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Abstract
This paper describes a compositional shape analysis, where each
procedure is analyzed independently of its callers. The analysis
uses an abstract domain based on a restricted fragment of sepa-
ration logic, and assigns a collection of Hoare triples to each pro-
cedure; the triples provide an over-approximation of data structure
usage. Compositionality brings its usual benefits – increased poten-
tial to scale, ability to deal with unknown calling contexts, graceful
way to deal with imprecision – to shape analysis, for the first time.

The analysis rests on a generalized form of abduction (infer-
ence of explanatory hypotheses) which we call bi-abduction. Bi-
abduction displays abduction as a kind of inverse to the frame prob-
lem: it jointly infers anti-frames (missing portions of state) and
frames (portions of state not touched by an operation), and is the
basis of a new interprocedural analysis algorithm. We have im-
plemented our analysis algorithm and we report case studies on
smaller programs to evaluate the quality of discovered specifica-
tions, and larger programs (e.g., an entire Linux distribution) to test
scalability and graceful imprecision.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.4 [Programming Lan-
guages]: Processors; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms Verification, Reliability, Languages, Theory

Keywords Program Analysis, Proof Theory, Abduction

1. Introduction
The Case for Compositional Shape Analysis. A shape analysis
attempts to discover invariants that describe the data structures in a
program (e.g., [41, 2, 35, 19, 3]). We are interested in particular in
the use of such analyses for (lightweight) program verification. A
shape analysis can in principle prove that programs do not commit
pointer-safety errors (dereferencing a null or dangling pointer, or
leaking memory), without the user having to write loop invariants
or even pre/post specifications for procedures; these are inferred
during analysis. To do this the analysis typically has to accurately
identify (or distinguish) cyclic and acyclic linked structures, nested
lists, and so on.

Recall that a semantic definition of a language is compositional
if the meaning of a composite expression can be defined in terms of
the meanings of its parts. Similarly, a program analysis is compo-
sitional if the analysis result of a composite program (or program
fragment) is computed from the analysis results of its parts. Often,
this definition is understood at the level of granularity of procedures

or groups of recursive procedures. This paper is the, to our knowl-
edge, first to define and evaluate a compositional shape analysis.

Compositionality has well-known potential benefits, which line
up directly with some of the outstanding problems in making shape
analysis more practical.

1. The ability to analyze program parts, without having the con-
text. When an entire program is not available, or is very large,
the user of a whole-program shape analysis must put in a sig-
nificant amount of work before the analysis is run at all. This
work consists in defining a “fake main program” which allo-
cates data structures and calls the incomplete program’s proce-
dures, or it involves defining preconditions for the procedures.
Both are time consuming and possible sources of error.
The very definition of “compositional” presupposes that an
analysis makes sense for an incomplete program, without hav-
ing its context (or a “main” program) available.
This is evidently relevant to the potential use of an analysis
during program development, rather than only after a complete
program has been written.

2. Potential to scale. Shape analyses are notoriously expensive.
After years of research and many papers, we have only recently
seen the accurate analysis of complete programs in the thou-
sands of lines of code (up to 10K LOC) [19, 21, 28]. (Less ac-
curate analyses, which typically cannot prove pointer safety on
such programs, have been reported for larger code bases; e.g.,
[13, 20].) Papers in the field usually use test programs number-
ing in only the hundreds or tens of lines of code.
With a compositional analysis it becomes relatively easy to get
meaningful (if partial) results for large code bases.
There is a further benefit that is worth mentioning: Paralleliza-
tion. If we can analyze groups of procedures independently, it
is easy to run the analysis in parallel and exploit the power of
the multicore computers that are becoming mainstream.
[Aside. Compositional analysis, by its nature, easily yields an
incremental algorithm. When an analysis is first run its results
can be stored to disk. Then, if a procedure (or recursive pro-
cedure group) is changed, only it has to be re-analyzed; the old
analysis results for independent procedures remain unchanged.]

3. Graceful imprecision. There is no single existing shape domain
that has been proposed which is appropriate to all of the kinds
of data structures found in a large program (such as Linux): any
known shape domain will deliver uselessly imprecise results at
some point, after which (in a whole program analysis) meaning-



ful results cease to be obtained even for portions of code which
could be well treated, were a suitable precondition known.
If a compositional analysis is unable to get precise results for
one procedure, due to limitations of its abstract domain, it can
still obtain precise results for other procedures.

This discussion motivates the problem of defining and evaluating a
compositional shape analysis.

Compositional Shape Analysis by Abductive Inference. Charles
Peirce introduced abductive inference – inference of explanatory
hypotheses – in the early 1900’s in his writings on the scientific
process [34]. Abduction was formulated distinguishing hypothesis
formation from deductive and inductive inference patterns. Abduc-
tive inference has been widely studied in philosophy, and it has
been used in a number of ways in Artificial Intelligence, such as in
diagnosis and in planning. (The survey article [22] points to many
formalizations and applications in the AI literature.)

The main contribution of this paper is conceptual in nature. We
explain how abductive inference can be used to define a composi-
tional, interprocedural shape analysis algorithm. We use abduction
to generate preconditions, so that we can obtain a true Hoare triple
for a procedure without knowing its calling context. This allows
us to make a compositional, bottom-up program analysis, where
callees are analyzed before callers.

The basic idea is this. During an analysis run we might find
that we do not have enough information to perform an operation
– a procedure call, or a dereferencing. We then perform abductive
inference to infer what is missing. We percolate this information
back to the preconditions of procedures and, in the end, this allows
us to synthesize Hoare triples without examining the calling context
of a procedure.

A benefit of this use of abduction is to generalize and enhance
a method we described in [6] for generating preconditions in an
intraprocedural (i.e., without procedures) analysis. The use of ab-
duction makes possible to handle procedure calls. It is also more
systematic: the method of finding preconditions is seen as part of
a more general scheme – inference of missing hypotheses – rather
than an ad hoc method based on pointer dereferencing faults (as
was the case in [6]).

A major part of our contribution involves defining an abductive
inference algorithm for use with a shape analysis. We define a
new procedure for performing abductive inference for (certain)
separation logic assertions which, following [4, 10], are used to
define the abstract states in our analysis. In fact, to treat procedure
calls we must deal with a more general problem, which we call bi-
abduction, that infers “frames” describing extra, unneeded portions
of state as well as the needed, missing portions (the “anti-frames”).

We have implemented our analysis algorithm and done a num-
ber of case studies to evaluate it. These range from small programs
operating over composite list structures, through to a medium-sized
program (a firewire device driver), and on to larger code bases (in-
cluding complete distributions of Apache, OpenSSL, Linux). The
small and medium-sized examples are done to probe questions con-
cerning the quality of specifications discovered by our analysis, and
the larger ones to test scalability and graceful imprecision.

2. Bi-Abductive Inference for Specification
Synthesis

In this section we explain informally how bi-abduction is used in
our analysis. Subsequent sections develop the ideas formally.

Abductive Inference. In standard logic, abduction can be set up
as follows.

Given: assumption A and goal G.

To find: “missing” assumptions M making the entailment

A ∧ M ` G

true.

Constraints are placed on what counts as a solution: that it be
consistent, that it be expressed using a restricted collection of
“abducible” facts, and sometimes that it be minimal in some sense.

In this paper we will be solving a similar problem, but for
separation logic rather than classical logic. So, we will have to solve
problems of the form

A ∗ ?? ` G

where we use the separating conjunction to partition the premises
instead of, or in addition to, the usual additive conjunction of
classical logic.

Generating Preconditions by Abduction. Suppose that during a
program verification we have an assertion A at a call site for a
procedure, and the procedure has a precondition G. For example,

Procedure precondition: G
def
= list(x) ∗ list(y),

Assertion at call site: A
def
= x7→0

Here the precondition says that x and y point to acyclic linked lists
occupying separate memory, while the assertion A says that x is a
pointer variable containing 0 (so a list of length 1).

The difficulty we face is that the assertion A does not imply G;
the call site and given precondition do not match up. One thing we
can do is to give up on our verification, or our program analysis, at
this point. But we might also realize

if only we had the assertion list(y) as well, separately con-
joined, then we would be able to meet the precondition.

The informal inference step expressed here is abductive in nature:
it is about inferring an hypothesis. Formally, it involves solving a
question of the form

A ∗ ?? ` G.

We can see the relevance of this to interprocedural analysis
using an example. Suppose we are given a procedure summary
(here, a spec using Hoare triples) of a procedure merge(x,y). The
summary might have been computed previously in an analysis, or it
might have been supplied manually by a user. We have an enclosing
procedure p(y) which calls merge as follows.

1 void p(lst_nd *y) { //Inferred Pre: list(y)
2 lst_nd *x;
3 x=malloc(sizeof(lst_nd)); x->tail = 0;
4 merge(x,y);
5 y=0;
6 } // Inferred Post: list(x)
7 void merge(lst_nd *x,lst_nd *y){//SUMMARY ONLY
9 // Given Pre: list(x) * list(y)
10 } // Given Post: list(x)

Here is how we can synthesize the pre and post described at
lines 1 and 6. We begin by executing p() with starting symbolic
heap emp, an assertion describing the empty heap. Just after line
3 we obtain the assertion A = x7→0. We call our abductive proof
procedure, which tells us that list(y) is missing. So we infer that
we should have started execution with list(y) rather than emp,
and record list(y) as a missing precondition. We pretend that the
analysis of the call at line 4 was successful, and continue the
analysis of p() with the postcondition list(x) of merge(x,y). At
the end of procedure p() we obtain list(x) as the computed post.

Notice that the specification synthesized for p() is not at all
random: the precondition describes the set of states on which the
procedure can be safely run, presuming the given spec of merge().



Bi-Abduction. Abduction gives us a way to synthesize missing
portions of state. We also have to synthesize additional, leftover
portions of the heap by solving the more general problem

A ∗ ?1 ` G ∗ ?2.

Here, we refer to ?2 as the frame, and ?1 as the anti-frame.
We illustrate the use of bi-abduction with the following varia-

tion on the example above, using the same procedure summary as
before for merge().

1 void q(lst_nd *y) { //Inferred Pre: list(y)
2 lst_nd *x, *z;
3 x=malloc(sizeof(lst_nd)); x->tail=0;
4 z=malloc(sizeof(lst_nd)); z->tail=0;
5 // Abducted: list(y), Framed: z|->0
6 merge(x,y);
7 // Obtained Post: list(x)*z|->0
8 merge(x,z);
9 } // Inferred Post: list(x)

This time we infer anti-frame list(y) as before, but using bi-
abduction we also infer z 7→0 as the frame axiom that won’t be
needed by procedure call at line 6. That is, we obtain a solution of
the bi-abduction question

x7→0 ∗ z 7→0 ∗ ?1 ` list(x) ∗ list(y) ∗ ?2

where the solution obtained is ?1 = list(y), ?2 = z 7→0. We
tack the frame ?2 on to the postcondition list(x) obtained from
the procedure summary, continue execution at line 7, and this
eventually gives us the indicated pre/post pair at lines 1 and 9.

Again, the inferred pre/post spec talks about only those cells
that the procedure accesses. Such “small specifications” are useful
to aim for when synthesizing pre- and postconditions, because (1)
shape domains usually have an enormous number of states that
might be used and (2) “small specifications” describe more general
facts about procedures than “big specifications”, so that they lead
to a more precise analysis of callers of those procedures.

The more general point we wish to make is that bi-abduction
gives us a way to realize, in a program analysis, a key idea from
[32], where specifications and proofs concentrate on the cells ac-
cessed by a program rather than the entire global state of a system.
Synthesis of frames allows us to use small specifications of heap
portions by slotting them into larger states found at call sites, where
abduction of anti-frames helps us to find the small specs.1

3. Symbolic Heaps
Storage Model. We assume two disjoint sets of variables: a finite
set of program variables Var (ranged over by x, y, z, . . .) and a
countable set of logical variables LVar (ranged over by a, b, c, . . .).
Let Loc be a countably infinite set of locations, and let Val be a set
of values that includes Loc. The storage model is as follows:

Heap
def
= Loc ⇀fin Val Stack

def
= (Var ∪ LVar) → Val

State
def
= Stack× Heap

Symbolic Heaps. Symbolic heaps are special separation logic
formulae [4, 10], interpreted over State, and defined as follows:

E ::= x | a | t(E, . . . , E) Expressions
Π ::= E=E | E 6=E | true | Π ∧Π Pure formulae
B ::= . . . Basic spatial predicates
Σ ::= B | true | emp | Σ ∗Σ Spatial formulae
∆ ::= Π ∧ Σ Quantifier-free symb. heaps
H ::= ∃~a. ∆ Symbolic heaps

1 Previous work has shown the benefit of inferring frames [39, 16, 28], but
not anti-frames, and the resulting procedure summaries therefore describe
larger portions of state than necessary.

Expressions are program or logical variables x, a. Or they are heap-
independent terms t(E1, . . . , En) (e.g., 0). Pure formulae are com-
posed by the conjunction of equalities and disequalities between
expressions, and describe properties of variables. The spatial for-
mulae specify properties of the heap. The predicate emp holds in
the empty heap where nothing is allocated. The formula Σ1 ∗ Σ2

uses the separating conjunction of separation logic and holds in a
heap h which can be split into two disjoint parts h1 and h2 such
that Σ1 holds in h1 and Σ2 in h2. Symbolic heaps H have the form
∃~a. Π ∧ Σ, where only some (not necessarily all) logical variables
in Π ∧Σ are existentially quantified. The set of all symbolic heaps
is denoted by SH.

B is a collection of basic spatial predicates. One instantiation is

B ::= E 7→E | lseg(E, E)

Here, the points-to predicate x7→y denotes a heap with a single al-
located cell at address x with content y, and lseg(x, y) denotes a list
segment from x to y (not included). For simplicity, we describe our
algorithms and results mainly using this instantiation, although they
work equally well for other more sophisticated instantiations [3, 8]
after slight or no modifications; when some modifications are nec-
essary, we will explain what they are.

In this paper, we overload the ∗ operator, so that it also works
for ∆ and H . For i = 1, 2, let ∆i = Πi ∧ Σi and Hi = ∃~ai. ∆i

where all bound variables are distinct and they are different from
free variables. We define ∆1 ∗∆2 and H1 ∗H2 as follows:

∆1∗∆2
def
= (Π1∧Π2)∧(Σ1∗Σ2), H1∗H2

def
= ∃ ~a1 ~a2. ∆1∗∆2.

We overload − ∗ Σ and Π ∧ − similarly:

∆i ∗ Σ
def
= Πi ∧ (Σ ∗ Σi), Hi ∗ Σ

def
= ∃~ai. ∆i ∗ Σ,

Π ∧∆i
def
= (Π ∧Πi) ∧ Σi, Π ∧Hi

def
= ∃~ai. Π ∧∆i.

4. Abduction for Separated Heap Abstractions
In this section we describe an algorithm for inferring answers to the
abduction question:

Given ∆ and H , find a symbolic heap M such that

∆ ∗M ` H. (1)

The question, as put, can be answered trivially, by returning a
false assertion. In this paper, we propose a criterion for judging the
quality of solutions of (1).

M - M ′ def⇐⇒ (M ′ `M ∗ true ∧ M 6`M ′ ∗ true) ∨
(M ′ `M ∗ true ∧ M `M ′ ∗ true ∧ M ′ `M).

Ideally, we would find solutions that are minimal w.r.t. - and
consistent. As a semantic question about sets of concrete heaps
(viewing an assertion as a set) the best solution always exists.2

While this solution exists theoretically, it is not easy to compute and
can lead to additional expense in the analysis (see Example 3 be-
low). So, we present a more pragmatically-motivated procedure for
abductive inference. The order - is used to inform design choices
in the algorithm, rather than to identify the theoretically best solu-
tion. This is just how in abstract interpretation analyses often do not
implement the “best abstract transformer” for pragmatic reasons.

2 Semantically, the best solution is

min({ (s, h) | ∆ ∗ {(s, h)} ` H }),

where min(M) is the predicate defined below:

{ (s, h) ∈ M | for all subheaps h′ of h, if {(s, h′)} ` M , then h′ = h }.



∆ ∗ [M ] . H ∆ ` ∃~a. Π emp ` ∃~a. Σ

∆ ∗ [M ] . H ∗ (∃~a. Π ∧ Σ)
remove

(E0=E1 ∧∆) ∗ [M ] . ∃~b. ∆′

∆ ∗ E 7→E0 ∗ [∃~a. E0=E1 ∧M ] . ∃~a~b. ∆′ ∗ E 7→E1

7→-match

(where~b ∩ FreeLVar(E1) = ∅)
∆ ∗ [M ] . ∃~a. ∆′ ∗ lseg(E0, E1)

∆ ∗B(E, E0) ∗ [M ] . ∃~a. ∆′ ∗ lseg(E, E1)
lseg-right

(where B(E, E0) is E 7→E0 or lseg(E, E0))

(E 6=E0 ∧∆ ∗ lseg(a, E0)) ∗ [M ] . ∃~b. ∆′

∆ ∗ lseg(E, E0) ∗ [E 6=E0 ∧M ] . ∃a~b. ∆′ ∗ E 7→a
lseg-left

(Π ∧ emp) ∗ [∃~a. Π′ ∧ emp] . ∃~a. Π′ ∧ emp
base-emp

∆ ∗ [∃~a. Π ∧ emp] . ∃~a. Π ∧ true
base-true

∆ ∗ [M ] . ∆′ ∆ ∗ ∃~a. B(E, E′) 6` false

∆ ∗ [M ∗ ∃~a. B(E, E′)] . ∆′ ∗ ∃~a. B(E, E′)
missing

(where B(E, E′) is E 7→E′ or lseg(E, E′))

Figure 1. Proof Rules for Abductive Inference

Proof System for Abductive Inference. We introduce a proof
system for deriving judgments of the form

∆ ∗ [M ] . H,

where M, H are symbolic heaps and ∆ is a quantifier-free sym-
bolic heap. This judgment means that M is the missing anti-frame
of the abduction question ∆ ∗ ?? ` H , and each proof rule de-
scribes how to search for the solution of this question. The proof
rules are presented in Figure 1. In the figure, we assume that all
the bound logical variables are different from one another and also
from free logical variables.

EXAMPLE 1. This example shows how our inference finds a solu-
tion of the question

x7→y ∗ [??] . x7→a ∗ lseg(a, 0) ∗ true.

Note that in this case, the abduction should infer that y is an
instantiation of the logical variable a, in addition to the fact that
lseg(a, 0) is the missing predicate in the assumption. The inference
algorithm finds such an instantiation using the 7→-match rule:

(y=a ∧ emp) ∗ [emp] . true
base-true

(y=a ∧ emp) ∗ [lseg(a, 0)] . lseg(a, 0) ∗ true
missing

x7→y ∗ [y=a ∧ lseg(a, 0)] . x7→a ∗ lseg(a, 0) ∗ true
7→-match

The last step of the derivation shows that 7→-match is used to find
the instantiation of a (i.e., y = a), and strengthens the assumption
with this instantiation y=a. The other two steps move the remain-
ing lseg(a, 0) predicate in the conclusion to the missing anti-frame
part.

This example shows how our proof method goes beyond previ-
ous works on theorem proving with separation logic. Indeed, it is
possible to obtain a sound theorem prover for abduction by a sim-
ple modification of a usual theorem prover for separation logic [4].
An abduction question ∆ ∗ ?? ` H is solved by attempting to
show the entailment ∆ ` H and, when this proof attempt fails
with one undischarged assumption emp ` M , we conclude that
the missing heap is M . This prover is not powerful enough to find
out the instantiation of logical variables, as we have done here.

For instance, in our example, it would fail to find y=a, and in-
fer x7→a ∗ lseg(a, 0) as a missing anti-frame. This means that the
symbolic heap x7→y∗x7→a∗ lseg(a, 0) is a new enhanced assump-
tion by abduction, although it is an inconsistent formula. Certainly,
this is not a desirable solution. �

EXAMPLE 2. Next, we consider a slightly modified version of the
motivating example from Section 2:

x7→z ∗ [??] . lseg(x, z) ∗ lseg(y, 0) ∗ true

The derivation below shows how our inference algorithm finds a
solution of this abduction question:

emp ∗ [emp] . true
base-true

emp ∗ [lseg(y, 0)] . lseg(y, 0) ∗ true
missing

emp ∗ [lseg(y, 0)] . lseg(z, z) ∗ lseg(y, 0) ∗ true
remove

x7→z ∗ [lseg(y, 0)] . lseg(x, z) ∗ lseg(y, 0) ∗ true
lseg-right

The last step subtracts x7→z from lseg(x, z), and the second
last step removes the result lseg(z, z) of this subtraction, be-
cause emp ` lseg(z, z). The remaining steps move the predicate
lseg(y, 0) from the conclusion to the anti-frame. In this derivation,
the application of the remove rule is crucial to obtain a better so-
lution. Without using the rule, we could apply missing twice, once
for lseg(z, z) and the next for lseg(y, 0), and this would give us

x7→z ∗ [lseg(z, z) ∗ lseg(y, 0)] . lseg(x, z) ∗ lseg(y, 0) ∗ true.

Note that the inferred missing anti-frame is not as good as lseg(y, 0),
because it has a bigger symbolic heap than lseg(y, 0). �

EXAMPLE 3. Consider the abduction question

x 7→ 3 ∗ [??] ` y 7→ 3 ∗ true

Our algorithm finds as a solution y 7→ 3. It is not the best solution:
a better solution is the disjunction y 7→ 3 ∨ (y=x ∧ emp).

Although we can see how to compute a best solution in this
case, we do not do so for two pragmatic reasons. First, if we were
to aim for the best then we would end up creating large disjunctions
that do case analysis on whether two pointers are equal or not
(it would involve comparing the left sides of 7→ or linked list
assertions, pairwise). Keeping control of disjunctions is essential
for performance [21]. Second, we have found in our experiments
that the loss of precision caused by this choice does not hurt us
too much. See, in particular, the results on the device drivers in
Section 7. This is a trade-off, which could be revisited. �

Reading the Proof System as an Algorithm. The proof sys-
tem for abductive inference, when read in the usual premises-
to-conclusion way, lets us easily see that the inferences we are
making are sound. When read in the opposite direction, it can
also be thought of as a specification of an algorithm for finding
missing hypotheses M . The algorithm is obtained by reading the
rules bottom-up, and by viewing the M parts as unknowns. There
is also a pragmatically-motivated order to the application of the
rules, which we describe. This reading of the proof rules leads im-
mediately to a recursive program, which forms the basis of our
implementation.

The key point is that our proof rules have a special form

∆′ ∗ [M ′] . H ′ Cond
∆ ∗ [M ] . H

Here Cond is a condition involving parts of ∆ and H . The algo-
rithmic reading of this rule is the following. In order to answer the
entailment question ∆ ∗ ?? ` H , the side condition Cond is first
checked, and if it holds, we make a recursive call to answer the
smaller question ∆′ ∗ ?? ` H ′. The solution M ′ of this simpler



question is then used to compute the solution M of the original
question. For instance, the rule 7→-match fires when both the left-
hand side and right-hand side have a points-to-fact involving E:

∆ ∗ E 7→E0 ∗ ?? ` ∃~a~b. ∆′ ∗ E 7→E1

The inference engine then cancels out those facts, and continues
the search for the solution with the reduced right-hand side ∃~b. ∆′

and the reduced left-hand side ∆ after adding the equality E0=E1

concerning the contents of cell E. Later, when this new simplified
search gives a result M , we conjoin the assumed equality to the
computed missing anti-frame M and existentially quantify logical
variables ~a, which gives the result of the original search.

Our abduction algorithm tries to apply the rules in Figure 1 in
the order in which they appear in the figure. It firsts attempts to
use remove and eliminate a part of the symbolic heap on the right-
hand side of . that holds for the empty heap. Once this phase is
complete, the inference goes through each predicate on the right-
hand side and tries to simplify the predicate using 7→-match, lseg-
right and lseg-left. When this simplification process gets stuck, the
algorithm applies missing, base-emp and base-true, and moves the
remaining predicates from the right-hand side to the missing anti-
frame part.

By arranging the order of rule applications in this way, our in-
ference tries to minimize the size of the spatial part of the inferred
missing anti-frame M . This is considered desirable according to
the definition of -. By trying the remove rule before missing, the
inference prefers choosing the empty heap to moving a predicate
from the conclusion to the missing anti-frame part. For instance,
given emp ∗ [??] ` lseg(x, x), the remove rule infers emp as the
missing anti-frame whereas the missing rule returns lseg(x, x). The
inference algorithm returns emp between the two, because it tries
remove before missing. Also, the application of the simplification
rules (i.e., 7→-match, lseg-right and lseg-left) before the moving-
predicate rules ensures that the common parts between the assump-
tion and the conclusion are cancelled out as much as possible, be-
fore trying to move predicates from the conclusion to the missing
anti-frame part.

A Framework of Abductive Inference for Inductive Predicates.
For concreteness, in the description of the abductive inference
system, we used a specific inductive predicate for list segments.
We now describe a generalization that deals with different classes
of inductive definitions, such as those for doubly-liked lists, nested
lists, trees and skip lists [38, 3, 8] which have been used for
different abstract domains. For our generalization we keep all the
components of the abduction inference in the previous section,
except for the four proof rules in Figure 1: 7→-match, lseg-left,
lseg-right and missing.

Suppose that we have an abstract domain whose basic spatial
predicates are ranged over by B(E, ~E). Recall that the abstract
domain used throughout the paper corresponds to a specific instan-
tiation:

B(E, E′) ::= E 7→E′ | lseg(E, E′).

The missing rule is generalized in the following way:

∆ ∗ [M ] . H ∆ ∗ ∃~a. B(E, ~E) 6` false

∆ ∗ [M ∗ ∃~a. B(E, ~E)] . H ∗ ∃~a. B(E, ~E)
missing-gen

Note that this rule is almost the same as missing, except for the
changes required to reflect the different sets of basic predicates.

To generalize the other rules, we need to make an assumption
about the abstract domain: we assume that we are given a set of
axioms involving basic special predicates, all of which have the
form

(∃~y. Π(x, ~y, ~z) ∧B(x, ~y) ∗ Σ(~y, ~z)) ` B′(x, ~z), or
Π(x, ~z) ∧B(x, ~z) ` (∃~y. B′(x, ~y) ∗ Σ(~y, ~z)).

For example, the abstract domain of this paper has the axioms
below:

(∃y. y = z ∧ x7→y ∗ emp) ` (x7→z),
(∃y. lseg(x, y) ∗ lseg(y, z)) ` lseg(x, z),
x 6= z ∧ lseg(x, z) ` ∃y.(x7→y) ∗ lseg(y, z).

(2)

Each of these axioms generates proof rules that replace 7→-
match, lseg-left and lseg-right. For each axiom of the first form

(∃~y. Π(x, ~y, ~z) ∧B(x, ~y) ∗ Σ(~y, ~z)) ` B′(x, ~z),

we define the following rule for abduction:

(Π(E, ~E, ~E′)∧∆) ∗ [M ] . ∃~b. ∆′ ∗ Σ( ~E, ~E′)

∆ ∗B(E, ~E) ∗ [∃~a. Π(E, ~E, ~E′)∧M ] . ∃~a~b. ∆′ ∗B′(E, ~E′)

For each axiom of the second form

Π(x, ~z) ∧B(x, ~z) ` (∃~y. B′(x, ~y) ∗ Σ(~y, ~z)),

we include the following proof rule for abduction:

(Π(E, ~E′) ∧∆ ∗ Σ(~a, ~E′)) ∗ [M ] . ∃~b. ∆′

(∆ ∗B(E, ~E′)) ∗ [Π(E, ~E′) ∧M ] . ∃~a~b. ∆′ ∗B′(E,~a)

The rules 7→-match, lseg-left and lseg-right presented earlier can
be generated by following this recipe using the three axioms in (2).

THEOREM 4. If all the assumed axioms are sound, the proof system
for abduction is sound. That is, if ∆ ∗ [M ] . H is derivable, then
∆ ∗M semantically implies H .

5. Bi-Abduction
We now consider the more general bi-abduction question

∆ ∗ ?1 ` H ∗ ?2.

for quantifier-free symbolic heaps ∆ and normal symbolic heaps
H .3 It would be possible to consider a mixed proof system for this
problem, but it turns out that there is a way to answer the question
by appealing to separate frame inference and abduction procedures.

Several frame inference procedures have been described in pre-
vious papers [4, 30, 11]. Here we assume a given procedure Frame,
which returns either a symbolic heap or an exception fail. Frame
must satisfy

Frame(H0, H1) = L(6= fail) =⇒ H0 ` H1 ∗ L

indicating that if frame inference succeeds in finding a “leftover”
heap L then the indicated entailment holds. In Algorithm 1 we
define a further procedure Abduce, satisfying the specification

Abduce(∆, H) = M(6= fail) =⇒ ∆ ∗M ` H

meaning that it soundly finds missing heap portions. The second
step of Algorithm 1 relies on an ordinary theorem prover for sym-
bolic heaps.

We can combine these two procedures to obtain the algorithm
BiAbd described in Algorithm 2. By convention, the algorithm
raises exception fail if either of its internal procedure calls does.

THEOREM 5. BiAbd(∆, H) = (M, F ) =⇒ ∆ ∗M ` H ∗ F.

Comparing Solutions. The soundness property in Theorem 5
can be satisfied trivially. We now define an order v on potential

3 We consider the bi-abduction between ∆ and H here, instead of normal
symbolic heaps, because it is the question asked by our analysis. However,
it is not technically difficult to extend our algorithm for the bi-abduction
between normal symbolic heaps.



Algorithm 1 Finding a Missing Heap Portion

Abduce(∆, H)
def
=

1. Find a symbolic heap M such that

∆ ∗ [M ] B H

using the abduction algorithm from Section 4. If no such heap
can be found, return fail.

2. If ∆ ∗ M is (provably) inconsistent, return fail. Otherwise,
return M .

Algorithm 2 Synthesizing Missing and Leftover Heaps, Jointly

BiAbd(∆, H)
def
=

M := Abduce(∆, H ∗ true); L := Frame(∆ ∗M, H);
return(M, L)

solutions which was used to design our algorithm.

M - M ′ def⇐⇒ (M ′ `M ∗ true ∧ M 6`M ′ ∗ true) ∨
(M ′ `M ∗ true ∧ M `M ′ ∗ true ∧ M ′ `M)

M ≈ M ′ def⇐⇒ M ′ - M ∧ M ′ % M

(M, L) v (M ′, L′)
def⇐⇒ (M ′ - M) ∨ (M ′ ≈ M ∧ L ` L′).

The definition of v is a lexicographic ordering of the order M -
M ′ defined for abduction, and ordinary implication for leftover
heaps. The bias on the anti-frame part is due to our application:
the BiAbd algorithm is mainly used to infer preconditions of pro-
cedures. The missing anti-frame part is used to update the precon-
dition being discovered by the analysis. The second disjunct means
that if two solutions have the equally good missing anti-frames, the
better one should have a logically stronger leftover frame.

Our BiAbd algorithm first attempts to find a good missing anti-
frame M , and then tries to find a good missing frame L. This order
of searching for a solution reflects our emphasis on the quality of
the missing anti-frame part, as in the definition of v.

EXAMPLE 6. We illustrate the intuition behind v using

x7→0 ∗ M ` lseg(x, 0) ∗ lseg(y, 0) ∗ L

Consider the following three solutions of the question:

M
def
= lseg(y, 0) L

def
= emp

M ′ def
= lseg(y, 0) ∗ z 7→0 L′ def

= z 7→0

M ′′ def
= lseg(y, 0) L′′ def

= true

According to the order we have just defined, the best solution
among the above three is (M, L), and it is what the algorithm
BiAbd returns. It is better than (M ′, L′), because its missing anti-
frame M is strictly better than M ′ (i.e., M � M ′) since it
describes smaller heaps than M ′. The solution (M, L) is also
better than (M ′′, L′′) but for a different reason. In this case, the
missing anti-frames M, M ′′ have the same quality according to
our definition (i.e., M ≈ M ′′). However, this time the deciding
factor is the comparison of the leftover frames of the solutions; L
is stronger than L′′, so (M, L) v (M ′′, L′′). �

6. Compositional Interprocedural Shape Analysis
We illustrate our interprocedural shape analysis using a simple
while language extended with procedure calls and parametrized by
a collection of basic operations. Later we will instantiate the basic

operations to be certain heap-manipulating commands.

e ::= x | t(e1, . . . , en) Prog. Expressions
b ::= · · · Booleans
A ::= · · · Atomic Commands
c ::= A | x:=f(~e) | c1; c2 | if b c1 c2 Commands

| while b c
p ::= · | f(~x){local ~y; c; return e}; p Programs

A program p consists of a number of procedure definitions. For
simplicity, we only consider procedures that return a single value,
and that do not access any global variables.

The aim of our compositional shape analysis is to construct a
spec table T (f) (or procedure summary [42]) for every procedure
f in Proc. Spec tables are partial functions from symbolic heaps to
sets of symbolic heaps:

T (f) : Spec, where Spec
def
= SH ⇀ P(SH).

The domain of T (f) specifies the preconditions we consider for
procedure f . For each P in the domain, the intended reading of
T (f)(P ) = {Q1, . . . , Qk} is that

{P}f(~x){Q1 ∨ · · · ∨Qk}
is a true Hoare triple. We will often write {P}f(~x){Q} ∈ T to
mean that T (f)(P ) = Q, and we define the set of spec tables as

AllSpecs
def
= Proc → Spec.

The analysis uses an abstract semantics

[[c]]IP : AllSpecs → P(SH×SH ∪ {>}) → P(SH×SH ∪ {>})
of commands that works on pairs (F, H) of the precondition part
F and the current heap H . The transfer function for an individual
statement can alter the H component, and add to the F component,
giving (F ∗M, H ′), meaning that the statement can reach H ′ if the
missing part M is added to the start state.

We presume that we are given transfer functions [[A]]IP for the
atomic commands. Later, we will spell out one such collection. The
pivotal part of our development is the semantics [[x = f(~e)]]IP of
procedure call, which we describe first.

6.1 Abstract Semantics of Procedure Call
Besides frames and missing anti-frames, our semantics must take
into account that, as in standard Hoare logic, all the logical vari-
ables (elements of LVar) in a Hoare triple are implicitly universally
quantified. For example, in

{x7→a′ ∗ y 7→b′}swap(x, y){ret=0 ∧ x7→b′ ∗ y 7→a′}.
a′ and b′ are logical variables, and the spec means that swap
exchanges the contents of cells x and y.

We will be using abduction to instantiate logical variables, as
well as to find missing heap portions. To see how this works, for
the abduction question

x 7→ e ∗ [??] ` x 7→ a

our algorithm finds e=a ∧ emp as the solution, where e=a is the
part telling us how to instantiate the logical variable.

Figure 2 shows the details of the abstract semantics of the
procedure call y:=f(~e). The abstract execution

[[y:=f(~e)]]IPT ′(F, H)

goes through every spec {P}f(~x){Q} of f in T ′(f), and calls
the BiAbd algorithm to check whether this spec can be used to
update (F, H) appropriately. If BiAbd returns fail, the analysis
ignores this spec, and moves on to the next. Otherwise, it massages
the anti-frame and finds instantiations of parameters by a call to



R := ∅; Let ∃~a.∆H be H;
for all {P}f(~x){Q} ∈ T ′(f) do

if BiAbd(∆H , P ) = (M, L) 6= fail, and
Rename(∆H , M, P,Q) = (~e′,~b, M0) 6= fail

then
R := R∪ {(F ∗M0, ∃~a. (Q ∗ L)[y~e′/ret~b]) | Q ∈ Q}

end if
end for;
return R

Figure 2. Abstract Semantics of [[y:=f(~e)]]IPT ′(F, H)

Let~b be FreeLVar(P,Q);
Pick ~e′ disjoint from~b such that ∆H ∗M ` ~e′=~b,

but if cannot pick such ~e′, return fail;
Pick M0 disjoint from~b, ~a and program variables such that

∆H ∗M0 ` ∆H ∗M [~e′/~b],
but if cannot pick such M0, return fail;

return (~e′,~b, M0)

Figure 3. Subroutine Rename(∆H , M, P,Q)

the Rename subroutine from Figure 3. Rename performs essential
but intricate trickery with variables, as is usual in Hoare logic
treatments of procedures. Generally, the anti-frame M0 that it finds
will be expressed in terms of logical variables that are fresh or
free in H . This is to ensure that it is independent of program
variables that might be modified between the start of a procedure
and the point of discovery of M0, allowing it to be used later as a
precondition. The vectors ~e′ and~b tell us how to instantiate logical
variables in the specification, as discussed in the swap example
at the beginning of this subsection. Although technical in nature,
properly dealing with the issues tackled by Rename is essential for
the precision of specification discovery. Many procedures will have
logical variables in their specifications, and imprecise treatment of
them would lead to an unacceptably imprecise analysis.

EXAMPLE 7. We give a full description of the abstract semantics

[[v := swap(x, y)]]IPT ′(F, H)

using the specification given earlier in this section. The semantics
first invokes BiAbd( y=b∧x7→y ∗ z 7→0, x 7→a′ ∗ y 7→b′ ) and
infers M and L:

M
def
= (a′=y ∧ b′=d ∧ y 7→d), L

def
= z 7→0.

From this output, the analysis computes the three missing elements
for analyzing the call v:=swap(x, y), which are a leftover frame
z 7→0, a missing anti-frame b 7→d, and the instantiation a′=y∧b′=d
of logical variables a′, b′ in the spec of swap. Rename performs the
computation of the anti-frame and the instantiation. These three el-
ements form the result of analyzing the call. The current precondi-
tion F is updated by ∗-conjoining the missing anti-frame b 7→d:

F ∗ b 7→d ⇐⇒ x=a∧ y=b∧ a7→c ∗ b 7→d.

The current heap H is mutated according to the instantiated spec of
swap with a′=y ∧ b′=d and the leftover frame z 7→0, and becomes

v=0 ∧ x7→d ∗ y 7→y ∗ z 7→0.

Thus, the result of [[v := swap(x, y)]]IPT ′(F, H) is the singleton set

{ (x=a∧ y=b ∧ a7→c ∗ b 7→d, v=0∧x7→d ∗ y 7→y ∗ z 7→0) }.�

Our algorithm is different in an important respect compared to
typical forwards interprocedural analysis algorithms. Usually, if a

call is found to match with one of the specifications in a procedure
summary, that specification is used and others are ignored. The rea-
son is that, unless the abstract domain supports conjunction (meet),
using more than one spec can only lead to decreased precision and
efficiency. In our case, although our analysis is forwards-running,
its primary purpose is to help generate preconditions (through ab-
duction): for this purpose, it makes sense to try as many of the
specifications in a procedure summary as possible.

EXAMPLE 8. To illustrate the use of multiple specs consider the
following example program:

1 void safe_reset_wrapper(int *y) {
2 // Inferred Pre1: y=0 && emp
3 // Inferred Pre2: y!=0 && y|->-
4 safe_access(y);
5 } // Inferred Post1: y=0 && emp
6 // Inferred Post2: y!=0 && y|->0
7 void safe_reset(int *y) {// SUMMARY ONLY
8 // Given Pre1: y=0 && emp
9 // Given Pre2: y|->-
10 } // Given Post1: y=0 && emp
11 // Given Post2: y|->0

The analysis of safe reset wrapper starts with emp, meaning
that the heap is empty. When it hits the call to safe reset, the
analysis calls the abduction algorithm, and checks whether emp is
abducible to the preconditions of the two specs. It finds that emp is
abducible with the precondition y=0∧emp of the first spec. Instead
of ignoring the remaining specs (like a standard forward analysis
would), our analysis considers the abducibility of emp with the
precondition y 7→- of the other spec. Since the analysis considers
both specs, it eventually infers two preconditions: y=0∧ emp, and
y 6=0 ∧ y 7→0. If the analysis had searched for only one applicable
spec, it would not have been able to find the second precondition.�

6.2 Top-level Algorithm
We write Proc for the set of procedure names defined in a program,
and assume that Proc is partitioned into Proc0, . . . , Procn that
satisfy the following calling relationship: if f is in Proci and f
calls g, procedure g belongs to Procj for some j ≤ i.

The analysis starts by building spec tables T0 for procedures
in Proc0. It infers preconditions for the procedures in Proc0 using
an interprocedural precondition discovery, and then computes post-
conditions for the inferred preconditions by the forward interpro-
cedural shape analysis. Next, using the constructed T0, the analysis
considers procedures in the next level Proc1, and builds tables T1

for them, again by the interprocedural precondition discovery and
the forward interprocedural shape analysis. This process is repeated
for Proc2, . . . , Procn, and gives spec tables for all the procedures.

The top-level analysis algorithm is given in Algorithm 3, which
follows the informal description in the previous paragraph. Note
that the algorithm calls two subroutines:

AllSpecs
def
= Proc → Spec AllPres

def
= Proc → P(SH)

InferPre : P(Proc)× AllSpecs → AllPres
InferSpec : P(Proc)× AllPres× AllSpecs → AllSpecs

The first subroutine InferPre(Prock, T ) is an interprocedural pre-
condition discovery phase. Using the given spec tables T of called
procedures, it discovers candidate preconditions for procedures in
Prock. The second InferSpec(Prock,P, T ) is our interprocedural
forward shape analysis, and it constructs specs for procedures in
Prock with respect to preconditions in P and adds them to T .

The subroutine InferPre(Prock, Tin) discovers candidate pre-
conditions for every f in Prock, while using spec tables Tin to
handle procedure calls in the body of f . Concretely, this discov-



Algorithm 3 Top-level Analysis Algorithm.

AllSpecs
def
= Proc → Spec AllPres

def
= Proc → P(SH)

local T :AllSpecs, P:AllPres, k:Nats;
T := λf.λP.undefined; P := λf.∅; k := 0;
while k ≤ n do
P := InferPre(Prock, T );
T := InferSpec(Prock,P, T );
k := k+1

end while;
return T

Algorithm 4 InferPre(Prock, Tin).
local T :AllSpecs, R ⊆ SH×SH∪{>};
T := Tin; R := ∅;
repeat

for all f ∈ Prock do
Let f(~x){local ~y; c; return e} be the definition of f ;
Pick fresh ~a with |~a|=|~x|;
R := [[c; ret:=e]]IPT ({(~x=~a ∧ emp, ~x=~a ∧ emp)});
if > ∈ R then

Reports the possibility of local memory errors at f
end if;
for all (F, H) ∈ R do

if (T (f)(F ) is undefined) then
T (f)(F ) := {∃~b.H[~b/~x~y] | fresh~b s.t |~b|=|~x~y|};

else
T (f)(F ) := T (f)(F ) ∪

{∃~b.H[~b/~x~y] | fresh~b s.t |~b|=|~x~y|};
end if

end for
end for

until T does not change;
return λf. if (f ∈ Prock) then dom(T (f)) else ∅

ery is done by a fixpoint computation, which constructs (possibly
unsound) spec tables T for procedures in Prock. T includes all the
spec tables in Tin, but those tables of T do not change during the
fixpoint computation. For each procedure f in Prock, the subrou-
tine abstractly runs the body of f with respect to the initial (F, H),
and uses the result of this abstract run to update the spec table T (f)
for f . This updating is repeated until T does not change, in which
case the preconditions in T (f) are returned. The overall structure
of the subroutine is described in Algorithm 4, where the abstract
run of commands is specified using the abstract semantics [[−]]IP.
Note that the algorithm uses two sets of logical variables for each
procedure f : ~a for caching the initial values of parameters ~x, and
~b for existentially quantifying the parameters and local variables in
the computed postconditions H for f .

We remark that our implementation also uses optimizations
from the RHS interprocedural analysis algorithm [37], which avoid
a certain amount of re-computation. We have, for simplicity, de-
scribed a less efficient algorithm in the paper.

6.3 InferSpec Phase
After having run our interprocedural precondition-discovery algo-
rithm we go through one more phase to find the final specifications
for the procedures. This is a form of re-execution, which calculates
postconditions from the given candidate preconditions, and also fil-
ters out unsafe preconditions. As in [6], filtering is needed because

Algorithm 5 InferSpec(Prock,Pin, Tin).
local T :AllSpecs, Q:P(SH ∪ {>});
T := λf.λP. if (f ∈Prock ∧P ∈Pin(f)) then ∅ else Tin(f)(P );
repeat

for all f ∈ Prock and F ∈ dom(Pin(f)) do
Let f(~x){local ~y; c; return e} be the definition of f ;
Pick fresh ~a with |~a|=|~x~y|;
Q := [[c; ret:=e]]IT ({F});
if ((> ∈ Q) ∨ (T (f)(F ) is undefined)) then
T (f)(F ) := undefined

else
T (f)(F ) := T (f)(F ) ∪ {∃~a.H[~a/~x~y] | H ∈ Q}

end if
end for

until T does not change;
return T

R := ∅; Let ∃~a.∆H be H;
for all {P}f(~x){Q} ∈ T ′(f) do

~b := FreeLVar(P,Q); Let f(~x){...} be the definition of f ;
R := BiAbd(∆H , P );
if R = (Π ∧ emp, L) 6= fail for some Π, L, and

∆H ` Π ⇒ ~e′=~b for some ~e′ disjoint from~b
then
R := R∪{ (∃~b.Π, {∃~a. (Q∗L)[y~e′/ret~b] | Q ∈ Q}) }

end if
end for;
if (there is R0 ⊆ R s.t. `

W
{Π′ | (Π′,Q′) ∈ R0}) then

Pick a minimal such R0;
return

S
{Q′ | (Π′,Q′) ∈ R0}

else
return {>}

end if

Figure 4. Abstract Semantics of [[y:=f(~e)]]IT ′(H)

we are using abstraction to simplify preconditions, which is a po-
tentially unsound step were we not to re-execute.

The re-execution InferSpec takes three parameters. The first pa-
rameter is Prock, the names of the procedures whose summaries
should be calculated, and the second is Pin that records the pre-
conditions for each procedure in Prock. The final parameter is Tin

that contains the already-computed procedure summaries (i.e., the
summaries of those in Procj with j < k). Given these parameters,
InferSpec constructs the procedure summaries T for Prock by a
fixpoint computation. (Technically, T also contains summaries of
procedures in Procj with j < k, but this part of T does not change
during the fixpoint computation.) It goes through every procedure
f ∈ Prock and every candidate precondition P ∈ Pin(f), and calls
a forward interprocedural analysis

[[−]]I : AllSpecs → P(SH ∪ {>}) → P(SH ∪ {>})
for the body of f . Then, the forward analysis gives the postcondi-
tion Q with

{P}f(~x){Q},
which is used to update T . The fixpoint computation continues
until T does not change. Algorithm 5 gives the details of InferSpec.

As in the previous section, the most interesting case of our ab-
stract forward semantics [[−]]I is the procedure call; see Figure 4.
(The other cases are identical to those of the standard intrapro-
cedural analysis.) Suppose that the forward analysis is analyzing
procedure call y:=f(e) for a symbolic heap H under spec tables



T ′. For simplicity, we assume that neither H nor any precondi-
tions of f in T ′(f) have existential quantifications. The abstract
run of y:=f(e) searches for a collection of specs of f stored in
T ′(f) that can be used to transform the current symbolic heap H .
Concretely, the analyzer first strips away the existential quantifica-
tions of H , and obtains ∃~a. ∆H . Then, it goes through every spec
{P}f(x){Q} in T ′(f), and tries to match the precondition with
the assertion at the call site. At this point we do something slightly
unusual. Experimentally we have often found an assertion H that
does not imply any of the preconditions in the summary, even after
frame inference. However, if we do case analysis (excluded middle)
(b∧H)∨(¬b∧H), then we can find that one or both of the disjuncts
provably match preconditions. So, in this phase, we do case-split on
demand, in an effort to boost the precision of our analysis. Techni-
cally, this is done, again, with the help of bi-abduction. In detail,
the algorithm in Figure 4 checks whether the free logical variables
~b in the spec {P}f(x){Q} can be instantiated by ~e′ such that

Π′ ∧∆H ` (P ∗ L)[e~e′/x~b] for some Π′, L.

Here Π′ is the condition used to split cases of H , L is a leftover
frame, i.e., the part of H that is missing from the precondition P ,
and ~e′ is the instantiation of implicitly universally quantified logical
variables ~b in the spec. The checking is done by first invoking bi-
abduction and finding Π and L such that

BiAbd(∆H , P ) = (Π ∧ emp, L)

and then determining whether, for some ~e′ disjoint from~b,

∆H ` Π ⇒ ~e′=~b.

If those two steps succeed, the analyzer records the pair of a case-
split condition and postcondition; otherwise it moves on to the next
spec in T ′(f). Finally, when all the specs have been examined, the
analyzer selects a minimal collection of the recorded pairs

(Π′
1,Q1), . . . , (Π

′
n,Qn)

such that the Π′
j together cover all the cases of H , which is to

say that Π′
1 ∨ . . . ∨ Π′

n is a tautology. The analysis result is the
disjunction of Qi’s. (This case-splitting can be justified by the
disjunction rule in Hoare logic.)

We point out two aspects of [[y:=f(e)]]IT ′ . First, when the ab-
stract semantics finds sufficiently many specs of f that are appli-
cable (i.e., the disjunction of their preconditions is implied by the
current symbolic heap), it ignores other specs of f . This contrasts
with [[y:=f(e)]]IPT ′ , which considers all specs of f . Second, if the
analysis does not find any applicable spec, it does not attempt to add
a new spec to f , unlike common global interprocedural analyses.

This phase also needs a semantics [[A]]I for the (so far unspeci-
fied) atomic commands. The basic fact is the following

THEOREM 9. If the semantics [[A]]I of each atomic command is
sound, then InferSpec returns true Hoare triples only.

We could state the result more formally, by identifying a concrete
semantics, a concretization function, and so on. But, there is no
deep reason for why this result holds. It is just that, if we are given
sound [[A]]I (wrt a given concrete semantics) then our treatment of
procedures with [[−]]I is sound as well, and this semantics is then
used by InferSpec to weed out any preconditions from the previous
phase that do not guarantee safe execution.

6.4 Underlying Shape Analysis
We now describe the missing definitions of the abstract semantics,
which have been postponed in previous sections. Our description
assumes one particular instantiation of our programming language:

b ::= e=e | e6=e Booleans
A ::= a[e] | a Atomic Commands

a[e] ::= [e]:=e | free(e) | x:=[e]
a ::= x:=e | x:=new(e)

In this instantiation, we have two classes of atomic commands. a[e]
attempts to dereference cell e, updating it ([e1]:=e2), disposing
it (free(e)), or reading its content (x:=[e]). The other atomic
commands, denoted a, do not access existing cells.

The forward abstract semantics [[−]]I of commands is defined in
three steps (as suggested in [41]), and implemented by functions:

rearr(e) : SH → P(SH ∪ {>}),
exec(A) : SH → P(SH ∪ {>}), abs : SH → SH.

The first step is rearrangement,4 and it is implemented by the func-
tion rearr(e), which takes an abstract state and attempts to “concre-
tise” the cell e that is accessed by the command in execution. If e
is already explicit then this step is simply the identity function. The
second step is execution, and it is defined by the function exec(A).
This function symbolically executes the atomic command A in the
rearranged heap. Finally, the third step is abstraction (or canonical-
ization), implemented by abs, which simplifies symbolic heaps and
allows the convergence of the fixpoint computation.

For a function t : D → P(D ∪ {>}), let t† be a function on
P(D ∪ {>}) defined by

t†(X)
def
= {> | > ∈ X} ∪ (

[
{t(x) | x ∈ (X ∩D)}).

The forward abstract transfer functions of atomic commands are:5

[[a[e]]]IT (X)
def
= (abs† ◦ exec(a[e])† ◦ rearr(e)†)(X)

[[a]]IT (X)
def
= (abs† ◦ exec(a)†)(X).

The reader is referred to [10] for a detailed treatment of transfer
functions defined in terms of rearr, exec and abs. The abstract
semantics of the compound commands is standard:

[[c1; c2]]
I
T (X)

def
= ([[c2]]

I
T ◦ [[c1]]

I
T )(X)

[[if b c1 c2]]
I
T (X)

def
= ([[c1]]

I
T ◦ filt(b))(X) t ([[c2]]

I
T ◦ filt(¬b))(X)

[[while b c]]IT (X)
def
= filt(¬b)(lfix λX ′. X t ([[c]]IT ◦ filt(b))(X ′))

where filt(b) is used to filter out states that do not satisfy the
boolean condition b. The semantics of function calls is already
given in Section 6.3.

The abstract semantics [[−]]IP used by the precondition discov-
ery follows the same pattern as the forward one [[−]]I. The only
difference is that it uses new versions of rearrangement, execution,
abstraction functions that work on P((SH× SH) ∪ {>}):

Rearr(e) : SH× SH → P((SH× SH) ∪ {>}),
Exec(A) : SH× SH → P((SH× SH) ∪ {>}),

Abs : SH× SH → SH× SH.

These functions are defined in Figure 5. The major change is in the
rearrangement function Rearr(e), which takes (F, H) and tries to
expose a specified cell e from H . The rearrangement function of the
forward analysis rearr is invoked to prove that a dereferenced cell
e is allocated. The unusual step is that, in case this attempt fails,
the subroutine adds the missing cell to the precondition and the
current symbolic heap. A standard analysis would have stopped,
reporting a possible fault. Note that before adding the points-to

4 Rearrangement is the typical term used in separation logic based analyses.
In [41], this step is called materialization of summary nodes.
5 Here we view functions on SH as functions from SH to P(SH ∪ {>})
that always return singleton sets.



Rearr(e)(F, H)
def
= let H= rearr(e)(H) and

F = {(F, H ′) | H ′ ∈ H ∩ SH}
in if (> 6∈ H) then F

elseif (H ` e=a for some a∈LVar) and
¬(F∗a7→b ` false for fresh b∈LVar)

then F ∪ {(F ∗ a7→b, H ∗ e7→b)}
else F ∪ {>}

Exec(A)(F, H)
def
= let H = exec(A)(H)

in {(F, H ′) | H ′ ∈ H} ∪ {> | > ∈ H}
Abs(F, H)

def
= (abs(F ), abs(H))

Figure 5. Rearrangement, Execution, Abstraction for [[A]]IP.

relation to F , the expression e is rewritten in terms of a logical
variable a to avoid conflicts with the program variables that change
during the computation. We also point out that in order to stop the
precondition assertion from growing forever (and therefore making
the analysis diverge) Abs abstracts F as well as H .

7. Case Studies
The compositional analysis algorithm in this paper takes an abstract
domain as an argument. We have implemented our algorithm in
the SPACEINVADER tool, giving us a version “SPACEINVADER
ABDUCTOR”, or more briefly, ABDUCTOR. This instantiation of
our compositional analysis algorithm uses the composite abstract
domain from [3] as the base shape analysis. We used that domain
because of its ability to deal with a variety of linear data structures.
But since our analysis is parametric in the abstract domain, we
could plug in other abstract domains, such as those from [19, 28],
and we would immediately obtain a compositional analysis.

Small Examples. This first case study gives us some basic in-
formation on the quality of the specifications inferred by the com-
positional algorithm. It is entirely possible, after all, to obtain a
useless compositional analysis simply by returning trivial specifi-
cations (the top of a lattice) for all procedures.

Our first case study illustrates the treatment of recursion (and,
thus, the interprocedural aspect), both cyclic and acyclic lists, and
nested structures. The particular data structure was a cyclic singly-
linked list, where each node has a nested acyclic sub-list. We wrote
recursive procedures for traversing, deleting, and inserting into
such structures. In each case the ABDUCTOR found a precondition
formula describing exactly this data structure: it described only the
cells accessed by the algorithms. That the algorithm found these
preconditions for algorithms performing nested traversals on nested
data structures indicates that the analysis does not only find trivial
specifications: accurate analysis within loops and recursions, and
within lists, is needed to find the resulting specifications.6

Medium Example. The IEEE 1394 (firewire) Device Driver for
Windows is around 10K LOC, and it contains 121 procedures. It
was analyzed in a top-down fashion in [21]. We sought to use the
same abstract domain, to compare our bottom-up analysis.

Our analysis was able to find consistent specifications (where
precondition is not inconsistent) for all 121 of the procedures.
Note that many of these procedures have to “fit together” with one
another. If we found a completely imprecise spec of one procedure,
then this might be inconsistent with another procedure’s calling
expectations. Put another way, our analysis has found proofs of
the Hoare triples for higher-level procedures, which would have

6 The source code of the small examples can be found at:
http://www.dcs.qmul.ac.uk/∼ddino/small examples popl09

been impossible if the specs discovered for sub-procedures were
too imprecise for the relevant call sites.

More anecdotally, looking at top-level procedures we find that
the specifications describe complex, nested structures (not neces-
sarily weakest liberal preconditions), which could only be found if
the analysis was tracking traversals of these structures with some
degree of precision. To take one example, the analysis of top-
level procedure t1394Diag Pnp discovers preconditions with sev-
eral circular linked lists, some of which have nested acyclic sub-
lists. This is as expected from [21]. But, some of the precondi-
tions are unexpected. Usually, the firewire driver collaborates with
other lower-level drivers, and this collaboration involves the deref-
erence of certain fields of these lower-level drivers. So, if a human
(as in our previous work) writes preconditions for the driver, he
or she normally specifies that the collaborating lower-level drivers
are allocated, because otherwise, the preconditions cannot ensure
pointer safety. What the bottom-up analysis finds is that these
lower-level drivers are not necessarily dereferenced; dereferencing
depends on the values of parameters. The preconditions discovered
by ABDUCTOR thus clarify this dependency relation between the
values of parameters and the dereference of lower-level drivers.

We stress that, to obtain theses results for firewire, we had to
slightly modify the code analyzed in [21]. The problem is that
the driver works over lists where the nodes contain back-pointers
to a common head node. When doing top-down analysis, with a
given precondition, this “common” information is readily available.
When going bottom-up, more general cases were considered by
ABDUCTOR, that the abstract domain could not handle precisely.
This is perhaps not surprising, as the domain from [21] was de-
signed with top-down analysis in mind. But, it also illustrates that
the bottom-up analysis places different stresses on an abstract do-
main than does top-down.

So, while we would claim that the better the abstract domain fits
the data structures of a program the better are the triples discovered
by our technique, we also emphasize that the problem of spec
discovery might impact the design of abstract domains.

Large Programs and Complete Open Source Projects. In Table
1 we report case studies running ABDUCTOR on larger open source
projects (e.g. a complete Linux Kernel distribution). The purpose of
these examples is not to test precision: rather, they probe scalability
and graceful imprecision. The case studies were run on a machine
with two 2.66GHz Quad-Core Intel Xeon processors with 4GB
memory. The number of lines of C code (LOC) was measured by
instrumenting gcc so that only code actually compiled was counted.
The table reports for each test: the number of lines of code with unit
one million (MLOC); the number of procedures analyzed (Num.
Procs); the number of procedures with at least one consistent spec
(Proven Procs); the percentage of procedures with at least one
consistent spec (Procs Coverage %); and the execution time in
seconds (Time) with the number of processor cores indicated in
brackets (e.g. 8 cores is indicated as Time (8)).

Running with a timeout of one second for each procedure, we
observed that only a very low percentage of procedures timed out.
More often our analysis failed to find a nontrivial spec (a spec with
a consistent precondition). The percentage of procedures analyzed
is somewhat encouraging, and might be improved by using better
base abstract domains or human intervention.

For the great majority of the procedures relatively simple spec-
ifications were found, which did not involve linked list predicates.
This is because a minority of procedures actually traverse data
structures. (The analysis did many times find linked structure, e.g.,
in procedure ap find linked module in Apache.) The point, for
analysis, is that by combining abduction and frame inference we
obtain specifications that (nearly) describe only the cells accessed



Program MLOC Num. Procs Proven Procs Procs Coverage % Time (1) Time (8)
Linux kernel 2.6.25.4 2.473 101330 59215 58.4 6869.09 1739.28
Gimp 2.4.6 0.708 15114 6364 42.1 3601.16 1067.60
OpenSSL 0.9.8g 0.214 4818 2967 61.6 605.36 446.60
Sendmail 8.14.3 0.108 684 353 51.6 184.50 184.83
Apache 2.2.8 0.102 1870 881 47.1 294.67 104.48
OpenSSH 5.0 0.073 1135 519 45.7 142.56 30.24
Spin 5.1.6 0.019 357 197 55.2 772.82 253.96

Table 1. Case Studies with Larges Programs (timeout=1s).

by a procedure. This modularity means that linked lists do not have
to be threaded throughout the specifications of all procedures.

There is no deep reason for our scalability, except perhaps that
we attempt to discover small specs (hence reducing the number as
well). We can easily employ a timeout strategy because of compo-
sitionality: if one procedure times out, we can still get results for
others. Even more importantly, we can analyze each file indepen-
dently of others: we do not have to load the entire source program
into memory to analyze it, which would quickly overspill the RAM
and cause the analysis to thrash. To underline this independence
we have reported parallel speedup in Table 1, for an implementa-
tion using eight cores.

Caveats. Our compositional algorithm is parametrized by the
base abstract domain, and so an instantiation of it will inherit any
limitations of the base domain. For our experiments we used the
domain introduced in [3], which does not deal well with arrays and
pointer arithmetic. These are treated as non-deterministic opera-
tions that are imprecise but sound for the goal of proving pointer
safety. Also, the analysis ignores concurrency. (Indeed, it may be
that the compositional analysis gives new methods that might be
used in shape analysis for concurrency [17].)

We have treated unknown library procedures as non-deterministic
assignments without side effects. In many cases this is a sound in-
terpretation, for the purposes of pointer safety. However, we simply
did not have the time to manually inspect all of the C libraries to
provide specs for them. Note that this “problem” does not impact
the scalability aspect of our experiment, which is its primary pur-
pose. (Of course, we would be interested in combining our work
with techniques designed to deal with libraries in binary [15].)

Finally, our method does not deal well with code pointers, a
longstanding open problem. We have treated code pointers as if
they are unknown procedures. This, in effect, assumes that a code
pointer is part of an “object” with a different footprint than the
current procedure. One often sees this idiom, for example in the
relation between the Linux kernel and device drivers. Our position
also calls to mind the hypothetical frame rule from [33]. However,
significant further work is needed in this direction.

At the beginning of the paper we made the case for examining a
compositional shape analysis. We do not claim that compositional
analyses are fundamentally superior to non-compositional ones. As
we have argued in the introduction, they present several interesting
properties. However, it is reasonable to envisage that, ultimately,
effective and accurate analysis of large software will be done by
considering a mix of techniques. An analysis might work composi-
tionally most of the time, choosing where to employ more precise
and perhaps non-compositional methods. For instance, we might
run an analysis bottom-up, interpreting callees before callers, but
then employ a top-down narrowing phase afterwards to improve
precision on certain needed parts of the code.

8. Related Work
As we mentioned in the Introduction, we are interested in accurate
heap analyses that can be used to prove pointer safety. We use the
term “analysis” to refer to methods that discover loop invariants and
pre- and postconditions, and confine our attention to such verifica-
tion methods in this section.7 Of course, our method might be used
in concert with static verifiers that use user-supplied annotations.

The kind of shape analysis done here is one that attempts to be
accurate in the presence of deep heap update, where a heap mu-
tation is made some undetermined length down a linked structure.
The first such analysis was presented in [41], and there have been
many subsequent works in search of ever better shape domains
(e.g., [35, 5, 24, 26, 27, 3, 7]). Scalability is a significant prob-
lem for these precise analyses. Several papers on deep update have
reported whole-program analyses with experimental results on pro-
grams in the thousands of lines of code [19, 21, 28]. Other analyses
sacrifice precision in order to gain scalability [13, 20]; they cannot,
for example, give precise results on device drivers.

The techniques developed in this paper are in a sense comple-
mentary to the ideas in all these works. Although we have used the
domain from [3, 21] in our experiments, the compositional analy-
sis algorithm is parametrized by the abstract domain and we might
swap in one of the other abstract domains, or others that are devel-
oped in the future to obtain ever better compositional analyses.

We do not claim that bi-abductive inference is the only possible
way one might obtain a compositional shape analysis. Indeed,
other approaches might occur more immediately to the reader:
particularly, underapproximating backwards program analysis.

Defining a backwards shape analysis with acceptable precision
and efficiency is, as far as we are aware, an open problem. Prior
to our precursor paper [6], we formulated and implemented a back-
wards shape analysis of our own. It created an enormous number of
abstract states, and when it took several seconds to analyze a trivial
list traversal program we abandoned the approach.

Subsequently, several groups described ways to obtain precon-
ditions in shape analysis by going backwards [25, 36, 1]. None is
formulated in an interprocedural manner, and they report experi-
mental results only for programs in the tens of lines of code. Further
research is needed to develop or evaluate the ideas in these works.

Previous works have treated procedure calls in a local way, by
passing only the reachable part of the abstract heap to a procedure
[40, 16, 28]. The method here is more strongly local; by using the
idea of finding/using “small specifications” that only mention the
footprints of procedures, we are able to be more aggressive and
sometimes pass fewer than the reachable cells.

The general issues regarding compositional program analysis
are well known [9], and for non-shape domains a number of com-
positional analyses have appeared (e.g. [43, 31, 12, 18, 29]). They
all use different techniques to those here.

7 For example, [23] refers to itself as a compositional heap analysis, but
it requires procedure summaries/specs to be provided by the user, so it
performs a different task than here.



Giacobazzi has previously used abductive inference in the anal-
ysis of logic programs [14]. The problem he solves is dual to that
here. Given a specification of a logic programming module and an
implementation, the method of [14] infers constraints on undefined
literals in the module: it is top-down synthesis of constraints on
literals referred to in open code. In a procedural language the cor-
responding problem is to start with a Hoare triple for an “outer”
procedure, whose body refers to another unknown procedure, and
to infer a constraint on the unknown procedure. Here, we infer
the spec for the “outer” procedure, relying on previously-computer
specs for procedures called in its body. It would be interesting to at-
tempt to apply abduction in Giacobazzi’s way to procedural code,
to infer constraints from open code.

9. Conclusions
This paper has introduced the use of abductive inference to synthe-
size specifications in a shape analysis. We defined one particular
abductive proof procedure for use with separated heap abstractions,
and we explained how a more general notion of bi-abduction could
be used to define a compositional interprocedural shape analysis.

Bi-abduction displays abduction as, in a sense, an inverse to
the frame problem. Frame inference is about synthesizing leftover,
extra portions of state. Abduction finds needed, missing portions of
state, which we call anti-frames. The frames are not allowed to be
updated, while the anti-frames can be. This informally-described
inversion is curiously matched in our logical question

A ∗ ?1 ` G ∗ ?2

where ?2 is the frame and ?1 is the anti-frame. Furthermore, the
two parts to the bi-abduction question play different but mutually
supporting roles in our compositional analysis: the anti-frames help
us find small specifications, that describe constrained portions of
memory [32], while the frames allow us to use the small specs.

We did case studies ranging from small and medium-sized ex-
amples to test precision, to larger code bases, including Linux,
OpenSSL and Apache. No previous shape analysis for deep update
has approached code bases of comparable size.

The analysis results we obtain on the large programs are partial,
but this is another benefit of our method. The analysis is able to
obtain non-trivial Hoare triples for collections of procedures, even
when for other procedures it obtains imprecise results or takes
too long. For the procedures we did not successfully analyze we
could in principle consider using other methods such as manually-
supplied assertions to help the analysis along, interactive proofs, or
even other abstract domains. In fact for the eventual aim of proving
non-trivial properties (e.g., memory safety) of entire large code
bases it seems likely that a mixture of techniques, with different
degrees of automation, will be needed, and it is in easing their
blending that compositional methods have much to offer.

Finally, it seems that our scheme of using abduction to infer
preconditions could conceivably be used to define compositional
analyses for other abstract domains than shape domains.
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