3S: Program Instrumentation and Characterisation
Framework

Simon A. Spacey

ABSTRACT

3S is an efficient program instrumentation and profiling
framework. 3S is only 288 lines of framework code, yet it
can produce the same reports as Valgrind [1] and is up to an
order of magnitude faster.

I. INTRODUCTION

3S stands for “Spacey Stream Splitter”. 3S is a framework
used to instrument an x86 program. You use the framework
together with 3S analysis tools to analyse a program’s control
flow. The 3S framework provides the 3S tools with a stream of
control and data flow information as the instrumented target
program runs. The 3S tools split the control and data flow
information stream to create their reports.

This document introduces the 3S framework and some of
the 3S tools. I provide a summary of the 3S framework
methodology in section 2, examine two of the 3S tools in
section 3, evaluate the performance of 3S in section 4 and
consider some possible enhancements in section 5.

This document is not a survey of different instrumentation
frameworks and it is not a proposal for future research. If
you are interested in information on any of those topics you
should start with a review of the references at the end of this
document.

II. 3S FRAMEWORK METHODOLOGY

The 3S framework is only 288 lines of code, yet it can
produce the same reports as Valgrind [1] and is up to an order
of magnitude faster. The 3S framework works by inserting
instrumentation stubs in to the assembly of a program and
then linking the modified assembly with a 3S analysis tool
specified at instrumentation time. The instrumentation stubs
call the 3S analysis tool with a stream of program control
and data flow information as the program runs. The 3S tool
analyses the stream and creates reports from it.

By working at the assembly level, 3S does not have to
be concerned with its stubs over-writing program instructions
or jump targets [2] and also benefits from the basic block
identification algorithms already implemented in the source
code to assembler stage of the compiler. These simplifications
make instrumenting at the assembly level a straightforward
process of text file parsing. 3S simply takes a compiled
program’s assembly and adds 3S stubs after each compiler
generated function or jump target label. The one complication
is call instructions which are easy to spot in the assembly
using regular expressions.

In stark contrast to object code instrumentation frameworks
like Valgrind, the 3S instrumented output is fully readable
assembly text. This drastically reduced the development and
debugging time of the 3S framework itself and also benefits
users who can see exactly what 3S does to their programs to
assure themselves that the 3S instrumentation can not interfere
with their program’s validity.

A. Instruction and Block Level Instrumentation

The first release of 3S was designed to instrument a pro-
gram at the block level only. By version 2, instruction level
instrumentation features had also been added. Working at the
block level, 3S can create control flow and hotspot reports.
At the instruction level, it is possible to create data flow and
memory access reports like the Valgrind cachegrind report.

The difference between the block and instruction modes of
operation in 3S is seen in the type and placement of 3S stubs
inserted into the target program’s assembly file. In the block
mode, stubs are only inserted at the start of functions, basic
blocks and around call instructions. In instruction mode, stubs
are inserted before each instruction as well as at the start of
functions and blocks.

Obviously the overhead of 3S instruction level instrumenta-
tion is much greater than that of 3S block level instrumen-
tation, however it can still be less than that of alternative
frameworks like Valgrind. The reason for this lies in the way
3S and Valgrind analyse Intel’s complex instructions.

Valgrind expands the x86 CISC instructions to an internal
RISC form and then instruments the RISC instructions before
mapping them back (one-to-one) to x86 instructions to be
run on the processor [1]. This results in not only a tool call
overhead per instruction as with 3S, but also an instruction
expansion overhead as a single x86 CISC instruction can be
translated into multiple x86 RISC equivalents.

With 3S the x86 instructions are analysed statically at
instrumentation time. The static analysis creates a description
that contains all the aspects of the CISC instruction for
consideration by the 3S tool at run-time. There is then a single
3S tool call per instrumented x86 instruction and the 3S tool
is presented with a full description of the CISC instruction
and it’s parameters at run-time.

B. Clock Ticks vs Instruction Requests

The 3S framework stubs by default pass CPU clock tick
information on to the 3S tool. The clock tick value is mea-
sured around the instrumented assembly code using the x86
RDTSC instruction. The tick information is passed to the 3S

tool in the 64 bit globals _3S_previous_block_start_ticks and
_3S_previous_block_end_ticks. The tool can use these figures
to calculate the time a block took to run.

It should be noted that by using tick deltas, we remove most
of the tool instrumentation overhead from tick measurements.
However, the tick delta figures can still be inaccurate for small
blocks because of a residual caused by 6 instructions that are
outside the RDTSC instructions in the 3S stub and because of
instruction scheduling in the processor. The stub residual has
been measured to be around 9 ticks on an Opteron processor.

Because of the inaccuracy in tick measurements for small
blocks, Valgrind [1] does not use tick figures. Instead it uses
Instruction Requests (IR). 3S tools also have IR information
available to them by default. IR can be readily calculated in
the tool as the instructions per block multiplied by the entries
per block.

As measuring clock tick information adds overhead
to the instrumented program, it is possible to flag a
3S tool as not requiring ticks by defining the variable
_3S_INSTRUMENT_NO_TICKS in the tool’s C code. This flag
is defined in memory, regex, callgrind and some other 3S tools.

III. 3S TooLs

The 3S framework makes creating program analysis tools
easy. For example, the 3S hotspot tool generates an execution
profile for a target program with only 2 lines of active C code.

Several example 3S tools can be found in the /tools directory
of the 3S(ex) distribution. All tools use the header tool.h which
describes the global variables that the 3S framework provides
for the 3S tools.

To use the 3S tools you need to place your source files in
a subdirectory of /source and run the 3SInstrument.sh script.
This script is a wrapper that calls the 3S framework parser
program (3SInstrument.py) to compile each of your source
files to assembly and instrument them in turn. When all your
files have been instrumented, the 3SInstrument.sh script links
the instrumented assembly files together with the 3S tool you
specified. The final 3S instrumented executable is placed in
the /build directory.

Most tools create an output called <toolname>.3s in the
working directory after the instrumented program has been
executed. Some tools also create a pictorial report as a
postscript file. The following sub-sections describe two of the
3S tools in more detail.

A. 3§ Tool: loopgraph_d

The 3S loopgraph_d tool works at the block level and
creates a deterministic regular expression describing a whole
program’s execution trace. The regular expression is annotated
with hotspot information and saved in the loopgraph_d.3s
report file. The tool also creates a dotty file loopgraph_d.dot
with groups of acyclic-paths connected by repetition markers.
The dotty file is compiled automatically into a postscript
picture using neato [7] if the number of group nodes is less
than 100.

Fig. 1.

3S loopgraph_d tool for PRIVB®AES256 with gcc -O0

An example of the loopgraph_d postscript output is shown
in Figure 1 for the PRIVB®RAES256 8.2 [8] implementation.
This picture was generated for 10,000 OFB AES256 iterations
using source compiled to assembly with gcc -O0. Figure 2
shows the same program compiled with g++ -O0.

B. 3S Tool: memory

The 3S memory tool works at the instruction level. The 3S
tool creates a report of all memory addresses read and written
by every assembly instruction. The report is saved to the file
memory.3s and can be easily plotted using Excel or a similar
application.

Figure 3 shows the stack memory accesses by origi-
nal source assembly line for 10,000 OFB iterations of the
PRIV8®AES256 8.2 implementation compiled with g++ -OO0.

IV. PERFORMANCE

3S has been measured to be between 2 and 15 times as
fast as Valgrind for a comparative tool implementation. The
performance improvement is dependant on the x86 instructions

Fig. 2. 3S loopgraph_d tool for PRIVS®AES256 with g++ -O0
3S Memory Access Tool Output for AES256
(STACK)
3219864700
* Read Access
3219864650 * Write Access
3 3219864600
< 3219864550
2 a219864500 I- 1
g 3219864450 !
= 1L SR o
[} IS
3219864400
3219864350 - - - - - - - !
2000 2100 2200 2300 2400 2500 2600 2700 2800
Assembly Line
Fig. 3. 3S memory tool for PRIVB®AES256 with g++ -O0

used and the size of the basic blocks which are in turn
governed by the source code compiler.

Instrumenting the PRIVS®AES256 8.2 implementation
with a 3S callgrind tool using assembly generated by gcc -
02 produced a 5.5x performance improvement over Valgrind.
With the g++ -O2 compiler, the performance improvement
was 15.5x. The SPEC2000 GZIP benchmark could only be
compiled with gcc. Despite this, the performance increase was
consistently over 3x when compared with the current Valgrind
distribution (3.2.0).

The 3S performance improvement can be verified using the
3SPerformance.sh script that comes with the 3S(ex) distribu-
tion.

V. POSSIBLE ENHANCEMENTS

A. Optimisations

There are several optimisations that could be added to the
3S framework. Some obvious possibilities are:

1) only instrumenting a sub-set of blocks or instructions

2) in-lining the tool assembly

3) using register re-mapping to make the stub code more
efficient

However, perhaps the single most useful characteristic of
3S is the ease with which a new user can pick-up the 288 line
framework and start writing new tools. By adding performance
optimisations, I believe this characteristic would be lost. I
therefore strongly recommend that changes and additional
features be kept to a minimum in 3S. If you must have a
feature, it should be implemented in a specialist branch of the
3S code so that the current simple framework is not lost.

B. New 3§ Tools

There are several new tools that would be of benefit to the
3S community. They include:

1) a non-deterministic (statistical) loopgraph variant

2) a block level static memory prediction function evalu-
ated at run-time

3) a Valgrind style cachgrind tool

Creating 3S tools as separate modules that integrate with the
framework does not complicate the 3S code and I recommend
that someone set about creating these new 3S tools. Creating
these new 3S tools would make a good Masters project. Please
feel free to e-mail me if you would like to help.

VI. CONCLUSION

This document presented a brief overview of the 3S in-
strumentation framework and 3S analysis tools. One of the
main advantages of 3S over other instrumentation frameworks
is that it is extremely simple to understand being only 288
lines of code. This simplicity makes creating new 3S analysis
tools easy and brings previously unimagined program analysis
possibilities within the researcher’s grasp.

Because of the 3S framework’s simplicity, several unique
analysis tools have already been created in record time. These
include the loopgraph_d tool which creates a regular expres-
sion from a whole program execution trace and the memory
tool which displays instruction level memory accesses. With
loopgraph_d we have a way to automatically identify loops
and control dependancies and with memory we can identify
data dependancies.

The existing 3S tools are already casting new light on
important commercial programs [8]. With the proposed new
3S tools, the rapidly growing 3S community will have a
unique ability to shape the future of hardware and software
engineering for years to come.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

NETHERCOTE, N., SEWARD, J. Valgrind: A program supervision
framework. Proceedings of the 3rd Workshop on Runtime Verification
(http://valgrind.kde.org/, 2003).

PEARCE, D.J., KELLY, P.H.J., FIELD, T., HARDER, U. GILK: A
dynamic instrumentation tool for the linux kernel. Proceedings of the
12th International Conference on Computer Performance Evaluation,
Modelling Techniques and Tools 37, pp 220-226, (2002).

LARUS, J.R., SCHNARR, E. EEL: machine-independent executable
editing. Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pp 291-300, (1995).

SRIVASTAVA, A., EUSTACE, A. ATOM: a system for building cus-
tomized program analysis tools. Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation,
pp 196-205, (1994).

LARUS, J.R. Whole program paths. Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation,
pp 259-269, (1999).

LUK, C. ET AL Pin: building customized program analysis tools with
dynamic instrumentation. Proceedings of the 2005 ACM SIGPLAN con-

ference on Programming language design and implementation (2005).

GANSNER, E.R., NORTH, S.C. An Open Graph Visualization System
and its Applications to Software Engineering. Software Practice And Ex-
perience, 1-5, (http://www.graphviz.org/Documentation/
GN99.pdf, 1999).

PRIVS8 LTD. http://www.priv8.com/.

