
Algebraic Models and Complete Proof Calculi

for Classical BI

James Brotherston and Cristiano Calcagno⋆

Dept. of Computing, Imperial College London

Abstract. We consider the classical (propositional) version, CBI, of
O’Hearn and Pym’s logic of bunched implications (BI) from a model-
and proof-theoretic perspective. We make two main contributions in this
paper. Firstly, we present a class of algebraic models for CBI which per-
mit the full range of classical multiplicative connectives to be modelled.
Our models can be seen as generalisations of Abelian groups, and in-
clude several computationally interesting models as concrete instances.
Secondly, we give a display calculus proof system for CBI that is an
instance of Belnap’s general display logic — hence cut-eliminating —
and demonstrate this system to be sound and complete with respect to
validity in our models. To achieve the latter, we first define a simple
extension of the usual sequent calculus for BI by axioms that directly
capture properties of our models, and show this extension to be sound
and complete (though not cut-eliminating). Soundness and completeness
of our display calculus then follows by establishing faithful translations
between the display calculus and this sequent calculus.

1 Introduction

The logic of bunched implications (BI), due to O’Hearn and Pym [10], is a sub-
structural logic suitable for reasoning about various domains that incorporate a
notion of resource [9]. Its best-known application to computer science is in sepa-
ration logic, a Hoare logic for reasoning about imperative, pointer-manipulating
programs, which essentially is obtained by considering a particular model of
BI based on heaps [13]. Semantically, BI arises by considering cartesian dou-
bly closed categories (in contrast to linear logic which usually is based upon
two closed categories). This viewpoint gives rise to the following propositional
connectives for BI:

Additive: ⊤ ⊥ ∧ ∨ →
Multiplicative: ⊤∗ ∗ —∗

From the aforementioned categorical perspective, this presentation of BI is
necessarily intuitionistic. By instead using the algebraic semantics of BI, in which
the multiplicatives are modelled by partial commutative monoids, the additive
connectives can be interpreted either classically or intuitionistically according to

⋆ Research supported by EPSRC grant EP/E002536/1.

preference. When the additives are interpreted classically (e.g. using a boolean
algebra) the resulting logic is often called boolean BI. In this paper, we consider
the extension of boolean BI to classical BI, in which both the additives and
the multiplicatives are treated classically. Specifically, classical BI includes the
multiplicative analogues of additive falsity, negation and disjunction, which are
“missing” in BI. We give an algebraic semantics for classical BI, and present a
proof system, based on Belnap’s display logic [1], that is sound and complete
with respect to this semantics and that satisfies cut-elimination.

In BI, the presence of the two implications (→ and —∗) gives rise to two
context-forming operations, ‘;’ and ‘,’, which correspond to the conjunctions ∧
and ∗ at the meta-level, as exemplified by the sequent calculus right-introduction
rules for the implications:

Γ ; F1 ⊢ F2
(→R)

Γ ⊢ F1 → F2

Γ, F1 ⊢ F2
(—∗R)

Γ ⊢ F1 —∗ F2

Accordingly, the contexts Γ on the left-hand side of the sequents in the rules
above are not sets or lists, as in standard sequent systems, but rather bunches :
trees whose leaves are formulas and whose internal nodes are either ‘;’ or ‘,’, de-
noting additive and multiplicative combination respectively. The crucial differ-
ence between the two operations is that weakening and contraction are possible
for ‘;’ but not for ‘,’. Since BI is an intuitionistic logic, bunches arise only on
the left-hand side of sequents, with a single formula on the right. For classical
BI, the natural approach from a proof-theoretic perspective is to consider a full
two-sided sequent calculus in which ‘;’ and ‘,’ in bunches on the right of sequents
correspond to the two disjunctions at the meta-level. Unfortunately, there is no
known formulation of such a sequent calculus that admits cut-elimination (see [4,
11] for some discussion of the difficulties).

In Section 2 we present a class of algebraic models for classical BI which
provide the necessary structure to model the full range of multiplicative con-
nectives. Our models are obtained by imposing extra conditions on the usual
partial commutative monoid models of (Boolean) BI, the main such condition
being the presence of a natural involution operation. In fact, our models include
all Abelian groups as special instances. We consider a range of natural examples
from mathematics and computer science.

In Section 3 we extend the usual sequent calculus for boolean BI with ax-
ioms that capture the behaviour of the involution in our models. Using standard
techniques, we show that this extended proof system, LBI+, is sound and com-
plete with respect to validity in our models. However, this proof system does not
contain primitive introduction rules for every connective of classical BI, nor does
it obey cut elimination. In Section 4 we present the syntax of full classical BI
and the interpretations of its multiplicative connectives in our algebraic models.
The interpretations of multiplicative falsity, negation and disjunction are similar
to those employed by relevant logicians (see e.g. [12, 6]) and are justified by the
resulting semantic equivalences between formulas. For example, under our inter-
pretation F —∗ G is semantically equivalent to ∼F ⊗G, where ∼ is multiplicative

negation and ⊗ is multiplicative disjunction. We then give a proof system for
classical BI, which is not a sequent calculus but rather a display calculus based
on Belnap’s display logic [1]. Display logic is a generalised Gentzen-style system
that can be instantiated to a wide class of logics simply by choosing families
of connectives and the structural rules governing those families. The power of
display logic comes from its generic structural principles, which are sufficient to
guarantee certain desirable proof-theoretic properties, more or less independently
of the particular choice of connective families and structural rules employed. In
particular, our display calculus for classical BI obeys cut-elimination.

In Section 5 we present the proof of our main technical result: the soundness
and completeness of our display calculus, DLBI, with respect to validity in our
algebraic models. This is achieved by proving admissibility of DLBI in our sequent
calculus LBI+ under a suitable embedding, and vice versa. Finally, in Section 6,
we conclude and identify the main directions for future work.

2 A class of algebraic models for classical BI

In this section we present our algebraic models for classical BI, which are based
on the partial commutative monoids used to model (the multiplicative part of)
ordinary BI [10]. Our models generalise these monoids in the sense that we con-
sider the monoid operation to be a relation over the carrier set rather than a
function, as is needed for our completeness argument in Section 3. If we disregard
relationality, our models are special cases of these monoids, containing structure
that is not required to be present in BI-models: an involution operation on ele-
ments and a distinguished element1 ∞ that characterises the result of combining
an element with its involution. In particular, our models include as instances all
Abelian groups, which can be seen by taking ◦ to be a total function and ∞ to
be the identity element of the monoid.

In the following, note that we write Pow(X) for the powerset of a set X .

Definition 2.1 (Classical BI-model). A classical BI-model is given by a tuple
〈R, ◦, e,−,∞〉, where ◦ : R×R → Pow(R), e ∈ R,− : R → Pow(R), and ∞ ⊆ R
such that:

1. ◦ is commutative and associative, with x ◦ e = {x}
2. −x = {y ∈ R | ∃z. z ∈ x ◦ y ∩∞}
3. −−x = {x}

We extend the domains of−and ◦ to Pow(R) and Pow(R)×Pow(R) respectively
by−X =def

⋃
x∈X−x and X ◦ Y =def

⋃
x∈X,y∈Y x ◦ y.

Lemma 2.2. Let 〈R, ◦, e,−,∞〉 be a tuple with the same types as in Defini-
tion 2.1, and extend − and ◦ to Pow(R) and Pow(R) × Pow(R) respectively as
in that definition. Then 〈R, ◦, e,−,∞〉 is a classical BI-model iff the following
hold for all X, Y, Z ∈ Pow(R):

1 In fact, we shall technically allow ∞ to be a set of elements. However, the conditions
defining our models force ∞ to be a singleton set. See Convention 2.4.

1. X ◦ Y = Y ◦ X and X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z and {e} ◦ X = X
2. −X = X −•∞
3. −−X = X

where X −• Y =def {z ∈ R | ∃x ∈ X, y ∈ Y. y ∈ x ◦ z}.

Proof. (⇒) The required properties follow straightforwardly from the corre-
sponding conditions on classical BI-models and the extension of− and ◦ to sets
of elements.
(⇐) The conditions required for 〈R, ◦, e,−,∞〉 to be a classical BI-model follow
from taking X, Y, Z to be singleton sets in the given conditions and noting that
−{x} =−x and {x} ◦ {y} = x ◦ y for any x, y ∈ R. ⊓⊔

Proposition 2.3. If 〈R, ◦, e,−,∞〉 is a classical BI-monoid then:

1. ∀x ∈ R. −x is a singleton set;
2. −e = ∞;
3. ∀x ∈ R. x ◦−x ⊇ ∞;
4. ∀X ⊆ R. R \ (−X) =−(R \ X);

Proof. 1. By contradiction. If−x = ∅ then−−x =
⋃

y∈−x−y = ∅, which contra-
dicts−−x = {x}. If x1, x2 ∈−x with x1 6= x2, then−x1 ∪−x2 ⊆−−x. Also,
−x1 6=−x2, otherwise we would have {x1} =−−x1 =−−x2 = {x2} and thus
x1 = x2. Since−x1 and−x2 have cardinality > 0 (see above),−−x must have
cardinality > 1, which contradicts−−x = {x}.

2. We have:
−e = {y ∈ R | ∃z. z ∈ e ◦ y ∩∞}

= {y ∈ R | ∃z. z ∈ {y} ∩∞}
= {y ∈ R | y ∈ ∞}
= ∞

3. Using part 1, let x′ ∈ R be the unique element such that −x = {x′}. Then
{x′} = {y ∈ R | ∃z. z ∈ x ◦ y ∩ ∞}, so there exists z ∈ R such that
z ∈ x ◦ x′ ∩∞ = x ◦−x∩∞. By parts 1 and 2, ∞ =−e is a singleton set, so
we must have x ◦ −x ⊇ ∞ as required.

4. (⊆) Suppose x ∈ R \−X , i.e. x 6∈−X =
⋃

y∈X−y, so x 6∈−y for any y ∈ X .
Also, using part 1, we have x ∈−−x =−{z} =−z for some z. It must be the
case that z 6∈ X , so x ∈

⋃
z 6∈X−z =

⋃
z∈R\X−z =−(R \ X) as required.

(⊇) Suppose x ∈−(R \ X), i.e. x ∈−y for some y 6∈ X . Note that we cannot
have x ∈ −z for some z ∈ X , otherwise by part 1 we have −y = −z = {x}
and thus {y} =−−y =−−z = {z}, so y = z, which is a contradiction. Thus
x 6∈

⋃
z∈X−z =−X , i.e. x ∈ R \−X as required.

⊓⊔

The first two parts of Proposition 2.3 justify the following convention.

Convention 2.4. Given a classical BI-model 〈R, ◦, e,−,∞〉, for any x ∈ R the
notation −x is henceforth to be understood as the unique element z ∈ R such
that−x = {z}. Similarly, ∞ is to be understood as the unique z ∈ R such that
∞ = {z}.

Proposition 2.5. Let 〈R, ◦, e,−,∞〉 be a classical BI-model. If ∞ = e and the
cardinality of x ◦ y is ≤ 1 for all x, y ∈ R then, if ◦ is understood as a partial
function R × R ⇀ R in the obvious way, 〈R, ◦, e,−〉 is an Abelian group.

Proof. First note that by part 3 of Proposition 2.3 and the fact that ◦ is a
partial function, we have−x ◦ x = ∞ = e. Now, to see that x ◦ y is defined for
any x, y ∈ R, observe that−x◦ (x◦y) = (−x◦x)◦y = e◦y = y. Thus−x◦′ (x◦′ y)
is defined (and equal to y), which can only be the case if x ◦′ y is defined.

To see that 〈R, ◦, e,−〉 is an Abelian group, we first observe that 〈R, ◦, e〉
is already a partial commutative monoid by the conditions placed on ◦ in the
definition of classical BI-model. Furthermore, ◦ is a total function by the above,
and−x is the unique inverse of x for any x ∈ R, since−x ◦ x = e and y ◦ x = e
implies−x = (y ◦ x) ◦−x = y ◦ (x ◦−x) = y. ⊓⊔

2.1 Examples of classical BI-models

We now turn to some concrete examples of classical BI-models. Note that, in
all of our examples, the monoid operation ◦ is a partial function rather than a
relation (so that x ◦ y is either undefined or a model element).

Example 2.6 (Bit arithmetic). For any n ∈ N, the tuple:

〈{0, 1}n, XOR, {0}n, NOT, {1}n〉

is a classical BI-model. In this model, the resources are n-bit binary numbers,
which can be combined and “inverted” using the usual logical operations XOR
and NOT respectively. Accordingly, the resources e and ∞ are respectively the
n-bit representations of 0 and 2n − 1.

The following example shows that, even when the monoid structure of a
classical BI-model is fixed, the choice of ∞ is not unique in general.

Example 2.7 (Integer modulo arithmetic). Consider the monoid 〈Zn, +n, 0〉, where
Zn is the set of integers modulo n, and +n is addition modulo n. We can form
a classical BI-model from this monoid by choosing, for any m ∈ Zn, ∞ =def m
and −k =def m −n k (where −n is subtraction modulo n).

Example 2.8 (Syntactic models). Given an arbitrary monoid 〈R, ◦, e〉, we give a
syntactic construction to generate a classical BI-model 〈R′, ◦′, e′,−′,∞′〉. Con-
sider the set T of terms given by the grammar:

t ∈ T ::= r ∈ R | ∞ | t · t | −t

and let ≈ be the least congruence such that: r1 · r2 ≈ r when r1 ◦ r2 = r;
t1 · t2 ≈ t2 · t1; t1 · (t2 · t3) ≈ (t1 · t2) · t3; − − t ≈ t; t · (−t) ≈ ∞, and t1 ≈ −t2
whenever t1 ◦ t2 ≈ ∞. Write T/≈ for the quotient of T by the relation ≈, and
[t] for the equivalence class of t. The required classical BI-model is obtained by
defining R′ =def T/≈, ◦′([t1], [t2]) =def [t1 ◦ t2], e′ =def [e], −′(t) =def [−t], and
∞′ =def [∞].

Example 2.9 (Generalised heaps). A natural question is whether BI models used
in separation logic are also classical BI-models. Consider the partial commutative
monoid 〈H, ◦, e〉, where H =def Z>0 ⇀ Z is the set of partial functions from
positive integers to integers, ◦ is disjoint union of the graph of functions, and
e is the function with empty domain. Unfortunately, no choice of ∞ gives rise
to a classical BI-monoid. However, it is possible to embed the heap monoid into
a more general structure 〈H ′, ◦′, e′〉, where H ′ =def Pow(Z>0 × Z) is the set
of relations instead of partial functions, ◦ is disjoint union, and e is the empty
relation. A classical BI-model is then obtained by setting ∞ =def Z>0 × Z, and
−r =def (Z>0 × Z) \ r.

Example 2.10 (Heaps with fractional permissions). As a final example, we con-
sider a heap monoid with fractional permissions [3] 〈Hp, ◦p, ep〉, where Hp =def

Z>0 ⇀ Z × (0, 1] consists of functions which in addition return a permission in
the real interval (0, 1], and ◦ is defined on functions with overlapping domains
using a partial composition function ⊕ : (Z × (0, 1])× (Z × (0, 1]) ⇀ (Z × (0, 1])
such that ⊕((v1, p1), (v2, p2)) is defined if and only if v1 = v2 and p1 + p2 ≤ 1,
and returns (v1, p1+p2). The unit ep is again the function with empty domain. In
analogy with our approach to ordinary heaps in the previous example, we define
a more general structure 〈H ′

p, ◦
′
p, e

′
p〉, where H ′

p =def Z>0 × Z → [0, 1] is the set
of total functions, and ◦′p is defined point-wise using + : [0, 1] × [0, 1] ⇀ [0, 1],
which is ordinary addition restricted to be defined only when the result is ≤ 1.
The function e′p maps everything to 0. A classical BI-model is then obtained by
setting ∞ as mapping everything to 1, and−r =def {(l, v, 1 − p) | (l, v, p) ∈ r}.
Observe that, in this case, the general model is in a way simpler, and that the−
operation returns the complement of the permissions.

3 BI+: a basis for classical BI

In this section we define a simple extension BI+ of standard propositional BI
(cf. [10, 11]), and show a sequent calculus system for BI+ to be sound and com-
plete with respect to our classical BI-models defined in Section 2.

We fix a set V of propositional variables. Formulas of BI+ are given by the
following grammar:

F ::= P | ⊤ | ⊥ | F ∧ F | F ∨ F | F → F | ⊤∗ | ⊲⊳ | F ∗ F | F —∗ F

where P ranges over V . These are exactly2 the formulas of BI plus the new
atomic formula ⊲⊳ . We also use the following abbreviations:

¬F =def F → ⊥
−F =def ¬(F —∗ ¬ ⊲⊳)

Now let M = 〈R, ◦, e,−,∞〉 be a classical BI-model. An environment for M
is a function ρ : V → Pow(R) interpreting propositional variables as true or false

2 However, note that we write ⊤∗ for the multiplicative unitary formula I of BI.

relative to elements of the model. Satisfaction of a BI+-formula F in the model
M under the environment ρ is then also defined relative to model elements, and
is given by the relation r |= F , where r ∈ R, with the key clauses being those
for the propositional variables and multiplicative connectives:

r |= P ⇔ r ∈ ρ(P)
r |= ⊤∗ ⇔ r = e
r |= ⊲⊳ ⇔ r = ∞

r |= F1 ∗ F2 ⇔ ∃r1, r2. r ∈ r1 ◦ r2 and M, r1 |= F1 and M, r2 |= F2

r |= F1 —∗ F2 ⇔ ∀r′, r′′. r′′ ∈ r ◦ r′ and M, r′ |= F1 implies M, r′′ |= F2

The clauses for the additive connectives are defined in the standard way,
i.e., independently of the model element r. Note that additive implication → is
interpreted classically, which entails that r |= ¬F iff r 6|= F .

Lemma 3.1. Let M = 〈R, ◦, e,−,∞〉 be a classical BI-model and let ρ be an
environment for M . For any r ∈ R and formula F we have r |= −F iff −r |= F .

Proof. We have by the definitions of −F and of satisfaction:

r |= −F ⇔ r |= ¬(F —∗ ¬ ⊲⊳)
⇔ r 6|= F —∗ ¬ ⊲⊳
⇔ ∃r′, r′′. r′′ ∈ r ◦ r′ and r′ |= F but r′′ 6|= ¬ ⊲⊳
⇔ ∃r′, r′′. r′′ ∈ r ◦ r′ and r′ |= F and r′′ = ∞
⇔ ∃r′. ∞ ∈ r ◦ r′ and r′ |= F
⇔ −r |= F

Note that the final equivalence above is justified by the fact that−r is the unique
element of R satisfying ∞ ∈ r ◦−r, which follows from Proposition 2.3.

As is standard in ordinary BI, we write sequents of the form Γ ⊢ F , where
F is a BI+-formula and Γ is a bunch, given by the following grammar:

Γ ::= F | Γ ; Γ | Γ, Γ

where F ranges over BI+-formulas. Thus bunches are trees whose leaves are
formulas and whose internal nodes are either ‘;’ or ‘,’. We write Γ (∆) for a
bunch of which ∆ is a distinguished sub-bunch (i.e. subtree), and in such cases
write Γ (∆′) for the bunch obtained by replacing ∆ by the bunch ∆′ in Γ (∆). In
analogy to the use of sets in ordinary sequent calculus, and as is again standard
for BI, we consider bunches up to coherent equivalence:

Definition 3.2 (Coherent equivalence). ≡ is the least relation on bunches
satisfying commutative monoid equations for ‘;’ and ⊤, and for ‘,’ and ⊤∗, plus
the rule of congruence: if ∆ ≡ ∆′ then Γ (∆) ≡ Γ (∆′).

Definition 3.3 (Validity). For any bunch Γ we define a formula ΦΓ by recur-
sion on the structure of Γ as follows:

ΦF = F
ΦΓ1;Γ2

= ΦΓ1
∧ ΦΓ2

ΦΓ1,Γ2
= ΦΓ1

∗ ΦΓ2

A sequent Γ ⊢ F is said to be true in a classical BI-model 〈R, ◦, e,−,∞〉 if
for any environment ρ and for all r ∈ R, r |= ΦΓ implies r |= F . Γ ⊢ F is said
to be valid if it is true in all classical BI-models.

We give the rules of a sequent calculus proof system LBI+ for BI+ in Figure 1.
Its rules extend the rules of the usual sequent calculus for BI (cf. [11, 7]) with
the double negation axiom needed for boolean BI, and two further axioms that
directly reflect the fact that− behaves as an involution in our models.

Structural rules:

(Id)
F ⊢ F

Γ (∆) ⊢ F
(Weak)

Γ (∆; ∆′) ⊢ F

Γ (∆;∆) ⊢ F
(Contr)

Γ (∆) ⊢ F

Γ ′ ⊢ F
Γ ≡ Γ ′ (Equiv)

Γ ⊢ F

∆ ⊢ G Γ (G) ⊢ F
(Cut)

Γ (∆) ⊢ F

Propositional rules:

(⊥L)
Γ (⊥) ⊢ F

Γ (F1) ⊢ F Γ (F2) ⊢ F
(∨L)

Γ (F1 ∨ F2) ⊢ F

Γ (F1; F2) ⊢ F
(∧L)

Γ (F1 ∧ F2) ⊢ F

(⊤R)
Γ ⊢ ⊤

Γ ⊢ Fi

i ∈ {1, 2} (∨Ri)
Γ ⊢ F1 ∨ F2

Γ ⊢ F1 Γ ⊢ F2

(∧R)
Γ ⊢ F1 ∧ F2

∆ ⊢ F1 Γ (F2) ⊢ F
(—∗L)

Γ (∆, F1 —∗ F2) ⊢ F

∆ ⊢ F1 Γ (∆;F2) ⊢ F
(→L)

Γ (∆; F1 → F2) ⊢ F

Γ (F1, F2) ⊢ F
(∗L)

Γ (F1 ∗ F2) ⊢ F

Γ, F1 ⊢ F2

(—∗R)
Γ ⊢ F1 —∗ F2

Γ ; F1 ⊢ F2

(→R)
Γ ⊢ F1 → F2

Γ ⊢ F1 ∆ ⊢ F2

(∗R)
Γ, ∆ ⊢ F1 ∗ F2

BI+ axioms:

(DNE)
¬¬F ⊢ F

(DIE)
−−F ⊢ F

(DII)
F ⊢−−F

Fig. 1. The proof rules of LBI+.

Proposition 3.4. LBI+ is sound with respect to validity in classical BI-models.

Proof. As usual, soundness follows from the fact that the proof rules of BI+ pre-
serve truth in classical BI-models. First, note that the rules of BI preserve truth
in BI-models and thus in classical BI-models in particular. Thus it only remains
to show that the BI+ axioms are true in any classical BI-model. Soundness of
the axiom (DNE) follows from the fact that additive implication is interpreted

classically in BI+, so that r |= ¬F iff r 6|= F . For the axioms (DIE) and (DII),
note that r |=−−F iff−−r |= F by Lemma 3.1. Soundness of these axioms then
follows from the fact that−−r = r in classical BI-models. ⊓⊔

3.1 Completeness of LBI+

We now show completeness of LBI+ with respect to classical BI-models by ap-
pealing to a general theorem of modal logic due to Sahlqvist. The result is an
adaptation of the analogous completeness result for BI in [5].

We first define MBI+ pre-models, which interpret the LBI+ connectives as
modalities.

Definition 3.5. An MBI+ pre-model is a tuple 〈R, ◦,−•, e,−,∞〉, where ◦ :
R ×R → Pow(R), −• : R ×R → Pow(R), e ∈ R,− : R → Pow(R), and ∞ ⊆ R.

The satisfaction relation for BI+-formulas in MBI+ pre-models is defined
exactly as the satisfaction relation given above for BI+-formulas in classical BI-
models, except that the clause for formulas of the form F —∗ G is replaced by
the following one:

r |= F1 —∗ F2 ⇔ ∀r′, r′′. r ∈ r′ −• r′′ and M, r′ |= F1 implies M, r′′ 6|= F2

Then, given any set AX of axioms, we define AX-models to be the MBI+ pre-
models in which every axiom in AX holds.

Definition 3.6 (Modal Logic Formulas). Modal logic formulas F are defined
by the grammar:

F ::= ⊥ | P | F ∧ F | ¬F | △(F1, . . . , Fn)

where P ranges over V and △ ranges over the modalities {e,−, ◦,−•,∞}. We
identify BI+-formulas and modal logic formulas, by implicitly applying the usual
translation for additives, plus the abbreviations ⊲⊳ = ∞, ⊤∗ = e and F1 —∗ F2 =
¬(F1 −• ¬F2).

Definition 3.7 (Very Simple Sahlqvist Formulas). A very simple Sahlqvist
antecedent A is a formula given by the grammar:

A ::= ⊤ | ⊥ | P | A ∧ A | △(A1, . . . , An)

where P ranges over V and △ ranges over the modalities {e,−, ◦,−•}. A very
simple Sahlqvist formula is a formula of the form A ⇒ F+, where A is a very
simple Sahlqvist antecedent and F+ is a modal logic formula which is positive
in that no propositional variable P in F+ may occur inside the scope of an odd
number of occurrences of ¬.

Theorem 3.8 (Sahlqvist [2]). For every axiom set AX consisting of very sim-
ple Sahlqvist formulas, the modal logic proof theory generated by AX is complete
with respect to the class of AX-models.

Definition 3.9 (BI+-Axioms). The axiom set AXBI+ consists of the following
formulas:

1. e ◦ P ⇒ P
2. P ⇒ e ◦ P
3. P ◦ Q ⇒ Q ◦ P
4. (P ◦ Q) ◦ R ⇒ P ◦ (Q ◦ R)
5. P ◦ (Q ◦ R) ⇒ (P ◦ Q) ◦ R
6. Q ∧ (R ◦ P) ⇒ (R ∧ (P −• Q)) ◦ ⊤
7. R ∧ (P −• Q) ⇒ ⊤−• (Q ∧ (R ◦ P))
8. −− P ⇒ P
9. P ⇒ −− P

10. −P ⇒ P −•∞
11. P −•∞ ⇒ −P

We write LAXBI+ for the modal logic proof theory generated by the AXBI+

axioms.

Corollary 3.10. LAXBI+ is complete with respect to the class of AXBI+ mod-
els.

The following two propositions extend analogous results in [5]. Note that ΘΓ

denotes the BI+-formula constructed from a bunch Γ by Definition 3.3.

Proposition 3.11. Γ ⊢ F is derivable in LBI+ iff ΘΓ → F is derivable in
LAXBI+ .

Proposition 3.12. Γ ⊢ F is valid with respect to classical BI-models iff ΘΓ →
F is valid with respect to AXBI+-models.

The specific properties of−and ∞ given by the AXBI+ axioms are consequences
of Lemma 2.2.

Theorem 3.13. LBI+ is complete with respect to validity in classical BI-models.

Proof. If Γ ⊢ F is valid with respect to classical BI-models then, by Proposi-
tion 3.12 ΘΓ → F is valid with respect to AXBI+-models and thus provable in
LAXBI+ by Corollary 3.10. By Proposition 3.11, Γ ⊢ F is then provable in LBI+

as required. ⊓⊔

4 Classical BI and display logic

In this section we define CBI, the fully classical version of (propositional) BI
featuring additive and multiplicative versions of all the usual propositional con-
nectives (cf. [11]), and show how it can be interpreted in our classical BI-models.
Then, we define a display calculus proof system for CBI, based on Belnap’s dis-
play logic [1], which is a generalised Gentzen-style system in which many sub-
structural logics can be encoded. Our display calculus satisfies cut-elimination by

Belnap’s generalised cut-elimination theorem, and is sound and complete with
respect to our classical BI-models.

Formulas of CBI are given by the following grammar:

F ::= P | ⊤ | ⊥ | ¬F | F ∧ F | F ∨ F | F → F |
⊤∗ | ⊥∗ | ∼F | F ∗ F | F ⊗ F | F —∗ F

where P ranges over V . We remark that CBI-formulas extend BI-formulas but
not BI+-formulas, since ⊲⊳ is not a CBI-formula. Given a classical BI-model M =
〈R, ◦, e,−,∞〉 and an environment ρ for M , satisfaction of a CBI-formula in M
under ρ then extends the definition of satisfaction of a BI+ formula (cf. Section 3)
as follows:

r |= ¬F ⇔ r 6|= F
r |= ⊥∗ ⇔ r 6= ∞
r |=∼F ⇔ −r 6|= F

r |= F1 ⊗ F2 ⇔ ∀r1, r2, r. −r ∈ r1 ◦ r2 implies−r1 |= F1 or−r2 |= F2

Perhaps surprisingly, multiplicative falsity ⊥∗ and negation ∼F are not inter-
preted in the same way as the BI+-formulas ⊲⊳ and−F respectively, but rather
as ¬ ⊲⊳ and ¬−F . The reason for the presence of the additive negation “inside”
these multiplicative connectives is to ensure that the expected semantic equiva-
lences hold between formulas. For example, ∼F and F —∗ ⊥∗ are semantically
equivalent, whereas the BI+-formulas −F and F —∗ ⊲⊳ are not. As expected,
multiplicative disjunction is interpreted as the de Morgan dual of ∗ with respect
to multiplicative negation.

4.1 DLBI: a display calculus for CBI

We now turn to DLBI, our display calculus proof system for CBI. DLBI can be
seen as a particular instantiation of Belnap’s generalised display logic to CBI.

Rather than using sequents built from bunches and formulas as in LBI+,
the proof judgements of our display calculus, called consecutions, are built from
structures which generalise bunches.

Definition 4.1 (Structure / Consecution). A DLBI-structure X is an object
constructed according to the following grammar:

X ::= F | ∅ | ♯X | X ; X | ∅ | ♭X | X, X

where F ranges over CBI-formulas.
If X and Y are structures then X ⊢ Y is said to be a consecution.

We remark that if an LBI+ sequent contains no occurrences of the formula
⊲⊳ then it is a special case of a DLBI consecution.

We can divide the structural and logical connectives of DLBI into an addi-
tive family and a multiplicative family, as illustrated in Figure 2. In Belnap’s
display logic, an arbitrary number of families of connectives may be involved; the

Structural connectives Formula connectives

Additive family: ∅ ♯ ; ⊤ ⊥ ¬ ∧ ∨ →
Multiplicative family: ∅ ♭ , ⊤∗ ⊥∗ ∼ ∗ ⊗ —∗
Arity: 0 1 2 0 0 1 2 2 2

Fig. 2. The connective families of DLBI.

structural connectives are prescribed for each family while the logical connectives
may be chosen from a given set. Then, for each family, certain bidirectional rules
called display postulates, involving only the structural connectives of the family,
are prescribed by display logic. The logical introduction rules for formulas are
similarly prescribed, leaving only the structural rules governing the family to be
freely chosen.

We give the display postulates for DLBI in Figure 3. These are the instantia-
tions to our connective families of Belnap’s original postulates [1], though other
formulations are possible (see e.g. [8]). Note that we write a rule with a double
line to indicate that it is invertible, i.e., that it may be also be applied if the
premise is swapped with the conclusion. A figure with three consecutions sepa-
rated by two double lines is used to abbreviate two invertible rules in the obvious
way. Two consecutions are said to be display-equivalent if there is a derivation
of one from the other using only the display postulates.

Additive family:
X; Y ⊢ Z
======== (AD1)
X ⊢ ♯Y ; Z

X ⊢ Y ; Z
======== (AD2a)
X; ♯Y ⊢ Z
======== (AD2b)
X ⊢ Z; Y

X ⊢ Y
====== (AD3a)
♯Y ⊢ ♯X
====== (AD3b)
♯♯X ⊢ Y

Multiplicative family:
X, Y ⊢ Z
======== (MD1)
X ⊢ ♭Y, Z

X ⊢ Y, Z
======== (MD2a)
X, ♭Y ⊢ Z
======== (MD2b)
X ⊢ Z, Y

X ⊢ Y
====== (MD3a)
♭Y ⊢ ♭X
====== (MD3b)
♭♭X ⊢ Y

Fig. 3. The display postulates for DLBI.

The following definition is used to set up the fundamental display property
of display logic.

Definition 4.2 (Antecedent part / consequent part). A structure W is
said to be a part of another structure Z if W is a substructure of Z (in the
obvious sense). W is said to be a positive part of Z if W occurs inside an even
number of occurrences of ♯ and ♭ in Z, and a negative part of Z otherwise.

Now let S = X ⊢ Y be a consecution. W is said to be an antecedent part of S
if it is a positive part of X or a negative part of Y . W is said to be a consequent
part of S if it is a negative part of X or a positive part of Y .

Theorem 4.3 (Display theorem (Belnap [1])). Let S be a consecution.
Then for any antecedent part W of S there exists a consecution S′ that is display-
equivalent to S and such that S′ = W ⊢ Z for some Z. Similarly, for any con-
sequent part W of S there exists a consecution S′ that is display-equivalent to S
and such that S′ = Z ⊢ W for some Z.

We note that the display theorem holds even when connectives from different
families occur in the same consecution.

Example 4.4. Consider the consecution ♭(X, ♯Y) ⊢ Z; ♭W . Then Y , which is an
antecedent part of this consecution, can be displayed as follows:

♭(X, ♯Y) ⊢ Z; ♭W
(MD3a)

♭(Z; ♭W) ⊢ ♭♭(X, ♯Y)
(MD3a,b)

♭♭♭(Z; ♭W) ⊢ ♭♭(X, ♯Y)
(MD3a)

♭(X, ♯Y) ⊢ ♭♭(Z; ♭W)
(MD3a)

♭(Z; ♭W) ⊢ X, ♯Y
(MD2b)

♭(Z; ♭W), ♭X ⊢ ♯Y
(AD3a)

♯♯Y ⊢ ♯(♭(Z; ♭W), ♭X)
(AD3a,b)

Y ⊢ ♯(♭(Z; ♭W), ♭X)

The logical rules for DLBI, given in Figure 4, follow the familiar division
between left and right introduction rules (plus the standard rule for identity, and
a cut rule). Again, these are the instantiations of the standard display logic rules
to the connective families we consider for classical BI. The structural rules of
DLBI are given in Figure 5. These implement the coherent equivalence equations
for bunches (cf. Definition 3.2) on both sides of consecutions, plus weakening
and contraction on both sides for ‘;’.

Proposition 4.5. F ⊢ F is DLBI-provable for all CBI-formulas F .

Proof. By structural induction on F . ⊓⊔

Theorem 4.6 (Cut-elimination (Belnap [1])). If a consecution X ⊢ Y is
provable in DLBI then it is also provable without the use of the rule (Cut).

Proof. By inspection, our proof rules satisfy the 8 conditions shown by Belnap
in [1] to be sufficient for cut-elimination to hold. See appendix A.1 for details.

⊓⊔

Identity rules:

(Id)
P ⊢ P

X ⊢ F F ⊢ Y
(Cut)

X ⊢ Y

Additive family:

∅ ⊢ X
(⊤L)

⊤ ⊢ X
(⊥L)

⊥ ⊢ ∅

♯F ⊢ X
(¬L)

¬F ⊢ X

(⊤R)
∅ ⊢ ⊤

X ⊢ ∅
(⊥R)

X ⊢ ⊥

X ⊢ ♯F
(¬R)

X ⊢ ¬F

F ; G ⊢ X
(∧L)

F ∧ G ⊢ X

F ⊢ X G ⊢ Y
(∨L)

F ∨ G ⊢ X; Y

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X; Y

X ⊢ F Y ⊢ G
(∧R)

X; Y ⊢ F ∧ G

X ⊢ F ; G
(∨R)

X ⊢ F ∨ G

X; F ⊢ G
(→R)

X ⊢ F → G

Multiplicative family:

∅ ⊢ X
(⊤∗L)

⊤∗ ⊢ X
(⊥∗L)

⊥∗ ⊢ ∅

♭F ⊢ X
(∼L)

∼F ⊢ X

(⊤∗R)
∅ ⊢ ⊤∗

X ⊢ ∅

(⊥∗R)
X ⊢ ⊥∗

X ⊢ ♭F
(∼R)

X ⊢∼F

F, G ⊢ X
(∗L)

F ∗ G ⊢ X

F ⊢ X G ⊢ Y
(⊗L)

F ⊗ G ⊢ X, Y

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ ♭X, Y

X ⊢ F Y ⊢ G
(∗R)

X, Y ⊢ F ∗ G

X ⊢ F, G
(⊗R)

X ⊢ F ⊗ G

X, F ⊢ G
(—∗R)

X ⊢ F —∗ G

Fig. 4. Logical rules for DLBI. Note that F, G range over CBI-formulas while P ranges
over propositional variables in V.

We remark that, although cut-free proofs in DLBI enjoy the subformula prop-
erty, cut-free proof search in the calculus is still highly non-deterministic due to
the presence of the display postulates and structural rules. In Figure 6 we give
a sample cut-free proof of the consecution ∼¬F ⊢ ¬∼F , which illustrates this
point.

Additive family:

W ; (X; Y) ⊢ Z
=========== (AAL)
(W ;X); Y ⊢ Z

X; Y ⊢ Z
(ACL)

Y ; X ⊢ Z

∅; X ⊢ Y
======= (AIL)
X ⊢ Y

W ⊢ (X; Y); Z
=========== (AAR)
W ⊢ X; (Y ; Z)

X ⊢ Y ; Z
(ACR)

X ⊢ Z; Y

X ⊢ Y ; ∅
======= (AIR)
X ⊢ Y

X ⊢ Z
(WkL)

X; Y ⊢ Z

X ⊢ Z
(WkR)

X ⊢ Y ; Z

X; X ⊢ Z
(CtrL)

X ⊢ Z

X ⊢ Z; Z
(CtrR)

X ⊢ Z

Multiplicative family:

W, (X, Y) ⊢ Z
=========== (MAL)
(W,X), Y ⊢ Z

X, Y ⊢ Z
(MCL)

Y, X ⊢ Z

∅, X ⊢ Y
======= (MIL)
X ⊢ Y

W ⊢ (X, Y), Z
=========== (MAR)
W ⊢ X, (Y, Z)

X ⊢ Y, Z
(MCR)

X ⊢ Z, Y

X ⊢ Y, ∅
======= (MIR)
X ⊢ Y

Fig. 5. Structural rules for DLBI.

Definition 4.7 (Validity in DLBI). For any structure X we define two formu-
las ΨX and ΥX by mutual recursion on the structure of X as follows:

ΨF = F ΥF = F
Ψ∅ = ⊤ Υ∅ = ⊥

Ψ♯X = ¬ΥX Υ♯X = ¬ΨX

ΨX1;X2
= ΨX1

∧ ΨX2
ΥX1;X2

= ΥX1
∨ ΥX2

Ψ∅ = ⊤∗ Υ∅ = ⊥∗

Ψ♭X = ∼ΥX Υ♭X = ∼ΨX

ΨX1,X2
= ΨX1

∗ ΨX2
ΥX1,X2

= ΥX1
⊗ ΥX2

A consecution X ⊢ Y is said to be true in a classical BI-model 〈R, ◦, e,−,∞〉
if for any environment ρ and for all r ∈ R, r |= ΨX implies r |= ΥX . X ⊢ Y is
said to be valid if it is true in all classical BI-models.

We remark that, when X ⊢ Y is an LBI+ sequent, the notion of validity
given in Definition 4.7 coincides with the usual notion of validity in BI+ (Defi-
nition 3.3).

We end this section by stating our main technical results concerning DLBI.

Theorem 4.8. DLBI is sound with respect to validity in classical BI-models.

Theorem 4.9. DLBI is complete with respect to validity in classical BI-models.

We give the proofs of Theorems 4.8 and 4.9 in Section 5.

(Id)
F ⊢ F

(D≡)
♯F ⊢ ♯F

(¬R)
♯F ⊢ ¬F

(D≡)
♭¬F ⊢ ♭♯F

(∼L)
∼¬F ⊢ ♭♯F

(WkL)
∼¬F ; ∼F ⊢ ♭♯F

(D≡)
♯F ⊢ ♭(∼¬F ; ∼F)

(D≡)
♯♭(∼¬F ; ∼F) ⊢ F

(D≡)
♭F ⊢ ♭♯♭(∼¬F ; ∼F)

...
(contd. right)

...
♭F ⊢ ♭♯♭(∼¬F ; ∼F)

(∼L)
∼F ⊢ ♭♯♭(∼¬F ; ∼F)

(WkL)
∼¬F ; ∼F ⊢ ♭♯♭(∼¬F ; ∼F)

(D≡)
♯♭(∼¬F ; ∼F) ⊢ ♭(∼¬F ; ∼F)

(WkL)
♭∅; ♯♭(∼¬F ; ∼F) ⊢ ♭(∼¬F ; ∼F)

(D≡)
♭∅ ⊢ ♭(∼¬F ; ∼F); ♭(∼¬F ; ∼F)

(CtrR)
♭∅ ⊢ ♭(∼¬F ; ∼F)

(D≡)
∼¬F ; ∼F ⊢ ∅

(D≡)
∼¬F ⊢ ♯∼F ; ∅

(AIR)
∼¬F ⊢ ♯∼F

(¬R)
∼¬F ⊢ ¬∼F

Fig. 6. A cut-free DLBI proof of ∼¬F ⊢ ¬∼F .

5 Proofs of soundness and completeness of DLBI

Definition 5.1 (Embedding of DLBI in LBI+). We define a function p−q

from DLBI-formulas to BI+-formulas by recursion on the structure of DLBI-
formulas, as follows:

pFq = F where F ∈ {P | P ∈ V} ∪ {⊤,⊥,⊤∗}
pF1 ?F2q = pF1q ? pF2q where ? ∈ {∧,∨,→, ∗, —∗}

p¬Fq = ¬pFq

p⊥∗
q = ¬ ⊲⊳

p∼Fq = ¬−pFq

pF1 ⊗ F2q = p∼(∼F1∗ ∼F2)q = ¬−(¬−pF1q ∗ ¬−pF2q)

We extend p−q to a function from DLBI consecutions to LBI+ sequents by:

pX ⊢ Y q = pΨXq ⊢ pΥY q

where Ψ− and Υ− are the functions given in Definition 4.7. We call the function
p−q the embedding from DLBI to LBI+.

Lemma 5.2. A DLBI consecution X ⊢ Y is valid iff pX ⊢ Y q is valid.

Proof. We first show by structural induction on CBI-formulas F that r |= F
iff r |= pFq. The lemma then follows straightforwardly. See Appendix A.2 for
details. ⊓⊔

We write F ⊣⊢ G to mean that both F ⊢ G and G ⊢ F are derivable (in
some proof system), and call F ⊣⊢ G a derivable equivalence of the system.

Lemma 5.3. The following are all derivable equivalences of LBI+:

1. ¬−¬−F ⊣⊢ F

2. ¬−(F ∗ ¬−G) ⊣⊢ F —∗ G

3. F —∗ G ⊣⊢ ¬−G —∗ ¬−F

4. F ⊣⊢ ¬−(¬−F ∗ ¬−¬ ⊲⊳)

The following lemma says that we can rewrite formulas in BI+ sequents according
to derivable equivalences without affecting LBI+-derivability.

Lemma 5.4. Write F (G) for a formula F of which G is a distinguished sub-
formula, and when F (G) is understood write F (G′) for the formula obtained by
replacing G by G′ in F . (This is analogous to the notation for bunches.)

Now suppose that A ⊣⊢ B is a derivable equivalence of LBI+ (where A, B
are BI+-formulas). Then the following two proof rules are derivable in LBI+:

Γ (F (A)) ⊢ C
(⊣⊢L)

Γ (F (B)) ⊢ C

Γ ⊢ F (A)
(⊣⊢R)

Γ ⊢ F (B)

Proof. By considering the following two instances of (Cut):

F (B) ⊢ F (A) Γ (F (A)) ⊢ C
(Cut)

Γ (F (B)) ⊢ C

Γ ⊢ F (A) F (A) ⊢ F (B)
(Cut)

Γ ⊢ F (B)

it suffices to prove that F (A) ⊢ F (B) is derivable in LBI+, whence it follows
by symmetry that F (B) ⊢ F (A) is also derivable. If F (A) = A then this is
immediate by assumption. Otherwise A is a (distinguished) strict subformula of
F and we proceed by an easy structural induction on F . ⊓⊔

Proposition 5.5. The proof rules of DLBI are admissible in LBI+ under the
embedding p−q. That is, for any instance of a DLBI rule, say:

{Xi ⊢ Yi | 1 ≤ i ≤ j}
j ∈ {0, 1, 2}

X ⊢ Y

if pXi ⊢ Yiq is derivable for all 1 ≤ i ≤ j then so is pX ⊢ Y q.

Proof. We distinguish a case for each proof rule. Most of the cases are straight-
forward. The main interesting cases are the logical rules (⊗L)and (—∗L), the
structural rule (MIR) and the display postulates for the multiplicative family.
These can be derived in LBI+ under the embedding p−q with the aid of the
rewrite rules given by Lemma 5.4 in conjunction with the derivable equivalences
of Lemma 5.3. See Appendix A.3 for details. ⊓⊔

We can now prove the soundness of DLBI as follows.

Proof of Theorem 4.8. If X ⊢ Y is provable in DLBI then pX ⊢ Y q is provable
in DLBI by Proposition 5.5, and thus is valid by the soundness of LBI+ (Propo-
sition 3.4), so X ⊢ Y is valid by Lemma 5.2. ⊓⊔

Definition 5.6 (Embedding of LBI+ in DLBI). We define a function x−y from
BI+ sequents to DLBI consecutions by: xΓ ⊢ Fy is the consecution obtained by
replacing every occurrence of the formula ⊲⊳ in Γ ⊢ F by the formula ¬⊥∗.

We remark that x−y can be defined recursively over BI+ formulas and extended
to LBI+ sequents in a manner similar to that in Definition 5.1.

Lemma 5.7. The following are all derivable equivalences of DLBI:

1. ¬¬F ⊣⊢ F
2. ¬F ⊣⊢ F → ⊥
3. ∼F ⊣⊢ F —∗ ⊥∗

4. ¬∼F ⊣⊢∼¬F
5. F1 ⊗ F2 ⊣⊢∼(∼F1∗ ∼F2)

Proposition 5.8. The proof rules of LBI+ are admissible in DLBI under the
embedding x−y. That is, for any instance of an LBI+ rule, say:

{Γi ⊢ Fi | 1 ≤ i ≤ j}
j ∈ {0, 1, 2}

Γ ⊢ F

if xΓi ⊢ Fiy is derivable for all 1 ≤ i ≤ j then so is xΓ ⊢ Fy.

Proof. We distinguish a case for each proof rule of LBI+. The main interesting
cases are the rules that operate inside bunches. We observe that xΓy is a struc-
ture for any bunch Γ and that, in particular, x∆y is always an antecedent part of

xΓy(x∆y). By the display theorem (Theorem 4.3) we can display the sub-bunch on
which the rule operates as the entire antecedent of a display-equivalent consecu-
tion. We can then apply the corresponding rule of DLBI to this antecedent and
then simply invert the display postulate steps used to display the antecedent to
restore the original context. See Appendix A.4 for details. ⊓⊔

Lemma 5.9. If xpX ⊢ Y qy is DLBI-provable then so is X ⊢ Y .

Proof. The proof proceeds in three stages. First, we show by induction on CBI-
formulas F that F ⊣⊢ xpFqy is DLBI-provable, making use of the derivable
equivalences given by Lemma 5.7 in the non-trivial cases. Second, we show
by induction on DLBI-structures X that X ⊢ ΨX and ΥX ⊢ X are DLBI-
provable. Finally, we can construct a proof of X ⊢ Y using the given proof
of xpX ⊢ Y qy = xpΨXqy ⊢ xpΥY qy using the first two stages together with (Cut).
See Appendix A.5 for details. ⊓⊔

We can now prove completeness for DLBI as follows.

Proof of Theorem 4.9. If X ⊢ Y is valid then so is pX ⊢ Y q by Lemma 5.2, which
is then LBI+-provable by Theorem 3.13. By Proposition 5.8, xpX ⊢ Y qy is then
provable in DLBI, whence X ⊢ Y is also DLBI-provable by Lemma 5.9. ⊓⊔

6 Conclusion

Our starting point for the issues considered here was to observe that in BI the
multiplicative connectives are considered intuitionistically rather than classically,
and to ask whether any computationally significant models would be admitted by
a classical version of BI or, for that matter, any non-trivial models (i.e., models
in which the connectives do not collapse). Our main conceptual contribution in
the present paper is to make the connection between classical BI and our class
of classical BI-models, which is a non-trivial class containing in particular the
class of Abelian groups. We believe that our models have potentially interesting
applications, and merit further investigation in their own right.

The choice of classical BI as an appropriate logical setting in which to inves-
tigate these models is justified by our main technical contribution: our display
calculus DLBI, which we have shown to be both cut-eliminating, and sound and
complete with respect to validity in our models. Moreover, our proof of soundness
and completeness, which relies upon admissibility embeddings, makes an explicit
connection between proof in DLBI and proof in LBI+, which is just the usual BI
sequent calculus extended by three axioms. The sequent calculus LBI+ employs a
form of deep inference in order to correctly formulate the left-introduction rules,
which is unnecessary in the display calculus DLBI. However, even though cut-
elimination in DLBI entails a subformula property, proof search in this setting is
nevertheless made daunting by the presence of the display postulates, which can
obviously lead to divergence if applied blindly. It thus remains of clear interest
to formulate well-behaved sequent calculus or natural deduction proof systems
for classical BI, and we hope that the present paper represents a first step in
this direction.

Acknowledgements We extend special thanks to David Pym for many inter-
esting and enlightening discussions which informed the present paper. We also
thank Philippa Gardner, Peter O’Hearn, Alex Simpson, and Hongseok Yang for
useful discussions.

References

1. Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11:375–417,
1982.

2. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In 32nd POPL, pp59–70, 2005.

4. James Brotherston and Cristiano Calcagno. Classical logic of bunched implications.
To appear in the informal proceedings of CL&C 2008, an ICALP satellite workshop,
2008.

5. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal logic: Complete-
ness and parametric inexpressivity. In POPL, 2007.

6. Michael Dunn. Star and perp: Two treatments of negation. Philosophical Perspec-

tives, 7:331–357, 1993.
7. D. Galmiche, D. Mery, and D. Pym. The semantics of BI and resource tableaux.

Mathematical Structures in Computer Science, 15:1033–1088, 2005.
8. Rajeev Goré. Cut-free display calculi for relation algebras. In Proceedings of

CSL’96, volume 1258 of LNCS, pages 198–210, 1997.
9. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable

data structures. In Proceedings of POPL’01, January 2001.
10. P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of

Symbolic Logic, 5(2):215–244, June 1999.
11. David Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.

Applied Logic Series. Kluwer, 2002. Errata and remarks (Pym 2004) maintained
at http://www.cs.bath.ac.uk/~pym/reductive-logic-errata.html.

12. S. Read. Relevant Logic: A Philosophical Examination. Basil Blackwell, 1987.
13. John C. Reynolds. Separation logic: A logic for shared mutable data structures.

In Proceedings of 17th LICS, 2002.

A Appendix: Proofs

A.1 Proof of Theorem 4.6

The following definition is taken from Belnap [1]. By a constituent of a structure
or consecution we mean an occurrence of one of its substructures.

Definition A.1 (Parameters / congruence). Let I be an instance of a rule
R of DLBI. Note that I is obtained by assigning structures to the structure
variables occurring in R and formulas to the formula variables occurring in R.

Any constituent of the consecutions in I occurring as part of structures as-
signed to structure variables in I are defined to be parameters of I. All other
constituents are defined to be non-parametric in I, including those assigned to
formula variables.

Constituents occupying similar positions in occurrences of structures assigned
to the same structure variable are defined to be congruent in I.

We remark that congruence as defined above is an equivalence relation.
Belnap’s analysis guarantees cut-elimination (Theorem 4.6) provided the

rules of DLBI satisfy the following 8 conditions, which are stated with refer-
ence to an instance I of a DLBI rule R. (Here, we state a stronger, combined
version of Belnap’s original conditions C6 and C7, since the our rules satisfy this
stronger condition.) In each case, we indicate how to verify that the condition
holds for our rules.

C1. Preservation of formulas. Each formula which is a constituent of some
premise of I is a subformula of some formula in the conclusion of I.
Verification. One observes that, in each rule, no formula variable or structure
variable is lost when passing from the premises to the conclusions.

C2. Shape-alikeness of parameters. Congruent parameters are occurrences of
the same structure.
Verification. Immediate from the definition of congruence.

C3. Non-proliferation of parameters. No two constituents in the conclusion of
I are congruent to each other.
Verification. One just observes that, for each rule, each structure variable
occurs exactly once in the conclusion.

C4. Position-alikeness of parameters. Congruent parameters are either all an-
tecedent or all consequent parts of their respective consecutions.
Verification. One observes that, in each rule, no structure variable occurs
both as an antecedent part and a consequent part.

C5. Display of principal constituents. If a formula is nonparametric in the con-
clusion of I, it is either the entire antecedent or the entire consequent of that
conclusion. Such a formula is said to be principal in I.
Verification. It is easy to verify that the only non-parametric formulas in
the conclusions of our rules are the two occurrences of P in (Id) and those
occurring in the introduction rules for the logical connectives in Figure 4,
which obviously satisfy the condition.

C6/7. Closure under substitution for parameters. Each rule is closed under si-
multaneous substitution of arbitrary structures for congruent formulas which
are parameters.
Verification. This condition is satisfied because no restrictions are placed on
the structural variables used in our rules.

C8. Eliminability of matching principal formulas. If there are inferences I1 and
I2 with respective conclusions X ⊢ F and F ⊢ Y and with F principal in
both inferences, then either X ⊢ Y is equal to one of X ⊢ F and F ⊢ Y , or
there is a derivation of X ⊢ Y from the premises of I1 and I2 in which every
instance of cut has a cut-formula which is a proper subformula of F .
Verification. There are only two cases to consider. If F is atomic then X ⊢ F
and F ⊢ Y are both instances of (Id). Thus we must have X ⊢ F = F ⊢ Y =
X ⊢ Y , and are done. Otherwise F is non-atomic and introduced in I1 and
I2 respectively by the right and left introduction rule for the main connective
of F . In this case, a derivation of the desired form can be obtained using
only the display postulates of Figure 3 and cuts on subformulas of F . For
example, if the considered cut is of the form:

X ⊢ A, B
(⊗R)

X ⊢ A ⊗ B

A ⊢ Y B ⊢ Z
(⊗L)

A ⊗ B ⊢ Y, Z
(Cut)

X ⊢ Y, Z

then we can eliminate this cut in the following manner:

X ⊢ A, B
(D≡)

X, ♭B ⊢ A A ⊢ Y
(Cut)

X, ♭B ⊢ Y
(D≡)

X, ♭Y ⊢ B B ⊢ Z
(Cut)

X, ♭Y ⊢ Z
(D≡)

X ⊢ Y, Z

where (D≡) denotes the use of a display-equivalence.

A.2 Proof of Lemma 5.2

We fix a classical BI-model M = 〈R, ◦, e,−,∞〉 and an environment ρ for M .
First, we prove that for any r ∈ R and CBI-formula F that r |= F iff r |= pFq,
proceeding by structural induction on F :

Case F ∈ {P | P ∈ V} ∪ {⊤,⊥,⊤∗}. Trivial.

Case F = F1 ?F2, where ? ∈ {∧,∨,→, ∗, —∗}. We are immediately done by the
induction hypothesis.

Case F = ¬G. Immediate by the induction hypothesis.

Case F = ⊥∗. We have p⊥∗
q = ¬ ⊲⊳ . By definition, r |= ⊥∗ iff r 6∈ ∞ and

r |= ¬ ⊲⊳ iff r 6∈ ∞, so we are done.

Case F =∼G. We require to show r |=∼G iff r |= ¬−pGq, i.e., −r 6|= G iff
r 6|=−pGq. By Lemma 3.1, r 6|=−pGq iff−r 6|= pGq, so we are done by the induc-
tion hypothesis.

Case F = F1 ⊗ F2. We require to show:

r |= F1 ⊗ F2 ⇔ r |= p∼(∼F1∗ ∼F2)q
⇔ r |= ¬−(¬−pF1q ∗ ¬−pF2q)
⇔ −r 6|= ¬−pF1q ∗ ¬−pF2q

⇔ ¬∃r1, r2. −r ∈ r1 ◦ r2 and −r1 6|= pF1q and −r2 6|= pF2q

⇔ ∀r1, r2. −r ∈ r1 ◦ r2 implies −r1 |= pF1q or −r2 |= pF2q

⇔ r |= pF1q ⊗ pF2q

Note that we use Lemma 3.1 in some of the equivalences above. The required
equivalence thus follows from the induction hypothesis. This completes the in-
duction.

Now let X ⊢ Y be a DLBI consecution. Noting that ΨX and ΥY are CBI-
formulas, and that pΨXq and pΥY q are BI+-formulas, we then have:

pX ⊢ Y q true in M ⇔ pΨXq ⊢ pΥY q true in M
⇔ ∀r ∈ R. r |= ΦpΨXq implies r |= pΥY q

⇔ ∀r ∈ R. r |= pΨXq implies r |= pΥY q

⇔ ∀r ∈ R. r |= ΨX implies r |= ΥY (by first part)
⇔ X ⊢ Y true in M

Thus X ⊢ Y is valid if and only if pX ⊢ Y q is. ⊓⊔

A.3 Proof of Proposition 5.5

According to Definition 5.1, we can restate the lemma as follows: for each rule
of DLBI, say:

{Xi ⊢ Yi | 1 ≤ i ≤ j}
j ∈ {0, 1, 2}

X ⊢ Y

if pΨXi
q ⊢ pΥYi

q is derivable for all 1 ≤ i ≤ j then so is pΨXq ⊢ pΥY q.

Naturally, we must distinguish a case for each proof rule of DLBI. Taking into
account the bidirectionality of the display postulates and some of the structural
rules, there are many cases. Luckily, most of them are very straightforward. Note
that all derivations shown are BI+ derivations, except that we also use the rule
symbol (=) to denote rewriting a sequent according to the definitions of Ψ−, Υ−

and p−q (cf. Definitions 4.7 and 5.1).

Logical rules (Figure 4)

Cases (Id), (⊥L), (⊤R), (⊥∗L), (⊤∗R). The conclusions of these rules become
instances of the LBI+ axiom (Id) under the embedding p−q, so we are done.
E.g., in the case of (⊥∗L) we have:

pΨ⊥∗q ⊢ pΥ∅q = p⊥∗
q ⊢ p⊥∗

q = ¬ ⊲⊳ ⊢ ¬ ⊲⊳

which is an instance of (Id).

Cases (⊤L), (⊥R), (¬L), (¬R), (∧L), (∨R), (⊤∗L), (⊥∗R), (∼L), (∼R), (∗L),
(⊗R). The premise and conclusion of these rules are identified under p−q, so we
are trivially done. E.g., in the case of (∼R) we have:

pΨXq ⊢ pΥ♭Aq = pΨXq ⊢ p∼ΥAq = pΨXq ⊢ p∼Aq

pΨXq ⊢ pΥ∼Aq = pΨXq ⊢ p∼ΨAq = pΨXq ⊢ p∼Aq

Case (Cut). This rule becomes an instance of the LBI+ (Cut) rule under p−q.

Cases (∨L), (∧R), (→L), (→R), (⊗L), (∗R), (—∗L), (—∗R). These rules can be
derived straightforwardly under p−q in LBI+ using the rewrite rules given by
Lemma 5.4 with the derivable equivalences in Lemma 5.3. E.g., in the case of

(—∗L) we proceed as follows:

...
pΨXq ⊢ pΥAq

(=)
pΨXq ⊢ pAq

...
pΨBq ⊢ pΥY q

(=)
pBq ⊢ pΥY q

(—∗L)
pAq —∗ pBq, pΨXq ⊢ pΥY q

(—∗R)
pAq —∗ pBq ⊢ pΨXq —∗ pΥY q

(⊣⊢R)
pAq —∗ pBq ⊢ ¬−(pΨXq ∗ ¬−pΥY q)

(⊣⊢R)
pAq —∗ pBq ⊢ ¬−(¬−¬−pΨXq ∗ ¬−pΥY q)

(=)
pAq —∗ pBq ⊢ p∼ΨX ⊗ ΥY q

(=)
pΨA—∗Bq ⊢ pΥ♭X,Y q

Structural rules (Figure 5)

Cases (WkL), (CtrL). Under the embedding p−q these are instances respectively
of the LBI+ rules (Weak) and (Contr).

Cases (WkR), (CtrR). These follow respectively from the derivability of F ⊢
F ∨ G and F ∨ F ⊢ F in LBI+.

Cases (AAL), (AAR), (ACL), (ACR), (MAL), (MAR), (MCL), (MCR). The
derivability of these rules under p−q follows from the associativity and commu-
tativity of ∧,∨ and ∗, all of which are easily derivable in LBI+.

Cases (AIL), (AIR), (MIL). These follow respectively from the derivability of
⊤ ∧ F ⊣⊢ F , F ∨ ⊥ ⊣⊢ F , and ⊤∗ ∗ F ⊣⊢ F in LBI+.

Case (MIR). This rule follows from the derivable equivalence F ⊢ ¬−(¬−F ∗
¬−¬ ⊲⊳) given by Lemma 5.3.

Display postulates (Figure 3)
These are all similar to previous cases. The additive rules are obviously all right,
and the multiplicative rules can be derived using the derivable equivalences of
Lemma 5.3.

A.4 Proof of Proposition 5.8

We distinguish a case for each proof rule of LBI+. Note that all derivations
shown are DLBI derivations; we use the rule symbol (D≡) to denote the use of
a display equivalence. We freely rewrite sequents according to the definition of

x−y (cf. Definition 5.6), which only affects occurrences of ⊲⊳ .

Case (DNE). We require to prove that (xFy → ⊥) → ⊥ ⊢ F is DLBI-derivable.
Using Lemma 5.7, we have (xFy → ⊥) → ⊥ ⊣⊢ ¬¬F is DLBI-derivable, so it
suffices to derive ¬¬F ⊢ F , which is easy.

Cases (DIE), (DII). We need to show that xFy ⊣⊢ x−−Fy is is a derivable equiva-
lence of DLBI. Expanding the definitions of− and x−y, we obtain:

xFy ⊣⊢ (((xFy —∗ (¬⊥∗ → ⊥)) → ⊥) —∗ (¬⊥∗ → ⊥)) → ⊥

Using Lemma 5.7 it is straightforward (though tedious) to show the following is
DLBI-derivable:

¬∼¬∼F ⊣⊢ (((xFy —∗ (¬⊥∗ → ⊥)) → ⊥) —∗ (¬⊥∗ → ⊥)) → ⊥

It thus suffices to show that ¬ ∼¬ ∼F ⊣⊢ F is DLBI-derivable, which is again
straightforward using Lemma 5.7.

Case (Id). We need to show xFy ⊢ xFy is DLBI-provable, which is the case by
Proposition 4.5.

Cases (⊤R), (∨R1), (∨R2), (∧R), (→R), (∗R), (—∗R). These rules all have easy
derivations using the corresponding DLBI rule and, in some cases, the additive
structural rules. E.g., in the case of (∧R) we proceed as follows:

xΓy ⊢ xF1y xΓy ⊢ xF2y
(∧R)

xΓy; xΓy ⊢ xF1y ∧ xF2y
(CtrL)

xΓy ⊢ xF1y ∧ xF2y

Cases (Weak), (Contr), (Cut), (⊥L), (∨L), (∧L), (→L), (∗L), (—∗L). These
rules all operate inside bunches on the left of sequents. We observe that xΓy is a
structure for any bunch Γ and that x∆y is always an antecedent part of xΓy(x∆y).
By the display theorem (Theorem 4.3) we can display the sub-bunch on which
the rule operates as the entire antecedent of a display-equivalent consecution.
We can then apply the corresponding rule of DLBI to this antecedent and then
simply invert the display postulate steps used previously to restore the original
context. For example, in the case of (→L) we proceed as follows:

x∆y ⊢ xF1y

xΓy(x∆y; xF2y) ⊢ xFy
(D≡)

x∆y; xF2y ⊢ X
(ACL)

xF2y; x∆y ⊢ X
(D≡)

xF2y ⊢ ♯x∆y; X
(→L)

xF1y → xF2y ⊢ ♯x∆y; ♯x∆y; X
(D≡)

x∆y; x∆y ⊢ ♯(xF1y → xF2y); X
(CtrL)

x∆y ⊢ ♯(xF1y → xF2y); X
(D≡)

x∆y; xF1y → xF2y ⊢ X
(D≡)

xΓy(x∆y; xF1y → xF2y) ⊢ xFy

where X is a placeholder for the structure that results as the consequent from
displaying Y in the consecution xΓy(Y) ⊢ xFy.

Case (Equiv). We require to show that if
x
Γ ′

y
⊢ xFy is derivable and Γ ≡ Γ ′ then

xΓy ⊢ xFy is derivable. We also note that ≡ can be straightforwardly expressed as
an inductive relation, and proceed by rule induction on Γ ≡ Γ ′. The associativity,
commutativity, and unitary cases follow from the induction hypothesis and the
corresponding structural rules of DLBI. For the congruence case, we need to show
that if ∆ ≡ ∆′ and xΓy(

x
∆′

y
) ⊢ xFy is derivable then so is xΓy(x∆y) ⊢ xFy. We use the

display theorem as before and the induction hypothesis as follows:

xΓy(x∆
′
y
) ⊢ xFy

(D≡)
x
∆′

y
⊢ X
·
·
·
(I.H.)

x∆y ⊢ X
(D≡)

xΓy(x∆y) ⊢ xFy

where X is used as a placeholder as in the previous cases. This completes the
proof. ⊓⊔

A.5 Proof of Lemma 5.9

The proof proceeds in three stages.

Stage 1. We prove by structural induction on CBI-formulas F that F ⊣⊢ xpFqy
is derivable in DLBI. In the following, we make use of the fact that derivable
equivalence ⊣⊢ in DLBI is an equivalence relation. In particular, it is reflexive
by Proposition 4.5 and transitive by the rule (Cut).

Case F ∈ {P | P ∈ V} ∪ {⊤,⊥,⊤∗}. We have xpFqy = F and are thus immedi-
ately done since F ⊣⊢ F holds in DLBI.

Case F = F1 ?F2 where ? ∈ {∧,∨,→, ∗,—∗}. We have xpF1 ?F2qy = xpF1qy ? xpF2qy
and the case is then straightforward by the induction hypothesis. E.g., in the
case F = F1 —∗ F2 we proceed as follows:

(I.H.)
·
·
·

xpF1qy ⊢ F1

(I.H.)
·
·
·

F2 ⊢ xpF2qy
(—∗L)

F1 —∗ F2 ⊢ ♭xpF1qy, xpF2qy
(D≡)

F1 —∗ F2, xpF1qy ⊢ xpF2qy
(—∗R)

F1 —∗ F2 ⊢ xpF1qy —∗ xpF2qy

(I.H.)
·
·
·

F1 ⊢ xpF1qy

(I.H.)
·
·
·

xpF2qy ⊢ F2
(—∗L)

xpF1qy —∗ xpF2qy ⊢ ♭F1, F2
(D≡)

xpF1qy —∗ xpF2qy, F1 ⊢ F2
(—∗R)

xpF1qy —∗ xpF2qy ⊢ F1 —∗ F2

Case F = ¬G. We have xp¬Gqy = xpGqy → ⊥. By Lemma 5.7, xpGqy → ⊥ ⊣⊢
¬xpGqy is provable in DLBI. It thus suffices to prove ¬G ⊣⊢ ¬xpGqy, which follows

straightforwardly from the induction hypothesis.

Case F = ⊥∗. We have xp⊥
∗
qy = x⊲⊳ → ⊥y = ¬⊥∗ → ⊥. We have ¬⊥∗ → ⊥ ⊣⊢

¬¬⊥∗ ⊣⊢ ⊥∗ by Lemma 5.7 and so are done.

Case F =∼G. We have xp∼Gqy = ((xpGqy —∗ (¬⊥∗ → ⊥)) → ⊥) → ⊥. Using
Lemma 5.7 and transitivity of ⊣⊢ we have:

((xpGqy —∗ (¬⊥∗ → ⊥)) → ⊥) → ⊥ ⊣⊢ xpGqy —∗ (¬⊥∗ → ⊥)

Also, again by Lemma 5.7, we have ∼G ⊣⊢ G —∗ ⊥∗. To complete the case it
suffices to show G —∗ ⊥∗ ⊣⊢ xpGqy —∗ (¬⊥∗ → ⊥) is DLBI-provable, which we do
as follows:

(I.H.)
·
·
·

xpGqy ⊢ G

(Prop. 4.5)
·
·
·

⊥∗ ⊢ ⊥∗

(—∗L)
G —∗ ⊥∗ ⊢ ♭xpGqy,⊥∗

(D≡)
G —∗ ⊥∗, xpGqy ⊢ ⊥∗

(Lemma 5.7)
·
·
·

⊥∗ ⊢ ¬⊥∗ → ⊥
(Cut)

G —∗ ⊥∗, xpGqy ⊢ ¬⊥∗ → ⊥
(—∗R)

G —∗ ⊥∗ ⊢ xpGqy —∗ (¬⊥∗ → ⊥)

(I.H.)
·
·
·

G ⊢ xpGqy

(Lemma 5.7)
·
·
·

¬⊥∗ → ⊥ ⊢ ⊥∗

(—∗L)
xpGqy —∗ (¬⊥∗ → ⊥) ⊢ ♭G,⊥∗

(D≡)
xpGqy —∗ (¬⊥∗ → ⊥), G ⊢ ⊥∗

(—∗R)
xpGqy —∗ (¬⊥∗ → ⊥) ⊢ G —∗ ⊥∗

Case F = F1 ⊗ F2. We have xpF1 ⊗ F2qy =
x
p∼(∼F1∗ ∼F2)qy. Since F1 ⊗ F2 ⊣⊢

∼ (∼F1∗ ∼ F2) is (D≡)BI-provable by Lemma 5.7, it suffices to show that
∼(∼F1∗ ∼F2) ⊣⊢ x

p∼(∼F1∗ ∼F2)qy is DLBI-provable, for which the techniques
used in the cases for ∼ and ∗ above are sufficient. This completes the stage.

Stage 2. We prove by structural induction on DLBI-structures X that X ⊢ ΨX

and ΥX ⊢ X are derivable in DLBI. The case where X is a formula F follows by
the fact that F ⊢ F is DLBI-provable for all formulas F (Proposition 4.5). The
other cases all follow straightforwardly from the induction hypothesis. E.g., when
X = ♭Y we proceed as follows (writing (=) to denote rewriting a consecution
according to the definitions of Ψ− and Υ− given by Definition 4.7):

(I.H.)
·
·
·

ΥY ⊢ Y
(D≡)

♭Y ⊢ ♭ΥY
(∼R)

♭Y ⊢∼ΥY
(=)

♭Y ⊢ Ψ♭Y

(I.H.)
·
·
·

Y ⊢ ΨY
(D≡)

♭ΨY ⊢ ♭Y
(∼L)

∼ΨY ⊢ ♭Y
(=)

Υ♭Y ⊢ ♭Y

Stage 3. By the lemma assumption and the definitions of p−q and x−y we have
that xpΨXqy ⊢ xpΥY qy is DLBI-provable. Noting that xpΨXqy and xpΥY qy are CBI-
formulas, we can then construct a DLBI-proof of X ⊢ Y as follows:

(Stage 2)
·
·
·

X ⊢ ΨX

(Stage 1)
·
·
·

ΨX ⊢ xpΨXqy
(Cut)

X ⊢ xpΨXqy

(assumption)
·
·
·

xpΨXqy ⊢ xpΥY qy

(Stage 1)
·
·
·

xpΥY qy ⊢ ΥY

(Stage 2)
·
·
·

ΥY ⊢ Y
(Cut)

xpΥY qy ⊢ Y
(Cut)

xpΨXqy ⊢ Y
(Cut)

X ⊢ Y

This completes the proof. ⊓⊔

