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Abstract

We present a formal, logical framework for the representation and analysis
of an expressive class of authorization and obligation policies. Basic concepts of
the language and operational model are given, and details of the representation
are defined, with an attention to how different classes of policies can be written
in our framework. We show how complex dependencies amonst policy rules can
be represented, and illustrate how the formalization of policies is joined to a
dynamic depiction of system behaviour. Algorithmically, we use a species of
abductive, constraint logic programming to analyse for the holding of a number
of interesting properties of policies (coverage, modality conflict, equivalence of
policies, etc.). We describe one implementation of our ideas, and conclude with
remarks on related work and future research.

1 Introduction

This paper presents a formal framework for the representation and analysis of au-
thorization and obligation policies. Policies are represented in an expressive logical
language, which can capture complex dependencies amongst policy rules; these pol-
icy rules are then joined to a specification of the behaviour of the system which the
policies regulate, and many different types of analyisis and verification may then be
performed on the joined system.

The policies themselves may be originally specified by a user in a language such
as Ponder2 [RDD07] 1 or XACML [OAS05], and then translated by machine into
our formalism. For the purposes of this paper we pass over the details of the orig-
inal specification of policies, and the process of machine translation into our own
formalism, and concentrate on the core language which is used for analysis, giving
illustrations of the forms of policy rule our language can represent, and showing
examples of the typical kinds of analysis we make.

A crucial component of our framework is the representation, of dynamic system
behaviour (we have been influenced in seeing the necessity for this by [DFK06]).
We use the Event Calculus [KS86] to describe how events and actions occurring in
the system effect the system states; these specifications of system behaviour may
be made at whichever level of abstraction the user chooses. The rules defining sys-
tem behaviour are then joined to a simple model of policy enforcement, together
with concrete authorization and obligation policies, in order to provide a complete,
analyzable, and highly dynamic model of policy-constrained systems. Perhaps the
most obvious benefit of this type of approach is the possibility of searching for con-
figurations of the policy mechanisms which are dependent on dynamically-generated

1See also http://ponder2.net/.
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configurations of system state—such as the presence of a modality conflict (e.g. an
action’s being simultaneously permitted and denied) only after a given sequence
of system events. Consider, for example, a policy which states that the primary
health-carer of a patient is permitted to access the patient’s record, but that nurses
in training are denied such access. The two policy rules given have a potential con-
flict: for if nurses in training may also be primary health-carers, then such a nurse
would both be permitted and denied access to his or her patient’s records. However,
the medical system in question may be engineered in such a way as to prevent, not
as a consequence of policy rules but as a result of the behaviour of the system, nurses
in training from becoming primary carers—and thus the potential modality conflict
will not arise. It is only by analysing policies in conjunction with the laws of system
evolution that a reliable analysis is obtained.

Our formalism is based on a subset of first-order logic which may be written as
the clauses of a program in a logic-programming language such as Prolog, with
a semantic difference in the treatment of negation; we describe a current imple-
mentation of our ideas, and give the results of some experimental analyses. As a
consequence of the correspondence between our framework and logic programming,
we can give a standard logic-programming semantics to the axioms defining system
and policy models. Further, the correspondence with logic programming allows us
to use abductive, constraint logic programming (ACLP) systems as the basis of our
analysis algorithms, and offers an advantage of expressivity over approaches which
use temporal logic operators [TN96].

Others have also defined similar logic based formalisms with well-defined com-
plexity results for policy specification; our work here has partly been inspired by
such notable examples as [HW03] and [JSSB97, JSSS01]. Our approach, as men-
tioned, caters for more dynamic policy models where policy decisions may be based
on temporal properties of the system. In addition we include a class of obligation
policies which effectively monitors when and how users or the system initiates ac-
tions. This is needed for managing security, but is also useful in other applications
such as context aware adaptation in ubiquitous computing.

In summary, we feel the main contributions of our framework, and the language
and algorithms at its heart, are related to three main concepts. Dynamicity—our
policies depend on changing features of systems, and these changes are represented
and modelled within the formalism to allow us to reason about them, and the policy
configurations to which they give rise. Expressivity—we have used an expressive
language based on normal logic programs, allowing us to depict and reason about
a large number of authorization and obligation policies, and their interactions (for
examples, see later in the paper). Hard analysis tasks—our analysis algorithms are
able to cope with a large number of analysis problems in the context of reasoning
about policies, including interesting classes of modality conlict and coverage analysis
(again, for the details see later in the paper).

The paper is organized as follows. Section 2 introduces the operational model
behind policy enforcement. Section 3 defines the basic terms and concepts used in
our formal policy language, and Section 4 gives the syntax and semantics of this
language followed, in Section 5, by examples to demonstrate its appropriateness
and expressiveness. Section 6 discusses the kinds of analysis our language permits,
together with a description of the kind of abduction we use. Section 7 presents some
related work on formalizing security policies, and in Section 8 we offer conclusions
and directions for future research.
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2 Operational Model

We wish to reason about and analyze the interaction of policies and systems, where
policies will be used to regulate some of the behaviour of the system. In doing
this, we will need to understand both how policies are used and enforced in the
system, and also how the system itself evolves—what the laws are which determine
its evolution. In general, then, we follow the architectural structure of policy systems
such PolicyMaker and KeyNote [BFIK99], and XACML [OAS05]. We will separate
out two components of the worlds we model—the policy decision and enforcement
mechanisms, and the systems to which those policies refer, and which they modify.

A policy decision point (or PDP) will have access to a repository of policies.
The policies may be of several different types; in the current paper, we focus on
authorization policies and obligation policies.

In the case of authorization policies, inputs to the PDP take the form of requests
for a given subject to perform a specified action on a target ; the PDP then decides
whether or not the action in question should be authorized or denied, using autho-
rization policies which exist in the repository. In coming to a decision about whether
to allow or disallow an action, the PDP will, in general, need to be aware both of
other permissions and obligations which currently hold (so that decisions may re-
curse over policies); and what we will call ‘non-regulatory’ facts about the system,
facts which are not expressed as permissions, denials, or obligations, such as the size
in bytes of a file. If the PDP determines that a given request to perform an action
should be authorized, then it notifies a policy enforcement point (PEP), which then
executes the authorized action, on the specified target, within the system.

The policy repository will also contain obligation policies according to which a
given subject is bound to perform an action on a target—at the moment, between
two times Ts and Te (though we are considering other ways of delimiting the period
during which an action ought to be performed). If the conditions associated with
an obligation policy are satisfied during the time interval specified, the PDP will
inform the PEP of the action to be performed. The PDP is also responsible for
notifying the PEP that an obligation has been fulfilled or violated (i.e. the time
during which it could have been fulfilled has passed without the fulfilling action),
and the PEP can enforce an appropriate action. One virtue of our language is that it
leaves unspecified what that action should be—any remedial or censorial action will
be defined by the policy itself. (This approach of allowing a great deal of flexibility
in how policies are implemented, is something we see as a strength of our language.)

The outline of the role of the PDP and PEP above suggests that, in introducing
a language to represent and reason about policies and their interactions with the
systems whose behaviour they regulate, we will have at the most general level two
kinds of predicate. Regulatory predicates will describe the state of the PDP and
PEP, including inputs and outputs to both, and non-regulatory predicates will rep-
resent the current state of the system whose behaviour is being governed by policies.
The PDP/PEP may receive inputs (in the form of requests for permission to per-
form actions, possibly with certificates of authentication to verify the identity of the
requester), and it also issues outputs (which represent the decision to execute a per-
mitted action). Further, the PDP has an internal state, representing which actions
are permitted, and which subjects are constrained by obligations, at any given time.
We thus subdivide the regulatory predicates of our language into input regulatory,
state regulatory, and output regulatory predicates.

Similar divisions will also be made in the category of non-regulatory predicates,
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which describe the systems whose behaviour is being governed by policies. In general,
a system is conceived to be in a given state, and to move between states, depending
on the performance of actions and occurrence of events. We introduce a category of
non-regulatory state predicates to represent properties of states, and non-regulatory
event predicates to describe the occurrence of events. (The need for event predicates
arises because, in general, not all occurrences which modify the state of a system are
controllable and vetted by the policy mechanism attached to the system.)
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System

PDP/PEP

Regulated
System

PDP/PEP

input
regulatory

input
regulatory

output
regulatory

state
regulatory

state
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event
non-regulatory
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T1 6 T2 < T3

Figure 1: Operational Model used in our framework

The behaviour outlined above is represented in Figure 1. In the diagram, the
workings of the system at two different logical time points, T1 and T3, are represented.
The diagram also shows the occurrence of actions at a third logical time T2, such
that T1 6 T2 < T3; it is presumed that this is the only time-point between T1 and
T3 at which actions occur.

3 Language

We use many-sorted first-order predicate logic as our base language, although it
should be borne in mind that when giving the semantics later (in Section 4.5),
negation (which we write as not) will be interpreted, logic-programmatically, as
negation-by-failure. We assume conventional concepts including that of an atom,
and a literal is an atom or a negated atom (not necessarily grounded).

Throughout the paper, constants, functions, and predicate symbols begin with a
lower-case letter, and variables begin with an upper-case letter. The symbol ~X will
be used to denote a tuple of variables of possibly different sorts, the symbol ~x to
denote a tuple of ground terms of possibly different sorts. The symbols > and ⊥ are
0-ary predicates receiving the standard interpretation.

We have a sort Time, given as R+, the set of non-negative reals, with constants
including numerals for integers (0, 1, . . .) and variables such as T , with super- and
subscripts as needed. Standard arithmetical functions (+, −, /, ∗) and relations (=,
6=, <, 6 etc.) are presumed.

Further sorts we include are Subject, Target, Action, the sets of subjects, tar-
gets and actions, respectively. Variables which range over these sets are usually,
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respectively, Sub, Tar, Act, again possibly with subscripts or superscripts. Where
variable-naming conventions differ from those we set out here, this is mentioned.
We insist on the inclusion of a member revoke(Sub,Tar,Act, Ts, Te) ∈ Action, where
Act ∈ Action − {revoke(· · · )}, which will be given special treatment in the axioms
defining system behaviour we present in Section 4; this action represents the revo-
cation of an obligation.

We divide our language into components, the syntactic divisions marking off
different functions for the predicates contained within them.

Definition 1 A policy analysis language Lπ = Lπ
i ∪Lπ

s ∪Lπ
o is a many-sorted, first-

order logic language, with (at least) the sorts Subject, Target, Action and Time,
with

{revoke(Sub,Tar,Act, Ts, Te) | Sub ∈ Subject,Tar ∈ Target,
Ts, Te ∈ Time,Act 6= revoke(· · · )} ⊆ Action

whose predicates are partioned into the following sets.

• A set Lπ
i of input regulatory predicates, containing only the 4-place predicate

req, whose arguments must be, in order, of sorts Subject, Target, Action and
Time; a grounded instance req(sub, tar, act, t) represents that a request for sub
to perform act on tar was notified to the PDP at time t.

• A set Lπ
s of state regulatory predicates, containing the following predicates:

– permitted (4-place, arguments Subject×Target×Action×Time); an atom
permitted(sub, tar, act, t) is used to represent that sub has the permission
to perform act upon the target tar at time t.

– denied (4-place, arguments Subject × Target × Action × Time); a ground
instance denied(sub, tar, act, t) represents that at time t, sub is denied
authorization to perform act on tar.

– obl (6-place, arguments Subject×Target×Action×Time×Time×Time);
a ground instance obl(sub, tar, act, ts, te, t) represents that at time t, sub
is placed under an obligation to perform act on tar between ts and te.

– fulfilled (6-place, arguments Subject × Target × Action × Time × Time ×
Time); a ground instance fulfilled(sub, tar, act, t1, t2, t) means that at time
t, it is true that sub fulfilled its obligation to perform act on tar between
t1 and t2.

– violated (6-place, arguments Subject× Target× Action× Time× Time×
Time); a ground instance violated(sub, tar, act, ts, te, t) means that at time
t, it is true that sub violated (i.e., failed to fulfil) its obligation to perform
act on tar between ts and te.

– cease obl (7-place, arguments Subject×Target×Action×Time×Time×
Time × Time); a ground instance cease obl(sub, tar, act, tinit, ts, te, t) is
true at t, if an obligation initially contracted by sub at tinit to perform
act on tar between ts and te is no longer binding. (For the purposes of
intuitive clarification, we state now that this occurs either (i) when the
obligation has been fulfilled, and t is after the time of its fulfilment, or
(ii) when the obligation was revoked before it was fulfilled or violated).
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– reqInBetween (5-place predicate, arguments Subject × Target × Action ×
Time×Time); an instance reqInBetween(sub, tar, act, t′, t) represents that
there was a request for sub to perform act on tar, at some time between
t′ and t.

• A set Lπ
o of output regulatory predicates, containing the predicates

– do (4-place, arguments Subject × Target × Action × Time); a grounded
instance do(sub, tar, act, t) is used to express that sub performs the action
act on tar at time t.

– deny (4-place, arguments Subject× Target×Action× Time); a grounded
instance deny(sub, tar, act, t) is used to express that sub is refused permis-
sion to perform the action act on tar at time t, subsequent to a request.y

Each time we model an application which is controlled by a PDP, for the purpose
of analysing possible conflicts in the policy rules and proving other properties about
the interaction of policies and systems, we specify a policy analysis language which
conforms to the definition above—which means specifying what membership of the
sorts Subject, Target and Action is: the range of actors within the systems, and
the actions they can perform on targets. The predicates from Lπ will be used in
representing the effects of authorization and obligation policy rules, as described in
Section 4. Other sorts may also be needed, for example for quantification over ar-
guments to members of Action—these additional sorts are dependent on the specific
application.

In order to reason about the interactions of policies with systems which they
regulate, and also to identify possible lacks of coverage of a security policy, or to
check whether two policies are equivalent, we need to yoke our representations of
policies to a model of system behaviour, which tells us how a system evolves over time
as a consequence of actions or events occurring in it. One way to see why a system
model is necessary, is to consider the task of analysing a policy for the presence
of modality conflicts. We may wish to know whether a given policy simultaneously
authorizes and denies a certain action—something which the expressivity of our
formalism allows. Yet circumstances under which given policy rules both permit
and deny a given request may, though seemingly possible from an examination only
of those rules, in fact never arise in practice owing to physical constraints on the
evolution of the system.

Accordingly, we introduce the other main component of the languages we will use
in reasoning about policies. This is used to represent both changing and unchanging
properties of the system being regulated by the policy, where the changes can occur
both as a consequence of actions authorized and enforced by the PDP and PEP,
and also as a result of events which are not under the control of policies. We will
use a common variant of the Event Calculus [KS86] to model this dynamicity in our
domains; axioms are presented later—for now, we present only the predicates and
sorts of the language.

We have the sorts Fluent (for representing dynamic features of states), Event
(for representing system events not regulated by policies) Action (for representing
system events which are regulated by policies) and Time (as before).

Definition 2 A domain description language LD = LD
EC ∪ LD

stat is a many sorted,
first-order language with (at least) the sorts Fluent, Event, Occurrence and Time.
The Time sort is R+, as before. Predicates are partitioned into sets as follows.
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• A set LD
EC of (non-regulatory) event calculus predicates, containing:

– initially (1-place, argument Fluent), with a specific instance initially(f)
representing that the non-regulatory state property represented by f holds
at time 0 (i.e., in the initial state of the system).

– holdsAt (2-place, arguments Fluent × Time), where a specific instance
holdsAt(f, t) represents that the non-regulatory state property represented
by f holds at time t.

– happens (2-place, arguments Event × Time), where a particular atom
happens(e, t) represents that the non-regulated event e occurs at time
t.

– broken (3-place, arguments Fluent× Time× Time); a grounded instance
broken(f, ts, t) represents that the fluent f ceased to hold at some time
between ts and t.

– initiates (3-place, arguments Event×Fluent×Time); a grounded instance
initiates(e, f, t) represents that at any time t, the occurrence of an event
e would cause f to begin to hold.

– initiates (3-place, arguments Occurrence×Fluent×Time); this is similar
to the previous, except that the event e is an action by a subject, regulated
by the PDP.

– terminates (3-place, arguments Event × Fluent × Time); a grounded in-
stance terminates(e, f, t) represents that at any time t, the occurrence of
an event e would cause f to cease holding.

– terminates (3-place, arguments Occurrence×Fluent×Time); this is similar
to the previous, except that the event e is an action by a subject, regulated
by the PDP.

• A set LD
stat of non-regulatory static predicates, used to represent unchanging

properties of policy-regulated systems. y

Now, we yoke the two kinds of language together, to give the species of first-order
sorted language we will use in succeeding sections to reason about the interaction of
polcies with domains, and analyse properties of policies.

Definition 3 A policy representation language L = Lπ ∪ LD contains at least the
sorts Time, Subject, Target, Action, Event, Fluent, Action, where:

• Lπ is a policy analysis language, according to Definition 1, with sorts Subject,
Target, Action, Time.

• LD is a domain description language as in Definition 2, with sorts Fluent,
Event, Action and Time.

• Occurrence = {Sub:Tar:Act | Sub ∈ Subject,Tar ∈ Target,Act ∈ Action} y

4 Axioms and Policies

Having given the rudiments of the syntax of our language in Section 3, we now set out
the axioms used to represent policies and system behaviour, and provide examples
of how our language can be used to analyse policies.
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4.1 Authorizations

Before we formally introduce authorization policy rules, we consider the following,
as an example of the kind of policy we wish to represent:

Example 4 “Alice may delete classified data files from her device if she sends a
notification to the supplier of the data 10 minutes in advance, and the supplier does
not respond to the notification asking Alice to retain the file.”2 y

In this natural-language expression of an authorization policy, three actions are
mentioned: notify, delete and retain(possibly, with parameters). delete should have
an argument for a term representing a file, as should retain. We will use a fluent
fileDesc(S, F, class) to represent that file F was supplied by S and has the status of
being classified, leaving further details of the arguments to the reader’s imagination.
fileDesc expresses changing properties of the system and so will be wrapped in a
holdsAt predicate. We will thus represent Example 4 as follows:

permitted(alice, device, delete(F ), T )←
holdsAt(fileDesc(S, F, class), Tn),
do(alice, S,notify(delete(F )), Tn),
T = Tn + 10,

not reqInBetween(S, F, retain(F ), Tn, T ).

Before we can formally define the shape of authorization policy rules, we must
introduce the concept of a time constraint.

Definition 5 A time constraint C is an expression of the form τ1 op τ2, where each
τi is a constant or variable of type Time, or an arithmetic expression built using +,
−, /, ∗, Time constants and variables, and where op is one of =, 6=, <, 6, >, >. y

Definition 6 A positive authorization policy rule is a formula of the form

permitted(Sub,Tar,Act, T )←
L1, . . . , Lm,

C1, . . . , Cn.

where

1. the Li are atoms or atoms preceded by the negation-by-failure not, taken from
the set

Lπ ∪ LD
stat ∪ {holdsAt, happens, broken};

the Ci are time constraints;

2. m,n > 0;

3. any variable appearing in a time constraint must also appear somewhere other
than in a time constraint;

4. Sub, Tar, Act, T are terms of type Subject, Target, Action and Time respec-
tively;

2Such a rule could clearly be expressible in a standard policy language such as XACML [OAS05].
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5. for the time argument Ti of each Li 6∈ LD
stat, we must have C1∧· · ·∧Cn |= Ti 6

T ;3 if C1 ∧ · · · ∧ Cn |= Ti = T then the Li must not be a regulatory output
predicate; if Li ∈ LD

EC, then it should either be holdsAt or broken.

(Additional constraints of local stratification will be imposed when we gather to-
gether policy rules into policies.) y

Condition 1, on the predicates which may appear in the body of our positive autho-
rization policy rules, excludes the initiates and terminates predicates which are used
to express the laws of system evolution—for although policy decisions may depend
on what happens in the system, and on which state the system is at a given time, we
do not see a place for allowing policies to depend on the laws governing the system.
Condition 5, on the time arguments of our predicates, is imposed to ensure that the
permission to execute an action in a given state of a trace does not depend on ‘future’
properties of that trace. It is clear that the example formalized authorization policy
rule above fits the conditions of this definition.

Definition 7 A negative authorization policy rule is a formula of the form

denied(Sub,Tar,Act, T )←
L1, . . . , Lm,

C1, . . . , Cn.

where all the conditions 1–5 hold, as for Definition 6. y

This definition is parallel to that for positive authorization policy rules. An autho-
rization policy rule is either a positive or negative authorization policy rule.

When gathering together authorization policy rules to form an authorization
policy, it is normal to include a number of other, more general rules. Some of these
are used to specify the behaviour of the PEP in response to the PDP—such as
whether a request for permission to perform an action is accepted (and the action
performed) by default if there is no explicit permission in the policy rules, or whether
explicit permission is required, what the behaviour is in the presence or absence of a
policy rule stating that the request is to be denied, and so on. As these behaviours
vary between different policy systems, in some being configurable, we make this
type of rule optional; some examples of typical rules which may be included are
given below.

Another kind of rule is always included, and is used to specify the behaviour
of some of the predicates introduced in Section 3. The predicate reqInBetween, for
instance, is used to encode something related to the operator Since of modal tem-
poral logics (see e.g. [Gol92])—an instance reqInBetween(Sub,Tar,Act, T ′, T ) repre-
sents that at time T , a request on the part of Sub to perform Act on Tar was made
since time T ′ < T (so that we use an explicit term of the Time sort, rather than a
propositional variable, to mark the time since when a request was made; for us, in
addition, only a sigle request needs to have been made—this also differs from the
case of the modal operator). The utility of having a predicate related to Since has
been demonstrated to us repeatedly in many formalizations of policy rules, and to
capture its semantics, the following rule is always included in our framework.

3The symbol |= has the standard meaning of logical consequence.
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Definition 8 The req-in-between rule is the following formula:

reqInBetween(Sub,Tar,Act, T ′, T )←
req(SubTarAct, Tr),
T ′ 6 Tr 6 T. y

Something related to the modal temporal operator sometimes represented as P
(where Pp means that p is true at some time previously) may be expressed in
relation to req by writing reqInBetween(Sub,Tar,Act, 0, T )—as, for us, time does
not extend infinitely far into the past but has a first instant, 0. An instance
reqInBetween(Sub,Tar,Act, 0, T ) can be taken as representing that a request (with
the relevant parameters) was made at some time before T .

We see it as a virtue of our framework for policy analysis that many different
rules which embody the action of the PEP can be represented, and that no one
approach is fixed as part of the formalism. Consider the following three examples of
additional, optional rules:

Definition 9 The basic availability rule is given by:

do(Sub,Tar,Act, T )←
req(Sub,Tar,Act, T ),
permitted(Sub,Tar,Act, T ).

The positive availability rule is:

do(Sub,Tar,Act, T )←
req(Sub,Tar,Act, T ),
not denied(Sub,Tar,Act, T ).

The negative availability rule is:

deny(Sub,Tar,Act, T )←
req(Sub,Tar,Act, T ),
denied(Sub,Tar,Act, T ). y

The availability rules given in Definition 9 express different behaviour for the PEP.
The first, basic availability, rule, is in a sense more stringent: according to it, an
action is enforced by the PEP only when it has been positively permitted by the
PDP (i.e. only when an atom permitted(Sub,Tar,Act, T ) is true, with appropriate
groundings)—this is similar to the default policy used in SELinux [LS01]. The
second, alternative rule is less strict: it enforces the performance of an action as long
as that action has not been expressly denied by the policy rules. The final, negative
availability rule, describes one possible response to the denial of a request for action;
we imagine that the main function of the regulatory output predicate deny will be for
auditing purposes, to record when the result of the PDP is negative, possibly with
a view to allowing policies to censure users who make repeatedly denied requests for
actions.

Definition 10 A policy regulation rule has one of the predicates do or deny and a
body as in Definition 6. y
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Many more policy regulation rules are possible than those given as examples in
Definition 9; all are optional inclusions in an authorization policy.

Definition 11 An authorization policy is a set Π of authorization policy rules, to-
gether with the req-in-between rule, and a set of policy regulation rules, such that
Π is locally stratified. y

Notice that it is possible to add general authorization policy rules to a policy,
which enable a representation of very fine-grained control over defaults for responses
to requests. For example, suppose an authorization policy Π contains the positive
availability rule, so that actions which are not expressly denied are always executed.
There may be a special class of critial actions which should be exempted from this
liberal policy, and for which we should have express, positive permission. To capture
this requirement, we could simply include a rule such as the following:

denied(Sub,Tar,Act, T )←
category(Act, critical),
not permitted(Sub,Tar,Act, T ).

4.2 Separation of Duty and Chinese Wall Policies

It is frequently necessary to write policy rules where the authorization of an ac-
tion depends on whether or not another, related action is permitted, or has been
performed.

Static separation of duty policies typically state that subjects fulfilling a certain
role (with which are associated a number of permissions) may not also fulfil another,
specified role—and so are not permitted to perform the actions associated with that
role. For example, an agent who assigned to the role of ‘detonation enabler’ in a
nuclear arsenal, may be excluded from fulfilling the role associated with actually
detonating the bombs. The ‘static’ qualifier indicates that roles are in this case
assigned once and for all, and so the actions which are ‘separated’ by policies—i.e.,
which are not jointly permitted—can be determined offline. Dynamic separation
of duty policies are more flexible; here, where roles (and associated permissions) A
and B conflict (or are ‘separated’), an agent may be assigned to A in one session,
or in relation to one object (and thereby barred from being assigned to B in that
session, or on the object), but assigned to B on another object. As the assignment
occurs at runtime, the permissions can only be evaluated once the system is up—
hence the ‘dynamic’ qualifier. Finally, Chinese Wall policies increase the flexibility
further. In a Chinese Wall policy the permission to perform an action depends not
on whether, in relation to that action and the object on which it is performed, the
subject has been assigned to the relevant role (as in dynamic separation-of-duty
policies). Instead, the permission to perform an action is dependent on whether
another action has actually been performed.

It is interesting to note that in our system, Chinese Wall policies, which have
traditionally been seen as the most flexible of the three sorts of separation-of-duty
policies described above, are in many ways the most easy to represent. Suppose, for
instance, we have a policy rule such as the following

Example 12 “Whenever a person arms a bomb, they are not permitted to detonate
it, and vice versa.” y

11



This can be represented as the following two negative authorization rules:

denied(Sub,Tar, arm, T )←
bomb(Tar),
do(Sub,Tar, detonate, T ′),
T ′ < T.

denied(Sub,Tar, detonate, T )←
bomb(Tar),
do(Sub,Tar, arm, T ′),
T ′ < T.

As can be seen, no extra formal machinery is needed to cope with this paradigmatic
case of a Chinese Wall policy, and the formulas above seem an obvious, natural way
to formalize the English.

Static and dynamic separation-of-duty policies typically involve the linking of
actions with roles which a subject may fulfil; the roles are often determined by the
associated actions. This may easily be done by introducing terms such as role(Sub, R)
to the set of fluents, which represents that the subject Sub fulfils role R. A further
fluent role action(R,Action) can be used to represent which actions are associated
with which roles. The value of these fluents can change over time, with relevant
actions being introduced into a particular domain in order to represent the actions
which assign subjects to, or remove them from, roles, and the same for the assignment
of actions to roles.

Once such a machinery of role-assignment, and action-assignment (to roles) is
in place, then for static separation-of-duty, one can write negative authorization
policy rules stating that the assignment of a subject to a role is to be denied, if that
subject already fulfils a conflicting role—and similarly for actions. These policy rules
express the static separation of duties. In the case of dynamic separation-of-duty
policies, this simply becomes relativized to the target upon which the action is to be
performed (or in some other way, such as being made to depend on the identity of the
current session)—such relativization can be effected by the addition of parameters to
actions or role names. For the moment, we pass over the details; a related example
is presented in Section 5.

In the case where there are two roles whose duties must be separated (either
statically or dynamically), we believe the sort of approach we have outlined here
works. However, in general there may be k > 2 roles, or subjects, whose duties must
be separated [LW06], and in that case a naive extension of our approach will tend
to involve writing a number of rules exponential in the size of k. Thus, consider the
case where there are 4 roles,

doctor,nurse, surgeon, admin

whose duties must be separated, so that if an individual is permitted to fulfil the
actions of one role, that individual is to be denied requests to fulfil the actions of
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another role. This is plausibly expressed by the negative authorization policy rules:

denied(Sub,Tar,Act, T )←
holdsAt(hasrole(Sub, doctor), T ),
holdsAt(role action(nurse,Act), T ).

denied(Sub,Tar,Act, T )←
holdsAt(hasrole(Sub, doctor), T ),
holdsAt(role action(surgeon,Act), T ).

denied(Sub,Tar,Act, T )←
holdsAt(hasrole(Sub, doctor), T ),
holdsAt(role action(admin,Act), T ).

denied(Sub,Tar,Act, T )←
holdsAt(hasrole(Sub,nurse), T ),
holdsAt(role action(doctor,Act), T ).

...

And so on—with, in general, k(k + 1) rules having to be included.
Another way to approach the case of k different users combined in a separation-

of-duty policy is to introduce symbols which can be used to represent lists, and a
predicate symbol used to denote list membership. If we imagine a term [] for the
empty list, and consider [·|·] as a function symbol which represents the operation
of making a list from an element (the head) and another list, together with a new
predicate member, we can write our separation-of-duty policy in one rule as:

denied(Sub,Tar,Act, T )←
holdsAt(hasrole(Sub, R1), T ),
member(R1, [doctor,nurse, admin, surgeon]),
member(R2, [doctor,nurse, admin, surgeon]),
R1 6= R2,

holdsAt(role action(R2,Act), T ).

(We have used some syntactic sugar in writing the lists.) The separation constraints
can now be expressed concisely; the problem is that the introduction of the function
symbol appears to take us outside the realm of Datalog, and would increase the
computational complexity of policy evaluation when policies are expressed in our
formal framework.

4.3 Obligations

There are many different classes of obligations—on properties which should hold at
states, or on an agent to perform an action, or an action to be performed regardless
of who performs it, and so on. In this paper we follow [IYW06] in limiting our

13



attention to obligations acquired by a subject to perform an action on a target. The
subject could be an entity external to the system—consider the case where a user is
allowed to execute an action as long as he or she accepts the obligation to execute
another action later4—or obligations may also be imposed in parts of the system, the
system itself then taking the responsibility for executing the action. In the former
case, the system itself cannot enforce the obligation, merely being able to monitor
whether the obligation has been fulfilled or not.

Example 13 “A connecting node must provide a second identification within five
minutes of establishing a connection to the wireless server; otherwise the server must
drop the connection within one second.” y

This example in fact includes two obligations: one on the node making the connec-
tion, and one on the server, which must drop the connection if the node does not
fulfil its obligation. They might be partially formalized as follows:

obl(U, server, submit2ID(U, server), T+0.1, T+5mins, T+0.1)←
holdsAt(node(U), T ),
do(U, server, connect(U, server), T ).

obl(server, server, disconnect(U, server), Te, Te+1, Te)←
violated(U, server, submit2ID(U, server), Ts, Te, Te).

As previously, the EC predicate holdsAt is used to represent dynamic properties of
the system—in this case, which nodes are registered. The obligation begins just after
the server connects to the node—in the rule, we have assumed there is a delay of
0.1 seconds, but in practice this interval can be made as small as possible without
being equal to zero.

Definition 14 An obligation policy rule is a formula of the form

obl(Sub,Tar,Act, Ts, Te, T )←
L1, . . . , Lm,

C1, . . . , Cn.

where all the following hold:

1. the Li are atoms or atoms preceded by the negation-by-failure not, taken from
the set

Lπ ∪ LD
stat ∪ {holdsAt, happens, broken};

the Ci are time constraints;

2. m,n > 0;

3. any variable appearing in a time constraint must also appear somewhere other
than in a time constraint;

4. Sub, Tar, Act, are terms of type Subject, Target and Action respectively; Ts,
Te and T are all of sort Time;

4This is a generalization of the model of obligations proposed in XACML [OAS05].
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5. for the time argument Ti of each Li 6∈ LD
stat, we must have C1 ∧ · · · ∧ Cn |=

Ti 6 T ; if C1 ∧ · · · ∧Cn |= Ti = T then the Li must not be a regulatory output
predicate; if Li ∈ LD

EC, then it should either be holdsAt or broken.

(Note that we do not insist that ts < te, but that when ts = te, the obligation cannot
be fulfilled or violated, and thus sensible obligation policy rules will always include
constraints which make ts < te.) y

The conditions 1–5 here are essentially the same as those given for the definition (6)
of a positive authorization policy rule. We now need a number of further rules
for specifying the conditions under which an obligation is fulfilled or violated, and
defining the subsidiary predicate cease obl.

Definition 15 The predicate fulfilled is defined by the following fulfilment rule:

fulfilled(Sub,Tar,Act, Ts, Te, T )←
obl(Sub,Tar,Act, Ts, Te, Tinit),
do(Sub,Tar,Act, T ′),
not cease obl(Sub,Tar,Act, Tinit, Ts, Te, T

′),
Tinit 6 Ts 6 T ′ < Te,

T ′ < T.

The predicate violated is defined by the violation rule:

violated(Sub,Tar,Act, Ts, Te, T )←
obl(Sub,Tar,Act, Ts, Te, Tinit),
not cease obl(Sub,Tar,Act, Tinit, Ts, Te, Te),
Tinit 6 Ts < Te 6 T.

Two cease obl rules are used to define the predicate cease obl:

cease obl(Sub,Tar,Act, Tinit, Ts, Te, T )←
do(Sub,Tar,Act, T ′),
Ts 6 T ′ < T 6 Te.

cease obl(Sub,Tar,Act, Tinit, Ts, Te, T )←
do(Sub′,Sub, revoke(Sub,Tar,Act, Ts, Te), T ′),
Tinit 6 T ′ < T 6 Te. y

It is easiest to discuss cease obl first. This is a state regulatory predicate which is used
to mark the fact that something has occurred which would cause an obligation to
cease; as there are two occurrences which would make an obligation cease (either its
fulfilment, or a revocation of the original obligation), there are two clauses defining
cease obl. Fulfilment is the more straightforward: an obligation is fulfilled when
the action a subject has been obliged to perform is executed (notice that the do
in the body of the rule here means that the execution of such an action must first
be authorized by the system). The cease obl rule for revocation makes use of the
revoke members of the sort Action, which were introduced in Section 3; revocation
occurs when the PDP has authorized the request for a revocation action. Clearly,
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this subject might be the one bound by the obligation, a central administrator in
the system, or an entirely different agent. The parameters of the revoke argument
identify the obligation which is to be revoked.

The rules for when an obligation is fulfilled or violated are then defined using
cease obl: we need to be able to reason about times after an obligation has been
initially contracted, but when it has not yet ceased—this is the source of the negated
cease obl predicate in the bodies of the fulfilment and violation rules. An existing
obligation to perform Act between Ts and Te is fulfilled when a do predicate for that
Act is true between Ts and Te; and obligations to perform actions between Ts and
Te are violated, when the time reaches Te and the action has neither been executed,
or the obligation revoked.

Definition 16 An obligation policy Π is a set of obligation policy rules, together
with the ‘fulfilment’, ‘violation’ and ‘cease obl’ rules, such that Π is locally stratified.y

Finally, we collect authorization and obligation policies together, as follows.

Definition 17 A mixed policy Π = Πa ∪Πo is any union of an authorization policy
Πa and an obligation policy Πo. (We will frequently drop the qualified ‘mixed’.) y

4.4 Event Calculus and Domain Models

We use the Event Calculus (EC) to represent and reason about changing properties
of the domains regulated by policies which we model. The EC is a well-studied
formalism, variants of which exist both as logic programs and in first-order logical
axioms (with the use of a second-order axiom enforcing a circumscriptive semantics),
with the ability concisely to represent the effect of actions on properties of a system,
and built-in support for the default persistence of fluents. (For the original formu-
lation of the EC as a logic program, see [KS86]; for a comparison of some recent
approaches, see [MS02].)
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Definition 18 The set EC of Event Calculus core axioms are as follows:

holdsAt(F, T )←
initially(F ), (1)
not broken(F, 0, T ).

holdsAt(F, T )←
initiates(Sub:Tar:Act, F, Ts),
do(Sub,Tar,Act, Ts), (2)
Ts < T,

not broken(F, Ts, T ).

holdsAt(F, T )←
initiates(Event, F, Ts),
happens(Event, Ts), (3)
Ts < T,

not broken(F, Ts, T ).

broken(F, Ts, T )←
terminates(Sub:Tar:Act, F, T ′),
do(Sub,Tar,Act, T ′), (4)
Ts < T ′ < T.

broken(F, Ts, T )←
terminates(Event, F, T ′),
happens(Event, T ′), (5)
Ts < T ′ < T.

(These are the domain-independent axioms which are included in all formalized
systems modelled by the event calculus.) y

The first clause specifies that a changeable property of the system holds at time
T , if that property held at time 0, or in the initial state, and nothing disturbed its
persistence-by-default. The next two axioms represent how a fluent representing a
changeable property comes to be true in a system: by being initiated, either as a
consequence of an action enforced by the PDP/PEP, or else by being the result of
an unregulated event occurring in the system. The final two clauses represent how
an event disturbs the persistence of a fluent, preventing its truth from persisting
over time; again, there is one clause for disturbance caused by enforced, regulated
actions, and one clause for disturbance caused by unregulated events.

When modelling the systems regulated by a PDP/PEP, we will write down a
combination of clauses defining the predicates initiates and terminates, which de-
scribe how actions or events occurring in a system change that systems properties.
For example, consider a system where the existence of a file in a directory is repre-
sented by a fluent isIn(F,Dir), where F is a variable for a filename, and Dir for a
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directory name. A user S (the subject) may make a request to move (the action) the
file to another directory Dir (the target); an authorization policy would regulate the
permissions for this action, but the following initiates and terminates actions would
be needed to model the effect of a permitted and enforced action on the system:

initiates(S:Dir:move(F ), isIn(F,Dir), T ).

terminates(S:Dir:move(F ), isIn(F,Dir′), T )←
holdsAt(isIn(F,Dir′), T ).

The first rule, together with the EC axiom 2, means that whenever a do(S,Dir, F, T )
action is executed by the PEP (following a permitted request to move a file to Dir),
then this will force holdsAt(isin(F,Dir), T ′) to be true, for T ′ > T—until the file is
moved again. Since the file has been moved, we must also ensure that after a move
action has been executed, the atom holdsAt(isin(F,Dir′), Tb) is no longer true, where
Tb < T and Dir′ is the previous locaction of the file: this behaviour is modelled by
the terminates axiom.

In general, initiates and terminates axioms (such as those above) are used to
model the dynamic properties of a system. initiates axioms describe how fluents
become true of a system, usually after the execution of an action; and terminates
axioms specify how fluents become no longer true of a system. In addition, we also
use predicates from LD

stat to represent unchanging properties of systems. As these
static properties either hold for all times or none, there is no need to model the
effects of actions on their holding, and thus no need to use the EC to reason about
them.

Definition 19 A domain description is a set D = EC ∪ D′ containing the event
calculus core axioms, together with a set D′ of formulas of either of the three forms:
a static domain axiom

A← L1, . . . , Ln.

such that L is an atom, and the L1, . . . , Ln are literals, of predicates in LD
stat; or

either an initiates axiom

initiates(X, F, T )←
L1, . . . , Lm,

C1, . . . , Cn.

or a terminates axiom

terminates(X, F, T )←
L1, . . . , Lm,

C1, . . . , Cn.

such that:

• initiates(X, F, T ), terminates(X, F, T ) ∈ LD
EC.

• Each Li is a literal of an atom in LD
stat, or else a literal of the predicate holdsAt;

each Ci is a time constraint.
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• Each variable appearing in a time constraint must also appear somewhere other
than in a time constraint.

• For any time argument Ti of an Li, we must have C1 ∧ · · · ∧ Cn |= Ti 6 T .

Domain descriptions must be locally stratified. y

We bring all the previous definitions together, to describe our complete models
of systems constrained by policies.

Definition 20 A domain-constrained policy P = Π ∪ D is the union of a mixed
policy Π and a domain description D. y

Domain-constrained policies are sets of policy rules (of authorization and obligation
policies) together with a specification of the system which these policies regulate.
These are the basic sets of formulas upon which our analysis algorithms (described
in Section 6) will operate. (Note that if Π and D are stratified, then so is Π ∪D.)

4.5 Semantics

We use the stable model semantics of Gelfond and Lifschitz [GL88], in order to
provide a semantics for our domain-constrained policies.

The stable model semantics starts with a (ground) normal logic program P , and
a set of ground atoms I. The reduct P I is defined as the result of removing from
P any clause which has a negative literal not a in its body such that a ∈ I, and
deleting from the bodies of the rules remaining in P all other negative literals. That
which remains, P I , is a definite logic program, with no negation-by-failure, and
thus has a unique minimal model min(P I) according to the standard semantics for
negation-free logic programs. I is defined to be a stable model of P if I = min(P I),
the term ‘stable’ indicating the fixpoint definition. The stable model semantics is
an acknowledged standard semantics for normal logic programsl; it is know that
locally-stratified normal logic programs have a unique stable model.

To capture the operational model described in Section 2, we start with any set
∆D of ground instances of non-regulatory predicates from the set

{initially, happens} ∪ LD
stat

and any set ∆π of ground instances of the regulatory predicate req. The sets ∆D

and ∆π represent information about the inputs to the system, about events which
are not controlled by the PDP/PEP, and information about the system’s initial
state, together with facts about the unchanging (static) properties of the regulated
system. Other predicates are not included here, as the truth or falsity of their
ground instances will be determined by the semantics, using the policy and dynamic
evolution laws of the system. In general, different sets ∆D, ∆π can be thought of
as representing different initial configurations and runs through the system which is
governed by our policy mechanism.

Definition 21 Let P be a ground, domain-constrained policy (see Definition 20).
Then, a policy-regulated trace is the stable model of P ∪∆D ∪∆π.
We let model(P ∪∆D ∪∆π) refer to the (unique) stable model of P ∪∆D ∪∆π. y
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5 Examples

Our examples are related to a scenario involving a multi-company team of business
people conducting a virtual meeting to collaborate on a project. The project is led
by Alice who works for Acme Inc. Other participants are Bob from Boolean plc and
Charles from ComputaTech who is working from home. In addition to supporting
voice and text communications, the virtual meeting software being used allows meet-
ing participants to share documents with each other. Documents can be classified as
‘Public’ (can be shared with anyone), ‘Project’ (can be shared with project members)
or ‘Company’ (can only be shared within the company). The software is integrated
with a policy-based security management framework that ensures that the security
policies of the individuals and companies are enforced. Based on this scenario, we
have selected a few policies that satisfy a range of security requirements, from simple
access control to separation of duty. For each policy, we present a natural language
and formal definition together with a discussion of the formal language features that
are being used:

Example 22 “Project partners who are permitted to read the meeting agenda are
allowed to read related project documentation 24 hrs before the meeting starts.” y

This policy is an authorization rule that depends on another permission. We would
express this rule in our formalism as follows:

permitted(Subject,D, read, T2)←
project(P ),
meeting(M,P ),
agenda(M,A),
permitted(Subject, A, read, T1),
projectDoc(D,P ),
startT ime(M,T3, T2),
T1 < T2 < T3,
(T3 − T2) < 24hrs.

Despite having permitted in both the head and body of the rule, the above policy
is acceptable in our formalism because the permitted predicate in the body specifies a
target that is disjoint from the target used in the head predicate. (We have simplified
matters somewhat in presuming many of these predicates to be static.)

The following rule is an instance of dynamic separation-of-duty.

Example 23 “Standard meeting attenders are allowed to vote at meetings; meeting
administrators are allowed to view those votes. The meeting chair is allowed to
allocate members of the company to these roles. Nobody is permitted to be both a
standard meeting attender and a meeting admin.” y
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This requires a more complex formalization:

permitted(Sub,M, vote, T )←
holdsAt(role(S, standard attender(M)), T ).

permitted(Sub,M, view votes, T )←
holdsAt(role(S,meeting admin(M)), T ).

permitted(Sub,Tar, allocate(standard attender(M)), T )←
holdsAt(role(S, chair(M)), T ).

permitted(Sub,Tar, allocate(meeting admin(M)), T )←
holdsAt(role(S, chair(M)), T ).

denied(Sub,Tar, allocate(standard attender(M)), T )←
holdsAt(role(Tar,meeting admin(M)), T ).

denied(Sub,Tar, allocate(meeting admin(M)), T )←
holdsAt(role(Tar, standard attender(M)), T ).

initiates(Sub:Tar:allocate(R), role(Tar, R), T ).

The first two positive authorization policies specify the permissions of those fulfilling
the roles of standard attender and meeting admin. The next two rules state the
permissions of the chair of a meeting in allocating roles. Then, the two negative
authorization policy rules express the separation of duties: if a target is a meeting
administrator, they are not to be permitted to become a standard attender, and vice
versa. Finally, the effects of an allocation-to-role action are given, in the initiates
axiom.

Example 24 “A meeting attendee is not allowed to classify a document as ‘Public’
if they created the document.” y

This policy ensures that the decision to declassify a document is not taken by the
person who created the document. It is an example of a separation-of-duty policy
where a subject is prevented from performing a particular action if he has performed
some other conflicting action previously. The separation can be expressed as follows:

denied(Sub, D, classify(public), T2)←
project(P ),
meeting(M,P ),
attendee(Sub,M),
doc(D,M),
do(Sub, D, create, T1),
T1 < T2.
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Example 25 “Alice is allowed to create and declassify project documents, but not
on the same project.” y

We read this is an example of a Chinese Wall policy where a subject is prohibited
from performing an action on a particular target if he has already performed some
other conflicting action on the same, or another but related target (in this case,
another document on the same project). We formalize as follows:

permitted(alice, D, create, T )←
project(P ),
not denied(alice, D, create, T ).

permitted(alice, D, classify(public), T )←
project(P ),
project doc(P,D),
not denied(alice, D, classify(public), T ).

denied(alice, D1, create, T2)←
project(P ),
project doc(P,D1),
project doc(P,D2),
T1 < T2,

do(alice, D2, classify(public), T1).

denied(alice, D1, classify(public), T2)←
project(P ),
project doc(P,D1),
project doc(P,D2),
T1 < T2,

do(alice, D2, create, T1).

In these policy rules, the permissions are expressed and given conditions (the literals
not denied in their bodies) which express the exceptions to them. (There are a
number of different ways to represent this exception structure; we have chosen a
concise one for the purposes of illustration.) This is close to how we intuit the
meaning of the English expression of the policy. The circumstances under which the
exceptions arise—which are the cases where there is a conflict in the separation-of-
duty policy rules—are then specified by the negative authorization rules.

6 Policy Analysis

Using our formalism, policies are always classically consistent—as the models for
our policies (the policy-regulated traces specified in Definition 21) are stable models,
and hence sets of atoms, we cannot, somehow, have both permitted(sub, tar, act, t)
and not permitted(sub, tar, act, t) in a policy-regulated trace σ, for given subject
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sub, target tar, action act and time t; the same, of course, applies to obligation
policies. However, other forms of analysis and conflict detection, not focused on
classical inconsistency, are relevant to our formalization; in this section we describe
the kinds of properties—or, more significantly, their absence—we look for, together
with the analysis algorithms used.

Thus, Modality Conflicts may be of several different kinds. One form arises
when, for the same terms sub, tar, act and t, the atoms permitted(sub, tar, act, t)
and denied(sub, tar, act, t) are both contained in a policy-regulated trace for some
domain-constrained policy P ; the significance of this is that the authorization-policy
component of the policy P both permits and denies a request from the subject to
perform the action, the permission and denial occurring at the same time. Another
kind of modality conflict arises when there is an obligation upon a subject to per-
form an action between two times, but at no time between does the subject have
permission. Here, given a domain-constrained policy P , there would be sets ∆D and
∆π, such that for the policy-regulated trace M (the stable model of P ∪∆D ∪∆π),
we have:

• obl(sub, tar, act, ts, te, tinit) ∈M ;

• cease obl(sub, tar, act, tinit, ts, te, t) 6∈M , for all t such that tinit 6 t 6 te;

• denied(sub, tar, act, t) ∈M , for all t such that ts 6 t < te.

Modality conflicts such as these may arise for different sorts of reason. Clearly, if an
authorization policy Π contains, for example, the two policy rules

permitted(client, server, connect, T ) and denied(client, server, connect, T ),

then, no matter what the domain description to which the policy system is yoked, and
no matter what the series of input requests or non-regulated actions of the system,
any policy-regulated trace being a model of Π∪∆D∪∆π will have a modality conflict;
here we might speak of the modality conflict’s being intrinsic to the policy rules. On
the other hand, consider the case of an authorization policy containing the rules:

permitted(doctor, patient, cut, T )←
holdsAt(anaesthetized(patient), T ).

denied(doctor, patient, cut, T )←
not holdsAt(seriousCondition(patient), T ).

In this case, the possibility of a modality conflict will depend on what the domain
description for the governed system is. If the domain-constrained policy contains
the further rules

initiates(anaesthetist:P :drug, anaesthetized(P ), T ).

permitted(anaesthetist, P, drug, T )←
holdsAt(seriousCondition(P), T ).

then (supposing certain further properties) it might easily be true that a situation
may never arise in which a patient whose condition is not serious is anaesthetized—in
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this case, the modality conflict suggested as possible by the initial two policy rules
may be shown not to occur, under any circumstances. The analysis tools we use
take into account the content of the domain description to give an accurate analysis
of the circumstances (if any) under which a modality conflict can arise, giving the
relevant information about those circumstances to the user, and also the policy rules
used to derive the conflict.

Several other types of analysis are possible. Thus, Coverage Analysis concerns
whether the policy rules in a given policy, in combination with the domain descrip-
tion, determine responses from the PDP/PEP in all cases of interest to requests
for permission to perform an action. One may be interested in proving that in
all systems of a given configuration, a user Alice has the right to perform a given
action—it is easy to test for such a property using our formalism and algorithms. We
may also wish to test for other properties, such as whether a given set of permissions
and obligations are compossible, or whether a certain system state is reachable—the
output from the algorithm we use would be, not merely an answer in the affirmative,
but a trace of requests made and non-regulatory events occuring which leads to the
combination of policy decisions or system properties.

6.1 Abductive Constraint Logic Programming

The task of analysing a domain-constrained policy P = Π ∪D to see, for instance,
whether there are no modality conflicts, can be converted into the task of seeing
whether (stable) models of the domain-constrained policy verify a number of prop-
erties. For instance, we may wish to prove that

∀T (not (permitted(sub, tar, act, T ) ∧ denied(sub, tar, act, T ))) (6)

for given ground terms sub, tar, act. This expression states that a certain sort of
modality conflict between authorization and denial never occurs. If this property is
provable, then all well and good. If not, then we wish to have diagnostic information
about the circumstances in which it fails to be true; a system designer can then
decide whether or not the particular series of inputs which give rise to the modality
conflict may be ignored, or alternately, can modify the policy in the light of the
conflict found, and the specific series of inputs which give rise to it.

Checking whether the system verifies the property formalized above, therefore
converts into the task of checking whether there are inputs ∆D and ∆π (as described
in Section 4.5) such that the property is not true, i.e. whether there are sets such
that

model(P ∪∆D ∪∆π) |= ∃T (permitted(sub, tar, act, T ) ∧ denied(sub, tar, act, T ))

This problem is equivalent to showing that the formula above (6) is false, and can
be solved using Abductive Logic Programming (with constraints), the algorithm for
which attempts to compute the sets ∆D and ∆π. The output to the algorithm will
be these sets together with a number of constraints (expressed as equalities and
inequalities) on the possible values of the time-arguments appearing in the answers.
We currently use an abductive constraint logic programming framework based on
that found in [KMM00], details of which are now presented.

First, the set of abducible predicates is defined to consist of

initially, happens, req,
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together with the predicates from LD
stat not appearing in the heads of rules. All other

predicates from the language L = Lπ∪LD are defined. An analysis task is defined as
a tuple (P,A, G), where P is a domain-constrained policy, A is the set of abducible
predicates, and G is the set {C,L1, . . . , Ln} of literals L1, . . . , Ln appearing in the
property we want to try and prove,5 together with a (possibly empty) set of time-
constraints on variables appearing in the literals L1, . . . , Ln. Given an analysis task,
the abductive proof procedure takes as input the rules P , the time constraints C (if
any), the literals L1, . . . , Ln and a set ∆ of abducibles. The literals Li are either
ground or Skolemized on their time variables, and the set ∆ is, at the beginning of
the proof procedure, empty. The abductive proof generates as output a set C ′ of
time constraints (which imply C) and a set ∆′ of abducibles which, instantiated on
any solution of C ′, gives a set ∆∗ of ground abducibles such that

model(P ∪∆∗) |= (C ∧ L1 ∧ · · · ∧ Ln)σ,

where σ is a substitution of the free variables occurring in {C,L1, . . . , Ln}. The set
∆ is called an abductive explanation for C ∧ L1 ∧ · · · ∧ Ln.

The abductive proof procedure is composed of two modules, the abduction phase
and consistency phase, that interleave with each other. The former is based on SLD
resolution, a standard proof procedure for logic programs. It takes a literal L from
the set passed as input and unfolds it in standard resolution fashion using the rules
in P , adding time constraints into a constraint store C, until an abducible A is found.
Whereas SLD would at this point fail the computation and backtrack, the abduction
module treats the abducible A as a candidate hypothesis, and invokes the consistency
module to see whether A can consistently be added to the current set of hypothesis
∆. The consistency check is important not only for the consistency of ∆ but also
for the consistency of ∆ ∪ P . During abduction, negated non-abducible predicates
are also added to ∆ (since no rule in P has negation in the head), requiring the
consistency to check that P ∪∆ does not prove their respective complements. Every
consistency check has one separate branch of computation for each resolvent with
P of the predicate to be checked for consistency. Every such resolvent is regarded
as a proof that must be made finitely to fail for the consistency check to succeed.
Failure of each resolvent occurs whenever at least one of its literals is made to
fail. If needed, this failure can be explained by initiating a subordinate call of
the abduction module in order to hypothesize some other abducibles (explicit or
negated) to justify the failure. If all branches of the consistency call are passed
(i.e. they are made to fail) the calling abductive computation continues with the
abducible A added to ∆ (along with any other abducibles accumulated during the
consistency computation) and the constraint store C (along with any other time
constraints accumulated during the consistency computation). If some branch of the
consistency computation does not succeed (i.e. it cannot be made to fail) the calling
abductive computation fails, indicating that A is inconsistent with ∆ ∪ P . In order
to ensure consistency across its different branches of computation, the consistency
module keeps track of constraints (IC∗) related to abducible predicates that unify
with elements in ∆. These can be seen as universally quantified assumptions about
the abducibles in ∆, dynamically generated during local consistency computations
and which must hold for ∆ to be an abductive explanation consistent with P . As
the consistency computation can interleave with the abductive computation, the

5In the example treated earlier, for instance, G would be the set containing the two atoms
permitted(sub, tar, act, T ) and denied(sub, tar, act, T ).
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set IC∗ of dynamically generated constraints is also assumed to be a parameter of
the abduction module. The abduction and consistency modules are described in
Figures 2 and 3.6

Abduction(G, C, ∆, IC∗, Π):
{returns a new ∆, new C and new IC∗}
While G is not empty do

1. Get a literal Li from G

2. If Li is a positive atom with a non abducible predicate, and there is a rule φ, C1 → H
in Π where H, Li unify with unifier θ, then

Let C = C ∪ C1; G = ((G \ {Li}) ∪ φ)θ;

3. If Li is a literal with an abducible predicate and Li unifies with an element in ∆ with
unifier θ, then

Let G = (G \ {Li})θ;
4. If Li is a literal with an abducible predicate that does not unify with any element in

∆ then
Skolemize Li into Si, and constraint C

′

if S∗
i ∈ ∆ then return failure

else
Let ∆ = ∆ ∪ {Si}; G = G \ {Li}; C = C ∪ C

′
;

Let F = Reduction(IC∗, Si);

if Consistency(F, C, ∆, IC∗, Π) returns ∆
′
, C

′′

and IC∗
1 then

Let C = C
′′
; ∆ = ∆

′
; IC∗ = IC∗

1 ;
else return failure

5. If Li is a non-abducible negative literal then
Skolemize Li into Si, and constraint C

′
;

Let Cloc = C ∪ C
′
; ∆ = ∆ ∪ {Si};

if Consistency({({S∗
i }, ∅)}, Cloc, ∆, IC∗, Π) returns

∆
′
, C

′′
and IC∗

1 then
Let C = C

′′
; G = G \ {Li}; ∆ = ∆

′
; IC∗ = IC∗

1 ;
else return failure;

6. If Li does not match any of the previous cases then
return failure

end while
return ∆, C and IC∗

end Abduction

Figure 2: Abduction Procedure

The abduction module takes as input a set of literals L1, . . . Ln, a (possibly
empty) set C of time constraints (also called the constraint store), a set ∆ of
abducibles, a set IC∗ of dynamically-generated constraints, and P , the domain-
constrained policy. At the beginning both ∆ and IC∗ are empty. The module can
either fail or terminate successfully, in which case it returns an updated ∆, C and
IC∗.

The consistency module takes as input a set {F1, . . . , Fn} of the literals to be

6Reduction(IC∗, L) = {({L1, . . . , Li−1, Li+1, . . . , Ln}, C)θ | ({L1, . . . , Ln}, C) ∈ IC∗

and Liθ = Lθ}
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Consistency(F, C, ∆, IC∗, Π):
{returns a new ∆, new C and new IC∗}
L:While F is not empty do:

1. Select ({L1, . . . , Ln}, Cloc) from F and
let F = F \ ({L1, . . . , Ln}, Cloc);

2. If Cloc ∪ C is inconsistent GOTO L

3. Select either Cloc or an Li from {L1, . . . , Ln};
4. If an Li is selected and is an atom with no abducible predicate then

For each φ ∧ C
′
→ H ∈ Π such that H and Li unifies with unifier θ do

if φ and C
′

are empty and n = i = 1
then return failure
else
Let F = F ∪ {({L1, . . . , Li−1, φ, Li+1, Ln}, C ∪ C

′
)θ};

5. If an Li is selected and is a literal with an abducible predicate then
For each H ∈ ∆ such that H = Liθ for some substitution θ do

if n = i = 1 then return failure
else
Let F = F ∪ {({L1, . . . , Li−1, Li+1, Ln}, C)θ};
Let IC∗ = IC∗ ∪ {({L1, . . . , Li−1, Li+1, . . . , Ln}, C)}

6. If Li is a negative literal with a not abducible predicate and it does not unify with
any element in ∆, then

if Abduction({L∗
i }, C, ∆, IC∗, Π) returns ∆

′
, C

′′

and IC∗
1 then

Let ∆ = ∆
′
, C = C

′′
and IC∗ = IC∗

1 ;
else return failure;

7. If Cloc is selected then find C
′
such that C ∪C

′
is consistent but C ∪C

′
∪Cloc is not

and let C = C ∪ C
′

end while
return ∆, C and IC∗

end Consistency

Figure 3: Consitency Procedure

checked for consistency, a (possibly empty) set Cloc of time constraints, a set ∆ of
abducibles, and a set IC∗ of dynamic constraints and P . The module can either fail
or terminate successfully, in which case it outputs ∆

′ ⊇ ∆, C
′ ⊇ C and IC∗.

As an example, consider a coverage analysis of the policy Example 4. For ease
of readability, we simplify the notation of the authorization rule in formalizing this

27



policy to the following:

reqInBetween(X, T0, T2)←
req(X, T1), (7)
T0 6 T1,

T1 6 T2.

permitted(delete, T1)←
do(notify, T0), (8)
T1 = T0 + 10mins,
not reqInBetween(retain, T0, T1).

do(X, T )←
req(X, T ), (9)
permitted(X, T ).

permitted(notify, T ). (10)

(Thus, we imagine that the policy rules are written without reference to predi-
cates defined by the domain description.) We can check that the action delete
is permitted at some time point Tf ; this amounts to performing an abductive
task with G = {permitted(delete, Tf )}, C = {}, ∆ = {} and IC = {}. With-
out going through the details of the way the algorithm applies itself, we can note
that, intuitively, permitted(delete, Tf ) is first attempted to be proved using the Ab-
duction module; a resolution step with the head of the rule adds the constraint
Tf = Tf + 10 to the store (after relevant variable bindings) and the remaining lit-
erals in the body of rule 8 to the list of literals to be proved. In order to show
that do(notify, T0), we abduce req(notify, t0), where t0 is a Skolemized variable for
T0. We must then consider the remaining literal in the body of rule 8, which is
not reqInBetween(retain, t0, Tf ). As this is a non-abducible negative literal, it is
covered by case (5) of the Abduction module, which runs a Consistency module
check on the Skolemized complement reqInBetween(retain, t0, tf ). The consistency
check identifies reqInBetween(retain, t0, tf ) as a non-abducible, and resolves this with
the head of rule 7, leaving the consistency derivation to continue with the body of
that rule. Now, either we try to fail by choosing the literal req(retain, t0, T3) (after
renaming), which will close the consistency phase as there is no literal in the current
∆ to unify with; or else, we choose one of the constraints, and find a C ′ in accordance
with case (7). In either case, the consistency phase terminates, and thus the outer
abduction module is also done. The solution found contains the literals

req(notify, tf ) and not reqInBetween(retain, t0, tf ),

where t0 and tf are Skolemized versions of the variables T0 and Tf , and also the
constraint

tf = t0 + 10.

As has been described above, analyzing a set S of authorization policies for one
kind of modality conflict is defined as showing that the following property holds for
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some subject Sub, target Tar and action Act, and for all sets of the relevant kind
∆D and ∆π:

model(P ∪∆D ∪∆π) |= ∀T :Time not (permitted(Sub,Tar,Act, T )
∧ denied(Sub,Tar,Act, T ))

The abductive proof procedure procedure checks whether it is possible to identify a
(set of) input formulae ∆ = ∆D∪∆π of the form (not) req(S, Ta,A, T ), and domain
dependent facts (if needed), such that

model(P ∪∆D ∪∆π) |= permitted(Sub,Tar,Act, T ) ∧ denied(Sub,Tar,Act, T )

If such a computation, which in this case always terminates, fails then it can be
assumed that the policy, together with the given system description, has no modality
conflict of the relevant kind. On the other hand, if the abductive proof procedure
computes such a ∆, P is said to imply a modality conflict in the system D.

The same technique can be applied for the other type of modality conflict—that
involving an obligation in the absence of related permissions. Indeed, an outstanding
benefit of using the form of abductive constraint logic programming we employ is
that it is highly general with respect to the class of properties for which we can
analyze our policies and systems.

6.2 Termination and Complexity

We can consider termination and computational complexity properties for two as-
pects of our formal framework—the runtime evaluation of policy rules, and the offline
analysis of policies accomplished using the abductive algorithms just presented.

We insist that the language we use (the sorts Subject, Target, Action, Fluent,
Event) is finite.

If we stipulate that the models of a domain-constrained policy P = Π ∪D must
be such that in the mixed policy component Π, there is a maximum value t such that
whenever a body of a policy rule is made true by the model, all time indices must
belong to some interval [ts, ts + t], and if we also insist that only a finite number of
actions can occur within any given finite time, then a finite amount of information
needs to be stored about the system evolution in order to evaluate policies. For
example, if there is a rule

permitted(Sub,Tar,Act, T )← holdsAt(f, T ′), T = T ′ + 10.

in the policy, we know we must record information about whether the fluent f holds
10 seconds in the past; beyond 10 seconds, we may not care (depending on the other
policies in Π) what happens to f . For any given domain-constrained policy, a bound
on the amount of domain-dependent information which needs to be stored can be
calculated, based on the language, the policy set, and the domain description.

In order to ensure that the evaluation of policy rules expressed in our formalism
terminates, and that this procedure runs efficiently, we must ensure that there are
no circular dependencies amongst the members of our mixed policies (see Defini-
tion 17). We do this by insisting that there is a total ordering amongst the triples
(Sub,Tar,Act), such that whenever an authorization or obligation policy rule con-
tains Sub, Tar, Act in the head with time index T , all literals with time index T ′ = T
in the body of the predicates permitted, denied, obl can only contain Sub′, Tar′, Act′

such that (Sub′,Tar′,Act′) < (Sub,Tar,Act) in the ordering. Further, we also insist
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that whenever a negative literal in the body of a policy rule contains a variable,
that variable should also appear in some positive literal of the body. (This way
we ensure that selection of literals during policy evaluation is safe in the sense of
logic-programming.)

Under these conditions, a result from [Cho95] can be used to show that the eval-
uation of queries for predicates of permitted, denied and obl can be performed in
time polynomial in the length of the preceding history relevant to queries, these
histories being bounded by the size of the language that we assume to be finite. Au-
thorizations are typically evaluated when a req is received for permission to perform
an action; the fulfillment of obligations can be monitored using techniques such as
view maintenance in relational databases or a version of the RETE algorithm for
production rules.

In the case of the analysis tasks using the ACLP abductive procedures, the pres-
ence of the total ordering we have imposed on (Sub,Tar,Act) triples (together with
the other constraints imposed above) can be used to show that our abduction anal-
yses always terminate. Further, our language is expressive enough to represent,
and our analysis algorithms powerful enough to solve, classes of problem such as
the ones identified in [SYSR06] and in [IYW06] that are NP-hard, giving an indi-
cation of the computational complexity of the abductive analysis we use. Having
abduction as a uniform mechanism for solving analysis problems will let us work on
optimizations and approximations for abductive procedures (semi) independent of
the analysis. Current implementations of abduction are more general than required
by our analyses.

6.3 Implementation

We have built a system which implements our formal framework for policy analysis,
enabling us to test the correctness of many of the ideas which underlie the choice of
language details, and the form which axioms take. It is freely available to download
from http://www.doc.ic.ac.uk/~rac101/ffpa/.

The implementation uses the ASystem [VN04], a free and open-source program
written in Prolog, for the abductive constraint logic-programming component of
the analysis algorithms. The tests have enabled us to find modality conflicts, cover-
age problems, and another of other interesting properties of policies in conjunction
with system descriptions.

One difference between this implementation and the details presented in the
current paper is that the constraint solver used by the ASystem is based on finite
domains. For this reason, we adapted our axioms to work on an integer base for
the Time sort, and chose a maximum time to consider in order to make the Time
domain finite. In all cases we have examined, analysis results achieved under these
modifications would hold under the original version of the axioms with R as the time
sort.

It is not essential to use a finite-domain solver for the constraint-satisfaction part
of our abductive algorithm; the abductive logic-programming framework we have
presented in this section is modular, so that a solver based on the real numbers
could simply be ‘plugged in’ to the algorithm instead. To this end we are currently
looking at alternatives to the ASystem as a basis for our implementation.

Sample code for an ASystem implementation of our framework, together with
a test domain and policies, are presented in the Appendices.
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7 Related Work

The work presented in this paper bears some similarities to previous work on formal-
izing policies using the Event Calculus [Ban05]. Both approaches advocate modeling
the temporal properties of the managed system and they both support authorization
and obligation policy rules. However, the formalization in [Ban05] implicitly focuses
on modeling the Ponder language.7 This results in many restrictions, amongst which
the following three are most notable: fixing an open policy for authorizations (i.e. ac-
tions not explicitly denied are permitted), not having conflict resolution mechanisms
by assuming that all conflicts are resolved by analysis beforehand, and having only
obligations which must always be fulfilled, and which must be fulfilled immediately.

The Lithium language of Halpern and Weissman [HW03] has taken a more foun-
dational approach by developing formalisms for policy that have well defined com-
plexity results. However, they work in pure first-order logic which imposes on the
policy author the burden of specifying complete definitions (so that every request
has a decision) since one is not able to have default decision policies. As a simple
example, assume that there is a policy that says that only employees in the toy de-
partment are permitted to read file foo. This can be encoded with the following two
rules:

∀X[dep(X, toy)→ permitted(X, read, foo)],
∀X[¬dep(X, toy)→ ¬permitted(X, read, foo)].

In addition we will need a complete definition specifying the members of the toy
department. Let us say there are n members, named p1, . . . , pn. We will then define
the department as follows:

∀X[X = p1 ∨ · · · ∨X = pn ↔ dep(X, toy)].

Besides the fact that this kind of formula will be needed in many situations, it is also
true that each time that the composition of the toy department changes we will need
to modify the formula. This is a well-known problem studied in the Knowledge Rep-
resentation community, known as elaboration tolerance. The use of default rules—of
the kind that our formalism supports—can simplify specifications and changes to the
specification and provide elaboration tolerance. Another important difference in our
work is that in our analyses we perform hypothetical analysis through abduction.
Take the following example from [HW03]:

∀X[faculty(X)→ permitted(X, chair committees)],
∀X[student(X)→ ¬permitted(X, chair committees)].

Here, faculty members are permitted to chair committees but students are not. Only
when a faculty decides to take classes and become a student or a student is designated
as faculty will a simple deductive analysis will find an inconsistency in this policy.
In our analysis, unless the domain model restricts a subject to be either a student
and faculty (but not both), we will be able to find out that there might be situations
where this policy creates conflicts.

Irwin et al. propose a formalism for obligation policies together with analysis
techniques [IYW06]. In the current paper, we have adapted the syntax of these

7See http://ponder2.net/.
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obligation policies to produce a more general language that allows more complex
policy rules to be expressed. However, the hierarchical structure of the rules in our
language ensure that it is still computationally tractable, and that it is capable of
supporting analyses such as the strong accountability checking presented in [IYW06].

Other formal languages take advantage of the computational efficiencies obtained
by using subsets of first order logic, such as stratified logic. Barker presents in
[Bar00] a language that supports specification of access control policies using strat-
ified clause-form logic, with emphasis on RBAC policies. However, this work does
not discuss techniques for detecting conflicts in policy specifications. The Autho-
rization Specification Language (ASL) [JSSB97], the Flexible Authorization Frame-
work (FAF) [JSS97] and the extension to handle dynamic authorizations discussed
in [CWJ04] are other examples of languages based on stratified clause-form logic.
They also offer techniques for detecting modality conflicts and some application-
specific conflicts in authorization policy specifications. One of the main differences
between these pieces of work and ours is that they work with a fixed domain model.
The model has users, groups of users and roles. Groups of users can be recursively
collected into other groups to form a hierarchy. Roles are exactly like groups, i.e. re-
cursive collections of groups of users. The difference appears when the authorizations
assigned to groups and roles are applied to subjects. When a subject makes a re-
quest he has to pass a set of roles (the set could be empty). The first thing that is
checked is that the subject actually belongs to these roles. Then the subject gets all
the authorizations giving directly to him, all authorizations derived from his groups,
and all the authorizations derived from the roles passed as parameters in the re-
quest. So the difference is that a user has no choice about the authorizations given
based on groups, but can pick the roles (recall that authorizations can be positive
or negative). In the language it is possible to write different policies for deriving
authorizations based on roles and groups, and one can specify default policies like
our availability rules and conflict resolution policies. By describing their domain
model in our formalism, we can subsume their language in ours. However, fixing the
domain model to roles and groups limits the kind of policies that they are able to
express. For example, simple policies of the three logging failures and you are out
type stand outside the expressive resources of these formalisms, but are very easy
to express in ours. Another advantage of having control in the domain modeling is
that we will able to model the administration of polices and reason about it. For
example, our req inputs (and their consequent do actions) can add users to groups
or roles, or create groups and roles. During analysis, we can then prove whether
or not the system can get into a bad configuration which creates conflicts or vi-
olates application-dependent properties if there is a user with powerful rights but
insufficient constraints.

8 Conclusion

We have presented a formal framework for the analysis of properties of an interesting
class of authorization and obligation policies. We represent policies using a logical
language, and join the rules expressing authorizations and obligations to other laws
which describe the objects in, and behaviour of, the systems which the policies are
intended to regulate. The dynamic system behaviour is represented using a variant
of the Event Calculus. The whole formalism can be implemented as a normal logic
program.
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The purpose of this framework is to enable us to prove properties of our policies
and the way they interact with the systems which they regulate. We see it as a
significant benefit of our approach that it can detect under which system states and
system histories modality conflicts (for instance, the joint presence of a permission
and denial to perform a given action) arise, providing useful diagnostic information
to the system designer, who may then decide that the given sequence of inputs is
unlikely or not a substantial problem (and ignore the modality conflict as safe); or
else decide to modify the policies and system behaviour so that the conflict, perceived
as dangerous, will not arise.

We use a species of abductive constraint logic programming as the algorithm to
perform our analysis; the output from this algorithm, in answer to a question about
whether a given modality conflict, or separation-of-duty conflict, or other undesirable
policy-related configuration arises, supplies just the kind of diagnostic information
about the causes of the problem which we want. We described the essentials of the
abductive approach we use, and gave sample analyses.

There are a number of outstanding themes and questions. We are exploring the
possibility of incorporating different kinds of obligation policy rules in our formalism,
so that instead of explict temporal arguments marking the beginning and end of the
period during which an action ought to be performed, this period is dependent on
the occurrence of events; the two approaches in defining obligations would be able
to be mixed in our obligation policies. We see no reason why this should not be
possible. We also wish to look, in greater detail, at more technical questions related
to the underlying abductive constraint logic-programming technology used in our
analysis algorithms, and to consider whether alternative approaches to abduction
may yield increases in efficiency. We also wish to apply our analysis to a number of
larger, real-world examples, to provide a more practical proof of the utility of our
approach.
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A Test Results

A.1 The Project Meeting Example Revisited

We have built a prototype and tested the project meeting example described in
Section 5 on the ASystem. ASystem is a free and open source abductive reasoning
system developed by Van Nuffelen [VN04].

Apart from the information given in Section 5, we also have the following infor-
mation about the projects and meetings:

• There are two projects – the oakland project led by Alice and the ccs project
led by Bob.

• The oakland project has two project documents – okl paper and okl slides. The
ccs project has two project documents – ccs proposal and ccs report.

• There is a meeting of the oakland project, scheduled to start at 50 hrs. Alice,
Bob and Charles will be attending the meeting. The meeting documents are
the TO-DO list and the meeting slides.

• Project leaders are always allowed to read meeting agendas before project
meetings.

• Charles is told 5 hrs before the meeting to send the meeting slides to the project
leader within 5 hrs after the meeting starts.

• Other people who might be involved in the two projects are Morris, Alessandra,
Alberto, Emil and Rob.

All this information is reflected in the code in Section A.3.

A.2 Sample Testing

Here are some samples of the queries we made, and results obtained, using the
ASystem with the code for the project meeting example presented in Appendix A.3.

Query 1 Asystem ?- solve(permitted(Sub, Tar, read, T)).
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Given the code contained in Appendices A.3 and A.4, this query returned expected
answers such as:

permitted(morris,okl_meeting,vote,1)

with the abduced:

initially(role(morris,standard_attender(okl_meeting)))

Also, answers such as:

permitted(alessandra,okl_meeting,view_votes,2)

with the abduced:

req(emil,alessandra,allocate(meeting_admin(okl_meeting)),0)

(The total set of answers is too large to show in full here.)

Query 2 Asystem ?- solve(q(2, x(S, Ta, A, 1))).

This query asks for a modality conflict (that between permitted and denied at time
1), as q(2, X) is defined in the code as

q(2, x(S, Ta, A, T)) :-
permitted(S, Ta, A, T),
denied(S, Ta, A, T).

The program showed that if

initially(role(morris,meeting_admin(okl_meeting)))
initially(role(emil,chair(okl_meeting)))

are abduced, then there is a modality conflict for requests by emil to perform the ac-
tion allocate(standard attender(okl meeting)) on morris. This is as we would
expect, as in the circumstances given by the abduced initial state, the rules in Sec-
tion 5 dictate both that this action will be permitted and denied. Many other cir-
cumstances leading to similar modality conflicts were found.

Query 3 Asystem ?- solve(denied(Sub, Tar, Act, 1)).

This query gave all of the possible answers. For example, one of them is:

denied(_,emil,allocate(standard_attender(okl_meeting)),1)

With the abduced atom:

req(alessandra,emil,allocate(meeting_admin(okl_meeting)),0)

Clearly, this is expected given that after such a request, emil will be fulfilling the role
of the meeting admin for the Oakland meeting, okl meeting. In that circumstance,
any request from someone to make emil a standard attender of the same meeting
will be denied, according to the negative authorization rule in the policy. Other
expected solutions to this query are also found.
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A.3 ASystem Code of the Project Meeting Example

In this section we present the particular, domain-specific code used in testing the
‘project meeting’ example from Section 5. The file, project.pl, first loads the
general axioms presented later in Appendix A.4, and then includes the relevant
policy rules and system behaviour specifications.

loadfile(’pol.pl’).

maxtime(15).

% -- defined predicates

defined(project(_)).

defined(meeting(_,_)).

defined(project_doc(_,_)).

defined(doc(_,_)).

defined(start_time(_,_)).

defined(attendee(_,_)).

defined(leader(_,_)).

defined(agenda(_, _)).

defined(sec_status(_)).

defined(role(_)).

defined(person(_)).

% -- signature

subject(Person) :-

person(Person).

person(morris).

person(emil).

person(alessandra).

person(alberto).

person(rob).

person(alice).

person(bob).

person(charles).

target(M) :-

meeting(M, _).

target(D) :-

doc(D, _).

target(D) :-

project_doc(D, _).

target(S) :-

person(S).

action(read).

action(vote).

action(view_votes).

action(create).

action(classify(Status)) :-

sec_status(Status).

action(allocate(Role)) :-
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role(Role).

sec_status(public).

sec_status(project).

sec_status(company).

role(meeting_admin(M)) :-

meeting(M, _).

role(standard_attender(M)) :-

meeting(M, _).

role(chair(M)) :-

meeting(M, _).

fluent(role(S, R)) :-

subject(S),

role(R).

% -- values for the example

project(oakland).

project(ccs).

leader(alice, oakland).

leader(bob, ccs).

meeting(okl_meeting, oakland).

start_time(okl_meeting1, 30).

attendee(alice, okl_meeting1).

attendee(bob, okl_meeting1).

attendee(charles, okl_meeting1).

doc(m1_todos, okl_meeting1).

doc(m1_slides, okl_meeting1).

project_doc(okl_paper, oakland).

project_doc(okl_slides, oakland).

project_doc(ccs_proposal, ccs).

project_doc(ccs_report, ccs).

agenda(okl_meeting, okl_meeting_agenda).

% -- dynamic behaviour

initiates(S:Ta:allocate(R), role(Ta,R), T) :-

person(S),

person(Ta),

role(R).

% -- positive authorization rules

%

% Project leaders are permitted to read

% meeting agendas for their projects prior
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% to the start of the meeting.

permitted(S, A, read, T) :-

time(T),

project(P),

leader(S, P),

meeting(M, P),

agenda(M, A),

start_time(M, Ts),

clp(T #< Ts).

% Project partners who are permitted to read

% the meeting agenda are allowed to read related

% project documentation 24 hours before the meeting

% starts.

permitted(S, D, read, T2) :-

time(T2),

project(P),

meeting(M, P),

agenda(M, A),

permitted(S, A, read, T1),

project_doc(D, P),

start_time(M, T3),

clp(T1 #< T2),

clp(T2 #< T3),

clp(T3 - T2 #< 24).

% Standard meeting attenders are allowed to vote at

% meetings; meeting administrators are allowed to

% view those votes. The meeting chair is allowed

% to allocate members of the company to these roles.

% Nobody is permitted to be both a standard meeting

% attender and a meeting admin.

permitted(S, M, vote, T) :-

time(T),

meeting(M, _),

holdsAt(role(S, standard_attender(M)), T).

permitted(S, M, view_votes, T) :-

time(T),

meeting(M, _),

holdsAt(role(S, meeting_admin(M)), T).

permitted(S, Ta, allocate(standard_attender(M)), T) :-

time(T),

meeting(M, _),

holdsAt(role(S, chair(M)), T).

permitted(S, Ta, allocate(meeting_admin(M)), T) :-

time(T),

meeting(M, _),

holdsAt(role(S, chair(M)), T).
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denied(S, Ta, allocate(standard_attender(M)), T) :-

time(T),

meeting(M, _),

holdsAt(role(Ta, meeting_admin(M)), T).

denied(S, Ta, allocate(meeting_admin(M)), T) :-

time(T),

meeting(M, _),

holdsAt(role(Ta, standard_attender(M)), T).

% A meeting attendee is not allowed to classify a

% document as ’public’ if they created the document.

denied(S, D, classify(public), T2) :-

time(T2),

project(P),

meeting(M, P),

attendee(S, M),

doc(D, M),

do(S, D, create, T1),

clp(T1 #< T2).

% Alice is allowed to create and declassify project documents,

% but not on the same project.

permitted(alice, D, create, T) :-

time(T),

project(P),

not(denied(alice, D, create, T)).

permitted(alice, D, classify(public), T) :-

time(T),

project(P),

project_doc(D, P),

not(denied(alice, D, classify(public), T)).

denied(alice, D1, create, T2) :-

time(T2),

project(P),

project_doc(D1, P),

project_doc(D2, P),

time(T1),

clp(T1 #< T2),

do(alice, D2, classify(public), T1).

denied(alice, D1, classify(public), T2) :-

time(T2),

project(P),

project_doc(D1, P),

project_doc(D2, P),

time(T1),

clp(T1 #< T2),

do(alice, D2, create, T1).
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% -- integrity constraints

ic :-

req(S, S, _, _).

% -- queries

defined(q(_, _)).

q(1, x(S, Ta, A, T)) :-

permitted(S, Ta, A, T).

q(2, x(S, Ta, A, T)) :-

permitted(S, Ta, A, T),

denied(S, Ta, A, T).

q(3, x(S, Ta, A, T)) :-

denied(S, Ta, A, T).

A.4 ASystem Code for the General Axioms

In this section we give the code for the basic set-up used in all implementations of
systems and policies using our framework in ASystem. The following is the code
from the file pol.pl.

% ---------- abducible

abducible(req(_,_,_,_)).

% ---------- Defined Predicates

defined(permitted(_,_,_,_)).

defined(denied(_,_,_,_)).

defined(deny(_,_,_,_)).

defined(revoke(_,_,_,_,_,_)).

% -- the following are defined in the domain file

defined(subject(_)).

defined(target(_)).

defined(action(_)).

defined(dom_action(_)).

defined(fluent(_)).

% ---------- time

%

% maxtime/1 is defined in the domain file,

% for specific examples

defined(time(_)).

defined(times(_)).

defined(maxtime(_)).
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time(T) :-

maxtime(M),

clp(T in 0..M).

times([]).

times([X|Rest]) :-

time(X),

times(Rest).

% ---------- event calculus

defined(holdsAt(_,_)).

defined(broken(_,_,_)).

defined(initiates(_,_,_)).

defined(terminates(_,_,_)).

abducible(initially(_)).

abducible(happens(_,_)).

holdsAt(F, T) :-

initially(F),

time(T),

not(broken(F, 0, T)).

holdsAt(F, T) :-

initiates(S:Ta:A, F, Ts),

do(S, Ta, A, Ts),

clp(Ts #< T),

times([T,Ts]),

not(broken(F, Ts, T)).

holdsAt(F, T) :-

initiates(DomAct, F, Ts),

happens(DomAct, Ts),

clp(Ts #< T),

times([Ts,T]),

not(broken(F, Ts, T)).

broken(F, Ts, T) :-

terminates(S:Ta:A, F, TT),

do(S, Ta, A, TT),

clp(Ts #< TT),

clp(TT #< T),

times([Ts,T,TT]).

broken(F, Ts, T) :-

terminates(DomAct, F, TT),

happens(DomAct, TT),

clp(Ts #< TT),

clp(TT #< T),

times([Ts,T,TT]).
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% ---------- interval predicates

defined(reqInBetween(_,_,_,_,_)).

defined(doInBetween(_,_,_,_,_)).

reqInBetween(Sub,Tar,Act,T1,T2) :-

req(Sub,Tar,Act,Tm),

clp(T1 #=< Tm),

clp(Tm #< T2),

times([T1,T2,Tm]).

doInBetween(Sub,Tar,Act,T1,T2) :-

do(Sub,Tar,Act,Tm),

clp(T1 #=< Tm),

clp(Tm #< T2),

times([T1,T2,Tm]).

% ---------- positive availability

defined(do(_,_,_,_)).

do(Sub, Tar, Act, T) :-

req(Sub, Tar, Act, T),

time(T),

not(denied(Sub, Tar, Act, T)).

% ---------- Negative availability

deny(Sub, Tar, Act, T) :-

req(Sub, Tar, Act, T),

denied(Sub, Tar, Act, T).

% ---------- obligation

defined(obl(_,_,_,_,_,_)).

defined(cease_obl(_,_,_,_,_,_,_)).

cease_obl(Sub, Tar, Act, Tinit, Ts, Te, T) :-

revoke(Sub, Tar, Act, Ts, Te, TT),

clp(Tinit #=< TT),

clp(TT #< T),

clp(T #=< Te),

times([Tinit,Te,T,TT]).

cease_obl(Sub, Tar, Act, Tinit, Ts, Te, T) :-

do(Sub, Tar, Act, TT),

clp(T1 #=< TT),

clp(TT #< T),

clp(T #=< Te),

times([Tinit,Ts,Te,T,TT]).

% ---------- fulfilled

defined(fulfilled(_,_,_,_,_,_)).
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fulfilled(Sub, Tar, Act, Ts, Te, T) :-

obl(Sub, Tar, Act, Ts, Te, Tinit),

do(Sub, Tar, Act, TT),

not(cease_obl(Sub, Tar, Act, Tinit, Ts, Te, TT)),

clp(Tinit #=< Ts),

clp(Ts #=< TT),

clp(TT #< Te),

clp(TT #< T),

time(T).

% ---------- violated

defined(violated(_,_,_,_,_,_)).

violated(Sub, Tar, Act, Ts, Te, T) :-

obl(Sub, Tar, Act, Ts, Te, Tinit),

not(cease_obl(Sub, Tar, Act, Tinit, Ts, Te, T2)),

clp(Tinit #=< Ts),

clp(Ts #< Te),

clp(Te #=< T),

time(T).

% ---------- domain-independent integrity constraints

% -- constraints for arguments for req/4

ic :-

req(S, Ta, A, T),

not(request_args(S,Ta,A)).

defined(request_args(_,_,_)).

request_args(S,Ta,A) :-

subject(S),

target(Ta),

action(A).

% -- constraints for arguments to initially/1

ic :-

initially(F),

not(fluent(F)).

% -- constraints for arguments to happens/2

ic :-

happens(A, T),

not(dom_action(A)).
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