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Abstract. Abstraction is a valuable tool for dealing with scalabilitylarge state

space contexts. This paper addresses the design, usimgcsiost, of good poli-

cies for minimal autonomous agents applied within a situmagraph-framework.
In this framework an agent’s policy is some function that mpprceptual inputs
to actions deterministically. A good policy disposes theragowards achieving
one or more designated goal situations, and the design gg@ms to identify

such policies. The agents to which the framework appliesaaseimed to have
only partial observability, and in particular may not beeabd perceive fully a

goal situation. A further assumption is that the environtraay influence an
agent’s situation by unpredictable exogenous events,aatholicy cannot take
advantage, of a reliable history of previous actions. ThiénBn discount mea-
sure provides a means of evaluating situations and hencevtrall value of a

policy. When abstraction is used, the accuracy of the methodoe significantly
improved by modifying the standard Bellman equations. T@per describes
the modification and demonstrates its power through coreparnivith simulation

results.

1 Introduction

Our interest is in designing good policies for particulaslynple autonomous agents.
The simplest case is a memoryless reactive agent whosg polisists solely of some
function that maps perceptual inputs to actions detertidaiby. A good policy dis-
poses the agent towards achieving one or more designatédity@dions, and the de-
sign process aims to identify such policies. We also comsidslest extensions such as
inclusion of finite memory, wireless communication and netedministic (relational)
policies. The termminimal agenwill be used loosely here to cover both the simplest
case and these near-minimal extensions. The focus on nliageats anticipates ap-
plication contexts where physical or economic constraingke it impractical to de-
ploy more sophisticated cognitive agents embodied in sporadingly sophisticated
hardware. Examples include remote exploration and med&ab-robotics where the
desired goals may be achievable by a large community of palgismall and inex-
pensive primitive agents among which occasional lossegigsfiinctionalities can be
readily tolerated.

Our design method is based on discounted-reward analydiajpplied to a directed
policy graph whose arcs represent the transitions thatragwer the policy being con-
sidered. Each transition takes the agent from some situatia (state, perception)



pair — to some successor situation. The analysis yields an oveo#itty value that
will depend uponinter alia, the designated goal situation(s) and whatever rewards and
probabilities are assigned to the graph’s arcs by the desidgine method is called the
situation-graph-frameworkSGF) to reflect its reliance upon explicit situation graphs
and was first reported in [1]. The SGF framework can be disiistied from both the
standard MDP and POMDP frameworks [7, 4]. It is non-Markayigsince an agent’s
next perception is conditional upon more than its curremt@gtion and action. The
design process makes use of the full state, through the usiuations. The agents
to which the framework applies are assumed to have onlygbattiservability, and in
particular may not be able to perceive fully a goal situatibhnis feature distinguishes
the framework from other design methods that rely upon cetepyoal observation.
The formulation in [6], where an agent’s perception is teglads the state, is a special
case of SGF. In particular, the various memoryless andeimgimory policies found by
Q-learning are also found using SGF by the algorithm showkFigare 5. The POMDP
framework uses an estimation of the distribution of the &tdlte, called a belief state,
to guide the planning process [4]. This can result in paiégiewhich the action taken
when perceiving may implicitly depend on the route takenjie-that is, an agent may
follow a policy expressed by a graph. Agents in SGF are noipgeal to follow such
policies because they are designed for use in communitiagerits, where unexpected
events are the norm. The core assumption in using “beli¢éstés that remembrance
of the past is a reliable basis on which to estimate an ageutient situation, which
is a safe assumption in the specific circumstance that theosmrent can be impacted
only by that agent. This assumption will not hold if the enviment can be additionally
impacted by exogenous events, including the actions ofr@pents. SGF represents
such events by so-callegarcs in the situation graphs and employs a particular elab-
oration of the discounted-reward analysis to deal with thExperimental evaluation
of policies designed in this way for communitiesabnedagents was first presented
in [2] and demonstrated strong empirical evidence for thigeadfy of the design pro-
cess. Communities dfifferentiated(non-cloned) multiple agents were investigated in
[3], where it was shown how SGF could represent each spe€iagemt by its own
species ofc-arc and extract, for each species, a so-called viewpoaglgrepresenting
the behaviour of that species in the context of all the others

Whether dealing with single agents or communities, SAkke the other frame-
works—must in general confront the issue of scalability, and thet&ehis is appropri-
ate use ohbstraction Broadly speaking, abstraction amounts to ignoring manyomi
distinctions— such as between states, perceptions or agetiiat are considered un-
likely to have a significant bearing upon outcomes. It acksehis by collecting similar
concrete entities (such as states, etc.) into single geeatities which then become
the first-class elements of the formulations used in thegaeprocess. To a certain
extent the SGF viewpoint treatment just mentioned is suchhketraction, in that an
z-arc in a viewpoint graph signifies an event instigated by esother agent but with-
out specifying which particular agent it is, and so avoidséixplicit and cumbersome
multi-agent vectors that some MDP designers [8] have reddd in order to deal with
communities. Here we shall concentrate insteadsitiation-abstractionthat is, the
abstraction of both states and perceptions. This can béedpplespective of whether



one is dealing with one agent or many, though in this paperngsgnt it only in rela-
tion to the single-agent case. Its first benefit is to redueesike of the situation-graphs
being dealt with and hence to ameliorate the burden of ettigméhe probabilities on
their arcs. Its second benefit is that abstraction of peimeptreduces the size of the
policy-space over which optimization is pursued, sincertheber of possible policies
depends exponentially upon the number of possible permepti

Section 2 outlines the basic features of SGF and its diseodrgward procedure in
the absence of abstraction. Section 3 describes situabstraction and explains how
its deployment can produce inaccurate predictions of palaue if one relies upon
the standard discounted-reward procedure. Section 4idesaur new modification of
that procedure to reduce those inaccuracies and Sectioasemis empirical simula-
tion results for two simple case studies to show the imprguredlictive power of this
modification. Together, those two sections contain what wesider to be the novel
contribution of the paper. Section 6 concludes with an assest of the method in
comparison with related work on other frameworks.

2 Basic Features of SGF

A simple example serves to illustrate the basic features@i.3t assumes a single
agent in a world comprising a regidi called the ground, two weights and a balance
having left and right end4. and R. In any state of the environment the weights are
distributed amond., R andG. The distribution determines whether or not some end
of the balance is raised. The agent is equipped to perceianyirstate just one of the
following: that there are some weights 65 that there are no weights a#, that the

L end of the balance is raised or that tReend is raised. Figure 1 shows a situation in
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Fig. 1. A situation for a single agent

which one weight is orl, the other is onz and the agent perceives thatis raised.
It is one of 10 possible situations, each being a paip) whereo is a state ang is a
perception that the agent may haveoofA state can be represented by a trifller, )
giving the numbers of weights ab, R andG. The first two columns in Figure 2 show
the possible states and perceptions, labelled 1-6aand respectively. For compact
presentation we use just these labels to denote situafianu, 2¢, 3a, 3d, 4b, 4c¢, 5b,
5d and6b. Thus the situation((, 0, 1), ‘sees R is raised’) shown in Figure 1 is denoted
by 3d.

The third column in Figure 2 shows for each percepjidhe setA(p) of actions the
agent might perform when perceivipgAltogether there are 5 kinds of action, denoted



o
1/(0,2,2 P A(p)
2/(0,1,1) al seeds has weights {gr,gl ,w}
3/ (1,0,1) blseeg has no weights {w}
4{ (0,2,0) c| seesl israised {rg,w}
5 (2,0,0) d| seesRis raised {l g,w}
6| (1,1,0)

Fig. 2. States, perceptions and action sets

bygr,gl,rg,! g, andw. The first four transfer a weight fro& to R, from G to L,
from R to G and fromL to G, respectively, and thus effect a change of state. We must
further stipulate what the agent perceives after perfogine of these actions. After
gr orgl itnext perceiveg or d unless no end is now raised, in which case it perceives
b. Afterr g orl g it next perceives. Informally, therefore, after putting a weight on the
ground the agent next sees the disposition of the groundstatfiier putting a weight on
the balance it next sees the disposition of the balance ifttey is tilted but otherwise
sees the disposition of the ground. Tlgwander) action leaves the state invariant
and causes the agent to expend some time in updating itsppiercef that state; this
includes the reflexive case of maintaining its current pgtioa. Figure 3 shows the
graph of possible transitions between situations, butdace clutter it suppresses each
situation’s reflexive w-arc. A policy for the agent is a totahction from perceptions
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Fig. 3. Complete transition graph

to actions. The total number of possible policies is the pobaf the cardinalities of
all the A(p) action sets, which in the present case is 12. They includénstance, the
policy {a — gr,b — w,c — w,d — | g}. Each one corresponds to a restriction of
the complete graph whereby the arcs emerging from all $itnatsharing a common
perception all bear the same action label.



The value of a policy partly depends upon the chosen goaltsitu we shall choose
the goal to besb, in which the balance bears one weight at each end and thé iagen
seeing the vacant ground. The status of the chosen goalastexdlin the assignment of
numerical rewards to the arcs in the complete graph, eactglzemeasure of the sup-
posed benefit/disbenefit of effecting the associated tiansiWe might, for instance,
assign a large positive rewaftl= 100 to each of the two arcs leadingéé and a small
but negative reward = —1 to every other arc. A policy’s value partly depends also
upon the probabilities assigned to the arcs. If practicablse are estimated from con-
sideration of the particular problem domain. Otherwise par assign at each situation
an equi-probable distribution to its emergent arcs for esatton type.

Once the assignments of rewards and probabilities are irepk value for each
situation under a given policy can be calculated froits) = Yy css(Psy X (Lou +
~vxV(u))), the standard bellman formula, in whith, is the immediate reward for the
action that takes to u, Ps, is the probability that frons the agent proceeds nextio
and the parametér < v < 1 is a discount factor that ensures the resulting set of linear
equations has a unique solution. If it is assumed that thaetagay begin its activity
at any situation then the overall policy value is just the mefthe situation values.
Applying this to the above example, takif= 100, r = —1, v = 0.9 and assuming
equi-probable distributions, it turns out that 4 of the 1%@es are co-optimal for the
chosen goal, these beinfp — gl ,b — w,c — rg,d — | g/w} and{a — gr,b —
w,c — rg/w,d — | g}, all having value 357.27. The worst 4 all have value 91 and
include{a — w,b — w,c — w,d — W}.

In the above account the situations in the formulation weken to beoncrete that
is, corresponding one-to-one with the real situationsragign the problem domain. In
the next section we turn to the use of abstraction, in whicihegneric situation in the
formulation may encompass many concrete situations.

3 Situation Abstraction in SGF

Abstraction in SGF partitions the set of concrete statessnbsets called generic states
and partitions the set of concrete perceptions into sulesdltsd generic perceptions. A
generic situatio{O, P) is a pairing of a generic state with a generic perceptiof.
This abstraction process is required to satisfy the follmpgonstraints:

1. if (o, p) is a concrete situation then there must exist exactly onergesituation
(O, P) such thab € O andp € P;

2. if (O, P) is a generic situation then it must contain at least one eateaituation
(0,p) whereo € O andp € P;

3. if Pis a generic perception th¢n{ A(p)|p € P} D A(P).

Here, 1) and 2) ensure that the sets of concrete states areptiens are partitioned
such as to result in a partitioning of the complete set of ostecsituations, whilst 3)
ensures that every generic perception offers at least di@namong those offered by
each of its concrete members.

With fewer situations to deal with at the abstract level tlaanhe concrete level,
the equations relating situation values for any given godice correspondingly fewer.



Perhaps more importantly, having fewer perceptions at tsract level than at the
concrete level reduces the number of policies to be evaluate

Intuitively, a good abstraction is one whose discountingliferences at the con-
crete level yields a ranking of abstract policies that isragpnately commensurate
with the ranking of the concrete policies that would be aldifrom concrete analysis.
At present we do not have a clear prescription for reliabgnitifying such abstractions
in SGF, and indeed the question of what constitutes a goddagtienin generalre-
mains an open one in Al research [9]. However, given any abstm in SGF, we will
elucidate the manner in which the standard Bellman formaiksusceptible to inaccu-
racy when applied to it and we will show how to obtain improeeduracy by suitably
modifying that formula.

We illustrate these issues with an example, again assunsirggie agent. The en-
vironment in which this agent operates is calledken Worldand contains some fixed
numberN of tokens. It is organized as one or more heaps of tokensltegeiith a sin-
gle region namesloid in which there are no tokens. As its perception, the agerdysw
sees either a heap woid and always knows whether or not it is holding a token. Its
possible actions are just the followingy. : grab a token from a heagy : drop a token
onto a heap or onteoid; w. wander.

Prior to performinggr the agent must be not holding and seeing a heap, and is
afterwards holding a token and seeing the reduced heap.t®performingdr it must
be holding a token and seeing a heapaid, and is afterwards not holding and seeing
the heap containing the token just dropped. Prior to periiogrw it can be holding or
not and seeing anything, and is afterwards seeing a heapidwith its (not)holding
status preserved. The goal will comprise some specified gunafiion of heaps and
some perception, not necessarily perceivable in its aptlvg the agent. Thi§oken
World may alternatively be viewed as a simple analoguBlotks Worldor as a system
for incrementally transforming patrtitions of the numbér

In this formulation the region in which there are no tokenseéated as indivisible.
The alternative would be to represent a plurality of tokeslegions, e.g. as the vacant
cells in a grid-space. Although that is notionally more istad as a model of an envi-
ronment in which an agent may wander from place to place ritstout to confer no
material benefit in assessing the relative merits of pdiciéhether that be done through
analysis or through simulation. Using our singlgd representation, an agent dropping
a block ontovoid thereby creates a new 1-token heap leawingl preserved, whilst
an agent grabbing the token from a 1-token heap merely diregthat heap. Figure 4
shows some legal transitions in the case thiat 10. Taking the above notions to de-
fine the concrete representation, a concrete formulatidheofomplete situation graph
would entail 72 states, 21 perceptions, 236 situations 20cdlicies.

We now consider one possible abstraction for the case wheegdhl is to achieve
a configuration having exactly 3 identical heaps and nottgxaddentical heaps, with
the agent seeingoid and not holding. The concrete states are partitioned instradxt
states 1-4 and the concrete perceptions into abstractgtemsa — h:

1. exactly 3identical heaps and not exactly 2 identical keap
2. exactly 2 identical heaps and not exactly 3 identical keap
3. the heaps are all different



Fig. 4. Transitions inToken World

4. all other cases

Examples of states 1 and 2 &® 2,2,1,1,1,1,void} and{2,2,1,1,1,1,1, 1, void}
respectively.

(b). sees a heap of size 4 and holding(not holding)
c(d). sees a heap of size 4 and holding(not holding)
e(f). seesaheap of size 4 and holding(not holding)
(h). seessoid and holding(not holding)

The goal is thereforgl, k). There are then 32 abstract situations in the graph and
just 128 policies to evaluate. Each of the latter maps attsparceptions to actions
and is therefore an abstract policy spanning some set ofretmpolicies. In effect,
the abstraction process partitions the concrete policges@s well as the concrete
situation space. Simulation experiments indicate thatapgmal abstract policy is
{a—=dr,b—>wec—dr,d—we—dr,f—wg—dr,h— wh

The standard Bellman formula takes the probabilities oraties to be Markovian:
the value of any situation is calculated using the expemtativer its emergent arcs
without regard to how that situation was reached. Considigatson1a in the graph for
some policy in whicku — wandec — w. The successors af: are then1a, 1c, le, 1g].
If the probabilities are estimated simply as the mean, olleramcrete instances of
1a, of the probability that can transit byw to these successors, their values are about
[0.75,0.025, 0.042, 0.183]. This takes the view that if therd arrives by any means at
1a then the probability that it will next wander tie is 0.042. But this is not the case.
Had the agent arrived at from 1¢, for example, the probability of it next wandering
to 1e would be zero: the only concrete state in which the agentreausit bywfrom 1¢
to lais {6,1, 1,1, void} in which it is impossible for the agent to wander to see a heap
of size 4 (perception).

Therefore, if the formulais applied to an abstract policgmr with probabilities es-
timated as just indicated above, it will perceive pathstigiothe graph that might not



be concretely traversable at all or traversable with quite@nt probabilities, yield-
ing misleading policy values. We refer to this property of fhaths apiecewise inco-
herence The next section discusses our modification of the formuta the aim of
ameliorating this deficiency.

4 Evaluating Abstract Situations and Policies

The inaccuracies from piecewise incoherence in the alistomtext can be reduced by
modifying the standard Bellman formula. As it stands, theelayields a set of linear

equations expressing each valii€) of abstract situationin terms of the values of the
successor setS(i) of i. The first stage of our modification reformulafési) as

V(i) = Yjess@ypij(ri; +vV (jli))

where V' (j]¢) is the contribution made t®'(j) by all those concrete transitions that
transit toj from 4, andp;; is the average probability of those transitions. This stage
therefore introduces a new set of conditional variablefefformV (j|¢). The second
stage, which is somewhat more subtle, inter-relates thesevariables as follows:

V(jli) = Zress)Pik(rje + 7V (K[7))

wherep; ;i is the probability thak is reached fromi via j. Together these two formu-
lations yield a new set of linear equations, involving moagiables and probabilities
than before, from which the variodé(:) values can be calculated. The abstract policy
value is then again the mean of these. The modification tives gécognition to the fact
that, in the abstract context, the value of a situation hamaMarkov dependence upon
its immediate predecessors. In principle one could extbatrecognition still further
by considering dependences upon remoter predecessoranypdtirther accuracy so
obtained would generally incur much greater computatierpkense.

Even significantly abstract formulations may, with this riicdtion, offer a large
number of equations, so it is important that an efficient pthre be used to extract the
best policies. For this we use a branch-and-bound algoritisl@pted from Littman [5],
which, for some numbet > 0, develops a tree of partially-constructed policies whilst
pruning those that could not - if fully extended to become ptate policies - be among
the n highest-value policies. To find only some optimal policis chosen as 1. This
algorithm, whose pseudocode is shown in Figure 5, can bewkether the problem
formulation is abstract or concrete. The next section restio theToken Worldcontext
to demonstrate that the modification improves predictivaityin relation to empirical
simulation results.

5 Prediction and Simulation Results

We have applied the modified treatment just described to gerari examples over
different domains and have observed in all these cases anweipentin the correlation
between predicted and simulated policy values. We illtistitsis for two goals imoken
World.



procedure BB(c:node, B:int):(Gint, g:node)
/lreturns G=best policy val ue\&g=best policy
{if c is a |eaf-node
/lc represents a full-policy
then {if value(c)>B return (value(c),c)}
//c could be the optinum policy
el sei f upperbound(c)>B then
{for each cc:=next-child-of-c
{if | owerbound(c)>B
then return BB(cc, | owerbound(c))
el se return BB(cc, B)}

}

el se return (B, b)}
//do not search below cc if cc worse than B

}

Fig.5. Branch and Bound Algorithm for searching a policy tree

5.1 Goal: Achieving 3 Identical Heaps

Here the example is that described in Section 3, where thielas 10 tokens and the
goal is to transform any initial situation to one having eka8 identical heaps but not
exactly 2, with the agent seeingid and not holding. The abstraction used is the one
shown there, having 32 situations and 128 policies. We atatlall the policies using
first the standard Bellman equations and then our modifiedtems. The probabilities
were calculated by analysing all the concrete transitidimg predicted policy values
were then compared with the results of simulating all theges. Each one was run
500 times, with random initialization, for up to 50 trangiis. (For economy, any run
achieving the goal was terminated at that point, and to retités in the prediction we
suppressed the goal's emergent arcs). The reward parawateeR = 100, r = —1
and~ = 0.9.

Fig. 6. Using standard Bellman for goal 5.1

Figure 6 charts the simulation values (vertical axis) agfdine increasing ranks of
the values predicted by standard Bellman (horizontal agis)that the predicted-best
policies are on the left. If the prediction were perfect tiart would decrease mono-
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Fig. 7. Using the modified equations for goal 5.1

tonically from left to right. The correlation between pretid and simulated values is
measured by the Kendal coefficient as a percentage rangimgf(worst) to 100 (best).
For Figure 6,Q is 91.4% over all 128 policies and 69.5% across the first 2Quiiei 7
shows the results using the modified equations. Thigie 94.8% for all 128 and 78.4%
for the first 20. In both cases the predicted optimal policthis one that is optimal in
simulation.

5.2 Goal: Achieving Exactly 1 Heap

Here there are again 10 tokens but the goal is the much hangdeofoarranging them
into a single heap. For this problem we used a different ab8tm, partitioning the
states into 4 cases: one heap of 10; two heaps of 5; exactlyeapeof 5 plus anything
else; no heap of 5 or of 10. The perceptions were partitioedraing to whether the
agent was seeingpid; seeing a heap less than 5; equal to 5; greater than 5. Thisyie
16 abstract situations and 128 policies.

Fig. 8. Using the modified equations for goal 5.2

Proceeding now as in the previous case, Figure 8 shows the utiag standard
Bellman prediction, wher€) is 66.4% for all 128 policies but only 31.1% for the first
10. Figure 9 shows the chart using the modified equationstenpés 64.7% (not quite
as good) for all 128 but 66.7% (radically improved) for theffit0. Moreover, the best
policy from simulation is now predicted as best, whereas@dtandard prediction it is
ranked 21.

10
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Fig. 9. Using the modified equations for goal 5.2

6 Discussion and Conclusion

Policy design frameworks can be compared in terms of thaiteoffs between ease of
problem formulation, complexity of policy optimization @predictive accuracy. Some
are not directly comparable as they assume different agehitactures. MDP/POMDP
methods assume agents capable of holding and consultiocgpi@Em-action graphs
whose paths represent the episodes an agent may experigigogten undisturbed
by exogenous events. By contrast, our target agents pregingpler policy structure
and maintain optimal behaviour in all situations whethesthhave arisen by their own
actions or not. The backward-planning design method ofsNitd10] for teleo-reactive
agents also assumes a different agent architecture: theragent must have sufficient
observability to take the best action in any situation amdgcially, in a goal situation.
In many realistic contexts, however, the state componeat @dal is too delocalized
to be fully perceivable in practice. All the above methods)uding SGF, involve esti-
mating probabilities, in contrast with those based upomieg. Q-learning [11, 6] can
discover optimal policies having our structure but, like Mimethods, requires agents
to have full observability.

SGF has the distinctive feature that probability estimatioa once-only task for the
given complete situation graph, independently of all peiand goals that might then
be considered. In a POMDP framework each change of goal désreanevaluation of
a new set of belief state probability distributions to findagatimal policy for achieving
it.

The use of abstraction in SGF assumes that policy rankingti®verly sensitive
to the small variations between the concrete situationsrsg@dby an abstract one. The
equations we employ are expected to deliver for each albgindicy a value to which all
its concrete policy instances closely approximate. Ouugition studies of abstraction
using the standard Bellman equations showed that they téenelied upon to have
this property. However, the modified equations in the casefave tested, including
those presented here, have manifested this property. imefutork on SGF we shall
investigate how robust the property is in relation to theichof abstraction.
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