
Optimizing Minimal Agents through Abstraction

Krysia Broda and Christopher J. Hogger

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ UK

{kb,cjh}@doc.ic.ac.uk
Technical Report 2006/4

Abstract. Abstraction is a valuable tool for dealing with scalabilityin large state
space contexts. This paper addresses the design, using abstraction, of good poli-
cies for minimal autonomous agents applied within a situation-graph-framework.
In this framework an agent’s policy is some function that maps perceptual inputs
to actions deterministically. A good policy disposes the agent towards achieving
one or more designated goal situations, and the design process aims to identify
such policies. The agents to which the framework applies areassumed to have
only partial observability, and in particular may not be able to perceive fully a
goal situation. A further assumption is that the environment may influence an
agent’s situation by unpredictable exogenous events, so that a policy cannot take
advantage, of a reliable history of previous actions. The Bellman discount mea-
sure provides a means of evaluating situations and hence theoverall value of a
policy. When abstraction is used, the accuracy of the methodcan be significantly
improved by modifying the standard Bellman equations. Thispaper describes
the modification and demonstrates its power through comparison with simulation
results.

1 Introduction

Our interest is in designing good policies for particularlysimple autonomous agents.
The simplest case is a memoryless reactive agent whose policy consists solely of some
function that maps perceptual inputs to actions deterministically. A good policy dis-
poses the agent towards achieving one or more designated goal situations, and the de-
sign process aims to identify such policies. We also consider modest extensions such as
inclusion of finite memory, wireless communication and nondeterministic (relational)
policies. The termminimal agentwill be used loosely here to cover both the simplest
case and these near-minimal extensions. The focus on minimal agents anticipates ap-
plication contexts where physical or economic constraintsmake it impractical to de-
ploy more sophisticated cognitive agents embodied in correspondingly sophisticated
hardware. Examples include remote exploration and medicalnano-robotics where the
desired goals may be achievable by a large community of physically small and inex-
pensive primitive agents among which occasional losses anddysfunctionalities can be
readily tolerated.

Our design method is based on discounted-reward analysis [11] applied to a directed
policy graph whose arcs represent the transitions that occur under the policy being con-
sidered. Each transition takes the agent from some situation – a (state, perception)



pair – to some successor situation. The analysis yields an overallpolicy value that
will depend upon,inter alia, the designated goal situation(s) and whatever rewards and
probabilities are assigned to the graph’s arcs by the designer. The method is called the
situation-graph-framework(SGF) to reflect its reliance upon explicit situation graphs,
and was first reported in [1]. The SGF framework can be distinguished from both the
standard MDP and POMDP frameworks [7, 4]. It is non-Markovian, since an agent’s
next perception is conditional upon more than its current perception and action. The
design process makes use of the full state, through the use ofsituations. The agents
to which the framework applies are assumed to have only partial observability, and in
particular may not be able to perceive fully a goal situation. This feature distinguishes
the framework from other design methods that rely upon complete goal observation.
The formulation in [6], where an agent’s perception is treated as the state, is a special
case of SGF. In particular, the various memoryless and single memory policies found by
Q-learning are also found using SGF by the algorithm shown inFigure 5. The POMDP
framework uses an estimation of the distribution of the fullstate, called a belief state,
to guide the planning process [4]. This can result in policies in which the action taken
when perceivingp may implicitly depend on the route taken top – that is, an agent may
follow a policy expressed by a graph. Agents in SGF are not equipped to follow such
policies because they are designed for use in communities ofagents, where unexpected
events are the norm. The core assumption in using “belief states” is that remembrance
of the past is a reliable basis on which to estimate an agent’scurrent situation, which
is a safe assumption in the specific circumstance that the environment can be impacted
only by that agent. This assumption will not hold if the environment can be additionally
impacted by exogenous events, including the actions of other agents. SGF represents
such events by so-calledx-arcs in the situation graphs and employs a particular elab-
oration of the discounted-reward analysis to deal with them. Experimental evaluation
of policies designed in this way for communities ofclonedagents was first presented
in [2] and demonstrated strong empirical evidence for the efficacy of the design pro-
cess. Communities ofdifferentiated(non-cloned) multiple agents were investigated in
[3], where it was shown how SGF could represent each species of agent by its own
species ofx-arc and extract, for each species, a so-called viewpoint graph representing
the behaviour of that species in the context of all the others.

Whether dealing with single agents or communities, SGF– like the other frame-
works– must in general confront the issue of scalability, and the key to this is appropri-
ate use ofabstraction. Broadly speaking, abstraction amounts to ignoring many minor
distinctions– such as between states, perceptions or agents– that are considered un-
likely to have a significant bearing upon outcomes. It achieves this by collecting similar
concrete entities (such as states, etc.) into single generic entities which then become
the first-class elements of the formulations used in the design process. To a certain
extent the SGF viewpoint treatment just mentioned is such anabstraction, in that an
x-arc in a viewpoint graph signifies an event instigated by some other agent but with-
out specifying which particular agent it is, and so avoids the explicit and cumbersome
multi-agent vectors that some MDP designers [8] have resorted to in order to deal with
communities. Here we shall concentrate instead onsituation-abstraction, that is, the
abstraction of both states and perceptions. This can be applied irrespective of whether

2



one is dealing with one agent or many, though in this paper we present it only in rela-
tion to the single-agent case. Its first benefit is to reduce the size of the situation-graphs
being dealt with and hence to ameliorate the burden of estimating the probabilities on
their arcs. Its second benefit is that abstraction of perceptions reduces the size of the
policy-space over which optimization is pursued, since thenumber of possible policies
depends exponentially upon the number of possible perceptions.

Section 2 outlines the basic features of SGF and its discounted-reward procedure in
the absence of abstraction. Section 3 describes situation-abstraction and explains how
its deployment can produce inaccurate predictions of policy value if one relies upon
the standard discounted-reward procedure. Section 4 describes our new modification of
that procedure to reduce those inaccuracies and Section 5 presents empirical simula-
tion results for two simple case studies to show the improvedpredictive power of this
modification. Together, those two sections contain what we consider to be the novel
contribution of the paper. Section 6 concludes with an assessment of the method in
comparison with related work on other frameworks.

2 Basic Features of SGF

A simple example serves to illustrate the basic features of SGF. It assumes a single
agent in a world comprising a regionG called the ground, two weights and a balance
having left and right endsL andR. In any state of the environment the weights are
distributed amongL, R andG. The distribution determines whether or not some end
of the balance is raised. The agent is equipped to perceive inany state just one of the
following: that there are some weights onG, that there are no weights onG, that the
L end of the balance is raised or that theR end is raised. Figure 1 shows a situation in

Fig. 1. A situation for a single agent

which one weight is onL, the other is onG and the agent perceives thatR is raised.
It is one of 10 possible situations, each being a pair(o, p) whereo is a state andp is a
perception that the agent may have ofo. A state can be represented by a triple(l, r, g)
giving the numbers of weights onL, R andG. The first two columns in Figure 2 show
the possible states and perceptions, labelled 1-6 anda - d respectively. For compact
presentation we use just these labels to denote situations:1a, 2a, 2c, 3a, 3d, 4b, 4c, 5b,
5d and6b. Thus the situation ((1, 0, 1), ‘sees R is raised’) shown in Figure 1 is denoted
by 3d.

The third column in Figure 2 shows for each perceptionp the setA(p) of actions the
agent might perform when perceivingp. Altogether there are 5 kinds of action, denoted

3



o

1 (0, 2, 2)
2 (0,1, 1)
3 (1,0,1)
4 (0,2,0)
5 (2,0,0)
6 (1,1,0)

p

a seesG has weights
b seesG has no weights
c seesL is raised
d seesR is raised

A(p)

{gr,gl,w}
{w}

{rg,w}
{lg,w}

Fig. 2. States, perceptions and action sets

by gr, gl, rg, lg, andw. The first four transfer a weight fromG to R, from G to L,
from R to G and fromL to G, respectively, and thus effect a change of state. We must
further stipulate what the agent perceives after performing one of these actions. After
gr orgl it next perceivesc or d unless no end is now raised, in which case it perceives
b. Afterrg orlg it next perceivesa. Informally, therefore, after putting a weight on the
ground the agent next sees the disposition of the ground, whilst after putting a weight on
the balance it next sees the disposition of the balance if thelatter is tilted but otherwise
sees the disposition of the ground. Thew (wander) action leaves the state invariant
and causes the agent to expend some time in updating its perception of that state; this
includes the reflexive case of maintaining its current perception. Figure 3 shows the
graph of possible transitions between situations, but to reduce clutter it suppresses each
situation’s reflexive w-arc. A policy for the agent is a totalfunction from perceptions

Fig. 3. Complete transition graph

to actions. The total number of possible policies is the product of the cardinalities of
all theA(p) action sets, which in the present case is 12. They include, for instance, the
policy {a → gr, b → w, c → w, d → lg}. Each one corresponds to a restriction of
the complete graph whereby the arcs emerging from all situations sharing a common
perception all bear the same action label.

4



The value of a policy partly depends upon the chosen goal situation. we shall choose
the goal to be6b, in which the balance bears one weight at each end and the agent is
seeing the vacant ground. The status of the chosen goal is reflected in the assignment of
numerical rewards to the arcs in the complete graph, each being a measure of the sup-
posed benefit/disbenefit of effecting the associated transition. We might, for instance,
assign a large positive rewardR = 100 to each of the two arcs leading to6b and a small
but negative rewardr = −1 to every other arc. A policy’s value partly depends also
upon the probabilities assigned to the arcs. If practicable, these are estimated from con-
sideration of the particular problem domain. Otherwise, wecan assign at each situation
an equi-probable distribution to its emergent arcs for eachaction type.

Once the assignments of rewards and probabilities are in place, a value for each
situation under a given policy can be calculated fromV (s) = Σu∈SS(Psu × (Υsu +
γ×V (u))), the standard bellman formula, in whichΥsu is the immediate reward for the
action that takess to u, Psu is the probability that froms the agent proceeds next tou
and the parameter0 < γ < 1 is a discount factor that ensures the resulting set of linear
equations has a unique solution. If it is assumed that the agent may begin its activity
at any situation then the overall policy value is just the mean of the situation values.
Applying this to the above example, takingR = 100, r = −1, γ = 0.9 and assuming
equi-probable distributions, it turns out that 4 of the 12 policies are co-optimal for the
chosen goal, these being:{a → gl, b → w, c → rg, d → lg/w} and{a → gr, b →
w, c → rg/w, d → lg}, all having value 357.27. The worst 4 all have value 91 and
include{a → w, b → w, c → w, d → w}.

In the above account the situations in the formulation were taken to beconcrete, that
is, corresponding one-to-one with the real situations arising in the problem domain. In
the next section we turn to the use of abstraction, in which each generic situation in the
formulation may encompass many concrete situations.

3 Situation Abstraction in SGF

Abstraction in SGF partitions the set of concrete states into subsets called generic states
and partitions the set of concrete perceptions into subsetscalled generic perceptions. A
generic situation(O, P ) is a pairing of a generic stateO with a generic perceptionP .
This abstraction process is required to satisfy the following constraints:

1. if (o, p) is a concrete situation then there must exist exactly one generic situation
(O, P ) such thato ∈ O andp ∈ P ;

2. if (O, P ) is a generic situation then it must contain at least one concrete situation
(o, p) whereo ∈ O andp ∈ P ;

3. if P is a generic perception then
⋂
{A(p)|p ∈ P} ⊇ A(P ).

Here, 1) and 2) ensure that the sets of concrete states and perceptions are partitioned
such as to result in a partitioning of the complete set of concrete situations, whilst 3)
ensures that every generic perception offers at least one action among those offered by
each of its concrete members.

With fewer situations to deal with at the abstract level thanat the concrete level,
the equations relating situation values for any given policy are correspondingly fewer.

5



Perhaps more importantly, having fewer perceptions at the abstract level than at the
concrete level reduces the number of policies to be evaluated.

Intuitively, a good abstraction is one whose discounting ofdifferences at the con-
crete level yields a ranking of abstract policies that is approximately commensurate
with the ranking of the concrete policies that would be obtained from concrete analysis.
At present we do not have a clear prescription for reliably identifying such abstractions
in SGF, and indeed the question of what constitutes a good abstraction in generalre-
mains an open one in AI research [9]. However, given any abstraction in SGF, we will
elucidate the manner in which the standard Bellman formula is susceptible to inaccu-
racy when applied to it and we will show how to obtain improvedaccuracy by suitably
modifying that formula.

We illustrate these issues with an example, again assuming asingle agent. The en-
vironment in which this agent operates is calledToken Worldand contains some fixed
numberN of tokens. It is organized as one or more heaps of tokens together with a sin-
gle region namedvoid in which there are no tokens. As its perception, the agent always
sees either a heap orvoid and always knows whether or not it is holding a token. Its
possible actions are just the following:gr: grab a token from a heap;dr: drop a token
onto a heap or ontovoid; w: wander.

Prior to performinggr the agent must be not holding and seeing a heap, and is
afterwards holding a token and seeing the reduced heap. Prior to performingdr it must
be holding a token and seeing a heap orvoid, and is afterwards not holding and seeing
the heap containing the token just dropped. Prior to performing w it can be holding or
not and seeing anything, and is afterwards seeing a heap orvoid with its (not)holding
status preserved. The goal will comprise some specified configuration of heaps and
some perception, not necessarily perceivable in its entirety by the agent. ThisToken
Worldmay alternatively be viewed as a simple analogue ofBlocks Worldor as a system
for incrementally transforming partitions of the numberN .

In this formulation the region in which there are no tokens istreated as indivisible.
The alternative would be to represent a plurality of tokenless regions, e.g. as the vacant
cells in a grid-space. Although that is notionally more realistic as a model of an envi-
ronment in which an agent may wander from place to place, it turns out to confer no
material benefit in assessing the relative merits of policies, whether that be done through
analysis or through simulation. Using our singlevoid representation, an agent dropping
a block ontovoid thereby creates a new 1-token heap leavingvoid preserved, whilst
an agent grabbing the token from a 1-token heap merely eliminates that heap. Figure 4
shows some legal transitions in the case thatN = 10. Taking the above notions to de-
fine the concrete representation, a concrete formulation ofthe complete situation graph
would entail 72 states, 21 perceptions, 236 situations and 220 policies.

We now consider one possible abstraction for the case when the goal is to achieve
a configuration having exactly 3 identical heaps and not exactly 2 identical heaps, with
the agent seeingvoid and not holding. The concrete states are partitioned into abstract
states 1-4 and the concrete perceptions into abstract perceptionsa − h:

1. exactly 3 identical heaps and not exactly 2 identical heaps
2. exactly 2 identical heaps and not exactly 3 identical heaps
3. the heaps are all different

6



Fig. 4. Transitions inToken World

4. all other cases

Examples of states 1 and 2 are{2, 2, 2, 1, 1, 1, 1, void} and{2, 2, 1, 1, 1, 1, 1, 1, void}
respectively.

a(b). sees a heap of size< 4 and holding(not holding)
c(d). sees a heap of size> 4 and holding(not holding)
e(f). sees a heap of size= 4 and holding(not holding)
g(h). seesvoidand holding(not holding)

The goal is therefore(1, h). There are then 32 abstract situations in the graph and
just 128 policies to evaluate. Each of the latter maps abstract perceptions to actions
and is therefore an abstract policy spanning some set of concrete policies. In effect,
the abstraction process partitions the concrete policy space as well as the concrete
situation space. Simulation experiments indicate that theoptimal abstract policy is
{a → dr, b → w, c → dr, d → w, e → dr, f → w, g → dr, h → w}.

The standard Bellman formula takes the probabilities on thearcs to be Markovian:
the value of any situation is calculated using the expectation over its emergent arcs
without regard to how that situation was reached. Consider situation1a in the graph for
some policy in whicha → w andc → w. The successors of1a are then[1a, 1c, 1e, 1g].
If the probabilities are estimated simply as the mean, over all concrete instancesi of
1a, of the probability thati can transit byw to these successors, their values are about
[0.75, 0.025, 0.042, 0.183]. This takes the view that if the agent arrives by any means at
1a then the probability that it will next wander to1e is 0.042. But this is not the case.
Had the agent arrived at1a from 1c, for example, the probability of it next wandering
to 1e would be zero: the only concrete state in which the agent can transit byw from 1c
to 1a is {6, 1, 1, 1, void} in which it is impossible for the agent to wander to see a heap
of size 4 (perceptione).

Therefore, if the formula is applied to an abstract policy graph with probabilities es-
timated as just indicated above, it will perceive paths through the graph that might not

7



be concretely traversable at all or traversable with quite different probabilities, yield-
ing misleading policy values. We refer to this property of the paths aspiecewise inco-
herence. The next section discusses our modification of the formula with the aim of
ameliorating this deficiency.

4 Evaluating Abstract Situations and Policies

The inaccuracies from piecewise incoherence in the abstract context can be reduced by
modifying the standard Bellman formula. As it stands, the latter yields a set of linear
equations expressing each valueV (i) of abstract situationi in terms of the values of the
successor setSS(i) of i. The first stage of our modification reformulatesV (i) as

V (i) = Σj∈SS(i)pij(rij + γV (j|i))

whereV (j|i) is the contribution made toV (j) by all those concrete transitions that
transit toj from i, andpij is the average probability of those transitions. This stage
therefore introduces a new set of conditional variables of the formV (j|i). The second
stage, which is somewhat more subtle, inter-relates these new variables as follows:

V (j|i) = Σk∈SS(j)pijk(rjk + γV (k|j))

wherepijk is the probability thatk is reached fromi via j. Together these two formu-
lations yield a new set of linear equations, involving more variables and probabilities
than before, from which the variousV (i) values can be calculated. The abstract policy
value is then again the mean of these. The modification thus gives recognition to the fact
that, in the abstract context, the value of a situation has a non-Markov dependence upon
its immediate predecessors. In principle one could extend that recognition still further
by considering dependences upon remoter predecessors, butany further accuracy so
obtained would generally incur much greater computationalexpense.

Even significantly abstract formulations may, with this modification, offer a large
number of equations, so it is important that an efficient procedure be used to extract the
best policies. For this we use a branch-and-bound algorithm, adapted from Littman [5],
which, for some numbern > 0, develops a tree of partially-constructed policies whilst
pruning those that could not - if fully extended to become complete policies - be among
the n highest-value policies. To find only some optimal policy, n is chosen as 1. This
algorithm, whose pseudocode is shown in Figure 5, can be usedwhether the problem
formulation is abstract or concrete. The next section returns to theToken Worldcontext
to demonstrate that the modification improves predictive quality in relation to empirical
simulation results.

5 Prediction and Simulation Results

We have applied the modified treatment just described to a range of examples over
different domains and have observed in all these cases an improvement in the correlation
between predicted and simulated policy values. We illustrate this for two goals inToken
World.

8



procedure BB(c:node, B:int):(G:int, g:node)
//returns G=best policy value\&g=best policy

{if c is a leaf-node
//c represents a full-policy

then {if value(c)>B return (value(c),c)}
//c could be the optimum policy

elseif upperbound(c)>B then
{for each cc:=next-child-of-c

{if lowerbound(c)>B
then return BB(cc,lowerbound(c))
else return BB(cc,B)}

}
else return (B,b)}

//do not search below cc if cc worse than B
}

Fig. 5. Branch and Bound Algorithm for searching a policy tree

5.1 Goal: Achieving 3 Identical Heaps

Here the example is that described in Section 3, where the world has 10 tokens and the
goal is to transform any initial situation to one having exactly 3 identical heaps but not
exactly 2, with the agent seeingvoid and not holding. The abstraction used is the one
shown there, having 32 situations and 128 policies. We evaluated all the policies using
first the standard Bellman equations and then our modified equations. The probabilities
were calculated by analysing all the concrete transitions.The predicted policy values
were then compared with the results of simulating all the policies. Each one was run
500 times, with random initialization, for up to 50 transitions. (For economy, any run
achieving the goal was terminated at that point, and to reflect this in the prediction we
suppressed the goal’s emergent arcs). The reward parameters wereR = 100, r = −1
andγ = 0.9.

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

Fig. 6. Using standard Bellman for goal 5.1

Figure 6 charts the simulation values (vertical axis) against the increasing ranks of
the values predicted by standard Bellman (horizontal axis), so that the predicted-best
policies are on the left. If the prediction were perfect the chart would decrease mono-

9



-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

Fig. 7. Using the modified equations for goal 5.1

tonically from left to right. The correlation between predicted and simulated values is
measured by the Kendal coefficient as a percentage ranging from 0 (worst) to 100 (best).
For Figure 6,Q is 91.4% over all 128 policies and 69.5% across the first 20. Figure 7
shows the results using the modified equations. There,Q is 94.8% for all 128 and 78.4%
for the first 20. In both cases the predicted optimal policy isthe one that is optimal in
simulation.

5.2 Goal: Achieving Exactly 1 Heap

Here there are again 10 tokens but the goal is the much harder one of arranging them
into a single heap. For this problem we used a different abstraction, partitioning the
states into 4 cases: one heap of 10; two heaps of 5; exactly oneheap of 5 plus anything
else; no heap of 5 or of 10. The perceptions were partitioned according to whether the
agent was seeingvoid; seeing a heap less than 5; equal to 5; greater than 5. This yields
16 abstract situations and 128 policies.

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

Fig. 8. Using the modified equations for goal 5.2

Proceeding now as in the previous case, Figure 8 shows the chart using standard
Bellman prediction, whereQ is 66.4% for all 128 policies but only 31.1% for the first
10. Figure 9 shows the chart using the modified equations, whereQ is 64.7% (not quite
as good) for all 128 but 66.7% (radically improved) for the first 10. Moreover, the best
policy from simulation is now predicted as best, whereas in the standard prediction it is
ranked 21.

10



-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

Fig. 9. Using the modified equations for goal 5.2

6 Discussion and Conclusion

Policy design frameworks can be compared in terms of their tradeoffs between ease of
problem formulation, complexity of policy optimization and predictive accuracy. Some
are not directly comparable as they assume different agent architectures. MDP/POMDP
methods assume agents capable of holding and consulting perception-action graphs
whose paths represent the episodes an agent may experience only when undisturbed
by exogenous events. By contrast, our target agents presumea simpler policy structure
and maintain optimal behaviour in all situations whether these have arisen by their own
actions or not. The backward-planning design method of Nilsson [10] for teleo-reactive
agents also assumes a different agent architecture: there,the agent must have sufficient
observability to take the best action in any situation and, crucially, in a goal situation.
In many realistic contexts, however, the state component ofa goal is too delocalized
to be fully perceivable in practice. All the above methods, including SGF, involve esti-
mating probabilities, in contrast with those based upon learning. Q-learning [11, 6] can
discover optimal policies having our structure but, like MDP methods, requires agents
to have full observability.

SGF has the distinctive feature that probability estimation is a once-only task for the
given complete situation graph, independently of all policies and goals that might then
be considered. In a POMDP framework each change of goal demands an evaluation of
a new set of belief state probability distributions to find anoptimal policy for achieving
it.

The use of abstraction in SGF assumes that policy ranking is not overly sensitive
to the small variations between the concrete situations spanned by an abstract one. The
equations we employ are expected to deliver for each abstract policy a value to which all
its concrete policy instances closely approximate. Our simulation studies of abstraction
using the standard Bellman equations showed that they cannot be relied upon to have
this property. However, the modified equations in the cases we have tested, including
those presented here, have manifested this property. In future work on SGF we shall
investigate how robust the property is in relation to the choice of abstraction.

References

1. K. Broda, C.J. Hogger and S. Watson, Constructing Teleo-reactive Robot Programs,Pro-
ceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), Berlin,

11



pp. 653-657, 2000.
2. K. Broda and C.J. Hogger, Policies for Cloned Teleo-Reactive Agents, 2nd Conference on

Multi-Agent System Technologies, Ehrfurt, LNAI, 3187, Springer Verlag, pp. 328 - 340,
2004.

3. K. Broda and C.J. Hogger, Abstract Policy Evaluation for Reactive Agents,SARA-05, 6th
Int. Symposium on Abstraction, Reformulation and Approximation, Springer, LNAI 3607,
pp. 44-59, 2005.

4. L.P. Kaelbling, M.L. Littman and A.R. Cassandra, Planning and acting in partially observable
stochastic domains,Artificial Intelligence, 101, pp. 99-134, 1998.

5. M. L. Littman, Memoryless policies: theoretical limitations and practical results,Proceed-
ings of the 3rd International Conference on Simulation of Adaptive Behaviour, MIT Press,
pp. 297-305, 1994.

6. J. Loch and S. Singh, Using Eligibility Traces to find the Best Memoryless Policy in Partially
Observable Markov Decision Processes,Proceedings of the 15th International Conference
on Machine Learning, pp. 323-331, 1998.

7. T. Mitchell,Machine Learning, McGraw Hill, 1997.
8. R. Nair, M. Tambe, M. Yokoo, D. Pynadath and M. Marsella, Taming Decentralised

POMDPs: Towards Efficient Policy Computation for Multiagent Settings,Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pp. 705-711,
2003.

9. M. Lauer and M. Riedmiller, Generalisation in Reinforcement Learning and the Use of
Observation-Based Learning,Proceedings of the FGML Workshop 2002, pp. 100-107, 2002.

10. N.J. Nilsson, Teleo-Reactive Programs and the Triple-Tower Architecture,Electronic Trans-
actions on Artificial Intelligence, 5, pp. 99-110, 2001.

11. R.S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction, MIT Press, 1998.

12


