
On the benefits of argumentation for negotiation

- preliminary version

Adil Hussain and Francesca Toni

Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2AZ, UK

{ah02, ft}@doc.ic.ac.uk

December 4, 2008

Abstract

We present preliminary work on the benefits of argumentation-based
negotiation, for a simple framework for one-to-one negotiation between
agents in a resource reallocation setting. Agents engage in dialogues with
other agents in order to obtain resources they need but do not have. Di-
alogues are regulated by simple communication policies that allow agents
to provide reasons (arguments) for their refusals to give away resources;
agents use assumption-based argumentation in order to deploy these poli-
cies. We assess the benefits of providing these reasons both informally
and experimentally: by providing reasons, agents are “more effective”
in identifying a reallocation of resources if one exists and failing if none
exists.

1 Introduction

The need for agents to interact arises in many settings. One such setting is
the resource reallocation problem, where resources are limited, controlled and
required by agents interacting with one another. This setting arises naturally,
for example, in electronic commerce (where resources are commodities equipped
with prices) and the grid (where resources are computational entities equipped
with computational power).

The inter-agent interaction method of choice in this report is that of di-
alogues, namely orderly sequences of message exchanges between two agents,
where each agent has a goal and the dialogues, as a whole, also have a goal, no-
tably that of solving a resource reallocation problem for all dialogue participants.
Concretely, we focus on negotiation dialogues, whereby agents try to arrive at a
decision concerning possession of resources. We adopt a “generative” approach
to negotiation, by providing constructive policies for the automatic generation
of dialogues by autonomously reasoning agents. We consider two policies and, as
a result, two forms of negotiation: the first is a trivial adaptation of the policy of

1

[9], whereby agents simply agree to release resources they have but do not need,
and refuse otherwise; the second is a slightly improved version, whereby agents
provide reasons (arguments) for their refusal. Argumentation-based negotiation
is a particular class of negotiation, the claim for which is that allowing agents
to provide arguments and justifications as part of the negotiation process, in-
creases the likelihood and/or speed of agreements being reached [7]. We focus in
this report on substantiating this claim, by studying the use of argumentation
for improved effectiveness of the negotiation process, in particular concerning
the number of dialogues and dialogue moves that need to be performed without
affecting the quality of solutions reached.

Whilst there has been discussion on protocols for argumentation-based ne-
gotiation (e.g. [10]), little work exists on the agents’ decision making models
to support argumentative negotiation, i.e. how the agents would be built and
the strategic reasoning that is to go on in the agents’ minds to determine the
best course of action at any given time. To the best of our knowledge, the only
work aiming at a formal implementable model of argumentation-based negoti-
ation is that of [3], but even there the embedded persuasion dialogues are left
unspecified for future work. We define formally an argumentation framework
to support the agent decision-making, underlying the use of both policies. This
framework is a concrete instance of an existing general-purpose argumentation
framework, known as Assumption-Based Argumentation (ABA) [1, 4].

The report is structured as follows: In Section 2 we define the key compo-
nents of our framework, amounting to the notion of agent system, agent’s mind,
resource reallocation problem and dialogues. In Section 3 we provide the core
representation of the agents’ mind in ABA, for decision-making prior and dur-
ing dialogues. In Section 4 we present the two agent policies, the very simple
one and the reason-based one. In Section 5 we analyse, informally, properties of
both policies. Lastly, in Section 6, we conclude, discuss the implementation of
the policies and present some possible directions for future work. This report is
an expansion of [5]. In particular, this report includes details of proofs of results
and experiments, as detailed in appendices A, B and C.

2 Preliminaries

Below we will adopt the following notation: ¬ stands for (classical) negation;
terms beginning with a capital letter are variables; terms beginning in small-case
are constants; stands for an anonymous variable (as in Prolog).

We consider agent systems where (i) each agent may have in its possession
some (or no) resources; and (ii) each agent may need some (or no) resources,
some of which it may already have and some of which it may not.

Definition 1 (Agent System) An agent system is a (finite) set A, where each
x ∈ A is a constant, representing the name of an agent, equipped with a (finite,
possibly empty) set of allocated resources Res(x), a (finite, possibly empty) set
of needed resources G(x) (the goal of agent x) and a belief base B(x).

2

We will assume that resources are indivisible (i.e. agents cannot receive frac-
tions of resources), non-sharable (i.e. a resource cannot be allocated to two
or more agents at the same time), and single-unit (there is only one copy of
each resource). Formally, given an agent system A, for every x, y ∈ A, x 6= y:

• Res(x) ⊆ Res for some finite set Res of constants, and

• Res(x) ∩Res(y) = {}.

Naturally, we require that A ∩Res = {} (namely, the same constant cannot be
used to refer to an agent and a resource). Moreover, we assume that, given an
agent system A, for every x ∈ A it holds that G(x) ⊆ Res. Thus, Res is the set
of resources available and needed in the agent system.

Example 1 An agent system consisting of two agents ag1 and ag2, such that
ag1 has r1 and needs r2, and ag2 has r2 and needs r3, is represented as follows:
A = {ag1, ag2}, Res(ag1) = {r1}, G(ag1) = {r2}, Res(ag2) = {r2}, G(ag2) =
{r3}, and Res = {r1, r2, r3}.

Informally, the belief base of an agent is composed of (i) the names of the agents
in the system, including its own; (ii) (some of) the resources that (some of) the
other agents are allocated; (iii) (some of) the resources that (some of) the other
agents need; and (iv) possibly, a belief that the agent’s goal (of obtaining all
resources it needs) cannot be achieved. Thus, in general, agents have only partial
knowledge of which resources the other agents in the system are allocated and
need. However, agents are aware of the existence of all their fellow agents in the
agent system. We give a formal representation of agents’ beliefs in Section 3.

Definition 2 (Resource Reallocation Problem - r.r.p.) Given an agent sys-
tem A as in definition 1, with each agent x ∈ A equipped with a set of allocated
resources Res(x), a set of needed resources G(x), and a belief base B(x),

• the r.r.p. for an agent x ∈ A is the problem of finding an agent system
A′ with x ∈ A′ and x is equipped in A′ with a set of allocated resources
Res′(x) ⊇ G(x); we say that this A′ solves the r.r.p. for x;

• the r.r.p. for the overall agent system A is the problem of finding an agent
system A′ solving the r.r.p. for every agent in A; we say that this A′

solves the r.r.p. for A; we also say that the r.r.p. for A is solved if such
A′ is found.

The set of agents A′ solving a r.r.p. for A may contain agents other than the
ones originally in A: these would typically be agents bringing in new resources
needed by some agents in A but not available there. In this report, however,
we will always obtain A′ with the same agents as in A (but these agents will
typically have different beliefs and allocated resources). Thus, given an agent
system A, the r.r.p. for A can only be solved if

• for all x ∈ A, G(x) ⊆
⋃

y∈A Res(y), namely all needed resources are
available in the system; and

3

• there are no agents x, y ∈ A, x 6= y, such that G(x) ∩G(y) 6= {}, namely
no two agents need the same resource (remember that resources are single-
unit).

Note that we implicity assume, in the earlier definition 2, that the agents’ needs
(G(x)) are fixed and cannot change during the reallocation.

Example 2 Given the agent system in example 1, a solution to the r.r.p.
for ag1 exists, since ag2 has the resource r2 needed by ag1 (i.e. G(ag1) ⊆
Res(ag1) ∪ Res(ag2)). However, no solution to the r.r.p. for ag2 exists,
since the resource r3 needed by ag2 is not held by any agent in the system
(i.e. G(ag2) 6⊆ Res(ag1) ∪ Res(ag2)). Consider instead an agent system as in
example 1 but with an additional agent ag3 as follows: A = {ag1, ag2, ag3},
G(ag3) = {}, Res(ag3) = {r3} and Res = {r1, r2, r3}. Now, a solution to
the r.r.p. for ag1 still exists, but in addition a solution to the r.r.p. for ag2
also exists, since G(ag2) ⊆ Res(ag1) ∪Res(ag2) ∪Res(ag3). Likewise for ag3.
Thus, in this case, a possible solution to the r.r.p. for the overall agent system
A is A′ = {ag1, ag2, ag3} such that Res′(ag1) = {r1, r2}, Res′(ag2) = {r3},
Res′(ag3) = {} and G(ag1), G(ag2), G(ag3), Res are as before.

We will describe in Section 4 two simple agent policies to generate dialogues be-
tween agents for the reallocation of resources solving the above-defined resource
reallocation problem. We will see that, as a result of these dialogues, the agents’
set of allocated resources and belief base undergo changes. In the remainder of
the report we will assume as given a set of resources Res and an agent system
A with at least two agents.

Definition 3 (Dialogue Move) A dialogue move is an instance of the schema
tell(X,Y,Subject), where X∈ A is the utterer, Y∈ A is the receiver, X6=Y, and
Subject is the content of the dialogue move, expressed in some given content
language.

The content language is assumed to be shared by all agents in the given agent
system A. In our setting, the content language allows to describe: an agent
attempting to obtain a needed resource, for a reason, by requesting it from
another agent and waiting for a response; this could be an acceptance or a
refusal to give away the requested resource, accompanied by a reason.

Definition 4 (Content Language) The content language we consider con-
sists of all instances of the following schemata (for R ∈ Res): request(give(R))
because Reasons; accept(give(R)); refuse(give(R)) because Reasons.

In Section 4 we will see that Reasons is a (possibly empty) set including some
of the utterer’s beliefs as well as information about its and others’ allocated and
needed resources, which may be useful for the receiver to know.

The dialogue moves obtained with our chosen content language are split into
sets, as follows:

4

Definition 5 (Dialogue Initial/Final Move) Any instance of the schema
tell(X,Y,(request(give(R)) because Reasons)) is a dialogue initial move
(regarding R). Any instance of the schemata tell(X,Y,accept(give(R))) or
tell(X,Y,(refuse(give(R)) because Reasons)) is a dialogue (successful or
unsuccessful, respectively) final move (regarding R).

Dialogues are composed of dialogue moves regarding the same resource, begin-
ning with a dialogue initial move and ending with a dialogue final move:

Definition 6 ((Successful/Unsuccessful) Dialogue Instance) A dialogue
instance wrt an initiating agent x, a responding agent y and a resource r is a
sequence of two dialogue moves such that

1. x utters to y a dialogue initial move regarding r, and subsequently

2. y utters to x a dialogue final move regarding r.

A successful dialogue instance is a dialogue instance that ends with a successful
final move. An unsuccessful dialogue instance is a dialogue instance that ends
with an unsuccessful final move.

A successful dialogue instance results in a resource being given by one agent
to another. In general, an agent may need to initiate a number of dialogue
instances with a number of agents before a particular resource is obtained or
before it gives up its intention of obtaining the resource.

Definition 7 (Dialogue Sequence) A dialogue sequence wrt an agent x and
a resource r is a sequence of dialogue instances all initiated by x requesting r
and such that the only successful dialogue instance in the sequence, if any, is
the last one in the sequence. A dialogue sequence terminates successfully if it is
finite and the last dialogue instance is successful. A dialogue sequence terminates
unsuccessfully if it is finite and the last dialogue instance is unsuccessful.

Note that we implicitly allow an agent to keep on asking the same resource
to the same agent more than once within a dialogue sequence. However, the
policies we will define in Section 4 will prevent this, with obvious benefits for
termination.

Example 3 Given the three-agent agent system of example 2, ignoring any
reasons that could be provided with dialogue moves, the agents could proceed to
obtain their needed resources as follows:

1a. tell(ag1,ag2,(request(give(r2)) because))

2a. tell(ag2,ag1,(request(give(r3)) because))

2b. tell(ag1,ag2,(refuse(give(r3)) because))

1b. tell(ag2,ag1,(accept(give(r2))))

5

3a. tell(ag2,ag3,(request(give(r3)) because))

3b. tell(ag3,ag2,(accept(give(r3))))

Here, ag1 begins with a request to obtain its needed resource r2 from ag2 (1a).
This request is accepted by ag2 (1b) resulting in a successful dialogue instance. In
between this successful dialogue instance is an unsuccessful dialogue instance (2a
and 2b) between ag2 and ag1 regarding r3. Following the unsuccessful dialogue
instance is another dialogue instance (3a and 3b) initiated by ag2 regarding r3
but this time with ag3. This (and hence the overall dialogue sequence) terminates
successfully. At this stage, all agents have their needed resources.

3 Representation of agents

In this section we give a concrete representation of agents, that will be underpin-
ning the generation of dialogues using the concrete policies of Section 4. This
representation is given within the existing framework for Assumption-Based
Argumentation (ABA) [1], briefly reviewed next, following the presentation of
[4].

An ABA framework is a tuple 〈L, R, A, 〉 where

• (L,R) is a deductive system, consisting of a language L and a set R of
inference rules,

• A ⊆ L, referred to as the set of assumptions,

• is a (total) mapping from A into ℘(L), where any y ∈ x is referred to
as a contrary of x.

We will assume that the inference rules in R have the syntax l0 ← l1, . . . ln (for
n ≥ 0) where li ∈ L. We will represent l ← simply as l. As in [4], we will
restrict attention to flat ABA frameworks, such that if l ∈ A, then there exists
no inference rule of the form l← l1, . . . , ln ∈ R, for any n ≥ 0.

An argument in favour of a sentence x in L supported by a set of assumptions
X is a (backward) deduction from x to X, obtained by applying backwards the
rules in R. In order to determine whether a conclusion (set of sentences) should
be drawn, a set of assumptions needs to be identified providing an “accept-
able” support for the conclusion. Various notions of “acceptable” support can
be formalised, using a notion of “attack” amongst sets of assumptions whereby
X attacks Y iff there is an argument in favour of some assumption in x sup-
ported by (a subset of) X where x is in Y . Then, a set of assumptions is
deemed admissible iff it does not attack itself and it counter-attacks every set
of assumptions attacking it. We will use the following terminology: given some
L ⊆ L, 〈L, R, A, 〉 |= L stands for “there exists a backward deduction for all
sentences l ∈ L from some admissible set of assumptions X in 〈L, R, A, 〉.
Computational mechanisms have been defined for computing admissible sup-
ports for conclusions (e.g. see [4]), supported by the CaSAPI (Credulous and
Sceptical Argumentation Prolog Implementation) implemented system [2].

6

Agents in our agent systems can be represented as ABA frameworks com-
bining all three elements of agents (their beliefs, needed and owned resources),
as well as “reasoning rules” and “control information” required for supporting
the policies given in Section 4.

Definition 8 The ABA framework 〈L, R, A, 〉 for an agent x ∈ A has

• L = Lb ∪ Lp such that Lb ∩ Lp = {}

• A = Ab ∪ Ap such that Ab ⊆ Lb and Ap ⊆ Lp

• R = Rb ∪Rp such that Rb ∩Rp = {}

Intuitively, Lb, Ab with their contraries, and Rb allow to represent and reason
with beliefs, needed and owned resources of agents: we define these componens
of the ABA framework below in this section. The remaining bits are needed to
support the policies of Section 4 and will be given there. Note that the overall
language L is intended to be shared amongst agents (as the reasons exchanged
between agents in dialogues are sets of sentences in L).

Definition 9 (Non-assumptions in Lb) The non-assumptions Lb\Ab are all
the instances of the following schemata, for X ∈ A and R ∈ Res:

thisAgent(X) : the agent’s own name is X

isAgent(X) : X is an agent other than itself in the agent system
(¬) has(X,R) : agent X has (does not have) resource R

(¬) needs(X,R) : agent X needs (does not need) resource R

In the absence of beliefs about other agents and contrary beliefs, an agent may
make assumptions about the resources agents have and need, as follows:

Definition 10 (Assumptions in Ab and Contraries) The assumptions Ab

(and their associated contraries) in the language Lb are all instances of the
following schemata, for X ∈ A and R ∈ Res:

asm(has(X,R)) :an assumption that agent X has resource R,
with asm(has(X,R)) = {¬has(X,R), has(X ′, R)|X ′ ∈ A,X ′ 6= X}

asm(¬has(X,R)) : an assumption that agent X does not have resource R,
with asm(¬has(X,R)) = {has(X,R)}

asm(noAgentHas(R)) : an assumption that no agent has resource R,
with asm(noAgentHas(R)) = {has(X,R)|X ∈ A}

asm(¬needs(X,R)):an assumption that agent X does not need resource R,
with asm(¬needs(X,R)) = {needs(X,R))}

Definition 11 (Initial inference rules) The set Rb for agent x ∈ A is
{thisAgent(x)} ∪ {isAgent(Y)|Y ∈ A, Y 6= x}∪
{has(x,R)|R ∈ Res(x)} ∪ {needs(x,R)|R ∈ G(x)}∪
{¬has(X,R)← thisAgent(X), asm(¬has(X,R))|X ∈ A,R ∈ Res}∪
{¬needs(X,R)← thisAgent(X), asm(¬needs(X,R))|X ∈ A,R ∈ Res}

7

Rb contains inference rules representing x’s initial beliefs (first two subsets), al-
located and needed resources (third and fourth subset), as well as two general-
purpose inference rules (latter two sets) imposing a form of closed world as-
sumption over the resources an agent does not itself have and need.

Example 4 Given the agent system of example 1, the set of inference rules
for agent ag1 consists initially of the closed-world assumption rules as well as
thisAgent(ag1), isAgent(ag2), has(ag1, r1), needs(ag1, r2).

Note that B(x), as informally described in Section 2, corresponds, initially, to
the first two subsets in Rb in definition 11. We will see, in Section 4, that,
as a consequence of dialogues, agents will modify their beliefs B(x) (and thus
their representation as an ABA framework) by adding/removing information
about resources held and/or needed by other agents and held by themselves. In
the absence of any such information, by virtue of their representation as ABA
frameworks, agents are allowed to make assumptions as to what resources other
agents have or need, as soon as these assumptions are admissible.

4 Negotiation Policies

In this section we define two negotiation policies for agent systems with agents
represented as ABA frameworks, as in Section 3: using the second such policy
agents exchange reasons for their negotiation stands, thus bringing benefits to
the negotiation. While defining the policies we will also provide definitions for
Lp, Ap and Rp, thus obtaining the full ABA frameworks for agents. For both
policies, Lp includes:

committed(X,R) : agent X is committed to obtaining resource R

awaitingResponse(X,Y,R) : X is awaiting a response from Y regarding R

asm(¬committed(X)) (∈Ap) : an assumption that X is not committed to ob-

taining anything, with asm(¬committed(X)) = {committed(X,R)|R ∈
Res}

asm(¬awaitingResponse(X)) (∈Ap) : an assumption that X is not awaiting

any responses, with asm(¬awaitingResponse(X))={awaitingResponse(X,Y,R)
| Y ∈ A, R ∈ Res}

Roughly, both policies translate as follows (but for different ways to realise GO
and SA below), for a given agent x:

1. until all needed resources have been obtained repeat

(a) select one of the missing needed resources (say r) to obtain

(b) until r is obtained repeat

i. if the goal of obtaining all resources is still achievable (GO), select
a suitable agent for asking r (SA) (say y)

8

ii. if there is no such y, end in failure

iii. initiate dialogue with y attempting to obtain r, making any nec-
essary updates to R

2. end in success

The policies are defined as sets of communication rules: these have associated
with them preconditions, possibly the reception of an “incoming” dialogue move,
and consequences, which may be the utterance of an “outgoing” dialogue move
and/or a number of revisions to the beliefs of the agent. Formally, given an
agent x with 〈L, R, A, 〉 the ABA framework representing x, an action rule
is specified as a tuple 〈In, P,Out,X〉, where In is the incoming dialogue move,
with x as receiver, or is empty; P , the preconditions, is a set of sentences in
the language L; Out is the outgoing dialogue move, with x as utterer, or is
empty; X, the revisions, is a set of additions (+) and deletions (-) of sentences
in the language L to/from B(x) (as represented in Rp) and Rb. It is intended
that agent x applies a communication rule 〈In, P,Out,X〉 to generate the corre-
sponding Out and/or X whenever the preconditions of the communication rule
hold for the agent, namely In (if not empty) belongs to the set of “unprocessed”
1 dialogue moves received by the agent and 〈L, R, A, 〉 |= P holds. Namely,
the computational mechanisms for ABA (see Section 3) are the main evaluation
mechanisms used by agents.

4.1 Simple Negotiation Policy

For this policy, GO is always true and SA roughly corresponds to: “y has not
already been asked for r in this sequence”. To support this, Lp also includes

cannotGive(X,R) : agent X cannot give away resource R

asm(canGive(X,R)) (∈Ap) : an assumption that agent X is in a position to

give x resource R, with asm(canGive(X,R)) = {cannotGive(X,R)}

We now give the set of communication rules defining this policy: in a nutshell,
agents request a resource only if they need it and agree to give away a requested
resource only if they do not need it, updating their belief bases if they receive
or give away a resource.

Selecting a Resource to Obtain. If the agent is not already committed to
obtaining a resource, then it commits (via an addition to Rp) to obtaining a
resource which it needs and does not have:

In1 =
P1 = {thisAgent(X), asm(¬committed(X)), needs(X, R), ¬has(X, R)}
Out1 =
X1 = {+committed(X, R)}

1In Section 6, footnote 2, we discuss the implementation of dialogue moves.

9

Sending a Request. If the agent is committed to obtaining a resource and is
not already awaiting a response, then it selects an agent to request the resource
from and sends the request. The selected agent is one that can be assumed to
be able to give away the resource.

In2 =
P2 = {thisAgent(X), committed(X, R), asm(¬awaitingResponse(X)),

isAgent(Y), asm(canGive(Y, R))}
Out2 = tell(X,Y ,(request(give(R)) because {}))
X2 = {+awaitingResponse(X, Y, R)}

Note that no reasons are provided with the request. As a result of sending the
request, the agent adds to Rp a record that it is awaiting a response.

Receiving and Responding to a Request. The agent is self-interested but
generous, and so it accepts a request for a resource if it has and does not need
it. Otherwise, if it does not have the resource or it needs it, the agent refuses.

In3 = tell(Y ,X,(request(give(R)) because Reasons))

P3 = {thisAgent(X), has(X, R), ¬needs(X, R) }
Out3 = tell(X,Y ,(accept(give(R))))

X3 = {−has(X, R)}

In4 = tell(Y ,X,(request(give(R)) because Reasons))

P4 = {thisAgent(X), ¬has(X, R) }
Out4 = tell(X,Y ,(refuse(give(R)) because {}))
X4 = {}

In5 = tell(Y ,X,(request(give(R)) because Reasons))

P5 = {thisAgent(X), needs(X, R) }
Out5 = tell(X,Y ,(refuse(give(R)) because {}))
X5 = {}

In sending acceptance, the agent updates its belief base (represented by a subset
of Rb) so that it no longer has the resource just given away. No reasons are
provided with the refusals. Reasons in the request, if any, are ignored.

Receiving a Response. The agent processes acceptance and refusals as fol-
lows:

In6 = tell(Y ,X,(accept(give(R))))

P6 = {thisAgent(X), awaitingResponse(X, Y, R) }
Out6 =
X6 = {+has(X, R),−awaitingResponse(X, Y, R),−committed(X, R)}

In7 = tell(Y ,X,(refuse(give(R)) because Reasons))

P7 = {thisAgent(X), awaitingResponse(X, Y, R) }
Out7 =
X7 = {+cannotGive(Y, R),−awaitingResponse(X, Y, R)}

10

In receiving acceptance, the agent updates its Rb and Rp to record that it now
has the requested resource (Rb) and removes its commitment to obtaining it
and to wait for a response about it (Rp). Then, the agent is free to obtain
any other missing needed resources. In receiving refusal, on the other hand, the
agent adds to Rp that the refusing agent cannot give away the resource. Then,
the agent will proceed to ask another agent that it has not already asked, if any,
for the missing needed resource.

4.1.1 Demonstrating the simple negotiation policy

Example 5 Let A = {ag1, ag2, ag3} be an agent system as follows: G(ag1)
= {r2, r3}, R(ag1) = {}, r2 ∈ R(ag2), r2 6∈ G(ag2), r3 ∈ R(ag3), r3 6∈
G(ag3). We focus on ag1 and the dialogues it initiates in pursuit of its needed
resources r2 and r3. We assume ag1 begins with no beliefs other than knowing
the agents in the system and the resources it itself has and needs, i.e. B(ag1) =
{thisAgent(ag1), isAgent(ag2), isAgent(ag3), needs(ag1, r2), needs(ag1, r3)}.

Initially, ag1 can commit to obtaining r2 or r3 according to precondition P1.
Assume it commits to obtaining r2 first, thus it adds committed(ag1, r2) to its
Rp according to X1. Next it can send a request for r2 to ag2 or ag3 according to
P2. Assume it selects ag2, then it utters tell(ag1,ag2,(request(give(r2))
because {})) according to Out2 and adds awaitingResponse(ag1, ag2, r2) to
its Rp according to X2. At this point, neither P1 nor P2 hold for ag1, so ag1
simply waits for a response from ag2.

ag2 receives the request and accepts because P3 holds. Neither P4 nor P5 hold.
ag2 utters tell(ag2,ag1,(accept(give(r2)))) according to Out3, modifying
its belief base (in Rb) according to X3.

ag1 receives the acceptance (In6) and since P6 holds, updates its Rb ∪ Rp

according to X6, removing its commitment to obtaining r2 which it now has.
Assume next ag1 commits to obtaining r3 and selects ag2 to request r3 from,
as it did for r2, then it makes an utterance according to Out2.

ag2, however, this time round, refuses because P4 holds. ag2 makes an ut-
terance tell(ag2,ag1,(refuse(give(r3)) because {})) according to Out4.

ag1 receives the refusal (In7) and since P7 holds, performs updates to its
Rp according to X7, in particular adding the belief cannotGive(ag2, r3). Subse-
quently, ag1 requests and successfully obtains r3 from ag3 as it did r2 from ag2.
At this point, ag1 does not initiate any more dialogues since it has obtained all
its needed resources and hence neither P1 nor P2 hold hereafter.

Example 6 Assume the exact same setup as in example 5 except that r2 ∈
G(ag2), i.e. ag2 has and needs r2, and A includes several other agents. Now,
when ag1 requests r2 from ag2, ag2 refuses since it needs r2 (P5 holds rather
than P3 or P4). Following this, after processing the refusal according to P7/X7,
ag1 requests r2 from ag3, which refuses because it does not have r2 (according
to P4). ag1 would continue requesting r2 from all other agents in the system,
despite having already asked ag2 which has r2. This is wasteful as resources are
single-unit and if ag1 knew that ag2 has r2, it could stop asking.

11

4.2 Reason-based Negotiation Policy

As demonstrated in example 6, because no reasons are provided with refusals,
the agent receiving a refusal cannot ascertain as to why its request has been
refused. Thus, for the sake of completeness, the agent must proceed to ask
every agent in the system until an agent accepts its request or until all agents
have been asked. This drawback can be eliminated by providing reasons for the
refusal. These reasons can then be used in subsequent dialogues or to terminate
the sequence. For the reason-based policy, GO roughly corresponds to: “no
other agent is known to have and need r” and SA roughly corresponds to: “y
can be assumed to have and not need r”. To support this, Lp given at the
beginning of Section 4 needs to be extended to also include:

goalUnachievable(X) : agent X’s goal is unachievable

asm(goalAchievable(X)) (∈ Ap) : an assumption that agent X’s goal is achiev-

able, with asm(goalAchievable(X)) = {goalUnachievable(X)}

where Rp includes all instances (for X ∈ A and R ∈ Res) of the schema:

goalUnachievable(X)← needs(X,R), has(Y,R), needs(Y,R), Y 6= X(1)

Indeed, since we work in a single-unit resource setting and the goal of each agent
is to obtain all of its needed resources, if an agent x believes another agent to
have and need a resource that x itself needs, then x will be aware that it will
not be able to obtain all the resources it needs.

Selecting a Resource to Obtain. This is as for the simple policy of Sec-
tion 4.1.

Sending a Request. As for the simple policy, the agent selects an agent
to request the needed resource from if it is not already awaiting a response.
However, the agent selected now is one that can be assumed to have and not
need the resource. Also, the request is only sent if the agent can assume its goal
to be achievable.

In1r =
P1r = {thisAgent(X), committed(X, R), asm(¬awaitingResponse(X))

isAgent(Y), asm(has(Y, R)), asm(¬needs(Y, R)),
asm(goalAchievable(X))}

Out1r = tell(X,Y ,(request(give(R)) because {needs(X, R),¬has(X, R)}))
X1r = {+awaitingResponse(X, Y, R)}

Note that the requesting agent now provides reasons with the request.

12

Receiving and Responding to a Request.

In2r = tell(Y ,X,(request(give(R)) because {needs(Y, R),¬has(Y, R)}))
P2r = {thisAgent(X), has(X, R), ¬needs(X, R) }
Out2r = tell(X,Y ,(accept(give(R))))

X2r = {+needs(Y, R), +has(Y, R), −¬has(Y, R), −has(X, R)}

The agent accepts the request, as in the corresponding rule for the simple policy,
but updating its belief base (Rb) in a richer manner (using the reasons provided).

In3r = tell(Y ,X,(request(give(R)) because {needs(Y, R),¬has(Y, R)}))
P3r = {thisAgent(X), has(X, R), needs(X, R) }
Out3r = tell(X,Y ,(refuse(give(R)) because {has(X, R), needs(X, R)}))
X3r = {+needs(Y, R), +¬has(Y, R), −has(Y, R)}

In4r = tell(Y ,X,(request(give(R)) because {needs(Y, R),¬has(Y, R)}))
P4r = {thisAgent(X), ¬has(X, R), has(Z, R), needs(Z, R), Z 6= Y, Z 6= X }
Out4r = tell(X,Y ,(refuse(give(R))

because {¬has(X, R), has(Z, R), needs(Z, R)}))
X4r = {+needs(Y, R), +¬has(Y, R), −has(Y, R)}

In5r = tell(Y ,X,(request(give(R)) because {needs(Y, R),¬has(Y, R)}))
P5r = {asm(noAgentHas(R))}
Out5r = tell(X,Y ,(refuse(give(R)) because {asm(noAgentHas(R))}))
X5r = {+needs(Y, R), +¬has(Y, R), −has(Y, R)}

The agent refuses the request, as in the corresponding (two) rules for the simple
policy, but providing here the appropriate reasons. Note that, for any request
received at any point in time, one and only one of P2r-P5r is guaranteed to hold,
since P2r-P5r are exhaustive and mutually exclusive. Thus, the agent generates
one and only one final dialogue move for every initial dialogue move received.

Receiving a Response. The agent updates its set of inference rules (Rb∪Rp)
upon receiving acceptance or refusal, taking the provided reasons into account.

In6r = tell(Y ,X,(accept(give(R))))

P6r = {thisAgent(X), awaitingResponse(X, Y, R) }
Out6r =
X6r = {+has(X, R), +¬has(Y, R), −¬has(X, R), −has(Y, R),

−awaitingResponse(X, Y, R),−committed(X, R)}

In7r = tell(Y ,X,(refuse(give(R)) because {has(Y, R), needs(Y, R)}))
P7r = {thisAgent(X), awaitingResponse(X, Y, R) }
Out7r =
X7r = {+has(Y, R), +needs(Y, R), −¬has(Y, R),

−awaitingResponse(X, Y, R)}

13

In8r = tell(Y ,X,(refuse(give(R))

because {¬has(Y, R), has(Z, R), needs(Z, R)}))
P8r = {thisAgent(X), awaitingResponse(X, Y, R) }
Out8r =
X8r = {+¬has(Y, R), +has(Z, R), +needs(Z, R),

−has(Y, R), −¬has(Z, R), −awaitingResponse(X, Y, R)}

In9r = tell(Y ,X,(refuse(give(R)) because {asm(noAgentHas(R))}))
P9r = {thisAgent(X), awaitingResponse(X, Y, R) }
Out9r =
X9r = {+¬has(Y, R), −has(Y, R), −awaitingResponse(X, Y, R)}

4.2.1 Demonstrating the reason-based negotiation policy

Example 7 Assume an agent system as given in example 6. Assume also that
ag1 commits to obtaining r2 according to P1/X1 and ag1 selects ag2 to request
r2 from according to P1r/X1r. Thus ag1 makes the utterance tell(ag1, ag2,
(request(give(r2)) because {needs(ag1, r2), ¬has(ag1, r2)})) according to
Out1r, providing reasons for its request.

ag2 refuses according to P3r and makes the utterance tell(ag2, ag1,
(refuse(give(r2)) because {has(ag2, r2),needs(ag2, r2)})) according to
Out3r, providing reasons for its refusal.

ag1 receives the refusal according to In7r and updates its belief base according
to X7r, making use of the reasons in the refusal. In this case, differently from
example 6 where the simple policy was used, ag1 does not unnecessarily request
r2 from any other agent since the precondition P1r for initiating requests will
no longer hold. ag1 ends in failure, correctly, at this point.

5 Properties of the Policies

The agent policies have been defined bearing certain properties in mind, as
discussed in this section. Informal proofs can be found in Appendices A and B.

• Consistency of beliefs. The revisions associated with the agent’s commu-
nication rules are such that (i) it never believes an agent to both have and
not have a particular resource, and (ii) it never believes any resource to be
held by two agents simultaneously. Hence the agent’s belief base remains
consistent after any belief update.

• Termination of dialogue instances. Dialogue instances generated by de-
ploying the policies are guaranteed to terminate since the conditions for re-
sponding to a dialogue initial move (i.e. a request) are exhaustive (namely,
one will always hold). Hence a dialogue final move (i.e. an acceptance or
refusal) is always generated and sent for every dialogue initial move re-
ceived.

14

• Non-duplicate requests. The preconditions and belief updates associated
with the communication rules are such that agents do not request the
same resource from the same agent more than once.

• Termination of dialogue sequences. Since (i) each dialogue instance ter-
minates, (ii) no agent is asked twice for the same resource, (iii) there are
only a finite number of agents, and (iv) agents need only a finite number
of resources, no agent will continue requesting resources forever and the
dialogue sequences generated by deploying either policy are finite.

• Completeness. For an agent system for which a solution for the r.r.p.
exists, each agent will get the resources it needs and hence the solution
will be found.

In addition, the reason-based policy has been defined with “efficiency” in mind.
We measure efficiency of the reason-based policy in comparison with the simple
policy. Concretely, (i) dialogue sequences using the reason-based policy consist
of no more dialogue instances than those using the simple policy, with no com-
promise in the quality of solutions. This implies completeness, in the same sense
as for the simple policy. Also, (ii) the agents that need to be contacted during
a dialogue sequence using the reason-based policy is the same as or a subset of
those that need to be contacted using the simple policy.

6 Conclusions

We have presentented a framework whereby agents can negotiate the realloca-
tion of resources (needed to achieve their goals) by using one of two policies.
These policies allow agents to generate negotiation dialogues, and are empow-
ered by an argumentation framework for representing and reasoning with the
agents’ minds (their beliefs, the resources they own and need) and for eval-
uating the preconditions of the communication rules composing the policies.
The two policies differ in the amount of information that agents exchange us-
ing them: with the second, reason-based policy agents provide reasons for their
requests and refusals of requests; with the first, simple policy they do not pro-
vide these reasons. These reasons can be seen as simple arguments to explain
requests/refusals. We have seen that the second, reason-based policy is more
“effective” for agents to obtain all resources they need or realise that they can-
not obtain (all of) them. Future work will look at building upon the realisation
that a plan is unachievable by allowing agents to formulate alternative plans
rather than ending in failure.

We have implemented our framework using Jade (Java Agent DEvelopment
Framework) [6] and CaSAPI (see Section 3) interfacing the two by means of
PrologBeans [8]. We make use of Jade’s naming, messaging 2 and yellow page
services, as well as Jade’s capability to support the scheduling of cooperative

2Each Jade agent comes with an associated message queue for storing incoming messages.

As messages are processed, they are removed from the message queue.

15

behaviours, to represent the agents and their associated communication rules.
We use CaSAPI to represent the belief bases of the agents and to evaluate the
preconditions of the communication rules. Experimental results can be found
in Appendix C.

We have made a number of simplifying assumptions. Although our policies
are generic, and could in principle be used by any agents, we have assumed that
our agents use ABA for decision-making and reasoning: this is not suitable for
supporting open multi-agent systems where negotiation is likely to be required.
Both policies are designed so that agents are truthful and only provide reasons
that they hold as true: again, it will not be easy to enforce this in open systems.
The use of argumentation is limited to internal decision-making and reasoning
and exchange of simple reasons: in general, it would be useful to allow agents to
argue with one another, for example for persuasion or in case agents are found
to be untruthful. Agents are assumed to have fixed goals (the set of resources
they need): in general, agents may have a number of conflicting goals (possibly
with preferences) and alternative plans to achieve different goals (each requiring
different sets of resources). Resources are assumed to be single unit, indivisible
and unsharable: this is often not the case in applications. Future work will look
at removing these assumptions.

Acknowledgements

The second author has been supported by the Sixth Framework IST programme
of the EC, under the 035200 ARGUGRID project.

References

[1] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence, 93(1-2):63–101, 1997.

[2] CaSAPI. http://www.doc.ic.ac.uk/∼dg00/casapi.html.

[3] Pieter Dijkstra, Henry Prakken, and Kees de Vey Mestdagh. An imple-
mentation of norm-based agent negotiation. In ICAIL 07, pages 167–175,
2007.

[4] Dorian Gaertner and Francesca Toni. Hybrid argumentation and its prop-
erties. In Antony Hunter, editor, COMMA 08. IOS Press, 2008.

[5] Adil Hussain and Francesca Toni. On the benefits of argumentation for
negotiation - preliminary version. In EUMAS, 2008.

[6] Jade. http://jade.tilab.com.

16

[7] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and
M. Wooldridge. Automated negotiation: Prospects, methods and chal-
lenges. Group Decision and Negotiation, 10(2):199–215, 2001.

[8] PrologBeans. http://www.sics.se/sicstus/docs/latest3/html/prologbeans/.

[9] Fariba Sadri, Francesca Toni, and Paolo Torroni. Dialogues for negotiation:
Agent varieties and dialogue sequences. In ATAL, pages 405–421, 2001.

[10] Jelle van Veenen and Henry Prakken. A protocol for arguing about rejec-
tions in negotiation. In ARGMAS, pages 138–153, 2005.

A Properties of the Simple Policy

We discuss informally some properties for an agent system whose agents use the
simple negotiation policy described in Section 4.

• Termination of dialogue instances. Dialogue instances generated by de-
ploying the policy are guaranteed to terminate since the conditions P3-P5

for responding to a dialogue initial move (i.e. a request) are exhaustive
(i.e. either an agent has and does not need a requested resource, or it does
not have it or it needs it). Hence a dialogue final move (i.e. an acceptance
or refusal) is always generated and sent for every dialogue initial move
received.

• Non-duplicate requests. If an agent x sends a request to an agent y for a
resource r, the response is either acceptance or refusal:

– in the case of acceptance, a belief has(x, r) is added to Rb of x and
commitment to obtain r is removed. Subsequently, because of the
way P1 is defined and since x will never give away r, a commitment
to obtain r will never be added again and thus x will not request r

from y again.

– in the case of refusal, a record cannotGive(y, r) is added to Rp of x.
Subsequently, because this record is never removed and because of
the way P2 is defined, x will never again request r from y.

• Termination of dialogue sequences. Since (i) each dialogue instance ter-
minates, (ii) no agent is asked twice for the same resource, (iii) there are
only a finite number of agents, and (iv) agents need only a finite number
of resources, no agent will continue requesting resources forever and the
dialogue sequences generated by deploying this policy are finite.

• Completeness. An agent x attempting to obtain a resource r continues
requesting r from the other agents in the system one by one until:

17

– An agent that has r and does not need it is asked: in such a case,
since agents give away resources that they do not need (P3), r will be
obtained by x and the dialogue sequence will terminate successfully,
as expected.

– All agents have been asked: This is because no agent has r or because
an agent has r but needs it. Either way, the dialogue sequence will
terminate unsuccessfully, as expected, since no more requests will be
initiated by x and the last dialogue instance in the sequence was an
unsuccessful one.

Taking this a step further, for an agent system for which a solution for
the r.r.p. exists, the solution will be found, since each agent will get the
resources it needs.

B Properties of the Reason-Based Policy

We discuss informally some properties for a system of agents whose agents use
the reason-based policy described in Section 4.

• Consistency of Beliefs. An agent’s belief base (represented by a subset of
Rb) remains consistent after any belief update since (i) it never believes
an agent to both have and not have a particular resource, and (ii) it never
believes any resource to be held by two agents simultaneously. The proof
of this is roughly as follows:

(i) Whenever a belief of the form has(Ag,R) is added to Rb, a belief
¬has(Ag,R) is removed, and vice versa.

(ii) Looking at the cases where a belief of the form has(, R) is added to
Rb:

– in the case of X2r and X6r, such a belief is added but one is also
removed.

– in the case of X7r and X8r, such a belief is added but none are
removed. This is not problematic since X7r and X8r only occur
in response to a request, and an agent only requests a resource
if it does not believe any agent to have that resource.

• Mutual Exclusion of Responding Conditions We show here that the re-
sponding conditions P2r-P5r of the argumentative negotiation policy are
mutually exclusive. We demonstrate this for an agent ag1 that has been
requested to give away r, as follows:

– If P2r holds, then ag1 believes has(ag1,r) and thus P4r and P5r can-
not hold because the necessary assumptions cannot be made. Also,
ag1 can assume asm(¬needs(ag1,r)) thus it cannot simultaneously
believe needs(ag1,r) and thus P3r cannot also hold.

18

– If P3r holds, then ag1 believes has(ag1,r) and thus P4r and P5r

cannot hold because the necessary assumptions cannot be made.
Also, ag1 believes needs(ag1,r) thus it cannot simultaneously assume
asm(¬needs(ag1,r)) and thus P2r cannot also hold.

– If P4r holds, then ag1 can assume asm(¬has(ag1,r)) and thus P2r and
P3r cannot hold because ag1 cannot also believe has(ag1,r). Also,
ag1 believes has(Ag,r) for some ground Ag, thus ag1 cannot simulta-
neously assume asm(noAgentHas(r)) and thus P5r cannot also hold.

– If P5r holds, then ag1 can assume asm(noAgentHas(ag1,r)) and thus
P2r, P3r and P4r cannot hold because ag1 cannot also believe has(Ag,r)
for any Ag.

• Exhaustiveness of Responding Conditions We show here that the respond-
ing conditions P2r-P5r of the argumentative negotiation policy are exhaus-
tive, as follows: P2r and P3r are candidates for holding if an agent (say
ag1) has the requested resource r (i.e. ag1 believes has(ag1,r)). In such
a case, since ag1 assumes asm(¬needs(ag1,r)) if and only if it does not
believe needs(ag1,r), one of P2r or P3r is guaranteed to hold. If, on the
other hand, ag1 does not have the requested resource r and has no be-
lief as to which agent has r, then P5r holds. If ag1 does not have the
requested resource r but does have some belief as to what agent has r,
then P4r holds. This covers all eventualities and hence one of P2r-P5r is
guaranteed to hold.

• Termination of dialogue instances. Dialogue instances are guaranteed to
terminate since the preconditions P2r-P5r are exhaustive as discussed ear-
lier.

• Non-duplicate requests. Having sent a request to an agent (say y) for a
resource (say r), the agent (say x) receives one of four responses:

– Acceptance: x updates its belief base adding the belief that it has r.
Subsequently, x does not request r from any agent, let alone y.

– Refusal because y has and needs r: x updates its belief base accord-
ingly. As a result, x does not initiate any more requests for any
resource from any agent since, by rule (1) in Rp, it believes its goal
to be unachievable.

– Refusal because another agent (z) is believed to have and need r: x

updates its belief base accordingly. As a result, x does not initiate
any more requests for any resource from any agent since, by rule (1)
in Rp, it believes its goal to be unachievable.

– Refusal because y assumes no agent to have r: x updates its belief
base to include ¬has(y, r). As a result, x will not select y to request
r from. The belief ¬has(y, r) is only removed if x is subsequently
informed by another agent that y has and needs r, in which case x

19

would not initiate any more requests for any resource from any agent
since, by rule (1) in Rp, it would believe its goal to be unachievable.

• Termination of dialogue sequences. Similarly as for the simple policy.

• Efficiency and Completeness. A sketch of the proof of efficiency and com-
pleteness as described in Section 5 is as follows: An agent x attempting
to obtain a resource r, continues requesting r from the other agents in the
system one by one (without repeating any request) until:

– All agents have been asked and no agent has r: In such a case, the
number of dialogue instances and agents that will be contacted using
either policy is the same.

– An agent y, which has r and does not need it, is asked: Using either
policy, y accepts the request and x does not subsequently request r

from any other agent. Thus, the number of dialogue instances and
agents that will be contacted using either policy is the same.

– An agent y, which has r and needs it, is asked: Using either policy, y

refuses the request. However, in the case of the reason-based policy, y

provides additional information and x will not subsequently request
r from any other agent. In the case of the simple policy, on the
other hand, x will continue unsuccessfully requesting r from all the
remaining agents.

– An agent y, which believes z to have and need r, is asked: Using either
policy, y refuses the request. However, in the case of the reason-based
policy, y provides additional information and x will not subsequently
request r from z or any other agent (since we are assuming that agents
are truthful). In the case of the simple policy, on the other hand,
x will continue unsuccessfully requesting r from all the remaining
agents.

In addition, if an agent (say y) requests a resource (say r) from another
agent (say x), providing the reason that it needs r, then x will not subse-
quently request r from y, resulting in a further reduction in the number
of dialogue instances instantiated and agents contacted by x.

C Experimental Results

We show in Tables 1 and 2 some experimental results obtained from the im-
plementation. The tables show how the total number of requests instantiated
in an agent system varies depending on the policy of the agents – simple or
reason-based. In all tests, agents begin with no information about the other
agents except to know which other agents make up the agent system. We vary
the number of agents in the agent system in turn and compare the total number
of requests instantiated by all agents.

20

Number of Agents
Agent Type 2 3 4 5 10

Non-Argumentative 2 6 12 20 90
Argumentative 1 3 6 10 45

Table 1: Total number of requests instantiated in an agent system A wherein
∀x ∈ A, G(x) = {r} and r 6∈ Res(x), i.e. agents need one resource only, r,
which none of them has.

Number of Agents
Agent Type 2 3 4 5 10

Non-Argumentative 1 4 9 16 81
Argumentative 1 2-3 3-6 4-10 9-45

Table 2: Total number of requests instantiated in an agent system as before,
but in which one (and only one) agent has the needed resource r, i.e. ∃x ∈ A,
G(x) = {r} and r ∈ Res(x). Note that the number of requests displayed is not
a fixed number but rather a range of numbers. This is because the total number
of requests instantiated depends on the order in which agents request the needed
resource from the other agents. Thus we ran the experiment a number of times
and provide the upper and lower limits.

21

