
From MTL to Deterministic Timed Automata

Dejan Nickovic1⋆ and Nir Piterman2⋆⋆

1 EPFL, Lausanne, Switzerland
2 Imperial College London, London UK

Abstract. In this paper we propose a novel technique for constructing timed au-
tomata from properties expressed in the logic MTL, under bounded-variability
assumptions. We handle full MTL and in particular do not impose bounds on the
future temporal connectives. Our construction is based on separationof the con-
tinuous time monitoring of the input sequence and discrete predictions regarding
the future. The separation of the continuous from the discrete allows us to further
determinize our automata. This leads, for the first time, to a construction from
full MTL to deterministic timed automata.

1 Introduction

Timed automata [2], automata equipped with clocks, have been studied extensively in
recent years as they provide a rigorous model for reasoning about quantitative time.
Together with other formalisms such as real-time logics, real-time process algebras and
timed Petri nets, they constitute an underlying theoretical basis for the specification
and verification of real-time systems. The main attraction of timed automata is due to
their suitability for modeling certain time-dependent phenomena, and the decidability
of their reachability (or empty language) problem, a fact that has been exploited in
several verification tools, e.g. Kronos [21] and Uppaal [12]. Recently there has also
been interest in timed games and synthesis of timed controllers (e.g., [6]).

As in the untimed case, we would like to combine the model of timed automata with
a powerful logic. Many variants of real-time logics [11, 4, 9, 8] as well as timed regular
expressions [5] have been proposed. However, unlike the untimed case, the correspon-
dence between simply-defined logics and variants of timed automata is not simple. One
of the most popular dense-time extensions of LTL is the logicMITL introduced in [3]
as a restriction of the logic MTL [11]. The principal modality of MITL is the timed
until U I whereI is some non-singular interval. A formulapU (a,b)q is satisfied by a
model at any time instantt that admitsq at somet0 ∈ (t+ a, t+ b), and wherep holds
continuously fromt to t0. Decidability of MITL was established in [3] by converting
an MITL formula to a nondeterministic timed automaton and analyzing the structure of

⋆ Supported in part by the EU COMBEST project. Part of this work was donewhile this author
was at Verimag, CNRS, Grenoble, France.

⋆⋆ Supported in part by the UK EPSRC projectComplete and Efficient Checks for Branching-
Time Abstractions(EP/E028985/1). Part of this work was done while this author was a visiting
researcher at Verimag, CNRS, Grenoble, France.

that automaton. Further investigations of MITL and MTL suggested alternative transla-
tions of MITL to nondeterministic timed automata [14, 15] and used alternating timed
automata to show decidability of MTL in certain circumstances [17].

In many cases, such as synthesis of timed controllers or online monitoring of timed
behavior, we are interested in translating temporal specifications to deterministic timed
automata. For MITL, this is, unfortunately, impossible [13]. Consider, for example, the
formulaϕ = 0 (0,a)(p→ 1 (a,b) q), which says that for everyt ∈ (0, a), if p is true at
timet then there is a time pointt′ ∈ (t+a, t+b) in whichq holds. In order to construct a
deterministic automaton forϕ, we need infinite memory to remember all occurrences of
p within the interval(0, a). Furthermore, timed automata cannot be determinized [2].
Even if a fragment of MITL can be recognized by deterministictimed automata, we
cannot use the usual constructions for translation of MITL to timed automata. Indeed,
then there is no way to further determinize the automaton. Wehave to come up with
specialized constructions that go directly to deterministic timed automata.

This is the approach taken in [15]. In order to enable the translation to deterministic
automata, the assumption of bounded variability is taken. That is, there is a bound on the
number of changes in the input signal in a given time interval. As mentioned, we cannot
take the normal translation to nondeterministic automata and then use determinization,
we have to come up with specialized constructions that go directly to deterministic
automata. This is especially problematic when the formula includes predictions about
the future, namely, future temporal connectives. In [15], only the ‘safety’ fragment of
MTL is considered. They consider invariance properties, where the invariant may in-
clude past temporal operators and bounded future operators. Instead of saying that the
invariant holds at timet, we wait until the bounded future operators inϕ have elapsed
and then, looking back, we can decide if the invariant continues to hold. This is done
by effectively converting bounded future into past. As the past is naturally deterministic
[13], deterministic automata can be constructed directly from bounded MTL.

The construction in [15] distinguishes between two reasonsfor the impossibility
of determinization for timed languages. The first is unbounded variability, a property
that is used to show that timed automata cannot be determinized and complemented.
The second is a-causality, the value of a formula at timet may depend on the value
of input at timet′ > t. By assuming bounded variability we eliminate the first reason.
In [15] it is conjectured that a-causality on its own can be handled by ‘normal’ deter-
minization. Here, we prove this conjecture by a construction that takes full MTL (under
bounded variability) to nondeterministic timed automata followed by a determinization
construction for timed automata.

What is the problem with determinization for the normal conversion of MTL to
timed automata? Said constructions use clocks to accumulate regions where every sub-
formula is true. When coming to determinize timed automata, one cannot collect all the
possible values of the clocks associated with these parts3.

We take a different approach, by separating our timed automata into two parts. The
first is a ‘normal’deterministictimed automaton that uses clocks to collect times of
events. The second is adependent timed automaton, an automaton that uses the clocks

3 A notable exception is [17] reasoning about alternating timed automata with one clock; al-
though the resulting structure is not a timed automaton.

2

controlled by the first part, to makediscretepredictions regarding the future. It is the
dependent timed automaton that we later determinize.

We identify an ‘interest region’ for the MTL formula. We construct property mon-
itors, deterministic timed automata that memorize (using clocks) all events regard-
ing propositions in this interest region. Decisions regarding truth values of subfor-
mulas are delayed and decided retroactively. Consider a bounded temporal property
ϕ = ψ1 U (a,b)ψ2. Given that we ‘know’ the truth value ofψ1 andψ2 in the memorized
region, we can ‘deduce’ the truth value ofϕ in part of the region. Specifically, if the
memorized region is(t − f, t) (i.e., we are now reading timet and the memory region
is of sizef), then we deduce the truth value ofϕ in (t− f, t− b). We do not add states
for such subformulas. When considering an unbounded subformulaϕ = ψ1 U (a,∞)ψ2,
we construct a small automaton, that makes guesses regarding the future, for a given
time point within the ‘knowledge’ region.

Finally, based on two assumptions, we show that our dependent timed automata
can be determinized. First, transitions cannot be enabled throughout the stay in a state.
Second, when a transition is enabled the automaton can stay for a little while in the
target state. The determinization construction is a slightvariant of the determinization
construction for normal finite automata on infinite words [20, 18].

Even when ignoring the option to determinize, our construction has many advan-
tages when compared with previous constructions. In our construction the number of
clocks depends on the number of propositions, the depth of future depth of the longest
chain ofnestedtemporal operators, and the bounded variability of the input. In previous
constructions clocks are allocated according to variability and the depth of each oper-
ator separately. Thus, if operators are not nested within one another many more clocks
may be required. Furthermore, in our construction the number of states associated with
every unbounded until is constant while in previous construction every temporal oper-
ator requires states that are proportional to the number of active interval that temporal
operator may have. Furthermore, we note that if we consider the fragment of bounded
future operators considered in [15], then the automata produced by our construction are
also going to be deterministic without applying an extra determinization step. Finally,
existing translations usually require automata that alternate between states defined over
“singular” (zero-duration) and “open” intervals, difficult to implement in current tools
such as IF [7], Kronos [21], and Uppaal [12]. In our construction timed automata use
only left-closed right-open intervals, easier to handle byexisting tools.

2 Definition of MTL

A signal over a domainD is a functionw : T → D whereT is the time domain. The
time domain is either the setR≥0 of non-negative real numbers in the case of infinite-
length signals or an interval[0, r) if the signal is of finite length. We focus on the case
whereD is a finite domain, typically the setB

n of Boolean vectors overn variables (or
propositions). We denote bywp the projection ofw to the propositionp. Concatenation
of two finite signalsw1 andw2 defined over[0, r1) and [0, r2), respectively, is the
finite signalw = w1 · w2, defined over[0, r1 + r2) asw[t] = w1[t] for t < r1 and
w[t] = w2[t− r1] for t ≥ r1.

3

We introduce the future fragment of MTL interpreted over dense-time signals. The
syntax ofMTL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U I ϕ2

wherep belongs to a setP = {p1, . . . , pn} of propositions andI is an interval of the
form [b, b], (a, b), or (a,∞) where0 ≤ a < b are integer numbers. We say that an
intervalI is unboundedif it is of the form (a,∞), otherwise it isbounded. As in LTL

the basicMTL operators can be used to derive other standard Boolean and temporal
operators, in particular the time-constrainedeventually1 I ϕ = T U I ϕ andalways

0 I ϕ = ¬ 1 I ¬ϕ. It is also possible to express other types of intervals suchas[a, b],
[a, b), [a,∞), etc.

The semantics of anMTL formula ϕ with respect to ann-dimensional Boolean
signalw is described via the satisfiability relation(w, t) |= ϕ, indicating that the signal
w satisfiesϕ at timet, according to the following recursive definition.

(w, t) |= p ↔ wp[t] = 1
(w, t) |= ¬ϕ ↔ (w, t) 6|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U I ϕ2 ↔ ∃ t′ ∈ t+ I st (w, t′) |= ϕ2 and∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

A formulaϕ is satisfied byw if (w, 0) |= ϕ.
It is well known that MTL formulas can be translated to nondeterministic timed

automata [3, 14]. In Section 4 we suggest a new construction for converting MTL to
timed automata. The construction is based on computing a bound f from the formula
and the automaton at timet memorizes the input signal at the interval[t − f, t). The
value of the formula is computed with a delay, that is, when the automaton is reading
time t it computes the value of the formula for timet − f . In the remainder of this
section we compute the size of the interval the automaton needs to memorize in order
to make our construction work.

The truth value of a formulaϕ at timet depends on the input signal at some interval
[t, t + f). If ϕ does not contain subformulas with unbounded intervals thenmeasuring
this interval is straightforward. Ifϕ does contain subformulas with unbounded inter-
vals, then the truth value ofϕ at timet depends on guessing the future values of un-
bounded future operators. The main thing we note is that the guess regarding the future
is Boolean – does the formula change its truth value in the future or not. For example,
ϕ = qU (2,∞)r depends on the values ofq in the interval[t, t + 2 + 2ǫ). 4 In case that
q holds throughout the interval(t, t + 2 + 2ǫ), we guess whetherq holds continuously
until r starting at timet + 2 + 2ǫ. Based on this guess, we have sufficient knowledge
to establish whetherϕ holds at timet. The guess obviously needs to be checked. More
formally, we define the functionfut that determines the bound of this interval. We fix a

4 Strictly speaking, the knowledge of the values ofq in the interval[t, t + 2 + ǫ) is sufficient.
The extraǫ is necessary for determinization of timed automata obtained from MTL formulae.

4

smallǫ for the rest of the paper.

fut(p) = 0 Wherep is a proposition.
fut(ϕ1 ∨ ϕ2) = max(fut(ϕ1), fut(ϕ2))
fut(¬ϕ1) = fut(ϕ1)
fut(ϕ1 U Iϕ2) = a+ 2ǫ+max(fut(ϕ1), fut(ϕ2)) WhereI = (a,∞).
fut(ϕ1 U Iϕ2) = b+max(fut(ϕ1), fut(ϕ2)) WhereI = (a, b) or I = [b, b].

The functionfut is used also to decide where our ‘certainty’ regarding the truth
value of a formula expires. For example, if we know the value of q andr in the interval
[t− 4, t) our knowledge region for the formulaqU (2,∞)r expires at timet− 2− 2ǫ. In
case thatq holds throughout the interval(t−2−2ǫ, t) then the truth value ofqU (2,∞)r
depends on a guess thatq keeps holding untilr becomes true. We do know, however,
thatqU (2,∞)r has not been falsified and may still hold at timet− 2 − 2ǫ.

3 Timed Automata

We use a variant of timed automata that differs slightly fromthe classical definitions
[2, 10, 1]. Our automata read multi-dimensionaldense-timeBoolean signals and output
Boolean signals. Input and output are associated with statesandsometimes transitions.
We also extend the domain of clock values to include the special symbol⊥ indicating
that the clock is currentlyinactiveand extend the order relation onR≥0 accordingly by
letting⊥ < v for everyv ∈ R≥0. We freely use multiplication by−1 and comparison
with negative values. It follows that−⊥ > −v for everyv ∈ R≥0. For a setA ⊆ Rn

we usecl(A) to denote its closure (in the topological sense).
The set of valuations of a setC = {x1, . . . , xn} of clock variables, each denoted

asv = (v1, . . . , vn), defines the clock spaceH = (R≥0 ∪ {⊥})n. A configurationof
a timed automaton is a pair of the form(q, v) with q being a discrete state. For a clock
valuationv = (v1, . . . , vn), v + t is the valuation(v′1, . . . , v

′
n) such thatv′i = vi if

vi = ⊥ andv′i = vi+ t otherwise. Anatomic clock constraintis a condition of the form
x ⊲⊳ y + d or x ⊲⊳ d, wherex andy are clocks,⊲⊳ ∈ {<,≤,≥, >}, andd is an integer.
Let A(C) denote the set of atomic constraints over the setC of clocks. For a setX,
let B+(X) denote the set of positive Boolean formulas overX (i.e., Boolean formulas
built from elements inX using∧ and∨). Let C(C) = B+(A(C)) denote the set of
constraintsover the set of clocksC. We also view a constraintc ∈ C(C) as a subset
c ⊆ H. In what follows, we introduce free real variables to constraints and quantify
over them. That is, we use constraints in the first-order theory of the reals where clocks
in C are free variables. The elimination of quantifiers gives us constraints inC(C). We
include a short discussion of quantifier elimination in Appendix A. We used the tool in
[16] to eliminate quantifiers in some of the examples below.

Definition 1. A timed automatonisA = 〈Σ,Q, C, λ, I,∆, q0,F〉, whereΣ is the input
alphabet,Q is a finite set of discrete states, andC is a set of clock variables. We assume
thatΣ is 2AP for some set of propositionsAP . We freely use Boolean combinations
of propositions to denote sets of letters. The labeling function λ : Q → Σ associates
an input letter with every state. The staying condition (invariant) I assigns to every

5

stateq a constraintI(q) ∈ C(C). The transition relation∆ consists of elements of the
form (q, g, ρ, q′) whereq and q′ are discrete states, the transition guardg is a subset
of H defined by a clock constraint, andρ is the update function, a transformation of
H defined by an assignment of the formx := 0, x := ⊥, or x := y or a set of such
assignments. Finallyq0 is the initial state. Transitions leavingq0 haveTrue as their
guard and can use only updates of the formx := 0. We consider generalized Büchi
automata, whereF ⊆ 2Q.

The behavior of the automaton as it reads a signalw consists of a strict alternation
between time progress periods, where the automaton stays ina stateq as long asw[t] =
λ(q) andIq holds, and discrete instantaneous transitions guarded by clock conditions.
Formally, a step of the automaton is one of the following:

– A time step(q, v)
σt

−→ (q, v+t) t ∈ R>0 such thatσ = λ(q) and(v, v+t) ⊆ cl(Iq).

– A discrete step:(q, v)
δ

−→ (q′, v′), for some transitionδ = (q, g, ρ, q′) ∈ ∆, such
thatv ∈ g andv′ = ρ(v).

Letv⊥ = (⊥, . . . ,⊥) be the assignment of⊥ to all clocks. Arun of the automaton start-
ing from a configuration(q0, v⊥) is a finite or infinite sequence of strictly alternating
time and discrete steps of the form

ζ : (q0, v0)
δ0−→ (q1, v1)

σ
t1
1−→ (q1, v1 + t1)

δ1−→ (q2, v2)
σ
t2
2−→ (q2, v2 + t2)

δ2−→ · · · ,

such thatΣiti diverges. A runζ is accepting if for everyF ∈ F the set of times
instances in which states fromF are visited is unbounded. The input signal carried by
the run isσt11 ·σt22 · · · , where we abuse notation and denote byσtii the concatenation of
the punctual signalσi and the open signalσtii . That isσi : [0, ti) → Σ such that forall
t ∈ [0, ti) we havew(t) = σi.

Given two timed automataAi = 〈Σi, Qi, Ci, λi, Ii,∆i, q
i
0,Fi〉, for i ∈ {1, 2},

their compositionA1 ‖ A2 is 〈Σ1 ×Σ2, Q1 ×Q2, C1 ∪ C2, λ, I,∆, (q
1
0 , q

2
0),F〉, where

λ(q1, q2) = (λ1(q1), λ2(q2)), I(q1, q2) = I1(q1) ∧ I2(q2), andF = {S × T | S ∈
F1 andT = Q2, orS = Q1 andT ∈ F2}. The transition∆ includes three kinds of
transitions as follows.

– Simultaneous transitions((q1, q2), g, ρ, (q′1, q
′
2)), where(qi, gi, ρi, q′i) ∈ ∆i for i ∈

{1, 2}, g = g1 ∧ g2 andρ = ρ1 ∪ ρ2,
– Left-side transitions((q1, q2), g, ρ, (q′1, q2)), where(q1, g1, ρ, q

′
1) ∈ ∆1 andg =

g1 ∧ I2(q2), and
– Right-side transitions((q1, q2), g, ρ, (q1, q′2)), where(q2, g2, ρ, q

′
2) ∈ ∆2 andg =

I1(q1) ∧ g2.
A timed automaton is deterministic if from every reachable configuration every

event and every ‘non-event’ leads to exactly one configuration. This means that the
automaton cannot make both a ‘silent’ transition and a time passage in the same con-
figuration.

Definition 2. A deterministic timed automatonis an automaton whose guards and stay-
ing conditions satisfy:
1. For every two distinct transitions(q, g1, ρ1, q1) and (q, g2, ρ2, q2) we have either
λ(q1) 6= λ(q2) or g1 ∧ g2 is unsatisfiable.

6

2. For every transition(q, g, ρ, q′), eitherλ(q) 6= λ(q′) or the intersection ofg and
I(q) is either empty or isolated, i.e., there does not exist an open interval (t, t′)
such that(t, t′) ⊆ I(q) and(t, t′) ∩ g 6= ∅.

We introduce dependent timed automata. These are automata that do not have clocks
of their own, however can ‘read’ the clock values of other timed automata. Furthermore,
we add to dependent timed automata output and the composition of dependent timed au-
tomata allows one automaton to read the output of the other. Dependent timed automata
allow us to separate the continuous from the discrete when reasoning about MTL for-
mulas. The composition of a dependent timed automaton with atimed automaton results
in a timed automaton.

Definition 3. A dependent timed automatonisB = 〈Σ,Γ,Q, C, γ, I,∆, q0,F〉, where
the following is different from timed automata. We add an output alphabetΓ , an output
functionγ : Q→ Γ , and remove the labeling function. The staying conditionI assigns
to every state a Boolean combination of atomic constrains and input lettersI : Q →
B+(A(C) ∪ Σ). The transition relation∆ consists of elements of the form(q, g, o, q′),
whereg ∈ B+(A(C) ∪ Σ) is a Boolean combination of atomic constraints and input
letters,o ∈ Γ is an output, and the clock update is removed. We assume thatΓ =
2AP for some set of propositionAP and we freely use propositions to define staying
conditions and transition guards.

Consider two dependent timed automataBi = 〈Σi, Γi, Qi, C, γi, Ii,∆i, q
i
0,Fi〉

for i ∈ {1, 2}, whereΣ2 = Σ1 × Γ1. The compositionB1 ⊗ B2, whereB2 reads
the output ofB1, is the following dependent timed automaton. LetB1 ⊗ B2 = 〈Σ,
Γ1 × Γ2, Q1 × Q2, C, γ, I, ∆, (q10 , q

2
0), F 〉, whereγ(q1, q2) = (γ1(q1), γ2(q2)) and

F = {S × T | S ∈ F1 andT = Q2, orS = Q1 andT ∈ F2}. The staying condition
is I(q1, q2) = I1(q1) ∧ simp(γ1(q1), I2(q2)) wheresimp(γ1(q1), ϕ) is the constraint
obtained fromϕ by replacingγ1(q1) by true and all other letters inΓ1 by false. The
transition∆ is similar to the composition of timed automata and includes(a) simultane-
ous transitions((q1, q2), g, (o1, o2), (q′1, q

′
2)), where(qi, gi, oi, q

′
i) ∈ ∆i for i ∈ {1, 2}

andg = g1 ∧ simp(o1, g2), (b) left-side transitions((q1, q2), g, (o1, γ2(q2)), (q
′
1, q2)),

where(q1, g1, o1, q
′
1) ∈ ∆1 andg = g1 ∧ simp(o1, γ2(q2)), and (c) right-side transi-

tions((q1, q2), g, (γ1(q1), o2), (q1, q
′
2)), where(q2, g2, o2, q

′
2) ∈ ∆2 andg = I1(q1) ∧

simp(γ1(q1), g2).
Consider a timed automatonA1 = 〈Σ1, Q1, C, λ1, I1,∆1, q

1
0 ,F1〉 and a dependent

timed automatonB2 = 〈Σ1, Γ2, Q2, C, γ2, I2,∆2, q
2
0 ,F2〉. Their compositionA1 ⊗B2

is the timed automatonA = 〈Σ,Q1 ×Q2, C, λ, I,∆, (q
1
0 , q

2
0),F〉, whereλ(q1, q2) =

λ1(q1), andF = {S × T | S ∈ F1 andT = Q2, orS = Q1 andT ∈ F2}. The
staying conditionI(q1, q2) = I1(q1) ∧ simp(λ1(q1), I2(q2)). The transition∆ in-
cludes (a) simultaneous transitions((q1, q2), g, ρ1, (q

′
1, q

′
2)), where(q1, g1, ρ1, q

′
1) ∈

∆1, (q2, g2, o2, q
′
2) ∈ ∆2, g = g1 ∧ app(ρ, simp(λ1(q

′
1), g2)), andapp(ρ, g2) applies

the effect ofρ on g2, e.g., if ρ includesx := y we replacex in g2 by y, (b) left-
sided transitions((q1, q2), g, ρ1, (q

′
1, q2)), where(q1, g1, ρ1, q

′
1) ∈ ∆1 andg = g1 ∧

app(ρ1, simp(λ1(q
′
1), γ2(q2))) (c) right-sided transitions((q1, q2), g, ∅, (q1, q′2)), where

(q2, g2, o2, q
′
2) ∈ ∆2 andg = I1(q1) ∧ simp(λ1(q1), g2). Notice that the composition

7

∆ =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(qin, True, ∅, q0), (qin, True, x1 := 0, q1),
(q2i, y1 < f, xi+1 := 0, q2i+1), (q2i+1, y1 < f, yi+1 := 0, q2i+2),
„

q2i+2, y1 = f,



x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := ⊥, yi+1 := ⊥

ff

, q2i

«

,
„

q2i+2, y1 = f,



x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := 0, yi+1 := ⊥

ff

, q2i+1

«

„

q2i+3, y1 = f,



x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := ⊥, yi+1 := ⊥

ff

, q2i+1

«

„

q2i+3, y1 = f,



x1 := x2, y1 := y2, . . . , xi := yi+1, yi := yi+1,

xi+1 := xi+2, yi+1 := 0, xi+2 := ⊥

ff

, q2i+2

«

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Fig. 1.The transition of proposition monitor.

of a timed automaton with a dependent timed automaton causesthe output of the second
to disappear. Thus,A⊗B1 ⊗B2 should be read asA⊗ (B1 ⊗B2).

4 From MTL to Nondeterministic Timed Automata

We suggest a novel construction for the conversion of MTL formulas to timed automata.
The advantage of this construction is that it effectively distinguishes between discrete
guesses relating to occurrences in the future (made by dependent timed automata) and
the accumulation of knowledge with clocks (made by timed automata). This separation
allows us to construct a deterministic automaton for the formula in Section 5. Note that
the number of clocks depends on the structure of the formula through the computed
boundfut and the construction of the proposition monitors. This section starts by intro-
ducing proposition monitors, deterministic timed automata that log information about
the input. We then expose our construction using a simple example. Finally, we proceed
to the formal construction that explains how to handle general MTL formulas.

We start by introducing a timed automaton that memorizes thetimes in which a
proposition is true (cf. [15], event recorder Figure 2). Given a formulaϕ let f = fut(ϕ).
The automaton is going to memorize all events occurring in the interval[t− f, t). Let
k be the number of changes possible in a proposition in 1 time unit. It follows that in
the interval[t− f, t) there can be at most⌈ fk2 ⌉ different sub-intervals in which the
proposition is true. Thus, we need2 · ⌈ fk2 ⌉ clocks to memorize their start and end times.
Let n = ⌈ fk2 ⌉. Consider a propositionp. Let Ap = 〈2{p}, Q, C, λ, I,∆, qin, {Q}〉,
whereC = {xp1, . . . , x

p
n, y

p
1 , . . . , y

p
n}, Q = {qin, q0, . . . , q2n}, λ(q2i) = ∅, λ(q2i+1) =

{p}, for j > 1 we haveI(qj) = ya1 < f andI(q0) = I(q1) = Trueand∆ is given in
Figure 1. One such proposition monitor is given in Figure 2.

We now expose our construction through an example. Considerthe formulaϕ =
0 (pU 1 (0,1) q). It is simple to see thatfut(ϕ) = 1 + 4ǫ. Suppose that every propo-
sition changes at mostk times during every1 time unit. We build the automataAp and
Aq. with boundf = 1 + 4ǫ and the bounded variability constantk. In addition, we
construct a simple timed automatonAz with one state and one clockz that measures
the time since time0. It is used to check whether the boundf has been reached. In

8

y2 := 0

y1 = f;
x1 := ⊥, y1 := ⊥

x2 := ⊥, y2 := ⊥

y1 = f;
x1 := x2, y1 := y2

x2 := ⊥

y1 = f;
x1 := x2, y1 := ⊥

y1 = f;
x1 := ⊥, y1 := 0 x2 := ⊥

y1 = f;
x1 := x2, y1 := 0

¬p ¬p ¬p

x1

p py1<f y1<f y1<f

x1, y1,
x2, y2

x1, y1
x2

x1, y1

x1 := 0

y1 < f; y1 < f;

x1 := 0 y1 := 0 x2 := 0

Fig. 2.Proposition monitor forp, wheref = future(ϕ) and⌈ fk

2
⌉ = 2.

what follows, we think about the current time point as0. For example, ifxr1 = 2.37 and
yr1 = 1.49, from our point of viewr was true during the interval[−2.37,−1.49). In
order to proceed with the construction of the dependent timed automata we first define
constraints that describe the truth values of subformulas of ϕ.

– Consider the subformulaϕ1 = 1 (0,1) q. We construct a constraintϕ1(t) that
describes when the subformulaϕ1 holds at timet ∈ [−1 − 4ǫ,−1). Thus, no
states are created with respect to this subformula. The formula ϕ1 is true at time
t ∈ [−1 − 4ǫ,−1) if ∃t′ ∈ (t, t+1).q(t′), that is if for someiwe have−xqi < t+1
andt < −yqi .
In general, for bounded subformulas we use the information already stored in the
state space and clocks of timed automata and dependent timedautomata to con-
struct a constraint that tells us when the subformula holds.

– Consider the subformulaϕ2 = pUϕ1. For such an unbounded formula our con-
struction includes two parts. First, we construct a dependent timed automaton that
makes the guess regarding the future. Second, we use this dependent timed au-
tomaton to define constraints that tell us when the formula holds just like bounded
formulas.
• We start by constructing a dependent timed automaton for thetruth value ofϕ2

at exactly−1 − 2ǫ. As ϕ2 is an unbounded until, its truth value may depend
on events that occur arbitrarily far in the future. The problematic situation is
whenp holds throughout(−1 − 2ǫ,−1 − ǫ) butϕ2 does not hold there. The
dependent timed automaton for the value ofϕ2 is given in Figure 3, where the
invariants and guards are as follows.
Intuitively, in states1 the automaton sees thatp holds throughout the interval
(−1− 2ǫ,−1− ǫ) and guesses that it will hold continuously untilϕ1 holds. In
states2 the automaton sees thatϕ1 holds somewhere in(−1−2ǫ,−1−ǫ) andp
holds up to that point. In states3 the knowledge is just like ins1, however, the
automaton guesses thatp falls beforeϕ1 rises. In states4 the automaton sees a
violation to the until, that is,p falls beforeϕ1 rises within(−1 − 2ǫ,−1 − ǫ).
Formally, the state invariants are as follows:

I1, I3 : ∀t ∈ (−1 − 2ǫ,−1 − ǫ)p(t) ∧ ¬ϕ1(t)
I2 : ∃t ∈ (−1 − 2ǫ,−1 − ǫ).ϕ1(t) ∧ ∀t′ ∈ (−1 − 2ǫ, t)p(t)
I4 : ∃t ∈ (−1 − 2ǫ,−1 − ǫ)¬p(t) ∧ ∀t′ ∈ (−1 − 2ǫ, t).¬ϕ1(t)

9

That is,I1 andI3 maintain thatp is true throughout(−1 − 2ǫ,−1 − ǫ) but
1 (0,1) q is false. The invariantI2 maintains that somewhere in(−1−2ǫ,−1−

ǫ) we have1 (0,1) q holds andp holds up to that point andI4 maintains thatp
falls before1 (0,1) q.
The transition guards use the extraǫ to look ahead a bit further. Intuitively, a
guard makes sure that it is possible to cross to the next stateand uses the extra
look-ahead to make sure that it is possible tostayin the next state a little while.
This is required in order to be able to determinize the automaton. Formally, the
transition guards are as follows:

g1, g3 : I1 ∧ ∃t ∈ [−1 − ǫ,−1).∀t′ ∈ [−1 − ǫ, t).p(t′) ∧ ¬ϕ1(t
′)

g2 : I2 ∨ (I1 ∧ ∃t ∈ (−1 − 2ǫ,−1 − ǫ).∀t′ ∈ (−1 − 2ǫ, t).
∃t′′ ∈ (t′, t′ + ǫ).ϕ1(t

′′) ∧ ∀t′′′ ∈ (t′, t′′).p(t′′′)
g4 : I4 ∨ (I3 ∧ ∃t ∈ (−1 − 2ǫ,−1 − ǫ).∀t′ ∈ (−1 − 2ǫ, t).

∃t′′ ∈ (t′, t′ + ǫ).¬p(t′′) ∧ ∀t′′′ ∈ (t′, t′′).¬ϕ1(t
′′′)

In case that determinization is not pursued, the extra look-ahead can be re-
moved. In this case the guards areI1 for transitions intos1 ands3, I2 ∨ I1 for
transitions intos2, andI4 ∨ I1 for transitions intos4.
The output of the automaton is the propositionpϕ2

. The statess1 ands2 as
well as all the transitions entering them are labeled bypϕ2

. All other states and
transitions are labeled by¬pϕ2

. The only unfair state iss1, where we promise
to fulfill the until in the future. The automaton waits until the clockz reaches
1 + 4ǫ, when the memory ‘fills up’, and only then starts working.

• The dependant timed automaton and the propositionpϕ2
express the truth value

of ϕ2 at exactly−1 − 2ǫ. We now describe the constraint that matches the
truth value ofϕ2 for everyt ∈ [−1 − 4ǫ,−1 − 2ǫ]. Formally, for everyt ∈
[−1 − 4ǫ,−1 − 2ǫ] we haveϕ2 holds att if one of the following holds.
∗ If t = −1 − 2ǫ andpϕ2

holds.
∗ If t < −1 − 2ǫ, pϕ2

holds, and forallt′ ∈ (t,−1 − 2ǫ], p(t′) holds.
∗ If t < −1 − 2ǫ and there existst′ ∈ (t,−1 − 2ǫ) such thatϕ1 holds att′

and forallt′′ ∈ (t, t′) we havep(t).
Let ϕ2(t) be the constraint obtained by eliminating quantifiers from this dis-
junction.

– We now proceed to the top formula containingϕ2, using the propositionpϕ2
. We

construct a dependent timed automaton for the value ofϕ = 0 ϕ2 at time−1 −
4ǫ. We construct a dependent timed automaton with two statess0 ands3 with the
following transitions and invariants. The invariant ofs0 is z < 1+4ǫ. The invariant
of s3 is ∀t ∈ (−1 − 4ǫ,−1 − 3ǫ).ϕ2(t). The unique transition is(s0, g, pϕ, s3),
whereg is z = 1 + 4ǫ ∧ ∃t′ ≥ −1− 3ǫ.∀t′′ ∈ [−1− 3ǫ, t′).ϕ2(t

′′). The states3 is
an accepting state and both the transition ands3 are labeled bypϕ.
Recall, that0 ϕ2 ≡ ¬(TrueU¬ϕ2). It follows that the dependent timed automaton
for ϕ can be thought of as a copy of the automaton in Figure 3. The invariantI4
is falsemaking states4 redundant. Furthermore, as0 is the top most operator in
ϕ, we enforce the truth ofϕ by enabling only the transition froms0 to s3, making
statess1 ands2 unreachable.

10

z < f

g
1 ;
p
ψ

I1 I3

I4I2

s1 s3

s2 s4

pψ ¬pψ

¬pψpψ

g2; pψ

g4; ¬pψ

z = f ∧ g4; ¬pψ

g 3
;
¬
p ψ

z = f ∧ g3; ¬pψ

g
1
;
p
ψ

g
2
;
p
ψ

g
3
;
¬
p
ψ

z
=
f

∧
g
2 ; p

ψ

z
=
f
∧
g 1

; p
ψ

g
4
;
¬
p
ψ

Fig. 3.A dependent timed automaton for unbounded until.

This completes the construction of the timed automaton for the example.

We now turn to the general construction. Consider an MTL formulaϕ. For subfor-
mulasψ of ϕ, we construct constraints that say whenψ holds at timet. For a bounded
subformula there is no need to add states. For an unbounded subformulaψ (i.e., Until
where the upper limit is∞) we add a small dependent timed automaton that computes
the value ofψ at the time pointfut(ψ) − fut(ϕ). Based on this dependent timed au-
tomaton we then compute the constraint that says whenψ holds at timet. We start with
constructing property monitors for all the propositions appearing in the formula. For a
subformulaψ, we construct by induction fort ∈ [−f,−fut(ψ)) the constraintψ(t).

– For a propositionp and fort ∈ [−f, 0), the constraintp(t) is∃i.−xpi ≤ t∧−ypi > t.
Notice that the quantification oni depends on the number of clocks in the proposi-
tion monitors.

– For subformulas of the form¬ψ, ψ1 ∨ ψ2, or ψ1 ∧ ψ2 the combination of the
constraints is straightforward. The range allowed fort is the minimal range allowed
byψ1 andψ2.

– Consider a subformulaψ = ψ1 U Iψ2, whereI = (a, b) or I = [b, b].
By definitionfut(ψ) = b+max(fut(ψ1), fut(ψ2)). It follows thatψ1 is defined in
[−f,−fut(ψ1)) andψ2 is defined in[−f,−fut(ψ2)). So, fort ∈ [−f,−fut(ψ)) it
is always the case thatt + b is in the range whereψ1(t) andψ2(t) are defined. In
the case thatI = (a, b), for t ∈ [−f,−fut(ψ)) we setψ(t) = ∃t′ ∈ (t + a, t +
b).ψ2(t

′) ∧ ∀t′′ ∈ (t, t′).ψ1(t
′′). In the case thatI = [b, b], for t ∈ [−f,−fut(ψ))

we setψ(t) = ψ2(t+ b) ∧ ∀t′ ∈ (t, t+ b).ψ1(t
′).

– Consider a formulaψ = ψ1 U (a,∞)ψ2.
By definitionfut(ψ) = a+2ǫ+max(fut(ψ1), fut(ψ2)). It follows thatψ1 is defined
in [−f,−fut(ψ1)) andψ2 is defined in[−f,−fut(ψ2)). So, fort ∈ [−f,−fut(ψ)]
it is always the case that(t, t+ a+ 2ǫ) is contained in the range whereψ1 andψ2

are defined. We first construct a dependent timed automaton for ψ and then use the
output of this dependent timed automaton for computing a constraint forψ.
• We construct a dependent timed automaton for the truth valueof ψ at time
t = −fut(ψ). Again, we use the automaton in Figure 3, where the guards and

11

the invariants are as follows.

I1, I3 : ∀t ∈ (−fut(ψ),−fut(ψ) + a+ ǫ).ψ1(t) ∧
∀t ∈ (−fut(ψ) + a,−fut(ψ) + a+ ǫ).¬ψ2(t)

I2 : ∃t ∈ (−fut(ψ) + a,−fut(ψ) + a+ ǫ).
ψ2(t) ∧ ∀t′ ∈ (−fut(ψ), t).ψ1(t)

I4 : ∃t(−fut(ψ),−fut(ψ) + a+ ǫ).
¬ψ1(t) ∧ ∀t′ ∈ (−fut(ψ) + a, t).¬ψ2(t)

g1, g3 : I1 ∧ ∃t ∈ [−fut(ψ) + a+ ǫ,−fut(ψ) + a+ 2ǫ).
∀t′ ∈ [−fut(ψ) + a+ ǫ, t).ψ1(t

′) ∧ ¬ψ2(t
′)

g2 : I2 ∨ (I1 ∧ ∃t ∈ (−fut(ψ),−fut(ψ) + ǫ).∀t′ ∈ (−fut(ψ), t).
∃t′′ ∈ (t′ + a, t′ + a+ ǫ).ψ2(t

′′) ∧ ∀t′′′ ∈ (t, t′′)ψ1(t
′′′)

g4 : I4 ∨ (I3 ∧ ∃t ∈ (−fut(ψ),−fut(ψ) + ǫ).∀t′ ∈ (−fut(ψ), t).
∃t′′ ∈ (t′, t′ + a+ ǫ).¬ψ1(t

′′) ∧ ∀t′′′ ∈ (t′ + a, t′′)¬ψ2(t
′′′)

Statess1, s2 and their incoming transitions are labeled bypψ, all other states
and transitions by¬pψ, ands1 is the only unfair state.

• We now construct the constraint that describes the truth value ofψ. For every
t ∈ [−fut(ϕ),−fut(ψ)] we setψ(t) to the disjunction of:
∗ t = −fut(ψ) ∧ pψ,
∗ t < −fut(ψ) ∧ pψ ∧ ∀t′ ∈ (t,−fut(ψ)].ψ1(t), or
∗ t < −fut(ψ) ∧ ∃t′ ∈ (t+ a,−fut(ψ)).ψ2(t

′) ∧ ∀t′′ ∈ (t, t′).ψ1(t).
This completes the inductive part of the construction.

Consider the case that the top-most connective isU . Then from the initial state of
the dependent timed automaton associated withU we allow only the transitions tos1
ands2. Dually, if the top most connective is¬U we allow only the transitions tos3 and
s4. In case that the top-most connective is notU , we add a dependent timed automaton
with three states. LetΓ be the alphabet2AP

′

whereAP ′ are all the propositions intro-
duced during the construction. LetB = 〈Σ × Γ, {o}, {q0, q1, q2}, C, γ, I,∆, q0, {{q1}}〉,
whereγ(q0) = γ(q1) = γ(q2) = o, I(q0) = z < f , andI(q1) = I(q2) = True. The
transition relation is∆ = {(q0, g1, o, q1), (q0, g2, o, q2)}, whereg1 = ϕ(−f) ∧ z = f
andg2 = ¬ϕ(−f)∧ z = f . That is, the dependent timed automatonB enters stateq1 if
ϕ is true at time0 and stateq2 if ϕ is false at time0. Stateq1 is an accepting sink state
and stateq2 is a rejecting sink state.

Finally, the timed automaton forϕ, denoted byAϕ, is the composition of the propo-
sition monitors with the dependent timed automata constructed above. The proof of the
following theorem is given in Appendix B.

Theorem 1. For every timed sequencew we havew |= ϕ iff w ∈ Aϕ.

Corollary 1. For every MTL formulaϕ with m propositions,n unbounded temporal
operators, and inputs of bounded variabilityk, there exists a nondeterministic timed
automaton with2mk · fut(ϕ) + 1 clocks and3(2k · fut(ϕ))m4n states that accepts the
language ofϕ.

Proof. Every proposition monitor has2k · fut(ϕ) clocks. There is an additional clock
for measuring the time elapsed since 0.

12

Every proposition monitor has2k · fut(ϕ) states. Every unbounded temporal oper-
ator has at most four states. The automaton associated with the top level formulaϕ has
at most three states.

5 Deterministic Timed Automata

In this section we show that the automata constructed in Section 4 can be determinized.
This part is based on the separation of the real domain and theclocks from the automata
constructed for the discrete guesses. We give additional requirements on the structure
of dependent timed automata that enable us to further determinize them. With these
additional conditions in place, we can apply (a variant of) the subset construction to de-
terminize dependent timed automata. In order to simplify presentation and save space,
we do not present the more complicated constructions derived from determinization for
automata on infinite words. Determinization for automata oninfinite words uses the
subset construction to follow all the runs of the nondeterministic automaton simulta-
neously. Then, an extra gadget is added to ensure that one of the runs followed by the
subset construction is accepting. Adding this extra gadgeton top of the subset construc-
tion in our case is straight forward.

We assume that in our dependent timed automata for every transition(q, g, o, q′) the
intersection ofg andI(q) is either empty or isolated, i.e., there does not exist an open
interval (t, t′) such that(t, t′) ⊆ I(q) and(t, t′) ∩ g 6= ∅ and if (q, g, o, q′) is enabled
at timet then there is a small interval(t, t′) such that(t, t′) ⊆ I(q′). It is simple to see
that the dependent timed automata constructed in Section 4 satisfy this condition.

Let B = 〈Σ,Γ,Q, C, γ, I,∆, q0,F〉 be a dependent timed automaton satisfying
these conditions. We are going to construct a deterministicdependent timed automaton
D that follows simultaneously all the runs ofB. The construction is based on the subset
construction [19]. Thus, every state ofD is a set of states ofB. In a stateQ′ ⊆ Q, the
automatonD is following a set of runs ofB ending in the statesQ′. For a setQ′ ⊆ Q let
I(Q′) be

∧
q∈Q′ I(q) andI(Q′) be

∧
q∈Q′ ¬I(q). Let∆(Q′) = {(q, g, o, q′) ∈ ∆ | q ∈

Q′}. For a set∆′ ⊆ ∆ let g(∆′) be
∧

(q,g,o,q′)∈∆′ g andg(∆′) be
∧

(q,g,o,q′)∈∆′ ¬g.
Given a set of runs ending in states inQ′ how can these runs be extended? Some

runs are extended by staying in the same state, some runs are extended by crossing
discrete transitions (and cannot be extended by crossing other discrete transitions), and
some runs cannot be extended. We represent such a choice by a setT ⊆ Q′∪∆(Q′). Let
stay(T) = T ∩Q′ be the states whose runs are extended by staying in the same state.
In particular, all transitions fromstay(T) have to be disabled. Let∆(T) = ∆(Q′) ∩ T
be the discrete transitions taken by states inQ. Let deadend(Q′, T) be the set of states
q ∈ Q′ such thatq /∈ T and for every(q′, g, o, q′′) ∈ T we haveq′ 6= q. That is, the
states whose runs cannot be extended. Letmove(T) = Q′ \ (stay(T)∪ deadend(T)),
the set of states that have some transitions going out of themin T . Let target(T) be
stay(T)∪{q | ∃(q′, g, o, q) ∈ trans(T)}. Our deterministic automaton is going to take
a T -transition from a set associated withQ. The guard,g(T) of this transition is the
conjunction of the following: (a)I(stay(T))∧ g(∆(stay(T))) – the invariant of states
whose run is extended must be satisfied and the guards of the transitions exiting them
must not be satisfied, (b)g(trans(T))∧g(∆(move(T))\T) – the guards of transitions

13

that are crossed must be satisfied and the guards of transitions that are not crossed must
not be satisfied, and (c)I(deadend(Q′, T))∧g(∆(deadend(Q′, T))) – the invariant of
states whose run is going to end must not be satisfied and the guards of the transitions
exiting them must not be satisfied. The case thatdeadend(T) andtrans(T) are empty
corresponds to all runs being extended and is not interesting.

We construct the ‘deterministic’ dependent timed automaton D. The differences
from the construction in [19] are in bold. LetD = 〈Σ, {o}, S, C, γ′, I ′,∆′, s0, α〉,
whereS = 2Q, s0 = {q0}, the acceptance conditionα is ignored,for every state
s ∈ S we haveγ′(s) = o and I′(s) = I(s), and for every states ∈ S andevery
setT ⊆ s ∪ ∆(s) we add to∆′ the transition (s, g(T), o, target(T)).

Theorem 2. For every deterministic timed automatonA = 〈Σ,R, C, λ, I,∆, r0,F〉,
we haveA⊗D is deterministic.

Proof. Consider two transitionsδ1 = ((r, s), g1, ρ1, (r1, s1)) andδ2 = ((r, s), g2, ρ2, (r2, s2)).
If at least one of them is the result of a simultaneous transition or a left-side transition
(wlog δ1) then clearly eitherg1 ∧ g2 is unsatisfiable orλ(r1) 6= λ(r2) by the definition
of deterministic timed automaton. Suppose that both are right-side transitions. Thus,
r = r1 = r2 andρ1 = ρ2 = ∅. LetT1, T2 ⊆ set(s)∪∆(set(s)) be the sets used for the
transitions(s, g′1, o, s1) and(s, g′2, o, s2) inD. Eitherstay(T),move(T), trans(T), or
deadend(T) is different. In each case, the guard ofT1 includes some conjunctc such
that¬c is a conjunct in the guard ofT2.

Consider a transitionδ = ((r, s), g, ρ, (r′, s′)). If δ is the result of a simultaneous
transition or a left-side transition then byA being deterministic, eitherλ(r) 6= λ(r′) or
the intersection ofg andI(r) is either empty or isolated. Consider the case thatδ is the
result of a left-side transition. LetT ⊆ set(s)∪∆(set(s)) be the set used for definition
of (s, g′, o, s′) in D. Eithertrans(T) or deadend(T) is not empty. Iftrans(T) is not
empty, then there is a stateq ∈ set(s) and a transition(q, g, o, q′) in T . By assumption
g is enabled in an isolated point inI(q) andδ is enabled at most in an isolated point
in I(s). If deadend(T) is not empty, then there is a stateq ∈ set(s) such thatI(s)
includesI(q) andg includes¬I(q). Hence,I(s) ∧ g is unsatisfiable.

In the full version, we include the timed version of [18] and show that the resulting
deterministic automaton accepts the same language.

6 Conclusions

Motivated by practical problems such as synthesis of timed controllers from real-time
temporal specifications, we developed a procedure that translates full MTL to determin-
istic timed automata. Apart from its practical applications, our construction provides a
better understanding of sources of non-determinism associated with real-time temporal
logics and timed automata.

In the future, we intend to investigate further improvements of our construction:
– In the full version consider MTL with past operators. This extension does not in-

crease the complexity of the construction as satisfaction of past operators depends
only on the observation of memorized events in the proposition monitors.

14

– Interpret the logic over finite signals, in the context of online monitoring of timed
behaviors.

– Optimize and improve the translation. One straightforwardimprovement would re-
quire a smarter memorization of events in the proposition monitors.

– Implement the translation presented in this paper, in orderto investigate its appli-
cability to the practical controller synthesis from MTL specifications.

Acknowledgments

We thank J. Harrison and B. Cook for their explanations regarding quantifier elimination.

References

1. R. Alur. Timed automata. InCAV, LNCS 1633, pages 8–22. Springer, 1999.
2. R. Alur and D. Dill. A theory of timed automata.TCS, 126(2):183–236, 1994.
3. R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. JACM,

43(1):116–146, 1996.
4. R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In Real Time: Theory

in Practice, LNCS 600, pages 74–106. Springer, 1992.
5. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions.JACM, 49(2):172–206, 2002.
6. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, andD. Lime. UPPAAL-Tiga:

Time for playing games! InCAV, LNCS 4590. Springer, 2007.
7. M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation environment for component-based

real-time systems. InCAV, LNCS 2404. Springer, 2002.
8. K. Havelund and G. Rosu. Efficient monitoring of safety properties.STTT, 6(2):18–173,

2004.
9. T.A. Henzinger. It’s about time. InConcur, LNCS 1466, pages 439–454. Springer, 1998.

10. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-
time systems.IC, 111:193–244, 1994.

11. R. Koymans. Specifying real-time properties with metric temporal logic. Real-time Systems,
2(4):255–299, 1990.

12. K. G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & developments. InCAV, LNCS
1254, pages 456–459. Springer, 1997.

13. O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Past, present, future. In
FORMATS, LNCS 3829, pages 2–16. springer, 2005.

14. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. InFORMATS, LNCS
4202, pages 274–289. Springer, 2006.

15. O. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllers from bounded-response
properties. InCAV, LNCS 4590, pages 95–107. Springer, 2007.

16. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic.In LPAR, LNCS
5330, pages 243–257. Springer, 2008.

17. J. Ouaknine and J. Worrell. On the decidability of metric temporal logic.In LICS, pages
188–197, 2005.

18. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata.LMCS, 3(3):5, 2007.

19. M.O. Rabin and D. Scott. Finite automata and their decision problems.IBM Journal of
R&D, 3:115–125, 1959.

20. S. Safra. On the complexity ofω-automata. InFOCS, pages 319–327, 1988.
21. S. Yovine. Kronos: A verification tool for real-time systems.STTT, 1(1–2):123–133, 1997.

15

A Quantifier Elimination over the Reals

We give a short introduction to quantifier elimination over the reals. We concentrate on
linear inequalities that arise in the constraints defined inthe paper.

Given a set of free Real variablesX = {x1, . . . , xn} and free Boolean variables
B = {b1, . . . , bn} an atomic formula is eitherb for b ∈ B, x ⊲⊳ y + d, or x ⊲⊳ d for
x, y ∈ X andd an integer. The syntax of first order formulas is defined by thegrammar

f := a | ¬f | f1 ∨ f2 | ∃x.f | ∀x.f

wherea is an atomic formula, andx ∈ X is a Real variable. A formula isquantifier
free if the last two options are not used.

Theorem 3. Every first order formula can be converted to an equivalent quantifier free
formula.

Proof. We show how to convert a formula of the form∃t.f over the variables{t, x1, . . . , xn}
to an equivalent formula over the variables{x1, . . . , xn}. Multiple quantifiers and uni-
versal quantifiers are handled by repeated application of this procedure and using the
equality∀t.f ≡ ¬∃t.¬f .

Consider a formulaf . We treat atomic formulas as Booleans and convertf to dis-
junctive normal form. That is, there is a formulad =

∨k
i=1 ci whereci is a conjunction

of atomic formulas. We can replace the order of existential quantification and disjunc-
tions. Thus,∃t.(

∨k
i=1 ci) ≡

∨k
i=1(∃t.ci). It follows that we have to be able to remove

the quantification from a formula of the form∃t.c wherec is a conjunction of atomic
formulas. Letc =

∧m
j+1 aj whereaj is an atomic formula. Order{a1, . . . , am} as fol-

lows. Leta1, . . . , am1
be the atomic formulas that do not contain the variablet. Let

am1+1, . . . , am2
be the atomic formulas of the formx+ d ⊲⊳ t, where⊲⊳∈ {<,≤}, and

d is an integer. Letam2+1, . . . , am be the atomic formulas of the formt ⊲⊳ x+d, where
⊲⊳∈ {<,≤}, andd is an integer.

It is simple to see that∃t.
∧m
j=1 aj is equivalent to

∧m1

j=1 aj ∧ ∃t.((
∧m2

j=m1+1 aj) ∧

(
∧m
j=m2+1 aj)). Let aj = xj + dj ⊲⊳j t for j ∈ {m1 + 1, . . . ,m2} and letaj = t ⊲⊳j

xj+dj for j ∈ {m2 +1, . . . ,m} where⊲⊳j∈ {<,≤} anddj are integers forallj. Then,
∃t.c is equivalent to the following formula.

m1∧

j=1

aj ∧
m2∧

j=m1+1

m∧

j′=m2+1

(xj + dj ⊲⊳j⊲⊳j′ xj′ + dj′),

where⊲⊳j⊲⊳j′ is ≤ if both ⊲⊳j and⊲⊳j′ are≤ and< otherwise.

We note that Theorem 3 and its proof are well known. However, as elements of the
proof are required for the proof of Lemma 1 we decided to include the proof here.

The process of converting a formula to a quantifier free formula is calledquantifier
elimination. As we have to convert the formula to DNF format, the price forquanti-
fier alternation is worst case exponential. Modern techniques for eliminating quantifiers
employ SAT solvers for suggesting conjuncts that may form part of the DNF and trying
to simplify them. If a conjunct simplifies tofalse, then the SAT solver learns the conflict

16

and adds it to the set of original constraints such that only conjuncts that do not have
the same contradiction can be suggested in the future. In many cases with simple lin-
ear inequalities (as in our case) quantifier elimination works well in practice [Personal
Communicatication, B. Cook]. In our case, all the free variables associated with one
proposition are ordered and the formulas contain many constants, which should make
quantifier elimination even simpler.

We note that quantifier elimination does not take formulas out of the subset of al-
lowed constraints. The most complex atomic constraints allowed in our setting are com-
parisons of two clocks. We show that quantifier elimination cannot create an atomic
constraint with a comparison of more than two clocks.

Lemma 1. Quantifier elimination results in formulas where atomic constraints are of
the formx ⊲⊳ d or x ⊲⊳ y + d for x, y ∈ X andd and integer.

Proof. We prove the lemma by induction on the number of eliminated quantifiers. If no
quantifiers are eliminated then every atomic constraint is of the desired form. Consider
a constraint that appears in a formula after one quantifier elimination. If the quantifier
elimination did not affect this atomic constraint, in whichcase it is of the desired form.
Otherwise, the constraint was obtained by quantifier elimination from two constraints
of the formx+ d ≤ t andt ≤ y+ d′. The new constraint is of the formx ≤ y+ d′ − d
and maintains the required format.

B Proof of Theorem 1

Proof. The proof proceeds by induction on the structure of the formula ϕ. Let f =
−fut(ϕ) andDψ the dependent timed automaton associated with the subformula ψ of
typeψ = ψ1 U (a,∞)ψ2.

=⇒ Assume thatAϕ accepts an input wordw. Then there exists an accepting run
ζ of Aϕ on w. Given that this run is in some state att1, then for everyt ∈
[−f,−fut(ψ)), the constraintψ(t) is satisfied att1 iff (w, t1 + t) |= ψ.
• ψ = p: for the base case, if the state at timet1 satisfiesp(t) with t ∈ [−f, 0),

then by definition there is a clock pairxpi , y
p
i s.t.−xpi ≤ t and−ypi > t. Then,

at timet1 + t, −xpi ≤ 0 and−ypi > 0, that is the proposition monitor forp
was in a stateq2i+1, observingp, that is(w, t1 + t) |= p. Similarly, if the state
at timet1 does not satisfyp(t), for all clock pairsxpi , y

p
i , we have−xpi > t or

−ypi ≤ t, and at timet1 + t, −xpi > 0 and−ypi ≤ 0, that is the proposition
monitor forp was in a stateq2i, observing¬p, that is(w, t1 + t) 6|= p. Hence
p(t) is true att1 iff (w, t1 + t) |= p.

• ψ = ψ1 U (a,b)ψ2: If the state att1 satisfies the constraintψ(t) = ∃t′ ∈ (t +
a, t + b) s.t.ψ2(t

′) and∀t′′ ∈ (t, t′) ψ1(t
′′) with t ∈ [−f,−fut(ψ)), then,

by inductive hypothesis,∃t′ ∈ (t1 + t + a, t1 + t + b) s.t. (w, t′) |= ψ2 and
∀t′′ ∈ (t1 + t, t′) (w, t′′) |= ψ1, and consequently,(w, t1 + t) |= ψ1 U (a,b)ψ2.
Conversely, if the state att1 does not satisfyψ(t), then∀t′ ∈ (t + a, t + b)
¬ψ2(t

′) or ∃t′′ ∈ (t, t′) s.t. ψ1(t
′′). By inductive hypothesis,∀t′ ∈ (t1 +

t + a, t1 + t + b) (w, t′) 6|= ψ2 or ∃t′′ ∈ (t1 + t, t′) s.t. (w, t′′) 6|= ψ1,

17

and consequently,(w, t1 + t) 6|= ψ1 U (a,b)ψ2. Hence,ψ(t) is true att1 iff
(w, t1 + t) |= ψ1 U (a,b)ψ2.

• ψ = ψ1 U [b,b]ψ2: the proof is similar toψ1 U (a,b)ψ2.
• ψ = ψ1 U (a,∞)ψ2: We first show thatDψ outputspψ att1 iff (w, t1−fut(ψ)) |=
ψ1 U (a,∞)ψ2. If Dψ outputspψ, then it is in one of the statess1, s2:
∗ The state invariant ofs2 is

I2 : ∃t ∈ (−fut(ψ) + a,−fut(ψ) + a+ ǫ).ψ2(t)∧
∀t′ ∈ (−fut(ψ), t)ψ1(t)

By inductive hypothesis,

∃t ∈ (t1 − fut(ψ) + a, t1 − fut(ψ) + a+ ǫ) . (w, t) |= ψ2∧
∀t′ ∈ (t1 − fut(ψ), t) (w, t′) |= ψ1

Hence(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.
∗ The state invariant ofs1 is

I1 : ∀t ∈ (−fut(ψ),−fut(ψ) + a+ ǫ).ψ1(t) ∧
∀t ∈ (−fut(ψ) + a,−fut(ψ) + a+ ǫ).¬ψ2(t)

States1 is unfair and the only outgoing transition goes tos2. It follows that
existsδ > 0 s.t.Dψ takes the transition att1 + δ whereg2 holds, andI1
holds during(t1, t1 + δ). It is simple to see thatg2 corresponds to

∃t ∈ (−fut(ψ) + a,−fut(ψ) + a+ 2ǫ).ψ2(t)∧
∀t′ ∈ (−fut(ψ), t).ψ1(t

′)

By inductive hypothesis,

∀t ∈ (t1 − fut(ψ), t1 − fut(ψ) + a+ ǫ+ δ)(w, t) |= ψ1

and

∃t ∈ (t1 − fut(ψ) + a+ δ, t1 − fut(ψ) + a+ 2ǫ+ δ)(w, t) |= ψ2(t)∧
∀t′ ∈ (t1 − fut(ψ) + δ, t).(w, t′) |= ψ1

Combining the two,(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.
∗ If at t1,Dψ takes the incoming transition tos2, the guardg2 is satisfied. It

is simple to see thatg2 corresponds to

∃t ∈ (−fut(ψ) + a,−fut(ψ) + a+ 2ǫ).ψ2(t)∧
∀t′ ∈ (−fut(ψ), t).ψ1(t

′)

By inductive hypothesis,

∃t ∈ (t1 − fut(ψ) + a, t1 − fut(ψ) + a+ 2ǫ).(w, t) |= ψ2∧
∀t′ ∈ (t1 − fut(ψ), t) (w, t′) |= ψ1

that is,(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.

18

∗ If at t1,Dψ takes the incoming transition tos1, the guardg1 is satisfied. It
implies that

∃t ∈ [−fut(ψ) + a+ ǫ,−fut(ψ) + a+ 2ǫ).
∀t′ ∈ (−fut(ψ), t) ψ1(t

′)

By inductive hypothesis

∃t ∈ [t1 − fut(ψ) + a+ ǫ, t1 − fut(ψ) + a+ 2ǫ).
∀t′ ∈ (t1 − fut(ψ), t) (w, t′) |= ψ1

Let δ ∈ (0, ǫ) s.t.Dψ is in s1 at t1 + δ. Suchδ exists, becauseDψ must
stay ins1 for some strictly positive time. Then, for everyδ′ ∈ (0, δ), we
have shown that that(w, t1 − fut(ψ) + δ′) |= ψ1 U (a,∞)ψ2. Combining
the two, it follows that(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.

If Dψ outputs¬pψ, thenDψ is in one of the statess3, s4.
∗ The state invariant ofs4 is

I4 : ∃t ∈ (−fut(ψ),−fut(ψ) + a+ ǫ).¬ψ(t)∧
∀t′ ∈ (−fut(ψ) + a, t)¬ψ2(t

′)

By inductive hypothesis,

∃t ∈ (t1 − fut(ψ), t1 − fut(ψ) + a+ ǫ).(w, t) 6|= ψ1∧
∀t′ ∈ (t1 − fut(ψ) + a, t) (w, t′) 6|= ψ2

that is(w, t1 − fut(ψ)) 6|= ψ1 U (a,∞)ψ2.
∗ The state invariant ofs3 is

I3 : ∀t ∈ (−fut(ψ),−fut(ψ) + a+ ǫ).ψ1(t) ∧
∀t ∈ (−fut(ψ) + a,−fut(ψ) + a+ ǫ).¬ψ2(t)

States3 is fair and the only outgoing transition goes tos4. It follows that
either
· Dψ stays forever ins3
· existsδ > 0 s.t.Dψ takes the transition att1 + δ whereg4 holds, and
I3 holds during(t1, t1 + δ).

In the first case,ψ2 never becomes true, so(w, t1−fut(ψ)) 6|= ψ1 U (a,∞)ψ2.
We now consider the second case. It is simple to see thatg4 corresponds to

∃t ∈ (−fut(ψ) + a,−fut(ψ) + a+ 2ǫ).¬ψ1(t)∧
∀t′ ∈ (−fut(ψ), t).¬ψ2(t

′)

By inductive hypothesis,

∀t ∈ (t1 − fut(ψ), t1 − fut(ψ) + a+ ǫ+ δ)(w, t) |= ψ1

and

∃t ∈ (t1 − fut(ψ) + a+ δ, t1 − fut(ψ) + a+ 2ǫ+ δ)(w, t) 6|= ψ1∧
∀t′ ∈ (t1 − fut(ψ) + δ, t).(w, t′) 6|= ψ2

Combining the two,(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.

19

∗ If at time t1 Dψ takes an incoming transition tos4, the constraintg4 is
satisfied. It is simple to see thatg4 corresponds to

∃t ∈ (−fut(ψ),−fut(ψ) + a+ 2ǫ).¬ψ1(t)∧
∀t′ ∈ (−fut(ψ) + a, t) ¬ψ2(t

′)

By inductive hypothesis,

∃t ∈ (t1 − fut(ψ), t1 − fut(ψ) + a+ 2ǫ).(w, t) 6|= ψ1∧
∀t′ ∈ (t1 − fut(ψ) + a, t) (w, t′) 6|= ψ2(t

′)

that is(w, t1 − fut(ψ)) |= ψ1 U (a,∞)ψ2.
∗ If at t1,Dψ takes the incoming transition tos3, the guardg3 is satisfied. It

implies that

∃t ∈ [−fut(ψ) + a+ ǫ,−fut(ψ) + a+ 2ǫ).
∀t′ ∈ (−fut(ψ), t) ψ1(t

′)

By inductive hypothesis

∃t ∈ [t1 − fut(ψ) + a+ ǫ, t1 − fut(ψ) + a+ 2ǫ).
∀t′ ∈ (t1 − fut(ψ), t) (w, t′) |= ψ1

Let δ ∈ (0, ǫ) s.t.Dψ is in s1 at t1 + δ. Suchδ exists, becauseDψ must
stay ins3 for some strictly positive time. Then, for everyδ′ ∈ (0, δ), we
have shown that that(w, t1 − fut(ψ) + δ′) 6|= ψ1 U (a,∞)ψ2. Combining
the two, it follows that(w, t1 − fut(ψ)) 6|= ψ1 U (a,∞)ψ2.

This finishes the proof thatDψ outputspψ att1 iff (w, t1−fut(ψ)) |= ψ1 U (a,∞)ψ2.
Now, we have to considert ∈ [−f,−fut(ψ)) and there are two cases:
∗ If the constraintpψ ∧ ∀t′ ∈ (t,−fut(ψ)].ψ1(t) is satisfied, then(w, t −

fut(ψ)) |= ψ1 U (a,∞)ψ2 and∀t′ ∈ (t,−fut(ψ)].ψ1(t) is added. By in-
ductive hypothesis∀t′ ∈ (t1 + t, t1 − fut(ψ)], (w, t′) |= ψ1 and(w, t1 −
fut(ψ)) |= ψ1 U (a,∞)ψ2. Combining the two, we conclude that(w, t1 +
t) |= ψ1 U (a,∞)ψ2. Similarly if ¬pψ ∨ ∃t′ ∈ (t,−fut(ψ)].¬ψ1(t), then
by inductive hypothesis,∃t′ ∈ (t1 + t, t1 − fut(ψ)], st (w, t′) 6|= ψ1 or
(w, t1 − fut(ψ)) 6|= ψ1 U (a,∞)ψ2, that is(w, t1 + t) 6|= ψ1 U (a,∞)ψ2.

∗ If the constraint∃t′ ∈ (t+ a,−fut(ψ) + a].ψ2(t
′) ∧ ∀t′′ ∈ (t, t′).ψ1(t) is

satisfied, by inductive hypothesis,∃t′ ∈ (t1 + t + a, t1 − fut(ψ) + a] st
(w, t′) |= ψ1 and∀t′′ ∈ (t1 + t, t′) (w, t′′) |= ψ2, hence(w, t1 + t) |=
ψ1 U (a,∞)ψ2. Conversely if the constraint is not satisfied, then∀t′ ∈ (t +
a,−fut(ψ)+a].¬ψ2(t

′)∨∃t′′ ∈ (t, t′).¬ψ1(t), and by inductive hypothesis
∀t′ ∈ (t1 + t + a, t1 − fut(ψ) + a] (w, t′) 6|= ψ1 and∃t′′ ∈ (t1 + t, t′) st
(w, t′′) 6|= ψ2, hence(w, t1 + t) 6|= ψ1 U (a,∞)ψ2.

Combining all above points, we conclude that for anyt ∈ [−f,−fut(ψ)], ψ(t)
is satisfied att1 iff (w, t1 + t) |= ψ1 U (a,∞)ψ2.

This completes the proof that the existence of an accepting run implies the input
word satisfies the formula.

20

⇐= Assume that for some wordw we havew |= ϕ. We then construct an accepting run
ζ of Aϕ onw. For this run, it holds that if the run is int1, then for any subformulaψ
of ϕ, the constraintψ(t) is true att1 iff (w, t1 + t) |= ψ for t ∈ [−f,−fut(ψ)). We
construct the run by induction on the structure of the formulas. That is, we supply
the run of a dependent timed automaton for a subformulaψ1 U (a,∞)ψ2 after we
construct (by induction) the automata forψ1 andψ2 and establish the correctness
of the constraints forψ1 andψ2. Letϕ be the formula and letf = fut(ϕ).
• ψ = p: for the base case, the proposition monitor is deterministic and does not

affect the acceptance of the run.
The proof that for the (unique) run of a proposition monitor,for every timet1
and for everyt ∈ [−f, 0) we have(w, t1 + t) |= p iff p(t) holds at timet1 is
similar to the proof in the direction=⇒ above.

• Consider a subformulaψ = ψ1 U Iψ2, whereI = (a, b) or I = [b, b]. Notice
that this formula does not add states to the automaton. By induction the runs
constructed for the automata forψ1 andψ2 satisfy thatψi(t) holds att1 iff
(w, t1 + t) |= ψi.
The proof that(w, t1 + t) |= ψ iff at time t1 the run satisfies the constraintψ(t)
is similar to the proof in the direction=⇒ above.

• Consider a subformulaψ = ψ1 U (a,∞)ψ2. We have to show how to resolve the
nondeterminism of the dependent timed automatonDψ constructed forψ.
Consider the following three conditions relating to a timet1.
1. There existst′ ∈ (t1 − fut(ψ)+ a, t1 − fut(ψ)+ a+ ǫ) such thatψ2 holds

at timet′ and for everyt′′ ∈ (t1 − fut(ψ), t′) we haveψ1 holds att′′.
2. There existst′ ∈ (t1 − fut(ψ), t1 − fut(ψ) + a+ ǫ) such thatψ1 does not

hold att′ and for everyt′′ ∈ (t1 − fut(ψ) + a, t′) ψ2 does not hold att′′.
3. For everyt′ ∈ (t1 − fut(ψ) + a, t1 − fut(ψ) + a+ ǫ) we haveψ2 does not

hold att′ and for everyt′′ ∈ (t1 − fut(ψ), t1 − fut(ψ) + a + ǫ) we have
ψ1 holds att′′.

It is simple to see that these three conditions are mutually exclusive and their
disjunction is valid.
We now partition the time line (greater thanfut(ϕ)) into a (minimal) sequence
of adjacent intervalsT0T1 . . . s.t. Ti = (ti, ti+1) with ti+1 > ti and t0 =
fut(ϕ) s.t. in every interval the input word satisfies one of the three above
conditions. Note that such a partition is well-behaving (noZeno-behavior) due
to the bounded-variability of the input word.
We associate to every intervalTi one of the states ofDψ:
∗ If Ti satisfies the condition (1), the associated state iss2.
∗ If Ti satisfies the condition (2), the associated state iss4.
∗ If Ti satisfies the condition (3), the associated state is eithers1 or s3, re-

sulting in the non-deterministic choice. This non-determinism is resolved
by the following mutually exclusive conditions:
· If Ti+1 satisfies the condition (1), the state associated toTi is s1.
· If Ti+1 satisfies the condition (2), the state associated toTi is s3.
· If Ti is the last interval, that isTi = (ti,∞), its associated state iss3.

The run ofDψ is generated as a sequence of states according to the above par-
tition of the time line w.r.t. the input word. The generated run is valid because

21

at anyt ∈ Ii, the run is in a state whose invariant is equal to the condition
of Ti, and at any timeti+1 between two adjacent intervalsTiTi+1, there is a
transition between the states inDψ that are associated toTi andTi+1, that is:
∗ Consider a transition entering states1. By definition of the intervals above,

the only possible transitions are froms0, s2, and s4. This matches the
structure of the automaton.
The guardg1 is equivalent toI1 ∧ c1 wherec1 is

∃t ∈ [−fut(ψ) + a+ ǫ,−fut(ψ) + a+ 2ǫ).
∀t′ ∈ [−fut(ψ) + a+ ǫ, t).ψ1(t

′) ∧ ¬ψ2(t
′)

The conditionc1 means thatI1 holds in some non-singular prefix ofTi+1.
As I1 holds throughoutTi+1, it is simple to see thatI1 holds atti+1.
If the transition enterss1 from s0 then clearlyz = f holds as well.

∗ Transitions enterings3 are similar to transitions enterings1.
∗ Consider a transition entering states2.

By definition of the intervals above, the only possible transitions are from
s0, s1, ands4. This matches the structure of the automaton.
The guardg2 is equivalent toI2 ∨ (I1 ∧ c2) wherec2 is

∃t ∈ (−fut(ψ),−fut(ψ) + ǫ).∀t′ ∈ (−fut(ψ), t).
∃t′′ ∈ (t′ + a, t′ + a+ ǫ).ψ2(t

′′) ∧ ∀t′′′ ∈ (t′, t′′)ψ1(t
′′′)

The conditionc2 means thatI2 holds in some non-singular prefix ofTi+1.
As I2 holds throughoutTi+1, it is simple to see that eitherI2 holds atti+1

or I1 holds atti+1, depending on whether the region whereψ2 is true is
left closed or left open.
If the transition enterss2 from s0 then clearlyz = f holds as well.

∗ Consider a transition entering states4. By definition of the intervals above,
the only possible transitions are froms0, s2, and s3. This matches the
structure of the automaton.
The guardg4 is equivalent toI4 ∨ (I1 ∧ c4), wherec4 is:

∃t ∈ (−fut(ψ),−fut(ψ) + ǫ).∀t′ ∈ (−fut(ψ), t).
∃t′′ ∈ (t′, t′ + a+ ǫ).¬ψ1(t

′′) ∧ ∀t′′′ ∈ (t′ + a, t′′)¬ψ2(t
′′′)

The conditionc4 means thatI4 holds in some non-singular prefix ofTi+1.
As I4 holds throughoutTi+1, it is simple to see that eitherI2 holds atti+1

or I1 holds atti+1, depending on whether the region whereψ1 is false is
left closed or left open.
If the transition enterss4 from s0 then clearlyz = f holds as well.

Moreover, the generated run is accepting, since the only unfair state inDψ is
s1, and the run can be in that state at somet ∈ Ii only if Ii is followed byIi+1

that satisfies condition (1), that is by states2.
The proof that for everyt1 we haveDψ outputspψ at t1 iff (w, t1 − fut(ψ)) |=
ψ is similar to the proof in the direction=⇒ above. Based on the correctness
of pψ, the proof that at timet1 the constraintψ(t) holds iff (w, t1 + t) |= ψ is
also similar to the proof in the direction=⇒ above.

22

This completes the proof that for every formulaϕ, if the input word satisfies the
formulae, there is an accepting run ofAϕ induced by that word.

23

