
CONCISE CPLEX

Simon A. Spacey

Department of Computing
Imperial College

London, UK

ABSTRACT

This paper is a concise guide to CPLEX, the leading solver
for linear and convex quadratic optimisation problems. The
paper is self contained and includes information for first
time CPLEX users as well as code snippets and lemmas that
may be of referential value to experienced users.

The paper starts with a brief explanation of how to run
CPLEX on departmental servers at Imperial and on stand-
alone machines in section 1, how to create and solve simple
Linear Programs in section 2 and how to obtain detailed so-
lution results in section 3. The paper then moves on to dis-
cuss several CPLEX issues and quirks that may confuse first
time users including: anomalous objective values caused
by big-M scaling, the implications of long MILP solution
times and removing memory limitations for problems with
large MILP solution trees. The paper concludes with logical
equivalence proofs in section 9 that can be used as a start-
ing point for complex problem translation and references are
provided for additional reading.

1. STARTING CPLEX

CPLEX [1] is installed in a single directory and can be moved
from one machine to another with simple file copying. How-
ever, to execute CPLEX you need a license file, a defined
hostname consistent with the license file and a license server
to validate the license file. You can run CPLEX from its in-
stall directory on an Imperial server with the commands:

./ilm/ilmd &

./bin/x86-64_debian4.0_4.1/cplex

The first command starts the CPLEX license server and may
not be necessary if the license server is already running as a
shared process.

To execute a local copy of CPLEX from outside Imperial
you will need to obtain a license file, set your local hostname
to be consistent with the license file and use a license tunnel
to Imperial so that CPLEX can validate the license and keep
track of the current licenses in use. This can be automated
using a script such as:

#!/bin/bash
$HOST="vm-qads-ilm"
$ILMD="$HOST.doc.ic.ac.uk"
$LOGIN="saspacey@shell1.doc.ic.ac.uk"

export ILOG_LICENSE_FILE=./access.ilm
hostname $HOST
ssh -f -L 3000:$ILMD:3000 $LOGIN sleep 10
./bin/x86_debian4.0_4.1/cplex

Both of the code snippets above start CPLEX running
interactively, if you close your shell, your CPLEX process
will be killed and any solution currently being calculated
will not complete. You can avoid CPLEX terminating when
you close your shell by wrapping your CPLEX process with:

screen ./bin/x86_debian4.0_4.1/cplex

then press CTRL+A CTRL+D to leave the process running in
the background when you want to log-out and when you log-
in again type screen -r to return to CPLEX. Another way
to run CPLEX when you are not logged-in is as a perpetual
background process which is discussed further at the end of
the next section.

2. SOLVING PROBLEMS WITH CPLEX

You can create problems for CPLEX to solve using simple
text files in Linear Programming (LP) format. Here is a sim-
ple optimisation problem in LP format:

MINIMIZE
obj: 5.8 x_1 + 3 x_2

SUBJECT TO
r1: x_1 + 2.1 x_2 = 6
r2: 3 x_2 < 4.2

BOUNDS
x_1 >= 0
x_2 >= 0

INTEGER
x_1

END

In the above program obj, r1 and r2 are optional labels
used in detailed solutions; the constraints and BOUNDS can
be of any relational form (i.e. <=, >=, >, < or =); the vari-
able x_1 must be a positive INTEGER and x_2 can be any
positive real. It should be noted that there is no multiplier
symbol between numbers and variable names, there has to
be an END statement and all relations must have only num-
bers on the right hand side.

Two methods can be used to include binary variables in
CPLEX LPs:

1. declare the variables as INTEGER with BOUNDS be-
tween 0 and 1.

2. remove the variables from both the INTEGER and BOUNDS
sections and add a separate BINARY section.

the choice of binary representation method does not effect
performance.

Assuming the LP file above is saved as problem.lp,
you can solve it by typing:

read problem.lp
opt

at the interactive CPLEX command prompt. You should
add the line set parallel 1 before the opt command
if you require result path reproducibility on multi-threaded
CPLEX installs [2]. The optimal solution returned by CPLEX
for the problem above is 26.057.

If you wanted to automate CPLEX to read and solve LPs,
you could start with a script like cplex.sh below:

#!/bin/bash
$CPLEX="/opt/cplex11/cplex"

rm -f cplex.log 2> /dev/null
rm -f results.s 2> /dev/null
$CPLEX 2> _cplex.err <<CPLEX_CMD

read problem.lp
opt
write results.s sol all
quit

CPLEX_CMD

and run the script as a perpetual background process with:

nohup ./cplex.sh > /dev/null &

Aside from LP forms, optimisation problems can also be
represented in the OPL [1], AMPL [3] and GAMS [4] mod-
elling languages or passed from C, C++ or Java to CPLEX
using one of the ILOG Concert Technology APIs [2]. The
modelling languages all allow relational constraints like LPs
but can abstract the general problem logic away from the
specific problem instance data. The AMPL and GAMS mod-
elling languages have the added advantages of being portable
across a range of different solvers and of being able to rep-
resent both concave and convex problems [5].

3. OBTAINING DETAILED SOLUTION RESULTS

To obtain the variable values that correspond to a solution
you can save the detailed CPLEX results to a file with:

write results.s sol all

this saves solution variable values, slacks and objectives in
an XML format which is easy to analyse.

In the XML file, your optimal result will be tagged with:

solutionName="incumbent"

Note that CPLEX 11 can report solutions in the results.s
file with a lower objective than the final “incumbent”. If
you see this it is a bug, but you should extract the variable
settings from the solution, set them as constraints in your
model and check the objective value to confirm.

You should save the CPLEX log file cplex.log with
your results, original problem formulation and CPLEX ver-
sion and settings information for future reference when quot-
ing results.

4. BIG-MS AND OBJECTIVE SENSITIVITY

When creating a Linear Program with logic relations like
those of section 9, it is often necessary to use large con-
stant multipliers generally called big-M’s which when cou-
pled with your variable and objective values contribute to
the range of numbers in your problem. If you have too large
a range of numbers in your problem not only can your so-
lution times suffer, but your solution values can actually be-
come invalid as demonstrated in table 1.

M0 Multiple Objective Error
1 0%
10 0%
100 1%
1000 60%
10000 100%

Table 1: Errors in the reported best solution objectives
found by CPLEX 11 when compared to the objective of the
true optimal solution for a GQMIP [6] problem using differ-
ent multiples of a nominal big-M constant M0.

Often you can reduce your number range by scaling the
problem objective and variables and setting big-M’s on a
constraint by constraint basis rather than say using the stan-
dard C programmers default of UINT MAX or the theoreti-
cal limit of [7]. Alternatively you could consider converting
your big-M constraints to CPLEX indicators [2] or using the
GNU GLPK [8] solver GLPSOL instead of CPLEX with the
exact arithmetic option:

glpsol --exact --cpxlp ./problem.lp

however both of these alternatives are likely to have a detri-
mental impact on your overall solution times [9].

5. SOLUTION TIMES

All Linear Programs with only real variables can be solved
in polynomial time [10]. However, the same is not true
for Mixed Integer Linear Programs (MILPs) with integer or
boolean variables which are often combinatorial in nature.

CPLEX uses Branch and Bound [11] to reduce the MILP
search space and can solve MILPs quickly provided the re-
laxed problem has sufficient sensitivity. If you find your
MILPs are taking too long to solve, you will need to refor-
mulate your model or create your own bounding relaxations
and, for example, integrate them into CPLEX’s Branch and
Bound algorithm using the ILOG Java Concert Technology
API [2].

The effect of model formulation can be seen in table 2
where three different MILP forms are used to solve the same
optimisation problem and produce markedly different Branch
and Bound tree sizes as a result of their different lower bound
relaxation granularities.

Method B&B Nodes
GQAP 39
mms 64
mxs 1,635,667

Table 2: Branch and Bound search tree nodes for three
equivalent versions of a GQAP problem solved with default
options in CPLEX 11. GQAP is standard GQAP [12] and
mms and mxs are optimistic and robust GQMIP [6] forms
respectively. All three forms produce the same objective.

6. QUICK SOLUTIONS

CPLEX includes a local neighbourhood heuristic search al-
gorithm and other options that can quickly approach an op-
timal solution in cases where combinatorial complexity can
not be avoided. The CPLEX heuristics slow down the over-
all solution process but can often produce better results than
bespoke heuristic algorithms after only a few seconds of ex-
ecution.

The CPLEX neighbourhood heuristic and solution focus
can be set with the options:

set mip strategy rinsheur 100
set mip strategy probe 3
set mip cuts all 2
set emphasis mip 3

before the opt command in either the interactive solver or
the cplex.sh script from section 2.

You can suspend the CPLEX solution process at any
time by pressing CTRL+C in the interactive shell. This allows
you to save an intermediary solution or change the CPLEX
options and continue the optimisation process by typing opt

again. For example, to save an intermediary solution after
the CPLEX upper bound stabilises and then reset the RINS
heuristic for faster completion press CTRL+C and type:

write results_quick.s sol all
set mip strategy rinsheur 100000
opt

In a script you can prematurely terminate CPLEX (without
the option to continue) with the setting:

set timelimit <seconds>

In the interest of completeness, you should also be aware
of the CPLEX MIP tolerance options uppercutoff and
lowercutoff which, while apparently attractive for speed-
ing up solutions in the presence of known bounds, do not
actually speed-up the Branch and Bound process when re-
laxed bounds are loose.

7. START FILES

You can export the current CPLEX results for use as a start-
ing point for future runs with:

write results.s sol all

To read in the file as a CPLEX solution starting point use:

read results.s mst

It should be noted that CPLEX strictly only needs a MST
file to restart from a previous solution [2], however the full
results file produced by the first statement above is more
generally useful than the compact minimal MST start files
which do not, for example, contain objective information.

8. MEMORY LIMITS

As CPLEX works through a combinatorial search tree it
keeps track of branches taken and bounding result informa-
tion at each tree node. If your problem can not be easily cut
by Branch and Bound, the search tree can be combinatorial
in size and can cause CPLEX to crash or at least stop with
an error if your physical memory limit is exceeded.

To avoid physical memory limits, use the following op-
tions to allow CPLEX to uses the disk to store large trees:

set workmem 256
set mip strategy file 3

As a rule of thumb, the workmem value should not be more
than half your physical memory (in megabytes) to ensure
CPLEX has enough memory for code and intermediaries
and that the OS does not need to resort to paging given other
resident applications.

As CPLEX runs, you may see your free memory drop
well below the 50% mark recommended above. This may
be because of OS buffers on the CPLEX tree files which the
OS will free automatically as memory is needed.

9. LINEAR PROGRAMMING LOGICAL
EQUIVALENCIES

I conclude this paper with a set of lemmas I developed to
demonstrate how logical functions that Computer Science
students will already be aware of can be expressed as In-
teger Linear Programming (ILP) minimisation constraints.
These lemmas and relations can be used as a starting point
for mathematically modelling a logical problem.

Lemma 9.1. Boolean logical NOT (γ = ¬α : α, γ ∈ B)
can be expressed as linear programming constraints through:

(1− α) ≤ γ ≤ (1− α) (1)

Proof. Trivial.

Lemma 9.2. Boolean logical AND (γ = α∧ β : α, β, γ ∈
B) can be expressed as linear programming constraints through:

α + β − 1 ≤ 2γ ≤ α + β (2)

Proof. Proof is through the logic table below.

α β α + β − 1 α + β γ
0 0 -1 0 0
0 1 0 1 0
1 0 0 1 0
1 1 1 2 1

Corollary 9.3. Boolean logical AND is equivalent to quadratic
multiplication in B and so lemma 9.2 represents a basis for
the linearisation of quadratic constraints.

Lemma 9.4. Boolean logical OR (γ = α ∨ β : α, β, γ ∈
B) can be expressed as Linear Programming constraints
through:

α + β ≤ 2γ ≤ 2(α + β) (3)

Proof. Proof is through the logic table below.

α β α + β 2(α + β) γ
0 0 0 0 0
0 1 1 2 1
1 0 1 2 1
1 1 2 4 1

Lemma 9.5. The 0-1 threshold of an integer parameter (β =
min(x, 1) : x ∈ N∗, β, γ ∈ B) can be expressed as linear
programming constraints through:

x ≤ Mβ ≤ Mx (4)

Proof. Proof is through the logic table below.

x Mx β
0 0 0
1 M 1
2 2M 1
n nM 1

ACKNOWLEDGEMENTS

Dr D. Kuhn and W. Wiesemann provided valuable contribu-
tions and advice for the construction of this paper.

REFERENCES

[1] ILOG Inc. http://www.ilog.com

[2] CPLEX 11.2 Manuals ILOG Inc., (2008).

[3] AMPL Optimization LLC http://www.ampl.com

[4] GAMS Development Corp. http://www.gams.com

[5] ROCKAFELLAR, R.T. Convex Analysis. Princeton
University Press, (1970).

[6] SPACEY, S.A. Computational Partitioning for Hetero-
geneous Architectures Imperial Ph.D. Thesis, (2009).

[7] PAPADIMITRIOU, C.H., STEIGLITZ, K. Combinato-
rial Optimization: Algorithms and Complexity. Dover
Publications Inc., New York, (1998).

[8] GLPK (GNU Linear Programming Kit) Free Software
Foundation, http://gnu.org/software/glpk

[9] SCIP: Solving Constraint Integer Programs Zuse Insti-
tute Berlin (ZIB), http://scip.zib.de

[10] KARMARKAR, N. A New Polynomial Time Algo-
rithm for Linear Programming Combinatorica, Vol.
4, No. 4, pp 373-395, (1984).

[11] WOLSEY, L.A. Integer Programming. John Wiley &
Sons Inc., (1998).

[12] LEE, C., MA Z. The Generalized Quadratic Assign-
ment Problem. University of Toronto, (2004).

