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Abstract

We give two generic proofs for cut elimination in propositional modal
logics, interpreted over coalgebras. We first investigate semantic coher-
ence conditions between the axiomatisation of a particular logic and
its coalgebraic semantics that guarantee that the cut-rule is admissi-
ble in the ensuing sequent calculus. We then independently isolate a
purely syntactic property of the set of modal rules that guarantees cut
elimination. Apart from the fact that cut elimination holds, our main
result is that the syntactic and semantic assumptions are equivalent in
case the logic is amenable to coalgebraic semantics. As applications
we present a new proof of the (already known) interpolation property
for coalition logic and newly establish the interpolation property for
the conditional logics CK and CK + ID .

1 Introduction

Establishing the admissibility of the cut rule in a modal sequent calculus
often allows establishing many other properties of the particular logic under
scrutiny. Given that the sequent calculus enjoys the subformula property,
the conservativity property is immediate: each formula is provable using
only those deductive rules that mention exclusively operators that occur in
the formula. As a consequence, completeness of the calculus at large imme-
diately entails completeness of every subsystem that is obtained by removing
a set of modal operators and the deduction rules in which they occur. More-
over, cut-free sequent systems admit backward proof search, as the logical
complexity of a formula usually decreases when passing from the conclusion
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to the premise of a deductive rule to the premise. Given that contraction is
admissible in the proof calculus, this yields – in presence of completeness –
decidability and complexity bounds for the satisfiability problem associated
with the logic under consideration [9, 2]. Finally, a cut-free system provides
the necessary scaffolding to prove interpolation theorems by induction on
cut-free proofs.

For normal modal logics, sequent calculi, often in the guise of tableau
systems, have therefore – not surprisingly – received much attention in the
literature [1, 5, 16]. In the context of non-normal logics, sequent calculi
have been explored for regular and monotonic modal logics [6], for Pauly’s
coalition logic [7] and for a family of conditional logics [13]. All these log-
ics are coalgebraic in nature: their standard semantics can be captured by
interpreting them over coalgebras for an endofunctor on sets. This is the
starting point of our investigation and we set out to derive sequent systems
for logics with coalgebraic semantics and study their properties. Given a
(complete) axiomatisation of a logic w.r.t. its coalgebraic semantics, we sys-
tematically derive a (complete) sequent calculus. In general, this calculus
will only be complete if we include the cut rule. We show that cut free com-
pleteness, and therefore eliminability of cut, follows if the axiomatisation is
one-step cut-free complete: every valid clause containing operators applied
to propositional variables can be derived using a single modal deduction
rule. The existence of a cut-free sequent calculus for coalgebraic logics is
then exploited to establish conservativity, complexity and interpolation for
modal logics in a coalgebraic framework. While conservativity and complex-
ity of coalgebraic logics have already been established in [19] we believe that
the results here offer additional conceptual insight. Regarding interpolation,
we obtain a new proof of the (known) interpolation property for Coalition
Logic [7] while interpolation for the conditional logics CK and CK + ID [4]
was left as future work in [13] and appears to be new.

On a technical level, we consider modal logics that are built from atomic
propositions, propositional connectives and modal operators, that is, in con-
trast to earlier work (e.g. [10, 14, 18, 19]) we treat propositional variables as
first-class citizens. This does not only provide a better alignment with stan-
dard texts in modal logic [4, 3] but is moreover a prerequisite for formulating
the interpolation property.

As a consequence, we are lead to work with coalgebraic models, that
is, coalgebras together with a valuation of the propositional variables, right
from the start. Completeness and cut-free completeness is then proved via a
terminal sequence argument, but over the extension of the signature functor
to the slice category Set/P(V ) where V is the set of propositional variables.
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This provides an alternative route to the shallow proof property of [19].
In this setting, we observe that one-step cut-free completeness corresponds
to eliminability of cut. We then isolate purely syntactic conditions under
which cut elimination holds. In essence, the set of modal rules has to be
rich enough so that cuts between conclusions of modal rules can be absorbed
into a single rule. If the rules are moreover strong enough to propagate
contraction, we show that cut can be eliminated. This essentially amounts
to completing the rule set so that cuts involving rule conclusions are in
fact absorbed in the rule set, in strong analogy with Mints’ comparison
[12] between resolution and sequent proofs. It is interesting to note that the
respective strengths of the syntactic and the semantic approach are identical:
we show that the semantic coherence condition that guarantees admissibility
of cut is equivalent to the syntactic requirement which is needed for cut
elimination.

We summarise the coalgebraic semantics of modal logics in Section 2
and introduce modal sequent calculi in 3. Section 4 then establishes cut-free
completeness and we discuss applications, in particular the interpolation
property, in Section 6 before concluding with two open problems.

2 Coalgebraic and Logical Preliminaries

Given a category C and an endofunctor F : C → C, an F -coalgebra is a
pair (C, γ) where C ∈ C is an object of C and γ : C → FC is a morphism
of C. A morphism between F -coalgebras (C, γ) and (D, δ) is a morphism
m : C → D ∈ C such that δ ◦m = Fm ◦ γ. The category of F -coalgebras
will be denoted by Coalg(F ).

In the sequel, we will be concerned with F -coalgebras both on the cate-
gory Set of sets and (total) functions and on the slice category Set/P(V ), for
V a denumerable set of propositional variables that we keep fixed throughout
the paper. Working with the slice category Set/P(V ) allows a convenient
treatment of propositional variables. In particular, coalgebras on Set/P(V )
play the role of Kripke models, i.e. they come equipped with a valuation
of propositional variables. Recall that an object of Set/P(V ) is a func-

tion f : X → P(V ) and a morphism m : (X
f
→ P(V )) → (Y

g
→ P(V ))

is a commuting triangle, that is, a function m : X → Y such that
g ◦ m = f . The projection functor mapping (X → P(V )) 7→ X is de-
noted by U : Set/P(V ) → Set. For the remainder of the paper, we fix
an endofunctor T : Set → Set and denote its extension to Set/P(V ) by
T/P(V ) : (Set/P(V )) → (Set/P(V )); the functor T/P(V ) maps objects
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f : X → P(V ) to the second projection mapping TX × P(V ) → P(V ).
Note that an object M ∈ Coalg(T/P(V )) is a commuting triangle necessar-
ily of the form

C

ϑ

!!C
C

C
C

C
C

C
C

C

〈γ,ϑ〉
// TC × P(V )

π2
xxrrrrrrrrrr

P(V )

or equivalently a triple (C, γ, ϑ) where (C, γ) ∈ Coalg(T ) and ϑ : C →
P(V ) is a co-valuation of the propositional variables. Passing from the co-
valuation ϑ : C → P(V ) to the valuation ϑ♯ : V → P(C) induced by the
self-adjointness of the powerset functor, we can view T/P(V )-coalgebras
as T -coalgebras (C, γ) together with a valuation of propositional variables.
T/P(V )-coalgebras therefore play the role of T -models (T -coalgebras, which
we see as frames, together with a valuation of propositional variables). In
what follows, we will denote T/P(V )-coalgebras as triples (C, γ, ϑ) as above
and use Mod(T ) to refer to the category Coalg(T/P(V )) of T -models. If
M = (C, γ, ϑ) is a T -model, then we refer to (C, γ) ∈ Coalg(T ) as the
underlying frame of M .

On the syntactic side, we work with modal logics over an arbitrary modal
similarity type (set of modal operators with associated arities) Λ. The set
of Λ-formulas given by the grammar

F(Λ) ∋ A,B ::= p | A ∧B | ¬A | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. We use the standard definitions of the other
propositional connectives, that is we put A ∨ B = ¬(¬A ∧ ¬B), A → B =
¬A∨B, ⊥ = p∧¬p for some p ∈ V and ⊤ = ¬⊥. Note that, in contrast to the
earlier treatments of coalgebraic modal logic [10, 14, 18, 19], the definition
above includes propositional variables as first-class citizens. If S is a set
(of formulas, or variables) then Λ(S) denotes the set {♥(s1, . . . , sn) | ♥ ∈
Λ is n-ary, s1, . . . , sn ∈ S} of formulas comprising exactly one application
of a modality to elements of S. We denote the set of propositional formulas
over a set S by Prop(S).

To facilitate induction on the modal rank of a formula, we stratify the
set F(Λ) by modal rank. That is, we put

F−1(Λ) = ∅ and Fn(Λ) = Prop(Λ(Fn−1(Λ)) ∪ V )

for n ≥ 0. It is easy to see that F(Λ) =
⋃

n∈ω Fn(Λ).
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An S-substitution is a mapping σ : V → S. We denote the result of
simultaneously substituting σ(p) for every p ∈ V in a formula A ∈ F(Λ)
by Aσ. As usual, substitution associates to the right, i.e. Aσρ = (Aσ)ρ for
formulas A ∈ F(Λ) and substitutions σ, ρ : V → F(Λ).

As in [14, 17], formulas of F(Λ) are interpreted over T -coalgebras pro-
vided that T extends to a Λ-structure, i.e. comes equipped with an assign-
ment of predicate liftings (natural transformations)

J♥K : 2n → 2 ◦ T

to every n-ary modal operator ♥ ∈ Λ. Here 2 : Set → Set is the contravariant
powerset functor, and for any functor F , Fn denotes the n-fold product of
F with itself, i.e. Fn(X) = FX × · · · × FX. Explicitly, the naturality
equation for J♥K translates into the requirement that J♥K commutes with
inverse images, i.e.

J♥KX(f−1[Z1], . . . , f
−1[Zn]) = (Tf)−1[J♥KY (Z1, . . . , Zn)]

for all maps f : X → Y and all subsets Z1, . . . , Zn ⊆ Y . We usually leave
the assignment of predicate liftings to modal operators implicit and simply
use T to refer to the entire Λ-structure.

Given a Λ-structure T and M = (C, γ, ϑ) ∈ Mod(T ), the semantics of
A ∈ F(Λ) is inductively given by

J♥(A1, . . . , An)KM = γ−1 ◦ J♥KC(JA1KM , . . . , JAnKM )

and
JpKM = {c ∈ C | p ∈ ϑ(c)}

for p ∈ V , together with the standard clauses for the propositional connec-
tives.

If M = (C, γ, ϑ) is a T -model, semantic validity JAKM = C is denoted
by M |= A. We write Mod(T ) |= A if M |= A for all M ∈ Mod(T ).

The completeness results that we establish later rely heavily on exploiting
the semantic relation between formulas of Prop(V ) (describing properties of
states) and formulas of Prop(Λ(V )) that describe properties of successors,
in close analogy to coalgebra structures mapping states (elements of C) to
successors in TC. The following notation is convenient for this purpose:

If A ∈ Prop(V ), then every valuation τ : V → P(X) inductively defines
a subset JAKτ

X ⊆ X by evaluation in the boolean algebra P(X) and we write
X, τ |= A if JAKτ

X = X.
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For statements about successor states, i.e. formulas A ∈ Prop(Λ(V )), we
have that every valuations τ : V → P(X) induces a subset JAKτ

TX ⊆ TX
given by inductively extending the assignment

J♥(p1, . . . , pn)Kτ
TX = J♥KV (τ(p1), . . . , τ(pn))

on atoms to the whole of Prop(Λ(V )). We write TX, τ |= A if JAKτ
TX = TX.

Our techniques will be illustrated by the following two running examples:

Example 2.1 (Coalition Logic and Conditional Logic).

(i) Coalition logic [15] allows reasoning about the coalitional power in
games. We take N = {1, . . . , n} to be a fixed set of agents, subsets of which
are called coalitions. The similarity type Λ of coalition logic contains a unary
modal operator [C] for every coalition C ⊆ N . Informally, [C]A expresses
that coalition C has a collaborative strategy to force A. The coalgebraic
semantics for coalition logic is based on the signature functor C defined by

CX = {(S1, . . . , Sn, f) | ∅ 6= Si ∈ Set, f :
∏

i∈N Si → X}.

(The fact that C is actually class-valued has no bearing on the further tech-
nical development.) The elements of CX are understood as strategic games
with setX of states, i.e. tuples consisting of nonempty sets Si of strategies for
all agents i, and an outcome function (

∏
Si) → X. A C-coalgebra is a game

frame [15]. We denote the set
∏

i∈C Si by SC , and for σC ∈ SC , σC̄ ∈ SC̄ ,
where C̄ = N − C, (σC , σC̄) denotes the obvious element of

∏

i∈N Si. A
Λ-structure over C is defined by the predicate liftings

J[C]KX(A) = {(S1, . . . , Sn, f) ∈ CX | ∃σC ∈ SC .∀σC̄ ∈ SC̄ . f(σC , σC̄) ∈ A}.

(ii) The similarity type of the conditional logics CK and CK + ID con-
tains the single binary modal operator ⇒ that represents a non-monotonic
conditional. The selection function semantics of CK is captured coalge-
braically via the functor CKX = (2(X) → P(X)) with → representing
function space, and CK-coalgebras are standard conditional models [4]. We
extend CK to a Λ-structure by virtue of the predicate lifting

J⇒KX(A,B) = {f : 2X → PX | f(A) ⊆ B}

which induces the standard semantics of CK . The conditional logic
CK + ID additionally obeys the (rank-1) axiom A ⇒ A and is interpreted
over the functor CKIdX = {f : 2(X) → P(X) | ∀A ⊆ X.f(A) ⊆ A}; note
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that CKId is a subfunctor of CK. The functor CKId extends to a Λ-structure
by relativizing the interpretation of ⇒ given above, i.e.

J⇒KX(A,B) = {f ∈ CKIdX | f(A) ⊆ B}

for subsets A,B ⊆ X.

3 Sequent Systems for Coalgebraic Logics

Previous work on deduction in coalgebraic logics has focused on languages
without propositional variables and deduction was formalised using Hilbert-
style proof systems where propositional variables were simulated using
nullary modalities. This contrasts with our treatment here where we treat
propositional variables as first-class citizens in a Gentzen-style sequent cal-
culus. If S ⊆ F(Λ) is a set of formulas, an S-sequent is a finite multiset of
elements of S ∪ {¬A | A ∈ S}. We write S(S) for the set of S-sequents,
and S for the set of F(Λ)-sequents. As the logics we consider here are ex-
tensions of classical propositional logic, we work with single-sided sequent
calculi and read sequents disjunctively. That is, a sequent corresponds to
the disjunction of its elements, and we write Γ̌ =

∨
Γ for the associated for-

mula. We use the standard set-theoretic notation of union, intersection and
subset also for multisets, respecting multiplicity. If Γ ⊆ F(Λ) is a multiset,
we write supp(Γ) for its support, i.e. the set of elements of Γ, disregard-
ing multiplicities. We identify a formula A with the singleton multiset {A}
whenever convenient and denote the multiset union of Γ,∆ ⊆ F(Λ) by Γ,∆.
Combining both conventions, we write Γ, A for Γ ∪ {A}.

Substitutions are applied pointwise to sequents: if σ is a substitution
and Γ is a sequent, Γσ = {Aσ | A ∈ Γ}. In our terminology, a sequent rule
is a tuple (Γ1, . . . ,Γn,Γ0) of sequents, usually written in the form

Γ1 . . . Γn

Γ0
or Γ1, . . . ,Γn/Γ0

where we silently identify sequent rules modulo reordering of the sequents
in the premise.

Given a set S of sequent rules and a set H ⊆ S of additional hypotheses,
the notion of deduction is standard: the set D of S +H-derivable sequents
is the least set that contains H and is closed under the rules in S, i.e. it
satisfies Γ0 ∈ D whenever Γ1, . . . ,Γn/Γ0 ∈ S and Γ1, . . . ,Γn ∈ D. We write
S +H ⊢ Γ if Γ is an S +H-derivable sequent, and S ⊢ Γ in case H = ∅. A
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sequent rule Γ1, . . . ,Γn/Γ0 is S-admissible if S ⊢ Γ0 whenever S ⊢ Γi for all
i = 1, . . . , n.

We use the following set G of sequent rules to account for the proposi-
tional part of our calculus

(Ax )
Γ, A,¬A

(∧)
Γ, A Γ, B

Γ, A ∧B
(¬∧)

Γ,¬A,¬B

Γ,¬(A ∧B
(¬¬)

Γ, A

Γ,¬¬A

where A,B ∈ F(Λ) and Γ ∈ S ranges over all F(Λ)-sequents. We adopt the
context-free version of the cut-rule and write C for the set containing of all
instances

(cut)
Γ, A ∆,¬A

Γ,∆

where Γ,∆ ∈ S and A ∈ F(Λ). To facilitate arguments by induction on the
modal rank of a formula, we write

Sn = {
Γ1 . . .Γk

Γ0
∈ S | Γi ∈ S(Fn(Λ)) for all i = 0, . . . , k}

for the set of rules in S whose premises and conclusions are restricted to
sequents over S. In particular, this induces the sets Gn and Cn, containing
the propositional rules and instances of the cut rule, applied to formulas
of modal rank at most n. The system G is a slight modification of the
system G3c of [22] where only A ∈ V is permitted in (Ax ) and (Ax ) as
formulated here is admissible. Note that exchange rules are not needed as
G is formulated in terms of multisets.

Note that G is complete w.r.t. propositional validity, i.e. G ⊢ Γ iff Γ̌
is a propositional tautology. Our next task is to extend G with additional
sequent rules to account for modal deduction. It has been shown in [17]
that coalgebraic logics can always be completely axiomatised in rank 1, in
particular, by a (possibly infinite) number of one-step rules, that is, rules
whose premise is a purely propositional formula that have a purely modalised
conclusion.

Definition 3.1. A one-step rule over a modal similarity type Λ is an n+1-
tuple (Γ1, . . . ,Γn,Γ0), written as Γ1...Γn

Γ0
or Γ1 . . .Γn/Γ0, where Γ1, . . . ,Γn ∈

S(V ) and ∅ 6= Γ0 ∈ S(Λ(V )).

One-step rules describe the passage from statements about states (the
premises) to a statement about successors (in the conclusion), analogously
to the way in which the structure map γ : C → TC of a T -coalgebra (C, γ)
provides us with a (structured) successor state for each world c ∈ C of the
model.
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The definition above differs slightly from that given in [14, 17] in the
sense that one-step rules in op.cit. are of the form φ/ψ where φ ∈ Prop(V )
is a purely propositional formula and ψ is a clause over atoms in Λ(V ). By
passing from a propositional formula φ to its conjunctive normal form, every
one-step rule in the sense of [14, 17] can accomodated in the above definition
in a straightforward way.

Every set of one-step rules gives rise to a set of sequent rules by passing
from a one-step rule to all its substitution instances, augmented with an
additional weakening context.

Definition 3.2. Let R be a set of one-step rules. The set S(R) of sequent
rules associated with R is the set of rules consisting of all instances of

Γ1σ . . .Γnσ

Γ0σ,∆

where Γ1, . . . ,Γn/Γ0 ∈ R, σ : V → F(Λ) is a substitution and ∆ ∈ S ranges
over the set of F(Λ)-sequents.

For our two running examples, the situation is as follows.

Example 3.3 (Coalition Logic and Conditional Logic).

(i) In [19], Pauly’s Coalition Logic [15] was axiomatised by the rules

∨k
i=1 ¬ai

∨k
i=1 ¬[Ci]ai

∧k
i=1 ai → b ∨

∨l
j=1 cj

∧k
i=1[Ci]ai → [D]b ∨

∨l
j=1[N ]cj

subject to the side condition that the Ci are pairwise disjoint; the sec-
ond rule additionally requires that Ci ⊆ D for all i = 1, . . . , k. These
rules are one-step rules if we dissolve premise and conclusion into sequents,
i.e. if we replace the formula

∧

i=1,...,nAi →
∨

j=1,...,mBj by the sequent
¬A1, . . . ,¬An, B1, . . . , Bm.
The induced set S(RC) of sequent rules is most economically presented if
we abbreviate A = A1, . . . , Ak for A1, . . . , Ak ⊆ V and C = (C1, . . . , Ck) for
C1, . . . , Ck ⊆ N ; in this case [C]A represents the multiset [C1]A1, . . . , [Ck]Ak

of formulas. Using this notation, we obtain the following set of sequent rules,
consisting of all instances of

(A)
¬A

¬[C]A,Γ
(B)

¬A, B,A′

¬[C]A, [D]B, [N]A′,Γ

where N = N, . . . ,N and ¬∆ = {¬A | A ∈ ∆} for ∆ ∈ S. Both rule
schemas are subject to the side condition that the coalitions appearing in C

are disjoint; rule (B) moreover requires that their union is a subset of D.
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(ii) The axiomatisation of conditional logic in [4] contains the rules

∧

i=1,...,n bi → b0
∧

i=1,...,n(a⇒ bi) → (a⇒ b0)

a↔ a′

(a⇒ b) → (a′ ↔ b)

that induce one-step rules RCK0
as above, with the logical equivalence in

the right hand rule broken down into sequents ¬a, a′ and ¬a′, a.
Amalgamating both rules into one, we obtain the rule set RCK that consists
of the one-step rules

¬b1, . . . ,¬bn, b0 ¬a0, a1 . . . ¬a0, an a1,¬a0 . . . an,¬a0

¬(a1 ⇒ b1), . . . ,¬(an ⇒ bn), (a0 ⇒ b0)

for every n ∈ ω. As above, we abbreviate B = B1, . . . , Bn, A = A1, . . . , An

and A ⇒ B = A1 ⇒ B1, . . . , An ⇒ Bn. The associated sequent rules then
take the form

(C)
¬B, B0 ¬A0, A1 . . . ¬A0, An ¬A1, A0 . . . ¬An, A0

¬(A ⇒ B), A0 ⇒ B0, ∆
.

The set of one-step rules needed to axiomatise CK + ID contains the addi-
tional rule

¬a0, a1 ¬a1, a0

a0 ⇒ a1

which induces the set

(ID)
¬A0, A1 ¬A1, A0

A0 ⇒ A1,∆

of sequent rules, where A1, A2 ∈ F(Λ) and ∆ ∈ S. The rules (C) express
that the second component obeys normality whereas the first behaves like
the modal 2 of neighbourhood frames and (ID) formalises an identity law.
We integrate (C) and (ID) into the single rule set

(CI)
¬A0,¬B, B0 ¬A0, A1 . . . ¬A0, An ¬A1, A0 . . . ¬An, A0

¬(A ⇒ B), A0 ⇒ B0, ∆
.

The rule set that extends RCK with all instances of (CI) is denoted by
RCKId.

It is the special format of one-step rules that facilitates inductive arguments
over the modal rank of formulas. For the case of one-step rules, we have the
following characterisation:
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Lemma 3.4. Let R be a set of one-step rules. Then

S(R)n = {
Γ1σ . . .Γnσ

Γ0σ,∆
| Γ1 . . . ,Γn/Γ0 ∈ R, σ : V → Fn−1(Λ),∆ ∈ S(Fn(Λ)}

where, for a set S of sequent rules, Sn are those rules in S whose premises
and conclusion are sequents over Fn(Λ).

In the remainder of the paper, we will use sequent calculi that are induced
by several different rule sets. In particular, we will consider sequent calculi
with and without cut, and also calculi whose rules are restricted to formulas
of fixed modal depth. This is reflected by the following convention:

Convention 3.5. If S1, . . . ,Sn are sets of sequent rules and H1, . . . ,Hk ⊆ S
is a set of additional hypotheses, we use the short form and write

S1 . . .Sn +H1 + · · · +Hm ⊢ Γ

in case (S1 ∪ · · · ∪ Sn) + (H1 ∪ · · · +Hn) ⊢ Γ for Γ ∈ S. Moreover, if R is
a set of one-step rules, we write GR for the the rule set G ∪ S(R). As a
consequence, note that GRn = Gn ∪ (S(R))n for n ∈ ω.

We start our analyis of the provability predicate GR ⊢ by establishing
that weakening and inversion are admissible in the relativised calculi GRn.
This is most easily established using the following characterisation of GRn-
provability: a sequent is GRn-provable iff it is Gn-provable from the set of
conclusions of S(R)n-rules whose premises are GRn−1-provable. That is,
we have the following:

Lemma 3.6. Let R be a set of one-step rules, and let n ∈ ω. Then GRn ⊢ Γ
iff

Gn + {Γ0σ,∆ | Γ1, . . .Γk/Γ0 ∈ R,∆ ∈ S(Fn(Λ)),

σ : V → Fn−1(Λ),∀1≤i≤kGRn−1 ⊢ Γiσ} ⊢ Γ

whenever Γ ∈ S(Fn(Λ)).

Proof. The case n = 0 is evident as F−1(Λ) = ∅. For n > 0, one proves
the only-if direction by induction on the proof of Γ, noting that for Γ ∈
S(Fn−1(Λ)) we have GRn ⊢ Γ iff GRn−1 ⊢ Γ.

One ingredient in the construction of sequent rules from one-step rules was
the addition of a weakening context Γ to the conclusion of every substituted
one-step rule. As a consequence, weakening is admissible:
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Lemma 3.7 (Weakening lemma). Let R be a set of one-step rules. Then
GRn ⊢ Γ, A whenever GRn ⊢ Γ and A ∈ Fn(Λ).

Proof. By induction on the proof of GRn ⊢ Γ using Lemma 3.6.

The same argument allows us to prove that inversion is admissible.

Lemma 3.8 (Inversion lemma). Let n ∈ ω, and let R be a set of one-step
rules. Then all instances of the inversion rules

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)

Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, A1

Γ, A1,∧A2

Γ, A2
,

where A1, A2 ∈ Fn(Λ) and Γ ∈ S(Fn(Λ)), are GRn-admissible.

Proof. Standard induction on proofs in GRn using Lemma 3.6. Note that
inversion is automatic for formulas Γ0σ,∆ where Γ0 is the conclusion of a
one-step rule, σ : V → Fn−1(Λ) and ∆ ∈ S(Fn(Λ)), as the formulas in Γ0σ
do not contain any top-level propositional connectives.

Finally, we show that GR-derivability is closed under uniform substitution.
Again, this is carried out relative to the modal depth of formulas.

Lemma 3.9 (Substitution Lemma). Let GRn ⊢ Γ, and let σ : V → Fk(Λ).
Then GRn+k ⊢ Γσ.

Proof. Induction on the proof of GRn ⊢ Γ.

Lemma 3.7 and Lemma 3.8 entail the admissibility of weakening and inver-
sion also in the calculus GR. This is an easy consequence of the following
observation which will be crucial in the following sections.

Proposition 3.10. Let R be a set of one-step rules, and let Γ ∈ S. Then
GR ⊢ Γ iff GRn ⊢ Γ for some n ∈ ω. The corresponding statement holds
for derivability in GRC.

Proof. As all rules in GR only have finitely many premises, any proof GR

or GRC can be simulated in GRn and GRCn, respectively, where n is
large enough, i.e. such that all formulas occuring in the proof are elements
of Fn(Λ).

As a corollary, we have admissibility of weakening and contraction in the
calculus GR.

12



Corollary 3.11. Let R be a set of one-step rules. Then all instances of
weakening and inversion

Γ

Γ, A

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)

Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, A1

Γ, A1,∧A2

Γ, A2

where Γ ∈ S(F(Λ)) and A,A1, A2 ∈ F(Λ), are GR-admissible.

We could have established the previous corollary directly, without the
need to detour via the rank-n-derivability relation GRn ⊢. In fact, we never
need to use the corollary above, but need to make crucial use of weakening
and inversion in relativised form (Lemma 3.7 and Lemma 3.8).

This concludes our discussion of the basic properties of sequent systems
induced by one-step rules. The next two sections are devoted to establish
admissibility of cut and contraction, first semantically in the next section
and then by a purely syntactic argument.

4 Soundness and Cut-Free Completeness

We now study the relationship between GR-derivability and semantic valid-
ity. As in previous work, both soundness and completeness will be implied
by one-step completeness of the rule set R. However, we want to point
out two subtle differences: (a) our proof deals with propositional variables
directly and (b) it sheds light on the structure of proofs. In particular,
we will see that a one-step complete rule set necessitates the use of cut to
obtain completeness and eliminability of cut amounts to one-step cut-free
completeness. We recall the definition of one-step soundness and one-step
completeness, adapted to a sequent calculus setting from [14, 17]:

Definition 4.1. A set R of one-step rules is one-step sound w.r.t a Λ-
structure T if, whenever Γ1, . . . ,Γn/Γ0 ∈ R, we have TX, τ |= Γ0 for each set
X and each valuation τ : V → P(X) such that X, τ |= Γi for all i = 1, . . . , n.
The set R is one-step complete if

GC1 + {Γ0σ |
Γ1 . . .Γn

Γ0
∈ R, σ : V → Prop(V ),∀1≤i≤n(X, τ |= Γiσ)} ⊢ Γ

whenever TX, τ |= Γ for a set X, Γ ∈ S(Λ(V )), and a P(X)-valuation τ .
Finally, R is one-step cut-free complete if, whenever TX, τ |= Γ, we have

Γ0σ ⊆ Γ

for some Γ1, . . . ,Γn/Γ0 ∈ R and some substitution σ : V → V such that
X, τ |= Γiσ for all i = 1, . . . , n.

13



It is an easy exercise to show that both GR and GRC are sound provided
the rule set R is one-step sound. To align the coalgebraic semantics of F(Λ)
with the system GR, we define the interpretation of a sequent Γ w.r.t.
M = (C, γ, ϑ) ∈ Mod(V ) to be the semantics of the associated propositional
formula, i.e. JΓKM = JΓ̌KM , and accordingly M |= Γ iff M |= Γ̌, Mod(T ) |= Γ
if Mod(T ) |= Γ̌.

Theorem 4.2 (Soundness). Let R be one-step sound for T . Then
Mod(T ) |= Γ if GRC ⊢ Γ and, a fortiori, Mod(T ) |= Γ if GR ⊢ Γ.

Proof. We proceed by induction over the length of the derivation, where the
only interesting cases are applications of rules Γ1, . . . ,Γn/Γ0 ∈ S(R). So
suppose that (C, γ, ϑ) ∈ Mod(T ) and that Γ has been derived via an appli-
cation of Γ1 . . .Γn/Γ0. That is, we can find a one-step rule Γ′

1 . . .Γ
′
n/Γ

′
0 ∈ R

and a substitution σ : V → F(Λ) such that Γi = Γiσ for i = 1, . . . , n and
Γ0 = Γ′

0σ,∆ for some ∆ ∈ S. By the induction hypothesis, JΓiσKM = ⊤ for
all i = 1, . . . , n. Consider the P(C)-valuation τ(p) = Jσ(p)KM . We obtain
C, τ |= Γ′

i for all i = 1, . . . , n in the one-step sense, and one-step soundness
implies TC, τ |= Γ′

0σ. Consequently, JΓ0KM = JΓ′
0σ,∆KM ⊇ JΓ′

0σKM = ⊤
which concludes the proof.

We now proceed to establish completeness and cut-free completeness di-
rectly by means of a semantic argument, and present a purely syntactic re-
construction in the following section. For the semantic approach, we prove
completeness using a terminal sequence argument in the style of [14] which
ties in very well with the proof of cut elimination in the next section. As
we are dealing with models, i.e. coalgebras equipped with a valuation, we
consider the terminal sequence of the endofunctor T/P(V ) in the category
Set/P(V ). We briefly recapitulate the terminal sequence construction, as
used in [14], but phrased in a general categorical setting.

If F : C → C is an endofunctor on a category C with terminal object 1,
the finitary part of the terminal sequence of F is the diagram consisting of

• the objects Fn1 for n ∈ ω where Fn denotes n-fold application of F ,
and

• the morphisms pi
j : F i1 → F j1 defined by pi+1

i = F i(! : F1 → 1) and

pn+k
n = pn+k

n+k−1 ◦ · · · ◦ p
k+1
k .

Every F -coalgebra (C, γ) gives rise to a canonical cone (C, (γn)n∈ω), where
γn : C → Fn1, over the finitary part of the terminal sequence by stipulating
that γ0 =! : C → F 01 = 1 where ! is the unique arrow given by finality of

14



1 ∈ C, and γn+1 = Fγn ◦ γ. We use the terminal sequence construction for
the functor F = T/P(V ), the terminal sequence of which is visualised in the
following diagram.

S0

︷ ︸︸ ︷

1 × P(V )

π2

��

S1

︷ ︸︸ ︷

TS0 × P(V )

π2

��

p1

0
=!

oo
S2

︷ ︸︸ ︷

TS1 × P(V )

π2

��

p2

1
=Tp1

0
×id

oo . . .
p3

1
=Tp2

1
×id

oo

P(V ) P(V ) P(V ) . . .

The key technique in the proof of completeness via a terminal sequence ar-
gument is to associate to every formula A of modal rank ≤ n an n-step
semantics JAKn over the n-th approximant (T/P(V ))n1 of the terminal se-
quence. In our case, we take a predicate over (T/P(V ))n1 to be a subset of
Sn = U((T/P(V ))n1). The formal definition is as follows:

Definition 4.3. The n-step semantics of A ∈ Fn(Λ) ⊆ Sn is inductively
defined by S0 = P(V ) and

JpK0 = {S ∈ P(V ) | p ∈ S}

for n = 0 and Sn = TSn−1 ×P(V ) together with

JpKn = π−1
2 ({S ∈ P(V ) | p ∈ S})

and
J♥(A1, . . . , Ak)Kn = π−1

1 ◦ JMKSn−1
(JA1Kn−1, . . . , JAkKn−1)

for A1, . . . , Ak ∈ Fn−1(Λ) and ♥ ∈ Λ an n-ary modality.

Note that Sn = U((T/P(V ))n1). We can mediate between the n-step se-
mantics and the semantics w.r.t Mod(T ) as follows:

Lemma 4.4. Let A ∈ Fn(Λ), let M = (C, γ, ϑ) ∈ Mod(T ), and let
(M, (γn)n∈ω) be the canonical cone of M over the terminal sequence of
T/P(V ). Then JAKM = (Uγn)−1(JAKn) for all A ∈ Fn(Λ).

Proof. By induction on n. For n = 0 we have Uγ0 = ϑ and ϑ−1(JpK0) =
ϑ−1({S ⊆ V | p ∈ S}) = {c ∈ C | p ∈ ϑ(c)} = JpKM . For n > 0, we
obtain inductively Uγn = 〈TUγn−1 ◦ γ, ϑ〉 : C → TSn−1 ×P(V ). This gives
(Uγn)−1(JpKn) = (π2 ◦ 〈TUγn ◦ γ, ϑ〉)−1({S ⊆ V | p ∈ S}) = ϑ−1({S ⊆
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V | p ∈ S}) = {c ∈ C | p ∈ ϑ(c)} = JpKM as above. For modal formulas
♥(A1, . . . , Ak) with A1, . . . , Ak ∈ Fn−1(Λ) we obtain

(Uγn)−1(J♥(A1, . . . , AkKn))

=〈TUγn−1 ◦ γ, ϑ〉
−1 ◦ π−1

1 (J♥KSn−1
(JA1Kn−1, . . . , JAkKn−1))

=γ−1 ◦ (TUγn−1)
−1 ◦ J♥KSn−1

(JA1Kn−1, . . . , JAkKn−1)

=γ−1 ◦ J♥KC ◦ (Uγn−1)
−1 × · · · × (Uγn−1)

−1(JA1Kn−1, . . . , JAkKn−1)

=γ−1 ◦ J♥K(JA1KM , . . . , JAkKM )

=J♥(A1, . . . , Ak)KM

using the induction hypothesis and naturality of J♥K.

We recall the following lemma, whose proof directly translates to a general
categorical setting, from [14]:

Lemma 4.5. Let f0 : 1 → F1 be a morphism of C and let fn = Ffn−1

inductively. Then fn
n = idF n1 for all n ∈ ω.

This immediately implies that semantic validity of a sequent Γ, with Γ ⊆
Fn(Λ) is equivalent to validity w.r.t the n-step semantics.

Corollary 4.6. Let Γ ∈ S(Fn(Λ)). Then Mod(T ) |= Γ iff JΓKn = ⊤.

Proof. The ‘if’-part is a consequence of Lemma 4.4 above. For the ‘only
if’-part assume that Mod(T ) |= Γ and pick f0 : 1 → (T/P(V )1) ∈ Set/P(V )
where 1 is a terminal object of Set/P(V ). Consider M = (C, γ) ∈
Coalg(T/P(V )) where C = (T/P(V ))n and γ = (T/P(V ))n(f0). As
Mod(T ) |= Γ we have that M |= Γ and Lemma 4.4 above implies that
JΓKn = ⊤.

The proof of completeness (and later cut-free completeness) relies on the
stratification of the provability predicate GRn ⊢ of GR, indexed by modal
rank. The following proposition is the key stepping stone in the completeness
proof and relates validity in the n-step semantics to derivability in rank n.

Proposition 4.7. Let Γ ∈ S(Fn(Λ) be a sequent over Fn(Λ). Then JΓKn =
⊤ implies that GRCn ⊢ Γ if R is one-step complete. If R is one-step
cut-free complete, we have that GRn ⊢ Γ.

Proof. By induction on n. If n = 0 the statement follows from semantic
completeness of G. By the inversion lemma, it suffices to consider, for
n > 0, the case

Γ = ¬♥1A1, . . . ,¬♥iAi,¬q1, . . . ,¬qj,♥
′
1A

′
1, . . . ,♥

′
i′A

′
i, q

′
1, . . . , q

′
j′
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where Ai, A
′
i′ are tuples of formulas in Fn−1(Λ) according to the arity of ♥i

and ♥′
i′ and qj, q

′
j′ ∈ V . By the definition of J·Kn and elementary boolean

algebra, we deduce that either

J¬♥1A1, . . . ,¬♥iAi,♥
′
1A

′
1, . . . ,♥

′
i′A

′
iKn = ⊤

or, alternatively,

J¬q1, . . . ,¬qj, q
′
1, . . . , q

′
j′ . . . , q

′
j′Kn = ⊤

holds. In the latter case,
∧j

k=1 qj →
∨j′

k=1 q
′
k is a propositional tautology and

the result follows as ¬q1, . . . ,¬qj, q
′
1, . . . , q

′
j′ . . . , q

′
j′ is neccessarily an axiom.

So assume that the upper identity holds. This allows us to write Γ = ∆τ
where

∆ = ¬♥1p1, . . . ,¬♥ipi,♥
′
1p

′
1, . . . ,♥

′
i′p

′
i′

where pi and p′i′ are tuples of propositional variables according to the arity
of ♥i and ♥′

i′ , respectively and τ : V → Fn−1(Λ) is a substitution mapping
the every component of pi to the corresponding component of Ai, and sim-
ilarly for p′i. Write τn−1 for the P(Sn−1) valuation p 7→ Jτ(p)Kn−1. Then
TSn−1, τn−1 |= ∆. We first assume that R is one-step complete and deal
with one-step cut-free completeness later. By definition of one-step com-
pleteness, there exist k ≥ 0 and one-step rules Γl

1, . . . ,Γ
l
ml
/Γl

0 ∈ R together
with substitutions σl : V → Prop(V ) for each l = 1, . . . , k such that

• GC + {Γl
0σl | l = 1, . . . , k} ⊢ ∆

• S, τn−1 |= Γl
mσl for all l = 1, . . . , k and all m = 1, . . . ,ml.

Consequently, for l = 1, . . . , k and m = 1, . . . ,ml we have JΓl
mσlτKn−1 =

⊤. By induction hypothesis, this implies that GRCn−1 ⊢ Γl
mσlτ for all

l = 1, . . . k and m = 1, . . . ,ml whence GRCn ⊢ Γl
0σlτ for 1 ≤ l ≤ k.

Combined with the fact that GCn + {Γl
0σl | l = 1, . . . , k} ⊢ ∆ and the

Substitution Lemma 3.9, we finally obtain GRCn ⊢ ∆τ = Γ.
This finishes the proof in case R is one-step complete. We now assume

that R is one-step cut-free complete. This allows us to assume k = 1 in
the above, i.e. assuming that TSn−1, τn−1 |= ∆ we find a one-step rule
Γ1, . . . ,Γm/Γ0 ∈ R and σ : V → V so that Sn−1, τ |= Γlσ for l = 1, . . . ,m
and Γ0σ ⊆ ∆.

By induction hypothesis, we obtain GRn−1 ⊢ Γlστ for l = 1, . . . ,m
as above. Since Γ0σ ⊆ ∆ we can find Σ ∈ S such that Γ0στ,Σ = ∆τ ,
which implies that there is a sequent rule Γ1στ . . .Γmστ/∆τ ∈ S(R). Since
GRn−1 ⊢ Γlστ for l = 1, . . . ,m we finally obtain GRn ⊢ ∆τ = Γ.
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Note that we needed the power of the cut rule at precisely one point in the
above proof: To conclude ∆τ from the sequent set Γl

0στ where 1 ≤ l ≤ k –
the need for cut is eliminated if we use one-step cut-free complete rule sets.
Completeness is now an easy corollary.

Corollary 4.8 (Completeness and cut free completeness). Let R be one-
step complete for T and Mod(T ) |= Γ for a sequent Γ ∈ S(F(Λ)). Then
GRC ⊢ Γ. If moreover R is one-step cut-free complete, then GR ⊢ Γ.

In particular, this gives us a semantic proof of cut elimination and admissi-
bility of contraction.

Theorem 4.9. Let R be one-step cut-free complete. Then all instances of
the cut and contraction rules

Γ, A ∆,¬A

Γ,∆
and

Γ, A,A

Γ, A

where Γ,∆ ∈ S and A ∈ F(Λ), are admissible in GR.

One may argue that the above semantic proof yields a slightly weaker result
than the syntactic proofs of Section 5, as we pre-suppose soundness and
completeness w.r.t. a given Λ-structure. However, for every rank-1 logic
we can always construct a Λ-structure for which the given rule set is one-
step sound and one-step cut-free complete [21]. We conclude the section by
re-visiting our two running examples.

Example 4.10. (i) It has been shown in [20] that, mutatis mutandis, the
set of one-step rules RC is one-step cut-free complete, and, as a consequence,
cut is admissible in GRC.

(ii) We leave it to the reader to either show that RCK0
is one-step com-

plete or to infer one-step completeness of RCK0
from one-step cut-free com-

pleteness of RCK that we now set out to prove. Let Γ = {¬(pi ⇒ qi) | i ∈
I}∪{p′j ⇒ q′j | j ∈ J}, and let τ be a P(X)-valuation such that CKX, τ |= Γ.
We claim that there exists j ∈ J such that

⋂

i∈Ij

τ(qi) ⊆ τ(q′j), (∗)

where Ij = {i ∈ I | τ(pi) = τ(p′j)}. Assume, for a contradiction, that this is
not the case. Then, for every j ∈ J ,

⋂

i∈Ij
τ(qi) 6⊆ τ(q′j). Define the function

f : 2(X) → P(X) by

f(S) =

{⋂

i∈Ij
τ(qi) S = τ(p′j)

∅ otherwise.
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(This is well-defined since Ij = Ik whenever τ(p′j) = τ(p′k).) Then
f(τ(pi)) ⊆ τ(qj) but for all j ∈ J we have that f(τ(p′j)) 6⊆ q′j by construction,
contradicting CKX, τ |= Γ. Having thus proved the claim, we pick j ∈ J
satisfying (∗). We obtain X, τ |= {¬qi | i ∈ I0}, qj . If I0 = {i1, . . . , ik}, the
claim follows as

{¬qi | i ∈ I0}, q
′
j ¬p′j, pi1 . . .¬p

′
j, pik ,¬pi1, p

′
j . . .¬pik , p

′
j

{¬(pi ⇒ qi) | i ∈ I0}, pj ⇒ qj

is a substitution instance of (C) whose premise is valid under τ .
This proof is easily modified to establish that also the rule set RCKId is
one-step cut-free complete for CKId: if Γ is as above, one proves that there
exists j ∈ J satisfying the weaker condition

τ(p′j) ∩
⋂

i∈I0

τ(qi) ⊆ τ(q′j). (+)

This is proved by constructing f as above, but with

f(τ(p′j)) = τ(p′j) ∩
⋂

i∈Ij

τ(qi),

which defines an element of CKId(X). From j satisfying (+), one obtains
an instance of (CI) that proves Γ. As a consequence, cut is admissible in
GRCK and GRCKId.

5 Cut Elimination, Syntactically

In the previous section, we have seen that one-step cut-free completeness is
a sufficient criterion to ensure that an ensuing sequent calculus enjoys cut-
free completeness, and we have deduced admissibility of contraction on the
way. We now complement these results and give a purely syntactic criterion
for admissibility of both cut and contraction. As we will see, conditions
imposed on the set of modal rules under scrutiny will be equivalent to one-
step cut-free completeness.

We start with admissibility of contraction, which is – unlike weakening
and inversion – not automatic, and only holds if the underlying rule set
satisfies an additional property. Recall that GC0 consists of all proposi-
tional sequent rules and the cut rule, but restricted to purely propositional
formulas.
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Definition 5.1. A set R of one-step rules absorbs contraction if, for every
rule Γ1 . . .Γn/Γ0 ∈ R and every renaming σ : V → V there exists a rule
∆1 . . .∆m/∆0 ∈ R and a renaming ρ : V → V such that ∆0ρ ⊆ supp(Γ0σ)
and

GC0 + {Γiσ | 1 ≤ i ≤ n} ⊢ ∆jρ

for all j = 1, . . . ,m.

In other words, the result of identifying two or more literals in the conclusion
of a rule r can always be simulated using a (generally different) rule s such
that all premises of s are propositionally (i.e. with the help of cut) derivable
from the premises of r.

The definition of absorption of cut is modelled on the same idea: an
application of cut to the conclusions of two one-step rules r1, r2 can be
replaced by a different one-step rule r0 such that all the premises of r0 are
propositional consequences (can be derived with the help of cut) from the
premises of r1, r2.

Definition 5.2. A set R of one-step rules absorbs cut, if for all Γ1 . . .Γn/Γ0

and all ∆1 . . .∆m/∆0 ∈ R and all renamings σ, ρ : V → V such that Γ0σ =
Γ, A and ∆0τ = ∆,¬A there exists a rule Σ1 . . .Σl/Σ0 and a substitution
κ : V → V such that supp(Σ0ρ) ⊆ Γ,∆ and

GC0 + {Γiσ | 1 ≤ i ≤ n} + {∆iρ | 1 ≤ i ≤ m} ⊢ Σjκ

for all j = 1, . . . , l.

Taken together, absorption of cut and contraction already imply the ad-
missibility of cut and contraction in the associated sequent calculus. We
note that both properties are local in the sense that they can be checked
by considering just the set of modal (one-step) rules without considering
cuts that arise through propositional rules or between modal and proposi-
tional rules. In particular, there is no need for a fully fledged cut elimination
proof, and cuts between conclusions of modal rules and propositional rules
are automatically admissible. We first establish this fact for derivability in
GRn.

Proposition 5.3. If R absorbs cut and contraction, then

• GRn ⊢ Γ, A whenever GRn ⊢ Γ, A,A

• GRn ⊢ Γ whenever GRCn ⊢ Γ

for all Γ ∈ S(Fn(Λ)).
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Proof. We proceed by induction on n, where there is nothing to show for
n = 0. For n > 0, we note that, as a consequence of Lemma 3.6, GRn ⊢ Γ
iff Gn +H ⊢ Γ where

H = {Γ0Σ,∆ | Γ1 . . .Γk/Γ0 ∈ R, σ : v → Fn−1(λ),∀1≤i≤k(GRn−1 ⊢ Γiσ)}

for all Γ ∈ S(Fn(Λ)). We deal with contraction first. So suppose that GR ⊢
Γ, or equivalently, Gn +H ⊢ Γ. We show that GRn ⊢ supp(Γ) by induction
on the Gn-proof of Γ from the additional assumptions in H. In case Γ =
Γ0σ,∆ ∈ H for Γ1 . . .Γk/Γ0 ∈ R and σ : V → Fn−1(Λ) we use absorption of
contraction to find a rule ∆1, . . . ,∆l/∆0 and a substitution ρ : V → Fn−1(Λ)
such that ∆0ρ ⊆ supp(Γ0σ) and GCn−1 + {Γiσ | i ≤ i ≤ k} ⊢ ∆jρ for all
j = 1, . . . , l by the Substitution Lemma 3.9. As GRn−1 ⊢ Γiσ, we have that
GRCn−1 ⊢ Γiσ for all i = 1, . . . , k. Therefore GRCn−1 ⊢ ∆jρ whence, by
outer induction hypothesis, GRn−1 ⊢ ∆jρ for all j = 1, . . . , n. Applying
the rule ∆1ρ . . .∆lρ/∆0ρ therefore gives GRn ⊢ ∆0ρ by Lemma 3.6 and the
fact ∆0ρ ⊆ supp(Γ0σ) gives GRn ⊢ supp(Γ0σ,∆) by the Weakening Lemma
3.7.

The remaining cases, where Γ0σ has been proved using rules of Gn are
readily established inductively.

We turn to admissibility of cut, where it suffices to show that GRn ⊢
Γ,∆ whenever GRn ⊢ Γ, A and GRn ⊢ ∆,¬A. If this is the case, we find
that Gn + H ⊢ Γ, A and Gn + H ⊢ ∆,¬A with H as above. We show
that Gn +H ⊢ Γ,∆ using the classical double induction method, with outer
induction on the size of the cut formula A and inner induction on the sum
of the size of the proof trees of Gn + H ⊢ Γ, A and Gn + H ⊢ ∆, A. We
distinguish three different types of cut: (a) cuts between elements of H, (b)
cuts between elements of H and conclusions of Gn-rules and (c) cuts between
conclusions of Gn-rules. As regards (a), we have that Γ, A = Γ0σ,Γ

′ and
∆,¬A = ∆0ρ,∆

′ for two substitutions σ, ρ : V → Fn−1(Λ) and two rules
Γ1 . . .Γk/Γ0 and ∆1 . . .∆l/∆0 ∈ R. In case A ∈ Γ′ or ¬A ∈ ∆′ there is
nothing to show, so suppose that A ∈ Γ0σ and ¬A ∈ ∆0ρ. As R absorbs
cut, may use the Substitution Lemma 3.9 to find a rule Σ1 . . .Σm/Σ0 and a
substitution κ : V → Fn−1(Λ) such that supp(Σ0κ) ⊆ Γ0σ,∆0τ \{¬A,A} ⊆
Γ,∆ and,

GCn−1 + {Γiσ | i = 1, . . . , k} + {∆iρ | ρ = 1, . . . , l} ⊢ Σjκ

for all j = 1, . . . ,m. As all assumptions are GRn−1-derivable and cut is
admissible in GRn−1, we have that GRn−1 ⊢ Σjκ for all j = 1, . . . ,m and
as contraction is admissible in GRn, we finally obtain GRn ⊢ supp(Σ0κ0) ⊆
Γ,∆ and GR ⊢ Γ,∆ follows from the relativised Weakening Lemma 3.7.
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We now look at cuts of type (b), that is, cuts between propositional
rules and additional assumptions in H. So suppose that Γ, A = Γ0σ,Γ

′ ∈ H
and ∆,¬A has been derived using a propositional rule. If A ∈ Γ′ there
is nothing to show, so suppose that A ∈ Γ0σ, i.e. Γ0σ = A,Γ′′. We only
deal with the case that ∆, A has been derived using (∧); all other cases
are analogous and even simpler. As A ∈ Γ0σ we know that A cannot be a
conjunction, so that GRn ⊢ Σ, C,A and GRn ⊢ Σ,D,A with shorter proofs,
and ∆, A = Σ, C∧D,A. As both Σ, C,A and Σ,D,A have been derived using
shorter proofs, the inner induction hypothesis gives GRn ⊢ Σ, C,Γ′′ and
GRn ⊢ Σ,D,Γ′′ and an application of (∧) yields GR ⊢ Σ, C∧D,Γ′′ = Γ,∆.

The elimination of cuts between conclusions of propositional rules is
standard, and follows from the GRn-admissibility of contraction (that we
have already established) and the inversion lemma 3.8.

The following theorem, which readily follows from Proposition 5.3 and
Proposition 3.10, therefore provides a purely syntactic counterpart of The-
orem 4.9.

Theorem 5.4. If R absorbs cut and contraction, then all instances of the
cut and contraction rules

Γ, A ∆,¬A

Γ,∆

Γ, A,A

Γ, A

where Γ,∆ ∈ S and A ∈ F(Λ), are admissible in GR.

Our last main result in this section is that both properties are actually
equivalent in the presence of one-step completeness, which we split into two
separate lemmas.

Proposition 5.5. Let R be one-step complete. Then R is one-step cut-free
complete if R absorbs cut and contraction.

Proof. Consider the set

Ψ = {Γ0σ,∆ | ∆ ∈ S(Λ(V )),
Γ1 . . .Γn

Γ0
∈ R, σ : V → Prop(V ),X, τ |= Γiσ}

where we require X, τ |= Γiσ to hold for all i = 1, . . . , n. Clearly Ψ is closed
under weakening, i.e. Γ ∈ Ψ implies that Γ,∆ ∈ Ψ for ∆ ∈ S(Λ(V )).

We now establish that Ψ is closed under contraction, i.e. Γ ∈ Ψ implies
that supp(Γ) ∈ Ψ. If Γ ∈ Ψ, we can find a rule Γ1 . . .Γn/Γ0 ∈ R, a
substitution σ : V → Prop(V ) such that X, τ |= Γiσ for all i = 1, . . . , n and
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Γ = Γ0σ,Γ
′ for some Γ′ ∈ S(Λ(V )). It suffices to show that supp(Γ0σ) ∈ Ψ

as Ψ is closed under weakening. By choosing prositional variables pσ(p) ∈ V
for all p ∈ V such that pA 6= pB for A 6= B and considering the renaming
σ0(p) = pσ(p) and the substutition σ1 such that σ1(pA) = A, the fact that
R absorbs contraction gives us a rule ∆1 . . .∆m/∆0 ∈ R and a substitution
ρ : V → Prop(V ) such that ∆0ρ ⊆ supp(Γ0σ) and, for all i = 1, . . . ,m we
have that

GC0 + {Γiσ | i = 1, . . . , n} ⊢ ∆jρ

for all j = 1, . . . ,m. As a consequence, X, τ |= ∆iρ for all i = 1, . . . ,m
whence ∆0ρ ∈ Ψ. This establishes that Ψ is closed under contraction, since
∆0ρ ⊆ supp(Γ0σ).

We now claim that Ψ is closed under cut, that is if Γ, A and ∆,¬A ∈ Ψ
then Γ,∆ ∈ Ψ. So suppose that Γ, A and ∆,¬A ∈ Ψ. By definition, we
have two rules Γ1 . . . ,Γn/Γ0 and ∆1 . . .∆m/∆0 ∈ R and two substitutions
σ, ρ : V → Prop(V ) such that X, τ |= Γiσ and X, τ |= ∆jτ for all i = 1, . . . n
and all j = 1, . . . ,m. Moreover,

Γ, A = Γ0σ,Γ
′ and ∆,¬A = ∆0τ,∆

′

for some Γ′,∆′ ∈ S(Λ(V )). In case A ∈ Γ′ or A ∈ ∆′ there is nothing to
show. So suppose that A ∈ Γ0σ and ¬A ∈ ∆0τ . Hence Γ0σ = A,Γ′′ and
∆0ρ = ¬A,∆′′ for Γ′′,∆′′ ∈ S(Λ(V )). As Ψ is closed under weakening, it
suffices to show that Γ′′,∆′′ ∈ Ψ.

By choosing propositional variables pσ(p) and pρ(p) as before, the fact
that R absorbs cut provides us with a rule Σ1, . . . ,Σk/Σ0 and a substutition
κ : V → Prop(V ) such that supp(Σ0κ) ⊆ Γ′′,∆′′ and

GC0 + {Γiσ | i = 1, . . . , n} + {∆iρ | i = 1, . . . ,m} ⊢ Σjκ

for all j = 1, . . . , l. By soundness of GC0, we have X, τ |= Σiκ for all
i = 1, . . . , n whence Σ0κ ∈ Ψ. Since Ψ is closed under contraction, we have
that supp(Σ0κ) ∈ Ψ, and in summary

supp(Σ0κ) ⊆ Γ′′,∆′′

so that Γ′′,∆′′ ∈ Ψ as claimed.
Finally, we establish that R is one-step cut-free complete. So let Γ ∈

S(Λ(V )) and let τ : V → P(X) such that TX, τ |= Γ. We need to show that
there exist Γ1 . . .Γn/Γ0 ∈ R and a renaming σ : V → V such that Γ0σ ⊆ Γ
and X, τ |= Γi, σ, i = 1, . . . , n. As R is one-step complete, GC1 +Ψ ⊢ Γ. As
a consequence of Lemma 5.6 below, we have Γ ∈ Ψ which establishes that
R is one-step cut-free complete.
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To complete the proof of Proposition 5.5 we need to supply the following
lemma.

Lemma 5.6. Let Ψ ⊆ S(Λ(V )) be closed under cut, contraction, weakening,
and inversion. Then GC1 + Ψ ⊢ Γ iff G1 + Ψ ⊢ Γ. In particular, if
Γ ∈ S(F(Λ)) we have GC1 + Ψ ⊢ Γ iff Γ ∈ Ψ.

Proof. This is a standard cut-elimination proof for G where the fact that Ψ
is closed under cut, contraction, weakening, and inversion allows propagating
instances of the respective rules to the leaves; see [22, Section 4.4] for details.

The converse of Proposition 5.5 requires more semantic considerations.

Proposition 5.7. Let R be one-step sound and one-step cut-free complete.
Then R absorbs cut and contraction.

Proof. We first establish that R absorbs contraction. So suppose
Γ1 . . .Γn/Γ0 ∈ R and σ : V → V is a renaming. We have to show that
there exists a rule ∆1 . . .∆m/∆0 and a renaming ρ : V → V such that
∆0ρ ⊆ supp(Γ0σ) and

GC0 + {Γiσ | i = 1, . . . , n} ⊢ ∆jρ

for all j = 1, . . . ,m. Consider X0 = P(V ) and let τ0 : V → P(X0) be
the canonical valuation τ0(p) = {A ∈ X0 | p ∈ A}. If X =

⋂

i=1,...,nJΓiK
τ0
X0

and τ(p) = τ0(p) ∩ X, inverse image along the inclusion i : X → X0 is a
boolean algebra morphism that satisfies i−1 ◦ τ0 = τ whence X, τ |= Γiσ
for i = 1, . . . , n and, by one-step soundness, TX, τ |= Γ0σ, and, a fortiori,
TX, τ |= supp(Γ0σ). Since R is one-step cut-free complete, we can find a
rule ∆1 . . .∆m/∆0 and a renaming ρ : V → V such that X, τ |= ∆iρ for
i = 1, . . . ,m and ∆0ρ ⊆ supp(Γ0σ). As ∆jρ is a semantic consequence of
{Γiσ | i = 1, . . . , n} for all j = 1, . . . ,m by construction, we have that

GC0 + {Γiσ | i = 1, . . . , n} ⊢ ∆jτ

for all j = 1, . . . ,m, or, in other words, R absorbs contraction.
We use a very similar argument to show that R absorbs cut. If

Γ1 . . .Γn/Γ0 and ∆1 . . .∆m/∆0 ∈ R and σ, ρ : V → V are renamings
with Γ0σ = Γ, A and ∆0ρ = ∆,¬A, we pick X0 and τ0 as above and let
X =

⋂

i=1,...,nJΓiK
τ0
X0

∩
⋂

j=1,...,mJ∆jρK
τ0
X0

and fix τ : V → P(X), given by
τ(p) = τ0(p) ∩ X. Using one-step soundness, we note that TX, τ |= Γ,∆,
and – using the same argument as above – by one-step cut-free completeness
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we find a rule Σ1 . . .Σl/Σ0 and a renaming κ : V → V such that X, τ |= Σiκ
for i = 1, . . . , l and Σ0κ ⊆ Γ,∆. Since Σjκ is a semantic consequence of the
Γiτ and the ∆iρ, we have that

GC0 + {Γiσ | i = 1, . . . , n} + {∆iρ | i = 1, . . . ,m} ⊢ Σjκ

for all j = 1, . . . , l which shows that R absorbs cut.

We conclude the section with a short methodological digression on the con-
struction of cut-free complete rule sets.

Remark 5.8. We have seen in Theorems 4.9 and 5.4 that cut-free com-
pleteness, or equivalently the absoprtion of cut and contraction, give rise to
a cut-free sequent system for a large range of coalgebraic logics. The syntac-
tic approach to cut elimination provides us with a methodology to construct
cut-free rule sets. To turn a one-step complete system of rules into a one-
step cut-free complete system, we add instances of cut and contraction to
the rule set in question until both cut and contraction are absorbed. It is
evident that this preserves one-step soundness.

6 Applications

This section presents, from a syntactic viewpoint, some applications of cut-
free completeness of GR for a one-step cut-free complete set R of one-step
rules. The first application, the subformula property, is immediate:

Theorem 6.1. Let R be a set of one-step rules. Then GR has the subfor-
mula property, i.e. every deduction GR ⊢ Γ only mentions subformulas, or
negations thereof, of formulas occurring in Γ.

Proof. By induction on the derivation of GR ⊢ Γ, where both the case of
propositional connectives and the application of an instance of a one-step
rule are immediate by the rule format.

As a consequence, we obtain alternative proofs of two results of [20] regarding
conservativity and complexity of coalgebraic logics.

Corollary 6.2 (Conservativity). Let Λ0 ⊆ Λ be a sub-similarity type, and
let R be one-step sound and one-step cut-free complete for a Λ-structure T .
If R0 consists of those (Γ1, . . . ,Γn,Γ0) ∈ R for which Γ0 ∈ S(Λ0(V )) then
GR0 is complete for T .
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Proof. Let Γ be a valid sequent over F(Λ0). Then GR ⊢ Γ. By the subfor-
mula property, all rules used in this derivation belong to R0.

As the design of the system GR is such that the logical complexity of the
formula strictly decreases when passing from conclusion to premise, these
systems can be used to establish both decidability and complexity of the
satisfiability problem. Simply put, proof search in GR terminates if for
every sequent Γ there are only finitely many substitution instances of rule
conclusions equal to Γ with properly different premises. Polynomial bounds
on the size of such rules imply decidability in polynomial space using depth-
first search. This allows us to re-prove the main theorem of [20] (to which
we refer for the definition of PSPACE -tractable) in the setting of sequent
calculi:

Theorem 6.3. Let R be one-step sound and one-step cut-free complete. If
moreover R is PSPACE-tractable, then the satisfiability problem for F(Λ)
w.r.t. Mod(T ) is decidable in polynomial space.

Proof. As R is PSPACE -tractable, there are only finitely many (rule, sub-
stitution)-pairs of polynomial size that allow deriving any given sequent, and
these pairs can be represented in polynomial space. Moreover, the depth of
the search tree is linear in the size of the input formula, as every backwards
rule application removes either a propositional connective or a layer of modal
operators.

Cut-free proof calculi also provide all the necessary scaffolding to prove Craig
interpolation by induction on cut-free proofs. To aid the formulation of the
interpolation property, we write FV(A) for the set of propositional variables
occurring in A ∈ F(Λ), and extend this to sequents by FV(Γ) =

⋃
{FV(A) |

A ∈ Γ}. Interpolation then takes the following form:

Definition 6.4. F(Λ) has the Craig Interpolation Property (CIP) with re-
spect to Mod(T ) if whenever Mod(T ) |= A → B for A,B ∈ F(Λ), then
there exists an interpolant F ∈ F(Λ) such that Mod(T ) |= A → F ,
Mod(T ) |= F → B and FV(F ) ⊆ FV(A) ∩ FV(B).

Syntactic proofs of the CIP proceed by induction on cut-free proofs. The
following definition introduces the necessary terminology.

Definition 6.5. A split sequent is a pair (Γ0,Γ1) of sequents, written Γ0 |
Γ1. We say that Γ0 | Γ1 is a splitting of Γ if Γ = Γ0,Γ1. A formula F is an
interpolant of a split sequent Γ0 | Γ1 if FV(F ) ⊆ FV(Γ0) ∩ FV(Γ1), GR ⊢
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Γ0, F , and GR ⊢ ¬F,Γ1. We say that a sequent Γ admits interpolation
if every splitting of Γ has an interpolant. The system GR has the Craig
interpolation property (CIP) if every derivable sequent admits interpolation.

The idea of the syntactic proof of Craig interpolation [22, Chapter 4], in
contrast to the semantic proofs via amalgamation (see [11] for the case of
normal modal logics and [8] for monotone modal logic) is to construct in-
terpolants inductively – clearly this fails in the presence of the cut-rule.
Completeness gives the link between both the syntactic and the semantic
versions of the CIP.

Proposition 6.6. Let R be one-step sound and one-step cut-free complete
w.r.t the Λ-structure T . Then GR has the CIP iff F(Λ) has the CIP with
respect to Mod(T ).

Proof. Straightforward using soundness and cut-free completeness (Sec-
tion 4).

Inductive proofs of the CIP for GR are often straightforward. Below, we
show that the systems used in our running examples, coalition logic and
conditional logic have the CIP. For coalition logic, this is not a new result
[7] but our proof is shorter due to the smaller number of modal proof rules.
For the conditional logics CK and CK + ID the CIP is – to the best of our
knowledge – a new result which was explicitly left as future work in [13],
where a substantially different proof calculus is used.

The proof of the CIP in both examples benefits from the following no-
tions.

Definition 6.7. A sequent rule Γ1 . . .Γn/Γ0 supports interpolation if Γ0

admits interpolation provided all of Γ1, . . . ,Γn admit interpolation. A set S

of sequent rules supports interpolation if all rules in S support interpolation.

As it is well known (and shown e.g. in [22]) that all (instances of) rules of
G support interpolation, the following is evident.

Lemma 6.8. If S(R) supports interpolation, then GR has the CIP.

Moreover, we may restrict ourselves to rule instances without context for-
mulas:

Lemma 6.9. The set S(R) supports interpolation iff for every rule
Γ1 . . .Γn/Γ0 in R and every substitution σ : V → F(Λ), the sequent rule
Γ1σ . . .Γnσ/Γ0σ supports interpolation.
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Proof. Let Γ1 . . .Γn/Γ0 be a one-step rule in R, let σ : V → F(Λ) be a
substitution, and let ∆ be a sequent. Moreover, let Γiσ admit interpolation
for all i = 1, . . . , n; we have to show that the arising rule conclusion Γ0σ,∆
admits interpolation. Every splitting of Γ0σ,∆ is of the form Γ0

0σ,∆0 |
Γ1

0σ,∆1, where Γ0
0σ | Γ1

0σ is a splitting of Γ0σ and ∆0 | ∆1 is a splitting
of ∆. By assumption, Γ0σ admits interpolation, so that there exists an
interpolant F for the splitting Γ0

0σ | Γ1
0σ. By admissibility of weakening, F

is also an interpolant for the given splitting of Γ0σ,∆.

We turn to our running examples:

Theorem 6.10. Coalition logic, i.e. the system GC, has the CIP.

Proof. By the above lemmas, we only have to check that the given one-step
rules support interpolation.

Rule (A). If S = ¬[C0]A0 | ¬[C1]A1 is a splitting of the (substituted)
rule conclusion (recall the notation of Example 2.1) and F is an interpolant
of ¬A0 | ¬A1, then G = [∪C0]F is an interpolant of S: From ¬F,¬A1, we
deduce ¬G,¬[C1]A1 by rule (A), and from ¬A0, F , we deduce ¬[C0]A0, G
by rule (B).

Rule (B). There are two cases to distinguish, depending on which part
of the splitting the literal [D]B belongs to. First consider splittings of the
rule conclusion of the form

S = ¬[C0]A0, [D]B, [N]B0 | ¬[C1]A1, | [N]B1.

If F is an interpolant of ¬A0, B,B0 | ¬A1,B1, then ¬[∪C1]¬F is an inter-
polant of S.

Now consider a splitting of the rule conclusion of the form

S = ¬[C0]A0, [N]B0 | ¬[C1]A1, [D]B, [N]B1.

In this case, if F is an interpolant of ¬A0,B0 | ¬A1, B,B1, then [∪C0]F is
an interpolant of S.

By a similar argument we establish the CIP for the conditional logics CK
and CK + ID .

Theorem 6.11. The conditional logics CK and CK + ID have the CIP.

Proof. First consider GCK; we have to show that rule (C) supports in-
terpolation. First consider splittings of the rule conclusion of the form
S = ¬(A0 ⇒ B0), A ⇒ B | ¬(A1 ⇒ B1). If F is an interpolant of
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¬B0, B | ¬B1, then ¬(A ⇒ ¬F ) is an interpolant of S. Now consider
splittings of the form S = ¬(A0 ⇒ B0) | ¬(A1 ⇒ B1), A ⇒ B. If F
interpolates ¬B0 | ¬B1, B then A⇒ F interpolates S.

We now consider interpolation for GCKId, which follows the same pat-
tern. To show that the rule (CI ) supports interpolation, first consider a
splitting of the conclusion of (CI ) of the form S = ¬(A0 ⇒ B0), A ⇒ B |
¬(A1 ⇒ B1). If F is an interpolant of ¬A0,¬B0, B | ¬B1, then ¬(A⇒ ¬F )
is an interpolant of S. Similarly, if S = ¬(A0 ⇒ B0) | ¬(A1 ⇒ B1), A⇒ B
and F interpolates ¬B0 | ¬B1, B,¬A then A⇒ F interpolates S.

7 Conclusions

We have argued that strict one-step completeness of a system of one-step
rules automatically results in a sequent system that is cut free and com-
plete. Cut free sequent systems are the key to a number of typical appli-
cations, including in particular proofs of the Craig interpolation property
(CIP) which plays an important role in the modularisation of proofs. We
have thus established the CIP for our two running examples; here, the CIP
for the conditional logics CK and CK + ID is apparently a new result. It
remains an open problem to find a quickly verifiable general criterion for a
set of rules, or, semantically, a coalgebraic modal logic, to have the CIP. It
is worthwhile to point out that for coalition logic, the inductive step in the
proof of the CIP is not entirely straightforward as the newly constructed
interpolant uses a modality that does not necessarily appear in the rule at
hand. We phrase this problem explicitly as

Open Problem 7.1. Find easily verifiable and general semantic or syntac-
tic criteria for a coalgebraic modal logic to have the CIP.

Our second observation pertains to our proof of cut-free completeness, which
is heavily based on semantic notions. While we strongly believe that this
theorem could also have been obtained purely syntactically, i.e. by compari-
son of different proof systems, we are as of yet unsure whether these methods
extend beyond rank 1. In particular, can cut always be absorbed into the
modal proof rules? We formulate this as

Open Problem 7.2. To what extent can resolution closure be used to absorb
the cut rule into a system of modal proof rules?
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