) × ℘(EP) → ℘(EP), are overloaded from
their definitions in (9) and (10) to deal with elements of ρ. The environment,
φS : V → T , records any term substitutions that occur in the semantics and
the special function, ϕS : (V → T ) × T → T , returns the semantic value of a
term using φS :

ϕS(φS ,M) =
φS(M), if M ∈ V ∧M ∈ dom(φS)
M, if M ∈ N ∨

(M ∈ V ∧ M /∈ dom(φS))
f(ϕS(φS ,M1) . . . ϕS(φS ,Mn)),

if M = f(M1, . . . ,Mn)

Intuitively, in rules (S2) and (S3) (which also match the cases of processes,
P,Q ∈ P), interactions are allowed to take place between the extended pro-
cess with a restricted name (variable) before the effects of that restriction are
interpreted from the context’s perspective using new . Unwanted interactions
involving restricted channels will never occur, since bound names (variables)
are initially distinct (Property 1) and this distinction is preserved at runtime
by Rule (S6). The interpretation of active substitutions in rule (S4) preserves
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the structural congruence rule {M/x} | A ≡ {M/x} | A{M/x}, since the
substitution is recorded in φS for the rest of the interpretation of A. Rule (S6)
interprets a replicated process, !P , as the least upper bound of the poset, F .
This least upper bound is the least fixed point meaning of !P . Due to the fact
that the semantic domain, Api⊥, is infinite, the calculation of this least fixed
point may not terminate within finite limits. The rule also uses a labelling
mechanism to maintain distinct occurrences of bound variables and names of
the spawned processes by subscripting those variables and names with a num-
ber signifying each spawned copy. For the case of embedded replications, e.g.
!!νu.P , labelled instances of u resulting from the outside replication still form
distinct seeds for instances resulting from the inside replication. For example,
the outer labelling will yield !νu1.P , !νu2.P etc., whereas the inner labelling will
yield νu11.P , νu12.P , νu21.P , νu22.P , etc. In rule (S7), an if-then-else condi-
tion is resolved based on the equality of two terms under Σ. No communications
are considered in rule (S8) for input actions since these are considered in rule
(S9) for output actions. Note that rule (S9) covers general reductions, where
the output message is a primitive or a complex term.

Theorem 1 The interpretation of extended processes in Api⊥ is sound and
adequate with respect to late transitions in the applied pi calculus (as given in
Appendix A).

Proof sketch. The soundness property relies on the ability of semantic elements
to match transitions in the operational model. For example, the reduction rule:

a〈x〉.P | a(x).Q τ−→ P | Q

is matched by rule (S9) of Figure 6 by setting L = z = x and M = M ′ = a
as well as noting that the value of φS does not change (hence preserving the
current value of x). On the other hand, adequacy requires that the semantic
transitions be mapped correctly to the operational model. For example:

out(a, λx.λu1 . . . λuk.(t, q)) ∈ S([A]) ρ φS ⇒
∃B,A ∈ EP,M ∈ T :

νx.A
νx.ν u1...ν uk.a〈M〉−→ B ∧ ϕS(φS ,M) = t ∧ S([B]) ρ φS = q

The proof of soundness is by induction on semantic rules, whereas the proof of
adequacy requires a formal approximation relation, p C A, between elements
p ∈ Api⊥ and extended processes, A ∈ EP. Such approximation relations are
popular in similar adequacy proofs for the λ-calculus (see for example [28]). �

4 Non-Standard Semantics

The standard meaning of an extended process does not return information on
the property we are interested in, i.e. term substitutions. Therefore, to trace
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term substitutions during the evolution of extended processes, we define a spe-
cial environment, φE : V → ℘(T ), that maps each variable of an extended
process to the set of semantic terms that may substitute that variable. Since
the non-standard semantics is precise (copies of bound names and variables are
always distinct), each variable will be mapped to at most a singleton set per
choice of control of flow (on either side of ] and ∪φ). Based on φE , a domain,
D⊥ = V → ℘(T ), is constructed, ordered by subset inclusion:

∀φE1, φE2 ∈ D⊥ : φE1 vD⊥ φE2 ⇔ ∀x ∈ V : φE1(x) ⊆ φE2(x)

with the bottom element, ⊥D⊥ , being the null environment, φE0, that maps
each variable to the empty set. The union of environments, ∪φ, is defined as:

∀φE1, φE2 ∈ D⊥, x ∈ V : (φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

The non-standard semantic domain is formed by pairing D⊥ with the standard
semantic domain, Api⊥, resulting in Api⊥ ×D⊥. The bottom element of this
domain is the pair (⊥Api⊥ ,⊥D⊥).

The non-standard semantics for the applied pi calculus is defined by the
semantic function, E([A]) ρ φE ∈ (Api⊥×D⊥), as in Figure 7, where fst(x1, x2) =
x1 and snd(x1, x2) = x2.

(E1) E([A | B]) ρ φE = R([{|A|} ] {|B|} ] ρ]) φE
(E2) E([νn.A]) ρ φE = (new(λn.fst(R([{|A|} ] ρ]) φE )), snd(R([{|A|} ] ρ]) φE))
(E3) E([νx.A]) ρ φE = (new(λx.fst(R([{|A|} ] ρ]) φE)), snd(R([{|A|} ] ρ]) φE ))
(E4) E([{M/x}]) ρ φE = ({|λy.((λx.y)ϕE(φE , M))|} ] fst(R([ρ]) φ′E ), snd(R([ρ]) φ′E))

where, φ′E = φE [x 7→ {ϕE(φE , M)}]
(E5) E([0]) ρ φE = (∅, φE)
(E6) E([!P ]) ρ φE =

F
F

where, F = {(⊥Api⊥ ,⊥D⊥ ), E([
Q
i

P [bnv i(P )/bnv(P )] ]) ρ φE | i = 0 . . .∞}

and, bnv i(P ) = {xi | x ∈ bnv(P )}
(E7) E([if M = L then P else Q]) ρ φE =�

R([{|P |} ] ρ]) φE , if Σ ` ϕE(φE , M) = ϕE (φE , L)
R([{|Q|} ] ρ]) φE , otherwise

(E8) E([M(y).P ]) ρ φE = ({|in(u, λy.fst(R([{|P |} ] ρ]) φE))|}, φE )
where, Σ ` ϕE(φE , M) = u ∈ Pmv

(E9) E([M〈L〉.P ]) ρ φE =
(((

U
M′(z).P ′∈ρ

{|tau(fst(R([{|P |} ] ρ[P ′/M ′(z).P ′]]) φE [z 7→ {ϕE(φE , L)}]))|})

] {|out(u, ϕE(φE , L), fst(R([{|P |} ] ρ]) φE ))|}),
((

S
φ

M′(z).P ′∈ρ

snd(R([{|P |} ] ρ[P ′/M ′(z).P ′]]) φE [z 7→ {ϕE (φE , L)}])) ∪φ φE ))

where, Σ ` ϕE(φE , M) = ϕE (φE , M ′) ∈ Pmv
and, Σ ` ϕE (φE , M) = u ∈ Pmv

(R0) R([ρ]) φE = (
U

A∈ρ
fst(E([A]) (ρ\{|A|}) φE ),

S
φ

A∈ρ

snd(E([A]) (ρ\{|A|}) φE))

Figure 7: The non-standard semantics of the applied pi calculus.

The definition of the function, ϕE : (V → ℘(T ))×T → T , allows for a term
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to be closed as much as possible based on a given φE :

ϕE(φE ,M) =
t, if M ∈ V ∧ φE(M) = {t}
M, if M ∈ N ∨

(M ∈ V ∧ φE(M) = {})
f(ϕE(φE ,M1) . . . ϕE(φE ,Mn)),

if M = f(M1, . . . ,Mn)

The non-standard semantic rules are essentially similar to the standard seman-
tics of the previous section except that the environment holding substitutions,
φE , is returned as part of the overall meaning. Rules (E2) and (E3) interpret
the meaning of a restriction using the new operation on the first element of
the resulting pair, whereas the second element reflects the φE environment re-
sulting from the scope. This is justified as internal substitutions are preserved
by restrictions and Property 1. However, as rule (E4) reveals, systems like
A

def= νx.{M/x} will still indicate that a substitution φE [x 7→ M ] is possible.
This is reasonable, since it is only to the context of A that such substitutions
cannot occur. Furthermore, we know from Property 1 that x will never occur
in such a context.

The meaning of a replicated process in rule (E6) is defined as the least
upper bound of the poset, F , of non-standard semantic elements. Since the
non-standard semantic domain, Api⊥ ×D⊥, is infinite, it may not be possible
to calculate this least fixed point within finite limits. Rules (E8) and (E9) deal
with the cases of input and output actions, respectively. Communications are
dealt with in rule (E9) for output actions as usual and therefore, φE remains
unchanged in rule (E8) for input actions. Finally, rule (R0) is used to interpret
the contents of the ρ multiset using ] and ∪φ.

The correctness requirement for the non-standard semantics with respect to
the standard semantics is expressed as follows.

Theorem 2 ∀A ∈ EP : (S([A]) ρ φS = p) ∧ (E([A]) ρ φE = (p′, φ′E)) ⇒
(p′ = p) ∧ (∃t ∈ T, x, y ∈ V : t ∈ φ′E(x) ⇒ λy.((λx.y)t) ∈ p)

Proof sketch. The correctness requirement can be shown by induction over the
rules of the non-standard and standard semantics. �

The theorem gives two correctness requirements: the first is that the stan-
dard part of a non-standard interpretation must be the same as the result of the
standard interpretation. The second requirement is that for any substitutions
that appear in the result of the standard interpretation, then those substitutions
must be captured by the final non-standard environment, φ′E .

5 Abstract Semantics

In order to limit the size of the semantic domain to a finite limit, we adopt the
abstraction of [10, 12], which limits the number of copies of bound names and
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variables and the depth of complex terms. For this purpose, we first introduce
a finite predomain of tags, Tag , ranged over by t, ṫ, ẗ, where t is the tag of
any term, ṫ is the tag of a name or a variable and ẗ is the tag of a function
application. Using Tag , we tag L in occurrences of M〈L〉.P and {L/x} in the
syntax. The following functions are also defined over tags and processes:

value of : ℘(Tag) → ℘(T ) (12)
tags of : P → ℘(Tag) (13)

such that we have, value of ({t1, . . . , tn}) = {M1, . . . ,Mn} returns a set of
tagged terms corresponding to a set of tags. For example, value of ({t1, t2}) =
{M,N} in A

def= a〈M t1〉.P | {N t2/x}. On the other hand, tags of (P ) =
{t1, . . . , tn} returns the set of tags used in a process. For example, tags of (A) =
{t1, t2} ∪ tags of (P ).

We now introduce the αk,k′ abstraction function, which keeps to a finite
level, the number of copies of primitive terms and tags.

Definition 1 Define αk,k′ : N× N× (Pmv + Tag) → (Pmv] + Tag]):
∀ut ∈ (Pmv + Tag), i, k, k′ ∈ N : αk,k′(ut) =

ṫk, if ut = ṫi ∈ Tag and i > k
ẗk′ , if ut = ẗi ∈ Tag and i > k′

uk, if ut = ui ∈ Pmv and i > k
ut, otherwise

For example, we have that α2,3(ṫ10) = ṫ2, α2,3(ẗ5) = ṫ3 and α2,3(x2) = x2.
The resulting abstract predomains, Pmv ] and Tag], are defined as Pmv ] =
Pmv\{uj | j > k} and Tag] = Tag\({ṫj | j > k} ∪ {ẗi | i > k′}). Informally,
k constrains the number of copies of primitive terms and their tags, whereas
k′ constrains the number of copies of tags of function applications. In effect,
constraining the tags of primitive terms implies limiting the copies of bound
names and variables carrying the tags, whereas constraining the number of
tags of function applications means limiting the depth of the resulting data
structures. For example, in the process, !νn.a〈nṫ〉 | !a(x), it is possible to spawn
infinite copies of each replication, νn1.a〈nṫ1

1 〉 | a(x1) | νn2.a〈nṫ2
2 〉 | a(x2) . . .,

making it clear that ṫ is an indicator to the number of copies n has after spawning
each process. On the other hand, the process, !a(x).a〈enc(x, k)ẗ〉 | a〈b〉, which
spawns a(x1).a〈enc(x1, k)ẗ1〉 | a(x2).a〈enc(x2, k)ẗ2〉 | a〈b〉 . . ., demonstrates the
role of ẗ as a counter of the number of times the encryption is applied to b. The
choice between a uniform (k = k′ = 1) and a non-uniform (k > 1 or k′ > 1)
analysis is a matter of trade-off between precision and cost.

Using αk,k′ , we define the abstract environment, φA : V ] → ℘(Tag]), which
maps each abstract bound variable of the analysed extended process to a set
of abstract tags, representing terms that could substitute that variable. An
abstract domain, D]

⊥ = V ] → ℘(Tag]), is formed ordered by subset inclusion,
as follows:
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∀φA1, φA2 ∈ D]
⊥, x ∈ V ] : φA1 vD]

⊥
φA2 ⇔ φA1(x) ⊆ φA2(x)

where, ⊥D]
⊥

= φA0. Taking D]
⊥ as the abstract semantic domain, we define the

abstract semantic function, A([A]) ρ φA ∈ D]
⊥, as in Figure 8.

(A1) A([A | B]) ρ φA = R([{|A|} ] {|B|} ] ρ]) φA
(A2) A([νn.A]) ρ φA = R([{|A|} ] ρ]) φA
(A3) A([νx.A]) ρ φA = R([{|A|} ] ρ]) φA
(A4) A([{Mt/x}]) ρ φA = R([ρ]) φA[x 7→ φA(x) ∪ {t}]
(A5) A([0]) ρ φA = φA
(A6) A([!P ]) ρ φA =

F
F

where, F = {⊥
D

]
⊥

,A([
Q
i
ren(P, i) ]) ρ φA | i = 0 . . .∞}

and, ren(P, i) = fold subi (fold subi P bnv(P )) tags of (P )
and, fold f e {x1, . . . , xn} = f(xn, . . . , f(x1, e) . . .)
and, subi x y = y[αk,k′ (xi)/x]

(A7) A([if M = L then P else Q]) ρ φA =�
R([{|P |} ] ρ]) φA, if ∃M ′ ∈ ϕA(φA, M), L′ ∈ ϕA(φA, L) : Σ ` M ′ =] L′

R([{|Q|} ] ρ]) φA, otherwise
(A8) A([M(y).P ]) ρ φA = φA
(A9) A([M〈Lt〉.P ]) ρ φA = (

S
φ

M′(z).P ′∈ρ

R([{|P |} ] ρ[P ′/M ′(z).P ′]]) φ′A) ∪φ φA

where, ∃M ′′ ∈ ϕA(φA, M), M ′′′ ∈ ϕA(φA, M ′) : Σ ` M ′′ =] M ′′′ ∈ Pmv
and, φ′A = φA[z 7→ φA(z) ∪ {t}]

(R0) R([ρ]) φA =
S

φ
A∈ρ

A([A]) (ρ\{|A|}) φA

Figure 8: The abstract semantics of the applied pi calculus.

The special function, ϕA : (V ] → ℘(Tag])) × T → ℘(T ), returns a set of
terms corresponding to a term, M , given tag substitutions captured by φA:

ϕA(φA,M) = ϕ′
A(φA,M [αk,k′(x)/x][αk,k′(n)/n]){}

where,
ϕ′
A(φA,M)s = if M ∈ s then {} else

⋃
L∈value of(φA(M))

ϕ′
A(φA, L)s∪{M},

if M ∈ V ] ∧ φA(M) 6= {M}
{M},
if M ∈ N ] ∨ (M ∈ V ] ∧ φA(M) = {})
{f(M ′

1, . . . ,M
′
n) |M ′

1 ∈ ϕ′
A(φA,M1)s∪{M},

. . . , M ′
n ∈ ϕ′

A(φA,Mn)s∪{M}},
if M = f(M1, . . . ,Mn)

In the above definition of ϕ′
A, the set s is required to prevent the computa-

tion from looping infinitely, in case cyclic terms are encountered, for example,
φA[x → {t}] and value of(t) = encrypt(x, k).

Rules (A2) and (A3) return the φA environment resulting from the evolu-
tion of an extended process under a top-level restriction. Property 1 plays an
important role in disallowing incorrect behaviour between the scope and the
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rest of elements in ρ. Rule (A4) deals with floating substitutions by updating
φA with the tag of the substituted term. The rule for replication, (A6), defines
the least upper bound of the poset, F , as the least fixed point of the meaning of
a replicated process while labelling bound names and variables as well as tags
of the spawned copies. This rule however is different from its concrete versions
of Figures 6 and 7 in that it abstracts every bound primitive term and tag be-
longing to the spawned processes using the abstraction, αk,k′ . This maintains
that the number of resulting copies of those primitive terms and tags is kept
finite. The following theorem states that the calculation of the least fixed point
in abstract semantics is guaranteed to terminate due to the finite nature of D]

⊥.

Theorem 3 The calculation of rule (A6) terminates.

Proof sketch. To prove the termination property, it is necessary to satisfy the fol-
lowing requirements. First, the semantic domain must be finite. This is satisfied
by the definition of D]

⊥. Second, the size of the Σ must be finite, i.e. there must
be a finite number of equations relating terms. Finally, we need to prove the
monotonicity of A([

∏
i

P ]) ρ φA, i.e. A([
∏
i

P ]) ρ φA vD]
⊥
A([

∏
i+1

P ]) ρ φA. To prove

this, we simplify the inequality into A([Q]) ρ φA vD]
⊥
A([Q | P ]) ρ φA, where

Q =
∏
i

P . This is further simplified to become A([Q]) ρ φA vD]
⊥
A([Q]) ρ′ φA,

where ρ′ = ρ]ρ{|P |}ρ. This can be proven by induction over P . In particular, the
most interesting cases are rules (A4) and (A9), where φA changes. For example,
in rule (A9), we have that since ρ ⊆ ρ′, then M ′(y).P ′ ∈ ρ ⇒ M ′(y).P ′ ∈ ρ′.
From this we can conclude that A([Q]) ρ φA vD]

⊥
A([Q]) ρ′ φA, since the environ-

ment resulting from A([Q]) ρ φA will necessarily be a subset of the environment
resulting from A([Q]) ρ′ φA. Informally, this means that the larger system will
always induce more term substitutions than the smaller system. �

The rule for conditional processes, (A7), identifies two terms whenever it
finds terms in their φA tag values that are abstract equal under Σ, in other
words, Σ ` M ′ =] L′. The definition of =] is given as:

Σ ` M ′ =] L′ ⇔
∃M,L : (Σ ` M = L) ∧
(M ′ = M [αk,k′(x)/x]x∈bnv(M)) ∧
(L′ = L[αk,k′(x)]x∈bnv(L))

It is worth noting that rule (A7) introduces further approximation when con-
sidering that each of the compared terms may have a non-singleton set of values
in φA.

The rule for input actions, (A8), returns the φA environment unchanged
since communications are dealt with in the next rule, (A9), which deals with
output actions. The φA environment is updated with appropriate tags for each
communication using αk,k′ . Finally, rule (R0) unifies all the interpretations of
extended processes composed in ρ, using ∪φ.

We can state the safety of the abstract semantics by the following theorem.
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Theorem 4 ∀A, ρ, φE , φA, k, k′, E([A])ρφE = (p, φ′E),A([A]) ρ φA = φ′A :
(∃M,M ′ ∈ T , x ∈ V : ϕE(φE ,M) ∈ φE(x) ⇒
∃t ∈ φA(αk,k′(x)) : value of ({t}) = {fold subk,k′ M ′ bnv(M ′)} ∧ Σ ` M = M ′)
⇒
(∃M,M ′ ∈ T , x ∈ V : ϕE(φ′E ,M) ∈ φ′E(x) ⇒
∃t ∈ φ′A(αk,k′(x)) : value of ({t}) = {fold subk,k′ M ′ bnv(M ′)} ∧ Σ ` M = M ′)
where,
fold f e {x1, . . . , xn} = f(xn, . . . , f(x1, e) . . .)
and, subk,k′ x y = y[αk,k′(x)/x]

Proof sketch. The proof is by induction over the structure of the abstract se-
mantics and relies on the safety of the ∪φ operation. �

The theorem states that for any term, M , captured in the non-standard
semantics by including its ϕE(φ′E ,M) value in the value of a variable, φ′E(x),
then that will correspond to capturing a tag, t, in the abstract semantics, by
φ′A(αk,k′(x)). The appropriateness of t is expressed by the ability to obtain an
abstract form, fold subk,k′ M ′ bnv(M ′)), of a term, M ′, that is equivalent under
Σ to the concrete term, M , by evaluating t using value of . More concisely, every
concrete term, M , captured in the non-standard semantics is captured as the
corresponding abstract tag, t, in the abstract semantics.

6 Security Properties

The two main security properties we consider in this section, information leakage
and authenticity breach, were essentially introduced earlier in [9, 10, 12]. In what
follows, we adapt these properties for the results of the abstract semantics of
the previous section.

Given, S = (SL,vS ,uS ,tS ,⊥S ,>S) and A = (AL,vA,uA,tA,⊥A,>A) as
finite lattices of secrecy and trust levels, respectively, and ξS : (N ∪V) → S and
ξA : (N ∪ V) → A as classification environments from names and variables to
secrecy and trust levels, respectively (where the null environments are defined
as ∀u ∈ (N ∪ V) : ξS0(u) = ⊥S ∧ ξA0(u) = ⊥A, indicating that the secrecy
and trust levels of free names are the bottom elements, which is the safest
assumption one could assume). Now we can define the following properties.

Definition 2 (Information leakage)
A name, a, is leaked in an extended process, A, if given φA = A([A]) ρ0φA0 and
a classification environment, ξS, then the following holds: ∃y ∈ dom(φA), u ∈
(N ∪ V),M ∈ value of (ϕA(φA, y)) : ξS(y) vS ξS(a) ∧ Σ ` M = u

Definition 3 (Authenticity breach) The authenticity requirement of a vari-
able, y, is breached within an extended process, A, if given the abstract interpre-
tation, φA = A([A]) ρ0φA0 and a classification environment, ξA, then the fol-
lowing holds: ∃y ∈ dom(φA), u ∈ (N ∪V),M ∈ value of (ϕA(φA, y)) : ξA(a) vA

ξA(y) ∧ Σ ` M = u
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Information leaks occur whenever data classified at high secrecy levels are
captured by variables classified at lower secrecy levels, whereas authenticity
breaches have an opposite direction of concern compared to information leaks:
a variable with high trust level breaches authenticity whenever it manages to
capture a data item with low trust level. Note, that the properties capture the
secrecy and trust levels only of terms that are primitive terms under the equa-
tional theory of Σ. This stems from the realisation that only primitive terms
may be thought of as sensitive data that need to be secured and monitored.
Complex terms have the sole purpose of securely carrying the sensitive informa-
tion across the network, hence, a complex term is useless to a recipient that is
unable to destruct it and extract its sensitive data.

7 Example: The Diffie-Hellman Protocol

We consider here a variant of the Diffie-Hellman key exchange protocol [20] to
demonstrate the use of equations like f(x, g(y)) = f(y, g(x)). The protocol con-
sists of the following exchange of messages between an initiator, agent A, and a
responder, agent B, aimed at establishing a session key, K:

Message 1 A → B : {g(N)}K on cB

Message 2 B → A : {g(N ′)}K on cA

Message 3 A → B : {M}KAB
on cB

Message 4 B → A : {M ′}KAB
on cA

Message 5 A → I : K on cI

where K is a long-term secret key shared between A and B. The two initial mes-
sages (1–2) involve sending the terms, g(x) = lx mod p, where x is instantiated
by fresh nonces, N and N ′, p is a reasonably large prime number and l is a num-
ber such that l < p. Both p and l are public. The session key is then computed
by both the initiator and the responder as KAB = f(N, g(N ′)) = f(N ′, g(N)),
where f(y, z) = zy mod p. The next two messages (3–4), are used to exchange
sensitive data, M and M ′, encrypted under the session key, KAB . Finally, in
message (5), A performs a faulty action by releasing the long-term secret key
shared with B to the intruder (the public network). Our main concern is to
verify the secrecy and authenticity of messages M , M ′ and whether the release
of K will affect their properties in subsequent runs of the protocol.

The specification of the protocol in the applied pi language is given in Figure
9 (for clarity, we have not tagged any terms). In this specification, we have
used non-recursive definitions Init , Resp and I to describe the behaviours of
the protocol initiator, responder and intruder. Here, X is an agent variable
representing the identity of the initiator and Y is an agent variable representing
the identity of the responder. Both X and Y may be substituted by names
of honest agents Alice, Bob (but not I). Hence, Init{A/X}{B/Y } indicates
that the initiator is agent A and it is initiating the protocol to agent B and
Resp{A/X}{B/Y } to indicate that the responder is agent B and it is expected
to respond to A. The different combinations of Init/Resp and their substitutions
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Init
def
= νdXY .νbXY .νNXY .νMXY . (

cY 〈enc(g(NXY ), K)〉.cX(xXY ).(bXY 〈dec(xXY , K)〉 |
bXY (wXY ).cY 〈enc(MXY , f(NXY , wXY ))〉.cX(zXY ).

(dXY 〈dec(zXY , f(NXY , wXY ))〉 | dXY (msgXY ).cI〈K〉.run〈next〉)))
Resp

def
= νd′XY .νb′XY .νN ′

XY .νM ′
XY . (

cY (x′XY ).(b′XY 〈dec(x
′
XY , K)〉 |

b′XY (w′
XY ).cX〈enc(g(N ′

XY ), K)〉.cY (z′XY ).
cX〈enc(M ′

XY , f(N ′
XY , w′

XY ))〉.
(d′XY 〈dec(z

′
XY , f(N ′

XY , w′
XY ))〉 | d′XY (msg′XY ))))

I
def
= νi. ( i〈κ0〉 | !i(κ).( νnet .i〈κ ∪ {net}〉 |Q

∀M,N∈set(κ)

M〈N〉.i〈κ〉 |
Q

∀M∈set(κ)

M(x).i〈κ + x〉 |
Q

∀f∈Σ,M,N1,...,Nn∈set(κ)

M〈f(N1, . . . , Nn)〉.i〈κ + f(N1, . . . , Nn)〉 |
Q

∀x,M∈set(κ)

{M/x}.i〈κ〉

Protocol
def
= (νK.!run(v).((Init{A/X}{B/Y }) | (Init{B/X}{A/Y }) |

(Resp{A/X}{B/Y }) | (Resp{B/X}{A/Y }))) |
νκ0.(I{(A, B, I, cA, cB , cI , l, p)/κ0}) | run〈one〉

Figure 9: Specification of the Diffie-Hellman protocol including the intruder, I.

in the definition of the Protocol do not include the cases where the intruder is
the initiator or the responder. This is due to the fact that such behaviours are
possible to simulate within the Dolev-Yao definition of I (malicious behaviour
always subsumes honest one).

The definition of the intruder, I, itself is an implementation of the Dolev-Yao
model [21], modified to include general functions (instead of cryptographic func-
tions only). The initial knowledge of I is given as a tuple, κ0 = (M1, . . . ,Mn),
and K(κ0) = {M1, . . . ,Mn} is the underlying set. The substitution applied to
I in Protocol involving κ0 is the instantiation of this knowledge. Furthermore,
the intruder is capable of building up it knowledge by creating new names, net,
and learning those names, as well as performing input actions over any of the
names available in its current knowledge in order to spy on the context. In
between, the intruder can also apply any function or perform any substitution
over the terms it currently knows about and learn the resulting term. Finally,
the intruder also attempts to constantly output all its knowledge to the context.

In order to analyse the protocol, we apply A([Protocol ]) {| |} φA0 with α2,2,
which enables us to monitor two runs of the protocol (non-uniform analysis).
The results are shown in Figure 10 for some of the values of the final φA after
the application of the value of function to simplify the figure. We explain these
results for two runs initiated by A to B. In the first run, the intruder, I, was
unable to capture any of the sensitive messages, MAB1, M ′

AB1, since I is unable
to decipher enc(g(NAB1),K) or enc(g(N ′

AB1),K) as K is only leaked at the
end of the first run triggered by run〈one〉. Furthermore, since I now has K,
it is capable in the second run to obtain messages, MAB2, M ′

AB2. This is due
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κ 7→ {A, B, I, cA, cB , cI , l, p,net1,net2, K,
enc(g(NXY i), K), enc(g(N ′

XY i), K),
enc(MXY i, f(NXY i, g(N ′

XY i))), enc(M
′
XY i, f(N ′

XY i, g(NXY i))),
MAB2, M ′

AB2, MBA2, M ′
BA2, g(NXY i), g(N ′

XY i), g(neti),
f(neti, g(NXY i)), f(neti, g(N ′

XY i))} for i ∈ {1, 2} and X, Y ∈ {A, B}
wXY 1 7→ {A, B, I, cA, cB , cI , l, p, enc(g(N ′

XY 1), K), g(NXY 1), g(net1)}
w′

XY 1 7→ {A, B, I, cA, cB , cI , l, p, enc(g(NXY 1), K), g(N ′
XY 1), g(net1)}

for X, Y ∈ {A, B}
wXY 2 7→ φA(κ) w′

XY 2 7→ φA(κ)
msgXY 1 7→ {M ′

XY 1} msg′XY 1 7→ {MXY 1} for X, Y ∈ {A, B}
msgXY 2 7→ φA(κ) msg′XY 2 7→ φA(κ)

Figure 10: Results of the non-uniform analysis of the Diffie-Hellman protocol.

to the fact that the intruder obtains the session key, f(net2, g(NAB2)) = KIA

shared with A, and f(net2, g(N ′
AB2)) = KIB shared with B. Hence, A will

compute f(NAB2, g(net2)) = KAI , and B will compute f(N ′
AB2, g(net2)) =

KBI . Furthermore, by the equations, Σ ` KIA = KAI and Σ ` KIB = KBI ,
we have that I now has shared keys with both A and B and therefore, it is
capable of acting in the role of the man in the middle.

We find that these results indicate information leakage and authenticity
breaches for messages, MXY 2, but not for messages MXY 1. For example, set-
ting ξS(κ) = ⊥S , ξS(MAB2) = >S , we have then an instance of Property
2 and message MAB2 is leaked to I. Similarly, setting ξA(net2) = ⊥A and
ξA(msgAB2) = >S , we find that Property 3 is satisfied and the authenticity of
variable msgAB2 is breached. However, following the same argument, both the
secrecy of MAB1 and the authenticity of msgAB1 are preserved.

Performing a uniform analysis with α1,1 would yield results that are less
precise, as shown in Figure 11. In these results, messages MAB1,M

′
AB1 are

κ 7→ {A, B, I, cA, cB , cI , l, p,net1,net2, K, MAB1, M ′
AB1, MBA1, M ′

BA1,
enc(g(NXY 1), K), enc(g(N ′

XY 1), K),
enc(MXY 1, f(NXY 1, g(N ′

XY 1))), enc(M ′
XY 1, f(N ′

XY 1, g(NXY 1))),
g(NXY 1), g(N ′

XY 1), g(net1),
f(net1, g(NXY 1)), f(net1, g(N ′

XY 1))} for X, Y ∈ {A, B}
wAB1 7→ {A, B, I, cA, cB , cI , l, p, enc(g(N ′

XY 1), K), g(NXY 1), g(net1)}
w′

AB1 7→ {A, B, I, cA, cB , cI , l, p, enc(g(NXY 1), K), g(N ′
XY 1), g(net1)}

for X, Y ∈ {A, B}
msgXY 1 7→ φA(κ) msg′XY 1 7→ φA(κ) for X, Y ∈ {A, B}

Figure 11: Results of the uniform analysis of the Diffie-Hellman protocol.

captured by the intruder, which is due to the uniformity of the α1,1 abstraction,
which renders MAB2,M

′
AB2 and MAB1,M

′
AB1 the same. Similarly, variables

msgAB1,msg′AB1 and msgAB2,msg′AB2 are indistinguishable. Consequently,
neither the secrecy of messages MAB1,M

′
AB1 nor the authenticity of variables

msgAB1,msg′AB1 can then be proven.
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8 Conclusion and Future Work

We have presented a non-uniform static analysis of the applied pi calculus,
which captures the essential property of term substitutions. The analysis fol-
lows a denotational approach by first developing a domain-theoretic model of
the language, correctly extending the model with the property of interest, and
finally, introducing a safe abstraction to ensure termination.

There are several directions for extending the current work. We plan to
apply the analysis to more realistic protocols with non-free term algebra and
that possibly adopt as their core the Diffie-Hellman protocol. Also, it would be
interesting to capture other security properties, e.g. message deniability [30],
where an agent is incapable of proving to a third party that a message was
sent by another agent, even if itself is sure about the message’s authenticity.
Hence, for example, in the analysis of the Diffie-Hellman protocol, one may
be able to prove the deniability of message, enc(MAB1, f(NAB1, g(N ′

AB1))),
since MAB1 is obtained by B and B has the term f(N ′

AB1, g(NAB1)), where
Σ ` f(N ′

AB1, g(NAB1)) = f(NAB1, g(N ′
AB1)). Therefore, B is capable of con-

structing enc(MAB1, f(NAB1, g(N ′
AB1))) to a third party and consequently, it

cannot prove that A was the source of the message.
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