
A Multiobjective Dynamic Nonlinear Robot

Assignment Problem

Sampo Ruuth, Helsinki University of Technology, Finland
István Maros, Imperial College, UK and University of Pannonia, Hungary

Kimmo Nieminen, Helsinki University of Technology, Finland

Imperial College, Department of Computing Technical Report 2007/3

ISSN 1469–4174

June 2007

Abstract

Robots will be used under rapidly changing and highly dangerous circumstances
such as rescue operations in a radioactive environment or a fire as well as military
operations. The robots are sent to several targets in order to carry out various
tasks.

The robots we are considering here are able to send and receive messages to
and from each other as well as solve nonlinear assignment problems. When the
robot salvo is en-route to their targets several events may happen. A number of co-
operative robots may get jammed as a consequence of disturbances. Some robots
may already have reached their targets. Some robots may not be able to reach
all targets. The system being investigated enables the surviving robots to work
together in real time and change their pre-set tasks if necessary in order to maximize
their effectiveness. In this paper we present a method which solves the reallocation
problem using a piecewise linear network algorithm. Experimental results up to 493
targets and 500 robots show that the reallocation of the robots can be done in real
time.

Key words: Co-operative robots, robot allocation, piecewise linear network, robot
effectiveness, rescue operation.

1



1 Introduction

This paper is an updated version of an earlier publication [RU96] of the authors. It has
been taken substantially further from both modeling and solution point of view.

Robots will be used under rapidly changing and highly dangerous circumstances such
as rescue operations in a radioactive environment or fires as well as military operations.
The robots are sent to several targets in order to carry out various tasks. It is possible to
send more than one robot to a target. Depending on the communication capabilities, we
distinguish the following types of robots.

1. Co-operative robots: can send and receive signals.

2. Semi-cooperative robots: can only send or receive signals but not both.

3. Dumb robots : can neither send nor receive signals.

When a group of robots is en-route to the destination of a group of targets several
events may happen. It is inevitable that some robots will be damaged or destroyed (thus
disabled). A number of cooperative robots may turn semi-cooperative or even dumb as
a consequence of disturbed environment. Some robots may already have reached their
targets and done their tasks. Some robots may no more be able to reach all targets. The
system being investigated enables the surviving robots to work together in real time and
change their pre-set targets if necessary in order to maximize their effectiveness.

Three communication concepts are considered which facilitate cooperation. They are:

• equal status robot concept,

• leader robot concept,

• remote control concept,

In equal status concept it is assumed that all cooperative robots are intelligent and of
equal status. Information is reported to all other robots and all of them act according to
identical algorithms (but maybe different data) loaded into the memory of the robots.

In leader robot concept a robot acts as a leader for the other robots. The leader
acts upon data received from all the other robots and issues commands accordingly. All
cooperative robots will be able to replace the leader robot in case the leader is disabled.

In remote control concept the robots communicate with the remote control center from
where instructions are returned to them.

In the system described in this paper only cooperative or semi-cooperative robots are
present. At the beginning all robots are supposed to be cooperative. During the mission
robots cooperate when conditions change in order to determine whether a reallocation of
the robots could improve the overall effectiveness of the group. In the current version of

2



the model problem data at the cooperation time are generated randomly by the program
after which a built-in network optimizer solves the reallocation problem.

The rest of this paper is organized in the following way. In section 2 we discuss the
problem statement and model formulation, while in section 3 we present the solution
algorithm and its pseudo code. The software implementation and computational results
are described in section 4. The models and software developments undertaken in this
study are discussed in section 5.

2 The Basic Model

The problem at each cooperation time for each concept and with changed external data
described in Section 1 is to reallocate the robot group to the targets in real time so that
the group effectiveness will be maximized and at the same time the number of changes
from the robots’ pre-set targets will be minimized.

The scoring scheme defining effectiveness is based on the definition of target score.
Each target j (j = 1, . . . , n) is assigned a task success probability pj and a weight wj ∈
{0, 1, . . . , 10}, which is a measure of the importance of the target. The probability that
the task will be successfully carried out for that target depends on the number of robots
yj which have been assigned to the target in the following way:

1 − (1 − pj)
yj .

A target score is the product of its probability and weighting:

target score: ḡj(yj) = wj(1 − (1 − pj)
yj).

The robot group effectiveness is simply the sum of all individual target scores:

group effectiveness =
n

∑

j=1

ḡj(yj).

Let m denote the number of robots and xij , i = 1, ..., m and j = 1, ..., n, be the
decision variables which equal 1 when robot i is assigned to target j and 0 otherwise. The
problem can now be formulated as a nonlinear assignment type model. The nonlinearity,
however, is present only in the objective function. Formally, the model can be described
as follows, where i runs over robots i = 1, . . . , m and j runs over targets j = 1, . . . , n:

3



Parameters:

m number of robots
n number of targets
wj denotes weighting of target j

pj denotes task success probability of target j

aij ∈ {0, 1} is an entry of the m × n adjacency matrix indicating which
target each robot can reach

uj upper bound on variable yj (to be defined), uj =
m

∑

i=1

aij , j = 1, . . . , n

Decision variables:

xij =

{

1, when robot i is directed to target j,

0, otherwise

yj = number of robots directed to target j.

Objective function:

The objective function is defined as the weighted sum of task success probabilities:

max z =

n
∑

j=1

ḡj(yj) (1)

Constraints:

yj =

m
∑

i=1

aijxij , j = 1, . . . , n

n
∑

j=1

xij = 1, i = 1, . . . , m

(every robot is assigned to exactly one target)
xij ∈ {0, 1}, i = 1, . . . , m and j = 1, . . . , n
yj ≤ uj (actually redundant but useful).

(2)

Looking at the model it is clear that the problem is not simply nonlinear but also
integer.

3 A Solution Algorithm

3.1 Piecewise linear approximation

Assume that for each i = 1, . . . , m there exists at least one j such that aij = 1 (the
problem has a feasible solution, i.e., initially each robot is assigned to a target). For

4



realistic values of m and n, like m = 30 and n = 7, problem (1) − (2) cannot be solved
by complete enumeration in real time. Instead, because functions

ḡj(yj) = wj(1 − (1 − pj)
yj)

are concave and monotone they can be approximated by piecewise linearization and the
problem can represented as a separable network problem. Let us denote the piecewise
linear approximation of ḡj(yj) by gj(yj). Then we have

max z =

n
∑

j=1

gj(yj)

s.t. gj(yj) =

uj
∑

k=1

sjkyjk, j = 1, . . . , n

yj =

uj
∑

k=1

yjk, j = 1, . . . , n

0 ≤ yjk ≤ 1, j = 1, . . . , n and k = 1, . . . , uj.

(3)

where sjk denotes the slope of the linear parts of gj(yj) between break points k−1 and k,
k = 1, . . . , uj and yjk is the fraction travelled between these two points. Function gj(yj)
is illustrated in Figure 1.

gj(yj)

yj0 1 2 3 . . . uj

yj2

Figure 1: Piecewise linear approximation of function gj(yj).

The model can be represented as a network which is illustrated in Figure 2. This
network has a demand = −1 at the robot nodes, a demand = 0 at the target nodes and a

5



demand = m at the sink node. The optimum solution of (3) is an integer solution because
of the unimodular network structure of the constraints.

Robots Targets Sink

1;−1

2;−1 1; 0

2; 0

Sink; m

n; 0

m;−1

x11

x12

xmn

y1

y2

yn

Node labels (i; d): (node index; demand)

Figure 2: The model represented as a network .

3.2 Reoptimization

After the initial allocation the salvo of robots start the operation. As time passes by
conditions where the robots are moving can change significantly. Before considering the
reallocation of robots to targets (reoptimization) we have to take into account for all

concept types whether a robot is destroyed, jammed, damaged, which targets are inac-
cessible for it or it has already reached its target. This is accomplished by modifying the
matrix aij , i = 1, . . . , m and j = 1, . . . , n according to the following rules.

(a) If a robot has been destroyed it is removed from the robot group. The number of
robots is decreased by one.

6



(b) Assume a robot is jammed. If the concept is remote control the robot is fixed to
its previously assigned target irrespective of whether the target is possible or not.
This means that the target list of the robot (the ith row of matrix aij) is modified so
that only the previously assigned target is included in it (the ith row of matrix aij

contains only one 1). If the concept is leader the robot is not fixed to its previously
assigned target because it can direct itself to all possible targets. If the concept is
equal status no modifications are done to the target list of the robot because each
robot determines itself to which target it will be directed.

(c) If a robot is damaged then in all concept types it is fixed to the lowest priority
possible target or to a randomly selected target from the possible targets.

(d) If robot i cannot reach some targets any more (targets are not possible for this
robot) then for all concept types these targets are removed from the target list
of the robot (the corresponding column entries of the ith row of matrix aij are set
to 0).

(e) If a robot has performed its task (reached the target) then in all concept types this
robot will be fixed to its previously set target.

Before the robots start their operation they are pre-assigned to some targets so that
maximal a priori effectiveness is reached. At that time all targets are possible for each
robot. Later on when significant events happen cooperation takes place, aij is modi-
fied according to the tests (a)–(e) above and the robots are reallocated to the targets if
necessary.

Because of data communication uncertainty an optimum solution should also minimize
the communication between two robots as well as between robots and the remote control
center. In our model this is achieved by adding a linear term

∑

i

∑

j

cijxij (4)

to the above defined piecewise linear objective function. Matrix cij is selected in the
following way: cij = xij , for i = 1, . . . , m, j = 1, . . . , n, where xij is the optimal solution
of the problem when it was solved previously. The values of decision variables yj (the
number of robots allocated to target j) most probably do not change because the additional
term is small compared to the main term (piecewise linear term). It is also possible to
multiply the main term by a sufficiently large number M to make sure that the values of
variables yj stay unchanged.

We now reformulate the problem. Again, i runs over robots i = 1, . . . , m and j runs
over targets j = 1, . . . , n.

7



Parameters:

m number of robots
n number of targets
wj denotes weighting of target j

pj denotes task success probability of target j

aij ∈ {0, 1} is an entry of the m × n adjacency matrix indicating which
target each robot can reach

cij ∈ {0, 1} is an entry of an m × n matrix which equals 0-matrix when
the allocation is made for the first time and equals the previous op-
timum solution matrix xij for later reallocations

sjk slopes of the piecewise linear approximations gj(yj) =

uj
∑

k=1

sjkyjk of

target score functions ḡj(yj) = wj(1 − (1 − pj)
yj )

uj upper bound on variable yj, uj =

m
∑

i=1

aij , j = 1, . . . , n.

Decision variables:

xij =

{

1, if robot i is directed to target j,

0, otherwise

yj = number of robots directed to target j.

yjk = auxiliary variables associated with the piecewise

linear approximations of function ḡj(yj) = wj(1 − (1 − pj)
yj).

Objective function:

Now the objective function expresses the intention to maximize the weighted sum of
task success probabilities and minimize the reallocations.

max

n
∑

j=1

gj(yj) +

m
∑

i=1

n
∑

j=1

cijxij (5)

8



Constraints:

gj(yj) =

uj
∑

k=1

sjkyjk, j = 1, . . . , n

yj =

uj
∑

k=1

yjk, j = 1, . . . , n

yj =

m
∑

i=1

aijxij , j = 1, . . . , n

n
∑

j=1

xij = 1, i = 1, . . . , m

0 ≤ yjk ≤ 1, j = 1, . . . , n and k = 1, . . . , uj

xij ∈ {0, 1}, i = 1, . . . , m and j = 1, . . . , n

(6)

After the launch of the robots model parameters are exposed to significant changes.
Therefore, reoptimization of the assignment problem will be necessary whenever a signifi-
cant event occurs. For the repeated solution of problem (5)–(6) a dynamic algorithm can
be used as shown in subsection 3.3.

3.3 Solution of the dynamic problem

For the solution of the allocation–reallocation problem (5)–(6) we propose the following
dynamic algorithm:

Step 0. Initialization: Set t = 0 (time starts at zero). Set aij = 1 and cij = 0 for i = 1, . . . , m
and j = 1, . . . , n. Calculate the slopes sjk, j = 1, . . . , n, k = 1, . . . , uj. Solve
problem (5)–(6) at the remote control center with equal status concept using a
piecewise linear network solver. Denote the values in the optimal solution by xt

ij .
Assign the robots to their targets according to the optimal solution.

Step 1. Waiting for a significant event : Wait for a significant event until t = T (initially
a sufficiently long time). If significant event occurs go to Step 2. If t = T go to
Step 4.

Step 2. Updating the dynamically changing model data: Set cij = xt
ij for all combinations of

i and j, and t = t + 1. Update the adjacency matrix aij according to rules (a)–(e)
given in section 3.2.

Step 3. Reallocation: Solve problem (5)–(6). Change the target of the robots according to
the optimum solution. Go to Step 1.

Step 4. Termination: Stop.

9



3.4 Solution of the initial allocation problem

Before the launch of the robot salvo the initial allocation problem ought to be solved, in
other words we are looking for the solution for the problem of how many robots should be
directed to a certain target in order to maximize the robot group effectiveness. A similar
situation may also appear when the robot salvo is en-route to their targets. For some
reason a robot may for instance loose completely it’s pre-set allocation information.

To formulate the initial allocation problem set aij = 1 for i = 1, . . . , m and j = 1, . . . , n
in (1) − (2). We have

max z =
n

∑

j=1

wj(1 − (1 − pj)
yj)

subject to
n

∑

j=1

yj = m,

yj ≥ 0 and integer, j = 1, . . . , n.

(7)

The problem formulation does not specify to which target an individual robot will be
directed. Thus the assignment of individual robots to a target can be done arbitrarily
within the limits of the solution of (7).

Contrary to the general reassignment problem (5)− (6) the initial allocation problem
can also be solved using KKT (Karusch-Kuhn-Tucker) conditions [LU03] in addition to
piecewise linear optimization methods. For the KKT method we temporarily ignore the
integer restrictions on variables yj. Because the objective function is concave and the
solution space is convex (defined by linear constraints) KKT conditions for the problem
are both necessary and sufficient for optimality.

The initial allocation problem (7) is of form

max z = f(y1, . . . , yn)

subject to

g0(y1, . . . , yn) = 0
gj(y1, . . . , yn) ≤ 0, j = 1, . . . , n

The KKT conditions for the problem can be written as

∂

∂yj

f(y1, . . . , yn) − λ0

∂

∂yj

g0(y1, . . . , yn) −

n
∑

k=1

λk

∂

∂yj

gk(y1, . . . , yn) = 0, j = 1, . . . , n

g0(y1, . . . , yn) = 0
gj(y1, . . . , yn) ≤ 0, j = 1, . . . , n
λjgj(y1, . . . , yn) = 0, j = 1, . . . , n
λ0 unrestricted in sign
λj ≥ 0, j = 1, . . . , n

10



For problem (7) we have

f(y1, . . . , yn) =

n
∑

k=1

wk(1 − (1 − pk)
yk)

g0(y1, . . . , yn) =
n

∑

k=1

yk − m

gk(y1, . . . , yn) = −yk, k = 1, . . . , n

After proper substitution we obtain the KKT conditions for problem (7)

−wj(1 − pj)
yj log (1 − pj) − λ0 + λj = 0, j = 1, . . . , n

n
∑

k=1

yk = m

λj(−yj) = 0, j = 1, . . . , n
yj ≥ 0, j = 1, . . . , n
λ0 unrestricted in sign
λj ≥ 0, j = 1, . . . , n

(8)

In the pre-launch optimization it is reasonable to assume that m ≥ n and yj > 0,
j = 1, . . . , n which means there are more robots than targets and every target gets at
least one robot assigned to it. This implies that λj = 0, j = 1, . . . , n and (8) becomes

−wj(1 − pj)
yj log (1 − pj) − λ0 = 0, j = 1, . . . , n

n
∑

j=1

yj = m

yj > 0, j = 1, . . . , n
λ0 unrestricted in sign.

(9)

For each j = 1, . . . , n we solve yj from (9) and get

y1 =

m −

n
∑

k=2

1

qk

log
w1q1

wkqj

1 +
n

∑

k=2

q1

qk

yj =
1

qj

log
w1q1

wjqj

+
q1

qj

y1,

where

qj = log (1 − pj), j = 1, . . . , n.

(10)

11



By rounding solution (10) to the nearest integer (in case yj < 1 set yj = 1) and making
some simple manipulations an integer solution is found that is equal or very close to the
optimal solution of the initial allocation problem (7).

4 Implementation and Computational Results

The initial allocation algorithm based on KKT method has been implemented in Borland
C++ Builder 6 and the reoptimization algorithm in Dev-Pascal 1.9.2 both on a 2GHz
Pentium PC using the object-oriented features of the programming languages. The code
consists of about 2700 lines in all. It is divided into three sets of units:

• main set of units including the main program,

• algorithmic units which generate and update the model,

• network solver unit.

This division into sets of units allows us to make independent changes in individual units
within a set of units.

In our tests random components are included in a unit where the adjacency matrix
is updated. First the number of potential targets for each robot is generated randomly
and after that the targets in question are randomly specified. Randomization was used
to enable extensive computational study.

The number of robots in the models varies between 100 and 500 and the number of
targets is between 100 and 493. The statistics of 25 randomly generated models are shown
in Table 1. A typical salvo consists of 30 robots and 10 targets. There may be several
successive launches of robots which all together can be viewed as a big salvo consisting of
hundreds of co-operative robots and targets.

As we have seen the problem can be represented as a network (see Figure 2) with a
nonlinear objective function. This function, however, is separable and concave and thus
can be piecewise linearized with respect to each variable involved in it.

We have experimented with the following three schemes to solve the problems:

(a) Relax the integer restrictions in the initial allocation problem, solve the continuous
problem by KKT method and round the continuous solution to the nearest integer
solution such that all yj ≥ 1.

(b) Linearize each term of the objective function of both the initial allocation and
reoptimization problems piecewisely and solve the linear network problems using a
network solver.

(c) Solve the problem types directly using a nonlinear network solver which has a built-
in piecewise linearizer.

12



Model size Pre-launch allocation Re-allocation
Number Number Number Number Number Number

of robots of targets of nodes of arcs of nodes of arcs

100 100 201 11900 201 8189
100 200 301 23800 301 16925
100 300 401 35700 401 25066
100 400 501 47600 501 32677
100 500 601 59500 601 40660
200 100 301 21900 301 14335
200 200 401 43800 401 29922
200 300 501 65700 501 43392
200 400 601 87600 601 57291
200 500 701 109500 701 70809
300 100 401 31900 401 20479
300 200 501 63800 501 42683
300 300 601 95700 601 62259
300 400 701 127600 701 82060
300 500 801 159500 801 104677
400 100 501 41900 501 27239
400 200 601 83800 601 55252
400 300 701 125700 701 82723
400 400 801 167600 801 108037
400 500 901 209500 901 137240
500 100 601 51900 601 33695
500 200 701 103800 701 67852
500 300 801 155700 801 101176
500 400 901 207600 901 133391
500 493 994 255867 994 166074

Table 1: Robot allocation model statistics

In (a) we used the code that calculates the rounded KKT solution (10). In (b) we
used network solver MINET presented in [MA87] and [MA88] and in (c) we used network
solver PLNP which is based on a nonlinear network algorithm presented in [M97].

In Table 2 solution times for the models are shown for cases (b) and (c). The KKT
solution times (case (a)) for all of the models were less than one millisecond and therefore
they are not presented in the table. In column 1 of the table there are the solution times for
the initial allocation problem, in column 3 and 2 the solution times for the reoptimization
problem with and without the additional linear term (4) of the initial allocation solution
in the objective function respectively. We observe that MINET is vastly superior to PLNP

13



in all of the cases and the better the larger the model is. MINET is a general purpose
minimal cost network optimizer. It has to solve a considerably larger problem [MA93]
than PLNP which uses the compact form of the problem. On the basis of our experiences
it can be said that the approach, KKT together with MINET, results in a formulation
that can well be solved in fractions of a second. This means that only that one can be
used for real time control of robots in the described environment.

1 2 3
Model size Pre-launch Re-allocation without Re-allocation with

allocation the additional term of the additional term of
Number Number the objective function the objective function

of robots of targets PLNP MINET PLNP MINET PLNP MINET

100 100 0.06 0.03 0.04 0.02 0.03 0.00
100 200 0.15 0.07 0.10 0.02 0.05 0.02
100 300 0.27 0.11 0.18 0.03 0.09 0.04
100 400 0.40 0.14 0.28 0.07 0.19 0.05
100 500 0.55 0.21 0.34 0.07 0.22 0.06
200 100 0.21 0.10 0.14 0.05 0.07 0.03
200 200 0.48 0.19 0.31 0.08 0.20 0.05
200 300 0.82 0.28 0.55 0.12 0.28 0.09
200 400 1.32 0.39 0.81 0.13 0.50 0.11
200 500 1.64 0.52 1.13 0.17 0.56 0.14
300 100 0.47 0.19 0.31 0.07 0.16 0.06
300 200 1.00 0.36 0.70 0.12 0.45 0.11
300 300 1.64 0.59 1.14 0.22 0.64 0.17
300 400 2.33 0.75 1.67 0.25 1.08 0.20
300 500 3.12 0.90 2.33 0.32 1.10 0.30
400 100 0.82 0.31 0.57 0.11 0.30 0.10
400 200 1.70 0.65 1.25 0.19 0.61 0.18
400 300 3.10 0.78 2.02 0.31 1.04 0.27
400 400 3.95 1.36 2.86 0.38 1.71 0.33
400 500 5.03 1.61 4.09 0.50 1.98 0.41
500 100 1.27 0.39 0.92 0.15 0.43 0.13
500 200 2.60 0.81 2.13 0.26 0.98 0.22
500 300 4.08 1.16 3.14 0.42 1.52 0.35
500 400 5.92 1.72 4.51 0.56 2.45 0.47
500 493 7.39 1.98 5.74 0.65 3.64 0.55

Table 2: Robot allocation CPU times (sec)

14



5 Conclusions

We have presented a robot assignment model that has multiple applications. The problem
has several key features. Robots act like communicating agents, the model is nonlinear
and integer valued, furthermore, it has to be solved repeatedly if circumstances change
during operation. An obvious requirement is the ability to solve the problem almost
instantaneously as time is a decisive factor in the operation of these communicating robots.

We have proposed algorithms for solving the nonlinear integer model and have demon-
strated that real-life-size problems can be solved practically in real time.

References

[LU03] Luenberger, D. G., Linear and Nonlinear Programming, Springer, 2003.

[MA87] Maros, I., MINET a Fast Network LP Solver, IIASA, WP–87–50, Laxenburg,
Austria, June 1987.

[MA88] Maros, I., MINET Fast Network LP Solver, Description and User’s Guide for
V2.00, IIASA WP–88–6, Laxenburg, Austria, January, 1988.

[MA93] Maros, I., Performance Evaluation of the MINET Minimum Cost Netflow Solver,
in Johnson, D. S. and McGeogh, C. C. (eds.) Network Flows and Matching: DIMACS
Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, Vol 12, 1993, pp. 199–217.

[M97] Marins, F. A. S., Senne, E. L. F., Darby-Dowman, K., Machado, A. F. and Perin,
C., Algorithms for network piecewise-linear programs, European Journal of Opera-
tional Research, Vol 97, 1997, pp. 183–199.

[RU96] Ruuth, S., Maros, I., Lucas, C., Mitra, G., Solution of a nonlinear robot assign-
ment problem, in Matson, E. (ed.) Essays in honour of Bjorn Nygreen on his 50th
birthday, Norwegian University of Science and Technology, 1996, pp. 49–60.

15


