Transparent Modelling of Finite Stochastic Processes for
Multiple Agents

Luke Dickens!, Krysia Broda' and Alessandra Russo!

Imperial College London, South Kensington Campus, UK

Abstract. Stochastic Processes are ubiquitous, from automated engineering, through fi-
nancial markets, to space exploration. These systems are typically highly dynamic, unpre-
dictable and resistant to analytic methods; coupled with a need to orchestrate long control
sequences which are both highly complex and uncertain. This report examines some exist-
ing single- and multi-agent modelling frameworks, details their strengths and weaknesses,
and uses the experience to identify some fundamental tenets of good practice in modelling
stochastic processes. It goes on to develop a new family of frameworks based on these tenets,
which can model single- and multi-agent domains with equal clarity and flexibility, while
remaining close enough to the existing frameworks that existing analytic and learning tools
can be applied with little or no adaption. Some simple and larger examples illustrate the
similarities and differences of this approach, and a discussion of the challenges inherent in
developing more flexible tools to exploit these new frameworks concludes matters.

1 Introduction

Stochastic Processes are ubiquitous, from automated engineering, through financial mar-
kets, to space exploration. These systems are typically highly dynamic, unpredictable and
resistant to analytic methods; coupled with a need to orchestrate long control sequences
which are both highly complex and uncertain.

The agent-oriented paradigm seeks to address these requirements [28,45], and provides tools
for minimally supervised learning techniques, enabling more and more complex systems to
be brought under automated control [46]. More recently, this includes the use of the multi-
agent paradigm, where different agents are delegated control of different parts of a large
system - dividing and conquering [3, 14, 31, 38]. This idea can even be extended to investigate
systems which are only partially under friendly control; other parts being under the control
of competitive forces [8, 6, 13]- an example of such a system being a trading simulation [13].
In recent years, great strides have been made to extend the learning toolbox available to the
end user. In particular, the use of gradient ascent methods overcomes the need for systems
to have good functional solution strategies [2,21,44] — stochastic control strategies with
incomplete information having been shown more general a few years earlier [39]. However,
highly flexible methods are often slower than simpler alternatives, and there appears to be no
good understanding of which systems are likely to need such complex solutions; nor if there
are problems which require even more sophisticated techniques to make them tractable.
Another concern relates to the nature of the solution learnt. Where systems have multiple
agents, for instance, it is not always possible to find an identifiably optimal solution. In
such cases, a deeper understanding of the system is sometimes more important than pure
exploitation [38].

These issues can be addressed by prior examination and experimentation with models, which
simulate the relevant features of a system in a simplified form. In this way, stumbling blocks
can be identified, methods can be tuned and selected on performance against the model,
and even partial solutions found. Models also provide a simplified — preferably intuitive —
view of a problem.

This paper argues that the modelling frameworks used in this context have not received the
same attention as the associated learning methods. The Markov Decision Process (MDP)*
and Partially Observable Markov Decision Process (POMDPs)? in particular are often over-

! A state dependent stochastic control process with discrete states and actions. See [28] or [45] for a
readable overview

2 A hidden state markov decision process, adding a discrete set of observations. See [20] or [9] for a concise
description.

utilised — dusted off and tweaked to fit new requirements. Often experimenters build many
implicit assumptions into these models, but these details are lost in the sterile environment
of the Markov formulation. This can mean that accurately reproducing others’ examples
becomes time consuming at best and impossible at worst. It also allows arbitrary choices
about how a system works to be propagated from research team to research team, without
any re-examination of the underlying value of those premises — for an example of this see
the Littman style soccer game explored in detail in Section 6. In the remainder of this paper,
any framework that obscures its underlying principles in this way is said to be opaque to
these principles. Conversely, any framework which makes such assumptions explicit is said to
be transparent in that regard. To put this another way, if the modeller cannot qualitatively
distinguish between two different phenomena then this indicates a lack of transparency in
their toolkit.

Definition 1 (Transparent Mechanism). Within the context of a modelling language or
framework, if a property of the modelled system contributing to the behaviour of the model is
explicitly defined/represented in the model, then this constitutes a transparent mechanism.

Even though an opaque framework may support concise models — and this is often true
— it camouflages built-in choices. If a system is modelled in a transparent manner, then
these choices can be explored — altered subtly or radically — to see if features in the
experimental data can be attributed to them. For this reason, it is helpful if any parameters
to be adjusted have some intuitively recognisable meaning, and have a positive or neutral
effect on the descriptive power of the model. Any transparent mechanism satisfying these
two requirements is said to be parsimonious.

A high profile example of an opaque mechanism relates to the reward and observation
generation within a commonly used formulation of Partially Observable Markov Decision
Processes. Here, an agent interacts with an environment in discrete time-steps, by receiving
observations and acting on the system based on those observations, the entire system has a
state which affects which observation it is likely to generate and its response to actions of
the agent. A reward (alternatively cost) signal is generated at every time-step, for which the
agent prefers high (alternatively low) values. Typically [9, 10, 20], next state transition and
reward are generated probabilistically, and are dependent on current state and subsequent
choice of action, but state and reward outcomes are independent of one another, the obser-
vation is again probabilistic, but is dependent on the most recent action and the current
state. If we were to draw a system in the typical way, it is as a directed graph with states as
nodes, and possible transitions as arcs (ordered pairs of nodes) labelled with actions. The
probabilities for the action dependent trasitions can then also label these arcs. This is thus
far quite neatly described and it could be argued that this transition mechanism is both
transparent and parsimonious. In many systems, the human brain can imagine that there
is some inaccessable state underlying a complex system and affecting its behaviour, even
though it cannot be seen or experienced directly.

When we get to labelling rewards and observations things are more difficult, rewards are
not correlated with the nodes of the graph nor with individual arcs, instead each reward
is spread out across all similarly labelled arcs originating at a given node, regardless of
which node they are directed towards. This means, for instance, that you cannot reward
a soccer agent for scoring a goal directly, if you also want to include non-deterministic
action outcomes. Instead you must wait until the goal state has been reached and the next
step action chosen then apply the reward, irrespective of the action choice. The thinking
behind having the action included, but not the subsequent state, seems to be because, for
many, it makes intuitive sense to reward the agent for performing the correct actions in the
appropriate states (see the tutorial on Cassandra’s webpage [12]).

Returning to our graph of the system, and more bizarrely, each set of observation probabili-
ties is related to a given node and all incoming arcs with the appropriate label. This possibly
counter intuitive dependency on previous action but not the previous state seems only to
be useful when considering inspect more closely type actions and the like: an alternative
way of formulating a system with the same properties — for an observation function defined
simply over states, would be to also have an inspecting more closely state, which is moved
into whenever the inspect more closely action is performed. This setup is also ill defined for
the very first step of the process, as there is no prior action, and this is discussed in later

sections. The popularity of this action-state to observation choice appears to come from an
early treatment by Smallwood and Sondik at the beginning of the 1970’s, who refer to them
as Partially Observable Markov Processes (omitting the word decision) [41], and a survey of
POMDPs by Monahan a decade later [29]. The former paper also states that their results
apply to ordering things as (control,transition,output) like the reward generation described
above, just as they do to (control,output,transition); they do not consider using just state.
However, the system they model does involve inspection type actions which could explain
why they modelled things as they did. Subsequently, many papers published on POMDPs
generate observations based on current state and most recent previous action, e.g. [9, 10, 20,
42], although there are papers that generate observations based on state alone [19,25,39],
a model which bases both observations and rewards on current state alone can be found in
[1].

Any modelling framework that relies simply on state for observations and rewards, will
be hereafter referred to as state encapsulated, reserving action information for determining
state to state transition probabilities, and we argue that a more general adherence to state
encapsulated information facilitates more natural, transparent, descriptions;

Definition 2 (State Encapsulation). Within the context of a state based modelling lan-
guage or framework, a modelled system is state encapsulated if all the properties of that
system which pertain to its predictable behaviour — including response to external stimuli
— is contained within the state description. In systems which include actions chosen by
autonomous, rational agents, action choice is considered to be an external stimuli.

This paper investigates existing models, both single- and multi-agent, used in the associ-
ated literature, and examines the transparency and parsimony of the machinery used. We
identify areas where the models do not perform well in this regard, such as turn-taking in
multi-agent problems; and also establish desirable features that are missing entirely in some
formalisms — in particular, the facility to model general-sum stochastic games. In response
to our findings, we construct a new family of frameworks, which adhere more closely to our
desiderata while supporting a larger set of models in a more user/designer friendly way.
Throughout this work, methods are given to transform these models back into more tradi-
tional frameworks, on which all the existing learning algorithms and analytic techniques can
be applied out of the box, and any convergence or existence proofs still hold. The emphasis is
on providing tools both for experimentalists to exploit and as an alternative mathematical
framework for the theorists: it won’t be to everyone’s taste, but general transformations
between frameworks are given in the paper, allowing results to be shared in both directions.
In the next section, we explicitly define all the common machinery we use to reconstruct the
POMDP, and which we will use to develop our own frameworks. We examine some of the
properties of this machinery; in particular, we examine how smaller building blocks can be
combined and composed to give higher level objects, and how these objects can be grouped.
We examine the POMDP in Section 3, highlight the differences in how POMDPs are repre-
sented in the literature, and evaluate the assumptions inherent in certain approaches. Two
models can be shown to be equivalent independent of these assumptions, we show how this
can be tested, and use this measure of equivalence to proove that the expressive power of two
different formalisms are the same. We go on to discuss state encapsulation, see Definition 2,
arguing that this is a desired property of a model, and supports transparent parsimonious
mechanisms, but still allows abstraction to manage large state spaces.

In Section 4, we introduce a new framework called the Finite Analytic Stochastic Process
or FASP; we show how this can be used to represent multi-agent POMDP type processes
and how any single agent POMDP can be generated from a subset of these FASPs. We then
demonstrate the power of the FASP to represent single- and multi-agent processes — some
variaties not available in other POMDP style formalisms — concentrating in particular on
general-sum multi-agent processes where the agents combine actions into a simultaneous
joint action at each step.

Section 5 introduces a variant of the FASP, where agents are not required to all act together
at every step, but instead uses a turn-taking mechanism for the agents. We argue that
this mechanism is both transparent and parsimonious. There follows a demonstration that
any such model can be transformed back into an equivalent model in the original FASP
framework, following a marginally looser definition of equivalence, than that of Section 4.

Section 6 illustrates the discussion, by giving examples from the literature which do not
conform to the tenets of good modelling championed in this paper. With each example, we
give at least one an alternative formulation which does reflect our notion of good practice,
and go on to show how these representations can be adjusted to explore the example thus
exposed.

The paper culminates in Section 7 with a discussion of the new modelling paradigm and the
tools provided, followed by suggestions for future work.

2 Preliminaries

This section introduces the concept of Stochastic Map and Function, which will be used
later in the paper as the building blocks of a number modelling frameworks for stochastic
processes. This is followed by an examination of the properties of these stochastic generators:
how they can be grouped into well defined sets, how sets of generators can be seen as subsets
of more general objects, and how they can be combined in both parallel and sequential senses
to create new generators. Initially, we formalise a way of probabilistically mapping from one
finite set to another.

Definition 3 (Stochastic Map). A stochastic map m, from finite independent set X to
finite dependent set Y, maps all elements in X probabilistically to elements in'Y, i.e. m:
X —>PD(Y), where PD(Y') is the set of all probability distributions overY . The set of all such
maps is X(X —=Y); notationally the undecided probabilistic outcome of m given x is m(x)
and the following shorthand is defined Pr (m(z) = y) = m(y|z). Two such maps, mi,mz €
X (X —-Y), identical for each such conditional probability, i.e. (Vx,y) (mi(y|z) = ma(y|z)),
are said to be equal, i.e. m1 = ma.

This set of stochastic maps includes discrete functions over finite domains, that is a func-
tional (or deterministic) mapping from objects in one finite set to objects in another.

Lemma 1. The set of all functional maps F(X ->Y) ={f|f: X >Y } is a proper subset of
the set of stochastic maps X (X —-Y).

The proof is straightforward.

Another useful concept is the stochastic function, and to define this we first need to define
the probability density function.

Definition 4 (Probability Density Function). A probability density function over the
Reals (PDF(R))) F : IR — IR*, is such that J F(y)dy = 1. The probability of some

o0
PDF, F, returning a value between two limits, is the integral between those limits, so

V2
Pr (Yout Y1 < Yous < y2) = J F(y)dy. The expectation of some PDF(R)), F, is given

Y1

by E(F(y)) = J' y.F(y)dy. Two such PDFs Fi and F> with identical distributions, i.e.

-0

Y2 2
(Yy1, y2) (J Fi(y)dy = J Fs(y) dy) , are said to be equal, i.e. F\ = Fa; if equal in all but
v1

Y1

2 v
the sign of the dependent variable, i.e. (Vyi,y2) (J Fi(y)dy =J Fs(y) dy), they are

))) y1 —y2
said to be inversely equal, i.e. Iy = —F5.

This allows us to define the stochastic function.

Definition 5 (Stochastic Function). A stochastic function f from finite independent
set X to the set of real numbers R, maps all elements in X probabilistically to the real
numbers, i.e. f: X — PDF(R). The set of all such functions is ®(X — R); notationally
f(x) = Fy, where Fy(y) is the PDF(R)) associated with x and belonging to f; f(x) is also
used to represent the undecided probabilistic outcome of Fy — it should be clear from the

context which meaning is intended; the probability that this outcome lies between two bounds
a1, a2 € R, an < g, is denoted by [f(2)]?. Two functions, f,g € ®(X —R), identical for

every PDF mapping, i.e. (Vx,al,ag)([f(l’)]zf = [g(x)]gf), are said to be equal, i.e. f=g;
if the two functions are inversely equal for each PDF mapping, i.e. (VZE,OLl,OLQ)([f(ﬁ)]Z? =

[9(x)]~3)), then the stochastic functions are said to be inversely equal, i.e. f=—g.

As with simple PDF's, the stochastic function generates a real valued output, and a proba-
bility for an exact outcome cannot be given. It is for this reason that probabilities must be
defined for outcomes lying between two bounds.?

In some cases, both discrete and continuous outcomes may need to be generated without
independent input variables. Mechanisms for achieving this will be referred to as static
stochastic maps and functions respectively.

Definition 6 (Static Stochastic Maps and Functions). A stochastic map m or func-
tion f which takes no input parameter, can be written as having empty independent set and
is called a static stochastic map/function, i.e. if m is a static stochastic map to Y then
m € X(F —Y), and if f is a static stochastic function then f € ®(Z — R); notation-
ally Pr(y|m) = m(y|.) and undecided probabilistic outcomes are given by m(.) and f(.)
respectively.

Lemma 2. A static stochastic map, m € X(J—Y), can be rewritten as a stochastic map
with an arbitrary finite independent set X, for example mx € (X —-Y), i.e.

VX)) (X(@-Y)c X(X-Y))

Proof. Consider the static stochastic map, m € X(—Y), and an arbitrary finite set X.
Define mx € X(X —Y), such that (Vz € X,y €Y) (mx(y|z) = m(y|.)) o

There is a similar result for stochastic functions,

Lemma 3. A static stochastic function, f € ®(& — R), can be rewritten as a stochastic
function with an arbitrary finite independent set X, for example fx € &(X —R), i.e.

(VX) (2(F—>R) c &(X —>R)).
The proof is straightforward, and similar to that for lemma 2.

Lemma 4. If X, Y and Z are all finite sets, any stochastic map with independent set X
or'Y and dependent set Z, can be rewritten as a stochastic map with independent set X XY
and dependent set Z, i.e. VX,Y,Z) (X(X—>Z)c X (X xY —>Z) > X(Y—>2)).

Proof. Consider any two stochastic maps, mx € X(X — Z) and my € X(Y — Z), with
arbitrary finite sets X, Y and Z. Define the two stochastic maps mq,mz € Z(X XY — Z),
as follows; (Y, y, 2) (m1 (], y) = mx (2]2)), and (Va,y, 2) (ma(zle,y) = my (ly)) o

Again there is a similar result for stochastic functions,

Lemma 5. If X andY finite sets, any stochastic function with independent set X orY, can
be rewritten as a stochastic function with independent set X xY, i.e. VX, Y)(?(X -R)
P(XxY->R)>d(Y >R)).

The proof is again straightforward and similar to that for lemma 4.

Stochastic Maps and functions can be linearly combined, so long as the results are nor-
malised.

3 The two concepts of stochastic map and stochastic function are somewhat similar: they differ only in
that the co-domain is, in the first case finite, and in the second continuous. If the concept of stochastic
mapping were relaxed enough to include continuous dependent sets, then the following could be said to
be true, #(X - R) = X (X —»R). As with the stochastic map, there is a proper subset of deterministic
functions for any set of stochastic functions.

Lemma 6 (Linearly Combining Stochastic Maps). Any n stochastic maps in the same
set, mi,...,mp € X(X >Y) - with arbitrary X and Y, can be combined via some arbitrary
set of positive real numbers, Bi,...,03n € Ry, with non-zero sum, in a normalised linear
fashion to give a new stochastic map in the same set, say Meomb € X (X —Y), such that
Vee X;yeVY,

meom(lr) = 3 Brmiole) | 36,
i=1 i=1

Lemma 7 (Linearly Combining Stochastic Functions). Any n stochastic functions in
the same set, f1,..., fn € (X >R) - with arbitrary X, can be combined via some arbitrary
set of positive real numbers, Bi,...,03n € Ry, with non-zero sum, in a normalised linear
fashion to give a new stochastic function in the same set, say foomb € P(X = R), such that
for all x € X, and bounds a1,a2 € R,

feomn (@22 = D 8: [f:@]22 [36

Alternatively, we can write this equation in terms of the PDF(R)s.

Jeomb () = Zn:ﬁi fi(=) Zn:ﬁz

In lemmas 6 and 7 the respective proofs are again straighforward, and hence omitted for
brevity. It is also worth noting that in both cases the normalisation term in the denominator
can be omitted if > | 3 = 1.

If e is a stochastic map or function, a probabilistic outcome generated by e will be referred
to as a stochastic event, and a stochastic event, from z to y dependent on e, will be written
z 5 y. We can now determine probabilities and probability densities of chains of stochastic
events. The probability of an individual chain of events, x to y dependent on e1, then to z
dependent on ez (z 343 z) is simply the multiplication of the component probabilities,
i.e. in general this would give Pr (y|e1,x) . Pr (z ez, z,y). To see this more formally consider
first two events related to stochastic maps, so for allz € X, yeY, z€ Z, mi1 € ¥(X ->Y),
mo € X(Y > 2),

Pr (™ y ™ 2l) = Pr(ma(e) = y,ma(y) = 2[) = m (yle)ma(=ly)
Next consider two events, defined by a stochastic map followed by a stochastic function, so
for all z € X, y € Y, any bounds a1 < g, me Y(X ->Y) and f € (Y -»R),

aig

Pr(aybale,ar Sa<ar) = Pr(m() = 4. f(y) = ale,or <@ < a2) = mlyle) IS

Care needs to be taken here to whether an outcome from one event is indeed the input to
another; these are strictly causal events.

We can now introduce the concept of composition, analogous to function composition, which
enables us to compose a sequence of stochastic events into a single stochastic map or function.
If we are interested in the composition of m1 € X(X -Y), ma € X(Y > Z), mz € (Y xZ —
W), fa € (Y - R) and f5s € #(Z — R), such that x feeds into my, the m1’s output feeds
into ma, ms and f4, and ma’s output feeds into ms and f5, the following compositions can
be applied. X,Y,Z and W are finite sets.

— There is some composition stochastic map mi_2 € X(X — Z), formed from m; and mso,

written mi_2 = mg om; and given, Vz € X,z € Z, by

misa(z|x) = Z ma (z]y)ma (y|z).

YyeY

— There is some composition stochastic function fi-4 € #(X - R), formed from m; and
fa, written fi4 = fa omi and given, Vz € X, by

fioa(@) =] faly)ma(yla).

yeY

Similarly for fo_,5 = f5 0 ma.

— There is some higher level composition stochastic function fis € ®(X — R), formed
from m1, mg and fs5, written fis = fs omi_o = fa,5 0m1 = f5 0mgy omy and given,
Vx e X, by

fios@) = D0 fs(2)ma(zly)ma (ylo)-

yeY zeZ

— There is some composition stochastic map mi—s € X (X — W), formed from m1, mo
and mg, written mi_3 = mg o (m2 om1) and given, Vx € X,w e W, by

mios(wlx) = Z Z ma (wly, 2)ma(z|y)mi (y|x).

yeY zeZ

Note that in the last case the y variable is recycled for mgs, and is only possible using our strict
causal ordering of events. The above is not an exhaustive list, merely an indication of what
is available, and higher level stochastic events can be generated from compositions of lower
level ones. Any map that feeds into another is said to be an antecessor in the relationship, a
map/function fed into is called the sucessor. The independent input variable of any sucessor
map/function, must be uniquely defined from the output of available antecessor maps, e.g.
in the above examples it would not be possible to compose ms and m2 to get ms o ma, an
antecessor map with dependent set Y is needed for ms.

A stochastic map with matching dependent and independent sets, can be composed with
itself an arbitrary number of times producing a stochastic map of the same type, e.g. if
me X (X —X), then (mom)e ¥(X - X) and (momo...om) € ¥(X — X); notationally,
if such a map m has been composed with itself n-times this is denoted by a superscript, i.e.
m"eX(X->X).

A different way of combining maps, from the sequential sense of composition, is instead in
the parallel sense of union maps.

Lemma 8 (Union Stochastic Map). If X1, X2, Y1 and Y2 are all finite sets, such that
X1 n X2 =, and there are two stochastic maps m1 € X(X1 > Y1) and ma € X(X2—>Ya),
then the two maps can be combined to form a third stochastic map m € X (X1uX2—>Y10Y2),
and for all x € X1 U X2 and y € Y1 U Yo, the following is true;

m1(y|z) iff x € X1, y € Y1,
m(ylz) = { ma(y|z) iff v € X2, y € Ya,
0 otherwise.

m is known as the union map of m1 and ma and written m = mi U Mma.

The proof is straightforward and left to the reader, and again there is a similar result for
stochastic functions.

Lemma 9 (Union Stochastic Function). If X1 and X are finite sets, such that X1 n
Xo =, and there are two stochastic functions f1 € (X1 —>R) and f2 € &(X2 —R), then
the two functions can be combined to form a third stochastic function f € ®(X1 v X2 > R),
and for all x € X1 v X2 and a1 < az (€ R), the following is true;

[A(@)]22 iffe e X1,
@122 = { @) ifee X,

0 otherwise.

f is known as the union function of fi and fa and written f = fi1U fs.

3 Modelling POMDPs

The Partially Observable Markov Decision Process (POMDP) is a commonly used modelling
technique, useful for approximating a wide variety of stochastic processes, so that control
strategies (or policies) can be developed. The POMDP models are mainly used in two dif-
ferent ways to achieve this end: either policies are developed mathematically typically using
the Bellman Equations; or they are used to simulate the process and learn policies through
such methods as Temporal Difference or Monte Carlo Learning, or the more sophisticated
Gradient Ascent learning methods. The simulation role is by far the most commonly used
for developing solutions. Possibly due to their wide appeal, there are some slight differences
between POMDP definitions in the literature — often these differences arise for notational
convenience — but in most cases these choices do not change the class of problems being
addressed. This section uses the machinery from earlier in this paper to define first a general
notion of POMDP, and to then define two specific types of POMDP: a loose representation
(typel) which is favoured in the literature, and a more compact form (type2). We conclude
the section by showing that the two POMDP types are equivalent.

Definition 7 (The POMDP). A POMDP is defined by the tuple (S, A,O,t,w,r,i,II),
where the parameters are as follows: S is the finite state space; A is the finite action space;
O s the finite observation space; t € X(SxA—S) is the transition function that defines the
agent’s effect on the system; w is the observation function that generates observations for
the agent; r is the reward function that generates a real valued reward signal for the agent;
1€ X(g — S) is the initialisation function that defines the initial system state; and II is
the set of all policies available to the agent — typically stochastic maps — which convert
the output from the observation function (and possibly historic information) into new action
choices.

The POMDP models a discrete time process, and is hence divided into time-steps or simply
steps. To see how the model behaves, we consider each time-step separately. The initial state
so € S is generated from i. At each time-step n > 0, the system is in state s,:

1. Generate observation o, € O from w.

2. Generate action choice a,, € A from current policy 7, € II, using 0, (and possibly some
historical information).

Generate next state s,4+1 from ¢, using s, and a,.

4. Generate reward signal, using r.

@

For the purposes of this paper POMDPs are infinite-horizon, meaning this series of steps

repeats endlessly. While this is true for some POMDPs in the literature, others are finite-
horizon and stop or terminate after a finite number of steps. Later in this section, we show
how finite-horizon POMDPs can be transformed into infinite-horizon POMDPs, so from this
point on, unless otherwise stated, POMDP refers to one of infinite-horizon.
The observation and reward functions can take a number of forms, but can at most depend
on prior-state (sn—1), prior-action (a,—1) and post-state (s,). The agent has associated with
itself a policy m € II, where IT is the set of all policies available to the agent. The agent
chooses which action to perform at each step by consulting its policy. In general, these
can depend on an arbitrarily long history of observations and action choices, to generate
the next action choice. In examples, this paper restricts itself to purely reactive policies,
ie. I = X(O — A), but our approach does not enforce reactive policy space, alternative
structures are allowed including: the treelike policies as in Littman [24]; and the finite state
controllers of Peshkin et al. [33], among others. The choice of policy space very often domi-
nates the level of optimality possible and the complexity of the problem addressed.

One family of POMDPs, referred to as typel, is defined by allowing the observations and
rewards to be dependent on the prior-state, prior-action and post-state.

Definition 8 (The typel POMDP). A typel POMDP is a POMDP, where the observa-
tion function, w, and the reward function, r, are both dependent on prior-state, prior-action
and post-state; i.e. w € V(SxAxS—0) andr € d(Sx AxS—-R).

In the above ordering of events in a single time-step, for a typel POMDP, the probability
that the agent’s observation is o € O, is given by w(o|$n—1,an_1,Sn), and the expected
reward is given by F (r,,) = E (r(Sn=1,Gn=1, Sn))-

From lemmas 4 and 5, it can be seen that existing POMDPs using a subset of the indepen-
dent variables to define the observation and/or reward function, e.g. r € #(Ax S —R), are
just special cases of the typel POMDP; this includes those found in [28], [39], [40] and [45];
and those discussed in the introduction.

There is a slight deficiency with the typel POMDP definition (and derivatives), which is not
always remarked upon in the literature, and concerns how the first observation is generated
(at time-step 0). As the observation function w depends on the prior-state and prior-action,
when there is no prior-state or prior-action the behaviour is undefined. In this paper this is
overcome by defining the observation and reward functions over extended state and action
spaces in the independent set, so 0 € X((ST x At x §) — O), where ST = S+{s_1} and
At=A+{a_1}; here s_; and a_; are null-state and null-action respectively, and can be used
when variables are undefined.

A second, family of POMDPs, referred to as type2, can be defined by restricting the ob-
servation and reward functions, such that they are only dependent on the post-state, i.e.
we X(S—>O0) and r e $(S—R).

Definition 9 (The type2 POMDP). A type2 POMDP is a POMDP, where the obser-
vation function w and reward function r depend only on post-state, i.e. w € X (S — O) and
red(S—R).

In the earlier sequence of events in each time-step, for a type2 POMDP, the probability that
the agent’s observation is o € O, is given by w(o|s»), and the expected reward is given by
E (rn) = E(r(sn)).

Perhaps surprisingly, the descriptive powers of these two constructs are the same; that is,
given any typel POMDP there is an equivalent type2 POMDP and vice versa, but to prove
this formally we first require a measure of equivalence we can apply to any two POMDPs.
Intuitively, two POMDPs are equivalent if an agent behaving in an identical way in both
POMDPs, would have identical expectations of experience in both POMDPs, in terms of
observation and reward. More formally, equivalence is determined by the following definition.

Definition 10 (Equivalence of two POMDPs). Let M; = (S1,A4,0,t1,w1,r1,i1,1I)
and Mz = (S2,A,0,ta,w2, 12,12, IT) be two POMDPs with the same action, observation
and policy spaces. Then My and Msy are equivalent, written My = Ma, iff the following two
conditions hold:

1. Gwen some arbitrary action sequence, {ao}y_q, ai € A, the probability of seeing an arbi-

trary observation sequence {00}(=, , is the same, in both My and Ma, i.e. Pr (o[n + 1] |a[n], M1) =
Pr (o[n + 1] |a[n], M2).

2. Given some arbitrary action sequence, {ao}y_,, ai € A, and some arbitrary observation
sequence {00}(}3, the probability density distribution of the reward r;, at each step i, is
the same, in both My and Ma, i.e. for ai,az € R, Pr (a1 < r; < as|o[n+ 1],a[n], M1) =
Pr(a1 <7 < azlo[n + 1],a[n], M2).

It is now straightforward to see that the set of all type2 POMDPs is a subset of the typel,
by considering the reward and observation functions of a type2 to be a restriction of the
corresponding typel functions.

Lemma 10 (type2 — typel). Any type2 POMDP can be transformed into an equivalent
typel POMDP.

Proof. Consider the type2 POMDP M, = (S, A,O,t,wa, 72,1, II) and the corresponding
typel POMDP My = (S, A, O,t,w1,r1,1, 1), where w1 and 71 are defined in terms of ws
and ro, forall se ST, s’ € S,ae AT, 0€ O, a1, a2 €R, a1 <z, in the following way:

w1 (o|s, a,s") = wa(o|s’),

[7"1(5,(1,3')]2? = [7"2(5')]Q2)

ai

Clearly, with either system in state s € S, the probability of any observation or reward is
the same in both M; and Mas, and given that the initialisation and transition functions are
the same, it follows that M; = M>. In fact this proof can be made more concise by simply
using lemma 4.]

The converse is also true.

Lemma 11 (typel — type2). Any typel POMDP can be transformed into an equivalent
type2 POMDP.

Proof. The essence of the transformation is to turn every possible arc (state—action—state)
in a typel POMDP into a state in a corresponding type2 POMDP, and the functions in the
type2 POMDP need to be such that all the expected probabilities are preserved.

Consider the typel POMDP M; = (51, A, O, t1,w1, 71,41, IT) and the corresponding type2
POMDP M, = (S2, A, O, t2, w2, 2,12, IT). Let the state space in Ma to be equal to the set
of all arcs in M;. So, let Sy S (Sfr x AT x S1), but this should only include arcs that are
needed, i.e. non-zero entries in ¢1 and initial states (with null prior-state and prior-action),
meaning (\7’5 €Sf,vs' e S1,Yae A+),

((t1(8'|s,a) > O) v ((11(5'|) >0 A(s=s_1)A(a= afl))) «— ([s,a,5] € S2)

It is now possible to define t2, i2, w2 and r2 in terms of t1, 41, w1 and 71, for all s € Sf’,

s,s"eS1,ac AT, d € A 0€0, a1, € R, in the following way:

ta([s',d, s"|[s, a, 8], d') = ta(s"]s", d),

. :i1(5/ Jiff s=s_1,a=a-_1,
12([8,(17 SI]|) = { =0 | otherwise.7 '

w2 (ol[s, a,s']) = wi(ols,a,s’),

7 @2 N2
[TQ([S7 a,s])]041 - [7‘1 (87 a,s)]011 .
For any POMDP, it is possible, given a fixed sequence of actions a[n] = ao, a1, ...,an (one
for each time-step) to determine the probability of the system moving through the sequence
of (system) states si[n + 1] = so, s1,. .., Sn+1, where s; € S1, e.g. for My and a[n],

n

Pr (51[77, =+ 1] |a[n],M1) = i1(50|.). Ht1(5i+1|si,ai)

=0

If s1[n + 1] is taken as fixed, it is then possible to define a sequence of n + 1 states in Sa,
say s2[n + 1], which has the same probability of occurring in Mz with a[n], as s1[n + 1] in
M with a[n]. To see this, let s2[n+ 1] = [s—1,a-1, s0], [0, a0, $1], - - -, [Sn, Qn, Sn+1], Where
each s; is taken from the fixed s1[n + 1], a;s coming from a[n], and s—; and a—; being null
state and action, then,

Pr (Sz[’l’L + 1] |a[n], M2) = iz([s_l, a—1i, So]|.). H;:o tz([si, g, 81'4_1]“:81'_17 Ai—1, Si]7 ai)
ir(sol.)- TTiz, ta(sia]si, ai)
Pr (si[n + 1]|a[n], M1)

Let a sequence of observations, valid in both M; and Ma, be defined as o[n+1] = 0o, 01, ..., 0n+1.
Then the probability of receiving these observations in Mz, given s2[n + 1] and a[n], is the
same as in M, given si[n + 1] and a[n].
Pr (O[n + 1] |52[7’L + 1]7 a’[n]v Mo) = H?:Ul w2(0i|[5i*17 Ai—1, 81])

=12 wioilsiz1, ai1,s:)

= Pr(o[n + 1] |s1[n + 1], a[n], M1)
It is then possible, by summing the probabilities for getting o[n+1], from each state sequence
s2[n + 1], given a[n], to get an overall probability for seeing o[n + 1] depending simply

10

on a[n], regardless of the underlying system state sequence. Further, because each state
sequence sz2[n + 1], in M, has an associated sequence si[n + 1], in M;, with matching
conditional probability terms, it follows that,

Pr(o[n + 1] Ja[n], M2)

Z Pr (o[n + 1] |s2[n], a[n], M2) . Pr (s2[n + 1] |a[n], M2)
sa[n+1]
= Z Pr (o[n + 1] |s1[n], a[n], M1) . Pr (s1[n + 1] |a[n], M1)
s1[n+1]
Pr (o[n + 1] |a[n], M1),

which satisfies the first condition of equivalence given in Definition 10 *.

The second condition from the equivalence Definition 10, then follows immediately for any
reward 7; at step i in the sequence; since for any a1 <aa,

Pr (a1 €7 < oz lo[n + 1], a[n], M2)

= Z (1] Pr (a1 < ra([si—1,ai-1,8:i]) < az|o[n + 1], s2[n], a[n], Mz) . Pr (s2[n + 1] |a[n], M2)
= Z r[nt1] Pr (a1 € r1(si—1,ai-1, 8i) < azlo[n + 1], s1[n], a[n], M1) . Pr (s1[n + 1] |a[n], M1)
=Pr(a1 <ri < azlo[n +1],a[n], M),

and M; = Ms, as required.]

This is a useful result, as any property proven to hold on typel POMDPs also holds on type2
POMDPs, and vice versa. To see how this might be useful, consider the paper in [19] where
the authors give a number of proofs based on a type2 style POMDP and state that the full
proof, e.g. for a typel style POMDP, exists but is omitted because of its complexity. This
implies that the authors believe typel style POMDPs to somehow have a greater descriptive
power, the above equivalence demonstrates that this is not the case and that separate proofs
are not needed. From this point on, unless otherwise stated all POMDPs are assumed to be
in the type2 format.

If we confine ourselves to a purely reactive policy space, i.e. where action choices are based
solely on the most recent observation, hence IT = ¥(O — A), and a policy, w € IT is fixed,
then the dynamics of this system resolves into a set of state to state transition probabilities,
called the Full State Transition Function.

Definition 11 (Full State Transition Function). Given the POMDP M = (S, A, O, t,w,r,i, 1),
with IT = X(0 — A), the full state transition function is Tar : I — X(S — S), where for
w € Il, Tv(w) = 75 (written 7 when M is clear), and, Vs,s' € S,

7'17\T/I(5’ = Zoeo ZaeA m(alo)t(s ,|57a)

= (tomow) (s |s)

3.1 Episodic POMDPs

All the POMDPs so far have been defined as non-terminating — and hence non-episodic.
These are sometimes called infinite-horizon problems. To model a POMDP that terminates,
it is sufficient to extend the transition function, ¢, to include transitions to the null state,
te X(SxA—ST). A POMDP which terminates is also known as episodic or finite-horizon.
After reaching a terminating state, the system is simply reinitialised with the ¢ function for
the next run.

Definition 12 (Episodic POMDP). An episodic POMDP is a POMDP with the transi-
tion function redefined ast € X(Sx A—ST).

For this paper, restarts are automatic; transitions that terminate and are then reinitialised
are considered to do so in a single step.

4 The sum Z is read as the sum over all possible i-step state traces - the word possible in this case
can be 0m1tteé as the probability of the trace is part of the term.

11

Lemma 12 (Episodic POMDP — POMDP). Any episodic POMDP can be rewritten
as an equivalent (non-episodic) POMDP.

Proof. Consider the Episodic POMDP (S, A, O, t1,w, , 4, IT) and the corresponding POMDP
(S,A,0,t2,w,r,i,IT), where t3 is written in terms of ¢; and i, for all s,5' € S, a € A, in the
following way;

ta(s']s,a) = t1(s'|s,a) + ti(s_1]s,a).i(s'].)
It is now straightforward to see M = M’, the details are left to the reader.

This section introduced two mathematical objects for defining stochastic events, the stochas-
tic map and the stochastic function, and showed two ways to define a POMDP giving exam-
ples of these in the literature. We followed this by demonstrating that any typel POMDP
can be rewritten as a type2 and any type2 as a typel. We argue that the type2 is a more
elegant form, containing all the information required to generate observations and rewards
within the state description, rather than distributed across the most recent transition arc (as
in the typel). Hereafter, we regard models that collect all relevant system information into
the current state description as exhibiting state encapsulation: a type2 POMDP exhibits
state encapsulation, a typel POMDP does not.

4 Multiple Measures and Multiple Agents

The POMDP, while useful, has certain limitations; in particular, it only has one training or
measure signal. This gives at times quite a contrived view of what constitutes a good policy,
or of differentiating better policies from worse ones. This is particularly relevant in the case of
multi-agent systems, where differentiated reward/cost signals cannot be simulated, neither
can we richly describe a single agent with conflicting pressures of heterogeneous nature. To
give a simple example of this consider the paper refilling robot example in Mahadavan [26].
Here there is a need not to run out of charge (hard requirement), with the need to operate
as optimally as possible (soft requirement). In the case of multi-agent with independent
rewards the need for more than one measure signal is clear, but conflicting requirements for
a single agent are traditionally dealt with in the RL and POMDP literature by conflating
two or more signals into one reward (or cost) with small positive incentives for operating
effectively and large negative rewards for behaving disastrously, and this is indeed how
Mahadavan deals with the issue.

This paper concerns itself with the modelling aspects of such systems — concentrating on
the multi-agent side. We note that in real world problems — outside of the RL literature —
multiple signals are often given, both hard and soft, and can represent potentially conflicting
demands on a problem: as an isolated example consider quality of service requirements on
the Grid (a virtual environment for remote management of computational resources) [27].
If RL is to compete with existing solutions in these domains, it will need to manage such
conflicting domands in some way.

A new modelling framework is therefore introduced, called the Finite Analytic Stochastic
Process (FASP) framework. This is distinct from the POMDP in two ways: enforced state
encapsulation, and supporting multiple measure signals.

Definition 13 (FASP). A FASP is defined by the tuple (S, A,O,t,w, F,i,IT), where the
parameters are as follows; S is the finite state space; A is the finite action space; O is the
finite observation space; t € X(SxA—S) is the transition function that defines the actions’
effects on the system; w € X (S— O) is the observation function that generates observations;
F = {f' f%,..., f} is the set of measure functions, where for each i, f' € #(S — R)
generates a real valued measure signal, f., at each time-step, n; i € X(F — S) is the
initialisation function that defines the initial system state; and Il is the set of all control
policies available.

It should be apparent that this builds on the type2 POMDP definition, but where the type2
POMDP has a single reward signal the FASP has multiple signals, and there is no in-built
interpretation of these signals. Clearly, if we restrict the FASP to one measure function and
interpret the signal as reward (or cost) then this is precisely our type2 POMDP. For this
reason, and using Lemma 11, we argue that the FASP is a generalisation of the POMDP.

12

Care needs to be taken in using the FASP to interpret the measure signals, in particular the
desired output of the measure signals. These can be considered separate reward functions for
separate agents (see later in this section), or conflicting constraints as in the paper recycling
robot discussed above [26]. These details are explored to some degree throughout the rest
of this paper, and in particular the discussion in, Section 7, but is a complex issue. For now,
we include this disclaimer: a FASP does not have a natively implied solution (or even set
of solutions) — there can be multiple policies that satisfy an experimenter’s constraints or
none — this is a necessary by-product of the FASPs flexibility.

Due to the similarity with the type2 POMDP we get a full state transition function for
the FASP with reactive policies for free. If we confine ourselves to a purely reactive policy
space, i.e. where action choices are based solely on the most recent observation, hence
II = ¥(O— A), and a policy, 7 € II is fixed, then the dynamics of this system resolves into
a set of state to state transition probabilities, called the Full State Transition Function.

Definition 14 (FASP Full State Transition Function). The FASP M = (S, A, O, t,w, F, i, IT)
, with IT = X (O — A), has full state transition function Tar: IT— X (S — S), where for w e 11,
v (w) = 77 (written T when M is clear), then, Vs,s' € S,

Th1(8']8) = 2oeo 2iaea wlols)m(alo)t(s']s, a)
= (tomow)(s]s)

Note that this is exactly the full state transition function of the POMDP, as in Definition
11. This should be unsurprising, as the only change is to move from a single reward function
to multiple measure functions.

Many POMDP style multi-agent problems which employ simultaneous joint observations and
simultaneous joint actions can be rewritten as FASPs. To do this we redefine the action space
as being a tuple of action spaces each part specific to one agent, similarly the observation
space is a tuple of agent observation spaces. At every time-step, the system generates a joint
observation, delivers the relevant parts to each agent, then combines their subsequent action
choices into a joint action which then acts on the system. Any process described as a FASP
constrained in such a way is referred to as a Synchronous Multi-Agent (SMA)FASP.

Definition 15 (Synchronous Multi-Agent FASP). A Synchronous multi-agent FASP
(SMAFASP), is a FASP, with the set of enumerated agents, G, and the added constraints
that; the action space A, is a Cartesian product of action subspaces, A9, for each g € G, i.e.
A= X 9eG AY; the observation space O, is a Cartesian product of observation subspaces,
09, forAeach g € G, ie O = X gea OY; and the policy space, I, can be rewritten as
a Cartesian product of sub-policy spaces, 119, one for each agent g, i.e. Il = X G 179,
where I19 generates agent specific actions from AY, using previous such actions fg“om AY
and observations from OY.

To see how a full policy space might be partitioned into agent specific sub-policy spaces,
consider a FASP with purely reactive policies; any constrained policy 7 € IT (= X(0O— A)),

can be rewritten as a vector of sub-policies m = (7', #2,...,n!%), where for each g € G,
. . G
II9 = X (09 — A9). Given some vector observation o; € O, 0; = (o}, 07,. .., OL ‘), and vector
. G . .
action a; € A, a; = (a,a3, ..., alj '), the following is true,

m(aslos) = [[n*(alof)

geG

In all other respects 0; and a; behave as an observation and an action in a FASP; and the
full state transition function depends on the complete tuple of agent specific policies (i.e.
the joint policy). Note that the above example is simply for illustrative purposes, definition
15 does not restrict itself to purely reactive policies.

Many POMDP style multi-agent examples in the literature could be formulated as Syn-
chronous Multi-Agent FASPs (and hence as FASPs), such as those found in [8,17,18,33].
Other formulations which treat communicating actions separately from the action set, such
as those in [30, 37], cannot be formalised directly as SMAFASPs, but do fall into the wider

13

category of FASPs. However, this distinction between actions and communicating actions
is regarded by the authors as dubious with respect to transparency and parsimony as em-
bodied by the type2 POMDP and FASP representations (see Section 7 for more on this).
Section 6 shows how examples from some of these frameworks can be transformed into our
FASPs and SMAFASPs, but we omit general transformations for reasons of space — the
authors feel that the general similarities between all these frameworks are clear.

The multi-agent FASP defined above allow for the full range of cooperation or competi-
tion between agents, dependent on our interpretation of the measure signals. This includes
general-sum games, as well as allowing hard and soft requirements to be combined sep-
arately for each agent, or applied to groups. Our paper focuses on problems where each
agent, g, is associated with a single measure signal, f at each time-step n. Without further
loss of generality, these measure signals are treated as rewards, r$ = fZ, and each agent g
is assumed to prefer higher values for 79 over lower ones®. For readability we present the
general-sum case first, and incrementally simplify.

The general-sum scenario considers agents that are following unrelated agendas, and hence
rewards are independently generated.

Definition 16 (General-Sum Scenario). A multi-agent FASP is general-sum, if for each
agent g there is a measure function f € ®(S—R), and at each time-step n with the system
in state sn, g’s reward signal v = f3, where each fg is an outcome of f7(sy), for all g. An
agent’s measure function is sometimes also called its reward function, in this scenario.

Another popular scenario, especially when modelling competitive games, is the zero-sum
case, where the net reward across all agents at each time-step is zero. Here, we generate a
reward for all agents and then subtract the average.

Definition 17 (Zero-Sum Scenario). A multi-agent FASP is zero-sum, if for each agent
g there is a measure function f9 € ®(S - R), and at each time-step n with the system
in state sn, g’s reward signal v = fS — fn, where each fg is an outcome of f9(sn) and

fn = Zh fff/|G|

With deterministic rewards, the zero-sum case can be achieved with one less measure than
there are agents, the final agent’s measure is determined by the constraint that rewards sum
to 1 (such as in [6]).

Lemma 13 (Zero-Sum with Deterministic Measures). A zero-sum FASP M, with all
measures are functionally defined by the state, i.e. f9:S—R for all g € G, can be rewritten
as an equivalent multi-agent FASP M’ with one less measure function.

Proof. Let M be a zero-sum multi-agent FASP, as defined in Definition 17, with the set of
F, of |G| measure functions, f?:S5 — R, one for each g € G. Let M’ also be a multi-agent
FASP, defined in the same way as M except that M’ has a new set of measure functions
F’ # F. Consider some arbitrary agent h € G, and define the set G~ = G/h of all agents
except h. For each agent g € G, there is a measure function e? € F’, defined, Vs € S, where
fleF, as

ef(s) = f(s) = | D] f(s) / |G
geG
The reward signal for any agent g € G, at some time-step n in state s, is given as

b9 = e?(s) - iffge GT
" —Dlieg- €' (s) iffg =h
As the two models only differ by their measure functions, any state sequence is of equal

likelyhood under the same circumstances in either FASP, and it is straightforward to see
that each agent’s reward at each state is the same. Hence M = M’ as required. m]

For probabilistic measures with more than two agents, there are subtle effects on the distri-
bution of rewards, so to avoid this we generate rewards independently.

If agents are grouped together, and within these groups always rewarded identically, then
the groups are referred to as teams, and the scenario is called a team scenario.

5 It would be simple to consider cost signals rather than rewards by inverting the signs

14

Definition 18 (Team Scenario). A multi-agent FASP is in a team scenario, if the set of
agents G 1is partitioned into some set of sets {G,}, so G = Uj Gj, and for each j, there is a

tean measure function f7. At some time-step n in state sn, each j’s team reward ri, = fI,
where f}, is an outcome of f’(sn), and for all g€ G;, r§ =r},.

The team scenario above is general-sum, but can be adapted to a zero-sum team scenario in
the obvious way. Other scenario’s are possible, but we restrict ourselves to these. It might
be worth noting that the team scenario with one team (modelling fully cooperative agents)
and the two-team zero-sum scenario, are those most often examined in the associated multi-
agent literature, most likely because they can be achieved with a single measure function
and are thus relatively similar to the single agent POMDP, see [3,14-16, 22,23, 31, 38,47,
49]. They fall under the umbrella term of simplified multi-agent scenario.

Definition 19 (Simplified Multi-Agent Scenario). Any Stochastic Process modelling
multiple agents is considered to be a Simplified Multi-Agent Scenario, if the reward signal
for every agent can be captured by a single real valued measure function f* € &(S—R), and
a single non-deterministic result, fy,, is generated once per time-step, n, from f, and then
applied deterministically, either positively or negatively, to each agent according to some
static rule.

The cooperative scenario, is the simplest case, that of a single measure signal per step,
applied identically to all agents. In other words, a single team of agents.

Definition 20 (Cooperative Scenario). A multi-agent FASP is in cooperative scenario,
if there is one measure function f¥ € F, where the individual reward signals 3, for all
agents g at time step n, are equal to the global signal, i.e. 3 = f.

It is worth noting that a cooperative scenario SMAFASP is very similar to a POMDP, and
would be maximised under the same conditions. The only difference between the two is
that individual agents’ policies in the SMAFASP depend on an agent specific observation
function. In other words, the difference of the SMAFASP from a traditional POMDP is the
constraints applied over the action, observation and policy spaces. However, our tenets of
transparency and parsimony argue for any system with distributed control to be modelled
as such, and a cooperative scenario SMAFASP satisfies those constraints.

The zero-sum two-team scenario, is precisely a combination of the two scenarios from Defi-
nition 17 and 18.

Lemma 14 (Zero-Sum Two-Team Scenario). A multi-agent FASP M, that is in a
zero-sum two-team scenario, with set of measure functions F, such that |F| = 2, can be
transformed into an equivalent FASP M', with just one measure function.

Proof. Following defintions 17 and 18, a multi-agent FASP M, that is in a zero-sum two-
team scenario, is one where the agents g € G, can be separated into two teams, GT and G~
where G2 U G? = G and G% n G? = (&, and has two measure functions f!, f2 € F. At each
time-step m, in state s two measure signals are generated f. = f!(s) and f2 = f2(s), and
the team reward signals are then as follows, rh = (fa — f2) /2 and r2 = (f2— fr) /2 = —r;.
This means that team 1’s reward at each step is, in effect, determined by the sum of two
random variables, and team 2’s reward is then functionally determined. Papoulis [32, p. 135-
136] tells us that the sum of two random variables, say U and V, is itself a random variable,
say W, and W’s PDF, Fyyv, is the convolution of the PDFs of the component random
variables Fyy and Fy, where,

Fyiv(z) = J, : Fu(y).-Fv(z —y) dy

—o0

So we can replace f! andf?, with a new stochastic function e € $(S —R). For each s € S,
the PDF e(s) = f'*2(s), where f'*2(s) is the convolution of the two PDFs f'(s) and f2(s).
Now let the multi-agent FASP M’, be defined as M with F replaced by F’ = {e}. Trivially
the full state transition function will be identical in both M and M’, and as shown about
at each s the distribution of rewards are the same, hence M = M’ as required. m]

15

Again, the fact that this can be captured by a single measure function, means that a minor
reinterpretation of the POMDP could cover this case. It is no surprise that the zero-sum
two team scenario is, after the cooperative scenario, the most commonly covered scenario
in the literature concerning multi-agent stochastic processes (for examples see [8], [23] and
[47)).

5 Taking Turns

The Synchronous Multi-Agent FASPs described above, sidesteps one of the most interesting
and challenging aspects of multi-agent systems. In real world scenarios with multiple rational
decision makers, the likelihood that each decision maker chooses actions in step with every
other, or even as often as every other, is small. Therefore it is natural to consider an extension
to the FASP framework to allow each agent to act independently, yielding an Asynchronous
Multi-Agent Finite Stochastic Process (AMAFASP). Here agents’ actions affect the system
as in the FASP, but any pair of action choices by two different agents are strictly non-
simultaneous, each action is either before or after every other. The turn-taking modelled
heren relies on the state encapsulated nature of the AMAFASP, and it is arguable whether
an alternative approach could capture this behaviour as neatly. This section defines the
AMAFASP and lists a number of choices for defining and interpreting the measure functions,
then follows this, by showing that an AMAFASP can be converted to an equivalent FASP,
given a marginally more flexible definition of equivalence.

Definition 21 (AMAFASP). An AMAFASP is the tuple (S,G, A, O, t,w, F,i,u, IT), where
the parameters are as follows; S is the state space; G = {g1, g2, ..., 9|c|} is the set of agents;
A= UgeG A9 is the action set, a disjoint union of agent specific action spaces; O = U e 07
is the observation set, a disjoint union of agent specific observation spaces; t € X(SxA—S)
is the transition function and is the union function t = UgeG t9, where for each agent g,
the agent specific transition function t9 € X((Sx A9) — S) defines the effect of each agent’s
actions on the system state; w € X (S — O) 1is the observation function and is the union func-
tion w = UgEG w9, where w9 € X(S— OY) is used to generate an observation for agent g;
F={f" f2,..., fN} is the set of measure functions; i € X(F—S) is the initialisation func-
tion as in the FASP; u € X(S— @) is the turn taking function; and IT = {IT'xIT*x...xIT'\°}
is the combined policy space, where each agent g has policy space 119 = X (07— AY).

The union sets A and O are disjoint unions under all circumstances, as each action, a? € A,
and observation, o® € O, are specific to agents g and h respectively, and hence ¢ and w
satisfy the requirements for union map and function repectively (see Lemmas 8 and 9). The
AMAFASP, like the FASP, is a tool for modelling a discrete time process. It is useful at this
point, to inspect the sequence of events that makes up a time-step or turn in the model.
This would be expected to be as follows,

At each time-step n = 0, the system is in state s, € S:
1. Determine which agent will act this turn from the u function, from s,,, giving g € G.
For g generate observation o7 € O from w?, using sy.
Generate action choice a € AY from g¢’s policy w9 € I1Y, using o
Generate next state s,+1 from t7, using s, and aJ,.
Generate all measure signals f., for each h € G and measure function f* € F, using

U

Sn+1.

It is assumed that observation, action choice and resulting state transition are all instan-
taneous. If this simplification is accepted, then it follows that the above modelling cycle
can be changed without affecting the system dynamics; such that, for each time-step, an
observation, 07, and action choice, a? are determined for all agents g € GG, only then is an
agent h chosen from u, and o and a" are then used - all other observations and actions
being discarded. This may seem like more work, but its utility will soon be apparent. Using
Definitions 10, 19 and this alternative AMAFASP turn ordering, it is now possible to de-
termine the probability of any state-to-state transition as a function of the combined policy
set, and hence the full state transition function.

16

Lemma 15 (AMAFASP Full State Transition). An AMAFASP, M, has associated
with it a full state transition function Tar, given by,

Z Z Z 0?|s) m(a’|0?) t9(s|s, a?)

geG 09€09 a9 A9

= Z u(gls) (t? om0 wg)(s'|s)>

geG

=SV S wgls)wle’ls) wa®]o?) t(s']s, a”)
geG 09€09 a9e A9

= (tomowou)(s|s)

The proof is straightforward and is left to the reader.

An AMAFASP cannot be equivalent to a FASP in the same strict sense as the equivalence
between two POMDPs, i.e. in terms of Definition 10. Firstly there are now multiple measure
signals to consider, but more importantly, the action and observation spaces are in fact
multiple action and observation spaces in the AMFASP case. Instead, an alternative form of
equivalence is required, such that a FASP M is said to be policy-equivalent to an AMAFASP,
M, if for every set of policies in M there is a corresponding policy in M’, with the same
probability distribution over each measure signal, at all steps, in both processes; and vice
versa.

Definition 22 (Policy-Equivalence). An AMAFASP M = (S,G,A,O,t,w, F,i,u,II)
and a FASP M' = (8", A", 0", ¢,/ F',i',II') - with the same number of measure signals,
ie |F|= |F'| - are said to be policy-equivalent via some bijective mapping b: Il — II', writ-

ten M = M'; if, given some arbitrary fized policy w € IT and its associated policy b(r) € IT',
for each measure function f7 € F and matching function (fj)/ € F', and at each time-step
i from the starting state, the probability density distribution of the generated measure signal
I in M with 7, is the same as (fl])/ in M' with b(r), i.e. for a1 <as,

Pr(a1$fij<a2|7r,M)=Pr(a \(fj) a2|b M').

This is a powerful form of equivalence, because the ordering of policies with respect to the
expectation of any signal f7, is the same in M as it is in M, i.e. a preferred policy 7* € II,
in M, maps bijectively to a preferred policy in M’. Hence any policy selection criterion in
M, can be carried out in the M’, and the resulting policy mapped back to M, or vice-versa.

Under certain conditions proof of policy-equivalence is relatively straightforward.

Lemma 16. Let the AMAFASP, M, and FASP, M’, with the bijective policy mapping
b:II — II', be such that M and M’ share the same state space, S = S’, set of measure
functions F' = F', and initialisation function i = i' € X (& — S). If for some 7 € II, both
full state transition functions, T5; and Ty, define the same set of probability distributions
then the processes are policy equivalent, i.e. given

(Vs, s'eS,Vre H) (7'17\}(3'|s) = TET)(S |s))

then M = M.

Proof. To see why this is a sufficient condition for policy equivalence, note that the proba-
bility of the sequence of states {so}gig , where s; € S, is the same - given the conditions in
Lemma 16;

S

Il
S

Pr(s[n+ 1] |m, M) = i(so|.). [[;_o 7ir(si41]s:)
i(s0l.)- [iz OTM/)(51+1|81)
Pr (s[n + 1] |b M),

17

and since all the measure functions are defined over the state, and Vfi e F = F' has the
related function signal f} at step ¢, and the probability that this lies between the bounds
a1 and a2 (a1 <az), is

Pr (a1 <fl<m |7r,M) = Zsm Pr (a1 < fi(si) o |s[z’],7r,M) .Pr(s[i] |=, M)
= Zsm Pr (a1 < fi(si) e |s[i],b 7T),M') .Pr (s[z] |b(7r)7M')
= Pr (a1 < ff < oo |b W),M') ,

and M’ 2 M as required.]

It is now possible to show that, given any AMAFASP, we can generate a policy equivalent
FASP — using Lemma 16, and Definition 22.

Theorem 1 (AMAFASP — FASP). Any AMAFASP, can be represented as a policy-
equivalent FASP.

Proof. Consider the AMAFASP, M = (S,G,A,O,t,w, F,i,u,II), and the FASP, M’ =
(S, A, 0" ¢, Fi,IT'). Let A/ = {A'xA?’x ... x AV} and O’ = {O'xO?x ... xON}
The new action and observation spaces, A’ and O’, are both Cartesian product spaces, for
brevity the following shorthand is defined; if @ € A’, assume a = (a',d?,...,a"), where
a? € AY; similarly, if o € O', assume o = (0',0%,...,0"), where 09 € O9. Define t' and w’,
in terms of all t9, w? and u as follows;

(Vs, s'€e S,Va e A’)

(t'(s'|s,a) = Z u(g|s).tg(s/|s,ag)) ,

geG

(Vse S,Yoe O')

(w'(o|s) = nwg(og|s)> .

geG
The policy space IT = {II* x IT?> x ... x II"V} refers to a Cartesian product of agent specific
policy spaces, and any policy 7 € IT can be given by == (7', 72, ... ,TrN), where 79 € IT9 =
¥ (09— A9), whereas IT' = X (0" — A’). As a shorthand 7(a?|0?) = 79(a?|0?) Consider the
mapping b: IT— IT', where, b is defined as follows;

(Vo €O’ Vaec A Vrell,Ar' ¢ E(O’—>A')) (W'(a|o) = b(m)(alo) = ng(ag|og)) ,

geG

This shows that b maps to a (proper) subset of X(O" — A’), which becomes the full set of
available policies in M’, namely IT’. To put this more formally,

= {7TI|7rl=b(7T),ﬂ'EH}.

To see that this function is bijective, consider the inverse b~ ': IT’ — IT, where for any g € G,
o) € 09 and af € A?, 7 € I and oy € O', such that oy = (...,0,...), i.e. of = 0}, then b1
is defined as follows;

(b(ﬂ') =7e H’) — bil(n')(aﬂof) = 717(ajlo]) = Z 7' (ai|ox)
ajeAl
aZ:(“,,ag,m)

For a full proof see Lemma 17 in the appendix.

Given this definition for b, it is now possible to prove the equivalence of the two full transition
functions for all state-to-state transition probabilities, so Vs,s’" € S, Vr € II and hence
Vb(r) € IT',

18

W ($ls) =Y. > W (ols)b(r)(alo)t (|s, a)

0€0’ acA’

PINDINEDINDY

oleO1 02€02 aleAl a2€A?

Hwi(oi|s) Hﬂh(ahbh) Zu gls)t?(s']s, a?)

i€G he@G

2ol 23 e 2)

oleO?l 02€02 aleAl a2eA2
(w1(01|5)w2(02|5)...le‘(0|G‘|s)7r (0", a" 7?0, a%) ... 7N (", ™M)t (|5, a))
D3 u(0’|s) w(a’lo”) t*(s']s, a%)
gEG 09€09 a9€ A9

= 111(s|s)

The above equivalence uses the fact that,

(VseS¥heG) [> D> W@ @"e") = D W"(o"ls) =1
oheOh ahe Al oheOh
This proof has shown that, as defined, M and M’ have the same state space, measure

functions, and initialisation function; and for any Carteblan product of agent specific policies
7 € II, the full transition functions, 73, and TM, , deﬁne the same set of state to state

transition probabilities; therefore, from Lemma 16, M’ 2 M as required. m|

Theorem 2 (AMAFASP — POMDP). Any simplified scenario AMAFASP, can be
represented as policy-equivalent FASP with a single measure function and hence a POMDP.

This result is a direct consequence of Theorem 1, Definition 13 and the observation that a
FASP is a multi-measure POMDP.

6 Examples

As noted, the FASP (including SMAFASP) and AMAFASP frameworks are together very
powerful and can describe many examples from the literature, as well as examples not cov-
ered by other frameworks — hereafter, any model formulated in any one of these frameworks
will be referred to as FASP style formulations.

6.1 Bowling and Veloso’s Stochastic Game

The following example is taken from Bowling and Veloso’s paper, which examines Nash
Equilibrium in Multi-Agent games [6]. Below is a brief description of the example as it first
appeared — Fig. 1(a), followed by a concise reformulation into a SMAFASP problem —
Fig. 1(b). This illustrates the differences between the two formulations, and the relative
expressive power of the two frameworks.

Formulation 1 (Bowling and Veloso’s example stochastic game). Figure 1 (a) is a reproduc-
tion of the diagram that appears in [6], and is a very terse depiction of the system. There are
two agents, which perform a joint action at every time-step, agent 1 has actions U(p) and
D(own), agent 2 has actions I(eft) and R(ight). Only agent 2’s actions affect state transition,
indicated by the arcs labelled L or R: the dependent probabilities appear in square brackets
elsewhere on the arcs (e is a positive real number s.t. e « 1). In the Bowling version the
policy space is restricted such that the policy for all three states must be the same, this
is equivalent to having an observation space of just one element, meaning the observation

19

(D,L):[1]
(U,R):[1]
(DR)[1]

(D,R):[1]

(:L):[e]

(*R):[e]

(*L):[1-e] (*R):[1-e]

<10
00

Fig. 1. Figure (a) is the example as it appears in [6], fig. (b) is the graph of the example as it looks in the
new FASP framework.

function is trivial and the form unimportant. The matrices near each state are all possible
action rewards for agent 1 when the system leaves that state via one of the four actions
— known as payoff matrices, the two rows being indexed by agent 1’s actions (U and D),
the two columns indexed by agent 2’s actions (L and R) — see [6] for more details. These
reward matrices indicate that the rewards are dependent on the prior-state and prior-action,
similar in style to the typel POMDP formulation.

While Bowling and Veloso’s paper is unusual in that it explicitly mentions general-sum
games, it does not give examples of state dependent general-sum games. Their Colonel
Blotto example — appearing later in the paper — is general-sum, but is static in the sense
that the historical actions do not affect the current system. Formulation 1 could be extended
to give a general sum game, by including a separate set of matrices for agent 2, and hence
there would be three states with two 2x2 reward matrices per state. Bowling and Veloso’s
paper always deals with agents performing simultaneous joint actions, and always has fixed
values for rewards. The games are mostly static (as with Colonel Blotto), and they do
not formulate any large scale/real world problems. They use this example as evidence that
restricted policy space can exclude the possibility of Nash Equilibria.

Formulation 2 (Reformulation of Bowling and Veloso’s game as SMAFASP). Figure 1 (b)
is the same example, but this time in the SMAFASP framework, the actions are as before,
as is the single observation, but there is one more state, s3, which encapsulates the non-zero
rewards appearing in the payoff matrices of Fig. 1(a). Arcs are labelled with the correspond-
ing dual actions in parenthesis (# meaning any action), and the dependent probability in
square brackets. Here, rewards are not action dependent, but are instead linked simply to
states. Only one (deterministic) measure function f' is needed, this represents the reward
for agent 1 and the non-zero values are at state ss, so f1(53) = 1, for all other states s # s3,
f'(s) = 0. The game is zero-sum, so agent 2’s rewards are the negative values of the row
agent’s rewards.

This SMAFASP formulation uses only one extra state, by exploiting the sparsity of the
payoff matrices and uniformity of transition function of the original. If the 3 states from
Formulation 1 were each associated with one heterogeneous reward matrix per agent (i.e.
if the problem were general-sum), then the FASP style formulation could require upto 12
states — but as with our reformulation any symmetries could help reduce this: in that
case, the two reward signals would then be represented by two separate measure functions,
f, f? € (S —R) — one function per agent.

In fact, if the full transformation described in the proof to Lemma 11 were used then the
generated FASP would have 36 states because the general transformation assumes that re-
wards are dependent on prior-state, prior-action and post-state — a dependency not allowed
with Bowling and Veloso’s framework. The choice of this stochastic game is made to best
demonstrate the differences between the FASP modelling style and other more traditional
approaches. In particular, the simplicity of the observation function allows us to examine
the effects of various choices for the reward function. However, even if there were more

20

observations, a more complicated typel POMDP style observation function were used, and
this was dependent on a more connected transition function, the SMAFASP reformulation
would still have a maximum of 36 states. How many of those 36 states are actually needed
is dependent on the information content of the original. Other toy examples from the lit-
erature can be reformulated just as simply. Similar problems we have reformulated in this
way include: the single agent tiger problem from Cassandra et al.’s 1994 paper on optimal
control in stochastic domains [11]; the multi-agent tiger problem from Nair et al.’s 2002
paper on decentralised POMDPs [30]; and the general-sum multi-agent NoSDE example in
Zinkevich et al.’s 2003 paper on cyclic equilibrium [50].

6.2 Littman’s adversarial MDP Soccer

Next, we introduce the soccer example originally proposed in [23], and revisited in [4,5, 7,
33,47]. We illustrate both the transparency of the modelling mechanisms and ultimately the
descriptive power this gives us in the context of problems which attempt to recreate some
properties of a real system. The example is first formulated below as it appears in Littman’s
paper [23], and then recreated in two different ways.

Goal
[[EelS)

Fig. 2. The MDP adversarial soccer example from [23].

Formulation 8 (Littman’s adversarial MDP soccer). An early model of MDP style multi-
agent learning and referred to as soccer, the game is played on a 4 x 5 board of squares, with
two agents (one of whom is holding the ball) and is zero-sum, see Fig. 6.2. Each agent is
located at some grid reference, and chooses to move in one of the four cardinal points of the
compass (N, S, E and W) or the P action at every time-step. Two agents cannot occupy the
same square. The state space, Sp1, is of size 20 x 19 = 380, and the joint action space, Ar1
is a cartesian product of the two agents action spaces, A x AZ,, and is of size 5 x 5 = 25.
A game starts with agents in a random position in their own halves. The outcome for some
joint action is generated by determining the outcome of each agent’s action separately, in
a random order, and is deterministic otherwise. An agent moves when unobstructed and
doesn’t when obstructed. If the agent with the ball tries to move into a square occupied by
the other agent, then the ball changes hands. If the agent with the ball moves into the goal,
then the game is restarted and the scoring agent gains a reward of +1 (the opposing agent
getting —1).

Therefore, other than the random turn ordering the game mechanics are deterministic. For
example, see Fig. 3(a), here diagonally adjacent agents try to move into the same square:
the order in which the agents act determines the outcome.

The Littman soccer game can be recreated as a SMAFASP, with very little work. We add
a couple more states for the reward function, add a trivial observation function, and flatten
the turn-taking into the transition function.

Formulation 4 (The SMAFASP soccer formulation). The SMAFASP formulation of the soc-
cer game, is formed as follows: the state space Sz = Sr1 + sk + sp, where s is the
state immediately after g scores a goal; the action space Ar2 = Ar1; the observation space
Otz = Si2; the observation function is the identity mapping; and the measure/reward func-
tion for agent A, fA € ¢(Sr2 —R) is as follows,

FAsh) =1, fA(sh) =—1, and f*(s) = 0 for all other s € S.

21

ny’ : :
/<East,South>
(agent A then agent B)
1172

A A << East,South>

[1/2]

<East,South>
(agent B then agent A)

(a) (b)

Fig. 3. If agent A chooses to go East and agent B chooses to go South when diagonally adjacent as
shown, the outcome will be non-deterministic depending on which agent’s move is calculated first. In the
original Littman version this was achieved by resolving agent specific actions in a random order, fig. (a).
In the SMAFASP version this is translated into a flat transition function with probabilities on arcs (square
brackets), fig. (b).

Agent B’s reward function is simply the inverse, i.e. fZ(s) = —f4(s), for all s.

To define the transition function we need first to imagine that Littman’s set of transitions
were written as agent specific transition functions, t?L1 € X(SL1x A1 — Si1) for each agent
g — although this is not explicitly possible within the framework he uses, his description
suggests he did indeed do this. The new transition function, tr,2 € X' (Sr2XAr2 — SL2), would
then be defined, for all sp, Sn41 € SL1, al € Ay, a2 € AP, in the following way,

tL2(Snt1|Sn, (%ﬁ af))
_ 1 Z tfl(8|sn7a'r‘?)'tfl(anrdSaaE)
2 +t82, (8|50, aB).t{4 (sn41]s,ald))
seSL,1
The transition probabilities involving the two new states, s% and sk, would be handled in
the expected way.

The turn-taking is absorbed so that the random order of actions within a turn is implicit
within the probabilities of the transition function, see Fig. 3(b), rather than as before being
a product of the implicit ordering of agent actions, as in Fig. 3(a).

It is possible to reconstruct Littman’s game in a more flexible way. To see how, it is instruc-
tive to first examine what Littman’s motives may have been in constructing this problem,
which may require some supposition on our part.Littman’s example is of particular interest
to the multi-agent community, in that there is no independently optimal policy for either
agent; instead each policy’s value is dependent on the opponent’s policy — therefore each
agent is seeking a policy referred to as the best response to the other agent’s policy. Each
agent is further limited by Littman’s random order mechanism, see Fig. 3(a), which means
that while one agent is each turn choosing an action based on current state information, in
effect the second agent to act is basing its action choice on state information that is one
time-step off current; and because this ordering is random, neither agent can really rely on
the current state information. Littman doesn’t have much control over this turn-taking, and
as can be seen from the SMAFASP formulation, the properties of this turn-taking choice can
be incorporated into the transition function probabilities (see Fig. 3 (b)). Different proper-
ties would lead to different probabilities in the SMAFASP, and would constitute a slightly
different system with possibly different solutions.

However, consider for example, that an agent is close to their own goal defending an attack.
Its behaviour depends to some degree on where it expects to see its attacker next: the
defender may wish to wait at one of these positions to ambush the other agent. The range
of these positions is dependent on how many turns the attacker might take between these
observations, which is in turn dependent on the turn-taking built into the system. For ease of

22

reading, we introduce an intermediate AMAFASP formulation. The individual agent action
spaces are as in the SMAFASP, as is the observation space, but the new state information
is enriched with the positional states of the previous time-step, which in turn can be used
to generate the observations for agents.

Formulation 5 (The first AMAFASP soccer formulation). This AMAFASP formulation of
the soccer game, Mis, is formed as follows: the new state space Si3 = Sz X SL2, SO a
new state at some time-step n, is given by the tuple (sn, Sn—1), where sn—1, s, € Sr2 and
records the current and most recent positional states; there are two action space, one for
each agent, A7y = Af, and Afy = Af,; and two identical agent specific observation spaces,
Of'y = OF; = Or2; the new agent specific transition functions, #/, € X(Srs x A?, — Si3),
are defined, for all s,—1, Sn, S, Sn+1 € SL2, a% € A7, in the following way:

Hy(snslsn,af) iff s, = s
s ((sne1, 55l (5m,501), 08) = {o“ otherwise.

where ¢, represents agent g’s deterministic action effects in Littman’s example, as in For-
mulation 4. The goal states, s’ and sj, are dealt with as expected.
Recalling that Ors = SL2, the observation function, w{, € X' (SLs — Ovs), is generated, for
all (sn—1,8n) € Su3, on € Of,, and g € {A, B}, in the following way,

1 iff sp—1 = 0on,
wiz(onl(sn,8n-1)) = {0 otherwise.
The reward function is straightforward and left to the reader.
Finally, we construct the turn-taking function urs € X'(Srs — {4, B}), which simply gener-
ates either agent in an unbiased way at each time-step. The turn taking function is defined,
for all (sn, Sn—1) € Si3, as

uLs(Al(sn, sn—1)) = uLs(B|(sn, sn-1)) = 1/2.

This doesn’t fully replicate the Littman example, but satisfies the formulation in spirit in
that agents are acting on potentially stale positional information, as well as dealing with
an unpredictable opponent. In one sense, it better models hardware robots playing football,
since all agents observe slightly out of date positional information, rather than a mix of
some and not others. Both this and the Littman example do, however, share the distinction
between turn ordering and game dynamics typified by Fig. 3 (a), what is more, this is now
explicitly modelled by the turn-taking function.

To fully recreate the mix of stale and fresh observations seen in Littman’s example along
with the constrained turn-taking, we need for the state to include turn relevant information.
This can be done with a tri-bit of information included with the other state information, to
differentiate between; the start of a Littman time-step, when either agent could act next;
when agent A has just acted in this time-step — and it must be B next; and vice versa when
A must act next; we shall label these situations with lp, Ip and [4 respectively. This has
the knock on effect that in [y labelled states the observation function is as Formulation 4;
in l4 and Ip labelled states the stale observation is used — as in Formulation 5. Otherwise
Formulation 6 is very much like formulation Formulation 5.

Formulation 6 (The second AMAFASP soccer formulation). This AMAFASP formulation
of the soccer game, Mr4, is formed as follows: there is a set of turn labels, L = {lo,la,lB};
the state space is a three way Cartesian product, Sr.a = SL2XxSr2X L, where the parts can be
thought of as current-positional-state, previous-positional-state and turn-label respectively;
the action spaces and observation spaces are as before, i.e. A7, = A7,, Oy = O3, for each
agent g; the transition and reward functions are straightforward and are omitted for brevity;
the observation and turn taking functions are defined, for all (sn, Sn—1,ln) € SL4, on € O,
and all agents g, in the following way,

1 iff s, =0, and l,, = lo,

Wi (0n|(Sn, Sn-1,1n)) =< 1 iff sp_1 = 0p and I, = ug,
0 otherwise.

23

and

% iff g, = g and 1, = lo,
uLa(gn|(Sny Sn—1,ln)) =< 1 if g = g and I, = uy,
0 otherwise

The above formulation recreates Littman’s example precisely, and instead of the opaque
turn-taking mechanism hidden in the textual description of the problem, it is transparently
and explicitly modelled as part of the turn-taking function.

So the Littman example can be recreated as a SMAFASP or AMAFASP, but more interest-
ingly both AMAFASP formulations, 5 and 6, can be tuned or extended to yield new, equally
valid, formulations. What is more, the intuitive construction means that these choices can
be interpreted more easily.

Consider Formulation 5; the turn-taking function u can be defined to give different turn-
taking probabilities at different states. For instance, if an agent is next to its own goal,
we could increase its probability of acting (over the other agent being chosen) to reflect
a defender behaving more fiercely when a loss is anticipated. Alternatively, if an agent’s
position hasn’t changed since the last round, but the other’s has then the first agent could
be more likely to act (possible as two steps of positional data are stored); giving an advantage
to the P(ause) action, but otherwise encouraging a loose alternating agent mechanism.
While Formulation 6 recreates the Littman example, it again can be adjusted to allow differ-
ent choices to the turn taking mechanism; in particular it is now possible to enforce strictly
alternating agents. This would be done by flipping from state label 4 to I or vice versa,
at each step transition, and otherwise keeping things very much as before. It is important
to note that many specific models built in this way, can be recreated by implicit encoding
of probabilities within existing frameworks, but it is difficult to see how the experimenter
would interpret the group of models as being members of a family of related systems. More
importantly, agents can in general go any number of time-steps without being given the
opportunity to act, whilst all the measure signals are generated at every time-step. Again,
it would not be easy to recreate this without explicit state-based turn-taking.

6.3 Flexible Behaviour Regulation

If we increase the number of players in our game, we can consider increasing the number of
measure functions for a finer degree of control over desired behaviour. With just 2 agents
competing in the Littman problem, it is difficult to see how to interpret any extra signals, and
adding agents will increase the state space and hence the policy size radically. So, before we
address this aspect of the FASP formalisms, it is useful to examine a more recent derivative
soccer game, namely Peshkin et al.’s partially observable identical payoff stochastic game
(POIPSG) version [33], which is more amenable to scaling up.

\%1

Goal
[eo

© Vo

Fig. 4. The POIPSG cooperative soccer example from [33].

Peshkin et al’s example is illustrated in Fig. 6.3. There are two team mates, V1 and Va2, and
an opponent O, each agent has partial observability and can only see if the 4 horizontally
and vertically adjacent squares are occupied, or not. Also, players V7 and V5, have an extra
pass action when in possession of the ball. Otherwise the game is very much like Littman’s
with joint actions being resolved for individual agents in some random order at each time-
step. Contrary to expectations, the opponent is not modelled as a learning agent and doesn’t

24

receive a reward; instead the two team mates share a reward and learn to optimise team
behaviour versus a static opponent policy; for more details see [33].

As with its progenitor, the Peshkin example could be simply reworked as a SMAFASP in
much the same way as in Formulation 4. Recreating it as an AMAFASP is also reasonably
straightforward; as before, the trick of including the previous step’s positional state in an
AMAFASP state representation, allows us to generate stale observations — which are now
also partial. As this is relatively similar to the Littman adaptions, the details are omitted.
The focus here instead, is to show that, in the context of Peshkin’s example, a zero- or
general-sum adaption with more agents, could have some utility. Firstly, agent O could
receive the opposite reward as the shared reward of Vi and V», this could be done without
introducing another measure function, merely reinterpreting Peshkin’s reward function; now,
the opponent could learn to optimise against the cooperative team. More interestingly, the
players V4 and V> could be encouraged to learn different roles by rewarding Vi (say) more
when the team scores a goal and penalising V2 more when the team concedes one, all this
requires is a measure function for each agent and a zero-sum correction. It doesn’t stop
there, we can add a second opponent (giving say O1 and O-), either rewarding them equally
or encouraging different roles as with V4 and V5. In this way we could explore the value of
different reward structures by competing the teams. If more agents were added, even up to
11 players a side, and a much larger grid, the AMAFASP framework supports a much richer
landscape of rewards and penalties, which can encourage individual roles within the team,
while still differentiating between good and bad team collaborations.

In this section, we have presented MDP style multi-agent examples from the literature,
and shown how they can be reformulated as FASP type problems, including SMAFASP
and AMAFASP. We have shown that state encapsulation is possible in practice, even with
multi-agent examples, and that representations can be made more concise than the stan-
dard typel—type2 POMDP transformation (see proof to Lemma 11. Of equal interest, we
have shown that there are enriched formulations available to the FASP framework that
are not naturally modelled by the other multi-agent MDP style frameworks encountered;
further, these enriched formulations are relatively simple to construct and have intuitive
interpretations.

7 Discussion

In this paper, we have shown that the different choices that have crept into the MDP and
POMDP formalisms since first proposed, do not affect the fundamental nature or express-
ibility of the framework. To do this, we have tried to make explicit many assumptions about
stochastically generated outcomes, which in turn may help implementers hoping to leverage
the now vast body of MDP theory. As research has moved into multi-agent MDP style do-
mains many of these assumptions and interpretations have come with it, and we hope that
the work in the early sections of this paper has helped to clarify this.

The paper then goes on to develop a more general, more intuitive set of tools for modelling
MDP style problems, including (but not restricted to) multi-agent problems; and bases these
tools on the tenet of transparent parsimonious mechanisms, an idea developed to encourage
good modelling style. Transparent parsimonious mechanisms try to reflect common elements
of real processes in understandable ways.

We argue that state encapsulation facilitates adherence to such mechanisms, and informs
all the ideas that follow. It allows frameworks that more naturally yield to analysis, and
extension, but in such a way that it does not restrict existing models in any way — see Section
3. The purpose of this paper is not just to persuade modellers and experimenters to use state
encapsulation, but also to encourage theorists to base analysis on state encapsulated systems.
In some cases, this can simplify things conceptually and mathematically, and in turn may
throw light on the properties of these problems. The preference for type2 POMDPs in the
proofs in [19] is just one example of how state encapsulation leads to simpler analysis. In a
future paper, we will demonstrate some of the analytical advantages of this approach.

The first additional mechanism we add to the traditional POMDP is that of multiple measure
functions. One measure signal for each measurable quantity fed to the agent or agents is then
used to develop the FASP framework, and is more a challenge to theorists and experimenters
alike to start examining a richer domain of problems; models that are easier to develop, and

25

better reflect the task at hand. The paper concentrates on multi-agent problems, and so
defines a subtype of the FASP called the SMAFASP. Multi-agent problems have received a
great deal of attention in the last few years, but lack emphasis on the general-sum stochastic
game which allows more interesting agent relationships to be tested, including those that
are mutually beneficial to multiple agents, so the paper explicitly develops a number of
reward scenarios to encourage modellers to experiment with more interesting motivational
relationships than straightforward cooperation or competition. We also argue, that treating
communication actions separately from other (doing) actions — as proposed in a number
of recent papers [30] [34] [35] and [48] — is difficult to reconcile with the principle of
parsimony, since any action that changes the external environment can pass information
to other agents, and any communication that has some physical component — radio, sound,
light — changes the external environment: there is a false duality here, that may omit
solutions which communicate with doing actions or vice versa. We would argue that the
job of modelling other agents is best decoupled from the dynamics of the environment,
and, if done explicitly, performed separately within each agents’ policy mechanism. This
challenges us to develop better tools for agent communication: an idea we hope to visit in
a later paper. At the same time, we acknowledge that there are complexity savings to such
choices, sometimes dramatic ones [35], and there are no barriers to developing a framework
incorporating these explicit commuinication mechanisms, with some of the other ideas from
this paper, such as state encapsulation or turn-taking.

This rationale of transparency then leads us to propose the AMAFASP, where agents are
allowed to act out of turn with each other, which can tackle a set of problems which is
potentially even broader than synchronous multi-agent games. We later show how we can
use this to model Littman’s soccer problem, in an arguably more natural and certainly more
transparent way, and how this model can then be altered to explore the game more fully.
There are other mechanisms which satisfy our tenets of good practice other than those
seen in this paper, some already developed, and we are sure there are others to add. As
an example of the former, consider the simulation of a broken actuator — put forward in
Bowling and Veloso’s paper on Nash-equilibria for restricted agents [6] — this is handled
by separate stochastic mapping from intended action to restricted action, ideal for models
intended to explore failing agents. Another candidate mechanism is the extraneous action
events from [36], an explicit mechanism for modelling random changes in state not due to
agents actions — again this is normally encoded in the transition function. So there is scope
to grow the FASP family of frameworks, the aim being to enable experimenters to model
systems more naturally.

Shoham et al.’s 2006 survey on multi-agent learning [38] asserts that different members
of the multi-agent learning (MAL) community are guided by different motivations, and
highlight 5 ‘buckets’ or rough objectives they feel most MAL research falls into. The paper
is not wholely uncontentious [43], but if we were to take their conclusions as a guide we
could identify research objectives in all 5 disciplines that would benefit from our modelling
techniques. The models produced by the FASP framework are intended to model flexibly
especially within the multi-agent learning community, so it should come as no surprise that
we recommend our tools widely, but we acknowledge that this work needs to be hardened
and extended if they are to have broad appeal.

References

1. Jonathan Baxter, Peter L. Bartlett, and Lex Weaver. Experiments with infinite-horizon,
policy-gradient estimation, November 2001.

2. Jonathan Baxter, Lex Weaver, and Peter L. Bartlett. Direct Gradient-Based Rein-
forcement Learning II: Gradient Ascent Algorithms and Experiments. Technical report,
Australian National University, November 1999.

3. Daniel S. Bernstein, Shiomo Zilberstein, and Neil Immerman. The complexity of de-
centralized control of markov decision processes. In Proceedings of the 16th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-00), pages 3237, San Fran-
cisco, CA, 2000. Morgan Kaufmann.

4. Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. Reali Costa. Heuristic
selection of actions in multiagent reinforcement learning. In Manuela M. Veloso, editor,
IJCAI, pages 690-695, 2007.

26

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Michael Bowling, Rune Jensen, and Manuela Veloso. A formalization of equilibria for
multiagent planning. In Proceedings of the AAAI-2002 Workshop on Multiagent Plan-
ning, August 2002.

Michael Bowling and Manuela Veloso. Existence of Multiagent Equilibria with Limited
Agents. Journal of Artificial Intelligence Research 22, 2004. Submitted in October.
Michael H. Bowling, Rune M. Jensen, and Manuela M. Veloso. Multiagent planning in
the presence of multiple goals. In Planning in Intelligent Systems: Aspects, Motivations
and Methods. John Wiley and Sons, Inc., 2005.

Michael H. Bowling and Manuela M. Veloso. Simultaneous adversarial multi-robot
learning. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 699-704. Morgan
Kaufmann, 2003.

Darius Braziunas. POMDP solution methods: a survey. Technical report, Department
of Computer Science, University of Toronto, 2003.

Anthony R. Cassandra. Optimal policies for partially observable markov decision pro-
cesses. Technical report, Brown University, Providence, RI, USA, 1994.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting opti-
mally in partially observable stochastic domains. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94), volume 2, pages 1023-1028, Seattle,
Washington, USA, 1994. AAAT Press/MIT Press.

Tony Cassandra. The POMDP Page. URL, 2003-2005.

Shih-Fen Cheng, Evan Leung, Kevin M. Lochner, Kevin O’Malley, Daniel M. Reeves,
Julian L. Schvartzman, and Michael P. Wellman. Walverine: a walrasian trading agent.
Decis. Support Syst., 39(2):169-184, 2005.

Alain Dutech, Olivier Buffet, and Francois Charpillet. Multi-agent systems by incre-
mental gradient reinforcement learning. In IJCAI pages 833-838, 2001.

Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-Verlag
New York, Inc., New York, NY, USA, 1996.

P. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent
settings, 2004.

Amy Greenwald and Keith Hall. Correlated g-learning. In AAAI Spring Symposium
Workshop on Collaborative Learning Agents, 2002.

Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: theoretical
framework and an algorithm. In Proc. 15th International Conf. on Machine Learning,
pages 242-250. Morgan Kaufmann, San Francisco, CA, 1998.

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning al-
gorithm for partially observable Markov decision problems. In G. Tesauro, D. Touretzky,
and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7,
pages 345-352. The MIT Press, 1995.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Technical Report CS-96-08, Brown
University, 1996.

Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control
Optim., 42(4):1143-1166, 2003.

Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems. In Proc. 17th International Conf. on Machine
Learning, pages 535-542. Morgan Kaufmann, San Francisco, CA, 2000.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learn-
ing. In Proceedings of the 11th International Conference on Machine Learning (ML-94),
pages 157-163, New Brunswick, NJ, 1994. Morgan Kaufmann.

Michael L. Littman. The witness algorithm: Solving partially observable markov decision
processes. Technical Report CS-94-40, Brown University Department of Computing,
1994.

John Loch and Satinder P. Singh. Using Eligibility Traces to Find the Best Memoryless
Policy in Partially Observable Markov Decision Processes. In Proc. 15th International
Conf. on Machine Learning, pages 323-331. Morgan Kaufmann, San Francisco, CA,
1998.

Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms,
and empirical results. Machine Learning, 22(1-3):159-195, 1996.

27

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Stephen McGough, Asif Akram, Li Guo, Marko Krznaric, Luke Dickens, David Colling,
Janusz Martyniak, Roger Powell, and Paul Kyberd. GRIDCC: Real-time Workflow
System. In The 2nd Workshop on Workflows in Support of Large-Scale Science, June
2007.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

George E. Monahan. A survey of partially observable markov decision processes: Theory,
models, and algorithms. Management Science, 28(1):1-16, Jan 1982.

Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella.
Taming decentralized pomdps: Towards efficient policy computation for multiagent set-
tings. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 705-711. Morgan Kauf-
mann, 2003.

Fans Oliehoek and Arnoud Visser. A Hierarchical Model for Decentralized Fighting of
Large Scale Urban Fires. In P. Stone and G. Weiss, editors, Proceedings of the Fifth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Hakodate, Japan, May 2006.

A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw Hill,
3rd edition, 1991.

Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie P. Kaelbling. Learning
to cooperate via policy search. In Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 307-314, San Francisco, CA, 2000. Morgan Kaufmann.

D. Pynadath and M. Tambe. The communicative multiagent team decision problem:
analyzing teamwork theories and models, 2002.

D. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the optimality and
complexity of key theories and models, 2002.

Bharaneedharan Rathnasabapathy and Piotr Gmytrasiewicz. Formalizing multi-agent
pomdp’s in the context of network routing.

Maayan Roth, Reid Simmons, and Manuela Veloso. What to communicate? execution-
time decision in Multi-agent POMDPs.

Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is the answer,
what is the question? Artif. Intell., 171(7):365-377, 2007.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Learning without state-
estimation in partially observable markovian decision processes. In International Con-
ference on Machine Learning, pages 284-292, 1994.

Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligi-
bility traces. Machine Learning, 22(1-3):123-158, 1996.

Richard D. Smallwood and Edward J. Sondik. The Optimal Control of Partially Ob-
servable Markov Processes over a Finite Horizon. Operations Research, 21(5):1071-1088,
Sep-Oct 1973.

Matthijs T.J. Spaan and Nikos Vlassis. A point-based POMDP algorithm for robot
planning. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 2399-2404, New Orleans, Louisiana, April 2004.

Peter Stone. Multiagent learning is not the answer. It is the question. Artificial Intel-
ligence, 2006. To appear.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation, 1999.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38(3):58-68, 1995.

William T. B. Uther and Manuela M. Veloso. Adversarial reinforcement learning. Tech-
nical report, Computer Science Department, Carnegie Mellon University, April 1997.
P. Xuan, V. Lesser, and S. Zilberstein. Communication in multi-agent markov decision
processes, 2000.

Erfu Yang and Dongbing Gu. Multiagent reinforcement learning for multi-robot sys-
tems: A survey. Technical report, University of Essex, 2003.

Martin Zinkevich, Amy Greenwald, and Michael Littman. Cyclic equilibria in markov
games. In Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1641-1648. MIT Press, Cambridge, MA, 2005.

28

A Additional proof for inverse bijective function

Lemma 17 (The Policy Mapping b, as defined in proof to thm. 1, is bijective).
If we have an AMAFASP M and FASP M' as defined in the proof to thm. 1 then there is
an inverse b~' : IT' — I, and for all g € G, of € 09, aj € A% m e Il and oy € O, such
that o, = (...,07,...), i.e. of =0, then

(b(m) =="eIl') - | b7 (") (af]of) = 7/(aflof) = D, «'(ailox)
ajeAl
al:(.“,aﬁ,m)

Proof. For ease of reading we will define the following notation, for all g € G, 09 € OY,
a? € A%, 0e O', ae A', and w € II, such that; b(r) = «’ € I, further then,
g

°g
ag

79(af0?) =7

and
7 7
7 (@]0) = Toj00...0/g
ajaz...a|g|

It is therefore clear from our definition of b, that

7r0102 ol | | 7d =g a2, .. alll
aiasz...a ‘ Pl al aj |G|
16l geG %9 ajg|
And if we were to sum this over all agent 7 specific actions, a* € A*, knowing that ZaieAi o, =
3
1, then,
_ 12 i te]
ﬂ-oloz olq = Moy Moy - Moy - Moy
o EAI ajag. "‘|G\ aiGAi % a‘|G\
12 i—1 i i+1 G
= Moy Moy ++ Moy - Z To; 'ﬂ—:rﬂ ol (l;
a1 a2 ai_1 a; t al |
=1\ Jicai i+ Ic|
12 i—1 i+l e
= Moy Moy - Moy Moi iy - Mo,
a1 a3 : !
aj—1 QAi41 |G|
Clearly, performing this sum for all agents except agent j € G, we get,
S0 =3 Y A o
acA | i#j ale At a1a2 a‘Gl
fixing aJ
— 1 1G|
= Toy - Mo,
1
i#J ate Al G|
1 2
= Moy | - oy
al ay
aleAl aZeA?
j—1 J Jj+1
DI FE D ST
ai—leai—1 %i—1 4 \gitleai+r %i+1
el
ZIG\
‘ alGlealel %Gl
—
= 7T°j
aj
= ()

and we are back at the single values for individual agents, as required, and hence b is
bijective.]

29

