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Abstract. This paper is concerned with the problem of quantifying the strength
of arguments in controversial debates, which we model as abstract argumentation
frameworks [Dung, 1995]. Standard approaches to abstract argumentation provide
only a qualitative account of the status of arguments, whereas numerical measures
of argument strength might provide a more precise evaluation of their individual
status. Intuitively, the strength of an argument in a debate essentially depends on
how a proponent of that argument would defend himself against the criticisms of
someone opposed to the argument. Since there can be many ways of defending and
attacking an opinion, we essentially conceive argument strength as an equilibrium
resulting from the interactions taking place between the opinions that a proponent
and an opponent of the argument could a priori embrace. More formally, we define
argument strength in terms of the value of a repeated two-person zero-sum strate-
gic game with imperfect information. Then, using the game-theoretic properties of
such games and notably the von Neumann minimax theorem [Neumann, 1928], we
establish and illustrate the main properties of this new argument strength measure.
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1. Introduction

Controversial debate can essentially be defined as the exchange of arguments and
counter-arguments, and deliberation, as the careful consideration of all sides of a debate
before making a decision. Abstract argumentation [Dung, 1995] is an elegant paradigm
that allows to identify which arguments – in a debate of interest – are rationally accept-
able. By considering only the acceptable arguments and rejecting the others, one usually
greatly simplifies the deliberation process. To illustrate this process of reasoning, let us
consider the following controversial question:

Can capital punishment be just ?

in the light of the following arguments1

a) Death penalty is an adequate form of punishment as it is a proportionate punishment
for murder.

1These arguments where found on debatepedia at http://wiki.idebate.org



b) Death penalty devalues the respect we place on human life.
c) With capital punishment, a court is unable to correct its past errors.
d) Capital punishment may cause the convict excessive pain.
e) The issue of pain is simply a matter of implementation and not a matter of the basic

principles of justice.
f) Life imprisonment without parole is better than capital punishment because it is more

compassionate and allows for a prisoner to develop remorse and repent.
g) Life imprisonment without parole is not more compassionate than capital punishment.

The central and starting argument in this debate is a, which supports the claim that capital
punishment is just. This first argument is attacked by four arguments, viz. b, c, d, and
f. The last two arguments d and f are in turn attacked by e and g respectively. It is not
entirely clear whether argument a should be completely rejected, because even though
strong arguments are raised against it, some of these are in turn criticised. In abstract
argumentation, one seeks to either accept or reject arguments, and in this debate, a would
be simply rejected2. By rejecting a, one would simply come to the conclusion that capital
punishment is not just and decide therefore never to have recourse to it. This seems like
a reasonable course of action.

Principles and methods for accepting or rejecting arguments, such as those offered
by argumentation theory, constitute a simple and qualitative way of understanding de-
bates and drawing decisions from them. This paper proposes to build upon the funda-
mental principles of rationality used in argumentation theory to provide additional quan-
titative insight on the individual status of arguments. We aim at assessing numerically
the acceptability of arguments, on a scale ranging from zero to one, so as to produce
a total ranking of arguments, identify which arguments are most strongly criticised and
understand the influence that new arguments and attacks have on the current state of a
debate.

The remainder of this paper is organised as follows. In the next section, we briefly
recall some background on abstract argumentation. We then borrow some fundamental
concepts from this domain and define the rules of a two-person zero-sum game con-
fronting a proponent of some argument of interest, to an opponent of the argument. The
superiority of the proponent, which can be measured by the proponent’s expected pay-
off, fundamentally relates to the intrinsic strength of the argument he embraces. We will
explain how to calculate this value and show that this new measure exhibits a number of
intuitively appealing properties.

2. Abstract argumentation

The arguments and structure of controversial debates can be represented in an elegant
manner using graphs, whereby arguments appear as nodes and attacks between argu-
ments as directed edges. Such graphs correspond to abstract argumentation frameworks
and constitute the basis of abstract argumentation theory [Dung, 1995]. Formally,

Definition 1 (argumentation framework) An abstract argumentation framework is a
pair (Arg, att) where Arg is a set of arguments and att ⊆ Arg × Arg is a binary
relation of attack between them.

2Under semantics such as e.g. admissibility or stability.



For every a, b ∈ Arg, (a, b) ∈ att is read ’a attacks b’. Arguments capture the knowl-
edge available from a debate. The attack relationship however structures the existing
conflicts in the debate. In the moral debate on capital punishment, the arguments in-
volved are Arg = {a, b, c, d, e, f, g} and the attack relationship is given by the ordered
pairs att = {(b, a), (c, a), (d, a), ( f, a), (e, d), (g, f )}. The argumentation framework
thus corresponds to the directed graph shown in (Fig. 1). The opinions held by the par-
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Figure 1. Abstract framework structuring the moral debate on capital punishment.

ticipants of a debate can be very simply represented by the set of arguments they re-
spectively embrace. Moreover, an attack or conflict from opinion X against an opin-
ion Y corresponds to an edge (x, y) ∈ X × Y . For example, a proponent of capital
punishment would embrace argument a and may adopt opinion {a, e}. A participant
of the debate that opposes to capital punishment for moral reasons could embrace ar-
guments {b, f } and thus criticise the proponent’s opinion with the attacks (b, a) and
( f, a). The main purpose of argumentation theory is to identify the most rational opin-
ions that can be formed in debates. To address this problem, several candidate character-
isations for sets of acceptable arguments have been proposed the literature [Dung, 1995;
Bondarenko et al., 1997; Dung et al., 2006; Caminada, 2006; Dung et al., 2007;
Matt and Toni, 2008]. In this paper, we will only consider the three following ones.

Definition 2 (notions of acceptability) A set X of arguments is said to be

• conflict-free if and only if X does not attack itself,
• admissible if and only if X is conflict-free and attacks every argument that attacks

it, and
• stable if and only if X is conflict-free and attacks every argument it does not

contain.

Conflict-freeness is certainly the most basic notion of acceptability available in ar-
gumentation. It states that an opinion is irrational whenever it contradicts itself. Admis-
sibility is a more advanced notion of acceptability according to which acceptable opin-
ions are those that do not just self-contradict but also resist any external criticism. Fi-
nally, the notion of stability characterises as acceptable the opinions which are free of
self-contradiction and that ruin all the arguments that are not part of it. In fact, it can be
shown that every stable sets of arguments is always also an admissible one.



In the capital punishment debate, the set of arguments {c, b, e, g} is conflict-free,
admissible and stable. The opinion formed by this set of arguments is acceptable under
three different interpretations of acceptability and is therefore according to argumenta-
tion theory quite "strong". This opinion attacks the central argument a in favour of capi-
tal punishment. Note that the only acceptable sets containing a are {a}, {a, e}, {a, g} and
{a, e, g} and are conflict-free but neither admissible nor stable. Consequently, we find
strong theoretical reasons – in the context of this very debate – for rejecting the argument
in favour of capital punishment and arrive at the conclusion that capital punishment is
not just.

3. Games of argumentation strategy

Abstract argumentation in its current state does not allow to appreciate quantitatively the
degree of acceptability or "strength" of arguments. In order to get an idea on how strong
an argument might be, we may look at opinions embracing the argument and the possi-
ble criticisms that can be raised against such opinions. Therefore propose to consider a
game of strategy [Borel, 1921; Neumann, 1928; von Neumann and Morgenstern, 1944]
confronting two players, endorsing the roles of proponent and opponent of the argument.
The proponent shall form an opinion embracing the argument x and the opponent attack
this opinion. By weighting the acceptability of the proponent’s opinion against the op-
ponent’s one, we expect to obtain a value representative of the intrinsic strength of the
argument x . This game of argumentation played will be fully determined by the argu-
ment x and framework F and throughout the paper will be referred to as (F, x) game
of argumentation strategy. In the remainder of this section, we present the exact rules of
this game.

In game theory, the elementary choices available to the players are referred to as
pure strategies. In the (F, x) game, the player strategies correspond to opinions in the
framework F . In other words, if P and O denote proponent and opponent strategies re-
spectively, then P and O correspond to subsets of Arg, where Arg is the set of argu-
ments in the argumentation framework F . The proponent shall embrace the argument x ,
therefore we must impose the constraint that x ∈ P . In a nutshell,

Definition 3 (pure strategies) The sets of strategies for the proponent and opponent are
{P | P ⊆ Arg, x ∈ P} and {O | O ⊆ Arg} respectively.

To defend his argument properly, the proponent should avoid to contradict himself,
i.e. his opinions should always correspond to sets of arguments that are at least conflict-
free. Also, since the opponent’s role in the game is to criticise the proponent, the oppo-
nent should get a maximal penalty whenever his opinion fails to attack the proponent’s
one. Finally, the game should provide an incentive for the proponent to attack the oppo-
nent’s opinion with as many attacks as possible and at the same time force him to avoid
the opponent’s attacks. These three principles actually reflect the intuition behind the no-
tions of conflict-freeness, admissibility and stability used in classical abstract argumen-
tation. To implement these principles, it is necessary to choose a reward function which
reflects the relative degree of acceptability of the players opinions.

To achieve this, we need to consider the interaction between opinions and take into
account the attacks existing between them. Let us then adopt the following notation for
pairs of sets of arguments X and Y ⊆ Arg:



Notation 1 (attacks from X against Y ) Y←X
F = {(x, y) ∈ X × Y | (x, y) ∈ att}

and denote by Y←X
F the set of attacks from X against Y . With this notation, O←P

F rep-
resents the set of attacks from P against O and P←O

F the set of attacks from O against
P . The acceptability of X with respect to Y should monotonically increases with the size
of O←P

F and decreases with the size of P←O
F . We propose to use a simple anaylitcal

expression such as

Notation 2 (degree of acceptability of P with respect to O)

φ(P, O) =
1
2
(1+ f (|O←P

F |)− f (|P←O
F |))

where f can be any monotonic increasing mapping f : N→ [0, 1[ such that f (0) = 0
and limn→∞ f (n) = 1. In the remainder of the paper, we will consider that ∀n ∈ N,

f (n) = 1−
1

n + 1

In an (F, x) game, the rewards are set in the following way.

Definition 4 (rewards of the game) If P is not conflict-free, then the opponent should
pay to the proponent the sum rF (P, O) = 0. If P is conflict-free and O does not attack
P, then the opponent should pay him the sum rF (P, O) = 1. Otherwise, the opponent
should pay the proponent a sum equal to rF (P, O) = φ(P, O).

By definition, the proponent’s reward is equal to the opponent’s loss. In the terminology
of game theory, games of argumentation strategy belong to the category of zero-sum
games. These games are essential for analysing non-cooperative domains. Observe that if
the opponent fails to attack the proponent, then the opponent is penalised with a maximal
loss of 1. To reduce his losses, the opponent must seek to minimise the number |O←P

F |

of attacks against his opinion O and maximise the number |P←O
F | of attacks against the

proponent’s opinion P . Besides, it is straightforward to establish that for every proponent
and opponent strategies P and O ,

Proposition 1 The rewards are such that
1) 0 ≤ rF (P, O) ≤ 1
2.a) rF (P, O) = 0 if and only if P is not conflict-free
2.b) rF (P, O) = 1 if and only if P is conflict-free and O does not attack P
3) if P is admissible or stable then rF (P, O) ≥ 1

2
4) if there exist k attacks of O against P then rF (P, O) < 1− 1

2 f (k)

The strategies and rewards of the (F, x) game have been defined. The only thing
that has not been defined yet is the knowledge available to the players during the game.
Basically, each player is informed about the argument x to defend/attack and is given
the full structure of the argumentation framework F , but no other piece of information
is provided. This means that the players are asked to choose their strategies without
knowledge of their adversary’s strategy. Games of argumentation strategy therefore also
fall within the category of games with imperfect information. Since the outcome of one



round of an (F, x) game is random, one is only interested the game’s outcome on the
long run (i.e. after a large number of repetitions) as always done in game theory for
two-person zero-sum games with imperfect information [Dresher, 1981].

4. Strength of arguments

Our intention is to use the proponent’s long term expected payoff (the game’s value) as a
measure of the strength of the argument he embraces. In the next section, we will study
the properties of such a measure, but in the present section, we first shall explain how
this value is mathematically defined and actually computed.

Intuitively, the proponent wants his reward rF (P, O) to be as large as possible, but
he controls only the choice of P . The opponent wants to make its loss rF (P, O) as
small as possible, but he only controls the choice of his strategy O . What are the guiding
principles which should determine the player’s choices and what is the expected outcome
of such a game ? Recall that games of argumentation strategy are by definition repeated
a large number of times. The rationale for reapting such games is that the player have the
choice in each round between multiple strategies and an objective measure of argument
strength should at least have some statistical significance.

If a player was choosing always the same strategy, then his adversary could adapt
his own strategy to it and get a better payoff. Therefore, it is important for players en-
gaged in a repeated game of imperfect information to randomise their strategies over
time. We therefore consider that each time the game is played, the proponent and the
opponent choose their strategies according to some probability distributions X and Y .
So, the probability of the proponent choosing his i th strategy, which we may denote by
convenience Pi , is equal to xi . Similarly, the probability of the opponent choosing his j th
strategy O j is y j . The probability distributions X and Y are called mixed strategies. If
we denote by m and n the number of strategies available to the proponent and opponent
respectively, then to be valid distributions, X and Y must be such that all xi and y j are
positive and sum up to one. With these notations, the proponent’s expected payoff 3 is
given by [Dresher, 1981]

E = X T RY =
n∑

j=1

m∑
i=1

ri, j xi y j

and the proponent can therefore expect to get at least minY X T RY , where the minimum
is taken over all mixed strategies available to the opponent. Since the proponent has the
choice of X , he will select X so that this minimum is as large as possible. Hence the pro-
ponent can pick a mixed strategy, denoted X∗, which will guarantee him an expectation
of at least

max
X

min
Y

X T RY

irrespective of what the opponent does. Similarly, the opponent can make the proponent’s
expected payoff at most equal to

3 X T denotes the transpose of vector X and R the matrix ((ri, j ))m×n where ri, j = rF (Pi , O j ).



min
Y

max
X

X T RY

by playing with some strategy Y ∗. The minimax theorem of [Neumann, 1928] states that
these two quantities always have a common value v

max
X

min
Y

X T RY = min
Y

max
X

X T RY = v

which is called the value of the game. It is both the expected payoff that is guaranteed to
the proponent and the maximal expected loss of the opponent. Consequently, we adopt
the following

Definition 5 (strength sF (x) of argument x) The strength of argument x in the abstract
argumentation framework F is noted sF (x) and defined as the value of the (F, x) game
of argumentation strategy.

General books of Operations Research [Hillier and Lieberman, 1995] explain how to
compute v – when the game’s value can be shown to be a priori positive – by solving a
linear program with the simplex algorithm [Dantzig et al., 1955]. v is the solution of the
problem of maximising xm+1, subject to the n + m + 2 linear inequality constraints

∀ j ∈ {1, ..., n}
m∑

i=1

ri, j xi − xm+1 ≥ 0

m∑
i=1

xi = 1

x1, ..., xm, xm+1 ≥ 0

The higher the value of v, the better off is the proponent of the argument. The value
of v, which only depends on x and F , can thus be interpreted as the strength of x in the
context of the debate modelled by the abstract argumentation framework F . For instance,
the strength of the arguments composing the moral debate on capital punishment appears
in Fig. 2.

As one can notice, the strength of the central argument a in favour of capital pun-
ishment is quite low compared to the one of other arguments, as suggested our initial
qualitative analysis. Moreover, we observe that the arguments composing the opinion
{b, c, e, g} (which has been shown to be strong in the qualitative sense) against capital
punishment all have maximal strength of one. These numerical results thus validate the
conclusions of our preliminary analysis in this specific case. The reader may familiarise
herself/himself with the strength measure by examining Fig. 4 which displays all the pos-
sible configurations of frameworks with one, two or three arguments that do not attack
themselves (arguments attacking themselves can be considered as rare in practise) and
that correspond to connected graphs.

The reason for showing only connected graphs will be explained in the next section.
Basically, we will prove that the strength of arguments in disconnected parts of a graph
can be assessed totally independently of each other. Remark that this property may some-
times allow to simplify (computationally speaking) the analysis of complex situations
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Figure 2. Strength of arguments in the moral debate on capital punishment.

where many arguments are grouped within argument "clusters" or sub-graphs that do not
conflict with one another. In expert systems for instance, such clusters may correspond
to arguments emanating from independent empirical theories.

Fig. 3 shows a small complementary collection of situations involving self-attacking
arguments and a slightly larger number of arguments4.

So as to understand how the argument strength measure behaves in general, we now
provide a thorough mathematical study of its properties. This is the objective of the next
section.

5. Properties of argument strength

We are going to examine three groups of properties. Properties in the first group (cf.
propositions 1, 2 and 3) relate to the the boundedness of the measure and the charac-
terisation of the conditions under which an argument’s strength attains extreme values.
Properties of the second group (cf. proposition 4) concerns arguments of medium to high
strength and gives and links the notions of admissibility and stability to this domain of
the strength spectrum. Finally, the third group of properties (cf. propositions 6, 7, 8 and 9)
explain the impact of adding new attacks or arguments to an argumentation framework.
This last group of properties thus allows to understand the evolution of the individual
status of arguments in debates that are dynamically constructed.

Let us start with the first group of properties. By construction of the reward function
in games of argumentation strategy, the strength of an argument is a real number which
we can show to be bounded between 0 and 1. This is an almost direct consequence of
proposition 1.1 and von Neumann’s minimax theorem. In the next two propositions, we
will see that these bounds are in fact tight and can be attained.

Proposition 2 (bounds of argument strength) The strength of an argument is always
comprised between zero and one.

4As the size of the players strategy spaces grows exponentially fast with the total number of arguments in the
framework considered, the optimisation technique we use at the moment to measure argument strength does
not scale up to much more than a dozen of arguments
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Figure 3. Catalogue of some basic configurations.

Proof 1 According to proposition 1.1, ∀(i, j), ri, j ∈ 0, 1. For every mixed strategies X
and Y , we also have X T RY ∈ 0, 1, which implies 0 ≤ minY X T RY and maxX X T RY ≤
1. Therefore, 0 ≤ maxX minY X T RY and minY maxX X T RY ≤ 1. By the minimax
theorem, 0 ≤ v ≤ 1, and thus v = sF (x) ∈ [0, 1].

The lowest possible strength of an argument is zero and this situation only occurs when
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Figure 4. Sample of various and more complex debate configurations.

the argument attacks itself. This situation is however rare in practise. Remark also that
whenever an argument attacks itself, its proponent is forced to play with strategies that
all correspond to sets of arguments that attack themselves and that yield a null payoff
irrespective of what the opponent does.

Proposition 3 (self-contradiction must be avoided) The strength of an argument is
null if and only if the argument attacks itself.

Proof 2 ⇒: sF (x) = v = minY maxX X T RY = 0 implies the existence of Y ∗ such that
∀X, X T RY ∗ ≤ 0. This holds notably for any X = ei (the vector whose components are
all equal to 0 except the i th one which is equal to 1), hence ∀i ,

∑
j ri, j y∗j ≤ 0. Since

ri, j y∗j ≥ 0, it is clear that ∀(i, j), ri, j y∗j = 0. Y ∗ is a probability distribution, so there
exists k such that y∗jk > 0. It is then necessary that ∀i , ri, jk = 0. According to proposition
1.2, ∀i , Pi attacks itself. In particular, Pi = {x} attacks itself, i.e. argument x attacks
itself.
⇐: If x attacks itself, then all proponent strategies in the (F, x) game are non-

conflict-free sets of arguments. By proposition 1.2), R = ((0)) and v = sF (x) = 0.



The highest possible strength of an argument is one and this situation only occurs when
the argument is not attacked by any other argument. This situation is quite common.
Indeed, the participants in a debate usually focus their attacks against one or a few ar-
guments amongst the most important arguments of their opponents, leaving thus many
arguments unattacked.

Proposition 4 (unattacked arguments are the strongest) The strength of an argument
is one if and only if it there is no argument attacking it.

Proof 3 ⇒: If sF (x) = v = 1, then we have maxX minY X T RY = 1. Y ranges over
the set of all real-valued probability distributions which is larger than the set S of all
zero-one valued probability distributions. Thus, ∀X, minY∈S X T RY ≥ minY X T RY .
Therefore, maxX minY∈S X T RY ≥ maxX minY X T RY = 1. This can be rewritten as
maxX min j

∑
i ri, j xi ≥ 1. ∃X∗ s.t. min j

∑
i ri, j x∗i ≥ 1, i.e. ∀ j ,

∑
i ri, j x∗i ≥ 1. Since

∀(i, j), ri, j ≤ 1 and X∗ is a probability distribution, ∀ j ,
∑

i ri, j x∗i ≤ 1, so that in
fact ∀ j ,

∑
i ri, j x∗i = 1. This may only hold if ∀(i, j), ri, j < 1 ⇒ x∗i = 0. X∗ is a

probability distribution, so there exists k such that x∗k > 0. By contraposition of the
previous implications, ∀ j , ¬(rk, j < 1), i.e. rk, j ≥ 1. By proposition 1.1), ∀ j , rk, j = 1.
By proposition 1.2), ∀ j , Pk is conflict-free and O j does not attack Pk . x ∈ Pk so there is
no opponent strategy or argument that attacks x.
⇐: By selecting strategy {x} with probability 1, the proponent has a guaranteed

payoff of 1 irrespective of what the opponent does. Therefore, v ≥ 1. In fact, v is bounded
up by 1 by proposition 2) and sF (x) = 1.

Apart from these two extreme cases, all remaining arguments have by elimination
a strength value that is strictly comprised between zero and one. Amongst them, those
which are still admissible or stable (i.e. contained in an admissible or stable set of ar-
guments) have a strength that can be shown to be always above average. This important
property is the guarantee that our quantitative strengh measure does not contradict the
qualitative analysis of arguments that can be conducted using the standard notions of ac-
ceptability for abstract argumentation. However, argument strength offers the possiblity
to compare acceptable arguments amongst themselves. The second part of the following
proposition shows indeed that the upper bound of the strength of an acceptable argument
monotonically decreases with the number of attacks existing against it.

Proposition 5 (acceptable arguments have medium to high strength) If an argument
is admissible or stable5 then its strength is greater or equal to 1

2 . However, the strength
of an argument that has k attacks is always strictly inferior to 1− 1

2 f (k).

Proof 4 If there exist k attacks against x, then there exists a strategy O with k attacks
against x. For this strategy, and whatever the proponent strategy P, there must be also
at least k attacks from O against P and rF (P, O) < 1 − 1

2 f (k) by proposition 1.4. By
playing O with a probability of 1, the opponent can strcitly secure a maximum loss of
1 − 1

2 f (k), i.e. sF (x) < 1 − 1
2 f (k). If P is admissible, then by proposition 1.3) ∀O,

rF (P, O) ≥ 1
2 so by playing P with probability 1 the proponent of x can secure a payoff

of at least 1
2 . If P is stable, then it is also admissible and the same result holds.

5This property can actually be generalised to any semantics of argumentation that is stronger than the notion
of admissibility, such as e.g. the preferred, complete, grounded and ideal semantics.



We now study how the strength of arguments varies as argumentation frameworks
evolve, from an initial argument and no attack to a larger set of arguments with more
attacks. This is important as it allows to understand quantitatively the impact of adding
new arguments and attacks to a controversial debate and may be used strategically by
participants of a debate to spot weaknesses in their adversaries opinions and influence
the deliberation process. Propositions 6, 7 and 8 concern the addition of attacks to a
framework. Proposition 9 deals with the addition of arguments, and more generally of
groups of arguments.

Suppose first that an attack (a, b) is added to the framework F = (Arg, att), where
(a, b) /∈ att and a, b ∈ Arg. By convenience, we will use

Notation 3 F+(a,b) = (Arg, att ∪ {(a, b)})

When an attack is added against an argument we intuitively expects its strength to be
reduced or, in the best case, to be maintained to the same value. This is a very intuitive
and desirable property since people raise attacks against arguments in debates especially
to reduce their "strength" and impact on the deliberation process.

Proposition 6 (criticism reduces argument strength) Adding an attack against an ar-
gument reduces its strength or maintains it in the best case.

Proof 5 The sets of strategies available to the proponent and opponent are the same in
the (F, b) and (F+(a,b), b) games. Let P and O be proponent and opponent strategies.
Remark that P←O

F ⊆ P←O
F+(a,b)

and either O←P
F = O←P

F+(a,b)
(if a /∈ P) or P attacks itself

in F+(a,b) (if a ∈ P). By monotonicity of f , φF+(a,b)(P, O) ≤ φF (P, O). In any case
(a ∈ P or a /∈ P), rF+(a,b)(P, O) ≤ rF (P, O). It follows that sF+(a,b)(b) ≤ sF (b).

When adding an attack from a against b, we also increase the degree of "aggressive-
ness" of opinions embracing argument a towards these opinions embracing b. If the pro-
ponent does not point this aggressiveness against himself (i.e. b is not part of the optimal
strategies played by the proponent of a), then the proponent should be better off because
his optimal strategies become more stable (in the dialectical sense). In such cases, we
expect the strength of a to increase. On the opposite, if the extra aggressiveness is not
well targeted, the strength of the argument may be reduced. To distinguish between these
two cases, we say that

Definition 6 (superfluous argument) Argument b is superfluous w.r.t. argument a if by
forbidding the proponent of a to play with strategies containing b one does not decrease
the value of the (F, a) game of argumentation strategy.

Proposition 7 (cautious extra-aggressiveness pays-off) Adding an attack from a against
b increases (or preserves) the strength of a when b is superfluous with respect to a and
may reduce it otherwise.

Proof 6 If b is superfluous with respect to a then there exists an optimal mixed strategy
X∗ for the (F, a) game such that ∀i , x∗i > 0⇒ b /∈ Pi . Let then P be an active strategy,
i.e. P = Pi and x∗i > 0. Then, ∀O, we have O←P

F ⊆ O←P
F+(a,b)

, P←O
F = P←O

F+(a,b)
(if

it is not the case that a ∈ O and b ∈ P) or P attacks itself in F+(a,b) (if a ∈ O and
b ∈ P). The last case does not occur (b /∈ P) since b is assumed to be superfluous to



a. By monotonicity of f , φF (P, O) ≤ φF+(a,b)(P, O). Since b /∈ P, P is conflict-free
in F iff P is conflict-free in F+(a,b) and O attacks P in F iff O attacks P in F+(a,b).
Therefore, for every active strategy P under X∗ we have rF (P, O) ≤ rF+(a,b)(P, O). By
playing with X∗ in the (F+(a,b), a) game, the proponent can secure a payoff of at least
sF (a). Hence, sF+(a,b)(a) ≥ sF (a).

Since adding an attack against argument b weakens that argument, one expects to see
an increase in the strength of the "enemies" of b, i.e. the arguments c which are attacked
by b. We can prove that this additional property holds in general.

Proposition 8 (indirect counter-attack brings support) If b attacks c, then adding an
attack (from a) against b increases the strength of c.

Proof 7 The sets of strategies of the players are the same in the (F, c) and (F+(a,b), c)
games. We have O←P

F ⊆ O←P
F+(a,b)

(if a ∈ P and b ∈ O) or O←P
F = O←P

F+(a,b)
otherwise.

We also have P←O
F ⊆ P←O

F+(a,b)
(if b ∈ P and a ∈ O) and P←O

F = P←O
F+(a,b)

otherwise.
Remark that if b ∈ P then P attacks itself in both F and F+(a,b). So, rF (P, O) ≤

rF+(a,b)(P, O) and sF (c) ≤ sF+(a,b)(c).

So far, we have looked at changes in the framework structure which only concerned
the attack relationship between arguments, but we also need to study the impact of
adding new arguments to a debate. Let us now assume that Arg are the arguments of
the current debate and Arg′ represent some new arguments, i.e. that Arg′ ∩ Arg = ∅.
Obviously, both current and new arguments may be in conflict according to some dis-
tinct attack relations att ⊂ Arg × Arg and att ′ ⊆ Arg′ × Arg′. The argumenta-
tion framework resulting from the addition of the new arguments Arg′ is thus simply
FArg+Arg′ = (Arg ∪ Arg′, att ∪ att ′). We have

Proposition 9 (insensitivity to irrelevant information) The strength of arguments in
a debate (Arg, att) is unchanged by the addition of new arguments from a debate
(Arg′, att ′) that is irrelevant to it, i.e. that verifies Arg′ ∩ Arg = ∅.

Proof 8 Let us consider the (FArg+Arg′ , x) game where x ∈ Arg. Since none of the
arguments in Arg′ attack x (the two frameworks are disconnected), the proponent of x is
at least as well off in this new game as in the (F, x) if he restricts himself to his old set of
strategies build upon Arg. Therefore, sFArg+Arg′

(x) ≥ sF (x). The same proposition also
holds for the opponent of x, which means that −sFArg+Arg′

≥ −sF (x) or equivalently
sFArg+Arg′

≤ sF (x). In conclusion, sFArg+Arg′
(x) = sF (x).

As intuitively expected, the status of arguments in a debate is left unchanged by adjunc-
tion of new arguments disconnected from the current debate. As mentionned earlier, ir-
relevant groups of arguments may be brought into the debate by experts relying on dis-
connected or independent empirical theories. This last result thus enables us to analyse
these groups of arguments independently of each other. Thus, the formal mechanism
for aggregating non mutually conflicting groups of arguments simply corresponds to the
juxtaposition of weighted graphs.



6. Summary and discussion of related works

Abstract argumentation frameworks [Dung, 1995] constitute an elegant and simple
way of representing knowledge and structuring conflicts in controversial debates. Ex-
isting notions of acceptability in abstract argumentation provide useful qualitative in-
sight on the status of arguments within such frameworks. Very recently, the argumen-
tation research community has manifested a sudden interest for the use of quantita-
tive measures in the analysis of persuasion dialogues [Amgoud and de Saint-Cyr, 2008;
Budzyńska et al., 2008]. The idea of using games of strategy and their value – as defined
in game theory – for constructing such measures brings a technical novelty with regards
to such approaches. In this paper, the notion of argument strength has been put in relation
with the class of games of strategy. However, it is important to note that other types of
games can be useful for argumentation. For instance, it has been argued in [Riveret et
al., 2008] that argumentation dialogue games [Prakken, 2005] could most suitably been
treated as extensive games, rather than strategic games.

To measure the strength of an argument, we have essentially suggested to confront
a proponent and opponent of an argument via a repeated game of argumentation strat-
egy. The game’s payoffs have been chosen so as to reflect numerically the interaction
between proponent and opponent strategies. The statistical equilibrium resulting from
the long term interaction between their respective possible strategies can be modelled by
the argumentation game’s value, which we have used as measure of strength. In prac-
tise, argument strength may be most efficiently computed using the simplex algorithm of
[Dantzig et al., 1955]. It has been shown in order that argument strength ranges between
zero and one, that these bounds are attained for arguments that attack themselves and
that are not attacked respectively, that admissible and stable arguments have above av-
erage strength and that argument strength allows to make comparisons between accept-
able arguments. We have also established that criticism reduces argument strength, that
cautious extra-aggressiveness increases argument strength and indirect counter-attacks
may restore an argument strength. Finally, we could prove that the addition of irrelevant
groups of arguments to a debate does not have any impact on argument strength.

The authors of [Krause et al., 1995] distinguish three types of argument strength
measures, namely simple weights in a alphabet of symbols or in [0, 1], strength as proba-
bility of provability and qualitative measures based on purely symbolic form of dialecti-
cal argumentation. The measure here-exposed belongs to the first type, although derived
from a purely symbolic representation of debates. [Ambler, 1996] rigorously discusses
manipulations of the internal structure of arguments which allow to evaluate the strength
of arguments. Our approach, based on Dung’s abstract view of argumentation on the
opposite cold-shoulders the internal structure of arguments and deliberately overlooks
such information. Nevertheless, the results presented in the previous section show that
the internal structure of arguments is not essential to obtain intuitively appealing results.

[Poole, 1993] has developed a rigorous notion of strength as probability of provabil-
ity and [Amgoud and Prade, 2004] has developed an approach for assessing the strength
of arguments rooted in possibility theory. In these works, a probability or possibility
distribution is assumed to be known in advance and is used to model our confidence in
elementary pieces of knowledge upon which arguments are constructed. The strength
of arguments is intended to reflect an overall level of confidence into the propositions
they support. Such paradigms may sometimes be impractical, as they require a subject



– often endowed with only qualitative and conflicting pieces of information – to fully
specify probability or possibility distributions. The approach exposed here only requires
the specification of a directed graph.

Finally, acceptability notions in abstract [Dung, 1995] or assumption-based argu-
mentation [Bondarenko et al., 1997; Dung et al., 2006] constitute perhaps the most sig-
nificant examples of qualitative measures of argument strength based on dialectical argu-
mentation. We have exploited these notions to define numerical degrees of acceptability
and rewards of games of argumentation strategy. We have observed in the moral debate
on capital punishment and also justified with formal proofs, that the constructed measure
matches with the intuition offered by standard acceptability notions, but also enables to
get a slightly more detailed account of the status of arguments in controversial debates.
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