From MTL to Deterministic Timed Automata

Dejan Nickovid* and Nir Pitermafr=*

1 EPFL, Lausanne, Switzerland
2 Imperial College London, London UK

Abstract. In this paper we propose a hovel technique for constructing timed au-
tomata from properties expressed in the logic MTL, under boundédbitity
assumptions. We handle full MTL and in particular do not impose boundke®
future temporal connectives. Our construction is based on sepaddtibe con-
tinuous time monitoring of the input sequence and discrete predictionsiiega

the future. The separation of the continuous from the discrete allows ughef
determinize our automata. This leads, for the first time, to a constructom fr
full MTL to deterministic timed automata.

1 Introduction

Timed automata [2], automata equipped with clocks, have kaglied extensively in
recent years as they provide a rigorous model for reasorbpgtaguantitative time.
Together with other formalisms such as real-time logical-tiene process algebras and
timed Petri nets, they constitute an underlying theorktieais for the specification
and verification of real-time systems. The main attractibtimed automata is due to
their suitability for modeling certain time-dependent pbmena, and the decidability
of their reachability (or empty language) problem, a faetthas been exploited in
several verification tools, e.g. Kronos [21] and Uppaal [Récently there has also
been interest in timed games and synthesis of timed coetsdlé.g., [6]).

As in the untimed case, we would like to combine the modelnétl automata with
a powerful logic. Many variants of real-time logics [11, 48Pas well as timed regular
expressions [5] have been proposed. However, unlike thmadtcase, the correspon-
dence between simply-defined logics and variants of timéahaata is not simple. One
of the most popular dense-time extensions of LTL is the I&4iTL introduced in [3]
as a restriction of the logic MTL [11]. The principal modgliof MITL is the timed
until ¢/ ; wherel is some non-singular interval. A formufa/ , ;q is satisfied by a
model at any time instantthat admits; at somey € (¢t + a,t + b), and where holds
continuously fromt to ty. Decidability of MITL was established in [3] by converting
an MITL formula to a nondeterministic timed automaton andlgring the structure of

* Supported in part by the EU COMBEST project. Part of this work was ddnike this author
was at Verimag, CNRS, Grenoble, France.
** Supported in part by the UK EPSRC proj&@omplete and Efficient Checks for Branching-
Time Abstraction$EP/E028985/1). Part of this work was done while this author was a visiting
researcher at Verimag, CNRS, Grenoble, France.

that automaton. Further investigations of MITL and MTL sagtgd alternative transla-
tions of MITL to nondeterministic timed automata [14, 15Hamsed alternating timed
automata to show decidability of MTL in certain circumstas¢l7].

In many cases, such as synthesis of timed controllers ane@ntionitoring of timed
behavior, we are interested in translating temporal spatifins to deterministic timed
automata. For MITL, this is, unfortunately, impossible][1Gonsider, for example, the
formulay = g0 (p — <>(a’b) q), which says that for everye (0, a), if p is true at
timet then there is a time point € (t+a, t+b) in whichg holds. In order to construct a
deterministic automaton fas, we need infinite memory to remember all occurrences of
p within the interval(0, a). Furthermore, timed automata cannot be determinized [2].
Even if a fragment of MITL can be recognized by determinisiiced automata, we
cannot use the usual constructions for translation of Mid timed automata. Indeed,
then there is no way to further determinize the automatonhdye to come up with
specialized constructions that go directly to deterministned automata.

This is the approach taken in [15]. In order to enable thestedion to deterministic
automata, the assumption of bounded variability is takéat 1, there is a bound on the
number of changes in the input signal in a given time intealmentioned, we cannot
take the normal translation to nondeterministic automaththen use determinization,
we have to come up with specialized constructions that gectdjr to deterministic
automata. This is especially problematic when the formumduides predictions about
the future, namely, future temporal connectives. In [1B]ydhe ‘safety’ fragment of
MTL is considered. They consider invariance propertiesgngtthe invariant may in-
clude past temporal operators and bounded future operéttstead of saying that the
invariant holds at time, we wait until the bounded future operatorsdrhave elapsed
and then, looking back, we can decide if the invariant car@into hold. This is done
by effectively converting bounded future into past. As thstps naturally deterministic
[13], deterministic automata can be constructed directiynfbounded MTL.

The construction in [15] distinguishes between two reasonshe impossibility
of determinization for timed languages. The first is unbashdariability, a property
that is used to show that timed automata cannot be deterdirind complemented.
The second is a-causality, the value of a formula at tirngay depend on the value
of input at timet’ > ¢. By assuming bounded variability we eliminate the first ceas
In [15] it is conjectured that a-causality on its own can badiad by ‘normal’ deter-
minization. Here, we prove this conjecture by a construnctiat takes full MTL (under
bounded variability) to nondeterministic timed automatéofved by a determinization
construction for timed automata.

What is the problem with determinization for the normal caosien of MTL to
timed automata? Said constructions use clocks to accuemagions where every sub-
formula is true. When coming to determinize timed automaia,@annot collect all the
possible values of the clocks associated with theseJarts

We take a different approach, by separating our timed autmt two parts. The
first is a ‘normal’ deterministictimed automaton that uses clocks to collect times of
events. The second istependent timed automatcen automaton that uses the clocks

3 A notable exception is [17] reasoning about alternating timed automata wéttclook; al-
though the resulting structure is not a timed automaton.

controlled by the first part, to maldiscretepredictions regarding the future. It is the
dependent timed automaton that we later determinize.

We identify an ‘interest region’ for the MTL formula. We cdnsct property mon-
itors, deterministic timed automata that memorize (usiligks) all events regard-
ing propositions in this interest region. Decisions regagdruth values of subfor-
mulas are delayed and decided retroactively. Consider ademlitemporal property
@ = P1U (4,52 Given that we ‘know’ the truth value af; andi), in the memorized
region, we can ‘deduce’ the truth value @fin part of the region. Specifically, if the
memorized region i§t — f,t) (i.e., we are now reading timeand the memory region
is of sizef), then we deduce the truth value@in (¢t — f,¢ — b). We do not add states
for such subformulas. When considering an unbounded subtarm= 11 U (, o) %2,
we construct a small automaton, that makes guesses regdhdirfuture, for a given
time point within the ‘knowledge’ region.

Finally, based on two assumptions, we show that our depérioeed automata
can be determinized. First, transitions cannot be enahledighout the stay in a state.
Second, when a transition is enabled the automaton can atay little while in the
target state. The determinization construction is a shgliant of the determinization
construction for normal finite automata on infinite words,[28].

Even when ignoring the option to determinize, our constomchas many advan-
tages when compared with previous constructions. In oustcoction the number of
clocks depends on the number of propositions, the depthtefddepth of the longest
chain ofnestedemporal operators, and the bounded variability of thetinpurevious
constructions clocks are allocated according to varighélnd the depth of each oper-
ator separately. Thus, if operators are not nested withinammother many more clocks
may be required. Furthermore, in our construction the nurabstates associated with
every unbounded until is constant while in previous cortsiion every temporal oper-
ator requires states that are proportional to the numbectafeainterval that temporal
operator may have. Furthermore, we note that if we conskaefragment of bounded
future operators considered in [15], then the automataym®d by our construction are
also going to be deterministic without applying an extraedminization step. Finally,
existing translations usually require automata that méter between states defined over
“singular” (zero-duration) and “open” intervals, diffi¢ub implement in current tools
such as IF [7], Kronos [21], and Uppaal [12]. In our constiarttimed automata use
only left-closed right-open intervals, easier to handleskigting tools.

2 Definition of MTL

A signal over a domairD is a functionw : T — D whereT is the time domain. The
time domain is either the s#, of non-negative real numbers in the case of infinite-
length signals or an intervé,) if the signal is of finite length. We focus on the case
whereD is a finite domain, typically the s@&™ of Boolean vectors ovet variables (or
propositions). We denote hy, the projection ofw to the propositiorp. Concatenation
of two finite signalsw; and w. defined over[0,r;) and [0,), respectively, is the
finite signalw = w; - wo, defined ovel0,r; + r2) asw(t] = w;[t] for ¢ < r; and
wlt] = walt — rq] fort > ry.

We introduce the future fragment of MTL interpreted oversietime signals. The
syntax ofMTL is defined by the grammar

w:=plop| o1 Ve | e Ur go

wherep belongs to a seP = {py,...,p,} of propositions and is an interval of the
form [b,0], (a,b), or (a,00) where0 < a < b are integer numbers. We say that an
interval I is unboundedf it is of the form (a, 0c), otherwise it isbounded As in LTL
the basicMTL operators can be used to derive other standard Boolean anmbital
operators, in particular the time-constrairmentually> ; ¢ = T U; ¢ andalways
O =~ . Itis also possible to express other types of intervals s, b),
[a,b), [a,), etc.

The semantics of amTL formula ¢ with respect to am-dimensional Boolean
signalw is described via the satisfiability relatiom, t) = ¢, indicating that the signal
w satisfiesp at timet, according to the following recursive definition.

(w,t) Ep o wplt) =1

(w,t) = o (wit) Fe

(wt)Ee1Ver o (wi) Epror(wi) =

(w,t) Ep1 Ur o« Tt et+1Tst(w,t') Epsand/ t” € (t,t') (w,t") E 1

A formula ¢ is satisfied byw if (w,0) = .

It is well known that MTL formulas can be translated to nomdetinistic timed
automata [3, 14]. In Section 4 we suggest a new constructioednverting MTL to
timed automata. The construction is based on computing acdfdrom the formula
and the automaton at timememorizes the input signal at the interfal- f,¢). The
value of the formula is computed with a delay, that is, whendhtomaton is reading
time ¢t it computes the value of the formula for time- f. In the remainder of this
section we compute the size of the interval the automatodsheememorize in order
to make our construction work.

The truth value of a formula at timet depends on the input signal at some interval
[t,t+ f). If ¢ does not contain subformulas with unbounded intervals theasuring
this interval is straightforward. I does contain subformulas with unbounded inter-
vals, then the truth value af at timet¢ depends on guessing the future values of un-
bounded future operators. The main thing we note is thatdlesgregarding the future
is Boolean — does the formula change its truth value in theréubr not. For example,
¢ = qU (2,0c)r depends on the values @in the intervallt, t + 2 + 2¢). 4In case that
q holds throughout the intervéd, ¢ + 2 + 2¢), we guess whetherholds continuously
until » starting at timet + 2 + 2¢. Based on this guess, we have sufficient knowledge
to establish whethep holds at timet. The guess obviously needs to be checked. More
formally, we define the functiofut that determines the bound of this interval. We fix a

4 Strictly speaking, the knowledge of the valuesydh the intervalt, ¢ + 2 + ¢) is sufficient.
The extrae is necessary for determinization of timed automata obtained from MTLuftaren

smalle for the rest of the paper.

fut(p) =0 Wherep is a proposition.
fut(p1 V 2) = mazx(fut(er), fut(ps))

fut(—p1) = fut(pr)

fut(p1 U pa) = a + 2¢€ + max(fut(vr), fut(psz)) Wherel = (a, o0).

fut(o1 U 1p2) = b+ max(fut(py), fut(ps)) Wherel = (a,b) or I = [b,b].

The functionfut is used also to decide where our ‘certainty’ regarding téhtr
value of a formula expires. For example, if we know the valfig andr in the interval
[t —4,t) our knowledge region for the formuldl/ , ..)r expires at time — 2 — 2e¢. In
case that holds throughout the intervéd — 2 — 2¢, t) then the truth value of U (3 oy
depends on a guess thakeeps holding untit becomes true. We do know, however,
thatq (2, .y has not been falsified and may still hold at titne 2 — 2e.

3 Timed Automata

We use a variant of timed automata that differs slightly fritva classical definitions
[2,10, 1]. Our automata read multi-dimensiodahse-timd&oolean signals and output
Boolean signals. Input and output are associated withssaatbsometimes transitions.
We also extend the domain of clock values to include the apegmbol_L indicating
that the clock is currentlinactiveand extend the order relation &3, accordingly by
letting L < v for everyv € R>o. We freely use multiplication by-1 and comparison
with negative values. It follows that L > —v for everyv € R>(. For a setA C R"
we usecl(A) to denote its closure (in the topological sense).

The set of valuations of a sét = {z4,...,z,} of clock variables, each denoted
asv = (v1,...,v,), defines the clock spadé = (R>o U {_L})". A configurationof
a timed automaton is a pair of the forfa v) with ¢ being a discrete state. For a clock
valuationv = (v1,...,v,), v + t is the valuation(v], ..., v}) such that], = v; if
v; = L andv = v; +t otherwise. Amatomic clock constrains a condition of the form
x>y + dorx < d, wherex andy are clockspa € {<, <, >, >}, andd is an integer.
Let A(C) denote the set of atomic constraints over theCsef clocks. For a sefX,
let B+ (X) denote the set of positive Boolean formulas o¥e(i.e., Boolean formulas
built from elements inX using A and V). Let C(C) = B*(A(C)) denote the set of
constraintsover the set of clock€. We also view a constraint € C(C) as a subset
¢ C H. In what follows, we introduce free real variables to coaistis and quantify
over them. That is, we use constraints in the first-orderrthebthe reals where clocks
in C are free variables. The elimination of quantifiers givesarsstraints inC(C). We
include a short discussion of quantifier elimination in Apgix A. We used the tool in
[16] to eliminate quantifiers in some of the examples below.

Definition 1. Atimed automatois A = (X, Q,C, \, I, A, qo, F), whereX'is the input
alphabet is a finite set of discrete states, afids a set of clock variables. We assume
that X2 is 247 for some set of propositiond P. We freely use Boolean combinations
of propositions to denote sets of letters. The labelingtfonc\ : Q — X associates
an input letter with every state. The staying condition gimant) I assigns to every

stateq a constraint/(q) € C(C). The transition relationA consists of elements of the
form (q, 9, p,q’) whereq and ¢’ are discrete states, the transition guagds a subset
of H defined by a clock constraint, andis the update function, a transformation of
H defined by an assignment of the fogm= 0, z := L, or z := y or a set of such
assignments. Finallyy is the initial state. Transitions leaving, haveTrue as their
guard and can use only updates of the farm= 0. We consider generalizediBhi
automata, wherer C 2¢.

The behavior of the automaton as it reads a signabnsists of a strict alternation
between time progress periods, where the automaton staystate; as long asv[t] =
A(g) andI, holds, and discrete instantaneous transitions guardetbbl¢ conditions.
Formally, a step of the automaton is one of the following:

— Atime step(q, v) N (g,v+t)t € Rygsuchthat = A(q) and(v, v+t) C cl(1y).

— A discrete step{q, v) 2, (¢’,v"), for some transitiod = (¢, g, p,q') € 4, such
thatv € g andv’ = p(v).
Letv, = (L,..., L) bethe assignment df to all clocks. Arun of the automaton start-
ing from a configuratior(¢qo, v) is a finite or infinite sequence of strictly alternating
time and discrete steps of the form

s n 5 52 s
¢ : (g0,v0) = (q1,v1) L, (q1,v1 +t1) = (g2, v2) =, (q2,v2 +t2) =5 -+,

such that¥;t; diverges. A run(is accepting if for everyf® € F the set of times
instances in which states fromare visited is unbounded. The input signal carried by
the runiso!' - 042 - - -, where we abuse notation and denoterbythe concatenation of
the punctual signat; and the open signal;’. That iso; : [0,¢;) — ¥ such that forall

t € [0,t;) we havew(t) = o;.

Given two timed automatal; = (X, Q;,Ci, \i, I, Ai, ¢b, F), fori € {1,2},
their compositiom; || Azis (X x X2, Q1 X Q2,C1 UCa, A, I, A, (b, ¢3), F), where
AMa1,q2) = (Mi(q1): A2(q2)), 1(q1,92) = Ii(q1) A I2(g2), andF = {Sx T | S €
FrandT = Qq,0rS = Q; andT € F»}. The transitionA includes three kinds of
transitions as follows.

— Simultaneous transition%qi, g2), 9, p, (41, ¢5)), where(q;, gi, pi, q}) € A; fori €

{1,2}, 9 =91 A g2 andp = p1 U py,

— Left-side transitions(q1, ¢2), g, p, (¢}, q2)), where(q1,¢1,p,¢,) € A andg =
g1 N\ _[2((]2), and
— Right-side transitiong(q1, ¢2), 9, p, (41, ¢3)), where(qz, g2, p, g3) € Az andg =

Ii(q1) A ga-

A timed automaton is deterministic if from every reachabbafiguration every
event and every ‘non-event’ leads to exactly one configomatihis means that the
automaton cannot make both a ‘silent’ transition and a tia&spge in the same con-
figuration.

Definition 2. Adeterministic timed automataésan automaton whose guards and stay-
ing conditions satisfy:
1. For every two distinct transition§y, g1, p1,¢1) and (g, g2, p2, g2) we have either
Aq1) # A(g2) Or g1 A g2 is unsatisfiable.

2. For every transition(q, g, p, ¢’), either\(q) # A(¢’) or the intersection of and
I(q) is either empty or isolated, i.e., there does not exist amapterval (¢,¢')
such that(t,t') C I(q) and(¢,t') N g # 0.

We introduce dependent timed automata. These are autdmaatiotnot have clocks
of their own, however can ‘read’ the clock values of othethautomata. Furthermore,
we add to dependent timed automata output and the compuosftaependent timed au-
tomata allows one automaton to read the output of the otlegreBdent timed automata
allow us to separate the continuous from the discrete whesoréng about MTL for-
mulas. The composition of a dependent timed automaton vtithead automaton results
in a timed automaton.

Definition 3. A dependent timed automatenB = (X, I',Q,C,~, I, A, qo, F), where
the following is different from timed automata. We add ampatialphabet’”, an output
functiony : Q@ — I', and remove the labeling function. The staying condifi@ssigns

to every state a Boolean combination of atomic constrairgsiaput letters/ : Q —
B*(A(C) U X). The transition relationA consists of elements of the fofm g, 0, ¢'),
whereg € Bt (A(C) U X)) is a Boolean combination of atomic constraints and input
letters,o € I is an output, and the clock update is removed. We assumd that
24P for some set of propositiod P and we freely use propositions to define staying
conditions and transition guards.

Consider two dependent timed automd@a = (X, I, Q;,C,vi, i, Ai, @b, Fi)
for i € {1,2}, whereX; = X, x I'y. The compositionB; ® By, where By reads
the output of By, is the following dependent timed automaton. &t ® By, = (X,
Fl X F2i Ql X QQ! Ci Y Iu A! (Q(%vqg)r f >| WhererY(QMqQ) = (’Yl(ql)772(q2)) and
F={SxT|SeFandT = @y, 0rS = @, andT € F,}. The staying condition
is I(q1,q2) = Ii(q1) A simp(v1(q1), I2(g2)) wheresimp(v1(q1),) is the constraint
obtained fromp by replacingy; (¢1) by true and all other letters ifr; by false. The
transitionA is similar to the composition of timed automata and inclu@@simultane-
ous transitiong(qi, g2), g, (01, 02), (41, ¢3)), Where(g;, gi, 0i, ¢;) € A; fori € {1,2}
andg = g1 A simp(o1, g2), (D) left-side transition$(q1, ¢2), g, (01,72(q2)), (41, G2)),
where(q1, g1,01,q1) € Ay andg = g1 A simp(o1,72(g2)), and (c) right-side transi-
tions ((q1,92), g, (71(q1), 02), (1, G5)), Where(gz, g2, 02, ¢5) € Az andg = I1(q1) A
simp(71(q1), g2)-

Consider a timed automatoty = (X1, Q1,C, A\, I1, A1, ¢4, F1) and a dependent
timed automatoB, = <21, I5,Q,C, Yo, 12, Ao, q%, .7:2> Their Compositi0n41 ® By
is the timed automatod = (X, Q1 x Q2,C, \, I, A, (¢b,43), F), whereX(qi, ¢2) =
M), andF = {SxT | S € FrandT = @Qq,0rS = @ andT € F}. The
staying condition/(q1,q2) = I1(q1) A simp(A(q1),I2(q2)). The transitionA in-
cludes (a) simultaneous transitio(g, ¢2), g, p1, (41, ¢5)), where(q1, g1, p1,4;) €
Ay, (g2, 92,02, ¢5) € A, g = g1 A app(p, simp(M(q}), 92)), andapp(p, g2) applies
the effect ofp on g5, e.g., if p includesz := y we replacer in go by y, (b) left-
sided transitiong(q1,42), 9, p1, (41, 42)), where(qu, g1, p1,q1) € Ay andg = g1 A
app(p1, simp(A1(q1),12(g2))) (¢) right-sided transition§(q1, ¢2), 9,0, (¢1, ¢3)), where
(g2, g2, 02,45) € Ay andg = I1(q1) A simp(A1(q1), g2). Notice that the composition

(gin, Trug 0, qo), (gin, Trug 1 := 0, q1),

(q2isy1 < frwiv1 := 0,q2i41), (@2i+1,y1 < f,yit1 = 0, q2i42),

(qm”7 Y1 = {§1+:1_:f2j_y2,:: y2_ i y LTi v= it 1, Yi 2= Yit+1, } 7q2i) ’
A= (monn = g T I T T IRTI L)

(Q2z+3, Y1 = {i;}—ja,_my;; yi, J_ y Ti 1= Tit1,Yi 1= Yit1, } 7Q2i+1>

8 Ptk ir IV A X0

Fig. 1. The transition of proposition monitor.

of a timed automaton with a dependent timed automaton célusesitput of the second
to disappear. Thusd ® B; ® By should be read ad ® (B; ® Bs).

4 From MTL to Nondeterministic Timed Automata

We suggest a novel construction for the conversion of MT niglas to timed automata.
The advantage of this construction is that it effectivelstidiguishes between discrete
guesses relating to occurrences in the future (made by depétimed automata) and
the accumulation of knowledge with clocks (made by timeaenatta). This separation
allows us to construct a deterministic automaton for thenfda in Section 5. Note that
the number of clocks depends on the structure of the forntutzugh the computed
boundfut and the construction of the proposition monitors. Thisisedtarts by intro-
ducing proposition monitors, deterministic timed autcantitat log information about
the input. We then expose our construction using a simplmpla Finally, we proceed
to the formal construction that explains how to handle galfdiTL formulas.

We start by introducing a timed automaton that memorizedithes in which a
proposition is true (cf. [15], event recorder Figure 2).&ia formulap let f = fut(y).
The automaton is going to memorize all events occurring énitkerval[t — f,¢). Let
k be the number of changes possible in a proposition in 1 tinie lfollows that in
the interval[t — f,t) there can be at mosﬂ%l different sub-intervals in which the
proposition is true. Thus, we neéd(%] clocks to memorize their start and end times.
Letn = [LF]. Consider a propositiop. Let 4, = (2P}, Q,C,\, I, A, gin, {Q}),
whereC = {z,..., 22 v} ... v2}, Q = {qin, 90, - - -, G2n }s M(q2i) = 0, M(q2iv1) =
{p}, for j > 1 we havel(g;) = y{ < f andI(qo) = I(¢1) = Trueand A is given in
Figure 1. One such proposition monitor is given in Figure 2.

We now expose our construction through an example. Contligeformulay =
O(pU <>(0’1) q). Itis simple to see thaut(¢) = 1 + 4e. Suppose that every propo-
sition changes at mosttimes during every time unit. We build the automatd,, and
Ag. with boundf = 1 + 4e and the bounded variability constaint In addition, we
construct a simple timed automatgt with one state and one clockthat measures
the time since timé. It is used to check whether the bouyichas been reached. In

y1 = f;
y1 = f; 1 = x2,y] =0
1 =L,y :=0 zo i= 1

y1 = f; y1 = f; y1 = f;
=1,y =1 @ ::12,yi::L e S el
TQ 1= xg = L,y =

Fig. 2. Proposition monitor fop, wheref = future(y) and[££] = 2.

what follows, we think about the current time pointtagor example, ifc] = 2.37 and
y7 = 1.49, from our point of viewr was true during the interva-2.37, —1.49). In
order to proceed with the construction of the dependentdiengomata we first define
constraints that describe the truth values of subformuias o

— Consider the subformula, = <> ;) ¢. We construct a constrain, (¢) that
describes when the subformula holds at timet € [—1 — 4¢,—1). Thus, no
states are created with respect to this subformula. Theularpy is true at time
t€[—1—4e,—1)if 3’ € (t,t+1).q(t'), thatis if for some we have—z! < t+1
andt < —y?.

In general, for bounded subformulas we use the informati@ady stored in the
state space and clocks of timed automata and dependent éintechata to con-
struct a constraint that tells us when the subformula holds.

— Consider the subformulas = pU ;. For such an unbounded formula our con-
struction includes two parts. First, we construct a depentimed automaton that
makes the guess regarding the future. Second, we use thesdiemt timed au-
tomaton to define constraints that tell us when the formuldshjpist like bounded
formulas.

e We start by constructing a dependent timed automaton fdrditievalue ofpo
at exactly—1 — 2¢. As 5 is an unbounded until, its truth value may depend
on events that occur arbitrarily far in the future. The peobéatic situation is
whenp holds throughouf{—1 — 2¢, —1 — ¢) but ¢, does not hold there. The
dependent timed automaton for the valuepgfis given in Figure 3, where the
invariants and guards are as follows.
Intuitively, in states; the automaton sees thatolds throughout the interval
(=1 —2¢,—1 — ¢€) and guesses that it will hold continuously until holds. In
statess the automaton sees that holds somewhere if-1—2¢, —1 —¢) andp
holds up to that point. In statg the knowledge is just like in;, however, the
automaton guesses thatalls beforep; rises. In state, the automaton sees a
violation to the until, that isp falls beforep; rises within(—1 — 2¢, —1 — ¢).
Formally, the state invariants are as follows:

I, I3 :Vt € (=1 —2¢,—1 — €)p(t) A =1 (t)

)
I, :3te(-1-2¢,—1—¢€).p1(t) AVt € (=1 — 2¢,t)p(t)
Iy, :3te(-1-2¢—-1—¢e)p(t) AVt € (=1 —2¢,t).mp1(t)

That is, I; and I3 maintain thatp is true throughouf—1 — 2¢,—1 — ¢€) but
< (0.1) ¢ is false. The invariant; maintains that somewhere (-1 —2¢, —1 —

e) we have(® q ;) ¢ holds andp holds up to that point ané, maintains thap
falls before> (;) g.

The transition guards use the extréo look ahead a bit further. Intuitively, a
guard makes sure that it is possible to cross to the nextatateses the extra
look-ahead to make sure that it is possiblsti@yin the next state a little while.
This is required in order to be able to determinize the automdormally, the
transition guards are as follows:

g g3 L ATEE =1 — e, —1)Wt € [-1 — €,£).p(t') A =1 ()
g2 LV ATte(—1—26—-1—¢€)Vt € (—1— 2¢,t).
e (', t' +€).or(t") AV € (¥, t").p(t")
gs LV (I3ATEe (—1—26,—1—¢€) .Vt € (—1— 2¢,t).
e ('t +€).—pt") AV € (', 1) —p1 ()

In case that determinization is not pursued, the extra kiwad can be re-
moved. In this case the guards diefor transitions intas; andss, I Vv I for
transitions intos,, andl, V I; for transitions intos,.
The output of the automaton is the propositigg,. The states; ands, as
well as all the transitions entering them are labeleghy All other states and
transitions are labeled byp,,,. The only unfair state is;, where we promise
to fulfill the until in the future. The automaton waits untilet clockz reaches
1 + 4¢, when the memory fills up’, and only then starts working.
¢ The dependant timed automaton and the propositjgrexpress the truth value

of ¢o at exactly—1 — 2e. We now describe the constraint that matches the
truth value ofyp, for everyt € [—1 — 4¢,—1 — 2¢]. Formally, for everyt €
[—1 — 4¢, —1 — 2¢] we haveps holds att if one of the following holds.

* If t = —1 — 2e andp,,, holds.

* If t < —1— 2¢, py, holds, and foralt’ € (¢, —1 — 2¢], p(t’) holds.

« If ¢ < —1 — 2e and there exists € (¢, —1 — 2¢) such thatp; holds att’

and forallt” € (t,t") we havep(t).

Let ¢5(t) be the constraint obtained by eliminating quantifiers frés tis-
junction.

— We now proceed to the top formula containipg, using the propositiop,,,. We
construct a dependent timed automaton for the value ef [] o5 at time—1 —
4e. We construct a dependent timed automaton with two statesd s; with the
following transitions and invariants. The invariantsgfis z < 1+ 4e. The invariant
of s3isVt € (=1 — 4e, —1 — 3¢).p2(t). The unique transition iésg, g, p,,, s3),
wheregisz =1+4e A3t > —1 — 3eVt” € [-1 — 3¢, t').p2(t"). The statess is
an accepting state and both the transition andre labeled by,,.

Recall, thaf] @2 = —(Trueld —ps). It follows that the dependent timed automaton
for ¢ can be thought of as a copy of the automaton in Figure 3. Tharianvt I,

is falsemaking states, redundant. Furthermore, @3 is the top most operator in
, we enforce the truth ap by enabling only the transition frosy, to s3, making
statess; ands, unreachable.

10

z=f/\g4;~|pw

Fig. 3. A dependent timed automaton for unbounded until.

This completes the construction of the timed automatonHerixample.

We now turn to the general construction. Consider an MTL fdexp. For subfor-
mulasy of ¢, we construct constraints that say whemolds at timet. For a bounded
subformula there is no need to add states. For an unboundéatiswlay (i.e., Until
where the upper limit isc) we add a small dependent timed automaton that computes
the value ofy at the time poinfut(¢) — fut(p). Based on this dependent timed au-
tomaton we then compute the constraint that says whiealds at timet. We start with
constructing property monitors for all the propositionpearing in the formula. For a
subformulay, we construct by induction fare [— f, —fut(¢)) the constraint)(t).

— For apropositiomp and fort € [— f,0), the constrainp(¢) is 3i.—z? < tA—y? > t.
Notice that the quantification andepends on the number of clocks in the proposi-
tion monitors.

— For subformulas of the formw), 11 V 19, Or 11 A 1o the combination of the
constraints is straightforward. The range allowedfisrthe minimal range allowed
by 1 andis.

— Consider a subformuleé = v U y1p2, wherel = (a,b) or I = [b,b].

By definitionfut(+) = b + maxz(fut(¢n), fut(¢p2)). It follows thati, is defined in
[—f, —fut(v)1)) andy, is defined in[— f, —fut(es)). So, fort € [—f, —fut())) it
is always the case that- b is in the range where (t) andi)y(t) are defined. In
the case thaf = (a,b), fort € [—f, —fut(¢)) we setyp(t) = 3’ € (t + a,t +
b).aba(t') AV € (t,t').4h1(t"). In the case thak = [b,b], fort € [—f, —fut(v))
we sety)(t) = a(t +b) AV € (t,t+ b).4p1(t).

— Consider a formula) = 11 U (4 00)P2-

By definitionfut(y) = a+2e+max(fut(yy), fut(eys)). It follows thaty, is defined
in [—f, —fut(«1)) andy, is defined in[— f, —fut(¢y2)). So, fort € [— f, —fut(¢)]
it is always the case thét, ¢t + a + 2¢) is contained in the range whetg andi,
are defined. We first construct a dependent timed automatandod then use the
output of this dependent timed automaton for computing atcaimt forqy.
e We construct a dependent timed automaton for the truth vaflug at time
t = —fut(¢). Again, we use the automaton in Figure 3, where the guards and

11

the invariants are as follows.

I, I3 YVt € (—fut(y), —fut(yp) + a +€)ap1(t) A
Vit € (—fut(y) + a, —fut(y)) + a + €).7a(t)
I, :3te (—fut(y)+a,—fut(y)+a+e).
Ualt) AVE € (—fut(), £)-01 (1)
Iy 3t(—fut(v), —fut(y)) + a +€).
= (t) AV € (—fut(y) + a,t).—ha(t)
91,93 : [1 A3t € [—fut(y) + a + €, —fut(y)) + a + 2¢).
Vit € [—fut(y) + a + €,)41 () A h2(t)
g2 LV (I A3t e (—fut(y), —fut(ey) + €).Vt' € (—fut(z)),t).
37 € (' +a,t' + a+e)ba(t”) AV € (")by (t")
gs IV (I3 ATt e (—fut(y), —fut(v) + €).Vt' € (—fut(e)),).
e ({1 +a+e€). (") AVE" € (' + a, t")—ha (')

Statess;, s and their incoming transitions are labeledzy, all other states
and transitions byp,,, ands; is the only unfair state.
e We now construct the constraint that describes the truthevaf+. For every
€ [—fut(p), —fut(¢)] we setyy(t) to the disjunction of:
* t = —fut(y) A py,
* t < —fut(y) A py AV € (t, —fut(y)].41(¢), or
x ¢ < —fut(y) At € (t+ a, —fut(v)) .o (') AV € (¢, t').4h1(2).
This completes the inductive part of the construction.

Consider the case that the top-most connectivig.ig’hen from the initial state of
the dependent timed automaton associated Wittve allow only the transitions te;
andss. Dually, if the top most connective isi/ we allow only the transitions te; and
s4. In case that the top-most connective is ihtwe add a dependent timed automaton
with three states. Lefl’ be the alphabet”” where AP’ are all the propositions intro-
duced during the construction. LBt= (X x I', {0}, {q0, 1, 92},C, 7, I, A, q0, {{a1 }}),
wherey(qo) = v(q1) = v(q2) = 0, I(q0) = = < f, andI(q1) = I(g2) = True The
transition relation isA = {(qo, 91,0, 1), (g0, g2,0,92) }, whereg; = p(—f) Az = f
andgs = —¢o(—f) Az = f. Thatis, the dependent timed automat®enters state; if
p is true at timed and statey; if ¢ is false at time). Stateq; is an accepting sink state
and statey, is a rejecting sink state.

Finally, the timed automaton fas, denoted byA,,, is the composition of the propo-
sition monitors with the dependent timed automata conttduabove. The proof of the
following theorem is given in Appendix B.

Theorem 1. For every timed sequeneewe havew = ¢ iff w € A,,.

Corollary 1. For every MTL formulap with m propositions,n unbounded temporal
operators, and inputs of bounded variability there exists a nondeterministic timed
automaton witl2mk - fut(y) + 1 clocks andB(2k - fut(y))™4™ states that accepts the
language ofp.

Proof. Every proposition monitor ha&k - fut(¢) clocks. There is an additional clock
for measuring the time elapsed since 0.

12

Every proposition monitor ha&k - fut(y) states. Every unbounded temporal oper-
ator has at most four states. The automaton associatedhgitop level formulgy has
at most three states. o

5 Deterministic Timed Automata

In this section we show that the automata constructed ind@eétcan be determinized.
This part is based on the separation of the real domain arzddbks from the automata
constructed for the discrete guesses. We give additionainements on the structure
of dependent timed automata that enable us to further detizerthem. With these
additional conditions in place, we can apply (a variant o $ubset construction to de-
terminize dependent timed automata. In order to simplispntation and save space,
we do not present the more complicated constructions defieen determinization for
automata on infinite words. Determinization for automatardimite words uses the
subset construction to follow all the runs of the nondetaistic automaton simulta-
neously. Then, an extra gadget is added to ensure that ohe adiis followed by the
subset construction is accepting. Adding this extra gaodigébp of the subset construc-
tion in our case is straight forward.

We assume that in our dependent timed automata for evesititan(q, g, o, ¢’) the
intersection ofy and(q) is either empty or isolated, i.e., there does not exist amope
interval (¢,¢') such that(¢,¢') C I(q) and(¢,t') Ng # @ and if (¢, g, 0,q’) is enabled
at timet then there is a small intervéd, t') such that(t,t') C I(¢’). Itis simple to see
that the dependent timed automata constructed in Sectiatisfysthis condition.

Let B = (X, INQ,C,v, 1, A, q,F) be a dependent timed automaton satisfying
these conditions. We are going to construct a determirdgjpgendent timed automaton
D that follows simultaneously all the runs Bf The construction is based on the subset
construction [19]. Thus, every state bfis a set of states @B. In a state)’ C Q, the
automatorD is following a set of runs oB ending in the state@’. Foraset)’ C Q let
1(Q) be A yeq () andI(Q") be A ey ~1(q). Let A(Q) = {(g,9.0,¢') € A | q €
Q'}. Forasetd' C Aletg(A") be A, ,, sea 9aNdg(A) beA, oo ea 9

Given a set of runs ending in states@ how can these runs be extended? Some
runs are extended by staying in the same state, some runstareled by crossing
discrete transitions (and cannot be extended by crossimay discrete transitions), and
some runs cannot be extended. We represent such a choicet¥y 89’ UA(Q’). Let
stay(T) = T N Q' be the states whose runs are extended by staying in the satae st
In particular, all transitions fromatay(T') have to be disabled. Lei(T) = A(Q")NT
be the discrete transitions taken by stateQirLet deadend(Q’, T') be the set of states
q € @ such thaly ¢ T and for every(q’, g,0,q¢") € T we haveq’ # ¢. That is, the
states whose runs cannot be extendedrmbete(T) = Q" \ (stay(T) U deadend(T)),
the set of states that have some transitions going out of théf Let target(T') be
stay(T)U{q|3(¢, g,0,q) € trans(T)}. Our deterministic automaton is going to take
a T-transition from a set associated with The guardg(T) of this transition is the
conjunction of the following: (&J (stay(T)) A g(A(stay(T))) — the invariant of states
whose run is extended must be satisfied and the guards ofaifigtions exiting them
must not be satisfied, (lg)trans(T)) Ag(A(move(T'))\T) — the guards of transitions

13

that are crossed must be satisfied and the guards of transsiliat are not crossed must
not be satisfied, and (¢)deadend(Q’, T)) AG(A(deadend(Q', T))) — the invariant of
states whose run is going to end must not be satisfied and #rdgaf the transitions
exiting them must not be satisfied. The case thatlend(T") andtrans(T') are empty
corresponds to all runs being extended and is not integestin

We construct the ‘deterministic’ dependent timed automdio The differences
from the construction in [19] are in bold. Léd? = (X, {0}, S,C,7',I', A, 50,),
whereS = 29, 5o = {qo}, the acceptance conditiam is ignored,for every state
s € S we havey’(s) = oand I’'(s) = I(s), and for every state € S andevery
setT C s U A(s) we add to A’ the transition (s, g(T), o, target(T)).

Theorem 2. For every deterministic timed automateh= (X, R,C,\, I, A, rg, F),
we haved ® D is deterministic.

Proof. Consider two transition$, = ((r, s), g1, p1, (r1,s1)) @andds = ((r, 8), g2, p2, (12, $2)).
If at least one of them is the result of a simultaneous trenmsigr a left-side transition
(wlog d7) then clearly eitheg; A go is unsatisfiable ok(r1) # A(r2) by the definition
of deterministic timed automaton. Suppose that both artg-s8gle transitions. Thus,
r=ry =ryandp, = py =0.LetT), Ty C set(s)U A(set(s)) be the sets used for the
transitions(s, g}, 0, s1) and(s, g4, o, s2) in D. Eitherstay(T), move(T), trans(T), or
deadend(T) is different. In each case, the guard@fincludes some conjunetsuch
that—c is a conjunct in the guard af,.

Consider a transition = ((r, s), g, p, (', s’)). If § is the result of a simultaneous
transition or a left-side transition then bybeing deterministic, eithex(r) # A(r’) or
the intersection of andI(r) is either empty or isolated. Consider the case dhiatthe
result of a left-side transition. L&t C set(s) U A(set(s)) be the set used for definition
of (s,q’,0,s") in D. Eithertrans(T') or deadend(T') is not empty. Iftrans(T) is not
empty, then there is a stajec set(s) and a transitioriq, g, o, ¢’) in T'. By assumption
g is enabled in an isolated point if{¢) andJ is enabled at most in an isolated point
in I(s). If deadend(T') is not empty, then there is a stafec set(s) such thatl(s)
includes!(¢) andg includes—I(q). Hence,I(s) A g is unsatisfiable. 4

In the full version, we include the timed version of [18] artbw that the resulting
deterministic automaton accepts the same language.

6 Conclusions

Motivated by practical problems such as synthesis of tinwedrollers from real-time
temporal specifications, we developed a procedure thegl&ts full MTL to determin-
istic timed automata. Apart from its practical applicagpour construction provides a
better understanding of sources of non-determinism aat®aktivith real-time temporal
logics and timed automata.
In the future, we intend to investigate further improvensasftour construction:
— In the full version consider MTL with past operators. Thidgemsion does not in-
crease the complexity of the construction as satisfactigrast operators depends
only on the observation of memorized events in the propmsitionitors.

14

— Interpret the logic over finite signals, in the context ofinalmonitoring of timed
behaviors.

— Optimize and improve the translation. One straightforwardrovement would re-
guire a smarter memorization of events in the propositionitocs.

— Implement the translation presented in this paper, in di@éwvestigate its appli-
cability to the practical controller synthesis from MTL sifecations.

Acknowledgments

We thank J. Harrison and B. Cook for their explanations regardingtifiearlimination.

References

R. Alur. Timed automata. IGAV, LNCS 1633, pages 8-22. Springer, 1999.
R. Alur and D. Dill. A theory of timed automatd@CS 126(2):183-236, 1994.
R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxingcpuality. JACM,
43(1):116-146, 1996.
4. R. Alur and T.A. Henzinger. Logics and models of real time: a surireReal Time: Theory
in Practice LNCS 600, pages 74-106. Springer, 1992.
5. E. Asarin, P. Caspi, and O. Maler. Timed regular expressit?hSM, 49(2):172-206, 2002.
6. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, Bndlime. UpPAAL-Tiga:
Time for playing games! €AV, LNCS 4590. Springer, 2007.
7. M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation envirominfor component-based
real-time systems. IGAV, LNCS 2404. Springer, 2002.
8. K. Havelund and G. Rosu. Efficient monitoring of safety properti®3TT 6(2):18-173,
2004.
9. T.A. Henzinger. It's about time. I6oncur, LNCS 1466, pages 439-454. Springer, 1998.
10. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic rabchecking for real-
time systemsIC, 111:193-244, 1994.
11. R. Koymans. Specifying real-time properties with metric temporal I&®gal-time Systems
2(4):255-299, 1990.
12. K. G. Larsen, P. Petterson, and W. Yi.PRAAL: Status & developments. I6AV, LNCS
1254, pages 456—459. Springer, 1997.
13. O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Passent, future. In
FORMATSLNCS 3829, pages 2-16. springer, 2005.
14. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automataFDRMATSLNCS
4202, pages 274-289. Springer, 2006.
15. O. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllersnflmounded-response
properties. ICAV, LNCS 4590, pages 95-107. Springer, 2007.
16. D. Monniaux. A quantifier elimination algorithm for linear real arithmelicLPAR LNCS
5330, pages 243-257. Springer, 2008.
17. J. Ouaknine and J. Worrell. On the decidability of metric temporal loyid-ICS, pages
188-197, 2005.
18. N. Piterman. From nondeterministiéiéhi and Streett automata to deterministic parity au-
tomata.LMCS 3(3):5, 2007.
19. M.O. Rabin and D. Scott. Finite automata and their decision probldBig. Journal of
R&D, 3:115-125, 1959.
20. S. Safra. On the complexity afautomata. IFFOCS pages 319-327, 1988.
21. S. Yovine. Kronos: A verification tool for real-time syster88.TT 1(1-2):123-133, 1997.

wn e

15

A Quantifier Elimination over the Reals

We give a short introduction to quantifier elimination ovee teals. We concentrate on
linear inequalities that arise in the constraints definettiénpaper.

Given a set of free Real variablé§ = {z1,...,z,} and free Boolean variables
B = {by,...,b,} an atomic formula is eithdrfor b € B, x 1y + d, orz > d for
x,y € X andd an integer. The syntax of first order formulas is defined bygtiaenmar

f=al=flfiVfol3af Ve f

whereaq is an atomic formula, angd € X is a Real variable. A formula iquantifier
freeif the last two options are not used.

Theorem 3. Every first order formula can be converted to an equivalemtrifier free
formula.

Proof. We show how to convert a formula of the fofit f over the variable$t, =1, ..., z,}
to an equivalent formula over the variables,, . . ., 2, }. Multiple quantifiers and uni-
versal quantifiers are handled by repeated applicationisfpfocedure and using the
equalityVt. f = -3t.— f.

Consider a formulg. We treat atomic formulas as Booleans and conyed dis-
junctive normal form. That is, there is a formula= \/f:1 ¢; Wherec; is a conjunction
of atomic formulas. We can replace the order of existentiangification and disjunc-
tions. Thus,ﬂt.(\/f:1 ¢i) = \/le(zlt.cq;). It follows that we have to be able to remove
the quantification from a formula of the forat.c wherec is a conjunction of atomic
formulas. Letc = A}, a; wherea; is an atomic formula. Ordefay, . . ., a,, } as fol-
lows. Letas,...,a,, be the atomic formulas that do not contain the variableet
Gmy+1, - - - » Am, DE the atomic formulas of the form+ d < ¢, wherexie {<, <}, and
dis aninteger. Let,,+1, - - . , an, be the atomic formulas of the fortn< = + d, where
i€ {<, <}, andd is an integer.

Itis simple to see thait. \J" | a; is equivalent to\", a; A 3t.((A]2,,, 11 a;) A
(/\;-n:m2+1 (lj)). Letaj =x;+ dj > t forj S {m1 +1,... ,mg} and Ietaj =1 >
xzj+d;forj e {mo+1,...,m} wherex;e {<, <} andd, are integers foralj. Then,
Jt.c is equivalent to the following formula.

mi ma2 m
/\ a; A /\ /\ (ZE]‘ + dj DD X5+ dj/),
j=1

j=mi+1j'=ma+1

where;>a;, is < if both > and;, are< and< otherwise. a4

We note that Theorem 3 and its proof are well known. Howeveelements of the
proof are required for the proof of Lemma 1 we decided to idelthe proof here.

The process of converting a formula to a quantifier free fdanmicalledquantifier
elimination As we have to convert the formula to DNF format, the pricedaanti-
fier alternation is worst case exponential. Modern techesdar eliminating quantifiers
employ SAT solvers for suggesting conjuncts that may form@fethe DNF and trying
to simplify them. If a conjunct simplifies tfalse then the SAT solver learns the conflict

16

and adds it to the set of original constraints such that oahjuncts that do not have
the same contradiction can be suggested in the future. Ity weses with simple lin-

ear inequalities (as in our case) quantifier eliminationksavell in practice [Personal
Communicatication, B. Cook]. In our case, all the free Jalga associated with one
proposition are ordered and the formulas contain many aatstwhich should make
quantifier elimination even simpler.

We note that quantifier elimination does not take formulasafthe subset of al-
lowed constraints. The most complex atomic constraintswetl in our setting are com-
parisons of two clocks. We show that quantifier eliminati@mmot create an atomic
constraint with a comparison of more than two clocks.

Lemma 1. Quantifier elimination results in formulas where atomic staints are of
the formz > d or x <y 4 d for z,y € X andd and integer.

Proof. We prove the lemma by induction on the number of eliminateahtjtiers. If no
quantifiers are eliminated then every atomic constraint te@desired form. Consider
a constraint that appears in a formula after one quantifierirgtion. If the quantifier
elimination did not affect this atomic constraint, in whicse it is of the desired form.
Otherwise, the constraint was obtained by quantifier elam from two constraints
of the formz + d < ¢t andt < y + d’. The new constraint is of the form< y +d’ — d
and maintains the required format.

B Proof of Theorem 1

Proof. The proof proceeds by induction on the structure of the foamu Let f =
—fut(yp) andD,, the dependent timed automaton associated with the sublarmnoif

typedj = 1/11 u(a,oo)wQ-

= Assume that4, accepts an input wordb. Then there exists an accepting run
¢ of A, on w. Given that this run is in some state @t then for everyt €
[—f, —fut(¢))), the constraint)(¢) is satisfied at; iff (w,t; +1t) E 9.

e ¢y = p: for the base case, if the state at timesatisfies(¢) with t € [—f,0),
then by definition there is a clock paif, v s.t. —z¥ <t and—y? > ¢. Then,
attimet; + ¢, —zf < 0 and—y! > 0, that is the proposition monitor fqr
was in a stateo; 1, observing, thatis(w, t; 4+ t) = p. Similarly, if the state
at timet, does not satisfy(t), for all clock pairsz?, y¥, we have—z? > ¢ or
—y? < t,and at timet; + ¢, —2¥ > 0 and—y? < 0, that is the proposition
monitor forp was in a states;, observing-p, that is(w, t; + t) = p. Hence
p(t) is true atty iff (w,t1 +1t) = p.

o) = 1 U2 If the state at, satisfies the constraini(t) = 3t' € (¢ +
a,t +b) s.t.pa () andVt” € (t,t) ¥1(t’) with ¢ € [—f, —fut(e)), then,
by inductive hypothesisit’ € (t1 +t + a,t1 +t + b) s.t. (w,t') = 12 and
vt'" € (ty +t,t') (w,t") = 41, and consequentlyyw, t1 +t) = b1 U (q,5)%2-
Conversely, if the state @ does not satisfy)(¢), thenVt' € (¢t + a,t + b)
- (t') or 3" € (¢,t') s.t.¢1(¢”). By inductive hypothesisyt’ € (¢; +
t+a,ti +t+0) (wt') E g orI € (¢ +t,t) st (w,t") FE 1,

17

and consequentlyw,ty + t) = 11U 4 p)02. Hence (i) is true att, iff
(w,t1 + 1) F 01U (a,p) e
o 1) =1 Up y)1a: the proof is similar tapy U 4,).
o) = 1P1U (4,00)%2: We first show thaD,, outputspy, att iff (w,t;—fut(y)) =
Y1U (q,00)2- If Dy outputspy, then itis in one of the states, s,:
x The state invariant ofs is

Iy : 3t € (—fut(v) + a, —fut(y)) + a + €).1a(t)A
vt € (—fut(y), t)ia(t)

By inductive hypothesis,

It e (t; — fut(y)) + a, t; — fut(y) + a+e) . (w,t) | oA
vt € (1 — fut(y), t) (w, 1) |= 1

Hence(w, t1 — fut(v)) = ¥1U (q,00)¥2.
* The state invariant of; is

I : vt € (—fut(y), —fut(w) +a + €)ap1(t) A
Vit € (—fut(y) + a, —fut(v) + a + €). =2 (t)

States; is unfair and the only outgoing transition goestolt follows that
existsé > 0 s.t. D,, takes the transition & + J whereg, holds, andl;
holds during(t1,¢; + §). It is simple to see thaj, corresponds to

It € (—fut(y) + a, —fut(y)) + a + 2¢).4h2(H)A
vt' € (—fut(vy),t).41(t)

By inductive hypothesis,
vt € (t1 — fut(e), t1 — fut(y) + a + e+ 0)(w, t) = 9y
and

It e (t; — fut(y) + a+ 6,1 — fut(v) + a + 2e + 6)(w, t) E Pa(t)A
vt € (t1 — fut(y) +0,¢).(w, ') | ¢1

Combining the two(w, t; — fut(v)) = 1 U (q,00)P2-
+ If at ¢, Dy, takes the incoming transition @, the guardy, is satisfied. It
is simple to see that, corresponds to

Jt € (—fut(e)) + a, —fut(y)) + a + 2¢).12(t)A
vt' € (—fut(¢),t).41(¢)

By inductive hypothesis,

3t € (t1 — fut(y) + a, t1 — fut(y)) + a + 2€).(w, t) E PaA
V' € (t1 — fut(y),t) (w,t") E 1y

that is,(w, t; — fut(¥)) = ¥1U (4,00)02-

18

* Ifat ¢y, Dy takes the incoming transition g, the guardy, is satisfied. It
implies that

3t € [~fut(y) + a + ¢, —fut(¢) + a + 2¢).
vt' e (—fut(y), t) ¢ (t')

By inductive hypothesis

3t € [t1 — fut(y) + a + €, t1 — fut(y) + a + 2¢).
V' € (t1 — fut(y),t) (w,t') =1y

Letd € (0,¢) s.t. Dy isin sy att; + 6. Suchd exists, becaus®,, must
stay ins; for some strictly positive time. Then, for evefy € (0,4), we
have shown that thatw, t; — fut(y) + ") | 11U (4,00)%2. Combining
the two, it follows that(w, t1 — fut(v)) = ¥1U (4,00)Y2-
If Dy, outputs—p,, thenD,, is in one of the states;, s..
* The state invariant of, is

I, : 3t € (—fut(v), —fut(y)) + a + €).=p(t)A
vt' € (—fut(v) + a,t) s (t)
By inductive hypothesis,

It € (t; — fut(y),t; — fut(y)) + a +€).(w, t) = 1A
vt' € (ty = fut(y) + a,t) (w,t') b o

thatis(w, t1 — fut(v))) = ¥1U (4,00)P2-
* The state invariant ofs is

I : Vvt € (—fut(y), —fut(y) + a+ €)1 (t) A
Vi € (—fut()) + a, —fut(y)) + a + €).—ho(¥)

Statess is fair and the only outgoing transition goesstg It follows that
either
- Dy, stays forever irs3
- existsé > 0 s.t. Dy, takes the transition & + ¢ whereg, holds, and
I5 holds during(ty, t1 + 9).
In the first casey, never becomes true, $o, t; —fut(v)) = V1 U (q,00)Y2-
We now consider the second case. It is simple to segthairresponds to

3t € (—fut(y) + a, —fut(y)) + a + 2€).—h1 (H)A
vt € (—fut(y),).~ (t)
By inductive hypothesis,
Yt € (t1 — fut(y), t1 — fut(yp) + a+ e+ 0)(w,t) = 1
and

Jt e (t1 — fut(y) + a+ 0,61 — fut(v) + a + 2e + 0)(w, t) = 1A
Vi’ e (tl — fut(z/)) + 0, t)(w,t’) [# o

Combining the two(w, t1 — fut(v)) = ¥1U (q,00)P2-

19

« If at time ¢; Dy, takes an incoming transition t,, the constrainy, is
satisfied. It is simple to see thaf corresponds to

3t € (—fut(y), —fut(®) + a + 2¢).—Y1 (E)A
Vi € (—fut(y) + a,t) b (t’)

By inductive hypothesis,

3t e (t1 — fut(y), t1 — fut(v) + a + 2¢€).(w, t) = 1A
vt' € (tr — fut(y) + a,t) (w, 1) = ha(t')

thatis(w, t1 — fut(y))) E ¥1U (a,00) P2
« If att,, Dy, takes the incoming transition g, the guardys is satisfied. It
implies that

3t € [—fut(y) + a + €, —fut(v) + a + 2e).
vt' e (—fut(y),t) ¢ (t')

By inductive hypothesis

3t e [t1 — fut(y) + a + €, t1 — fut(v)) + a + 2¢).
Vit € (t1 — fut(v),t) (w,t’) E 1

Letd € (0,¢) s.t. Dy isin sy atty + 6. Suchd exists, becaus®,, must
stay insg for some strictly positive time. Then, for evefy € (0,4), we
have shown that thatw, t; — fut(v) + ") F~ 11U (4,00)%2. Combining
the two, it follows that(w, t1 — fut(v))) = Y1 U (a,00)¥2-
This finishes the proof thdd,, outputsp,, atty iff (w, t1 —fut(v)) = ¥1U (q,00)Y2-
Now, we have to considere [— f, —fut(¢)) and there are two cases:

« If the constraintp,, AVt € (t, —fut(¢)].41(t) is satisfied, therfw,t —
fut(y)) = 91U (a,00)¢2 andVt’ € (t, —fut(y)].41(t) is added. By in-
ductive hypothesist’ € (t1 + ¢,t1 — fut(¥)], (w,t') E ¥1 and(w,t; —
fut(v)) F ¥1U (a,00)%2. Combining the two, we conclude thab,t; +
t) | 1U (q,00)02. Similarly if —py, v 3t € (t, —fut(y)].1(t), then
by inductive hypothesisit’ € (t1 + ¢,t; — fut(y)], st (w,t") & ¢, or
(w,t1 — fut(y))) £ 1 U (a,00)%2, thatis(w, t1 + 1) & Y1U (4,00)P2-

« If the constrainBt’ € (¢t + a, —fut(y) + a].y2 (') AV € (¢,t).41(t) IS
satisfied, by inductive hypothesist’ € (¢t1 + t + a,t; — fut(y)) + a] st
(w,t) E 1 andVt” € (t; + t,t') (w,t”) = 1o, hence(w,t; +t) =
Y1U (4,00)%2- Conversely if the constraint is not satisfied, théhc (¢ +
a, —fut(y)+al.—o (t)VI" € (¢,t').—1 (), and by inductive hypothesis
V' € (t1 +t+ a,t1 — fut(y) + a] (w,t') = 1 and3t” € (¢ +¢,t) st
(w, t//) [75 P, hence(w, t1 + t) 175 Y U(aﬁwﬂ/}g.

Combining all above points, we conclude that for anry [— f, —fut(«)], ¥ (t)
is satisfied at; iff (w,t1 +1) = V1 U (4,00) %2
This completes the proof that the existence of an acceptingmplies the input
word satisfies the formula.

20

<= Assume that for some word we havew = ¢. We then construct an accepting run
¢ of A, onw. For this run, it holds that if the run is in, then for any subformula
of ¢, the constraint)(¢) is true atty iff (w, ¢ +1t) ¢ fort € [—f, —fut(y)). We
construct the run by induction on the structure of the foamsullhat is, we supply
the run of a dependent timed automaton for a subformylel (, 7> after we
construct (by induction) the automata for and, and establish the correctness
of the constraints for); andi)s. Let ¢ be the formula and lef = fut(y).

e ¢ = p: for the base case, the proposition monitor is determinéstd does not
affect the acceptance of the run.

The proof that for the (unique) run of a proposition monifor,every timet,
and for everyt € [—f,0) we have(w,t; + t) |= p iff p(¢) holds at timet; is
similar to the proof in the directioa=- above.

e Consider a subformule: = ¢ U ;1)2, wherel = (a,b) or I = [b,b]. Notice
that this formula does not add states to the automaton. Byctiah the runs
constructed for the automata fgn andq. satisfy thaty; () holds att; iff
(w,t1 + t) ': 1/}1
The proof thatw, t1 +t) = v iff at time ¢; the run satisfies the constrain(t)
is similar to the proof in the directioa= above.

o Consider a subformulg = v, U (4, 2. We have to show how to resolve the
nondeterminism of the dependent timed automdignconstructed for).
Consider the following three conditions relating to a titpe

1. There exist$’ € (t; —fut(y)) +a,t; —fut(v)) + a + €) such thaty, holds
at timet’ and for everyt” € (t; — fut(¢),t') we havey; holds at”.
2. There exist®’ € (t1 — fut(¢y), t1 — fut(¢)) + a + €) such thatp; does not
hold att’ and for everyt” € (t; — fut(v) + a,t’) 1> does not hold at”.
3. Forevenyt’ € (t; — fut(y) + a,t; — fut(v)) + a + €) we havey, does not
hold att’ and for everyt” € (t1 — fut(¢),t; — fut(¢y)) + a + €) we have
11 holds att”.
It is simple to see that these three conditions are mutuatijusive and their
disjunction is valid.
We now partition the time line (greater thart(y)) into a (minimal) sequence
of adjacent interval§,Ty ... s.t. T; = (t;,t;41) With t,41 > ¢; andty =
fut(e) s.t. in every interval the input word satisfies one of the ¢hadove
conditions. Note that such a partition is well-behaving Zemo-behavior) due
to the bounded-variability of the input word.
We associate to every interva] one of the states ab,:
« If T; satisfies the condition (1), the associated state.is
« If T; satisfies the condition (2), the associated statg.is
x If T; satisfies the condition (3), the associated state is either s3, re-
sulting in the non-deterministic choice. This non-deteiism is resolved
by the following mutually exclusive conditions:
- If T;4, satisfies the condition (1), the state associatét} ie s .
- If T; 1, satisfies the condition (2), the state associateét] i0 ss.
- If T; is the last interval, that i%; = (¢;, c0), its associated state is.
The run ofD,; is generated as a sequence of states according to the alvove pa
tition of the time line w.r.t. the input word. The generated is valid because

21

at anyt € I;, the run is in a state whose invariant is equal to the comditio
of T;, and at any time;,; between two adjacent intervalsT; 1, there is a
transition between the statesfin, that are associated #j and7;, , that is:

x Consider a transition entering state By definition of the intervals above,
the only possible transitions are frory, s2, andss. This matches the
structure of the automaton.

The guardy; is equivalent ta/; A ¢; wherec; is

Jt € [—fut(y)) + a + €, —fut(y)) + a + 2e¢).
vt € [—fut(y) + a + €, 1)1 (t) A —ha(t')

The conditionc; means thaf; holds in some non-singular prefix ©f, ;.
As I holds throughout’; , 1, it is simple to see thak; holds att;, ;.
If the transition enters; from sy then clearlyz = f holds as well.

x Transitions enterings are similar to transitions entering.

x Consider a transition entering state
By definition of the intervals above, the only possible tiaoss are from
S0, 81, ands,. This matches the structure of the automaton.
The guardy, is equivalent tdls V (I; A ¢2) wherec, is

3t e (—fut(y), —fut(y) + ¢).Vt' € (—fut(y), t).
" e (t' +a,t’ +a+€)pa(t) AV € (") (¢)

The conditionce means thaf, holds in some non-singular prefix ©f, ;.

As I, holds throughout’;, 1, it is simple to see that eithdg holds att;

or I; holds att;, 1, depending on whether the region whergis true is
left closed or left open.

If the transition enters, from s, then clearlyz = f holds as well.

x Consider a transition entering state By definition of the intervals above,
the only possible transitions are frory, s2, andss. This matches the
structure of the automaton.

The guardy, is equivalent tdly VV (I; A ¢4), Whereey is:

3t € (—fut(v), —fut(y)) + €).Vt' € (—fut(e)),t).
3" e (t', ' +a+e) .~ (t") AV € (' +a, ")y (t")

The conditionc, means thaf, holds in some non-singular prefix f, ;.

As I, holds throughout’;, 1, it is simple to see that eithdg holds att;

or I holds att;,,, depending on whether the region whergeis false is

left closed or left open.

If the transition enters, from sq then clearlyz = f holds as well.
Moreover, the generated run is accepting, since the onlgiustfate inD,, is
s1, and the run can be in that state at saneel; only if [; is followed by1;
that satisfies condition (1), that is by state
The proof that for every; we haveD,, outputsp,;, atty iff (w,t, —fut(y)) =
1 is similar to the proof in the directioa=- above. Based on the correctness
of p,, the proof that at time; the constraing(¢) holds iff (w, t; + t) = ¢ is
also similar to the proof in the directice= above.

22

This completes the proof that for every formuyfaif the input word satisfies the
formulae, there is an accepting run.df, induced by that word.

23

