
The logic of unwitting collective agency

(Technical Report)

Marek Sergot

Department of Computing, Imperial College London
London SW7 2AZ, UK
mjs@doc.ic.ac.uk

May 2008
(Typos corrected June 2009; July 2010)

Abstract

The paper is about the logic of expressions of the form ‘agent x brings
it about that A is the case’, or ‘agent x is responsible for its being the
case that A’, or ‘the actions of agent x are the cause of its being the
case that A’. Agents could be deliberative (human or computer) agents,
purely reactive agents, or simple computational devices. The ‘brings it
about’ modalities are intended to express unintentional, perhaps even ac-
cidental, consequences of an agent’s actions, as well as possibly intentional
(intended) ones. Since we make no assumptions at all about the reasoning
or perceptual capabilities of the agents we refer to this form of agency as
‘unwitting’; unwitting can mean both inadvertent and unaware. The se-
mantical framework is a form of labelled transition system extended with
an extra component that picks out the actions of a particular agent in
a transition, or its ‘strand’ as we call it. We define a modal language
for talking about the actions of individual agents or groups of agents in
transitions, including two defined modalities of the (unwitting) ‘brings it
about’ kind. The novel feature is the switch of attention from talking
about an agent’s bringing it about that a certain state of affairs exists
to talking about an agent’s bringing it about that a transition has a cer-
tain property. The middle part of the paper presents axiomatisations of
the logic, and comments on relationships to other work, in particular on
resemblances to Pörn’s (1977) logic of ‘brings it about’. The last part
is concerned with characterisations of (unwitting) collective agency, that
is, the logic of expressions of the form ‘the set G of agents, collectively
though perhaps unwittingly, brings it about that A’.

1 Introduction

This paper is about the logic of expressions of the form ‘agent x brings it about
that A is the case’, or ‘agent x is responsible for its being the case that A’, or
‘the actions of agent x are the cause of its being the case that A’. The study
of logics of this type has a very long tradition. They are sometimes referred
to, particularly in the philosophical literature, as logics of action. We will refer

1

to them as logics of agency here, to avoid confusion with other, quite different
approaches to the formalisation of action such as those normally encountered
in computer science and temporal logic. The best known examples of logics of
agency are perhaps the ‘stit’ (‘seeing to it that’) family (see e.g. Belnap and
Perloff, 1988; Horty and Belnap, 1995; Horty, 2001). Segerberg (1992) provides
a summary of early work in this area, and Hilpinen (1997) an overview of the
main semantical devices that have been used, in ‘stit’ and other approaches. As
Hilpinen observes: “The expression ‘seeing to it that A’ usually characterises
deliberate, intentional action. ‘Bringing it about that A’ does not have such
a connotation, and can be applied equally well to the unintentional as well as
intentional (intended) consequences of one’s actions, including highly improb-
able and accidental consequences.” Our agency modalities are of this latter
‘brings it about’ kind. They are intended to express unintentional, perhaps
even unwitting, consequences of an agent’s actions, as well as possibly inten-
tional (intended) ones.

Suppose, for example, that two agents a and b are positioned at either end
of a table. On the table stands a vase. If one agent lifts its end of the table
and the other does not, or if one lowers its end of the table and the other does
not, then the table tilts. If the table tilts, the vase falls, and if it falls, it breaks.
Suppose now that one agent lifts its end of the table and the other does not,
and the vase falls and breaks. Which of the two agents, if either, ‘brings about’,
or is responsible for, the breaking of the vase? It might be the one who lifted its
end, or the one who failed to lift its end, or both of them collectively, or neither.

The agents in this example could be humans, or robots with perceptual and
reasoning capabilities, or mechanical devices that merely follow a fixed set of
rules that make them lift or lower their end of the table in response to certain
stimuli. We make no distinction here. An agent can still meaningfully ‘bring
about’ that the vase breaks even if it does so unintentionally, even if it has no
way of predicting the other agent’s actions, even if it is unaware of the other
agent’s existence, even if it has no way of detecting that there is a vase on the
table. What we want to study here is unwitting agency—‘unwitting’ because
that can mean both inadvertent and unaware, and both senses of the word are
appropriate here.

This study was initially motivated by issues arising in the norm-governed
regulation of multi-agent systems in computer science. An idea that has been
gaining popularity in that field is that, in some cases, interactions among multi-
ple, independently acting agents can best be regulated and managed by the use
of norms. The term ‘social laws’ has also been used in this connection, usually
with reference to ‘artificial social systems’. A ‘social law’ has been described as
a set of obligations and prohibitions on agents’ actions, that, if respected, allow
multiple, independently acting agents to co-exist in a shared environment.

As argued elsewhere, we want to be able to say that in a system transi-
tion representing many concurrent actions by multiple agents and possibly the
environment, it is specifically one agent’s actions rather than another’s that
are in compliance or non-compliance with norms governing its behaviour. This
allows us in turn to identify and characterise several different categories of non-
compliant behaviour. It allows us to distinguish between various forms of un-
avoidable or inadvertent non-compliance, behaviour where an agent does ‘the
best that it can’ to comply with its individual norms but nevertheless fails to
do so because of actions of other agents, and behaviour where an agent could

2

have complied with its individual norms but did not. The aim, amongst other
things, is to be able to investigate what kind of system properties emerge if we
assume, for instance, that all agents of a certain class will do the best that they
can to comply with their individual norms, or never act in such a way that they
make non-compliance unavoidable for others.

Generally, the logic of norms and the logic of action/agency have often been
studied together. Many authors have argued that an adequate theory of norms
must be underpinned by a precise theory of action (by which is often meant
agency). This is a feature of von Wright’s seminal work (von Wright, 1963), for
instance. A more recent example is the extended study by Horty (2001) which
uses the framework of ‘stit’ logics to evaluate how various forms of utilitarianism
account for norms governing individual agents and groups of agents. These
remarks are for context. We will not address the representation of norms in this
paper, except as an occasional source of motivating examples.

Specifically, we begin by presenting a two-sorted (modal) language for talk-
ing about properties of states and transitions in a labelled transition system.
We then add a component that allows us to pick out the actions of a particular
agent in a transition, or its ‘strand’ of the transition as we will call it. We then
extend the language with modalities for talking about the actions of individ-
ual agents or groups of agents in transitions, including two defined modalities
of the (unwitting) ‘brings it about’ kind. The novel feature is the switch of
attention from talking about an agent’s bringing it about that a certain state
of affairs exists to talking about an agent’s bringing it about that a transition
has a certain property. Although the possibility of combining a logic of agency
with a transition-based treatment of action has been mentioned from time to
time, and elements exist in von Wright’s early work and elsewhere, a detailed
development has not been done before to our knowledge. The resulting logic
resembles Ingmar Porn’s (1977) logic of ‘brings it about’ action/agency, though
there are also some very significant differences. The account generalises to talk-
ing about the collective actions of groups of agents and their consequences; the
last part of the paper is concerned with characterisations of several different
forms of (unwitting) collective agency.

It is important to stress that we are making no assumptions here about the
reasoning or perceptual capabilities of the agents. Agents could be deliberative
(human or computer) agents, purely reactive agents, or simple computational
devices. We make no distinction between them. This is for both methodological
and practical reasons. From the methodological point of view, it is clear that
genuine collective or joint action involves a very wide range of issues, including
joint intention, communication between agents, awareness of another agent’s
capabilities and intentions, and many others. We want to factor out all such
considerations, and investigate what can be said about individual or collective
agency when all such considerations are ignored. The logic of unwitting col-
lective agency might be extended and strengthened in due course by bringing
in other factors such as (joint) intention one by one; we do not discuss any
such possibilities here. From the practical point of view, there is a wide class
of applications for multi-agent systems composed of agents with reasoning and
deliberative capabilities. There is an even wider class of applications if we con-
sider also simple ‘lightweight’ agents with no reasoning capabilities, or systems
composed of simple computational units in interaction. We want to be able to
consider this wider class of applications too.

3

Section 2 of the paper presents the two-sorted language used for talking
about labelled transition systems. Section 3 introduces agent-stranded transi-
tion systems and the language used to talk about an individual agent’s actions.
Section 4 discusses two defined ‘brings it about’ modalities, and briefly how they
relate to issues that have been discussed in the literature; Section 5 presents ax-
iomatisations of the logic. Section 6 is concerned with the characterisation of
(unwitting) collective agency of groups of agents.

2 Labelled transition systems

2.1 Preliminaries

Transition systems A labelled transition system (LTS) is usually defined as
a structure 〈S,A,R〉 where

• S is a (non-empty) set of states;

• A is a set of transition labels, also called events;

• R is a (non-empty) set of labelled transitions, R ⊆ S ×A× S.

When (s, ε, s′) is a transition in R, s is the initial state and s′ is the resulting
state, or end state, of the transition. ε is executable in a state s when there is a
transition (s, ε, s′) in R, and non-deterministic in s when there are transitions
(s, ε, s′) and (s, ε, s′′) in R with s′ 6= s′′. A path or run of length m of the labelled
transition system 〈S,A,R〉 is a sequence s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)
such that (si−1, εi−1, si) ∈ R for i ∈ 1..m. Some authors prefer to deal with
structures 〈S, {Ra}a∈A〉 where each Ra is a binary relation on S.

It is helpful in what follows to take a slightly more general and abstract view
of transition systems. A transition system is a structure 〈S,R, prev,post〉 where

• S and R are disjoint, non-empty sets of states and transitions respectively;

• prev and post are functions from R to S: prev(τ) denotes the initial state
of a transition τ , and post(τ) its resulting state.

In this more abstract account, a path or run of length m of the transition system
〈S,R, prev,post〉 is a sequence τ1 · · · τm−1 τm (m ≥ 0) such that τi ∈ R for
every i ∈ 1..m, and post(τi) = prev(τi+1) for every i ∈ 1..m−1.

A labelled transition system is a structure

〈S,A,R, prev,post, label〉

where S, R, prev, and post are as above, and where label is a function from R
to A. The special case of a LTS in which R ⊆ S×A×S then corresponds to the
case where prev(τ) = prev(τ ′) and post(τ) = post(τ ′) and label(τ) = label(τ ′)
implies τ = τ ′, and in which prev((s, ε, s′)) = s, post((s, ε, s′)) = s′, and
label((s, ε, s′)) = ε. The more abstract account is of little practical signif-
icance but is helpful in that it allows a more concise statement of some of
the things we want to say about transition systems. It is also more general:
transitions are not identified by (s, ε, s′) triples: there could be several transi-
tions with the same initial and resulting states and the same label. Nothing in
what follows turns on this. Henceforth, we will write 〈S,A,R〉 as shorthand for
〈S,A,R, prev,post, label〉 leaving the functions prev, post, and label implicit.

4

Interpreted transition systems Given a labelled transition system, it is
usual to define a language of propositional ‘fluents’ or ‘state variables’ in order
to express properties of states. Given an LTS 〈S,A,R〉 and a suitably chosen
set of atomic propositions, a model is a structure M = 〈S,A,R, hf〉 where hf is
a valuation function which specifies, for every atomic proposition p, the set of
states in the LTS at which p is true.

We employ a two-sorted language. We have a set Pf of propositional atoms
for expressing properties of states, and a disjoint set Pa of propositional atoms
for expressing properties of events and transitions. Models are structures M =
〈S,A,R, hf, ha〉 where hf is a valuation function for atomic propositions Pf in
states S and ha is a valuation function for atomic propositions Pa in transitions
R.

We then extend this two-sorted propositional language with (modal) opera-
tors for converting state formulas to transition formulas, and transition formulas
to state formulas. Concretely, where ϕ is a transition formula, the state formula
[ϕ]F expresses that the state formula F is satisfied in every state following a
transition of type ϕ. The transition formulas 0:F and 1:G are satisfied by a
transition τ when the initial state of τ satisfies state formula F and the resulting
state of τ satisfies state formula G, respectively. The details are summarised
presently.

It is not clear whether evaluating formulas on transitions and states in this
fashion is novel or not. Große and Khalil (1996) evaluate formulas on state-
event pairs (s, ε) when the transition system is a set of triples (s, ε, s′) but that
is not the same as we have here. Venema (1999) uses a two-sorted language
for expressing properties of points and lines in projective geometry, though
naturally the choice of modal operators is different there.

In applications (see e.g. (Craven and Sergot, 2008; Sergot, 2008)) we find it
convenient to add a little more structure to the underlying propositional lan-
guage. It is not essential but makes the formulation of typical examples clearer
and more concise. The following is adapted from (Giunchiglia et al., 2004). A
multi-valued propositional signature σ is a set of symbols called constants. For
each constant c in σ there is a finite non-empty set dom(c) of values called the
domain of c. An atom is an expression of the form c=v where c is a constant
in σ and v ∈ dom(c). An interpretation is a function that maps every constant
c in σ to some value v in dom(c); an interpretation I satisfies an atom c=v if
I(c) = v. A Boolean constant is one whose domain is the set of truth values
{t, f}. As observed in (Giunchiglia et al., 2004), a multi-valued signature of this
type can always be translated to an equivalent Boolean signature. The use of
a multi-valued signature makes the formulation of examples more concise but
since we will not be looking at any in detail in this paper we will not use it. In
this paper an expression of the form c=v is a propositional atom whose internal
structure can be ignored.

2.2 A language for states and transitions

The base propositional language is constructed from a set Pf of state atoms (also
known as ‘fluents’ or ‘state variables’) and a disjoint set Pa of event atoms. In
previous work we followed the terminology of (Giunchiglia et al., 2004) and
called the atoms of Pa ‘action atoms’. This terminology is misleading however.
Although event atoms are used to represent actions and attributes of actions,

5

they are also used to express properties of an event or transition as a whole.
Examples of event atoms might be x:move=l and x:move=r to represent that
agent x moves in direction l and r, respectively. In applications we employ an
(informal) convention that event atoms with a prefix ‘x:’ are intended to repre-
sent actions by an agent x. The event atom a:lifts might be used to represent
that a lifts its end of the table, for example. This is just an informal convention
however. The agent prefix does not feature in the semantics. The event atom
falls(vase) might be used to represent transitions in which the object vase falls.
Here there is no prefix ‘vase:’—‘falls’ is not an action that is meaningfully per-
formed by the object vase. Event atoms are also used to express properties of an
event or a transition as whole: for instance, whether it is desirable or undesir-
able, timely or untimely, permitted or not permitted, and so on. For this reason
we prefer the term ‘event atom’ for the elements of Pa, and we reserve the term
‘action atom’ for referring informally to those event atoms that are intended
to represent actions by an agent. In general, an event (transition label) will
represent multiple concurrent actions by agents and the environment, concur-
rent actions such as the falling or breaking of a vase that cannot be ascribed to
any agent, and other properties of the event, such as whether it is permitted or
not permitted, desirable or undesirable from a system designer’s point of view,
timely or untimely, and so on. So, for example, the formula

a:lifts ∧ ¬ b:lifts ∧ c:move=l ∧ ¬ d:move=l ∧ falls(vase) ∧ trans=red

would represent an event in which a lifts its end of the table, b does not, c
moves in direction l, d does not move in direction l, and the vase falls. The
atom trans=red might represent that the event is illegal (say), or undesirable,
or not permitted.

Propositional formulas of Pa are evaluated on transition labels/events. When
an event satisfies a propositional formula ϕ of Pa we say that the event is an
event of type ϕ. So, for example, all events of type a:lifts ∧ ¬b:lifts are also
events of type a:lifts, and events of type ¬b:lifts. By extension, we also say that
a transition is of type ϕ when its label (event) is of type ϕ. However, there are
things we want to say about transitions that are not properties of their events
(labels), in particular, whenever we want to refer to what holds in the initial
state or final state of the transition. Transition formulas subsume event formulas
but are more general. Although evaluating formulas on transitions seems to be
unusual, representing events by Boolean compounds of propositional atoms is
not so unusual. It is a feature of the action language C+ (Giunchiglia et al.,
2004), for example, and has also been used recently in (Sauro et al., 2006) in
discussions of agent ‘ability’.

Formulas Formulas are state formulas and transition formulas.
State formulas:

F ::= > | ⊥ | any atom p of Pf | ¬F | F ∧ F | [ϕ]F

Transition formulas:

ϕ ::= > | ⊥ | any atom α of Pa | ¬ϕ | ϕ ∧ ϕ | 0:F | 1:F

where F is any propositional state formula (i.e., a propositional formula of Pf).
We refer to the propositional formulas of Pa as event formulas.

6

> and ⊥ are 0-ary connectives with the usual interpretation. The other
truth-functional connectives (disjunction ∨, material implication →, and bi-
implication ↔) are introduced as abbreviations in the standard manner.

Models Models are structures

M = 〈S,A,R, hf, ha〉

where hf and ha are the valuation functions for state atoms and event atoms
respectively:

hf : Pf → ℘(S) and ha : Pa → ℘(A)

For every state s in S and event/label ε in A we have:

M, s |= p iff s ∈ hf(p)
M, ε |= α iff ε ∈ ha(α)

and for every transition τ in R and event atom α in Pa:

M, τ |= α iff M, label(τ) |= α

It would be possible to introduce a third sort PR of propositional atoms for
expressing properties of transitions, different from Pa though not disjoint. A
model would then include a third valuation function hR : PR → ℘(R) with

M, τ |= α iff τ ∈ hR(α)

We will not bother with that extension here. Atoms in Pa are evaluated on both
event/transition labels and transitions in the present set up. The difference is
that event formulas are only the propositional formulas of Pa whereas transi-
tion formulas are more general (as defined above). Transition formulas will be
extended with some additional constructs in Section 3.

When ϕ is a formula of Pa and τ is a transition in R we say that τ is a
transition of type ϕ when τ satisfies ϕ, i.e., when M, τ |= ϕ, and sometimes
that ϕ is true at, or true in, the transition τ . A state s satisfies a formula F
whenM, s |= F . We sometimes say a formula F ‘holds in’ state s or ‘is true in’
state s as alternative ways of saying that s satisfies F .

Semantics Let M = 〈S,A,R, hf, ha〉 and let s and τ be a state and transi-
tion of M respectively. The satisfaction definitions for atomic propositions are
described above. For negations, conjunctions, and all other truth functional con-
nectives, we take the usual definitions. The satisfaction definitions for the other
operators are as follows, for any state formula F and any transition formula ϕ.

State formulas:

M, s |= [ϕ]F iff M,post(τ) |= F for every τ ∈ R such that
prev(τ) = s and M, τ |= ϕ.

〈ϕ〉 is the dual of [ϕ]: 〈ϕ〉F =def ¬[ϕ]¬F .

7

Transition formulas:

M, τ |= 0:F iff M,prev(τ) |= F

M, τ |= 1:F iff M,post(τ) |= F

‖F‖M =def {s ∈ S | M, s |= F}; ‖ϕ‖M =def {τ ∈ R | M, τ |= ϕ}.

As usual, we say that F is valid in a modelM, writtenM |= F , whenM, s |= F
for every state s in S, and ϕ is valid in a model M, written M |= ϕ, when
M, τ |= ϕ for every transition τ in R. A formula is valid if it is valid in every
model M (written |= F and |= ϕ, respectively).

Let us discuss the transition formulas first. They are the main focus of
attention in this paper.

A transition is of type 0:F when its initial state satisfies the state formula
F , and of type 1:G when its resulting state satisfies G. The following transition
formula represents a transition from a state where (state atom) p holds to a
state where it does not:

0:p ∧ 1:¬p

von Wright (1963) uses the notation pT q to represent a transition from a state
where p holds to one where q holds. It would be expressed here as the transition
formula:

0:p ∧ 1:q

Our notation is more general. We will make some further comments in Sec-
tion 4.4.

For example, let the state atom on-table(vase) represent that the vase is on
the table. A transition of type 0:on-table(vase) ∧ 1:¬on-table(vase), equiva-
lently, of type 0:on-table(vase)∧¬1:on-table(vase) is one from a state in which
the vase is on the table to one in which it is not on the table. Suppose that
the event atom falls(vase) represents the falling of the vase from the table. A
vase-falling transition is also a transition from a state in which the vase is on
the table to a state in which the vase is not on the table, and so any LTS model
M modelling this system will have the validity

M |= falls(vase) → (0:on-table(vase) ∧ 1:¬on-table(vase))

There may be other ways that the vase can get from the table to the ground.
One of a or b, or some other agent c, might move the vase from the table to the
ground, for example. That would also be a transition of type 0:on-table(vase)∧
1:¬on-table(vase) but not a transition of type falls(vase).

The operators 0: and 1: are both normal. Since prev and post are (total)
functions on R, we have

|= 0:F ↔ ¬0:¬F and |= 1:F ↔ ¬1:¬F

(which also means that 0: and 1: distribute over all truth-functional connec-
tives).

Now some brief comments about state formulas. When ϕ is a transition
formula, then [ϕ]F is true at a state s when every transition of type ϕ results

8

in a state where F is true. So, for example, when α is an event formula, that
is, a propositional formula of Pa, then

〈α〉> i.e. ¬[α]⊥

represents that an event of type α is executable in the current state. More
generally, 〈ϕ〉> , i.e., ¬[ϕ]⊥, says that there is a transition of type ϕ from the
current state. For example,

〈1:F 〉>

expresses that there is a transition from the current state to a state where F is
true.

〈ϕ ∧ 1:F 〉>

says that there is a transition of type ϕ from the current state to a state where
F is true.

It is important not to confuse the state formula [ϕ]F with the notation
[ε]F used in Propositional Dynamic Logic (PDL). In PDL, the term ε in an
expression [ε]F is a transition label/event ε of A, not a transition formula as
here. For example, [0:F ∧ ϕ]G and 〈0:F ∧ ϕ ∧ 1:G〉> are both state formulas.
The first is equivalent to F → [ϕ]G and the second to F ∧ 〈ϕ〉G.

The logic of each [ϕ] is normal. Moreover:

if M |= ϕ → ϕ′ then M |= 〈ϕ〉F → 〈ϕ′〉F

as is easily confirmed, and hence equivalently

if M |= ϕ → ϕ′ then M |= [ϕ′]F → [ϕ]F

We also have validity of:

([ϕ]F ∧ [ϕ′]F) → [ϕ ∨ ϕ′]F

and of
[⊥]⊥

(Sauro et al., 2006) have recently employed a similar device in a logic of agent
‘ability’ though in a more restricted form than we allow. (Their notation is
slightly different.) They give a sound and complete axiomatisation for the logic
of expressions [α]F where (in our terms) F is a propositional formula of Pf and α
is an event formula, that is, a propositional formula of Pa. We will not attempt
to give a complete axiomatisation of our more general language here. It is not
essential for the purposes of this paper. We note only that an axiomatisation
is more complicated for the more general expressions [ϕ]F because there are
some further relationships between state formulas and transition formulas that
need to be taken into account. For example, all instances of the following state
formulas are obviously valid

[1:F]F

as are all instances of

(F → [ϕ]G) ↔ [0:F ∧ ϕ]G

9

We will not develop that here. For the purposes of this paper it is transition
formulas that are of primary interest.

Generally speaking, we find that properties of labelled transition systems
are more easily and clearly expressed as transition formulas rather than state
formulas. For example, although we cannot say using a transition formula that
in a particular state of M, every transition of type ϕ leads to a state which
satisfies G, we can say (as we often want to) that whenever a state ofM satisfies
F , every transition of type ϕ from that state leads to a state which satisfies G.
That is:

M |= (0:F ∧ ϕ) → 1:G

Properties of models can often be expressed equivalently as validities of state
formulas or of transition formulas. We have

M |= F → [ϕ]G iff M |= (0:F ∧ ϕ) → 1:G

Suppose, for example, that the state atoms light=on and light=off represent
the status of a particular light, and loc(x)=p that agent x is at location p. And
suppose that the event atoms toggle and x :move represent that the light switch
is toggled and that agent x moves. We would expect the following properties of
any model M modelling this domain:

• state formulas

M |= light=on → [toggle]light=off
M |= loc(x)=p → [¬x:move]loc(x)=p

• transition formulas

M |= (0:light=on ∧ toggle) → 1:light=off
M |= (0:loc(x)=p ∧ ¬x:move) → 1:loc(x)=p

We find transition formulas are generally more useful and clearer.

Example: Norms and coloured transition systems

A simple way of representing norms is to partition the states (and here transi-
tions) of a transition system 〈S,A,R〉 into two categories:

• Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

• Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—
we call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S \ Sg and Rred = R \ Rg as the ‘red
states’ and ‘red transitions’, respectively. Semantical devices which partition
states (and here, transitions) into two categories are familiar in the field of
deontic logic. One can find many examples and variations in the literature. In
(Sergot and Craven, 2006) we presented a refinement in which the states of a
transition systems were ordered depending on how well each complied with a
set of explicitly stated norms. We will stick to a simple binary classification in
this paper.

10

We require that a coloured transition system of this type must further satisfy
the following constraint, for all states s and s′ in S and all transitions τ in R:

if τ ∈ Rg and prev(τ) ∈ Sg then post(τ) ∈ Sg (1)

We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.)

The ggg constraint (1) expresses a kind of well-formedness principle: a green
(permitted, acceptable, legal) transition in a green (permitted, acceptable, legal)
state always leads to a green (acceptable, legal, permitted) state. It may be
written equivalently as:

if prev(τ) ∈ Sg and post(τ) ∈ Sred then τ ∈ Rred (2)

Any transition from a green (acceptable, permitted) state to a red (unac-
ceptable, non-permitted) state must itself be undesirable (unacceptable, non-
permitted), i.e., ‘red’, in a well-formed system specification.

Instead of introducing a special category of coloured transition systems with
extra components Sg and Rg as in (Sergot and Craven, 2006; Craven and Ser-
got, 2008), we now prefer to speak of labelled transition systems generally and
introduce colourings for states and transitions by means of suitably chosen
propositional atoms. Let the state atom status=green represent that a state
is coloured green, and the event atom trans=green that a transition is coloured
green. Let status=red and trans=red be abbreviations for ¬status=green and
¬trans=green, respectively. ‖status=green‖M then denotes the ‘green states’
of a model M and ‖status=red‖M = S \ ‖status=green‖M its ‘red states’;
‖trans=green‖M denotes the ‘green transitions’ and ‖trans=red‖M = R \
‖trans=green‖M the ‘red transitions’.

The ggg constraint (1) can then be expressed as validity in the model M of
the state formula

status=green → [trans=green]status=green

or, equivalently, of the transition formula

(0:status=green ∧ trans=green) → 1:status=green

One can consider a range of other properties that we might require of a
coloured transition system. For example: that the transition relation must be
serial, that there must be at least one green state, that from every green state
there must be at least one green transition, that from every green state reachable
from some specified initial state(s) there must be at least one green transition,
and so on. With the exception of the last one, all these properties are easily
expressed in this language, and can be checked on (a symbolic representation
of) a transition system. Reachability properties of a model, such as the last
example given above, can be checked but are not expressible as formulas of
the language. That could be fixed by extending the language but we will not
consider that here.

Notice that we would get much more precision by colouring paths/runs of
the transition system instead of just its states and transitions. One could then
extend the logics presented in this paper with features from a temporal logic
such as CTL. The details seem straightforward but we leave them for future
investigation.

11

Example: Agent-specific norms

In the context of using norms or ‘social laws’ to regulate the interactions of
multiple, independently acting agents in a multi-agent computer system, the
colourings of states and transitions as ‘green’ or ‘red’ represent what in (Craven
and Sergot, 2008; Sergot, 2008) we call system norms. They express a system de-
signer’s point of view of what system states and transitions are legal, permitted,
desirable, and so on. There is a separate category of individual agent-specific
norms that are intended to guide an individual agent’s behaviours and are sup-
posed to be taken into account in the agent’s implementation, or reasoning
processes, in one way or another. These have a different character. In order
to be effective, or even meaningful, they must be formulated in terms of what
an agent can actually sense or perceive and the actions that it can actually
perform. So, in the table-vase example an agent-specific norm could not mean-
ingfully prohibit an agent a from acting in such a way that the vase falls off the
table. Agent a may not be able to perceive if the vase is on the table or if the
table is tilted. More to the point, agent a cannot predict (we are supposing)
how agent b will act, and may even be unaware of agent b’s existence. These
are aspects of agent-specific norms, and of agent capabilities generally, that are
not modelled at the level of detail we are considering in this paper.

That aside, given a transition system M modelling the possible system be-
haviours, and some (finite) set Ag of agent names, we specify for every agent x
in Ag the norms specific to x that govern x’s individual actions: some subset
of the transitions will be designated as green(x) and the others as red(x). A
transition is designated as green(x) when x’s actions in that transition comply
with the agent-specific norms for x.

As in the case of coloured transition systems, we prefer to speak of transition
systems in general, and use suitably chosen propositional atoms to represent the
properties of interest. So, let Pa contain event atoms green(x) for every agent
x ∈ Ag , and let red(x) be an abbreviation for ¬green(x). A transition τ in M
is, or is coloured, green(x), respectively red(x), in a model M when M, τ |=
green(x), or M, τ |= red(x), respectively. The green(x) transitions in a model
M are ‖green(x)‖M; the red(x) transitions are ‖red(x)‖M = R \ ‖green(x)‖M.

We retain the ggg constraint for the colouring of states and transitions as
(globally) green or red as determined by the system norms. There is no ana-
logue of the ggg constraint for the colourings representing agent-specific norms.
However, it is natural to consider an optional coherence constraint relating the
agent-specific colourings of a transition to its global (system norm) colouring.
The colouring of a transition as (globally) red represents that the system as a
whole fails to satisfy the required standard of acceptability, legality, desirabil-
ity represented by the global green/red colouring. In many settings it is then
natural to say that if any one of the system components (agents) fails to satisfy
its standards of acceptability, legality, desirability, then so does the system as
a whole: if a transition is red(x) for some agent x then it is also (globally) red.
Formally, given a finite set Ag of agent names, the model M = 〈S,A,R, hf, ha〉
satisfies the local-global coherence constraint whenever, for all agents x ∈ Ag ,
red(x) ⊆ Rred, that is to say, when

M |= red(x) → trans=red (3)

The coherence constraint (3) is optional and not appropriate in all settings.

12

Notice though, that even if the coherence constraint is adopted, it is possible
that a transition can be coloured green(x) for every agent x and still itself be
coloured globally red (trans=red). (Craven and Sergot, 2008; Sergot, 2008)
present examples showing that this is common, and indeed often desirable.

There are other, more fundamental constraints that we must place on agent-
specific colourings. We defer discussion of those, and various different categories
of norm compliance and non-compliance, until Section 3.

3 Agent-stranded transition systems

The transition systems as they currently stand do not have the capacity to
represent that it is specifically one agent’s actions rather than another’s which
must be marked as ‘red’. There is no way to extract from, or represent in, the
transition system that a particular agent’s actions in the transition are illegal,
sub-ideal, undesirable, and so on, or more generally, that it is specifically one
agent’s actions that are responsible for, or the cause of, a transition’s having a
certain property ϕ. There is no explicit concept of an individual agent in the
semantics at all.

Let Ag be a (finite) set of agent names. An ‘agent’ in Ag could be a delib-
erative (human or computer) agent, or it could be a purely reactive component
such as a simple computational unit or some other device.

An agent-stranded LTS is a structure

〈S,A,R,Ag , strand〉

where 〈S,A,R〉 is an LTS. Models are structuresM = 〈S,A,R,Ag , strand, hf, ha〉
where hf and ha are the valuation functions for the propositional atoms Pf and
Pa, as before.

The new component is strand, which is a function on Ag × A. strand(x, ε)
picks out from a transition label/event ε the component or ‘strand’ that corre-
sponds to agent x’s contribution to the event ε. We will write εx for strand(x, ε).
For example, where Ag = {1, . . . , n}, the transition labels A may, but need not,
be tuples

A ⊆ A1 × · · ·Ai × · · · ×An ×Aenv

where each Ai represents the possible actions of the agent i and Aenv repre-
sents possible actions in the environment. Transition labels (events) with this
structure are often used in the literature on multi-agent systems and distributed
computer systems. In that case, strand would be defined so that

(a1, . . . , ai, . . . , an, aenv)i = ai

However, it is not necessary to restrict attention to transition labels/events A
of that particular form. All we require is that there is a function strand defined
on Ag × A which picks out unambiguously an agent x’s contribution to an
event/transition label ε of A. As usual, εx may represent several concurrent
actions by x, or actions with non-deterministic effects (by which we mean that
there could be transitions τ and τ ′ with prev(τ) = prev(τ ′), εx = ε′x where ε
and ε′ are the labels of τ and τ ′ respectively, and post(τ) 6= post(τ ′)).

13

Similarly, given a transition τ in R and an agent x in Ag, we can speak of
x’s strand, τx, of the transition τ . Agent x’s strand of a transition τ is that of
the transition label/event of τ :

τx =def strand(x, label(τ))

τx may be thought of as the actions of agent x in the transition τ , where this
does not imply that τx necessarily represents deliberate action, or action which
has been freely chosen by x.

Example: agent-specific norms

We assume as before that there are state atoms status=green and status=red
in Pf for colouring states (globally) green or red, with status=red as an abbre-
viation for ¬status=green, event atoms trans=green and trans=red in Pa for
colouring transitions (globally) green or red, with trans=red as an abbreviation
for ¬trans=green, and event atoms green(x) and red(x) in Pa for each agent x
in Ag , with red(x) as an abbreviation for ¬green(x).

We impose the ggg constraint for the global colourings representing system
norms, but not for the colourings representing agent-specific norms. The local-
global coherence constraint M |= red(x) → red is optional. However, we do
impose the following constraint on agent-specific colourings: if τ is a green(x)
(resp., red(x)) transition from a state s in model M, then every transition τ ′

from state s in which agent x behaves in the same way as it does in τ must
also be green(x) (resp., red(x)). In other words, for all transitions τ and τ ′ in a
model M, and all agents x ∈ Ag :

if prev(τ) = prev(τ ′) and τx = τ ′x then M, τ |= green(x) iff M, τ ′ |= green(x)
(4)

(And hence alsoM, τ |= red(x) iffM, τ ′ |= red(x) whenever prev(τ) = prev(τ ′)
and τx = τ ′x.) This reflects the idea that whether actions of agent x are in
accordance with the agent-specific norms for x depends only on x’s actions,
not on the actions of other agents, nor actions in the environment, nor other
extraneous factors: we might, with appropriate philosophical caution, think of
this constraint as an insistence on the absence of ‘moral luck’.

Notice that the constraint (4) covers the case where label(τ) = label(τ ′), that
is to say, the case where there are transitions τ and τ ′ with prev(τ) = prev(τ ′)
and label(τ) = label(τ ′) but different resulting states post(τ) 6= post(τ ′): the
event ε = label(τ) is non-deterministic in the state s = prev(τ). Constraint
(4) requires that, for every agent x, both of these transitions are coloured the
same way by agent-specific norms for x. We are not putting this forward as a
general principle of morality or ethics. It is a practical matter. The intention
is that, in the setting of a multi-agent system of independently acting agents,
the agent-specific norms for x are effective in guiding x’s actions only if they
are formulated in terms of what agent x can actually perceive/sense and the
actions it can itself perform. At the level of detail treated here we are not
modelling perceptual/sensing capabilities or actions performable by an agent.
These features can be added but raise more questions than we have space for
here. For now, we insist on the ‘absence of moral luck’ constraint (4) as a
minimal requirement for agent-specific norms.

14

Example: Some categories of non-compliant behaviour

Craven and Sergot (2008) identify several different categories of non-compliant
behaviour that can usefully be distinguished. A red(x) transition τ from a state
s is unavoidably-red(x) if there is no green(x) transition from state s if every
agent other than x acts in the same way as it does in τ . In an unavoidably-red(x)
transition the agent x fails to comply with its individual norms but this is
because the collective actions of other agents make compliance impossible for x.

We also want to be able to say that in certain cases an agent could have
complied with its individual norms but did not. A transition τ from a state s is
sub-standard(x) if the transition is red(x) and, had x acted differently in state
s the transition from state s could have been green(x), even if all other agents
besides x acted in the same way as they did in τ : x could have acted differently
in state s and complied with its individual norms, irrespectively of the actions
of other agents.

We might also be interested in behaviours where the actions of one agent
make it unavoidable that other agents fail to comply with their agent-specific
norms. We now extend the language so that these distinctions, and other prop-
erties of transition systems, can be expressed as formulas.

3.1 A modal language for agent strands

Now we introduce a modal language for talking about the agent-specific com-
ponents of transitions (their ‘strands’). We extend the transition formulas of
Section 2 with a (unary) operator [alt], and (unary) operators [x] and [\x] for
every agent x ∈ Ag .

Let M = 〈S,A,R,Ag , strand, hf, ha〉 be an agent-stranded LTS model.

M, τ |= [alt]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that
prev(τ) = prev(τ ′).

〈alt〉 is the dual of [alt].
[alt]ϕ is satisfied by, or ‘true at’, a transition τ when all alternative transitions

from the same initial state as τ satisfy ϕ. It is for this reason that we choose the
notation [alt] rather than something simpler such as 2. Use of 2 might suggest
that we are talking about all transitions in an LTS, and we are not.

[alt] is a normal modality of type S5. In particular, we have validity (in every
agent-stranded LTS) of the following schemas:

[alt]ϕ → ϕ

[alt]ϕ → [alt][alt]ϕ

¬[alt]ϕ → [alt]¬[alt]ϕ

Clearly the following is valid

0:F → [alt]0:F

From this follows also:

|= (0:F → [alt]ϕ) ↔ [alt](0:F → ϕ)

and
|= 〈alt〉(0:F → ϕ) ↔ (0:F → 〈alt〉ϕ)

15

These are both easily confirmed. It also follows, for example, that

0:F → [alt](ϕ → 1:G)

is equivalent to
[alt](0:F ∧ ϕ → 1:G)

This is often useful when expressing properties of a model.
Now we add the (unary) operators [x] and [\x] for every agent x ∈ Ag .

M, τ |= [x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)
and τx = τ ′x;

M, τ |= [\x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)
and τy = τ ′y for every y ∈ Ag \ {x}.

〈x〉 and 〈\x〉 are the respective duals.

As in the case of [alt], [x] and [\x] are used to talk about properties of
alternative transitions from the same initial state: those, respectively, in which
x and Ag \ {x} behave in the same way. We thus have validity of the following:

[alt]ϕ → [x]ϕ [alt]ϕ → [\x]ϕ

We will say, for short, that when [x]ϕ is true at a transition τ , ϕ is necessary
for how x acts in τ ; and when [\x]ϕ is true at τ , that ϕ is necessary for how
the agents Ag \ {x} collectively act in τ . (Which is not the same as saying that
they act together, i.e., as a kind of coalition or collective agent. We are not
discussing genuine collective agency in this paper.)

[x] and [\x] are also normal modalities of type S5, so we have validity (in
every agent-stranded LTS) of the following schemas:

[x]ϕ → ϕ

[x]ϕ → [x][x]ϕ
¬[x]ϕ → [x]¬[x]ϕ

[\x]ϕ → ϕ

[\x]ϕ → [\x][\x]ϕ
¬[\x]ϕ → [\x]¬[\x]ϕ

It also follows immediately from the satisfaction definitions that the following
schema is valid for all pairs of distinct agents x 6= y in Ag :

[y]ϕ → [\x]ϕ (x 6= y)

equivalently, as long as Ag is not a singleton, Ag 6= {x}:∨
y∈Ag\{x}[y]ϕ → [\x]ϕ (Ag 6= {x})

The other direction is not valid:

6|= [\x]ϕ →
∨

y∈Ag\{x}[y]ϕ

This is important. Here is a simple example in case it is not obvious.

τ1
red

τ2
¬red

τ3
¬red

a

b

c

16

There are three transitions. a acts the same way in τ1 and τ2, b acts the same
way in τ1 and τ3, and c acts the same way in τ2 and τ3. red is a propositional
atom representing some transition property of interest. It does not matter for
present purposes what it represents. Now, τ1 |= [\c]red but τ1 6|= [a]red and
τ1 6|= [b]red .

For the special case of a singleton set of agents Ag = {x} we have validity of

[\x]ϕ ↔ [alt]ϕ (Ag = {x})

and hence also of [\x]ϕ → [x]ϕ.
Section 5 is concerned with axiomatisations of this language. It actually

simplifies that presentation if we generalise the language to have operators [G]
for any subset G ⊆ Ag .

Definition. For any model M, any transition τ in M and any G ⊆ Ag :

M, τ |= [G]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) =
prev(τ ′) and τy = τ ′y for every y ∈ G.

〈G〉 are the respective duals.

[x]ϕ and [\x]ϕ are thus abbreviations for [{x}]ϕ and [Ag\{x}]ϕ. [alt]ϕ is an
abbreviation for [∅]ϕ. For the time being we want to illustrate some uses of the
language, and in particular the forms of agency that it can express. For that
purpose we will restrict attention to the special cases [x]ϕ and [\x]ϕ. The more
general forms [G]ϕ will be discussed later.

Example

The ‘absence of moral luck’ property (4) for an agent x with respect to its
agent-specific colouring red(x) in a model M is expressed as the validity:

M |= red(x) → [x]red(x)

Equivalently: M |= green(x) → [x]green(x).
A transition τ in a model M is unavoidably-red(x) when

M, τ |= [\x]red(x)

There is one special sub-category of unavoidably-red(x) in which every tran-
sition from a particular state is red(x). A transition τ in a model M is
degenerately-red(x) when

M, τ |= [alt]red(x)

No well designed set of agent-specific norms should have transitions that are
degenerately-red(x). A transition τ in a model M is thus unavoidably-red(x)
but not degenerately-red(x) when

M, τ |= [\x]red(x) ∧ ¬[alt]red(x)

What about behaviours where the actions of one agent x make it unavoidable
that the other agents fail to comply with their individual norms? That would
be [x][y]ϕ or [x](

∨
y∈Ag\{x} ϕ) or [x][Ag\{x}]ϕ (that is [x][\x]ϕ), depending on

17

which of these we meant, where ϕ represents some system property of interest. It
could be [x][y]red(y) or [x](

∨
y∈Ag\{x} red(y)) or [x][Ag\{x}](

∧
y∈Ag\{x} red(y))

or [x][Ag\{x}](
∨

y∈Ag\{x} red(y)), for example.

What about that category of non-compliance where an agent x could have
complied with its agent-specific norms but did not, or what we called sub-standard(x)
behaviour earlier?

As defined earlier, a transition τ in a model M is sub-standard(x) when:

(1) the transition is red(x), that is, M, τ |= red(x), and

(2) there is a transition τ ′ in M such that prev(τ ′) = prev(τ) and τx 6= τ ′x
and M, τ ′ |= ¬red(x), and τy = τ ′y for all other agents y ∈ Ag \ {x}.

The form of the second condition (2) suggests that we need to introduce
another set of operators for talking about alternative transitions in which an
agent x acts differently. We will introduce operators of this type later but we
do not need them yet.

For suppose that we have the ‘absence of moral luck’ property in a model
M, that is, the validity M |= red(x) → [x]red(x). Agent-specific colourings
must have this property as the minimal requirement for agent-specific norms of
the type we are discussing—sub-standard(x) is not meaningful without it. We
then have M |= red(x) ↔ [x]red(x), and this means that a transition τ in a
model M is sub-standard(x) when:

(1′) M, τ |= [x]red(x), and

(2) there is a transition τ ′ in M such that prev(τ ′) = prev(τ) and τx 6= τ ′x
and M, τ ′ |= ¬red(x), and τy = τ ′y for all other agents y ∈ Ag \ {x}.

Now, condition (1′) allows condition (2) to be simplified: if there is a tran-
sition τ ′ in M such that prev(τ ′) = prev(τ) and M, τ ′ |= ¬red(x) and τx = τ ′x,
then condition (1′) does not hold: M, τ 6|= [x]red(x). So in condition (2) we can
drop the constraint that τx = τ ′x and state the condition more simply as:

(2′) there is a transition τ ′ in M such that prev(τ ′) = prev(τ) and M, τ ′ |=
¬red(x), and τy = τ ′y for all other agents y ∈ Ag \ {x}.

Condition (2′) is justM, τ |= 〈\x〉¬red(x), or equivalently,M, τ |= ¬[\x]red(x).
So, a transition τ in a model M is sub-standard(x) when

M, τ |= [x]red(x) ∧ ¬[\x]red(x)

The simplification of condition (2) is very significant. It will be discussed in
more detail and justified more carefully when we look at forms of collective
agency in Section 6.

Notice that the ‘absence of moral luck’ property M |= red(x) ↔ [x]red(x)
means that a transition τ in a model M is also sub-standard(x) when

M, τ |= red(x) ∧ ¬[\x]red(x)

that is, when the transition is red(x) but not unavoidably-red(x). The ‘absence
of moral luck’ property means that a red(x) transition is either sub-standard(x)
or unavoidably-red(x), but not both.

18

Hidden in the definition of sub-standard(x) is the idea that it is x, rather
than some other agent y, who is responsible (perhaps unintentionally or even
unwittingly) for the transition’s being red(x): it is x’s actions in the transition
that are the cause, unintentional or not, of the transition’s being red(x). We
now make this aspect of sub-standard(x) explicit. We do this by looking more
generally at expressions of the form

[x]ϕ ∧ ¬[\x]ϕ

and
[x]ϕ ∧ ¬[alt]ϕ

Both can be seen as expressing a sense in which agent x ‘brings it about that’
a transition is of a particular type ϕ.

4 ‘Brings it about’

In logics of agency, expressions of the form ‘agent x brings it about that ϕ’ are
typically constructed from two components. The first is a ‘necessity condition’:
ϕ must be necessary for how agent x acts. The second component is used to
capture the concept of agency—the fundamental idea that ϕ is, in some sense,
caused by or is the result of actions by x. Most accounts of agency introduce a
negative counterfactual or ‘counteraction’ condition for this purpose, to express
that had x not acted in the way that it did then the world would, or might,
have been different. The details vary according to the semantical structures
employed, whether intentional or deliberate ‘seeing to it that’ agency is to be
investigated, and so on.

4.1 Two ‘brings it about’ modalities

Let Exϕ represent that agent x brings it about, perhaps unwittingly, that a
transition has a certain property ϕ. Exϕ is satisfied by a transition τ in a
model M when:

(1) (necessity) M, τ |= [x]ϕ, that is, all transitions from prev(τ) in which x
acts in the same way as it does in τ are of type ϕ, or as we also say, ϕ is
necessary for how x acts in τ ;

(2) (counteraction) had x acted differently than it did in τ then the transition
might have been different: there exists a transition τ ′ in M such that
prev(τ ′) = prev(τ) and τx 6= τ ′x and M, τ ′ |= ¬ϕ.

The form of the second condition, the ‘counteraction’ condition, suggests that
we need to introduce another set of operators for talking about transitions where
an agent x acts differently. For every agent x ∈ Ag , let

M, τ |= [x∗]ϕ iff M, τ ′ |= ϕ for all τ ′ ∈M such that
prev(τ ′) = prev(τ) and τx 6= τ ′x.

〈x∗〉 are the respective duals.
Exϕ would then be defined as Exϕ =def [x]ϕ ∧ 〈x∗〉¬ϕ, or equivalently:

Exϕ =def [x]ϕ ∧ ¬[x∗]ϕ

19

The satisfaction conditions for [x∗] are easily stated but a full axiomatisation
of their logical properties would present a technical challenge: they can be seen
as a species of ‘difference modality’ (de Rijke, 1992) or, as we will observe later
in Section 6, as a special case of Boolean Modal Logic (Gargov and Passy, 1990).
They can also be related to the ‘window’ operator of (van Benthem, 1979). (See
also the discussion in (Blackburn et al., 2001, pp419–424, p479).)

However, if our purpose is only to construct the Ex modalities, which it
is for the time being, then the same simplification is available as was used
when dealing with sub-standard(x) in the previous section. The counterfactual
condition (2) can be simplified because of the necessity condition (1): if there is
a transition τ ′ in M such that prev(τ ′) = prev(τ) and M, τ ′ |= ¬ϕ but where
τx = τ ′x, then the necessity condition (1) does not hold: M, τ 6|= ϕ. So for the
counteraction condition we can take simply:

(2′) there exists a transition τ ′ in M such that prev(τ ′) = prev(τ) and
M, τ ′ |= ¬ϕ.

This is just M, τ |= 〈alt〉¬ϕ, or equivalently, M, τ |= ¬[alt]ϕ.
The following simpler definition is thus equivalent to the original:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ

The conjunct ¬[alt]ϕ says only that the transition might have been of type ¬ϕ:
it is equivalent to 〈alt〉¬ϕ. But in conjunction with the necessity condition [x]ϕ
it can be true at τ only if x acts differently than in τ . What we are saying, in
other words, is that the following is valid:

[x]ϕ → ([x∗]ϕ ↔ [alt]ϕ) (5)

This is easily confirmed. It follows from the validity of

[x]ϕ ∧ [x∗]ϕ ↔ [alt]ϕ

which is also easily confirmed. We will return to these points later, in Section 6.
For present purposes, the technically more complicated [x∗] modalities can be
ignored: the S5 modalities [x] and [alt] suffice.

In order to express the form of ‘brings it about’ agency implicit in sub-standard(x),
and for other reasons, we need another ‘brings it about’ modality. We will write
it as E+

x : E+
xϕ is satisfied by a transition τ in a model M when:

(1) (necessity) ϕ is necessary for how x acts in τ , M, τ |= [x]ϕ;

(2) (counteraction) had x acted differently than it did in τ then the transition
might have been different even if all other agents, besides x, had acted
in the same way as they did in τ : there exists a transition τ ′ in M such
that prev(τ ′) = prev(τ) and τx 6= τ ′x and M, τ ′ |= ¬ϕ with τy = τ ′y for all
y ∈ Ag \ {x}.

Again, by the same argument as above, the counteraction condition (2) can be
simplified. Because of the necessity condition (1), it can be equivalently stated
as:

(2′) there exists a transition τ ′ inM such that prev(τ ′) = prev(τ) andM, τ ′ |=
¬ϕ with τy = τ ′y for all y ∈ Ag \ {x}.

This is just M, τ |= 〈\x〉¬ϕ, or equivalently, M, τ |= ¬[\x]ϕ.

20

So again, the following simpler definition is equivalent to the original:

E+
xϕ =def [x]ϕ ∧ ¬[\x]ϕ

The simplification of the counteraction conditions is important because it
simplifies very significantly the investigation of the logical properties of Ex and
E+
x . It is discussed in more detail in Section 6 when we look at the more general

forms of collective agency.
The notation Exϕ is chosen because it bears a strong resemblance to Ingmar

Pörn’s (1977) logic of ‘brings it about’—except that in Pörn’s logic Exp is used
to express that agent x brings about the state of affairs represented by p. We
are using Exϕ to express that x ‘brings it about’ that a transition has the prop-
erty represented by ϕ. There are nevertheless some similarities, but also some
very significant technical differences, in particular in regard to the semantical
structures employed. We will comment further in Section 5.4. Pörn’s logic does
not have the analogue of E+

xϕ.
It is very important not to confuse [x∗]ϕ and [\x]ϕ. They are different.

The first is talking about alternative transitions in which x acts differently; the
second is talking about alternative transitions in which all other agents Ag \{x}
act the same way. The first is for Ex ; the second is for E+

x . We will have much
more to say about this when we look at forms of collective agency in Section 6.

Example: sub-standard behaviours

As originally defined, a transition τ in a model M is sub-standard(x) when x
fails to comply with its individual norms but could have complied with its norms
even if all the other agents had behaved in the same way. That is when:

M, τ |= red(x) ∧ ¬[\x]red(x)

Equivalently, because of the ‘absence of moral luck’ property, M |= red(x) →
[x]red(x), a transition τ is sub-standard(x) when

M, τ |= [x]red(x) ∧ ¬[\x]red(x)

that is, when
M, τ |= E+

xred(x)

So a transition τ in a modelM is sub-standard(x) when x brings it about that
the transition is of type red(x), that is, when it is the actions of x that are
responsible for, or the cause of, the transition being red(x), irrespectively of
actions by any other agents.

What about Exred(x)? What kind of non-compliant behaviour does that
express? Exred(x) is [x]red(x) ∧ ¬[alt]red(x). Assuming the ‘absence of moral
luck’ property for red(x), which we do, this is equivalent to red(x)∧¬[alt]red(x),
which is just red(x) but not degenerately-red(x) behaviour.

Other categories of non-compliant behaviours can similarly be expressed and
investigated. To take just one example, we might look at E+

x(trans=red) and
Ex(trans=red) which express two different senses in which an agent x brings
it about that a transition is (globally) red. These are not representations of

21

agent-specific norms, but both express properties that might be of interest from
the system designer’s point of view.

Finally, as one last illustration, we might ask whether it is ever meaningful
to talk about sub-standard(x) behaviour of an agent y other than x, that is,
whether there can be transitions of type EyE+

xred(x) or E+
yE+

xred(x) for agents
x 6= y. Certainly the simpler expressions E+

y red(x) and Ey red(x) are meaningful
for pairs of agents x 6= y and may also represent properties of agent-specific
colourings/norms that are of interest from the system designer’s point of view.
But sub-standard(x) behaviour of an agent y 6= x is different: it is easy to check
(as we will see later) that EyE+

xred(x) and E+
yE+

xred(x) are not satisfiable in
any model M; both of the following are valid

¬EyE+
xred(x) and ¬E+

yE+
xred(x) (x 6= y)

No agent y can bring about, or be responsible for, a transition’s being sub-standard(x)
other than x itself.

4.2 Discussion

For every agent x ∈ Ag , we have two defined ‘brings it about’ operators:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ
E+
xϕ =def [x]ϕ ∧ ¬[\x]ϕ

We will not present a full account of their logical properties yet. Our aim in
this section is merely to indicate that that their properties are those one would
intuitively expect of ‘brings it about’ modalities, and are broadly in line with
what is found in the literature on the logic of agency.

Both Exϕ and E+
xϕ express a sense in which agent x is ‘responsible for’ or

‘brings it about that’ (a transition is) ϕ. Clearly the following is valid:

E+
xϕ → Exϕ

What is the difference? Since [y]ϕ → [\x]ϕ is valid for any x 6= y, the following
is valid

E+
xϕ → ¬Eyϕ (x 6= y)

and hence also:

E+
xϕ → ¬E+

yϕ (x 6= y)

So E+
xϕ expresses that it is x, and x alone, who brings it about that ϕ. In

contrast, Exϕ leaves open the possibility that some other agent y 6= x also
brings it about that ϕ: the conjunction Exϕ ∧ Eyϕ can be true even when
x 6= y.

One might feel uncomfortable with the idea that two distinct agents, acting
independently, can both be responsible for ‘bringing about’ the same thing. But
it is easy to find examples. Notice that the conjunction Exϕ∧Eyϕ is equivalent
to

[x]ϕ ∧ [y]ϕ ∧ ¬[alt]ϕ

22

Suppose that two agents are both pushing against a spring-loaded door and
thereby keeping it shut. Suppose either one of them is strong enough by itself
to keep the door shut. Both are then ‘bringing it about’ that the door is shut,
or rather, that the transition is a ‘keeping the door shut’ transition. If x pushes,
the door remains shut; if y pushes, the door remains shut. But ‘keeping the door
shut’ is not unavoidable; there is a transition, viz., the one in which neither x
nor y push, in which the door springs open. It is sufficient that it merely might
spring open.

The conjunction Exϕ ∧ Eyϕ (x 6= y) does not represent that x and y are
acting in concert, or even that they are aware of each other’s existence. We might
as well be talking about two blind robots who have got themselves in a position
where both are pushing against the same spring-loaded door. Neither can detect
the other is there. This is not, and is not intended to be, a representation of
genuine collective agency. We will discuss some forms of (unwitting) collective
agency in Section 6.

In the same vein, there has been some discussion in the literature on whether
the expression ‘x brings it about that some other agent y brings it about that’
is well formed (see e.g. Belnap and Perloff, 1993). Note that ExEyϕ when
x 6= y is well formed. We can see that it is, and examples can readily be found
to demonstrate that it is meaningful. The ‘keeping the door shut’ example is
easily modified.

As it turns out, the ‘transfer of agency’ property:

ExEyϕ → Exϕ (6)

is valid for Ex . This has also been seen as an undesirable feature of (some
forms of) agency. It is perhaps surprising that it is valid here, but that is
readily confirmed. Both ExEyϕ → [x]Eyϕ and [x]Eyϕ → [x][y]ϕ ∧ [x]¬[alt]ϕ
are clearly valid. Now [x][y]ϕ → [x]ϕ is valid (because [y]ϕ → ϕ is valid and
[x] is normal), and so is [x]¬[alt]ϕ → ¬[alt]ϕ. So ExEyϕ → [x]ϕ ∧ ¬[alt]ϕ is
valid. And really there is nothing suspicious about the validity of (6). All it is
saying is that if x acts in such a way that it unwittingly brings it about that y
unwittingly brings it about that ϕ, then x also unwittingly brings it about that
ϕ, which seems non-problematic.

What of E+
x and E+

y for different x and y? E+
xE+

yϕ is syntactically well
formed, but it is not meaningful, in the sense that the following is valid (for
x 6= y):

¬E+
xE+

yϕ (x 6= y)

No agent x can by itself bring it about that some other agent y by itself brings
something about. Moreover both of the following are also valid (for x 6= y):

¬E+
xEyϕ ¬ExE+

yϕ (x 6= y)

As for ‘transfer of (sole) agency’, E+
xE+

yϕ → E+
xϕ is valid, but only trivially so:

for any x 6= y, E+
xE+

yϕ → ⊥ is valid, and so therefore, trivially, is E+
xE+

yϕ →
E+
xϕ.

What is the difference between Ex and E+
x? In the case where there is a

singleton agent, Ag = {x}, there is none, because in that case [\x]ϕ ↔ [alt]ϕ is
valid and therefore so is:

E+
xϕ ↔ Exϕ (Ag = {x})

23

In the case of two or more distinct agents x 6= y, we know that |= E+
xϕ →

Exϕ, and |= E+
xϕ → ¬E+

yϕ. If we compute Exϕ ∧ ¬E+
xϕ we find the following

validity:
Exϕ ∧ ¬E+

xϕ ↔ [x]ϕ ∧ [\x]ϕ ∧ ¬[alt]ϕ (7)

If we have exactly two agents, Ag = {x, y}, then [\x]ϕ ↔ [y]ϕ is valid, and then

Exϕ ∧ ¬E+
xϕ ↔ [x]ϕ ∧ [y]ϕ ∧ ¬[alt]ϕ

is valid. (Cf. the ‘keeping the door shut’ example.) But that is merely a special
case. In general, when there are more than two distinct agents in Ag , [\x]ϕ can
be true even if [y]ϕ is not true for any individual agent y ∈ Ag \ {x}. [\x]ϕ
expresses that between them the actions of the other agents Ag \ {x} are such
that ϕ is necessarily true in the transition.

Clearly Ex and E+
x express a notion of successful action: if agent x brings

it about that (a transition is of type) ϕ then it is indeed the case that ϕ. Or
to put it another way (paraphrasing Hilpinen (1997) quoting Chellas (1969)): x
can be held responsible for its being the case that ϕ only if it is the case that
ϕ. Ex and E+

x are both ‘success’ operators: both of the following schemes are
valid:

Exϕ → ϕ E+
xϕ → ϕ

In axiomatic presentations of logics of agency, the negative ‘counteraction’
or counterfactual feature of agency, that had x not acted in the way it did then
the world would, or might, have been different, is usually reflected (among other
things) by axioms that say no agent can bring about what is logically true, or
more generally, what was unavoidable anyway. For Ex and E+

x as defined here,
the following are valid

¬Ex> ¬E+
x>

and more generally, so are

[alt]ϕ → ¬Exϕ [alt]ϕ → ¬E+
xϕ

It follows from the above that (as usual for logics of agency) Ex and E+
x are

not normal modalities. We do not have, for instance, validity of the following

6|= Ex(ϕ ∧ ϕ′) → (Exϕ ∧ Exϕ
′) 6|= E+

x(ϕ ∧ ϕ′) → (E+
xϕ ∧ E+

xϕ
′)

except in a restricted form. We do have validity of the following schema (often
called the schema ‘C’) for both Ex and E+

x :

Exϕ ∧ Exϕ
′ → Ex(ϕ ∧ ϕ′) E+

xϕ ∧ E+
xϕ
′ → E+

x(ϕ ∧ ϕ′)

as is easily checked. This property is generally accepted as an intuitively rea-
sonable feature of notions of agency; both Ex and E+

x have this property. Fur-
thermore, it can be checked that

[alt]ϕ ∧ Exϕ
′ → Ex(ϕ ∧ ϕ′) [alt]ϕ ∧ E+

xϕ
′ → E+

x(ϕ ∧ ϕ′)

are valid. These last properties will be of particular interest in Section 4.4.

What about iterations of agency modalities, and other properties? We have
already discussed iterations of the form ‘x brings it about that y brings it about’

24

for pairs of distinct agents x 6= y. We will comment on just one more character-
istic feature of agency. First, the expressions ¬Exϕ and Ex¬Exϕ are clearly
not equivalent. The first expresses merely that x does not bring it about that
(a transition is) ϕ; the second is stronger, and represents a sense in which x
refrains from bringing it about that (a transition is) ϕ. ¬Exϕ → Ex¬Exϕ is
not valid, though there is a valid restricted form on which we will comment in
Section 5.3. ¬E+

xϕ → Ex¬E+
xϕ is not valid either.

Exϕ → ExExϕ is valid. This expresses a fundamental feature of agency,
and is surely to be expected in any plausible account: if x brings it about
that ϕ, then x brings it about that x brings it about that ϕ. In contrast,
E+
xϕ → E+

xE+
xϕ is not valid. This is rather surprising at first sight, though not

if we look more closely at what E+
xE+

xϕ is saying. E+
xE+

xϕ depends on a notion
of independence of x’s actions (with respect to ϕ) from the actions of others.
And indeed: we can show

|= (E+
xϕ → E+

xE+
xϕ) ↔ (¬[\x]ϕ → [x]¬[\x]ϕ)

¬[\x]ϕ → [x]¬[\x]ϕ expresses a form of independence of x’s actions (with re-
spect to ϕ) from the actions of others: if in a transition τ the actions of the
others do not make it unavoidable that ϕ, then in any other transition from
the same state in which x acts in the same way as in τ , the actions of others
do not make it unavoidable that ϕ either. It might be helpful to note that the
following is valid1:

E+
xE+

xϕ ↔ [x]E+
xϕ

In applications of the language (see e.g. (Sergot, 2008)) one encounters many
instances of transitions at which E+

xϕ is true but [x]E+
xϕ, and hence E+

xE+
xϕ, is

not. We will comment briefly on this feature of E+
x after examining the logic.

4.3 Example: ‘The others made me do it’

Claims that ‘the others made me do it’ are common in disputes about the
ascription of responsibility. Just for illustration of the language, here are three
different senses in which it can be said that ‘the others made me do it’.

One possibility:
[x]ϕ ∧ [\x]ϕ ∧ ¬[alt]ϕ (8)

This might be read as ‘x did ϕ, but the others Ag \ {x} between them acted in
such a way as to make ϕ unavoidable’. As discussed above, (8) is equivalent to

Exϕ ∧ ¬E+
xϕ (9)

This might be read as saying ‘x did ϕ, but was not solely responsible’.

‘The others made me do it’: another possibility:

[\x][x]ϕ ∧ ¬[alt]ϕ (10)

1One half is immediate: validity of E+
xE+

xϕ → [x]E+
xϕ follows immediately from the

definition of E+
x . The other direction is less obvious. Here is one derivation. Notice first that

|= ¬[\x]E+
xϕ. This is because both [\x][x]ϕ → [\x]ϕ and [\x]¬[\x]ϕ → ¬[\x]ϕ are valid.

Now |= E+
xE+

xϕ ↔ [x]E+
xϕ ∧ ¬[\x]E+

xϕ by definition, but since ¬[\x]E+
xϕ is valid, we have

the validity of E+
xE+

xϕ ↔ [x]E+
xϕ.

25

We mean by this that between them the others Ag \ {x} acted in such a way as
to make it necessary for what x does that the transition was ϕ. Again this does
not imply any joint action, or even that the agents Ag \ {x} are aware of each
other’s existence, or of x’s. The second conjunct is because the others did not
‘do’ ϕ if there was no alternative for them, or for anyone else. In the case of a
singleton set Ag = {x} there are no ‘others’ and the expression (10) is false.

Notice that |= ¬[alt]ϕ → [\x]¬[alt]ϕ, and indeed that ¬[alt]ϕ and [\x]¬[alt]ϕ
are equivalent. So [\x][x]ϕ∧¬[alt]ϕ is equivalent to [\x][x]ϕ∧ [\x]¬[alt]ϕ, which
is [\x]Exϕ. (10) can thus be expressed equivalently as

[\x]Exϕ (11)

which is also equivalent to [\x]Exϕ ∧ ¬[alt]ϕ.

Further, |= [\x][x]ϕ → [x]ϕ ∧ [\x]ϕ. So |= ([\x][x]ϕ ∧ ¬[alt]ϕ) → ([x]ϕ ∧
[\x]ϕ ∧ ¬[alt]ϕ), i.e., the following is valid:

[\x]Exϕ → (Exϕ ∧ ¬E+
xϕ)

In other words, ‘the others made me do it’ (10)–(11) implies ‘the others made
me do it’ (8)–(9), but not the other way round.

A third possibility would be to say that ‘the others made me do it’ means
that there is some individual agent y ∈ Ag \ {x} who brought it about that
Exϕ, in other words that the following is true:∨

y∈Ag\{x} EyExϕ (12)

Now, |= EyExϕ → [y]Exϕ and |= [y]Exϕ → [\x]Exϕ (y 6= x). So (12) implies,
but is not implied by, (11).

In summary: we can distinguish at least three different senses in which it can
be said that ‘the others made me do it’: the third (12) implies the second (10)–
(11) which implies the first (8)–(9).

4.4 Bringing about a state of affairs

Exϕ and E+
xϕ represent that x brings it about that a transition is of type

ϕ. This is unusual. Usually, logics of agency do not talk about properties of
transitions in this way. What falls in the scope of a ‘brings it about’ or ‘sees to
it that’ operator is a formula representing a state of affairs: an agent ‘brings
it about’ or ‘sees to it that’ such-and-such a state of affairs exists. How might
this sense of ‘brings it about’ be expressed using the resources of the language
presented here?

Ex(0:F ∧ 1:G) expresses that x brings about a transition from a state where
F holds to one where G holds, and E+

x(0:F ∧1:G) that x is solely responsible for
such a transition. Ex1:F and E+

x1:F express that x brings about (resp., solely)
that a transition results in a state where F holds. These formulas express one
sense in which it might be said that x ‘brings about’ such-and-such a state of
affairs F exists. It is not the only sense, because it says that F holds in the state
immediately following the transition, whereas we might want to say merely that

26

F holds at some (unspecified) state in the future. Logics of agency usually do
not insist that what is brought about is immediate; indeed, since transitions are
not elements of the semantics, references to ‘immediate’ or the ‘next state’ are
not meaningful. There is one other essential difference: Ex1:F and E+

x1:F are
transition formulas; they cannot be used to say that in a particular state s, x
brings it about that such-and-such a state of affairs F holds.

How might we express that in a given state s, x brings it about that F holds
(in some state)? One natural way is to say that every transition from state
s is a Ex1:F transition (resp., E+

x1:F transition); more precisely, that there
is a Ex1:F transition (resp., E+

x1:F transition) from state s, and that every
transition from s is of this type. This is:

M, s |= 〈Ex1:F 〉> ∧ ¬〈¬Ex1:F 〉>

or equivalently
M, s |= 〈Ex1:F 〉> ∧ [¬Ex1:F]⊥

This version of ‘brings it about that’ is not a ‘success operator’: 6|= 〈Ex1:F 〉>∧
[¬Ex1:F]⊥ → F . That is to be expected. But nor do we have (as might be
expected) |= 〈Ex1:F 〉> ∧ [¬Ex1:F]⊥ → [>]F . (If [>]F were true in a state s,
then 1:F would be unavoidable, that is, 1:F and hence [alt]1:F would be true
at every transition from this state; and x could not bring it about that 1:F .)
We will not develop these ideas here. As we have remarked already, generally
speaking state formulas are awkward to read and manipulate, and we find it
much clearer and more useful to say things using transition formulas.

What about Ex 0:F and E+
x 0:F? These are not meaningful: neither is

satisfiable in any modelM. Clearly, |= 0:F → [alt]0:F , and we have |= [alt]ϕ →
¬Exϕ. However, |= [alt]ϕ∧Exϕ

′ → Ex(ϕ∧ϕ′) was noted earlier (and similarly
for E+

x), so the following pair are valid:

0:F ∧ Ex1:G ↔ Ex(0:F ∧ 1:G)
0:F ∧ E+

x1:G ↔ E+
x(0:F ∧ 1:G)

This seems very satisfactory: if in a transition where F holds in the initial state,
x brings it about that G holds in the resulting state, then x brings it about that
the transition is a transition from a state where F to a state where G, and vice
versa.

Now, this observation makes it possible to formalise, in a rather natural
way, a suggestion made by von Wright (1968; 1983), Segerberg (1992), and
Hilpinen (1997). We will follow the terminology of Hilpinen’s version; the oth-
ers are essentially the same. He sketches an account with two components: first,
the idea that actions are associated with transitions between states; and sec-
ond, to provide the counterfactual ‘counteraction’ condition required to capture
the notion of agency, he distinguishes between transitions corresponding to the
agent’s activity from transitions corresponding to the agent’s inactivity. The
latter are transitions where the agent lets ‘nature take its own course’. There
are then eight possible modes of agency, and because of the symmetry between
F and ¬F , four basic forms to consider:

27

• x brings it about that F (¬F to F , x active);

• x lets it become the case that F (¬F to F , x inactive);

• x sustains the case that F (F to F , x active);

• x lets it remain the case that F (F to F , x inactive).

The first two correspond to a transition from a state where ¬F to a state
where F . The first is a type of bringing about that F by agent x; the second
corresponds to inactivity by x (with respect to F)—here the agent x lets nature
take its own course. The last two correspond to a transition from a state where
F to a state where F . Again, the first of them is a type of bringing about that
F by agent x; the second corresponds to inactivity by x (with respect to F).

As discussed by Segerberg and Hilpinen there remain a number of funda-
mental problems to resolve in this account. Moreover, not discussed by those
authors, the picture is considerably more complicated when there are the ac-
tions of other agents to take into account and not just the effect of nature’s
taking its course. However, these distinctions are easily, and rather naturally,
expressed in the language we have presented here.

The first (‘brings it about that’) and third (‘sustains the case that’) are
straightforward: they are

Ex(0:¬F ∧ 1:F) or E+
x(0:¬F ∧ 1:F)

and
Ex(0:F ∧ 1:F) or E+

x(0:F ∧ 1:F)

respectively, depending on whether it is x’s sole agency that we want to express
or not.

The second and fourth cases, where x is inactive, can be expressed as follows

(0:¬F ∧ 1:F) ∧ ¬Ex(0:¬F ∧ 1:F)
(0:F ∧ 1:F) ∧ ¬Ex(0:F ∧ 1:F)

(Or as above, but with E+
x in place of Ex .)

It remains to check that these latter expressions do indeed correspond to
what Hilpinen was referring to by his term ‘inactive’. Whether or not that is
the case, other, finer distinctions can be expressed. For example (we do not give
an exhaustive exploration of all the possibilities here), supposing that 0:¬F is
true and that the transition to 1:F is not unavoidable or inevitable (in other
words, that ¬[alt]1:F is true), then we can distinguish:

E+
x(0:¬F ∧ 1:F)

Ex(0:¬F ∧ 1:F) ∧ ¬E+
x(0:¬F ∧ 1:F)

0:¬F ∧ ¬[x]1:F ∧ [\x]1:F
0:¬F ∧ 1:F ∧ ¬[x]1:F ∧ ¬[\x]1:F

The reading of the first two is clear. The third and fourth both say that x lets
it become the case that F ; the first of them says that the other agents between
them act in such a way that it becomes the case that F , and the last one that

28

‘nature takes its own course’. And similarly for the ‘sustains’ and ‘lets it remain’
transitions, i.e., those of type 0:F ∧ 1:F .

Note that intuitively x brings it about that F simpliciter, Ex1:F , should
be equivalent to the disjunction of ‘x brings it about that F ’ in Hilpinen’s
terminology and ‘x sustains the case that F ’. This is easily confirmed:

|= Ex1:F ↔ (0:F ∨ ¬0:F) ∧ Ex1:F
↔ (0:F ∧ Ex1:F) ∨ (¬0:F ∧ Ex1:F)
↔ Ex(0:F ∧ 1:F) ∨ Ex(0:¬F ∧ 1:F)

(and likewise for E+
x).

As an example of some of the things we might want to express using for-
mulas of this kind consider transitions of type 0:status=red ∧ 1:status=green.
These correspond to a recovery from a red system state to a green system
state. Ex(0:status=red ∧ 1:status=green) expresses that agent x brings it
about that the system recovers to a green system state, Ex(0:status=red ∧
1:status=red) that agent x sustains the case that the system is in a red state,
Ex(0:status=green ∧ 1:status=green) that agent x sustains the case that the
system is in a green state, Ex(0:status=green ∧ 1:status=red) that agent x
brings it about, not necessarily by itself, that the system moves from a green
state to a red state, and so on for the other categories where x is inactive (x
lets it become the case that the system is in a red state, x lets it remain the
case that the system is in a red state, and so on). We write E+

x in place of Ex
if we wish to express that x is the sole agent responsible in each case.

4.5 A note on counteraction conditions

We have defined two ‘brings it about’ operators, Ex and E+
x , which differ only

in their counteraction conditions: one is stronger than the other. It is helpful
to note, for future reference, that these are the endpoints of a spectrum of
‘brings it about’ operators that could be defined in similar fashion by varying
the counteraction conditions. They are, listed in order of decreasing strength:

strongest [x]ϕ ∧ ¬[\x]ϕ had all the others in Ag \ {x} acted the same
way they did, it might have been otherwise

...
[x]ϕ ∧ ¬[G]ϕ had all the others in G ⊆ Ag \ {x} acted

the same way they did, it might have been
otherwise

[x]ϕ ∧ ¬
∧

y∈G[y]ϕ had at least one of the others in G ⊆ Ag \ {x}
acted the same way it did, it might have been
otherwise

...
[x]ϕ ∧ ¬

∧
y∈Ag\{x}[y]ϕ had at least one of the others in Ag \ {x}

acted the same way it did, it might have been
otherwise

weakest [x]ϕ ∧ ¬[alt]ϕ it might have been otherwise

29

In each case, the stronger conditions imply the weaker. The strongest is E+
xϕ

and the weakest Exϕ. The ones in between can all be expressed as formulas of
the language (as above) but since they do not seem to be deserving of any special
attention we will not name them nor examine their properties. Nevertheless, it
will be helpful to refer to this range of possibilities later, when we look at forms
of collective agency in Section 6.

5 The logic of unwitting agency

It is obvious that the logic of the modalities [alt], [x], [\x] and the defined
modalities Ex and E+

x is determined by the fact that prev(τ) = prev(τ ′) and
τx = τ ′x define equivalence relations on the set of transitions R. The obvious
abstraction is to consider frames of the form

〈W,∼, {∼x}x∈Ag〉

where ∼ and each ∼x are equivalence relations and where ∼x ⊆ ∼ for every
x ∈ Ag . We assume throughout that Ag is a finite and non-empty set (of
agent names). The restriction to finite sets could be removed but the extra
complication is not worth it.

5.1 Generated transition frames

As usual, we make the nature of the abstraction precise by speaking of the
relational (‘Kripke’) frame that is generated by an agent-stranded LTS. There
is a question of what level of generality to aim for at the beginning. For our
immediate purposes τ ∼ τ ′ represents that τ and τ ′ are alternative transitions
from the same state, and τ ∼x τ

′ that they are alternatives in which x acted the
same way in both. It is natural that they are equivalence relations. However
there are other kinds of frames, and other notions of agency, that could be
defined on an agent-stranded LTS, and for those different notions the relations
may not always be equivalences.

A reasonable compromise for present purposes is this.

Definition Let T = 〈S,A,R,Ag , strand〉 be an agent-stranded LTS. The
frame generated by T , written F (T), is:

〈R,∼, {∼x}x∈Ag〉

and the generalised frame generated by T , Fg(T), is:

〈R,∼, {Rx}x∈Ag〉

where ∼ and each Rx and each ∼x are binary relations on R such that τ ∼ τ ′

iff prev(τ) = prev(τ ′) in T , τ Rx τ
′ iff τx = τ ′x in T , and ∼x = ∼∩Rx for every

x ∈ Ag .

This is more general than we need but it adds a bit more flexibility. It
simplifies some of what follows, and it leaves open the possibility of introducing
another set of operators 2x to talk about Rx rather than ∼x. We will not bother
with that in this paper.

30

The model generated by an agent-stranded LTS model 〈S,A,R,Ag , strand, hf, ha〉
is a little more complicated because we have the transition formulas 0:F and
1:F to deal with. However, since we restricted the language so that F in these
expressions is always a propositional (Boolean) formula of Pf, we can treat
0:F and 1:F simply as propositional atoms to be evaluated on the elements of
R. In other words, we have a set of propositional atoms PR =def Pa ∪ {0:F |
F is a propositional formula of Pf}∪{1:F | F is a propositional formula of Pf},
and we define the valuation function hR for the atoms PR on elements of R in
the obvious way.

Definition Given an agent-stranded LTS T = 〈S,A,R,Ag , strand〉 and a
model M = 〈T , hf, ha〉, the model generated by M is F (M) = 〈F (T), hR〉
where the valuation function hR is defined as follows:

hR(α) =def ha(α) when α ∈ Pa

hR(0:F) =def {τ | M, τ |= 0:F} = {τ | M,prev(τ) |= F}
hR(1:F) =def {τ | M, τ |= 1:F} = {τ | M,post(τ) |= F}

with the additional constraint that

if τ ∼ τ ′ then τ ∈ hR(0:F) iff τ ′ ∈ hR(0:F)

The constraint is to reflect the validity of 0:F ↔ [alt]0:F in LTS models. We
also have the validity of [1:F]F in those models but since that is a state formula
not a transition formula we can ignore it.

Notice that if there are two distinct transitions τ1 and τ2 in T with the same
end states and the same label:

• •
ε

τ1

ετ2

then a propositional atom in PR is true at τ1 if and only if it is true at τ2: if it
is an atom of Pa then it is true at these transitions if only if it is true at their
labels, and the labels are the same; if it is of the form 0:F then it is true at the
transitions if and only if it is true in their initial states, and these are the same.
And likewise for 1:F .

Definition. Given some (countable) set of propositional atoms PR and a non-
empty, finite set Ag of agent names, LAg is the language with (unary) modal
operators [G] for every G ⊆ Ag .

Let M be a model based on the frame 〈W,∼, {Rx}x∈Ag〉 and let τ be any
element of W . Let G be any subset of Ag .

M, τ |= [G]ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼ τ ′ and (τ, τ ′) ∈⋂
x∈GRx

iff M, τ ′ |= ϕ for every τ ′ such that (τ, τ ′) ∈ ∼ ∩⋂
x∈G ∼x where ∼x =def ∼ ∩Rx

iff M, τ ′ |= ϕ for every τ ′ such that τ ∼G τ ′

where ∼G =def ∼ ∩
⋂

x∈GRx

〈G〉 are the respective duals.

31

The satisfaction definition is stated in this way for generality. The frames of
interest are those where Rx ⊆ ∼ for every x ∈ Ag , and hence where ∼x = Rx.

As before, [x]ϕ, [\x]ϕ, and [alt]ϕ are abbreviations for [{x}]ϕ, [Ag\{x}]ϕ,
and [∅]ϕ, respectively. We also generalise the ‘brings it about’ operators. For
any subset G ⊆ Ag . We define:

EGϕ =def [G]ϕ ∧ ¬[alt]ϕ
E+

Gϕ =def [G]ϕ ∧ ¬[Ag\G]ϕ

Exϕ and E+
xϕ are abbreviations for E{x}ϕ and E+

{x}ϕ, respectively. We will
discuss later whether EG and E+

G express any useful notion of collective agency
of a set of agents G. (They do not.) For the degenerate case G = ∅, EGϕ and
E+

Gϕ are both equivalent to ⊥. Moreover the following is valid:

E+
Gϕ ↔ EGϕ ∧ ¬EAg\Gϕ

This and other properties of EG and E+
G will be discussed separately in Section 6.

It is sometimes useful to refer to the relation ∼\x =def ∼ ∩
⋂

y∈Ag\{x} ∼y.
Then M, τ |= [\x]ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼\x τ ′.

We have to be careful here with the informal reading of these relations,
which can be misleading if read too casually. ∼x is clear enough: it represents
the alternative transitions from any given state in which x acts the same way.
∼\x can be read as representing the alternative transitions from any given state
in which everyone except perhaps x acts the same way. ∼\x is not to be confused
with ∼ \∼x.

Now clearly
|= [G′]ϕ → [G]ϕ for every G′ ⊆ G (13)

The case G′ = ∅ is just |= [∅]ϕ → [G]ϕ, which by definition of [alt] is

|= [alt]ϕ → [G]ϕ

From (13) it also follows that:

|= [G]ϕ ↔
∨

G′⊆G[G′]ϕ ∨ [alt]ϕ (14)

Right-to-left follows from (13); left-to-right is a tautology. It was in order to
avoid infinitely long disjunctions that we assumed Ag is a finite (and non-empty)
set. This is not an unreasonable assumption for the intended applications. We
need the second disjunct because if G = ∅ then |= [∅]ϕ ↔ ⊥ ∨ [alt]ϕ. (The
empty disjunction is false.)

Theorem 5.1. Let T be an agent-stranded LTS and let F (T) = 〈R,∼, {∼x}x∈Ag〉
and Fg(T) = 〈R,∼, {Rx}x∈Ag〉 be the frame and the generalised frame gener-
ated by T , respectively. The relations ∼, Rx, and ∼x are all equivalence rela-
tions on R with ∼x ⊆ ∼. For every G ⊆ Ag , ∼G=def ∼ ∩

⋂
x∈G ∼x is also an

equivalence relation on R with ∼G ⊆ ∼. For G = ∅, ∼G= ∼.

Proof. Trivial. (The intersection of an empty set of subsets of U is U .)

32

Theorem 5.2. Let T be an agent-stranded LTS and M = 〈T , hf, ha〉 an LTS
model based on T . Let F (T) be the frame generated by T and F(M) =
〈F (T), hR〉 the model generated M. Let ϕ be any formula of LAg . Then ϕ is
valid in T iff ϕ is valid in F (T), and ϕ is valid in the modelM = 〈T , hf, ha〉 iff
ϕ is valid in the model F (M) = (F (T), hR).

Proof. By induction on the structure of ϕ. The case where ϕ is of the form 0:F
or 1:F is discussed above.

Completing the picture

Given an agent-stranded LTS T , we have checked that any formula is valid in
T iff it is valid in the frame F (T) generated by T . The last step is to show that
this particular class of frames provides the right abstraction, in other words,
that it does not lose any essential features of an LTS. The usual strategy is to
show that every frame in this class is the p-morphic image of a frame generated
by some LTS. That is, given a frame F in this class define an agent-stranded
LTS TF , then show that there is a frame p-morphism from the frame F (TF)
generated by TF to F . The rest is just an application of standard results.

In our case it is simpler. Given a frame F of the form 〈W,∼, {Rx}x∈Ag〉 with
no assumptions about ∼ or Rx other than that they are equivalence relations
on W , we can define an LTS TF such that there is an isomorphism between F
and the generalised frame Fg(TF) generated by TF . That is more than we need.

In what follows we will write [τ]∼ to denote the equivalence class of ∼ to
which τ belongs, and similarly for the equivalence classes of Rx.

Definition. Let F be any frame 〈W,∼, {Rx}x∈Ag〉 in which ∼ and every Rx

are equivalence relations on W . The canonical LTS for F , written TF , is the
agent-stranded LTS 〈S,A,R′,Ag , strand〉 in which:

• the set of states S is the set of equivalence classes of ∼ in F , S = W/∼;

• the set of transition labels A is the set W in F ;

• the set of transitions R′ is the set of tuples ([τ]∼, τ, [τ]∼) such that τ ∈W ;

• strand is defined so that strand(x, τ) =def [τ]Rx , i.e., τx =def [τ]Rx ;

• prev((s, τ, s′)) = s; post((s, τ, s′)) = s′.

Perhaps a picture will make the construction clearer.

•

τ1

τ2

τ3

•

τ4

τ5

{τ1, τ2, τ3}

τ1 τ2

τ3

{τ4, τ5}

τ4

τ5

〈W,∼, {Rx}x∈Ag〉 〈S,A,R′,Ag , strand〉

33

Lemma 5.3. Let F be any frame 〈W,∼, {Rx}x∈Ag〉 in which ∼ and every
Rx are equivalence relations on W . Let TF = 〈S,A,R′,Ag , strand〉 be the
canonical LTS for F , and let Fg(TF) = 〈R′,∼′, {R′x}x∈Ag〉 be the generalised
frame generated by TF . Then we have:

• if τ ∈W then (s, τ, s) ∈ R′ for s = [τ]∼ ;

• if (s, τ, s′) ∈ R′ then s = s′.

And further:

• (s1, τ1, s′1) ∼′ (s2, τ2, s′2) iff τ1 ∼ τ2;

• (s1, τ1, s′1)R′x (s2, τ2, s′2) iff τ1Rx τ2.

Proof. The first part is just a restatement of the definition. For the second part:

• (s1, τ1, s′1) ∼′ (s2, τ2, s′2) iff s1 = s2, but s1 = [τ1]∼ and s2 = [τ2]∼, and
[τ1]∼ = [τ2]∼ iff τ1 ∼ τ2.

• (s1, τ1, s′1)R′x (s2, τ2, s′2) iff (τ1)x = (τ2)x iff [τ1]Rx = [τ2]Rx iff τ1Rx τ2.

Now we can define an isomorphism p from Fg(TF) to F : let p : R′ → W
be a mapping such that p((s, τ, s′)) = τ . By the lemma above, p is a 1-1
correspondence; and further, for any u and v in R′, u ∼′ v in Fg(TF) iff p(u) ∼
p(v) in F , and uR′x v in Fg(TF) iff p(u)Rx p(v) in F .

We have to complete the picture to include the frame F (TF) generated by
TF , as shown in the following diagram:

F
〈W,∼, {Rx}x∈Ag〉

TF
〈S,A,R′,Ag , strand〉

Fg(TF)

〈R′,∼′, {R′x}x∈Ag〉

〈W,∼, {∼x}x∈Ag〉

F (TF)

〈R′,∼′, {∼′x}x∈Ag〉

generates
isomorphisms

For the case where the frame 〈W,∼, {Rx}x∈Ag〉 already has the property
that Rx ⊆ ∼ for every x ∈ Ag , ∼x = ∼ ∩ Rx = Rx and there is nothing more
to do. Where it does not have that property, it remains to show that there is
an isomorphism between 〈R′,∼′, {∼′x}x∈Ag〉 and 〈W,∼, {∼x}x∈Ag〉 where every
∼x = ∼ ∩ Rx. The same mapping p will do: u ∼′x v iff u ∼′ v and uR′x v, and
p(u) ∼x p(v) iff p(u) ∼ p(v) and p(u)Rx p(v), so u ∼′x v iff p(u) ∼x p(v).

Theorem 5.4. Let Ag be a finite, non-empty set of agent names. Any formula
ϕ of LAg is valid in all agent-stranded LTSs iff it is valid in the class of frames
〈W,∼, {∼x}x∈Ag〉 such that ∼ and every ∼x are equivalence relations on W
with ∼x ⊆ ∼ for every x ∈ Ag .

34

5.2 Axiomatisations

We are on very familiar territory. For G 6= ∅, [G]ϕ has exactly the same satis-
faction conditions as ‘distributed knowledge’: if [x]ϕ is read as ‘agent x knows
that ϕ’, then [G]ϕ is read as ‘there is distributed knowledge in group G that
ϕ’. This means that all the well-known results on soundness and completeness
(and decidability and complexity) apply equally here.2 The only small adjust-
ment we need to make is to deal with the case where G = ∅, which is normally
not considered but which arises naturally here in the form of the counteraction
condition ¬[alt]ϕ.

Clearly [G] for every G ⊆ Ag is a modality of type S5.

Let Σ be any set of formulas of LAg . As usual, Σ is a modal logic (of
signature LAg) iff it contains all tautologies of propositional logic and is closed
under uniform substitution and modus ponens.

Definition. Let KAg be the smallest (set inclusion) modal logic of signature
LAg containing all instances of the following schemas and closed under the
following rules RN.[G], for all G ⊆ Ag :

RN.[G]
ϕ

[G]ϕ

K.[G] [G](ϕ → ϕ′) → ([G]ϕ → [G]ϕ′)

Sub.[G] [G]ϕ → [G′]ϕ if G ⊆ G′

Def.EG EGϕ ↔ [G′]ϕ ∧ ¬[Ag\G]ϕ

Let S5Ag be the smallest (set inclusion) modal logic of signature LAg containing
KAg and all instances of the following schemas:

T.[G] [G]ϕ → ϕ

4.[G] [G]ϕ → [G][G]ϕ

5.[G] ¬[G]ϕ → [G]¬[G]ϕ

Theorem 5.5. KAg is sound and complete with respect to the class of frames
〈W,∼, {∼x}x∈Ag〉 in which every ∼x ⊆ ∼.

S5Ag is sound and complete with respect to the class of such frames in which
∼ and every ∼x are equivalence relations on W .

Proof. The cases for G 6= ∅ are exactly the same as for ‘distributed knowl-
edge’ and the proofs can be found in any standard text on epistemic logic. See
e.g. (Fagin et al., 1995, Ch. 3, Thm. 3.4.1). The case G = ∅ is just S5 for [alt].
[alt]ϕ → [x]ϕ means that the canonical model has the property ∼x ⊆ ∼.

2By ‘knowledge’ we are referring here to the idealized form of knowledge sometimes called
‘implicit knowledge’, or knowledge that can be ascribed to an agent by an external observer.
‘Distributed knowledge’ is the knowledge that can be ascribed to a group if all its members
were to pool their information. In the literature on epistemic logic the notation EGϕ is
often used to denote mutual knowledge (‘everyone in group G knows that ϕ’), which is the
conjunction of [x]ϕ for all x ∈ G. This is not how the EG modalities in this paper are to
be read. In the present context we prefer to emphasise the connections to Pörn’s ‘brings it
about’ operator. We will not need the analogue of ‘mutual knowledge’ in this paper.

35

The above result can of course be generalised to provide soundness and
completeness results for other classes of frames, not just those in which ∼ and
all ∼x are equivalence relations. We will not bother recording those. They can
be found in any standard text on modal logic.

Theorem 5.6. S5Ag is sound and complete with respect to the class of agent-
stranded LTSs 〈S,A,R,Ag , strand〉.

Remark: The only one who knows

We have observed that the logic of [G] is the same as that of (distributed)
knowledge. It is instructive to look at the non-validity of

E+
xϕ → E+

xE+
xϕ

from that point of view.
Suppose we read [x]ϕ as ‘agent x knows that ϕ’. E+

xϕ = [x]ϕ ∧ ¬[\x]ϕ
would then express that x is the only one who knows that ϕ, in the sense that x
knows that ϕ but the other agents Ag \ {x} do not, and would not know that ϕ
even if they pooled their information: [\x]ϕ is shorthand for [Ag\{x}]ϕ which
represents in this reading distributed knowledge in the set of agents Ag \ {x}.
Now, if x is the only one who knows that ϕ, would we infer that x is the only
one who knows that x is the only one who knows that ϕ? Surely not, and from
that point of view, it is not at all surprising that E+

xϕ → E+
xE+

xϕ is not valid.
What is more surprising perhaps is that the following is valid:

E+
xE+

xϕ ↔ [x]E+
xϕ

On the knowledge reading, the right-to-left half is saying that if x knows that
x is the only one who knows that ϕ, then x is the only one who knows that x is
the only one who knows that ϕ. This might seem odd. But suppose some other
y, different from x, also knows that x is the only one who knows that ϕ, in other
words, suppose [y]E+

xϕ is true. Then, because [y] is normal (for the idealized
form of ‘knows’ under consideration) and E+

x is a ‘success’ operator, it follows
that [y]ϕ is true, that is, that y also knows that ϕ, in contradiction to E+

xϕ. So
in summary: if x is the only one who knows that ϕ, this does not imply that x
knows that x is the only one who knows that ϕ. But if x does know that x is
the only one who knows that ϕ, then x is the only one who knows this. This
seems quite plausible.

An alternative axiomatisation

In order to expose the properties of EG and E+
G , Section 5.3 presents an axioma-

tisation of KAg and S5Ag directly in terms of EG . It is helpful for that exercise
to refer to an alternative axiomatisation of KAg . It relies only on properties of
normal systems found in any standard text on modal logic. (See e.g. (Chellas,
1980, Ch. 4).)

Theorem 5.7. KAg is the smallest modal logic of signature LAg containing
all instances of the following schemas and closed under the rules RN.[alt] and

36

RE.[G], where [alt]ϕ =def [∅]ϕ:

RN.[alt]
ϕ

[alt]ϕ

K.[alt] [alt](ϕ → ϕ′) → ([alt]ϕ → [alt]ϕ′)

RE.[G]
ϕ ↔ ϕ′

[G]ϕ ↔ [G]ϕ′

K′.[G] [alt](ϕ → ϕ′) → ([G]ϕ → [G]ϕ′)

C.[G] [G]ϕ ∧ [G]ϕ′ → [G](ϕ ∧ ϕ′)

Sub.[G] [G′]ϕ → [G]ϕ if G′ ⊆ G

Proof. Deriving K′.[G] in KAg is very easy; the other axioms are trivially in
KAg . It only remains to show that this alternative set of axioms makes every
[G] normal. [alt].[G] and RN.[alt] gives us [G]>. RN.[alt] and K′.[G] gives us the
rule RM.[G]:

ϕ → ϕ′

[G]ϕ → [G]ϕ′

which is all we need. (See e.g. (Chellas, 1980, Ch. 4).)

Notice that the above could be compressed: K.[alt] is subsumed by K′.[G].
However, when we move to the axiomatisation in terms of EG , [alt] will have
special status and it is helpful to anticipate that here.

5.3 Axiomatisations of EG

EG and E+
G are not normal modal operators, and in particular they are not

‘closed under logical consequence’: if |= ϕ → ϕ′ that does not imply that
|= EGϕ → EGϕ

′. The reason is that ¬[alt]ϕ ∧ [alt]ϕ′ could be satisfiable.
The modalities EG are not normal, but they are very nearly normal, and in

fact, very nearly of type S5. It is instructive to construct a complete axiomati-
sation of S5Ag , and therefore of agent-stranded LTS frames, in terms of EG and
[alt] directly.

First, let us consider the Sub axioms. If G′ ⊆ G then the following is valid,
or equivalently, derivable in KAg :

EG′ϕ → EGϕ (G′ ⊆ G) (15)

The case where G′ = ∅ is simply the tautology ⊥ → EGϕ.
Notice that the definition of EG together with [alt]ϕ → [G]ϕ gives

[G]ϕ ↔ EGϕ ∨ [alt]ϕ

Now let us consider axioms for EG that will make each [G] normal.
First, we can easily check that the following schema is valid (or derivable

in KAg): [alt](ϕ → ϕ′) ∧ ¬[alt]ϕ′ → (EGϕ → EGϕ
′). And similarly for E+

G

37

and [Ag\G]. So we have the following restricted form of ‘closure under logical
consequence’:

[alt](ϕ → ϕ′) ∧ ¬[alt]ϕ′ → (EGϕ → EGϕ
′) (16)

For E+
G it is:

[alt](ϕ → ϕ′) ∧ ¬[Ag\G]ϕ′ → (E+
Gϕ → E+

Gϕ
′) (17)

(17) can be derived from (16), because [alt](ϕ → ϕ′) → [Ag\G](ϕ → ϕ′).
As a special case of (16) we also have, for example, the following property:

¬[alt]ϕ → (EG(ϕ ∧ ϕ′) → EGϕ)

and similarly for E+
G but with [Ag\G]ϕ in place of [alt]ϕ.

The schema ‘C’ which is often taken as a non-controversial property of ‘brings
it about’ operators

EGϕ ∧ EGϕ
′ → EG(ϕ ∧ ϕ′)

is valid for EG and also for E+
G :

E+
Gϕ ∧ E+

Gϕ
′ → E+

G(ϕ ∧ ϕ′)

In fact it can be strengthened; we have validity of the more general pair

EGϕ ∧ [G]ϕ′ → EG(ϕ ∧ ϕ′) (18)
E+

Gϕ ∧ [G]ϕ′ → E+
G(ϕ ∧ ϕ′) (19)

Here is the derivation3 of (18):

EGϕ ∧ [G]ϕ′ → [G]ϕ ∧ ¬[alt]ϕ ∧ [G]ϕ′

→ [G](ϕ ∧ ϕ′) ∧ ¬[alt]ϕ ([G] normal)
→ [G](ϕ ∧ ϕ′) ∧ ¬[alt](ϕ ∧ ϕ′) ([alt] normal)
→ EG(ϕ ∧ ϕ′)

The corresponding derivation for E+
G in (19) works in exactly the same way: we

have ¬[Ag\G]ϕ → ¬[Ag\G](ϕ ∧ ϕ′). (19) can also be derived from (18) using
the fact that [Ag\G] is normal.

Notice that from [alt]ϕ′ → [G]ϕ′ and (18) and (19) it also follows that

EGϕ ∧ [alt]ϕ′ → EG(ϕ ∧ ϕ′)
E+

Gϕ ∧ [alt]ϕ′ → E+
G(ϕ ∧ ϕ′)

We made use of this property earlier in Section 4.4 in connection with bringing
about and sustaining a state of affairs.

Since [G]ϕ′ ↔ EGϕ
′ ∨ [alt]ϕ′, (18) can be expressed equivalently as the pair

EGϕ ∧ EGϕ
′ → EG(ϕ ∧ ϕ′) (20)

EGϕ ∧ [alt]ϕ′ → EG(ϕ ∧ ϕ′) (21)

3Derivations are presented in this schematic form for clarity. The full details are easily
reconstructed.

38

This is useful when we construct the axiomatisation in terms of EG . We also
have the corresponding properties of E+

G :

E+
Gϕ ∧ EGϕ

′ → E+
G(ϕ ∧ ϕ′) (22)

E+
Gϕ ∧ [alt]ϕ′ → E+

G(ϕ ∧ ϕ′) (23)

(23) was noted earlier.
Notice finally that

E+
Gϕ ∧ E+

Gϕ
′ → E+

G(ϕ ∧ ϕ′)

is implied by (22), by strengthening of the antecedent: E+
Gϕ
′ → EGϕ

′.

Now we have an alternative axiomatisation of KAg in terms of EG and [alt]:
with [G]ϕ ↔ EGϕ ∨ [alt]ϕ, (16) and (20)–(21) make [G] normal when [alt] is
normal.

Theorem 5.8. KAg is the smallest modal logic of signature LAg containing
all instances of the following schemas and closed under the rules RN.[alt] and
RE.EG :

RN.[alt]
ϕ

[alt]ϕ

K.[alt] [alt](ϕ → ϕ′) → ([alt]ϕ → [alt]ϕ′)

RE.EG

ϕ ↔ ϕ′

EGϕ ↔ EGϕ
′

noN.EG [alt]ϕ → ¬EGϕ

K′.EG [alt](ϕ → ϕ′) ∧ ¬[alt]ϕ′ → (EGϕ → EGϕ
′)

C.EG EGϕ ∧ EGϕ
′ → EG(ϕ ∧ ϕ′)

C′.EG EGϕ ∧ [alt]ϕ′ → EG(ϕ ∧ ϕ′)

Sub.EG EG′ϕ → EGϕ if G′ ⊆ G

Def.[G] [G]ϕ ↔ EGϕ ∨ [alt]ϕ

Proof. One half requires us to show that each of the above listed axioms is
sound—either by showing validity of each in the class of frames of interest,
or equivalently, by showing that each is derivable in KAg . The first three are
obvious. noN.EG follows from the definition of EG . Derivations of all the others
were outlined in the preceding discussion.

To complete the proof, we use the axiomatisation of KAg in Theorem 5.7,
and show that each of the axioms listed there is derivable from the axioms above.
RE.[G] follows easily from RE.EG and Def.[G]. Def.EG is derived from Def.[G]
and noN.EG . Sub.[G] follows from Sub.EG and Def.[G].

This leaves K′.[G] and C.[G]. K′.[G] can be derived from K′.[G], Def.[G]
and K.[alt]. C.[G] is easily derived from C.EG and C′.EG using Def.[G] and the
fact that [alt] is normal.

39

Now for the S5 properties. The axiomatisation can be stated quite suc-
cinctly, as in Theorem 5.10 below. However, the results are easily generalised
to other classes of frames, those where the relations ∼x are reflexive, transitive,
reflexive and transitive, euclidean, and so on. Indeed, if we assume only that
∼ is an equivalence relation (and even that assumption can be relaxed) then
the corresponding axioms for [G] and EG are in fact equivalences (theorems of
KAg). The only slight complication is the transitivity axiom EGϕ → EGEGϕ.
Although this implies [G]ϕ → [G][G]ϕ in KAg the converse does not hold.

Theorem 5.9. All instances of the following schemas are theorems of KAg .

(T) ([G]ϕ → ϕ) ↔ (EGϕ → ϕ)

(4a) ([alt][G]ϕ → [alt]ϕ) →
(([G]ϕ → [G][G]ϕ) → (EGϕ → EGEGϕ))

(4b) (EGϕ → EGEGϕ) → ([G]ϕ → [G][G]ϕ)

(5) (¬[G]ϕ → [G]¬[G]ϕ) ↔ (¬EGϕ → [G]¬EGϕ)

Proof. These are all straightforward derivations in KAg . See Appendix A.

Notice (4a). EGϕ → EGEGϕ is not valid in the class of transitive frames,
but it is valid in the class of reflexive, transitive frames. (4a) is a statement of
a more general property.

Theorem 5.10. S5Ag is the smallest KAg system containing all instances of
the following schemas:

T.EG EGϕ → ϕ

4.EG EGϕ → EGEGϕ

5′.EG ¬EGϕ → [G]¬EGϕ

Proof. From Theorem 5.9. Since all instances of [G]ϕ → ϕ are theorems of
S5Ag , so are [alt]([G]ϕ → ϕ) and [alt][G]ϕ → [alt]ϕ, which is the antecedent for
the property 4(a) of Theorem 5.9.

We conclude with a comment on axiom 5′.EG . Because [G]ϕ ↔ EGϕ∨ [alt]ϕ,
5′.EG can be written equivalently as:

¬[alt]¬EGϕ → (¬EGϕ → EG¬EGϕ) (24)

It might appear that this says that, unless ¬EGϕ is unavoidable, then not
bringing about ϕ is equivalent to refraining from bringing about ϕ. That seems
wrong. It is plain that simply not doing something is not the same as refraining
from doing it. However, ‘refraining’ has a very strong connotation of intentional
(intended) action. 5′.EG says only that if G acts in such a way that it does
not, unwittingly, bring about ϕ, then G also, unwittingly, brings about that it
does not, unwittingly, bring about ϕ. Unwittingly refraining from something, if
it means anything, surely means the same as simply not doing it. From that
point of view, 5′.EG seems perfectly reasonable.

40

5.4 Comparison with Pörn’s (1977) logic of action

Readers familiar with Ingmar Pörn’s logic of ‘brings it about’ may have been
surprised by earlier remarks that there is a strong resemblance between our op-
erator Ex and Pörn’s. The constructions are similar but there are also some very
significant differences, not least because Pörn’s account is much more abstract
than the transition-based one developed here. We summarise the presentation
in Pörn’s book (1977), which also provides useful references to earlier work along
the same lines by Chellas, Kanger, Hilpinen, and others. The main elements of
the logic can also be found in (Pörn, 1974).

Pörn’s logic has two normal operators:

Dxp ‘it is necessary for something which x does that p’
D′xp ‘but for x’s action it would not be the case that p’, or

‘p is dependent on x’s action’

and a defined (non-normal) operator

EP
xp =def Dxp ∧ ¬D′x¬p

Here p represents a state of affairs: that a window is open, that a vase is broken,
that agent x is at location l, that a system is in a ‘red’ system state, and so on.

The counteraction condition ¬D′x¬p in the definition of EP
xp may be read

as ‘but for x’s activity it might not be the case that p’ or ‘p is not independent
of x’s action’.

There is also a defined (normal) operator

Nxp =def Dxp ∧ D′x¬p

which may be read as ‘it is unavoidable for x that p’.
Notice that from these definitions we have

|= EP
xp ↔ Dxp ∧ ¬Nxp

The resemblance to the Ex operator of this paper is even clearer if we write
D∗xp for D′x¬p. D∗xp may be read as ‘had x acted differently, it would be the
case that p’. Then:

EP
xp =def Dxp ∧ ¬D∗xp

Nxp =def Dxp ∧ D∗xp

EP
xp ↔ Dxp ∧ ¬Nxp

However we should not jump to the assumption that Dx and D∗x correspond
exactly to what we write as [x] and [x∗] in this paper. The difference is in the
semantics.

Pörn considers frames of the form

〈W,Rx, R
∗
x〉

41

(his notation is different) where W is a set of possible worlds or ‘situations’. Dx
and D′x are interpreted on Rx and R∗x, respectively:

M, u |= Dxp iff M, v |= p for each v such that (u, v) ∈ Rx

M, u |= D′xp iff M, v |= ¬p for each v such that (u, v) ∈ R∗x

that is

M, u |= D∗xp iff M, v |= p for each v such that (u, v) ∈ R∗x
For Rx, the reading suggested is that (u, v) ∈ Rx when x ‘does in v at least

as much as he does in u’, or when ‘everything x does in u is the case in v’
(Segerberg, 1992). Rx is reflexive and transitive.

This semantics is rather abstract however, and it is not entirely clear how
phrases like ‘does at least as much’ are to be understood, or indeed, why an
agent’s doing at least as much in one situation as in another is a useful concept.
Not doing something is also a kind of action or activity. If an agent lifts a
table-end in one situation v and does not lift it in another situation u, but in
every other respect acts in exactly the same way in u as it does in v (assuming
that is possible, which is itself far from obvious) then presumably it does in v
at least as much as it does in u. The consequences of its actions in u are quite
different from the consequences of its actions in v, however. If an agent acts in
the same way in situations u and v, except that in v it moves to the left and
in u it does not move at all, then (presumably) it does in v as least as much
as it does in u; but again, the consequences of its actions in u and in v could
be quite different. We should be careful, however, not to take the suggested
readings too literally. Reflexivity and transitivity are referred to by Pörn as the
minimal assumptions one could make about the properties of Rx; the readings
suggested for Rx are perhaps merely indicative of possible ways that Rx could
be understood. We do not want to speculate here about what Pörn did or did
not intend Rx to represent. But we can surely say this. Let u ∼x v represent
that agent x acts identically in situations u and v. If x acts identically in u and
in v then surely x does in v at least as much as he does in u: ∼x ⊆ Rx. And
let u ∼ v represent simply that v is an alternative situation to u, irrespectively
of how x (or any other agent) acts in u and v. Then:

∼x ⊆ Rx ⊆ ∼ (25)

The intended reading of R∗x is rather more obscure. Pörn suggests: (u, v) ∈
R∗x when x ‘does not do in v any of the things he does in u’, or ‘the opposite
of everything that x does in u is the case in v’. Again, we should be very
careful not to read these expressions too literally. R∗x is irreflexive (and serial).
The only other clue to what Pörn has in mind is that he imposes the following
condition on Rx and R∗x:

(OM7) if (u, v1) ∈ Rx and (u, v2) ∈ Rx then (v1, w) ∈ R∗x if
and only if (v2, w) ∈ R∗x

Since Rx is reflexive, (OM7) implies (but is not implied by) two further condi-
tions (labelled as in (Pörn, 1977)):

(OM7.1) if (u, v) ∈ Rx and (v, w) ∈ R∗x then (u,w) ∈ R∗x
(OM7.2) if (u, v) ∈ Rx and (u,w) ∈ R∗x then (v, w) ∈ R∗x

42

Note that by (OM7.2):

if (u, v) ∈ Rx and (u, v) ∈ R∗x then (v, v) ∈ R∗x

Since R∗x is irreflexive, this means that Rx ∩R∗x = ∅.
The phrase ‘does not do in v any of the things he does in u’ suggests that

(u, v) ∈ R∗x might mean simply ‘acts differently in u and v’, i.e., R∗x = ∼ \ ∼x.
But that cannot be: Rx and R∗x would then not be disjoint, and would fail
to satisfy the conditions (OM7.2) and (OM7), unless Rx = ∼x. But we can
surely say this: if x ‘does not do in v any of the things he does in u’, or ‘does
the opposite’ in v and u, then certainly he does not do the same in u and v:
R∗x ⊆ ∼ \∼x. And so:

R∗x ⊆ ∼ \∼x ⊆ ∼ (26)

With [alt], [x] and [x∗] defined as in previous sections, ∼x ⊆ Rx ⊆ ∼ gives

|= [alt]p → Dxp and |= Dxp → [x]p

and R∗x ⊆ ∼ \∼x ⊆ ∼ gives

|= [alt]p → [x∗]p and |= [x∗]p → D∗xp

Now: |= [x]p ∧ [x∗]p → Dxp ∧ D∗xp, and hence

|= [alt]ϕ → Nxp

from which follows:
|= EP

xp → Exp

This is as much as we want to say. The question of how EP
xp relates to E+

xp is
not meaningful since there is no analogue of E+

x in Pörn’s logic.
Note that the soundness and completeness results of Section 5.3 are not

applicable to Pörn’s logic without some further modification. They depend on
the assumption that ∼ is an equivalence relation ([alt] is of type S5). Even if we
add that assumption here, Nx is not of type S5: Rx ∪ R∗x is not necessarily an
equivalence relation (and not even transitive in general).

6 Unwitting collective agency

Consider again the table-vase example from the introductory section. To recap:
a vase stands on a table at whose ends are positioned two agents a and b. Each
can lift or lower its end. If one lifts and the other does not, or if one lowers its
end and the other does not, the table tilts and the vase falls and breaks.

Consider a transition in which a lifts and b does not and the vase falls and
breaks. Neither of the agents a or b individually brings it about that the vase
falls. The falling of the vase is not necessary for how a acts in this transition, and
it is not necessary for how b acts in this transition. Yet intuitively it seems right
to say that the agents a and b collectively, though perhaps unwittingly, bring it
about that the vase falls. The falling is necessary for how they act collectively,
and the falling is not unavoidable, for there are alternative transitions, where
a does not lift or where b also lifts, in which the vase does not fall. If we add
another agent c into the picture, an agent whose actions cannot affect the table

43

or the vase, or interfere in any way with the actions by a and b, it also seems
right to say that in the transition where a lifts and b does not, it is the set
{a, b} of agents that brings it about that the vase falls and not the set of agents
{a, b, c}. c had nothing to do with it.

We now consider how the treatment of individual ‘brings it about’ agency
can be generalised to collective action by sets of agents. We will build up the
account in stages. Section 6.3 will identify an analogue of Ex for a set of agents,
and Section 6.4 an analogue of E+

x .

Henceforth, when we say ‘we have ϕ’ or sometimes just ‘ϕ’ we mean that ϕ
is a theorem of S5Ag , or equivalently, valid in all LTS frames.

6.1 The modalities E+

G

We have discussed the logic of

EGϕ =def [G]ϕ ∧ ¬[alt]ϕ

By analogy with the definition of E+
x for an individual agent x, let us consider

first, for any G ⊆ Ag :

E+
Gϕ =def [G]ϕ ∧ ¬[Ag\G]ϕ

For the degenerate case G = ∅, [G]ϕ is [alt]ϕ, and since [alt]ϕ → [Ag\G]ϕ, we
have E+

∅ ϕ ↔ ⊥.
It is straightforward to confirm that we also have

E+
Gϕ ↔ EGϕ ∧ ¬EAg\Gϕ (27)

Since E∅ϕ ↔ ⊥, from (27) we have, e.g.

E+
Agϕ ↔ EAgϕ

Does E+
Gϕ provide a plausible representation of collective agency? No. If

G ⊆ H then EGϕ → EHϕ. And if G ⊆ H then Ag \ H ⊆ Ag \ G, and so
EAg\Hϕ → EAg\Gϕ. So from (27) follows also

E+
Gϕ → E+

Hϕ if G ⊆ H

and therefore also

E+
Gϕ → E+

Agϕ

Clearly E+
Gϕ does not express that it is the set G of agents that is solely

responsible for bringing it about that ϕ. At best EG and E+
G express a very

weak sense of collective agency indeed. But there is something we can say.
Consider E+

Gϕ ∧ EHϕ for any two subsets G and H of Ag . From (27) we get
E+

Gϕ → ¬EAg\Gϕ. If G ∩ H = ∅, then H ⊆ Ag \ G, and EHϕ → EAg\Gϕ.

44

So then we have both E+
Gϕ → ¬EAg\Gϕ and EHϕ → EAg\Gϕ, and hence

E+
Gϕ ∧ EHϕ → ⊥ if G ∩H = ∅. A fortiori :

E+
Gϕ ∧ E+

Hϕ → ⊥ if G ∩H = ∅ (28)

So although G and H need not be unique they must have some members in
common. Notice the special case: E+

xϕ ∧ E+
yϕ → ⊥ if {x} ∩ {y} = ∅, i.e., if

x 6= y:
E+
xϕ ∧ E+

yϕ → ⊥ if x 6= y

This is something. But still we have E+
Gϕ → E+

Hϕ for any G ⊆ H, which is
hopeless.

6.2 Counteraction modalities

The characterisation of collective agency depends critically on the formulation of
appropriate counteraction conditions, and in particular on what it means to say
that a set G of agents, collectively, acts differently in two alternative transitions.
The differences are quite subtle, and not easy to express unambiguously in
natural language.

It is convenient to switch to a functional notation. Let:

alt(τ) =def {τ ′ | τ ∼ τ ′}
altx(τ) =def {τ ′ | τ ∼x τ

′}

Then

M, τ |= [alt]ϕ iff alt(τ) ⊆ ‖ϕ‖M

M, τ |= [x]ϕ iff altx(τ) ⊆ ‖ϕ‖M

M, τ |= [G]ϕ iff altG(τ) ⊆ ‖ϕ‖M

where
altG(τ) =def alt(τ) ∩

⋂
x∈G altx(τ)

Let us now abandon (temporarily) the definitions of EG and E+
G used so far,

and re-examine their treatment with more careful attention to the counteraction
conditions and their simplification.

For Ex , we argued as follows. Exϕ is satisfied by a transition τ in a model
M when:

(1) (necessity) M, τ |= [x]ϕ, that is, altx(τ) ⊆ ‖ϕ‖M: all alternative transi-
tions in which x acts in the same way as it does in τ are of type ϕ, or as
we also say, ϕ is necessary for how x acts in τ ;

(2) (counteraction) had x acted differently than it did in τ then the transition
might have been different: there exists a transition τ ′ inM such that τ ∼
τ ′ and τ 6∼x τ

′ and M, τ ′ |= ¬ϕ, that is, (alt(τ) \ altx(τ)) ∩ ‖¬ϕ‖M 6= ∅.

45

To express the second condition, the ‘counteraction’ condition, we introduced
another set of operators for talking about transitions in which an agent x acts
differently.

M, τ |= [x∗]ϕ iff M, τ ′ |= ϕ for all τ ′ ∈ M such that τ ∼ τ ′ and
τ 6∼x τ

′, i.e., iff (alt(τ) \ altx(τ)) ⊆ ‖ϕ‖M.

〈x∗〉 are the respective duals.
Exϕ is then defined as follows:

Exϕ =def [x]ϕ ∧ ¬[x∗]ϕ

We were then able to simplify the counteraction condition, replacing ¬[x∗]ϕ in
the definition of Ex by ¬[alt]ϕ.

So the natural generalisation is this. Instead of the definition used so far,
we will say that EGϕ is satisfied by a transition τ in a model M when:

(1) (necessity) M, τ |= [G]ϕ, that is, altG(τ) ⊆ ‖ϕ‖M;

(2) (counteraction) had G, collectively, acted differently than it did in τ then
the transition might have been different: there exists a transition τ ′ inM
such that τ ∼ τ ′ and G, collectively, acts differently in τ ′ than in τ and
M, τ ′ |= ¬ϕ.

There remains the question of how to express that a set G of agents, collectively,
acts differently in alternative transitions τ ∼ τ ′. The simplest is to say it is when
τ ∼ τ ′ and τ 6∼G τ ′, i.e., when τ ′ ∈ (alt(τ) \ altG(τ)). We will consider some
other possibilities presently.

Definition. For any G ⊆ Ag let

EGϕ =def [G]ϕ ∧ ¬[G∗]ϕ

where

M, τ |= [G∗]ϕ iff (alt(τ) \ altG(τ)) ⊆ ‖ϕ‖M

For the degenerate case G = ∅ we have |= [∅∗]⊥, i.e., |= [∅∗]ϕ ↔ >.

Since (alt(τ) \ altG(τ)) ⊆ alt(τ) (even when G = ∅) we have validity of

[alt]ϕ → [G∗]ϕ

More generally, if G 6= ∅ then G ⊆ H implies (alt(τ) \ altH(τ)) ⊆ (alt(τ) \
altG(τ)), and we have validity of

[G∗]ϕ → [H∗]ϕ if ∅ ⊂ G ⊆ H

(When G = ∅, this is > → [H∗]ϕ, which is not valid, unless H = ∅.)

For G 6= ∅, for all τ :

alt(τ) \ altG(τ) = alt(τ) \
⋂

x∈G altx(τ) =
⋃

x∈G(alt(τ) \ altx(τ))

46

So, as defined above, an alternative transition in which G, collectively, acts
differently than it does in τ is one where any agent x ∈ G acts differently than
it does in τ . The following is valid for any G ⊆ Ag :

[G∗]ϕ ↔
∧

x∈G[x∗]ϕ (29)

This is because, if G 6= ∅:

(alt(τ) \ altG(τ)) ⊆ ‖ϕ‖M iff
⋃

x∈G(alt(τ) \ altx(τ)) ⊆ ‖ϕ‖M

iff (alt(τ) \ altx(τ)) ⊆ ‖ϕ‖M for all x ∈ G

If G = ∅ then (29) is [∅∗]ϕ ↔ >, whose validity was noted above.
This seems quite natural. We will consider a slightly different, but as it

turns out a much stronger, statement of what it means for G, collectively, to
act differently in alternative transitions, later in Section 6.4.

From (29) we have the validity of:

EGϕ ↔ [G]ϕ ∧ ¬
∧

x∈G[x∗]ϕ (30)

(If G = ∅ this is E∅ϕ ↔ [alt]ϕ ∧ ¬>.)

How does this new definition of EG relate to the simpler one examined in
previous sections? They are equivalent.

Proposition 6.1. The following is valid for any G ⊆ Ag :

[G]ϕ → ([G∗]ϕ ↔ [alt]ϕ)

This is easily confirmed. It is a generalisation of the observation (5) in
Section 4, and a special case of Proposition 6.8 below. (For G = ∅ it is [alt]ϕ →
([∅∗]ϕ ↔ [alt]ϕ), which is a tautology since |= [∅∗]ϕ ↔ >.)

From this follows immediately the simplification of EG .

Proposition 6.2. The following is valid for any G ⊆ Ag :

EGϕ ↔ [G]ϕ ∧ ¬[alt]ϕ

E+
Gϕ can be treated in exactly the same way, though we need to generalise

the [G∗] operators, as follows.

E+
Gϕ is satisfied by a transition τ in a model M when:

(1) (necessity) M, τ |= [G]ϕ, that is, altG(τ) ⊆ ‖ϕ‖M;

(2) (counteraction) had G, collectively, acted differently than it did in τ then
the transition might have been different, even if all other agents Ag \ G
acted the same way as they did in τ : there exists a transition τ ′ in M
such that τ ∼ τ ′ and G acts differently in τ ′ than in τ and M, τ ′ |= ¬ϕ,
and τ ∼y τ

′ for all y ∈ Ag \G, i.e., (altAg\G(τ) \ altG(τ)) ∩ ‖¬ϕ‖M 6= ∅.

47

Definition. For any G ⊆ Ag let

E+
Gϕ =def [G]ϕ ∧ ¬[Ag\G |G∗]ϕ

where, for any H ⊆ Ag :

M, τ |= [H |G∗]ϕ iff (altH(τ) \ altG(τ)) ⊆ ‖ϕ‖M

For the case H = ∅, altH(τ) = alt(τ), and so [G∗] can be defined as a special
case of the general form [H |G∗]: the following is valid

[G∗]ϕ ↔ [∅ |G∗]ϕ

For G = ∅ and any H ⊆ Ag , we have |= [H | ∅∗]ϕ ↔ >, and hence E+

∅ ϕ =
[alt]ϕ ∧ ¬[Ag | ∅∗]ϕ, which is equivalent to ⊥.

There is a very close connection here to Boolean Modal Logic (Gargov and
Passy, 1990). (See also (Blackburn et al., 2001, pp 424–425).) We will not
develop that connection. We only need to consider some special cases, and
for that purpose it is not necessary to introduce a new set of definitions and
notations. Moreover, we are considering a special case in which G ⊆ H implies
∼H ⊆ ∼G, and it is easier to employ the special-purpose notation [H |G∗]ϕ for
convenience.4

The following generalises |= [alt]ϕ → [G∗]ϕ.

Proposition 6.3. For any subsets G and H of Ag

|= [H]ϕ → [H |G∗]ϕ

Proof. For all τ : altH(τ) \ altG(τ) ⊆ altH(τ) for any G (including G = ∅).

We have already noted |= [G | ∅∗]ϕ ↔ >, but more generally [G |G∗]ϕ ↔ >
is valid (because altG(τ)\altG(τ) = ∅). A more general version still will be useful
later.

Proposition 6.4 (‘triviality’). For any subsets G and H of Ag :

|= [H |G∗]ϕ ↔ > if G ⊆ H

Proof. For any τ , altH(τ) \ altG(τ) = ∅ if G ⊆ H (including when G = ∅).

Proposition 6.5 (‘monotony’).

|= [H ′ |G∗]ϕ → [H |G∗]ϕ if H ⊆ H ′

|= [H |G1
∗]ϕ → [H |G2

∗]ϕ if ∅ ⊂ G1 ⊆ G2

Proof. If H ⊆ H ′ then (altH(τ) \ altG(τ)) ⊆ (altH′(τ) \ altG(τ)).
If G1 6= ∅ and G1 ⊆ G2 then (altH(τ) \ altG2(τ)) ⊆ (altH(τ) \ altG1(τ)).

Now the very useful ‘distribution theorem’.
4For readers familiar with Boolean Modal Logic: [alt]ϕ would be written [∼]ϕ, [G]ϕ would

be [∼ ∩
T

x∈G ∼x]ϕ, [G∗]ϕ would be [∼ \
T

x∈G ∼x]ϕ, and [H |G∗]ϕ would be [
T

x∈H ∼x \T
x∈G ∼x]ϕ.

48

Proposition 6.6 (‘distribution’). For any subsets G1, G2 and H of Ag :

[H | (G1 ∪G2)∗]ϕ ↔ [H |G1
∗]ϕ ∧ [H |G2

∗]ϕ

Proof. For all τ :

altH(τ) \ altG1∪G2(τ) = altH(τ) \ (altG1 ∩ altG2)
= (altH(τ) \ altG1(τ)) ∪ (altH(τ) \ altG1(τ))

The following is an immediate consequence, and is generally useful in pro-
viding alternative characterisations of the collective agency operators.

Proposition 6.7. For any subsets H and G of Ag :

|= [H |G∗]ϕ ↔
∧

x∈G[H |x∗]ϕ

[H |x∗] is the obvious abbreviation for [H | {x}∗].

Proof. From Proposition 6.6 (‘distribution’). For the degenerate case G = ∅,
we need the validity of [H | ∅∗]ϕ ↔ >, and that was noted earlier.

From EGϕ =def [G]ϕ ∧ ¬[G∗]ϕ and E+
Gϕ =def [G]ϕ ∧ ¬[Ag\G |G∗]ϕ we

thus obtain
|= EGϕ ↔ [G]ϕ ∧ ¬

∧
x∈G[x∗]ϕ

which was noted earlier, at (30), and also

|= E+
Gϕ ↔ [G]ϕ ∧ ¬

∧
x∈G[Ag\G | {x}∗] (31)

(For G = ∅, the right hand side is just [G]ϕ ∧ ¬>.)

Theorem 6.8 (‘Simplification theorem’). The following is valid for any subsets
G and H of Ag :

[G]ϕ → ([H |G∗]ϕ ↔ [H]ϕ)

Proof. Validity of [H]ϕ → [H |G∗]ϕ follows from

(altH(τ) \ altG(τ)) ⊆ altH(τ)

which is obviously true for all τ (even if G = ∅). Validity of

[G]ϕ ∧ [H |G∗]ϕ → [H]ϕ

follows from
altH(τ) ⊆ altG(τ) ∪ (altH(τ) \ altG(τ)) (32)

which is also true for all τ (even if G = ∅, because then altH(τ) \ alt(τ) = ∅,
but altH(τ) ⊆ alt(τ) for all H ⊆ G). Then:

M, τ |= [G]ϕ ∧ [H |G∗]ϕ

implies altG(τ) ⊆ ‖ϕ‖M and (altH(τ) \ altG(τ)) ⊆ ‖ϕ‖M

implies altG(τ) ∪ (altH(τ) \ altG(τ)) ⊆ ‖ϕ‖M

implies altH(τ) ⊆ ‖ϕ‖M by (32)

49

The above can be generalised: if G′ ⊆ G then [G′]ϕ → [G]ϕ is valid, and so
[G′]ϕ → ([H |G∗]ϕ ↔ [H]ϕ) is valid.

This simple observation is so useful that we will refer to it as the ‘simplifi-
cation theorem’ in what follows. For example, if G 6= ∅ then

[G]ϕ → ([Ag\G |G∗]ϕ ↔ [Ag\G]ϕ)

which confirms that the definition of E+
G is equivalent to the simpler form dis-

cussed in previous sections.

Proposition 6.9. For any G ⊆ Ag , the following is valid

E+
Gϕ ↔ [G]ϕ ∧ ¬[Ag\G]ϕ

Finally, we record two further simple properties which we will want to refer
to later.

Proposition 6.10 (‘reduction’). For any subsets G and H of Ag :

[H |G∗]ϕ ↔ [H | (G\H)∗]ϕ

Proof. If G = ∅ the above is equivalent to > ↔ >. In general G = (G \H) ∪
(G ∩H). So by Proposition 6.6 (‘distribution’) we have

|= [H |G∗]ϕ ↔ [H | (G\H)∗]ϕ ∧ [H | (G ∩H)∗]ϕ

But G∩H ⊆ H, so by Proposition 6.4 (‘triviality’) |= [H | (G∩H)∗]ϕ ↔ >.

Proposition 6.11. For any subsets G, H and X of Ag :

|= [H\X |G∗]ϕ ↔ [H\X | (G ∩X)∗]ϕ if G ⊆ H

Proof. G \ (H \X) = (G \H) ∪ (G ∩X). So if G ⊆ H, G \ (H \X) = G ∩X.
Now apply Proposition 6.10.

6.3 Minimal sets of agents

EG and E+
G express a very weak kind of collective agency. If the set G of agents

collectively brings it about that ϕ then so, in a very weak sense, does every
superset of G; indeed the set Ag also collectively brings it about that ϕ. But
this is not what we are aiming at. In the table-vase example when a and b
collectively tilt the table and break the vase, c has nothing to do with it.

One way of looking at it is that the necessary condition [G]ϕ is too weak:
G can be ‘too big’—it might contain x who contributes nothing to the bringing
about of ϕ: after all, for x ∈ G, [G\{x}]ϕ∧ [G]ϕ is satisfiable, and [G\{x}]ϕ →
[G]ϕ. It seems inescapable to look at the subsets of G in an expression [G]ϕ,
and insist that for the necessity condition, G should be minimal in some sense.
There are several possible ways of expressing this requirement. Let us consider
the obvious one first.

50

Let
[G]minϕ =def [G]ϕ ∧ ¬

∨
H⊂G[H]ϕ

and
∆Gϕ =def [G]minϕ ∧ ¬[G∗]ϕ

that is, in full:

∆Gϕ =def [G]ϕ ∧ ¬
∨

H⊂G[H]ϕ ∧ ¬[G∗]ϕ

In words: M, τ |= ∆Gϕ iff (1) M, τ |= [G]ϕ, (1′) there is no proper subset
H ⊂ G such that M, τ |= [H]ϕ, and (2) had G, collectively, acted differently
than it did in τ the transition might have been different.

The minimality condition (1′) could be regarded as part of the ‘necessity’
condition or as part of the counteraction condition. It makes no difference.

When G = ∅, |= [∅]minϕ ↔ [∅]ϕ (the empty disjunction is false), i.e., |=
[∅]minϕ ↔ [alt]ϕ. And ∆∅ϕ ↔ [alt]ϕ ∧ ¬[∅∗]ϕ, which is equivalent to ⊥ since
|= [∅∗]ϕ ↔ >.

When G = {x}, [{x}]minϕ = [x]ϕ ∧ ¬
∨

H⊂{x}[H]ϕ, and so |= [{x}]minϕ ↔
[x]ϕ ∧ ¬[∅]ϕ, that is, |= [{x}]minϕ ↔ [x]ϕ ∧ ¬[alt]ϕ, i.e.:

|= [{x}]minϕ ↔ Exϕ

The simplification of the counteraction condition ¬[G∗]ϕ is still available: it
requires only [G]ϕ. So by the ‘simplification theorem’ we have:

∆Gϕ ↔ [G]minϕ ∧ ¬[alt]ϕ (33)

For the degenerate case G = ∅, ∆∅ϕ ↔ [∅]minϕ ∧ ¬[alt]ϕ, which is equivalent to
⊥. For the case G = {x}, ∆{x}ϕ ↔ Exϕ ∧ ¬[alt]ϕ, and so:

∆{x}ϕ ↔ Exϕ

Notice also that we have ¬[H]ϕ → ¬[alt]ϕ for every H ⊆ Ag and so for the
case G 6= ∅, (33) can be simplified:

|= ∆Gϕ ↔ [G]minϕ (G 6= ∅)

For G = ∅, |= ∆Gϕ ↔ ⊥.

It is very useful to have an alternative characterisation of [G]minϕ and hence
of ∆Gϕ.

Proposition 6.12. For every G ⊆ Ag :∨
H⊂G[H]ϕ ↔

∨
x∈G[G\{x}]ϕ

Proof. The degenerate case G = ∅ is trivial: it is ⊥ ↔ ⊥.
For left-to-right. If H ⊂ G then H ⊆ G \ {x} for some x ∈ G, and then

[H]ϕ → [G\{x}]ϕ. So we have:∧
H⊂G

(
[H]ϕ →

∨
x∈G[G\{x}]ϕ

)
which is equivalent to ∨

H⊂G[H]ϕ →
∨

x∈G[G\{x}]ϕ

The other direction is immediate. G \ {x} ⊂ G for every x ∈ G.

51

From Proposition 6.12 we have the following.

Proposition 6.13.

|= [G]minϕ ↔ [G]ϕ ∧
∧

x∈G ¬[G\{x}]ϕ

and so

|= ∆Gϕ ↔ [G]ϕ ∧
∧

x∈G ¬[G\{x}]ϕ ∧ ¬[alt]ϕ

The conjunct ¬[alt]ϕ is to deal with the special case when G = ∅. When G = ∅,
¬[G\{x}]ϕ → ¬[alt]ϕ and it is redundant.

Notice the relative strength of EG and ∆G . From Proposition 6.13 we can
see immediately:

|= ∆Gϕ ↔ EGϕ ∧
∧

x∈G ¬[G\{x}]ϕ

Let us now generalise. Let

∆+
Gϕ =def [G]minϕ ∧ ¬[Ag\G |G∗]ϕ

or, in full:

∆+
Gϕ =def [G]ϕ ∧ ¬

∨
H⊂G[H]ϕ ∧ ¬[Ag\G |G∗]ϕ

or equivalently

∆+
Gϕ ↔ [G]ϕ ∧

∧
x∈G ¬[G\{x}]ϕ ∧ ¬[Ag\G |G∗]ϕ

For the degenerate case G = ∅, we have ∆+

∅ ϕ = [∅]minϕ ∧ ¬[Ag | ∅∗]ϕ, which is
equivalent to ⊥ since |= [Ag | ∅∗]ϕ ↔ >.

Again, the simplification of the counteraction condition is available, since it
depends only on [G]ϕ. So we have the validity of:

∆+
Gϕ ↔ [G]minϕ ∧ ¬[Ag\G]ϕ

and
∆+

Gϕ ↔ [G]ϕ ∧
∧

x∈G ¬[G\{x}]ϕ ∧ ¬[Ag\G]ϕ

which is also
∆+

Gϕ ↔ E+
Gϕ ∧

∧
x∈G ¬[G\{x}]ϕ

and also
∆+

Gϕ ↔ ∆Gϕ ∧ ¬[Ag\G]ϕ

What about some of the properties of ∆G and ∆+
G?

• Obviously we have both of the following:

∆Gϕ → EGϕ and ∆+
Gϕ → E+

Gϕ

They require only [G]minϕ → [G]ϕ. In fact we have already observed that
both of the following are valid:

∆Gϕ ↔ EGϕ ∧
∧

x∈G ¬[G\{x}]ϕ
∆+

Gϕ ↔ E+
Gϕ ∧

∧
x∈G ¬[G\{x}]ϕ

52

• It is no longer the case that if G ⊆ H then ∆Gϕ → ∆Hϕ. Indeed, we
have for all subsets G and H of Ag :

∆Gϕ → ¬∆Hϕ if G ⊂ H

If G 6= ∅ then [G]minϕ → ¬[H]minϕ for G ⊂ H by definition of [H]minϕ. If
G = ∅, then ∆Gϕ ↔ ⊥, and so trivially ∆Gϕ → ¬∆Hϕ for any H ⊆ Ag .

• ∆Gϕ ∧ ∆Hϕ is satisfiable for G 6= H.

Suppose there are three agents a, b, and c pushing against a spring-loaded
door and keeping it shut. Suppose any two of them collectively are strong
enough to keep the door shut. Let k represent that the transition is a
‘keeping-the-door-shut’ transition. If we do the calculation we find that
[{a, b}]mink, [{b, c}]mink, and [{a, c}]mink are all true. Clearly [{a, b, c}]k
is true but [{a, b, c}]mink is not. ∆{a,b}k is [{a, b}]mink ∧ ¬[alt]k. Since
there is an alternative transition (we are supposing) in which ¬k is true,
we have ∆{a,b}k. And likewise for ∆{b,c}k and ∆{a,c}k.

• The above example demonstrates that:

6|= ∆Gϕ → E+
Gϕ

• Since ∆+
Gϕ ∧ ∆+

Hϕ → E+
Gϕ ∧ E+

Hϕ, we inherit the property (28), that is,
we have:

∆+
Gϕ ∧ ∆+

Hϕ → ⊥ if G ∩H = ∅ (34)

So although again G and H need not be unique, they cannot be disjoint.

In the ‘keeping-the-door-shut’ example, we have ∆{a,b}k and ¬[c]k (c is
not strong enough to keep the door shut by itself). So ∆+

{a,b}k is true in the
transition. And likewise ∆+

{b,c}k and ∆+

{a,c}k are also true. The sets {a, b},
{b, c}, and {a, c} who bring about k are not unique, but also not disjoint, as
expected.

But consider a variation of the example. Suppose there are four agents a,
b, c, and d pushing against the door, and any two of them are strong enough
to keep the door shut. If we do the calculation for this version of the example,
we find (assuming the door can spring open) that ∆Gk is true in this transition
for any pair G from {a, b, c, d}. But consider ∆+

{a,b}k. That is false, because it
requires ¬[{c, d}]k, and [{c, d}]k is true. ∆+

{c,d}k is false too, and so is ∆+
Gk for

any pair G of agents from {a, b, c, d}.
This seems very odd, at best. Suppose we have some set Ag of agents, any

two of whom are strong enough to keep the spring-loaded door shut if they push
together. If three of them are pushing the door shut, then ∆+

Gk is true for any
pair G of them. If four or more are pushing, however, ∆+

Gk is false for any
G ⊆ Ag . That cannot be right. Perhaps there is some kind of informal reading
of ∆+

G that makes these properties intuitively plausible, but it is far from clear
what it might be.

53

6.4 Collective agency

In Section 4.5 we noted that Ex and E+
x are the endpoints of a range of possible

‘brings it about’ operators that differ only in the strength of the counteraction
conditions. Here, in a slightly compressed form, is the list of the possible coun-
teraction conditions considered before, but now with G in place of the individual
agent x:

strongest [G]ϕ ∧ ¬[Ag\G]ϕ had all the others in Ag \ G acted the same
way they did, it might have been otherwise

...
[G]ϕ ∧ ¬[H]ϕ had all the others in some subset H ⊆ Ag \G

acted the same way they did, it might have
been otherwise

...
weakest [G]ϕ ∧ ¬[alt]ϕ it might have been otherwise

Or equivalently, because of the ‘simplification theorem’:

strongest [G]ϕ ∧ ¬[Ag\G |G∗]ϕ had G acted differently, and all the others in
Ag \ G the same way they did, it might have
been otherwise

...
[G]ϕ ∧ ¬[H |G∗]ϕ had G acted differently, and all the others in

some subset H ⊆ Ag \ G the same way they
did, it might have been otherwise

...
weakest [G]ϕ ∧ ¬[G∗]ϕ had G acted differently, it might have been

otherwise

The strongest is E+
Gϕ and the weakest is EGϕ.

But here is a question: should we not consider also sets H other than subsets
of Ag \ G? It made no sense to do this earlier where we were considering only
individual agents and where G was always a singleton, but in this more general
setting there are more possibilities.

Here is one way to look at it. Consider constructions of this general form:

[G]ϕ ∧ ¬[H |G∗]ϕ (35)

The bigger we make H, the stronger is the counteraction condition ¬[H |G∗]ϕ:
for any H ′ ⊆ H we have ¬[H |G∗]ϕ → ¬[H ′ |G∗]ϕ by Proposition 6.5
(‘monotony’). We can ignore all supersets of G because if G ⊆ H then by
Proposition 6.4 (‘triviality’) we have ¬[H |G∗]ϕ ↔ ⊥. So what are the max-
imal (set inclusion) H such that G 6⊆ H? They are any H = Ag \ {x} where
x ∈ G.

So the strongest counteraction condition we can construct this way suggests
the following as a plausible candidate for the expression of (unwitting) collective
agency of the set G ⊆ Ag of agents:

[G]ϕ ∧
∧

x∈G ¬[Ag\{x} |G∗]ϕ

54

or equivalently by the ‘simplification theorem’

[G]ϕ ∧
∧

x∈G ¬[Ag\{x}]ϕ

which is
[G]ϕ ∧

∧
x∈G ¬[\x]ϕ

in the shorthand notation used earlier.
This construction does indeed give us a form of collective agency with the

desired properties, as will be demonstrated below. But how do we read these
constructions? Their intuitive reading is far from clear.

We have by Proposition 6.11, that for any subsets G, H and X of Ag :

|= [H\X |G∗]ϕ ↔ [H\X | (G ∩X)∗]ϕ if G ⊆ H

And so, as a special case, for any subsets G and X of Ag :

|= [Ag\X |G∗]ϕ ↔ [Ag\X | (G ∩X)∗]ϕ

From this follows immediately:

Proposition 6.14. For any subset G of Ag :

[Ag\{x} |G∗]ϕ ↔ [Ag\{x} |x∗]ϕ for any x ∈ G

Proof. If x ∈ G, then G ∩ {x} = {x}.

So we can re-express the counteraction conditions above in the following
equivalent form.

Definition. For any G ⊆ Ag , let

ΓGϕ =def [G]ϕ ∧
∧

x∈G ¬[Ag\{x} | {x}∗]ϕ ∧ ¬[alt]ϕ

In the shorthand notation of previous sections this is:

ΓGϕ =def [G]ϕ ∧
∧

x∈G ¬[\x |x∗]ϕ ∧ ¬[alt]ϕ

As usual, the conjunct ¬[alt]ϕ is included to deal with the degenerate case G = ∅.
It is redundant (implied) if G 6= ∅.

In words: ΓGϕ is satisfied by a transition τ in a model M when:

(1) (necessity) M, τ |= [G]ϕ, that is, altG(τ) ⊆ ‖ϕ‖M;

(2) (counteraction) for every x ∈ G, had x acted differently than it did in
τ then the transition might have been different, even if all other agents
Ag \ {x} besides x acted in the same way as they did in τ .

One can see that the counteraction condition above is similar, though slightly
different, from those we have considered earlier. In particular it expresses a
slightly different sense of what it means to say that a set G of agents, collectively,
acts differently in a pair of transitions τ ∼ τ ′, and a slightly different sense in
which every x ∈ G must contribute to G’s collectively bringing it about that ϕ.

It is worth observing that the definition of ΓG incorporates the strongest
counteraction conditions of the kind we have been looking at. In considering the

55

general form (35), we chose maximal sets H to make the counteraction condition
¬[H |G∗]ϕ as strong as possible. By Proposition 6.5 (‘monotony’), however,
we get stronger counteraction conditions ¬[H |G′∗]ϕ by choosing smaller sets
G′. The smallest such sets G′ we can choose are any sets {x} where x ∈ G.
G′ = ∅ is no good, because then ¬[H |G′∗]ϕ is equivalent to ⊥.

Now let us record the simplification of the definition.

Proposition 6.15.

|= ΓGϕ ↔ [G]ϕ ∧
∧

x∈G ¬[Ag\{x}]ϕ ∧ ¬[alt]ϕ

which in the shorthand notation of previous sections is

|= ΓGϕ ↔ [G]ϕ ∧
∧

x∈G ¬[\x]ϕ ∧ ¬[alt]ϕ

Proof. The degenerate case G = ∅ is trivial. For the general case the argu-
ment is given above. In summary: by the ‘simplification theorem’, [G]ϕ ∧∧

x∈G ¬[Ag\{x}]ϕ is equivalent to [G]ϕ∧
∧

x∈G ¬[Ag\{x} |G∗]ϕ; and by Propo-
sition 6.10 (‘reduction’) and the corollary Proposition 6.14, this is equivalent to
[G]ϕ ∧

∧
x∈G ¬[Ag\{x} | {x}∗]ϕ, which is ΓGϕ by definition.

Now two properties of ΓG . First, compare (for the case G 6= ∅):

ΓGϕ ↔ [G]ϕ ∧
∧

x∈G ¬[Ag\{x}]ϕ

and
∆+

Gϕ ↔ [G]ϕ ∧
∧

x∈G ¬[G\{x}]ϕ ∧ ¬[G\{x}]ϕ

Proposition 6.16. For any G ⊆ Ag , the following is a theorem of S5Ag , or
equivalently, valid in all LTS frames.

ΓGϕ → ∆+
Gϕ

Proof. For G = ∅, the above is equivalent to ⊥ ↔ ⊥.
For the general case, by Proposition 6.15 it is enough to show:∧

x∈G ¬[Ag\{x}]ϕ → (
∧

x∈G ¬[G\{x}]ϕ ∧ ¬[Ag\G]ϕ)

We show that, for every x ∈ G

¬[Ag\{x}]ϕ → (¬[G\{x}]ϕ ∧ ¬[Ag\G]ϕ)

First: G \ {x} ⊆ Ag \ {x} and so [G\{x}]ϕ → [Ag\{x}]ϕ. Second: Ag \ G ⊆
Ag \ {x} when x ∈ G, and so ¬[Ag\{x}]ϕ → ¬[Ag\G]ϕ.

Proposition For any subsets G and H of Ag :

ΓGϕ ∧ ΓHϕ → ⊥ if G 6= H

Proof. If G = ∅ then the above is equivalent to ⊥ ∧ ΓHϕ → ⊥, which is a
tautology. And likewise for the case H = ∅.

Suppose that G and H are both non-empty. If G 6= H then either G 6⊆ H
or H 6⊆ G. Suppose that G 6⊆ H. Consider any x ∈ G \H. Then H ⊆ Ag \ {x}.
Now: x ∈ G means that ΓGϕ → ¬[Ag\{x}]ϕ from the definition of ΓG . But
H ⊆ Ag\{x} implies [H]ϕ → [Ag\{x}]ϕ, and so we also get ΓHϕ → [Ag\{x}]ϕ.
So then ΓGϕ ∧ ΓHϕ → ⊥.

56

In the table-vase example where there are three agents a, b, and c, and the
atom v represents that the vase falls, Γ{a,b}v is true in the transition where a
lifts, b does not, and c has nothing to do with it. In the pushing-the-door-shut
example in a transition where any two agents pushing together are required to
keep the door shut, we have ∆Gk true for any pair G from Ag (at least two
agents are required to keep the door shut, and if ∆Gk is true then ∆H k is not
true for any H ⊃ G). ΓGk on the other hand is not true for any set G ⊆ Ag .
This seems quite natural and satisfactory.

ΓG is analogous to ∆+
G and E+

G in that the counteraction conditions for these
modalities refer to all other agents besides G and their actions in alternative
transitions. Is there similarly a variant of ΓG where, as in the case of ∆G and
EG , no reference is made in the counteraction conditions to the actions of the
other agents? It would be:

(1) (necessity) M, τ |= [G]ϕ, that is, altG(τ) ⊆ ‖ϕ‖M;

(2) (counteraction) for every x ∈ G, had x acted differently than it did in τ
then the transition might have been different.

Let us call it ∆−Gϕ. It is (ignoring the degenerate case G = ∅):

∆−Gϕ =def [G]ϕ ∧
∧

x∈G ¬[x∗]ϕ

instead of
ΓGϕ =def [G]ϕ ∧

∧
x∈G ¬[Ag\{x} |x∗]ϕ

as we have for ΓGϕ. But what is ∆−Gϕ? Proposition 6.10 (‘reduction’) and the
corollary Proposition 6.14 do not help here.

We can see that, by Proposition 6.5 (‘monotony’), [∅ |x∗]ϕ → [Ag\{x} |x∗]ϕ
is valid and so

|= ΓGϕ → ∆−Gϕ

And [alt]ϕ → [x∗]ϕ is valid and so

|= ∆−Gϕ → EGϕ

On the other hand, ∆−G does not seem to express any useful notion of collective
agency at all. Consider again the table-vase example with agents a, b, and c,
and a transition in which a and b collectively tilt the table and break the vase
(v). In this transition ∆−{a,b}v is true because [{a, b}]v and 〈a∗〉¬v and 〈b∗〉¬v
are all true. However, ∆−{a,b,c}v is also true, because [{a, b, c}]v is true, and so
are 〈a∗〉¬v, 〈b∗〉¬v, and 〈c∗〉¬v (we are supposing). So ∆−Gϕ → [G]minϕ is not
valid, in other words:

6|= ∆−Gϕ → ∆Gϕ

It is similarly easy to construct examples to show that

6|= E+
Gϕ → ∆−Gϕ

Other properties of ∆−G can be explored and established quite easily but since
∆−G seems not to express any useful notion of collective agency we will not
bother with them.

57

Finally, we noted earlier that

E+
Gϕ ↔ EGϕ ∧ ¬EAg\Gϕ

Perhaps the construction
∆Gϕ ∧ ¬∆Ag\Gϕ (36)

yields something interesting? It does not. First, observe that:

ΓGϕ → ∆Gϕ ∧ ¬∆Ag\Gϕ (37)

ΓGϕ → ∆Gϕ, obviously. The other part is also easy to check: ΓGϕ → E+
Gϕ,

E+
Gϕ → ¬[Ag\G]ϕ, and ¬[Ag\G] → ¬∆Ag\Gϕ. But the property (37) is not

an equivalence. In the pushing-the-door-shut example we have ∆{a,b}k and
¬∆{c}k but not Γ{a,b}k. The construction (36) seems to have no particular
significance. Similarly, we have

ΓGϕ → ∆+
Gϕ ∧ ¬∆+

Ag\Gϕ

But this is not an equivalence, and is not interesting either: since G and Ag \G
are disjoint, ∆+

Gϕ → ¬∆+

Ag\Gϕ. The above says only that ΓGϕ → ∆+
Gϕ.

6.5 Summary

We have explored a range of possible forms of collective agency with implications
between them as summarised in the following diagram:

E+
G EG

ΓG ∆+
G ∆G

∆−G

Of these, it is ∆G and ΓG that are deserving of attention. They are the
analogues of Ex and E+

x , respectively, in as much as ∆Gϕ allows for the possi-
bility that several sets G of agents bring it about that ϕ, while ΓGϕ expresses
that any such set G is unique. Both imply that the set G of agents is minimal:
∆Gϕ ↔ [G]minϕ when G 6= ∅, and ΓGϕ → ∆Gϕ. Of the others, ∆−G has a nat-
ural definition but is too weak to express any useful notion of collective agency.
We called ∆+

G ‘odd’.

These complications arise if we are interested in collective agency of sets
G ⊆ Ag , or in individual agency of an agent x ∈ Ag where there are multiple
agents in Ag whose actions need to be taken into account. They do not arise
if we restrict attention to a single agent acting in an environment, that is, the
case where Ag = {x} is a singleton. In that case all the above forms collapse to
one:

Γ{x}ϕ ↔ ∆{x}ϕ ↔ E+
xϕ ↔ Exϕ (for Ag = {x})

58

7 Conclusion

The formal framework presented in this paper has been implemented in the
form of a model checker that can evaluate formulas expressing properties of
interest on (a symbolic representation of) an agent-stranded transition system.
That and some illustrations of how the language can be applied to some (very
simple) examples can be found in (Sergot, 2008).

Generally, the logic of norms and the logic of action/agency have been stud-
ied together. We touched on some examples from norm-governed multi-agent
systems but only as a means of motivating parts of the technical development.
It remains to explore how the resources of the language can be used to repre-
sent norms, and to investigate distinctions and issues that have previously been
discussed in the literature.

As regards the logic of (unwitting) agency itself, the main contributions of
the paper can be summarised as follows.

(1) Combining transition-based treatments of action with ‘brings it about’ agency
turns out to be quite natural and straightforward, if we switch attention from
talking about an agent’s bringing it about that a certain state of affairs exists
to talking about an agent’s bringing it about that a transition has a certain
property. This change of perspective also provides a natural way of formalising
distinctions between bringing it about, sustaining, and letting it remain the case
that a certain state of affairs exists. One could try to do something similar by
looking at paths/runs of a transition system rather than just single transitions,
perhaps in combination with a temporal logic. We leave that for future work.

(2) Agency of an individual agent, and weak forms of collective agency, are
easy to deal with technically. Counterfactual counteraction conditions can be
reduced to combinations of simple S5 modalities. The characterisation of their
logical properties is then a straightforward exercise; indeed it requires no more
than trivial modifications of the S5 logic of ‘distributed knowledge’. We looked
at two defined ‘brings it about’ modalities, one which treats the actions of other
agents as part of the environment, and a stronger one, expressing sole agency,
which takes the actions of other agents into account. We were also able to relate
our account to Pörn’s (1977) logic of ‘brings it about’.

(3) Collective agency, even of the unwitting kind, is more challenging. There are
many different ways of formulating the counterfactual counteraction conditions,
and in particular, various senses in which a set G of agents, collectively, acts
differently in alternative transitions. We picked out two forms for special atten-
tion, ∆G and ΓG , corresponding roughly to the two forms of ‘bringing about’
by individual agents, Ex and E+

x .
The logic of unwitting collective agency is surprisingly strong. Our intention

in due course is to add more features, such as communication and joint intention,
to look at genuine joint action.

Finally, there is another, weaker kind of brings it about agency that seems
to be deserving of attention.

Consider the table-vase example again, but now suppose that if the table
tilts, the vase might fall, but might not, and if the vase falls, it might break, or

59

might not. To simplify the example suppose there is just one agent a who can
lift and lower its end of the table. We do not need b to make the point. If a
lifts its end of the table and the vase falls and breaks, a does not bring it about
that the vase breaks—it is not necessary for what a does that the vase falls or
that it breaks. But suppose that if a does not lift then the table does not tilt,
and if the table does not tilt then the vase does not fall, and if the vase does
not fall it does not break. When a lifts the table and the vase falls and breaks,
there is a sense in which a brings it about: but for a’s actions the vase would
not fall and would not break.

What we seem to have here is another, weaker form of ‘brings it about’
agency. x (weakly) brings it about that ϕ if ϕ is true but would not be true
had x acted differently. In the language of this paper this would be

ϕ ∧ [x∗]¬ϕ

or equivalently
ϕ ∧ ¬〈x∗〉ϕ

where [x∗] means ‘had x acted differently’ or ‘but for x’s actions’. A similar
construction is mentioned by Ingmar Pörn (1977, p16) in connection with the
ascription of responsibility. The details seem to be deserving of investigation,
but are technically more challenging because of the nature of the [x∗] modality
and its generalisations.

References

N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives. Theoria,
54:175–199, 1988.

Nuel Belnap and Michael Perloff. In the realm of agents. Annals of Mathematics and
Artificial Intelligence, 9(1–2):25–48, 1993.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001.

B. F. Chellas. Modal Logic—An Introduction. Cambridge University Press, 1980.

B. F. Chellas. The Logical Form of Imperatives. Dissertation, Stanford University,
1969.

Robert Craven and Marek Sergot. Agent strands in the action language nC+. Journal
of Applied Logic, 6(2):172–191, June 2008.

Maarten de Rijke. The modal logic of inequality. Journal of Symbolic Logic, 57:
566–584, 1992.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

G. Gargov and S. Passy. A note on Boolean modal logic. In P. P. Petkov, editor,
Mathematical Logic. Proceedings of the 1988 Heyting Summer School, pages 311–
321. Plenum Press, 1990.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1–2):49–104,
2004.

Gerd Große and Hesham Khalil. State Event Logic. Journal of the IGPL, 4(1):47–74,
1996.

60

R. Hilpinen. On action and agency. In E. Ejerhed and S. Lindström, editors, Logic,
Action and Cognition—Essays in Philosophical Logic, volume 2 of Trends in Logic,
Studia Logica Library, pages 3–27. Kluwer Academic Publishers, Dordrecht, 1997.

J. F. Horty. Agency and Deontic Logic. Oxford University Press, 2001.

J. F. Horty and N. Belnap. The deliberative stit: a study of action, omission, ability,
and obligation. Journal of Philosophical Logic, 24(6):583–644, 1995.

Ingmar Pörn. Action Theory and Social Science: Some Formal Models. Number 120
in Synthese Library. D. Reidel, Dordrecht, 1977.

Ingmar Pörn. Some basic concepts of action. In S. Stenlund, editor, Logical Theory
and Semantic Analysis, number 63 in Synthese Library, pages 93–101. D. Reidel,
Dordrecht, 1974.

Luigi Sauro, Jelle Gerbrandy, Wiebe van der Hoek, and Michael Wooldridge. Reason-
ing about action and cooperation. In Proceedings of the Fifth International Joint
Conference on Autonomous agents and Multiagent Systems: AAMAS’06, pages 185–
192, New York, NY, USA, 2006. ACM.

K. Segerberg. Getting started: Beginnings in the logic of action. Studia Logica, 51
(3–4):347–378, 1992.

Marek Sergot. Action and agency in norm-governed multi-agent systems. In A. Artikis,
G. O’Hare, K. Stathis, and G. Vouros, editors, Proceedings 8th Annual International
Workshop “Engineering Societies in the Agents World” (ESAW’07), Athens, Octo-
ber 2007, LNAI 4995. Springer, 2008. Forthcoming.

Marek Sergot and Robert Craven. The deontic component of action language nC+.
In L. Goble and J-J. Ch. Meyer, editors, Deontic Logic and Artificial Normative
Systems. Proc. 8th International Workshop on Deontic Logic in Computer Science
(DEON’06), Utrecht, July 2006, LNAI 4048, pages 222–237. Springer Verlag, 2006.

J. F. van Benthem. Minimal deontic logics. Bulletin of the Section of Logic, 8(1):
36–42, 1979.

Y. Venema. Points, lines and diamonds: a two-sorted modal logic for projective planes.
Journal of Logic and Computation, 9(5):601–621, 1999.

Georg Henrik von Wright. An essay in deontic logic and the general theory of action.
Number 21 in Acta Philosophica Fennica. 1968.

Georg Henrik von Wright. Norm and Action—A Logical Enquiry. Routledge and
Kegan Paul, London, 1963.

Georg Henrik von Wright. Practical Reason. Blackwell, Oxford, 1983.

61

A Proofs of Theorem 5.9, Section 5.2

As in the other parts of the paper, derivations are presented in a schematic form
for clarity, from which full details are easily reconstructed.

Proposition All instances of the following schema are theorems of KAg .

(T)([G]ϕ → ϕ) ↔ (EGϕ → ϕ)

Proof.

([G]ϕ → ϕ) ↔ ((EGϕ ∨ [alt]ϕ) → ϕ)
↔ (EGϕ → ϕ) ∧ ([alt]ϕ → ϕ)
↔ (EGϕ → ϕ)

The last step is because all instances of [alt]ϕ → ϕ are theorems of KAg .

Proposition All instances of the following schema are theorems of KAg .

(4a) ([alt][G]ϕ → [alt]ϕ) → (([G]ϕ → [G][G]ϕ) → (EGϕ → EGEGϕ))

Proof. All instances of the following schemas are theorems of KAg .

(i) ¬[alt]ϕ → [G]¬[alt]ϕ
(ii) ([alt][G]ϕ → [alt]ϕ) ↔ ([alt]EGϕ → [alt]ϕ)

(i) follows from ¬[alt]ϕ → [alt]¬[alt]ϕ and [alt]¬[alt]ϕ → [G]¬[alt]ϕ.
(ii) can be derived as follows:

([alt]EGϕ → [alt]ϕ)
↔ (([alt]([G]ϕ ∧ ¬[alt]ϕ) → [alt]ϕ)
↔ (([alt][G]ϕ ∧ [alt]¬[alt]ϕ) → [alt]ϕ) ([alt] normal)
↔ (([alt][G]ϕ ∧ ¬[alt]ϕ) → [alt]ϕ) ([alt]¬[alt]ϕ ↔ ¬[alt]ϕ)
↔ ([alt][G]ϕ → [alt]ϕ) (by (i))

Now a derivation of (4a) (or rather, of a schema equivalent to (4a)):

(¬[alt]ϕ → ¬[alt][G]ϕ) ∧ ([G]ϕ → [G][G]ϕ) →
(EGϕ → [G]ϕ ∧ ¬[alt]ϕ)

→ [G][G]ϕ ∧ [G]¬[alt]ϕ ∧ ¬[alt]ϕ) (by (i))
→ [G]([G]ϕ ∧ ¬[alt]ϕ) ∧ ¬[alt]ϕ) ([G] normal)
→ [G]EGϕ ∧ ¬[alt]ϕ)
→ [G]EGϕ ∧ ¬[alt]EGϕ) (by (ii))
→ EGEGϕ)

62

Proposition All instances of the following schema are theorems of KAg .

(4b) (EGϕ → EGEGϕ) → ([G]ϕ → [G][G]ϕ)

Proof. All instances of the following schemas are theorems of KAg .

(i) [alt]ϕ → [G][G]ϕ
(ii) EGEGϕ → [G][G]ϕ

(i) is from [alt]ϕ → [alt][alt]ϕ, [alt][alt]ϕ → [alt][G]ϕ, and [alt][G]ϕ → [G][G]ϕ.
(ii) can be derived as follows:

EGEGϕ → [G]EGϕ

→ [G]([G]ϕ ∧ ¬[alt]ϕ)
→ [G][G]ϕ ([G] normal)

Derivation of (4b) comes from (i) and (ii) above:

(EGϕ → EGEGϕ) → ([G]ϕ → EGϕ ∨ [alt]ϕ)
→ EGEGϕ ∨ [alt]ϕ)
→ [G][G]ϕ)

Proposition All instances of the following schema are theorems of KAg .

(5) (¬[G]ϕ → [G]¬[G]ϕ) ↔ (¬EGϕ → [G]¬EGϕ)

Proof. All instances of the following schema are theorems of KAg .

(i) 〈G〉¬[alt]ϕ → ¬[alt]ϕ

(i) follows from [alt]ϕ → [alt][alt]ϕ and [alt][alt]ϕ → [G][alt]ϕ.
The following schema is equivalent to the left-to-right half of (5):

(〈G〉[G]ϕ → [G]ϕ) → (〈G〉EGϕ → EGϕ)

It can be derived as follows:

(〈G〉[G]ϕ → [G]ϕ) → (〈G〉EGϕ → 〈G〉([G]ϕ ∧ ¬[alt]ϕ))
→ 〈G〉[G]ϕ ∧ 〈G〉¬[alt]ϕ) ([G] normal)
→ [G]ϕ ∧ ¬[alt]ϕ) (by (i))
→ EGϕ)

For the other half of (5): all instances of the following schema are theorems
of KAg .

(ii) ¬[alt]ϕ → [G]¬[alt]ϕ

(ii) follows from ¬[alt]ϕ → [alt]¬[alt]ϕ and [alt]¬[alt]ϕ → [G]¬[alt]ϕ.
The right-to-left half of (5) can be derived as follows:

(¬EGϕ → [G]¬EGϕ) → (¬[G]ϕ → ¬EGϕ ∧ ¬[alt]ϕ)
→ [G]¬EGϕ ∧ [G]¬[alt]ϕ) (by (ii))
→ [G](¬EGϕ ∧ ¬[alt]ϕ)) ([G] normal)
→ [G]¬EGϕ)

63

