Reasoning about High-Level Tree Update and
its Low-Level Implementation

Philippa Gardner and Uri Zarfaty, Imperial College London

Abstract

We relate Context Logic reasoning about a high-level
tree update language with Separation Logic reasoning
about a low-level implementation.

1 Introduction

Separation Logic (SL) was introduced by O’Hearn,
Reynolds and Yang [5, 4, 7], to specify properties about
low-level code for manipulating mutable data struc-
tures in memory. Parkinson and Bierman introduced
abstract predicates for SL [6], to hide details of the im-
plementation from the client’s view. Meanwhile, with
Calcagno [2], we generalised SL to develop local Hoare
reasoning using Context Logic (CL) for directly spec-
ifying properties about arbitrary structured data up-
date such as XML update. Since then, we have had
many interesting discussions on the connections be-
tween these abstraction approaches. In this paper, we
relate the two approaches using tree update.

The key idea of local Hoare reasoning is that the
reasoning follows the footprint of the program: ‘To un-
derstand how a program works, it should be possible
for reasoning and specification to be confined to the
cells that the program actually accesses [the footprint].
The value of any other cell will automatically remain
unchanged. [5]” With tree update, the high-level foot-
prints are the subtrees affected by the high-level update
commands. The low-level footprints meanwhile consist
of those parts of the memory corresponding the high-
level footprints plus the nearby nodes requiring addi-
tional pointer surgery. Tying up the high-level and
low-level reasoning is therefore rather subtle.

We work with a high-level tree structure (forests)
consisting of nodes labelled with unique identifiers and
lists of children which may vary in length. This simple
structure gives the essence of XML viewed as an in-
place memory model. We have studied the full XML
structure in our formal specification of the W3C Doc-

ument Object Model (DOM) [8, 3]. Consider the high-
level command ‘delete n’, which removes the tree iden-
tified by n. E.g., when n = n3, we have the update

(09 (9

@ delete n @
@) () (v (o) D,

@ @

The high-level local Hoare axiom for ‘delete n’ is:

{n][true]} delete n {0}

The pre-condition is a CL formula stating that the tree
has a top node n and an unspecified subtree. The post-
condition denotes the empty tree. The axiom is small,
in that the pre-condition only touches the portion of
the tree accessed by the command (the high-level foot-
print) and provides the minimal safety condition neces-
sary for the command to execute. Using the high-level
frame rule, we can uniformly extend the reasoning to
the rest of the tree using application:

{K - n[true|} delete n {K -0} (1)

The pre-condition states that the tree can be split into
a subtree with top node n, and a context satisfying CL
formula K which is unaffected by the command. The
post-condition has the same structure, with the empty
tree substituted for the tree at n.

There are many ways of implementing the high-
level delete command. We focus on one natural ap-
proach; our ideas apply to any implementation requir-
ing pointer surgery. We represent our tree structure
by a collection of heap cells corresponding to the tree
nodes, each containing links to the node’s parent, pre-
vious and next sibling, and first child. The low-level
program for deleting a tree with top node n, denoted
[delete n], first does a depth-first removal of each node
under n, then removes n and joins the appropriate par-

ent and sibling nodes. The overall update looks like:

’@é g\‘; [delete n] .@)/_i\

=@

The low-level Hoare triple for [delete n] requires two
types of SL formula. It uses a formula [n[true]]!, re-
sulting from a translation of the CL formula n[true]
to a SL formula which describes a heap correspond-
ing to a tree with top node n. It is defined using the
abstract predicate ‘subtree n[true] I’. The translation
depends on an interface I = (I,i,u,j,7), where [, u, r
correspond to the left-sibling, parent and right-sibling,
and 4, j to the first and last node of the forest: in our
example, ‘subtree nltrue] I’ is satisfied by

=
with i = nz = j. We also require a crust formula crust!
which specifies properties about the three nearby nodes
I, u, (in our example, the shaded na, ni, n4), since

all three nodes potentially require pointer surgery.
The low-level Hoare specification for [delete n] is

{34, j. crust’ [n[true]]’ } [delete n] {3, j. crust’ « 0]}

The pre-condition describes the low-level footprint of
[delete n]: the heap corresponding to a tree with top
node n plus the crust. The post-condition describes the
result of the deletion: the heap corresponding to the
empty tree given by [0]f and the crust. In our example,
i,7 are instantiated to ngs in the precondition, and ng
and ny respectively in the post condition.

We can uniformly extend the low-level reasoning to
the rest of the heap using the low-level frame rule. E.g.,
the low-level Hoare triple corresponding to (1) is:

{32"7j'.crustl/*[[K-n[true]]]I/}[[delete n]]{ﬂi'7j'.crustll*[[K-O}]I/}

Application at the high-level corresponds to separation
across interfaces at the low level, in that [K - P]!" =
31.[K]Y * [P]*. The above triple can be derived from
the specification of [delete n] by essentially adding on
the formulae crust’” and [K ¥ using *, and removing
the inner crust! (using the adjoint of *). The formula
crust! has been subsumed by context [K]! and the
new formula crust! . Our results seem to suggest that

the crust plays an integral part of the low-level reason-
ing: i.e., it is not possible to use abstract predicates
to completely abstract from the implemention details.
Instead, CL reasoning seems to provide the right level
of abstraction for specifying libraries for manipulating
structured data.

The uniformity of the relationship between our high-
level and low-level reasoning suggests that we might
push our comparison further, by extending the rela-
tional reasoning introduced by Yang and Benton [9, 1].
They work with the same heap model at both levels of
reasoning, whereas our reasoning is on different data
models. We currently do not see the need for their
level of integration here.

2 Tree Update Language

We introduce a simple, but expressive, high-level
tree update language. Our tree structures are inten-
tionally simple: they consist of ordered trees (forests)
with unique node identifiers.

Definition 2.1 (Trees/contexts). Given set
N={m,n,...} of identifiers, the trees t € 7T,
contezts ¢ € C and application ap: C x 7T —7T are:

ap(—,

to=0]n[t] | tft (H,
c:=—|nlc]|tlc]clt ap(t|c t
ap(clt, t

t
nfap(c, t)]
tl(ap(c, ')

ap(c,t')t

> 1> > {>

t)
t)
)
)

Trees and contexts satisfy a structural congruence =
stating that | is associative, and that 0 is its left and
right identity. Well-formed trees and contexts are
those with unique identifiers, making context applica-
tion a partial operation. We write t; # to to mean that
two well-formed trees have disjoint sets of identifiers,
and often omit the 0 leaves from a tree to make it more
readable: e.g., write n[my|mz] instead of n[m1[0]|m2[0]].

Example 2.2 (Trees and tree contexts). The tree
no[n1[nz|n3[ns|ne]|n4]] can be separated into the con-
text ng[ni[nz2|—|n4]] and subtree ng[ns|ng]:

@) @

@ @)
@ @ @=ap(® @, @)
@ @ @ @

The update language is a high-level, stateful, im-
perative language, based on variable assignment and
in-place tree update. The program state includes a
main working tree, together with a high-level vari-
able store containing variables for both node identi-
fiers (references into the tree, with nil representing the

s(n) =n t=ap(c,n[t))

s(n) =n t=ap(c,n[t])

s(n) =n t=ap(c,n[t’]) (") =[X]s t'#t

delete ny,s,t ~ s, ap(c, 0)
s(n) =n t=ap(c,nlt))

delete n|,s,t ~ s, ap(c, n[0])

insert X at n_,s,t~ s,ap(c,t”|n[t'])

s(n)=n t=ap(c,n[t’]) (") =[X]s t"#t

s(n) =n t=ap(c,n[t)
= copy ny,s,t ~ [slz (n[t')],t = :=copy ny,s,t~ [slz—(t)],t

s(n) =n t=ap(c,n’[ti|n[t2]|ts])

insert X at n_,s,t~ s, ap(c,n[t”|t'])

)
s(n) =n t=ti|n]te]|ts

n' :=lookup ny,s,t ~ [s|n’ < n’],t n':=lookup nt,s,t ~ fault
s(n) =n t=ap(c,nfti]|n’[t2]) s(n) =n t=ap(c,m[ti|n[t2]]) s(n) =n t=tinft]
n' :=lookup n_,s,t ~ [s|n’ < n’],;t n’ :=lookup n_,,s,t~ [s|n’ < nil,t n’:=lookup n_.,s,t~ fault
s(n) = n_t = ap(c,nlt:|n[t2]) s(n) =n_t = ap(c.nl0]) s(n) =n_t# ap(c,nlt])
n’ :=lookup n~_,s,t ~ [s|n’ < n’],t n':=lookup n-,s,t~ [s|n’ < nil],t Cup(n),s,t ~ fault

The cases for skip, variable assignment, sequencing, if-then-else, and while-do are omitted as they are standard.
For insert and node lookup, only some of the cases are given; the other cases are analogous.

Figure 1. Operational Semantics of the Tree Update Language

empty reference) and tree shapes (trees modulo renam-
ing of identifiers, allowing high-level manipulation of
tree structures). The choice of having tree shapes, as
opposed to trees, in the store illustrates a seemingly
paradoxical property of high-level, imperative tree up-
date. Whilst some way of identifying nodes is required
to specify the location of in-place updates, these iden-
tifiers are not considered an important part of the
high-level structure itself. This follows the spirit of
DOM, which assumes object identifiers for nodes and
nodeLists that are not present in the underlying XML
structure. It is even possible to draw an analogy with
heap update, where heap addresses are typically unim-
portant to the data structures represented in the heap,
but necessary for manipulating those structures.

Definition 2.3 (Tree shapes). Tree shapes to, € 7, are:
to ::= 0] o[to] | tolto

where o is a constant. Write (t) for the shape of
a concrete tree t, with (0) = 0, (n[t]) = o[(t)] and
<t1|t2> = <t1>|<t2>. Write t1 >ty when <t1> = <t2>.

Definition 2.4 (Program state). The program state
consists of a working tree t € 7 and a variable store
s € S, which consists of a pair of finite partial functions
s: Vary —qn (N W {nil}) x Varz, —g, 7o mapping
node variables Varys = {m,n, ...} to node identifiers
or nil, and tree shape variables Varr, = {z,y,...} to
tree shapes. We write [s|n < n] for the variable store s
overwritten with s(n) = n, and similarly for [s|z « to].
varst, (s) denotes the tree shape variables in dom(s).

To specify node and tree-shape values, our language
uses simple expressions. Nodes are specified either with
node variables or the constant nil; we forbid direct ref-
erence to constants other than nil, as this contradicts

the role of identifiers. Tree shapes, meanwhile, are
specified using a combination of tree shape variables
and constant tree shape structures. E.g., the expres-
sion o[z|z] describes the tree shape consisting of two
copies of the shape z under a single parent node. Since
our language includes conditional constructs, we also
have simple Boolean expressions, which consist of log-
ical combinations of equality tests on expressions.

Definition 2.5 (Expressions). Node expressions N €
Expys, tree shape expressions X € Expg and Boolean
expressions B € Expp are defined by:

N ::=mn|nil
X =0z |oX]| X|X
B:=N=N|X=X |false| B= B

n € Vary
x € Varr,

[E]s has the standard semantics.

Our language consists of the standard basic imper-
ative commands together with four tree update com-
mands: deletion, insertion, copying and node lookup.
Deletion removes a subtree; insertion adds a tree, spec-
ified by a tree shape expression; copying stores the
shape of a subtree in a tree shape variable; and node
lookup looks up a neighbouring node in the tree struc-
ture. These four commands are sufficient to express a
wide range of tree manipulation. E.g., replacing a sub-
tree at a node can be expressed using deletion followed
by insertion. Also, allocation (‘new’) can be expressed
by the insertion of a literal; e.g., inserting the expres-
sion o[0] creates a single new node at a given location.
It turns out that, given our simple tree structure, the
copy command is also derivable, using a combination
of lookup, insertion and recursion; nevertheless, we in-
clude it in our language for @esthetic reasons.

The four update commands are specified by a single
location, given by node variable n. However, there is

still a choice as to the precise action of the update
command and, since the options are not inter-derivable,
we allow for a number of possibilities: for delete and
copy, the action can affect the tree at n or its subforest;
for insert, the action can insert as a left sibling, right
sibling, first child or last child of n; for node lookup,
the action can affect the same positions as insert, as
well as the parent node. In Defn. 2.6, the tree update
commands therefore all have variants, marked *, for
describing the precise location of their action.

Definition 2.6 (Tree Update Language). The com-
mands of the tree update language are defined by:

C ::=skip skip
n:=N|z:=X variable assignment

Cup(n) tree update at n
C;C sequencing

if B then C else C if-then-else
while B do C while-do

where the tree update commands are:

Cup(n) == delete n, € {1,1}
insert X at n, * € {—,—,/,\.}
T := copy Ny ~ec{1,]}

*E{Tu(_u_n/u\}

n' := lookup n

The operational semantics is given in Figure 1, us-
ing an evaluation relation ~» relating configuration
triples C,s,t, terminal states s,t, and faults, where
dom(s) D free(C), the free program variables of C.

A key property of the operational semantics is that
all the commands are local; the result of a command
on a tree is the same as the result of the command on
the tree in a larger context. This locality property is
essential for our style of reasoning. E.g., consider the
behaviour of n’ := lookup n_,. If the right sibling of
n exists then its identifier is stored at n’. If the right
sibling does not exist but n has a parent then n’ stores
the value nil. However, if the node n is not present in
the tree, or if the right sibling of n does not exist and
n has no parent, then the command must fault.

Example 2.7 (Tree update). Consider a simple pro-
gram, which traverses a tree (starting at ng), copies
and deletes a subtree (at n3), and inserts it as the last
child of the starting node, under a new node:

n' :=lookup n_ ;

@ n’ :=lookup n’, ; (ny "
() n' :=lookup n’, ; M) (W) x-oolol
!
x := copy n} ;
® & © delete n} ; @ ® ®

@ @ @) @

insert o[z] at n~_

3 High-Level Tree Reasoning

We describe CL for analysing our tree structure, and
local Hoare reasoning using CL for specifying proper-
ties about our tree update language. First, we present
the logical environment which is a function from logi-
cal tree variables to trees. Contrast these tree variables
with the tree shape program variables (Definition 2.4),
which refer to specific values in the store and are not
quantified. We permit our node variables to have the
dual role as program variables and logical variables.

Definition 3.1 (Logical environment). An environ-
ment e € £ is a function e: LVary — 7 mapping logical
tree variables LVary = {t, ...} to trees. Write [e|t « t]
for the environment e overwritten with e(t) = t.

Local data update typically identifies the portion of
data to be replaced, removes it, and inserts new data
in the same place. The key idea behind CL is that,
in order to reason about such data update, it is nec-
essary to reason about both the data (trees) and the
interim contexts. CL applied to trees is built from the
standard classical connectives, the structural connec-
tives, and specific operators for trees. The structural
connectives consist of the application connective ‘', its
right adjoints < and >, and a context formula ‘—’ de-
scribing the empty context. In fact, we focus on the de
Morgan duals ‘4’ and ‘»’ of the right adjoints. Given
a context formula K and tree formulee P and P’: the
tree formula K - P describes a tree that can be split
into a context satisfying K and a subtree satisfying P;
the tree formula K <« P describes a tree which can be
inserted into a context satisfying K to obtain a tree sat-
isfying P; and the context formula P’ » P describes a
context which can be placed around a tree satisfying P’
to obtain a tree satisfying P. The specific formule con-
sist of: the logical variable ¢ describing a specific tree
given by the environment; the tree formule X and (t)
describing trees of a certain shape; and the context
formulae N[K], P|K and K|P analysing the branching
and composition structure of contexts and, via appli-
cation, trees.

Definition 3.2 (CL tree formulae). The tree for-
mulee P € P and context formulee K € K are:

P .= K =

X | t](t) N[K] | P|K | K|P specific formulae

|K-P|K<4P |—|P»P structural formulae
| P= P |false | K = K |False Boolean formulae
| In. P | 3t. P | In. K| 3t. K quantification

Definition 3.3 (Satisfaction relations). Given envi-
ronment e and variable store s, the satisfaction rela-
tions e,s,t E7 P and e,s,c F¢ K are: (with dom(s) 2

free (P)Ufree (K), the free program variables in P, K),

estEr X & (t) =[X]s
estETt St =e(t)
estEr(l) Stx~et)

estFr K -P&3ct.t=ap(ct’) Aesckec K Aest Fr P
es,tFr K4P<dc.ap(ct)] Aes,cFe K Aes,ap(ct) Fr P

e;s,c E¢ N[K] < 3dn,c . n=[N]s Ac=n[c'| Ae,s,c Ec K
es,cFc PIK <3t c.c=tld NestEr P Aes,c FcK
esckFcK|P & 3c t.c=c'[t Aes,c Fc K AesitEr P
e,s,ckFc— Sc=—

e,s,c F¢c P»P'< dt.ap(c,t)] AestEr P Aes,ap(ct)FrP’
with standard cases for the classical connectives and

quantification. Operator binding, from tightest to loos-

est, is =, -, A, V, {», 4,>, <} and =.

Definition 3.4 (Derived formulee). We use the stan-

dard classical logic connectives, and write N[P] for
N[—]- P and P|P’ for (P|—) - P’. We also define:

o[P] £ 3n.n|[P]

OP £ True-P
K<aP=-(K<4-P)
P>P ﬁ(P > ﬁPl)
(=A(true > (Pr&P))) -true
PP £ (—/\ﬁ(Pl > ﬁPz)) -true

N1:N2 £ Nl[O]ENz[O]
X1:X2 £ XlEXQ
(Py 2 3t.t A ((t) <1 P)

1> 1> {>

QP specifies a tree containing some subtree satisfy-
ing P. K <P describes a tree that satisfies P whenever
it is successfully placed in a context satisfying K, whilst
P> P’ describes a context that satisfies P’ whenever a
tree satisfying P is inserted in it. P, = P, holds iff P,
and P, are satisfied by the same trees. P; ><1 P» holds
iff there is some tree satisfying both P; and P,. The
expression equalities are self-explanatory. We write B
to denote the formula corresponding to the Boolean ex-
pression B, made up of these equalities and the stan-
dard classical connectives; these formule are used to
declare Hoare triples for the if-then-else and while-do
commands. Finally, a general renaming formula (P),
specifies all trees satisfying P up to renaming.

Example 3.5 (Formula examples). The tree in Exam-
ple 2.2 satisfies the following CL formulee:
(1) n[true], where s(n) =ng (3) (0 » o[o[0]]) - true
(2) O(e[e[0][o[0]}) (4) 3n, t.n[(0» 1) - (t)]
We describe local Hoare reasoning about our update
language using CL. Just as for SL, it depends on a
fault-avoiding, partial correctness interpretation of the
triples: a Hoare triple { P} C {Q} holds iff, for all es,t:
free(C) U free(P) U free(Q) C dom(s) Ae,s,t Fr P =
C,s,t A fault AVS t'.C,s,t ~ &'t/ = e, t' F7 Q

Definition 3.6 (Small Axioms). The Small Axioms
for the commands given in Figure 1 are in Figure 2.

The Small Axiom for delete ny has a precondition
n[true] describing a tree with root node n, and a post-
condition 0 stating that the result is the empty tree.
Notice that n’ := lookup n_, and n’ := lookup n~_
have two axioms: one for the behaviour that returns a
value n and one for nil. The inference rules include the
standard Hoare Logic Rules plus the Frame Rule:

{P} C{Q}

{K-P}C{K -Q} mod(C) N free(K) =0

mod(C) denotes the modified variables of C. All

the commands have weakest preconditions. We can
also derive safety preconditions of programs: e.g.,
Onlo[o[true] | o[true] | true] | true| for Example 2.7.

4 Low-Level Heap Reasoning

We give a brief description of the heap update lan-
guage and SL. See [10] for further details. The only
difference in the reasoning is that we assume a logi-
cal environment containing tree and tree shape vari-
ables, allow comparisons between environment values,
and provide quantification over such logical variables.

Definition 4.1 (Heaps and stores). A heap h € H is a
finite partial function h: NT —g, N from locations n €
N to values v € N, where values are either locations or
nil (0). A variable store s € S is a function s : Var — N
mapping variables Var = {m,n,...} to values. We
write n — n’ for the singleton heap mapping n to n’,
h * h’ for the union of two disjoint heaps h and h’, and
[s|n < n] for s overwritten with s(n) = n.

Definition 4.2 (Expressions). Value expressions E €
Expy and Boolean expressions B € Expy are given by:

E:=v|n|E+F|E—-EFE
B:=FE=F|false| B=B

where veN and neVar. [E]s and [B]s are standard.

Definition 4.3 (Heap update language). The com-
mands of the heap update language are:

Cu=n:=F assignment
n := cons(k) allocation
dispose E disposal
[E] :=F mutation
n = [E] lookup

plus skip, sequencing, if-then-else and while-do. fault
is dispose nil. See [10] for the operational semantics.

{0} skip {0}
{0A(n=mn0)} n:=N {0A (n=N{no/n})}
{OA(X=(t)} z:=X {0A (z= (1)}
{n[true]} delete n; {0}
{n[true]} delete n {n[0]}
{n[t]} insert X at n— {X|n[t]}
{n[t]} insert X at n_ {n[X|t]}
{nltl]} @:=copyni {nft] A (z= (n[t]))}
{nltl} w:=copyn, — {nft]A(z=(1)}

{m[t1|n[t]|t2] A (n = N) A (n' =mno)} n' :=lookup ny {m[t1|n[t]|t2] A (n = N{no/n'}) A (n’=m)}
{n[t]lnz2[t2] A (n = N) A (n' =no)} n' :=lookup n_. {n[t]|nz2[t2] A (n = N{no/n'}) A (n'=n2)}
{m[ti|n[t]] A (n = N) A (n' =no)} n':=lookup n_. {m[t1|n[t]] A (n = N{no/n'}) A (n'=nil)}
{n[tina[t2]] A (n = N) A (n' =no)} n' :=lookup n~, {n[tinz[t2]] A (n = N{no/n'}) A (n'=n2)}

{n[0] A (n = N)A (n =no)} n':=lookup n~, {n[0] A (n = N{no/n'}) A (n'=nil)}

Figure 2. Small Axioms for the High-level Commands

We use the Heap Logic of SL, consisting of the sep-
aration operator %, its right adjoint —, a points-to op-
erator — and emp. We assume a logical environment e
for tree and tree shape variables, and define tree expres-
sions and formulee for comparisons and quantification.

Definition 4.4 (Environment). An environment e € £
is a pair of functions e: LVary — 7 x LVary, — 7,
mapping logical tree variables LVary = {¢, ...} to trees
and logical tree shape variables LVary, = {z,...} to
tree shapes. A tree expression T € Expy is defined by:

T:=0|t|E[T]|TIT
[T]es is standard.

Definition 4.5 (Heap Logic formulae). The heap for-
mulae P are given by:

E € Expy

P:=emp|E—FE|B
P«P|P—xP
P = P | false
T=T|xz=(T)
In.P | 3t.P | 3a.P

specific formulae
structural formulae
Boolean formulse
comparisons
quantification

Given an environment e, variable store s and heap h,
the semantics of the heap logic is given by a satisfaction
relation e,s,h Ey P. It is defined inductively on the
structure of P. We just give the non-standard cases:

eshExyT =T < [T]es = [T]es
e,s;h Eyx = (T e(x) = ([T]es)

We use the following formula to describe the existen-
tial magic wand, node expression equality requiring in
addition that the heap is empty, adjacent cells in the
heap, and shape equivalence of tree expressions:

P —5Q = (P +-Q)
E=F 2 (E=F)Aemp

EwFy...,F, 2 (B Fy))%---%(E+n—F,)
T~T 23c.c=(T)ANe= (T

The Hoare triples of Separation Logic [5, 10] are anal-
ogous to those for CL. See [10] for details.

5 Implementing Trees and Contexts

Trees are implemented using a simple linked struc-
ture, consisting of a collection of heap cells correspond-
ing to the tree nodes, each containing links to the
node’s parent, previous and next siblings, and first
child. To each tree node identifier n, we associate the
heap location, also denoted n. The distance between
such heap nodes must be at least 4 for the pointers.
Similarly, the high-level tree value nil is identified with
the heap value nil. E.g., the tree in Example 2.2 has
the heap representation given in Figure 3a. To formally
define this structure, we introduce an abstract predi-
cate describing the set of states representing a subtree
(subforest) t with an external ‘interface’ given by a tu-
ple (1,i,u,j,r) which describes the first (i) and last (j)
of the top-level nodes in the representation, and the
targets of the left (I), right (r) and up (u) pointers:

In Figure 3a, the interface is (nil, ng, nil, ng, nil).

Definition 5.1 (Tree representation). A subtree t with
interface I = (1,14, u, j,r) is represented inductively by:

subtree 0 (1,4, u, j,7) = (l =) x(E=r)
subtree n[t] (1,3,u,5,7) = 3d;,d;. (i =n) * (j =
*n+— [, u, 7, d; *x subtree t (nil, d;, n, d;, nil)
subtree ti|te (1,4, u, j,r) 2 3k, k.
subtree t1 (1,4, u, ki, kr) * subtree ta (ki, kr, u, j, 1)

n)

(a) the low-level
representation of the

tree from
Example 2.2.

(b) a heap satisfying
subtree
n3[n5[0]|ne[0]]
(n2,n3,n1,n3,n4)

(c) a heap satisfying
subcontext
n1[n2[0]|—|n4[0]] (nil,nq,no,
ni,nil) (n2,n3,n1,n3,n4).

(d) a visual
demonstration of the
Application Lemma
(Lemma 5.4)

Figure 3. Representing Trees and Contexts in the Heap

Write tree t i £ 3j. subtree t (nil, 4, nil, j, nil) to rep-
resent top-level trees. Write subtree I to describe an
arbitrary subtree with interface I, and subtree T' I for
the extension of subtree to tree expressions.

The low-level representation of the subtree ns[ns|ne]
from Example 2.2 is given in Figure 3b. The nodes
no, ny and ng form an essential part of the subtree
interface. Reasoning about these low-level subtrees re-
quires reasoning about this additional interface (the
crust, Defn. 8.1). The 0 case is a little confusing. Con-
sider Figure 3c. If 0 is put into the hole, the n4 points
to 7 =1 = ns, and ng points to 1 = r = ny.

We now model the high-level variable store. Node
variables n are translated directly to low-level name
variables n. Tree shape variables take up ‘space’ and
are represented in the heap. We associate every tree
shape variable x with a unique name variable &z,
which points to a heap location containing a concrete
representation of its shape value. Since low-level com-
putations may also use other name variables, which do
not correspond to anything at the high-level, we relate
the high-level state to a set of low-level states.

Definition 5.2 (Tree and store representation). Given
tree t and store s, the set [[s¢,t] is defined by:

(snsh) € [st,t] < sh D stlya,, Ah = hex I] hen

xevarst, (st)

dn.sp, he Fxtree tn A
Va € varst, (st). Ite.(tz)=s¢(z) A sp, he Eptree ty &x
where the [] denotes iterated separation.

Subcontexts are similar to subtrees, except that as
well as their ‘external’ interface, they also have an
‘internal’ interface for the hole given by (I, v/, j/, 1),
where I’, u/,r" describe the sibling and parent nodes of
the context hole, and i, j' describe the first and last

locations in the hole to which they point:

Definition 5.3 (Context representation). A subcon-
text ¢ with a top interface (1,4, u, j,7) and a hole inter-
face (I',4',u/, j',1") is defined inductively as follows:

subcontext — (I,i,u,j,r) /Z,u/7j/77“,) S
(I=1) * (i=4") * (u=u) (7=5") * (r=r")
subcontext n[c] (1,i,u,5,7) (I';i',u’,5',r") 2 3di, d;. (i=n) * (j=n)
* ni—lu,r,d; * subcontext c (nil,d;,n,d;nil) (I w5 ")
subcontext t|c (1,i,u,5,7) (I'i’\u'5 ") £ Ik, k.
subtree t (1,7,u,k;,k:) * subcontext ¢ (ki,kr,u,j,r) (I'i'w’,5',r")
subcontext clt (1,i,u,5,7) (I'i’v'5r") 2 Ik, k.
subcontext ¢ (1,i,u,ki,k,) (I'i'’,5',r") * subtree t (ki kr,u,j,r)

We write contextc i I’ £ 3j. subcontext
¢ (nil,i,nil,jnil) I’ to represent top-level contexts, and
subcontext I I’ to describe an arbitrary subcontext
with interfaces I and I’. The low-level representation
of the subcontext nq[nz| — |n4] is in Figure 3¢ with ng
and ngz part of the external and internal interface.

Lemma 5.4 (Application Lemma). Context applica-
tion corresponds to star-separation across interfaces:
i.e., subtree ap(c,t) I < 3I'.subcontext ¢ I I’ x
subtree t I’. Figure 3d illustrates the application of
the subcontext in Figure 3c to the subtree in Figure 3b.

6 Language Translation

We give a translation of our high-level language into
the low-level language. Let n—l,u,r,d. Then:

nleft2n nup£n+l nright £2n+2 n.down2n+3
n := new-node() £ n := cons(4)
 dispose n.left ; dispose n.up ;

di -nod . . .
1spose-node n dispose n.right ; dispose n.down

We use three utility functions for updating forests:

dispose-forest n £
if n = nil then skip else
r:=[n.right] ; dispose-forest r ;
d:=[n.down] ; dispose-forest d ; dispose-node n
(i',5") := copy-forest n (I',u’,7') £
if n = nil then ¢’ := 7" ; j/ :=1" else
i’ :== new-node() ; [’ left] := 1" ; [i'.up] := v’ ;
r:=[n.right] ; (r},7):=copy-forest r (i’ ,u’,r") ;
d:=[n.down] ; (dj,d):=copy-forest d (nil,7’,nil) ;
[i’ right] := 7} ; [¢'.down] := dj
b := compare-forests n n’ £
if (n=nil A n’=nil) then b:=1 else
if (n=nil V n'=nil) then b := 0 else

r:= [n.right] ; ' := [n/.right] ; b := compare-forests r 7’ ;

if b = 0 then skip else

d:=[n.down] ; d':=[n'.down] ; b := compare-forests d d’'

dispose-forest n just disposes the subforest start-
ing at n. The pointer surgery is given in the trans-
lation. Recall that, in our high-level language, tree
shape variables can be assigned new values using tree
shape expressions, which are a mix of tree shape vari-
ables and constants. In our implementation, the dif-
ferent tree shape variable values are represented at
different locations in the heap. We define a utility
(i,j) := copy-expression X (l,u,r), for copying the tree
shape expressions to locations in the heap, by:

(i,5) := copy-expression 0 (l,u,r) £ i:=71;j:=1

translation [—]2 from high-level Boolean expressions to
low-level Boolean expressions is defined by:

[N =N']; £ skip

[X = X']1 £ (4,7) := copy-expression X (nil, nil, nil) ;
(7',7") := copy-expression X' (nil, nil, nil) ;
bix=xr) = compare-forests 7 i’ ;
dispose-forest i ; dispose-forest i’

[false]: = skip [B= Bl 2 [B]1;[B]x

[N=N']2 & N=N' [false]2 £ false
IIX:X,]]Q £ b(X:X/):l IIB = B/]]z £ IIBHQ = [[B/]]z

We give the translation of the high-level update
language into the low-level language, using the util-
ity functions to do the hard work and then pointer
surgery to maintain the tree invariant. E.g., the trans-
lation of the command delete nt first removes n’s sub-
forest using dispose-forest, then removes n itself us-
ing dispose-node, and finally cleans up the pointers
where n used to be using simple pointer mutation.

Definition 6.1 (Update language translation). The
translation is given in Figure 4.

Theorem 6.2 (Relating the operational semantics).
The translation in Figure 3 satisfies the properties:

(a) C,st,t ~ sp,t
= V(sp,h) € [st,t]. I(sh,h") € [st,t']- [C],sn,h ~ sp,h’
(b) C,s¢,t ~» fault = I(sp,h) € [s¢,t]. [C],sn,h ~ fault

(¢) [C],sn,h ~ s, h" A (sp,h) € [s,t] A C,s¢,t 4~ fault
= sy, t'. (s, h’) € [s;, '] A C,se,t ~ sp,t

1
(i.j) := copy-expression (Lu,r) £ (i,j):=copy-forest &z (Lu,r) (d) [C],sn,h ~ fault A (s, h) € [s¢,t] = C,s,t ~ fault
1

s

(,j) := copy-expression o[X] (I,u,r)

i := new-node() ; j:=1 ; [¢.1eft]:=l ; [{.up]:=u ; [i.right]:=r ;

(di,d;) := copy-expression X (nil,é,nil) ; [i.down] := d;
(i,5) := copy-expression X1|Xz (l,u,r) £

(i,k1) := copy-expression X1 ({,u,nil) ;

if 4 = nil then (4,7) := copy-expression X (l,u,r)

else (kr,j) := copy-expression Xs (ki,u,r) ; [ki.right] := k,

Since comparing tree shape expressions is possible
in high-level Boolean expressions B, but not in low-
level ones, high-level Booleans are translated in two
stages: the first, [B]1, translates any comparisons of
tree shape expressions in B into update commands that
copy and compare the values of the expressions; the
second, [B]z, returns the low-level Boolean expression
corresponding to B, using the results of the compar-
isons performed above to manage comparison between
tree shape expressions. In order to perform a condi-
tional test on B at the low-level, we first execute [B];
and then perform the test [B]s.

For each pair X and X', we associate a fresh name
variable b(x—xn. The translation [—]; from high-
level Boolean expressions to low-level programs and the

The translation is fault-avoiding (d), in that a low-
level translation will never fault if the high-level com-
mand does not fault. However, it is not always fault-
preserving in that a specific low-level execution might
not fault even if the high-level command does fault.
This is due to the necessity of keeping the tree store in
the heap. E.g., if a node n is not in the tree but hap-
pens to be in the heap representation of the store, then
the command delete ny would delete part of the store,
rather than fault. For this reason, (c¢) requires the ad-
ditional premise that the high-level command does not
fault.

7 Context Logic Translation

Our next step is to translate the CL formuls to
the Separation Logic formulee. There are two parts
to the translation. One part provides the translated
SL formulee [P]! and [K]%, which specify the corre-
sponding subtrees and subcontexts with their appro-
priate interfaces. Now recall that the low-level heap
not only represents the main data structure (the trees

[skip] £ skip

&x:=1

[delete ni] £
d := [n.down] ; r := [n.right] ;
u = [n.up] ; [:= [n.left] ;

[insert X at n_] 2
l:= [n.left] ; u := [n.up] ;

A
[n:=N]=n:=N (4, 7):=copy-expression X (I,
[z :=X] & [n.left] :== 7 ;
(4, 7):=copy-expression X (nil,nil,nil) ; if [# nil then
dispose-forest &z ; [l.right] := i else [u.down]

[insert X at n_] =
d := [n.down] ;

=1 ,

(4, j):=copy-expression X (nil,n,d); ,
if d = nil then skip else [d.left] := 7 ;

[x := copy n;] =
dispose-forest &z ;
u,n) ; d := [n.down] ;
(&z, j):=copy-forest d (nil, nil, nil)
[n' :=lookup nt] £
n' := [n.up] ; if n’ = nil then
fault else skip
[n' := lookup n_] =
n' := [n.right] ; u := [n.up];

dispose-forest d ; dispose-node n ;
if 7 # nil then [r.left] :=1;
if [# nil then [l.right] := r else
if u # nil then [u.down] :=1r
[delete n,] £
d := [n.down] ; dispose-forest d ;
[n.down] := nil

[Cy; C2] £ [C4]; [Ce]

[n.down] := i

[z := copy nq] £
dispose-forest &z ;
&x := new-node() ;
d := [n.down] ;
(4, j):=copy-forest d (nil, &z, nil) ;
[&z.down] := i

[if B then C; else Cz] £
[B]1 ; if [B]2 then [Ci] else [C2]

if (n" = nil A u = nil) then
fault else skip

[n' := lookup n~_] £
n' := [n.down] ;
if n’ = nil then skip else
n” = [n .right] ;
while n” # nil do

"i=n"" ;0" = [n right])

(n

[while B do C] £ [B]: ;
while [B]2 do ([C] ; [B]1)

Figure 4. Language Translation

or contexts), but also represents the values of the
tree-shaped variables, with &z denoting the heap ad-
dress representing the value of tree shape variable x.
The other part declares these values in the heap by
[P]L £ 3z ([P]" * H(Ht. (t) = x Atree t &x)) where
TET

{#} contains the free tree shape variables in P. This
formula declares that, in some part of the heap disjoint
from [P]!, there exists a disjoint tree ¢ at address &z
for each =, where the tree shape variable x has value
(t) in the logical environment. Since the value of x is
determined precisely by the heap at &z, it is possible
to existentially quantify this logical variable x.

Definition 7.1 (Logic translation). The translation
of a CL formula P into a heap formula [P]z, where
{#} contains the tree shape variables in P, is given by

[Pz £ 3i, 5. [P]S™ "™ where [PL £ 3z ([P] *
H(Ht. (t) = x Atree t &z)), and [P]! and [K]], are

TET

defined inductively by:
[OJ77) 2 (1 =) x (i = v)

[x]* £ 3t. (t) = = A subtree t T
[o[X]]H4wan & 3d, d;. (i=7) * irslyu,r,d; + [X]Pibdedsmid
[[X|X'}](L’;“’j’T) A Ik, k. Hxﬂ(hi»u»kz,kr) % [[X/ﬂ(kz,kmuyj,r)
[t]" & subtree t I
[()]F & 3t'.t' ~ t A subtree t' I
[K - P]"23r. [K]L «[P]"
[K < P]" £ subtree I A3I'. [K]} 3 [P]"
[P = P']" £ subtree I A ([P]' = [P']")

(1=N) % (j=N) * N—~lu,r,d; *
IIK}]EI/nl,di,n,dj,nll)

[[PlKML,i%J}T) A Jky, ey [[Pﬂ(l,i,u,kl,kT) % IIK]]nglvkr»u»jvr)

[[K|P}]§I;ijﬂ") 'y 3ky, kv IIK}]EZ/’i’u’kl'kT) * [[P]](klvk'r,uyij)

[T 2 (=)« s (w2 (25 (r=r)
[Pw» P']l & subcontext I I' A [P]" 3 [P']*

[K = K']% 2 subcontext I I’ A ([[K]]fl = [[K'}]?)

[N[E])GH*7 2 3d;, dj.

I’

plus obvious cases for false, False and quantification.
We write [B]? for the translation of the formula corre-
sponding to the Boolean expression B, as in Defn. 3.4.

The translation of the tree formule is mostly
straightforward. The tree constructor formule are han-
dled in an analogous fashion to Defn. 5.1. Note that
the tree shape formula X is translated by its various
cases: [0]7, [x]!, [o[X]]' and [X|X']'. Context ap-
plication corresponds to star separation across some
interface I’, as in Lemma 5.4. The translation of the
two modalities, <€ and », is a bit more subtle. For ex-
ample, a heap representing a subtree K € P with inter-
face I satisfies the formula 3I'. [K]} —3 [P]", which
states that it is possible to add a heap describing a
subcontext K with interfaces I’ and I (for some I’)
and obtain a heap describing a subtree P with inter-
face I'. However, this alone does not ensure that the
original heap describes a subtree; for that, we need an
additional formula subtree I. The same requirement is
necessary when translating implication. The transla-

tion of the tree variables and quantification is routine.
The translation of the context formula is analogous.

Lemma 7.2 (Type Soundness). The translation is
type sound: for all P and {Z} D freer, (P),

(sh,h) € [st,t] A

Ve, sp,h. e sp,h Ex[P]z= 3si, t. vars, (s;) = {&)

Lemma 7.3 (Soundness and completeness). The
translation is sound and complete: for all P,

vet,St,t,Sh,h- (sha h) € [[St;tﬂ =
(et,St,t ':TP = €¢,Sh, h ':H [[PﬂvarSTO(st))

There is an analogous result for context formulee.

Theorem 7.4 (Hoare Triple equivalence). For all CL
formule P, Q, tree update commands C and tree shape
variables {Z} 2 freer, (C) U freer, (P, Q):

{P} C{Q} < {[Plz} [C] {[Ql=}

This theorem relates Hoare triples on high-level trees
with Hoare triples on low-level, complete trees where
the interface is I = (nil, 4, nil, j, nil) for some ¢ and j.

8 High-level/Low-level Reasoning

To get a true relationship between the high-level and
low-level reasoning, we must extend Theorem 7.4 to
link Hoare triples on high-level trees to Hoare triples
on low-level subtrees with arbitrary interfaces. This is
not straightforward as the high-level and low-level foot-
prints are different. For example, the high-level com-
mand delete n; affects just a subtree at n, whereas its
translation [delete n;] has the potential to affect the
parent, left-sibling and right-sibling of n (if they ex-
ist). At the low level, we must therefore introduce an
additional predicate describing this crust of nodes sur-
rounding the subtree. For the implementation studied
in this paper, the crust predicate specifies properties of
the nodes immediately near the subtree:

The crust formula is subtle. Given interface I
(I,%,u,j,r), it specifies the potential footprint associ-
ated with the pointer surgery: if [and r denote nodes
then they must be in the crust; and if [= nil and u
denotes a node then u must be in the crust.

Definition 8.1 (Crust). The tree crust at an interface
(1,i,u,j,r), denoted mb5w37) s defined by:

rrn“’i’“’j’”") = Are, dey by diy Uy T (7’»—>j,u,rr,dr v rinﬂ)*

<l|—>ll,u,i,dl \Y (linil * (w—>ll,uu,ru,i \Y uinil)))

10

Example 8.2 (Crust example). Consider delete n

from Example 2.7, where s(n’) = n3. The translated
command [delete n/] has the following specification:

{rm(nz sNg 5N ,nz,n4) *

[delete n’]

{rm(nQ,nS,n1 N3,ny) *
subtree n3[n5[0]|ns[0]]
(n27n37n17n37n4)}

subtree 0
(n27n47n1 7n27n4)}

Theorem 8.3 (Axiom translation). For every Small
Aziom {P} C {Q} in Defn. 3.6, the low-level Hoare
triple is derivable for {Z} D freer, (C) U freer, (P):

{3i,j. Abiudr) [[P]]g’i’“’j”)}
C

{37‘7] rm(l,i,u,j,r') % [Qﬂg’iyuyjyr)}

Theorem 8.4 (Inference rule translation). For every
inference rule in Defn. 77, there is a derivable low-level
rule obtained by replacing all high-level Hoare triples
{P} C{Q} with the low-level Hoare triples

{327‘7 @(l,i,u,j,r)*[[P]](fl,i,u,j,r')} [[(Cﬂ {327‘7 rm(l,i,u,j,'r)*HQﬂg,i,u,j,r')}‘

where {Z} D freer, (C) U freer, (P).

Corollary 8.5. Any triple {P} C {Q} derivable at the
high-level can also be derived at the low level: z
H{pP} CH{Q} = F{[Plz} [C] {[Q]z}, for {7} 2
freer. (C) U freer, (P, Q).

In our crust definition, we have focussed on full
nodes n—l,u,r,d. This abstraction is shorthand for
n—lsn+l—uxn+2—r*xn+3—d We can
define a smaller crust, by only referring to the specific
pointers manipulated by the low-level program. In Ex-
ample 8.2 for example, the specific pointers are the left
pointer of no and the right ponter of ny.

Definition 8.6 (Small Crust). The small crust at an
interface (I,i,u,j,r), denoted rm(éf’““’”), is defined by:

ALEIT) & (p s v pnil) «

<l+2»—>i\/ (linil* (u—|—3»—>i\/uinil))>

Analogous results to Theorem 8.3 and Theorem 8.4
hold. With this definition of small crust, it is natural
to explore alternative definitions of subtrees and sub-
contexts:

Ji,j. ML ssubtree t T
E R
!
(rmg — subcontext ¢ I I') * M

alt-subtree t J
alt-subcontext ¢ J J’

Y
Y

where J = (l,u,r) and I = (I,i,u,j,7), and similarly
for J' and I’. With these definitions, the statements
of Theorem 8.3 and Theorem 8.4 become simpler since
the crust information can be hidden from view. How-
ever, the crust information just appears in a different
place. Recall that ‘subtree t;|to I’ is simply defined us-
ing ‘subtree t; I;’ and ‘subtree to Is’. In comparison,
‘alt-subtree t1|ty J’ is complicated, since it involves re-
moving the right part of the crust (the r part) from
‘alt-subtree t; J;’ and the left and upper part of the
crust (the [and u part) from ‘alt-subtree to Jo’. The
crust gets in the way of concatenating trees. It is there-
fore not possible to escape fully from the crust when
reasoning about low-level tree update.

In summary, we believe that CL is ideal for speci-
fying libraries for structured data update such as tree
update, since it reasons about structured data at the
right level of abstraction. Abstract predicates play an
essential role in linking the high-level reasoning using
CL with the low-level reasoning using SL. However,
the abstract predicates do not abstract completely from
the implementation details, since the crust information
forms a necssary part of the reasoning. CL enables us
to work with the ‘fiction’ that we are updating trees,
regardless of the underlying implementation.

References

[1] N. Benton. Simple relational correctness proofs for
static analyses and program transformations. In
POPL, 2004.

[2] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic
& tree update. In POPL, 2005.

[3] P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty.
Local Hoare reasoning about DOM. In PODS, 2008.
Preliminary version in PLanX 2008.

[4] S. Isthiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In POPL, pages 14—26.
ACM Press, 2001.

[5] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning

about programs that alter data structures. In CSL,
2001.

[6] M. Parkinson and G. Bierman. Separation logic and
abstraction. In POPL. ACM, 2005.

[7] J. Reynolds. Separation logic: a logic for shared mu-
table data structures. In LICS, 2002.

[8] G. Smith. Local Hoare Reasoning about DOM. PhD
thesis, Imperial College London, 2009.

[9] H. Yang. Relational separation logic. Theoretical Com-
puter Science, 375(1), 2007.

[10] H. Yang and P. O’Hearn. A semantic basis for local
reasoning. In FOSSACS, 2002.

11

Appendix
Lemma A.1 (Weakest Preconditions). The weakest preconditions of the Tree Update Language
commands (Defn. 2.6) are expressible and derivable in the logic.

Proof. For the atomic commands in Defn. 3.6, the weakest preconditions are:

{P} skip {r}
{P[N/n]} n:=N {r}
{P[X/z]} =X {P}

[}

> P) |} delete ng {P}

{(n[0] > P) - nftrue]} delete n| {P}

{3t. (X|n[t]) > P) - n[t]} insert X at n_ {P}
{3t. (n[X|t] > P) - n[t]}
{3¢. Onlt] A P[(n[t])/x]}
[}
[}

])/
{3t Onlt] A P[(t))z

: {Hméﬁ?l[[true\]?[tr[ue]|t]r)ue] A(n=N)A Pm/n
m,ne.Q((n|truel|ny|true|) V o ,
{(m[true|n[true]] Any = nil)) (0= N)APlna/
{Hng. O(nltrue|ns[true]] Vv
(n[0] A ny = nil))

insert X at n {P}
T 1= copy my {P}
T 1= copy n,| {P}

n' = lookup ny {P}
= lookup n_, {P}

A (n = N)A Plny/n] = lookup n~, {P}

S
— N
S S

The derivations are all similar to Example 77.

Lemma A.2 (Safety Precondition). The safety precondition of the program in Ezample 2.7 is
expressible and derivable in the logic.

Proof. The result follows by inverse reasoning, starting from the postcondition true, using the
weakest preconditions, and simplifying at each step.

{true}
insert o[x] at n_
{3t. (n[t|o [x]] > true) n[t]} < {true}
delete n} ;
{(0 > true) - n/’[true]} < {On/[true]}
T 1= copy 1} ;
{3t. On'[t] A On'[true]} < {On/[true]}
":=lookup n’_ ;
{EI??}, ngiO(lin’[trllleHng [true]) V (m[true|n[true]] A ny = nil)) A Ongftrue|} < {O(n'[true]|o[true])}
n' :=lookup n’, ;
{Eln/g. O(ln’ [71:2 [true/]|true] V (n'[0] A ng = nil)) A O(ng[true]|oftrue])} < {On'[o[true]|o[true]|true]}
n' = lookup n , ;
{3Ingy. O(n[neftruel|true] V (n[0] A ny = nil)) A Onglo[true]|o[true]|true]} < {Onlolo[true] | o[true] | true| | tru

12

Lemma 5.4 (Application Lemma). Context application corresponds to star-separation across
interfaces:
subtree ap(c,t) I < 3I'.subcontext ¢ I I’ x subtree t I’

Proof. Result follows by straightforward induction on c.

subtree ap(—,t) (l,i,u,j,r) < subtree t (1,i,u,j,r)
s WG (=)« (i =7)*x(u=1u")*(j=j")*(r=r')xsubtree t (I'7'u,j" 1)
< ' j " subcontext — (1i,u,j,r) (Ui’ j'r') % subtree t (I"i" w5’

subtree ap(n[c],t) (I,i,u,j,r) < subtree n[ap(c,t)] ({,i,u,j,r)
& 3d;,d;. (1 =n)*(j =n)*n [u,rd; *subtree ap(c,t) (nil,d;,n,d;,nil)
< 3di,dj. (i =n)*(j=n)*xn— Lu,rd 305

subcontext ¢ (nil,d;,n,d; nil) (I"d' ' j"1") * subtree t (!¢, 5’

< JUd,j' ' subcontext nlc] (1,i,u,7,r) (1", 5r") * subtree t (I, 5"

*
*

subtree ap(t|c,t’) ({,i,u,j,r) < subtree t|ap(c,t’) (I,i,u,j,r)
< Jky, k. subtree t (1,i,u,k;,k,) * subtree ap(c,t’) (k;,k.u,j,r)
< Tk, k. subtree t (1,i,u,k;,k,.) x 305"

subcontext ¢ (ki k,,u,j,r) (Ui’ jr") subtree t' (I¢,u/, 51

< U, ' subcontext tlc (1,i,u,j,r) (Ui j'r") subtree t' (I, u/,j' 1)

subtree ap(c|t,t’) ({,i,u,j,r) < subtree ap(c,t’)|t (L,i,u,j,r)

& Jky, k.. subtree ap(c,t’) (1,i,u,k;,k,) * subtree t (k; k., u,j,r)

& Jky, k. A7) 5 r" subcontext ¢ (1,i,u,kp k) (Ui 5'r") « subtree t' (I'd" /5"
« subtree t (k;,k,,u,j,r)

< JU ' subcontext c|t (1,i,u,7,r) (Ui j'r") « subtree t' (I, u/,5' 1)

13

Lemma A.3 (Exactness). Subtree and subonctext describe at most one tree or context for any
given interfaces.

Vtq,ta, I.subtree t; [= (subtree ty I <t = t9)
Vtcy, co, I, I'. subcontext ¢; I I' = (subcontext ¢y I I' < ¢ = ¢9)

Proof. We show the right-to-left implication first: namely, that subtree and subcontext respect
the tree and context equivalence relations. This follows by simple induction. The case for trees
is:
subtree Ot (1,i,u,j,r) < 3k, k.. (k; = 7) * (k. = 1) * subtree t (k;,k,,u,j,r) < subtree t (l,i,u,j,r)
subtree t|0 (1,i,u,j,r) < 3k, k.. subtree t (1,i,u,ky,k,) * (k; =) * (k, = r) < subtree t (l,i,u,j,r)

subtree t; (l,z,u k} ,k:l)
subtree ty|(to|ts) (1,i,u,j,r) < 3k}, kL k2, k2. subtree to (k} k1 ki k2) « < subtree (ty|ta)|ts (1,i,u,5,7)
subtree t3 (k:l Kru,g, 7“)

The case for contexts is similar.

Next we show the left-to-right implication: that for given interfaces, subtree and subcontext
describe at most one tree. For trees, we have three cases: t; =ty = 0; t; = ny[t1]|t? A to = 0; and
t1 = ny[t1][t3 Aty = no[td]|t3. The result then follows by induction:

subtree 0 (1,7,u,j,r) = (subtree 0 (I,i,u,j,r) < true)
subtree ny [t1]|¢% (1,i,u,j,r) =—emp = (subtree 0 (I,i,u,j,r) < false)
subtree ny[t1]|¢3 (1,i,u,j,r) =3d;, dj, rp.ny — 1 u, 7, d; x subtree ¢1 (nil,d;,n,d; nil) * subtree ¢ (n,r,,u,j,r)
= (subtree ny[t}]|t3 (1,i,u,j,r) <= np =ny At] =t N3 = 13)

Hence subtree t; [= (subtree ty <t; = t5). For contexts the proof is identical, except with more
cases. For all ¢ we have ¢ = —, ¢ = n[]|[t or ¢ = ny[t]|. The six combinations follow by the
same argument as above.

14

Lemma A.2 (Name matching). The locations of a tree or context correspond to those of their
heap representations.

Vi, s, h, I,n,j€[0,3].s,h Eysubtree t I = (n € locs(t) < n+j € dom(h))
Ve,s,h, I, I n,j € [0,3].s, h Eysubcontext ¢ I I'= (n € locs(c) < n+j € dom(h))

Proof. Straightforward induction. It is easy to see from the inductive predicate definitions that
every n in c or t contributes one node of the form n — [, u,r, d, whose heap domain is therefore
{n,n+1,n+2 n+3}. Furthermore, no other parts of the definitions contribute any additional heap
locations.

Theorem 6.2 (Language translation). The translation is a well-defined, fault-avoiding trans-
lation with respect to the high-level and low-level operational semantics and the low-level tree
representation. In other words:

(a) C,s,t~» sy, t' = Vsp,, h € [si,t]. s, h' € [s}, t']. [C], sp, h ~> s}, b’
b) C,s;,t ~ fault = sy, h € [s4,t]. [C], sp, h ~ fault

)
¢) [C],sp,h~> s, W Asp h € s, t] AC,sp,t o~ fault = 3s),t'. s, b € [si, '] AC, st~ s, t
d) [C],sp, h ~ fault Asp, h € [s,t] = C, s, t ~ fault

(
(
(

15

Sketch proof. Follows directly from the operational semantics of two update languages and
Lemma 5.4. The derivations for delete and copy are given here. The other derivations are similar.
All the derivations follow the same principles as the specification proofs in Lemmas 77, 77 and 77
and Theorem 8.3, proved further on.

To prove the results for delete and copy, we must first describe the behaviour of the utility
functions dispose-forest and copy-forest.

dispose-forest For dispose-forest n, we see that:

h=h sxh, s, h,Fysubtree t (I,n,u,jnil) s,(n)#nil s,(n) ¢ dom(h)
dispose-forest n, sy, h ~ s; b’ dispose-forest n, sy, h ~» fault

where s} is an extension of s;, containing the (fresh) auxiliary variables. The results follow by by
induction:

h =h" % h,, Asp, h,, Exsubtree t (I,n,u,j,nil) sp(n) # nil Asp(n) ¢ dom(h)

if n = nil then skip if n = nil then skip else
h =h" % h, A'sp, h, Exsubtree 0 (I,nil,u,j,nil) ri=[n.right] ; ...
=h="H
~ fault
else

h =h' % h, Asp, h, Exsubtree nft]|ta (I,n,u,j,nil)
Sh, h1 Eggsubtree t1 (nil)ig,n,j4,nil) A

Ly .
= h=h"xsy(n) = su(l),sn(u), ir,ia * hy ho A Sh, ha Fpysubtree to (n,ir,u,j,nil)
r:=[n.right] ; dispose-forest r ;

+ .
Sp o~ Sy [T i) A e
h s b 555 (1) = S (1) n (1), i, i 5 By A Sh, h1 Egsubtree t1 (nil,ig,n,j4,nil)

d:=[n.down] ; dispose-forest d ;
Sp, ~ SZ[Z:'H] Ah~s b xsp(n) = sp(l),sp(u),ir, iq

dispose-node n

ShWSZ/\hWh'

copy-forest For (i, j') := copy-forest n (I';u/, "), we have:

Su, hy, Fyysubtree t (1,n,u,7,nil)

) '/,r,l) h;z # h <t> = <t/>

W
h=h"xh, sp[t i, j" < J'], h}, Fysubtree t' (I%i\u'y)

(i, j') := copy-forest n (I';u/,7"),sp, h ~ s i — 1,5« j],h = h),

sp(n) # il sy(n) ¢ dom(h)
(7', 7") := copy-forest n (I',u’, "), sp, h ~~ fault

16

which is shown by:

Sh, hy, Exgsubtree t (I,n,u,7,nil) A i
h=nh"xh, A) 1 g subtree ¥ (10 §) A h! #hA(t) = (t') sn(n) #nil Asp(n) ¢ dom(h)

Sh [j/<—j/ s

if n = nil then ... el
if » = nil then T e e
; ri=[n.right] ; ...
VN sh,emp Ep subtree 0 (I,nil,u,j,nil) A h = N "—sh(YA i ri=[nright];
N sh[; _ U1, ! Eq subtree 0 (I%i'j'r) A =GP A =sp(l") ~ fault
==l
h=hxhl, Asy ~ s, [50],
else
L Sk, hy, Fxsubtree nfti]|tz (I,n,u,7,0il) A, o —
h=h"shy A h[;-,/:ij,/],h/ 4 subtree i [” (l/ i/ /,j/,T,) A hy, #h A <t1> = <t1> A <t2> = <t2>
Sh, h1 Eggsubtree ty (niljig,n,j4,nil) A W b A
. h= h % (sp(n) = sn(1),sn(u), i, ia) xhixha A Sh, ha Fy¢subtree ta (n,ir,u,j,nil) A (t ;ﬂi () A
h), = (" — sp ('), sp(u’), i, i) = h} « hj A sh[é/ =)],) Eqgsubtree t) (nil,ij,n ’,jé,nil) A (t;) ; (té>
snl5 Y 0], hl Egsubtree th (11,05 nil) A
i’ := new-node() ; [¢'.left] := 1" ; [¢'.up] := ' ;
sp ~ splt’ 1] (by non-determinism of new) s, h1 Fasubtree t1 (nil,ig,n,ja,nil) A h 4 h A
h ~ "« (sp(n) = sp(l),sp(w),ir,iq,nil) xhy xhy Sh, ha Fy subtree ta (n,ir,u,j,nil) A (t ;1: () A
* (i = sp (1), sp(u'), nil, nil) A sh[;, =y],) Eqgsubtree t) (nil,i,n’,j;,nil) A <t;) _ (t’l)
hy, = (" = sp(l'),sn(w'), iy, ig) * hy * hy A sn[l =l), b Eagsubtree th (I,i2,u/,j' nil) A 2
r:=[n.right] ; (r},7):=copy-forest r (i’ ,u’,r") ;
sp~ st L ;,;:J',/T] (inductive step) sn, h1 Fygsubtree ty (nilig,n.jg,nil) A h 4 h A
h~s b (sp(n) = sp(l), sp(u),ir, ig,0il) xhyxhy ko hy Fygsubtree 5 (n, |r.,u,],1'111) . <t1;15 (th) A
% (I/ — Sh(ll),Sh() nl]. nll) % hl Sh[; :IJ] h/ ':’Hsubtree t/ (nll Iéi? /7J(/:|’n11) <t2> = <t}>
hl, = (i" = sp(I'),sn (), i, 1)) * h] * h’ sh[; :'J], hl Eggsubtree th (I,i0,u/,5 mil) A 2
d:=[n.down] ; (d,d}):=copy-forest d (nil,i’ nil) ;
sy~ s [0 ;:J' fo_'d d5—ia] (inductive step) Sh, h1 Fpgsubtree t1 (nilyig,n,ja,nil) A b 4 h A
™ Id . . . n
R~ e (s (1) = (L) s (u) i mil) =y ey S ha Esbree ta (gl A 2
s (" (1), s (e, il mil) w by x by A Sl Ersubtree 8 (ilfn’ i) Ay =
h;I = (i’ — sh(l’) sh(u/)7 i;_7 '/d) * h/1 * h’2 A ShB :'J] h2 F subtree t2 (l/,l;,u 2] ,nil) A
[i’ right] := 7/ ; [¢'.down] := d]
5 SZ[i:.': ; :J. 377_'7 d <—Jd] Sh, h1 Exsubtree t; (nil,ig,n,jq,nil) A b4 h A
h e W (s (1) = (1), 5 (1), iy i) by by So ho Fagsubtree ty (ndrujnil) A - 0P
s (i = sp (1), s (u), iy, iq) * B, % h A Sh[é —y /], b Exsubtree t) (nil,i},n/,jj,nil) A (ta) = (t})
h!, = (" — sp(I"), sn(u'), 1%, i) * b % hly A snll T, h’ Fagsubtree ty (I',i7,u,5" nil) A °
= h o~ hsh, Asp ~ s [0

Delete We show that the theorem holds for delete n¢; the case for delete n| is similar, but simpler.
From Figure 1, we see that:

sn) =n_t=ap(cnft]) s(n)=n t#ap(cnlt)
delete ny,s,t ~» s,ap(c,0) delete ny,s,t ~ fault

17

For (a), we therefore wish to show that
Vsp, h € [[si, ap(c, n[t'])]. 3s,, h' € [si, ap(c, 0)]. [delete nq],sp, h ~> s, b
where s;(n) = s;(n) = n. Similarly, for (c), we wish to show that
Vsp, h € [st, ap(c, n[t'])]. Vs;,, h'. [delete nq],sp, h ~> s, h" =), h" € [s;, ap(c,0)]

Consider then sy, h € [s;, ap(c, n[t'])]. By Defn. 77, we have h = hy*[[, oo, (s,) Na» for some hy and
h,s satisfying sy, h; Fy tree ap(c,nt']) n; (for some n;) and s, h, Ey tree t, &z for (t,) = s(2).
Using Lemma 5.4, we have:

sk, ht Exgtree ap(c, nt’]) ne
< sp, hy By 3L, 4, u, §, v context ¢ ng (1,i,u,j,r) * subtree nlt'] (1,i,u,j,r)
< sp,hy By 3l 0, u, j, rocontext ¢ ng (1,i,u,5,7) * 3d;, dj. (i =n) % (j =n)*n— l,u,r, d; *subtree t’' (nil,d;,n,d;,nil)

d := [n.down] ; r := [n.right] ; u := [n.up] ; | := [n.left] ;
~ sy, hy Fy 31, §. context ¢ ny (1,i,u,5,r) * 3d;. (i =n)* (j =n)*n— [, u,r ds*subtree t’ (nil,d,n,d;,nil)
dispose-forest d ; dispose-node n ;
~> sp, he Foy 34, j. context ¢ ny (Lyi,u,5,7)
if # nil then [rleft] :=1;
~> sp, hy Fog 34, J. context ¢ ny (1yi,u,l,r)
if [# nil then [l.right] ;= r
~ sp, hy oy 34, j. context ¢ ny (1,r,u,l,r)
= sp, hy Eytree ap(c,0) ng
if u # nil then [u.down] :=r

~ sp, hy By i, j. context ¢ ng (1,r,u,l,r)
= sp, hy Eytree ap(c,0) ng

from which (a) and (c) follow immediately.
Meanwhile, for (b) and (d), we wish to show that

t # ap(c, n[t']) for n = s,(n) < sy, h € s, t]. [delete nq],sp, h ~ fault

For the left-to-right implication, we assume t # ap(c, n[t']) and let h = ht*HxEVarSTO (s
h, and h,s satisfying sj,, h; Fy tree t n; (for some ny) and s, h, Fytree t, &z, where (t,) = s;(x) and
n ¢ dom(h,) (this is always possible, since t, is only defined up to renaming). Then sp,, h € [s;, t]
and n ¢ dom(h). Hence, [delete n;] faults as soon as it executes d := [n.down]|. For the right-to-
left implication, we assume t = ap(c, n[t']) and show that Vs, h € [s;, t]. [delete n1], sy, h fault.
This follows directly from the proof above for (a) and (c).

) h,., for some

Copy We show that the theorem holds for « := copy ny; the case for x := copy n, is similar, but
simpler. From Figure 1, we see that:

sn)=n_t=ap(cnft]) s(n) =n tap(cnlt)
T 1= copy nq,S,t ~ [s|lx—(n[t'])],t x:= copy ny,s,t ~ fault

For (a), we therefore wish to show that

Vsp, h € [si, ap(c, n[t']))]. s}, h' € [si[z < (n[t'])], t]. [z := copy n(], s, h ~> s}, b’

18

where s;(n) = s(n) = n. Similarly, for (c), we wish to show that
Vsp, h € [si, ap(c, n[t'])]. Vs;,, h'. [z := copy nt],sn, h ~ s, b =), h" € [si[z — (n[t'])],]

Consider then sy, h € [s;, ap(c, n[t'])]. By Defn. 77, we have h = hy*]] ..o,
hys satistying sj,, h; Fy tree ap(c, nt']) n, (for some n;) and sy, h, Ey tree t, &y for (t,) = si(y).
Using Lemma 5.4, we have (using h, and h, as nameholders for the relevant part of the updated
heap):

) h,, for some h, and

sn, hy Eggtree ap(c, n[t']) ny Asp, hy Eggtree t, &z
dispose-forest &z ;
sn, hy Eggtree ap(c, n[t']) ng Asp, hy, Ezyemp
&z := new-node() ;

~ sp, hy Eggtree ap(c, nft’]) ng A sp, hy Ex &2 — nil, nil, nil, nil
d := [n.down] ;

context ¢ ng (Ln,uj,r) xn— lur dx*

subtree ' (nil,d,n.d;,nil) A sp, hy Ey & — nil, nil, nil, nil

~ sp, hy By

(i, j):=copy-forest d (nil, &z, nil) ;

context ¢ ng (Ln,u,j,r) xn— lu,r dx*

g P o P
subtree t' (nil,dyn,d;,nil) A s, hy Egy &2+ nil, nil, nil, nil % subtree t” (nili,&2z,j,nil) A (t') = (t”)

~ Sh, ht ':H

[&x.down] :=i ;

context ¢ ny (I,n,uj,r) xn— Lu,r dx

a1 1 s "o . N oyl
subtree ¥/ (nil,d,n,d; nil) A sp, hy Fgy &2+ nil, nil, nil, ¢ * subtree t” (nil,i,&z,j,nil) A (t') = (t")

~7 Sh, ht ':H

= sp, hy Fygtree ap(c, nft’]) ny A sy, hy Extree ngft”] &a A (t') = (t7)
= sp, hy Fygtree ap(c, nft’]) ny Asp, hy Extree t7 &a A () = (n[t])

from which (a) and (c) follow immediately.
Meanwhile, for (b) and (d), we wish to show that

t # ap(c, n[t']) for n = s,(n) < sy, h € [s4,t]. [z := copy nt], sp, h ~ fault

For the left-to-right implication, we assume t # ap(c, n[t']) and let h = ht*HxEVarSTO (s
h, and h,s satisfying s, h; Fy tree t n; (for some n;) and s, h, Fp tree t, &, where (t,) = s;(x) and
n ¢ dom(h,) (this is always possible, since t, is only defined up to renaming). Then sp,, h € [s;, t]
and n ¢ dom(h). Hence, [« := copy n;] faults as soon as it executes d := [n.down]|. For the right-
to-left implication, we assume t = ap(c, n[t']) and show that Vs, h € [s, t]). [x := copy n],sp, h
fault. This follows directly from the proof above for (a) and (c).

) h,., for some

19

Lemma 7.2 (Type soundness). For all P, ¥ 2O varsy, (P):

Ve,sp, h. e sy, hEy[Plz= 3si,t. (sp,h) € [st,t] A varsz, (s;) = {7}

Proof sketch. By Defn. 7.1, we see that e, sy, h Fy [P]5 implies h = h, * [, - h,, for some h, and
h.s satisfying €, s;, h, Fy 3d, 5. [P0 and € |s,, h, Fy 3t (t) = 2 A tree t &, and where
¢ = e[T « t.] is some extension of e. By Defn. ??, it is therefore sufficient to show that there
exist s; and t such that:

(a) sp,h; Fytree t n for some n,
(b) sp, h, Fytree t, &z for some (t,) = s;(x) and varsz, (s;) = {7}, and

(C) Sh =2 st|VarN'

Letting s; be defined by s;(x) = €/(z) and s;(n) = si(n) (and undefined everywhere else), we get
the second and third conditions directly. To show the first condition, we show that

Ve, s, h. e s, h Ey [P]f = 3t. sp,, h Eysubtree t [
Ve, sp, h. e, sp, h By [K]], = Jc. sp,, h Eysubcontext ¢ I I’

This follows by straightforward induction on the formula translation, with the cases for the struc-
tural formulee following from Lemma 5.4. For example, for K = N[K’|, we have:

e, 5, h By [N[K|JL = e, s, h By 3ds, dy. i=N) % (j=N) Neslur,d; « [K] 00440

= 3. sy, h By 3d;, d;. (i=N) % (j=N) * N—=lu,r.d; = subcontext ¢’ I I
= dn,c’.n = [N]sy A sp, h Eysubcontext n[c] I I’
= dc. sy, h By subcontext ¢ I I’

The other cases are all similar.

20

Lemma 7.3 (Logic Translation). For all P,

Veust,t, Sh h. (Sha h) S [[stat]] = (etastat ':'TP < €, Sh, h ':H [[P]]varsTo(st))

Proof. Assume for the moment that, for all s;, h, e, s; such that s, 2 sy, . the following proper-
ties hold:

€ W St|yar, > Sny h Fr [P]7 & Ft.sy, h Eysubtree t I Aey, syt Fr P
e W Stlyur, > Shy he Fay [K]! < 3c.sp, h Eqysubcontext ¢ I I' Aey, s, ¢ e K

We first show that this assumption is enough to prove the lemma, and then prove the assumption.

Choose arbitrary e;, s;, t and (sp,h) € [si,t]. Then, by Defn. 5.1, s, D st‘\/ar/\ﬂ h = h; *
[ecvarsy (s) N2y Where s;, he By tree t n for some identifier n and, for all x € varsg, (st), sn, he Fx
tree t, &x for some t, with (t,)=s;(x). This implies that, for all z € varsz,(s;), etUst\VarT .S, hy E
(tz)=x A tree t, &z, and hence e, U St|VarTO . Sh, HwEVarsTo (s0) h, E Hmevars% (St)<tm>zx A tree t, &x.

To show the left-to-right implication, first assume e;,s;,t Fzr P. Since sp.hy Fy
tree t n, there exists j such that s, he Fy subtree t (nil, n, nil, j, nil). Hence, by assump-
tion, .et Lﬂ _S‘tharTO’sh’ he Fp [P]@ib00iL0D - Tt follows that e, W st|VarTo,sh, h - HIEW% ('st).h_x .|=H
[P]ilrnilinil) HmevarSTo (St)<tm>zx A tree t, &z, and hence e, sy, h Fy Ji, j. 37 ([P]RLonibinid)
erVarSTo (s0) 3t,. (te)=x A tree t, &x) for {Z} = Varg,(s;), and hence e, s,, h Fy [Pluarss, (s) a8
required.

For the reverse direction, assume e, sy, h Fy [Plvarsy s,)- It follows by Defn. 7.1 that, for
some i and j, e; & st\VarTo,sh, h gy [P]@binibinid) 4 HwEVarsTo () Tt (ty)=x A tree t, &z. Hence,
h = h;: * H:(:EVarsTo st h/:E with € W St|VarTo,Sh, h;: ':'H [[P]](nﬂ,hniLJ.,Hﬂ) and e &) st|VarTO’sh’ h/w ':,H
Jt,. (t,)=z A tree t, &z for each x € varsz, (s;). By the assumption, there exists t’ such
that sp, h, Fy subtree t' (nil, i, nil, j, nil) A e, s, t' 7 P. We need to show that t' = t. For
each x € varsy, (s;), there exists t, and t, such that e, U St|VarT ,Sn,hy, E treet, &z and

€ USt|\r,. » Sh, N, F tree t &x. Both hi and h are subheaps of h, and equal to the trees starting

from the same address &x. Since the tree predicate is precise, h, = h!. and hence h, = h}. Since
sn, hy Fytree t' n and s, h} Fy tree t' i, it follows that i = n and t = t/, as required.

We now prove the property assumed at the start: that for all e;, s, sp, h, where s, D sy, o

e W Stlyary - Shy h Fr [P]" < 3t.sy, h Eysubtree t T Aey, syt Fr P
e W Stlyar, - Shy h Fr [K]] < e s, h Fysubcontext ¢ I I' Aey, s, c ke K

This follows by mutual structural induction on P and K. The case for P is...

21

€1 WSt|yuy, »Sh,h Fx [o]awsdom)
<:>etL‘HSt|VarTO,Sh,h ':'H(l :]) *(Z :T)

< sp, h By subtree 0 (1,i,u,j,r) Aet,s:, 0 E7 0
< Jt.sp, h By subtree t (1i,u,j,r) Aeg,se,tFE7r0

e 515|VMTO ,Sh,h By [[xﬂl

© et Wsi|y,,, »sh,h Fy 3t (t) = Asubtree t 1
< Jt.sp, h Eygsubtree t T A (t) = si(z)

& dt.sp, h Eyysubtree t I Aey, s, t Erax

& W St|\ar,. » Shoh Fa [0 [X])Eowar)

€ US|y, s Sh, h Fre3di, dj.(i55) * i lugr,dg « [X] 405D

S dt' ey W St|Var70 ,Shy W By 3d;, d;.(i=j) * i—=1u,r,d; * subtree t' (nil,d;,i,d;,nil) A ey, s, t' Fr X
< 3n,t’.sp, h By subtree n[t'] (I,i,u,j5,r) Aet, s, t' Fr X

< Jt.sp, h Eygsubtree t (1,i,u,5,r) A et st,t Exo[X]

€4 W St |y, »Shy h g [X|X/] 0007

& € US|y, Shy h a3k, Ky [X]E0wRekn) s [X (hukerwdir)

& Jty, te.er W St'VarTo ,Shy h Eag 3k, ko subtree ty (13,u,k,ky) x subtree to (ki kp,u,j,r) Ase, t1 Fr X Ase,ta Er X/
& dty, to.ep W St|VarTo ,Sh,y h Eggsubtree t1]ta (1,6,u,5,7) Asy,t1 Fr X Asg,to Ex X7

< Jt.sp, h Eysubtree t (Li,u,j,r) Aeg, s, tEr X| X!

22

e st'VarTO ,sh, h By [t]!

e St|VarTO .Sh, h By subtree t I

< Jt.sp, h By subtree t T At = e(t)
< dt.sp, h Fysubtree t I Aeg,se,t Ext

&t WSt|yar,, »Shh Fr [(0)]'

e St|VarTO ,Sp,h By 3.t ~ t Asubtree t' T

< Jt.sp, h Exsubtree t T At = e (t') A (t) = (e(t))
< 3t.sp, h By subtree t I Aey,se,t Eq (t)

€t WSt|yu, »Shyh Fr K- P]!
e Wsily,,, sphFy 3l [K]% * [P]"

& Je,t’. sy, h By I subcontext ¢ I I’ x subcontext t' I’ Ae,si,cEr K Ney, s, t' B P
< dc,t'.sp, h Egysubtree ap(c,t’) I Aet,st,ap(c,t’) Er K- P (by Lemma 5.4)

& dt.sy, h Eysubtree t I Aeg, sy, tEr K- P

e st|VarT ,Sh, h ':H [[K | Pﬂl
& e Wsily,,, Sk, h Fysubtree I A3 [[K]}I, —k3 [[P]]Il
< Jt.sp, h Fysubtree t AL W (W h)| Ay Wsily,, sn,h' Fr [K]F Aerw Stvars, »Shy h' # h Fy [P}
(h" s« h)] A'sp,h’ Eggsubcontext ¢ I’ T Aeg,st,cEc K
Asp, h’ x h Eysubtree t' I' A ey, s, t' E- P
(h" xh)| A'sp,h’ By subcontext ¢ I' T Aey, s, cFe K
< Ft.sp, h Eysubtree t I AT R c,t'. | Asp,h’ *h Eysubtree ap(c,t) I’ (by Lemma 5.4)
Asp, h’ xh Eysubtree t' I' Aey, s, t' E- P
(h" s« h)] A'sp, h’ Eggsubcontext ¢ I' T Aeg,st,cEc K
"\ Asp,h" % h Eg subtree ap(c,t) I’ A ey, s, ap(c,t) Er P (by Lemma A.2)
< 3t.sp, h Eysubtree t I A3 b c. (h' «h)| Asp, b’ Eysubcontext ¢ I’ I Aey,se,cFe K Aeg,s,ap(c,t) Fr P (by Lemma 5
< 3t.sp, h Exsubtree t I Adc.ap(c,t)] Aes,se,c Ee K Aey, s, ap(c,t) Er P (by Lemma A.3)
& Jt.sp, h Eysubtree t I Aey,si,tF7 K €4 P

& Jt.sp, h Eysubtree t I A3 R t. <

& Jt.sp, h Eysubtree t I A3 R ¢

e st|VarTo7Sh7 h ':H [[P = P/ﬂl
& € WStly,,, ,Sh h Fysubtree I A [P]7 = [P]
dt’.s,, h By subtree t’ I Aes, s, t' EF P
= 3t".s,, h Eysubtree t” I Aeg, s, t” |=TP’)
sp, h Exsubtree t I A 3t'. sy, h Eysubtree t’ I Aey, s, t' E- P b AN(B=0C)&
= sp, h Eysubtree t I A 3t”. sy, h Eysubtree t” I Aeg, sy, t” Ex P’ (Y AN (AANB=ANC
3t’. s, h By subtree t I Asy, h Eysubtree t' I Aeg,sq,t’ B P
= 3t".s,, h Eysubtree t I A'sp,, h By subtree t” I Aes,sq,t” B P’
sp, h Eysubtree t I ANey,si,t E7- P
= sp,h Fysubtree t I A ey, s, t Er P’) (by Lemma A.2)
& Jt.sp,, h By subtree t I Aes, s, t E7- P =e;, 5, t E7 P’ (by ANB=C)= ANANB=AANC)
& dt.sp,, h Eysubtree t I Aey, s, t E7 P = P’

< dt.sp, h Fysubtree t I A
& dt.sp, h Eysubtree t I A
< dt.sp, h Fysubtree t I A

& dt.sp, h Eysubtree t I A

e W st|VarTO ,sh, h Ey [false]! < false < 3t. sy, h Fysubtree t I A ey, sy, t F7false

e WStly,,, »Sh,h Fy [En. P

& e Wstly,,, ,shhFyIn. [P]

< 3n.eg Wsily,,, ssn[n « nl,hFy [P]*

< 3dn,t.sp[n < n|,h Eysubtree t I Aessifn — n],t E7 P
& dt.sp, h Fysubtree t I Aeg, sy, t Ex-dn. P

e W Stly,,, »shh Fy 3t P

Sed 515|VMTO ,Sh, h Eg 3t [[P]]I

& Jteft — tWsily,,, ,snhFEx[P]

< 3t.sp, h Eysubtree t T Aeft — t], s, t Er P 23
& dt.sp, h Eyysubtree t I Aey, s, t E7 3t P

...and for K...
&1 WSy, S h g [V
& e Wsilyy, s h Fy3di,dj. (I=N) (j=N) « Neolurdy = [K] 56D
= st|VarTO Sy By 3d;, d;. (1=N) % (j=N) * N—l,u,r.d; * subcontext ¢’ (nil,d;,n,d;nil) I' A ey, s, ¢ Fe K
< 3c’.3dn.n = [N]s; A sp, h Egysubcontext n[c’] (I,i,u,j,r) I’ Ney,si, ¢/ Ec K
< Je.sp, h By subcontext ¢ (1,i,u,j,r) I' Aet, s, c Ee N[K]

& W S|y, Snoh o [P0

& €0 Wil s Shy h Fy 3k, Ky [P]Gw0kn) s [K]GRem)

< dt, e W 5t|VarTO ,Sh, h By 3k, k. subtree t (1,i,u,k;,k,) x subcontext ¢’ (ki ky,u,j,r) I' Ney,sp, t Er P Aeg, s, ¢ Fe K
< 3t, c’. sy, h Eygsubcontext t|c’ (1,i,u,j,r) I’ Aet,st, tlc Ec P|K

< dc.sp, h By subcontext ¢ (Lyi,u,j,r) I’ Aet,st, c Ec P|K

l,u,g,
O N [|P] i)
& &0 US|y, »Sno h Frg Ik, Ky KT (Liswkike) o1 p](kkeusor)
& 3t e Wsily,, »Sh, h By 3k, k. subcontext ¢ (1,3,u,ki,k;) I' x subtree t (ki,ky,u,j,r) Ae, s, ¢ Fe K Aey, s, tFr P
& Elc’,t. sh, h Exysubcontext c’|t (1,i,u,7,r) I' Aeg,st, |t E¢ P|K
< 3c sy, h Fysubcontext ¢ (1,i,u,5,r) I' Ae, s, c Ec PIK

liu,j,

&0 WStlyey 5 0 Er [=100000)
Sep W St'VarT yShyh B (1=1) % (1=d) * (u=u') * (j=4') * (r=r")
< sp, h Eygsubcontext — (1,i,u,j,r) (Ui, r")
< Je.sp, h By subcontext ¢ (1,i,u,j,r) (Ui u,j'r) Aeg,se,cEe—

e WSt|yr, »Shih Er [P/ P

< et Wstly,,, - sh, h Fysubcontext 1 I A [P']" —3 [P]!

& 3c.sp, h Fygsubcontext ¢ I 1" A SW. (h xh) | AerWsily,,, ,snh' Fx [P]" Aew St|Vars, » Sho N % h Fyg P!

(h" xh)| A'sp,h’ Eysubtree t' I’ ey, sy, t' Eq P’

Asp,h’ x h gy subtree t I Aey, s, t =7 P

(h *xh)| Asp,h' Eggsubtree t' I’ Aeg, s, t' Er P’

< Jc.sp, h Fysubcontext ¢ I I' A3h' t,t'. | Asp,h’ xh Eysubtree ap(c,t’) I’ (by Lemma 5.4)
Asp, h’ % h Eysubtree t I A ey, s, t E- P

(h" xh)| A'sp,h’ Eysubtree t' I’ Aey, sy, t' Fr P’

A'sp, h' x h Fyysubtree ap(c,t’) I Aeg, s, ap(c,t’) Ex P) (by Lemma A.2)

< de. sy, h Eysubcontext ¢ I I' A Jh', t/. ((h’ *«h)| Asp, b’ Exgsubtree t' I’ Aeg,se, t' B P/ Aey,se,ap(c, t/) |=TP) (by Lemn

< Je.sp, h Eysubcontext ¢ I I' A 3’ ap(c,t')] Aey, s, t' Ex- P Aey,si,ap(c, t’) Er P (by Lemma A.3)

< Je.sp, h Eyysubcontext ¢ I I' A ey, sy, c Ec Py P’

& Je. sy, h By subcontext ¢ I I’ A3Jh, ¢, t'.

< Je. sy, h By subcontext ¢ I I' A 3h, t.

ey st|VarTo,sh, hEx [K = K']E
& e Wsily,,, ,SnhFysubcontext I I' A [K]f = [K']],
3c’.sp, h Eysubcontext ¢/ T I’ Aeg, sy, ¢ Fe K
= 3c”.sp, h Eysubcontext ¢/ I I' Aey, sy, Ec K’ >
< Je. sy, h By subcontext ¢ I I’ Aey,si,c Ec K = e, s, c Fc K/
< Je.sp,, h Eysubcontext ¢ I I' Aey, sy, cFc K = K’

< Je. sy, h By subcontext ¢ I I’ A

e ¥ st'VarTo ,sh, h Ey [False]!, < false < Jc. sy, h Fysubcontext ¢ I I’ A ey, sy, ¢ Fe False

e W st|VarTO7Sh7 h ':H [[371 K]]I/

< e Wsily,,, ,snh FyIn. K]

< 3n e Wsily,,, ,su[n — nl,hFy K]

< 3n,c.sp[n < n],h By subcontext ¢ I I’ Aey,s¢[n < nl,cFe K
< Je.sp,, h Eysubcontext ¢ I I' Aeg,sy,cFedn. K

€ W S|y, »Sh, h Fr [3 K],

& e Wiy, »shh 3t [K]], 24
& Je.egft —] Wsily,, S, h Fx [K]L

< dc.sp, h By subcontext ¢ I I’ A et «— ¢],s¢, ¢ Fe K

< Je. sy, h By subcontext ¢ I I' Aeg,sp,c Eedt. K

Theorem 7.4 (Hoare Triple equivalence). For all P, C, Q and & 2 freer, (C) U freer, (P, Q):
{P} C{Q} < {[Pl:} [C] {[Q]=}
Proof. Assume for the moment that for all P, C, @ and Z,y D freer, (C) U freez, (P, Q):

{[Plz} [C] {[Qlz} < {[P]g} [C] {1Q]5}
We first show that assertion is enough to prove the theorem, and then prove the assumption.

For the left-to-right implication, we take any ey, sp,, h satisfying ey, s, h F3 [P]z and aim to show
that [C],sp, h fault and that if [C],ss, h ~» s, ,h" then e, s}, h" Fy [Q]z. By Lemma 7.2, s, t
such that (sy, h) € [s;,t] and varsz, (s;) = {#'}. It follows from Lemma 7.3 that es|;y,,. st t Fr P.
By the left Hoare Triple, we know that if C,s;, t ~ s, t’ then eh\LVarT, s;,t' Fr @, and that C,s;, t
fault. By Theorem 6.2, it follows immediately that [C],ss,h + fault. Furthermore, whenever
[C], s, h ~ s}, h" then (s, h') € [s},t] for some s;,t" where C,s;, t ~~ s;,t'. Since ep|py,,, St Fr
@, and since varsr, (s;) = varsz, (s;) = {Z}, we have ey, s}, h' Fy [Q]z by Lemma 7.3.

The right-to-left implication is analogous. We take any e;, s;, t satisfying e;,s;,t F7 P and aim
to show that C,s;, t +~ fault, and that if C,s;,t ~ s}, t' then e, s}, t' F7 Q. By Lemma 7.3, we have
that e, sp, h Fy [Plyarsy, (s0) for all (sp,h) € [s¢,t]. By the assumed result above, we know that
{[Plvarse, s} [C] {[Qlvarsy, s0) - Hence, if [C], sy, h ~~ s;, h" then e, s),, h' Fy [Q]varsy, (s,) and that
[C],sn,h + fault. By Theorem 6.2, it follows immediately that C,s;,t » fault. Furthermore,
whenever C,s;,t ~» s, t’ then there exist (sp, h) € [s¢, t] and (s}, h') € [s}, t] such that [C],sp, h ~»
s, h'. Since e, s),, h" Fy [Q]varsy, s0), and since varsy, (s;) = varsy,(s;), we have e, s;,t' Fr Q by
Lemma 7.3.

We now prove the property assumed at the start: namely, that for all P, C, Q and Z,y 2
freer, (C) U freer, (P, Q):

{[P]z} [C] {[Qlz} < {[P]z} [C] {[Q]7}

By symmetry, we need only prove the left-to-right implication. We therefore assume that
en,sh, h Fy [Py and aim to show that [C],sp, h + fault and that if [C],s,, h ~~ s;,h" then
en, sp,, ' Fx [Plyg. By Defn. 7.1, we have ey, sp, h g [P0 5 [T -3, (t.)=x A tree 1, &
for some i and j. Hence, h = hy * [, h. with e, sy, he Fy [P]@ibinibin) and e, s;, h, Fx
3t,. (t,)=x A tree t, &x for each x € 7. Now consider the heap hz £ h, * Hme;mg h, containing
just the store variables in 7; it follows immediately that ey, sy, h Fy [P]ing. For o € @\ , define
h, £ 0, and note that ey, sy, h, Fy tree 0 &2, and hence ey, s;,, emp Fy I, (t,)=x A tree t, &
Since hy = hgz * erf\g h., it follows that ey, sy, hz Ex [P]z.

By the left Hoare Triple, we know that if [C], sy, hz ~> s, h’ then ey, s}, hl Fr [Q]z, and that
IC],sn, hz +~ fault. However, we know that the footprint of [C] consists of at most h, and the
parts of the heap reachable from &x for x € freer,(C). We also know that &,y O freez, (C).
Hence, letting hy, = h; Hweﬁee%(c) h,, we have hy = hg, *x hz_y, and h = hy, x hy_s, where
hi—tp = [semreer () Ne a0d hg—p = T it freer. () M- Since hy, contains the footprint, we know
that [C], sy, hy, + fault; by safety monotonicity it follows that [C],ss,h + fault. For the same
reasons, we know that if [C], sy, h ~ s, h’ then h" = b’ xh;_;, and [C], sp, hgp ~ s, b and hence
by the frame property, [C,sp,hz ~~ s}, h’s, * hz_z,. Hence we see that ey, s}, ', * hz_r, By [Q]z
and therefore ey, s),, h F4 [Q] 7.

25

In order to prove Theorem 8.3 and Theorem 8.4, we must first give simple low-level specifications
for the various utility functions given in Section 6. These all follow by standard inductive proofs.
The specifications do not depend on crusts, since the utility functions do not do any pointer
surgery.

Lemma ?7? (Utility fuction specifications). The utility fns (Defn. 7?) satisfy the following specs:

{subtree t (I,n,u,j,nil)} dispose-forest n {emp}

{subtree t (I,n,u,j,nil)}
(7', j") := copy-forest n (I',u’, 1)
{subtree t (I,n,u,jnil) * 3t'. subtree ¢’ ()¢, r) Nt ~t'}

{subtree t (I,n,u,jnil) * subtree ¢ (I'n 7' nil)}
b := compare-forests n n’
subtree t (I,n,u,j,nil) * subtree ¢ (I'n’u/j nil) A
{ (b=0AtEt)V(b=1ANt~t)) }

Note the use of nil as the right interface pointer in all the specifications; this follows since all
the utility functions recurse along the right-sibling axis to the end of the forest.

Proof. Follows by induction:

dispose-forest n

{subtree t (I,n,u,j,nil)}
if n = nil then skip
{t = 0 A subtree ¢ (I,nil,u,j,nil)} = {emp}
else
{3t1, ta. t = nft1]]t2 A subtree t (I,n,u,j,nil)
{3t1,ta, ir,id, ja- 0 — L, u, iy, ig * subtree t1 (nil,ig,n,jq,nil) * subtree to (n,i,,u,j,nil)}
r := [n.right] ; dispose-forest r ;
{3t1,44,ja.n — L, u,r, ig* subtree t1 (nil,ig,n,jq,nil)}
d := [n.down] ; dispose-forest d ;
{n+— Lu,rd}
dispose-node n
{emp}

26

(¢',3") := copy-forest n (I’,u’,r")

{subtree t (I,n,u,j,nil)}
if n =nil then ¢/ :=7¢"; 5/ :=1
{t = 0 A subtree t (I,n,u,jmil) «i" =1 x5 =1}
{t = 0 A subtree t (I,n,u,j,nil) * subtree 0 (I';i’u/,j'r")}
else
{Htl, to. t = nlt1]|ta A subtree t (I,n,u,jnil)}
= new-node() ; [¢.left] :=1"; [¢'.up] :== ' ;

Fty,ta. t = nlt1]|ta A Fir, i, ja.n — L u, i, iq % 8" — ' /) nil, nil

x subtree ¢1 (nil,ig,n,jq,nil)
x subtree to (n,i,,u,j,nil)

/—/H

r := [n.right] ; (v}, j') := copy-forest r (', u',7") ;
* subtree t1 (nil,ig,n,jq,nil)

{Eltl,tg t = nlt1]ta A Jig, ja-n — Liu, 7, iq % i’ — I’ 4/, nil, nil % subtree to (n,r,u,j,nil) }
« 3th. subtree ¢4 (¢, j' ") Nt ~ 1

d := [n.down] ; (d;, d’;) := copy-forest d (nil, ', nil) ;

* subtree ¢ (nil,d,n,jq,nil)
/ / R AV TR ~ 4!
Fty,te.t = nlt1]|ta A Fjag.n — Lu,r,dx i’ — I’ 4/ nil, nil I fét'tizzt;e?;’lr7(3;1,’516; odymil) Aty 2y
s« Jth. subtree ¢4 (i',r;" g A te =~ 1
[’ right] := 7% ; [¢'.down] := d]
* subtree ¢ (nil,d,n,jq,nil)

_ bt d 3t} subtree ¢} (nil,d},i’,d’; nil) Aty ~ t]
3t1,t2 t= n[t1]|t2/\3jd n»—»l u, Td*l I—>l s “dl*subtree t2 (nru]ml)

« Jth. subtree th (¢ru, ') A tg ~ 1
{subtree ¢ (I,n,u,jnil) * 3t. subtree t' (I, j;r) Nt ~t'}

27

b := compare-forests n n’

{subtree t (I,n,u,j,nil) * subtree ¢’ (I'n’ 5/ nil)}
if (n =nil An’ =nil) then b:=1
{t=0At =0 Asubtree t (I,n,u,j,nil) x subtree ¢’ (I'n’ /7’ nil) A (b =1)}
else if (n =nil V n/ = nil) then b:=0
t=0At =n'[t1]|t2 . P (ool T _
{Eltl, ts. <\/ t=nlt][ts A =0 A subtree t (I,n,u,j,nil) x subtree ¢ (I;n/ju/,j'nil) A (b=0)
else
, o = n[t1]|t2 N
Eltlu 2, t1a t2- t = n/[tll”t/?

r:= [n.right] ; v’ := [n’.right] ;

A subtree t (I,n,u,j,nil) * subtree ¢/ (l’,n’,u’,j',nil)}

* subtree t1 (nil,ig,n,jq,nil)

t = nft1][ta A , ., ,*ksubtree ty (n,r,u,j,nil)
(
(

Ity 1o, 1, 1h. A Tig, ja. i, 7. n— Lu,ig,rsn’ — U o i r o S
LRt "2y = ! [t]|t) Jd>tas Jd i P xsubtree t) (nilil,n/ 5} nil)

* subtree t4, (n/,r',u’,j" nil)
b := compare-forests r r’ ;
* subtree ¢ (nil,ig,n,jq,nil)
, L t=nlt]]ta A nliuigr xsubtree ta (n,ru,jnil) ((b =0Aty 2 th)V >
Jt1,t0, 8,1 (
(

2 t/ = n/[tll]|tl2 A Eidvjda Z:jv]:j

w«n’ — ', i, 7"« subtree] (nil,i;,n/,j5 nil) (b=1Nty = 1th)
* subtree ¢}, (n/,r’,u/,j" nil)

if b = 0 then skip
{3t1, L2, th, t5.t = n[t1]]ta At = n/[th][th A subtree ¢ (I,n,u,j,nil) * subtree ¢ (I'n w7 nil) A (b =0 Aty £ t5)}
else d := [n.down] ; d’ := [n’.down] ;
* subtree t1 (nil,d,n,jq,nil)
nlLiudr xsubtree ta (n,ru,jnil)
w«n/ — U u,d r" «subtree t] (nil,d’,n’,j/,nil
* subtree ¢}, (n/,r’,u/,j" nil)

Etl,tg,tll,t/ t= n[t1]|t2 A

., o
2 =n'[t)]|t, A Jja; Ja-) A (t2 = 1)

b := compare-forests d d’
* subtree t1 (nil,d,n,jq,nil) (b=0At; £}V
n—lu,d,r *subtree ty (n,ru,j,nil) ((b = 1At ~t))
w«n/ — U, d,r" «subtree t] (nil,d’,n’,j/,nil)
« subtree t, (n/ ' /7' mil) (t2 ~15)
{subtree t (I,n,u,j,nil) * subtree ¢’ (I'n’u/,j/ni) A (b=0At £)V (b=1At=1))}

Etl,tg,tll,t/ t= n[t1]|t2 A

> =iy, e

28

Lemma ?? (Copy expression specifications). The copy-expression function (Defn. ??7) satisfies
the following specification. Given & 2 freeq, (X):

{ILes
{IL.

Proof. Given inductively, using a case-by-case analysis:

(Ft. (t) = x N tree t &)}
,J) := copy-expression X (I, u,r)
(3Tt (t) = x Ntree t &x) * [[X]](lﬂluvj,r)}

for X =0:

{Tlaez(3t. (1) = @ Atree t &)}

L=)] = l

(TLcs (3t (t) = 2 A tree t &) % [0]Limin)}
for X =2/

{IL,ez(3t.(t) = x Atree t &x)}

{ILcz_w (3t (t) = x Atree t &x) * (. (t) = 2" N tree t &a')}

(i,7) := copy-forest &z’ (I, u,)

{ILicz_w (3t (t) = x Ntree t &x) * (Ft. (t) = 2" A tree t &a’ + It subtree t' (I,4,u,j,7) Nt' ~t)}
{TLex(3t. (t) = x A tree t &) * [2/]EHwI0)

for X = o[X']:

{HxEx(Ht (ty = x Ntree t &x)}

i :=new-node() ; j:=1i; [i.left] := [; [t.up] := u ; [i.right] :=
{ILez(3t.(t) = x Atree t &x) i = j* i+ [, u,r,nil}

(d;,d;) := copy-expression X' (nil, ¢, nil) ; [¢.down] := d;

{TLcx(3t. (t) = x Atree t &x) *i = j* i+ [,u,r,nil x [X']@diidniy
{TLcz(3t. (t) = x A tree t &x) * [o[X']] ““J’“)}

for X = X1| Xo:

{IL,ez(3t.(t) = x Atree t &x)}

(1, k;) := copy-expression X (I, u,nil) ;

{TLcx(3t. (t) = x A tree t &x) * [X;]"wkeniD}

if 4 = nil then (4, 7) := copy-expression Xy (I, u,)
{TLcx(3t. (t) = x Atree t &x) * [X;|Xp]Gowsniby

else (k,, j) := copy-expression Xy (ky, u,r) ; [k;.right] := k,
{ILcz(3t. (t) = x Atree t &x) * [X1] ik k) [X o] Geekerssdir)y
{TLcx(3t. (t) = 2 Atree t &) * [X;|Xp]Hiwir)}

29

Lemma 7?7 (Boolean expression specifications). The Boolean expression translations (Defn. 77)
satisfy the following specification. Given T D freer, (B):

{[B1:} Bl {[B]: A [Bl2}

For (i, j) := copy-expression X (I, u,), the specification states that execution creates a tree of
shape X with the appropriate interface. For the Boolean test [B];, the specification states that
executing the test on a tree satisfying B correctly sets up the low-level Boolean [B]s.

Proof. We show this in two steps. First we prove that for all formule P:
{[P1E} [BI ALPDE: * T xmxryen(bix=xny = LA [X=X"]"V bix—x) = 0N [X#£X]T)}

for B = false: {[P]L} skip {[P]%}

for B = N=N": {[P]%} skip {[P]%}

for B=X=X"

{32 T1,cz(3t. (t) = x Atree t &a) * [P}y

(i,4) := copy-expression X (nil, nil, nil) ; (¢, ;') := copy-expression X’ (nil, nil, nil) ;
{37 TL,ez(3t. (t) = z Atree t &x) * [P]! « [X] (wilsinil.jonil) o 7] (nilé' nil,j"nil)}
- _ I , subtree t (nil,i,nil,jnil) * subtree ¢’ (nil,i’ nil,j’ nil) A
{H:C.Hzef(ﬂt. (t) = x ANtree t &x) x [P]! * 3¢, t'. (ot A X=XVt 2t A [X£X])
b(x=x) := compare-forests i i ;

{EI:T: L (3 (1) = 2 A tree ¢ &x) + [P]7 3, ¢ subtree ¢ (nil,i,nil,j,nil) * subtree ¢’ (nil,s’ nil,j’ nil) A }
. wef . = 3 .

(b(X:X’) =1A IIX:XI]]I vV b(X:X’) =0A [[X#X/]]I)
dispose-forest i ; dispose-forest ¢’

for B = By = By: writing BX for (bx—x/) = 1A [X=X"]! Vbx_x = 0 A [X#X'])
{[P1:} [Buls AIP1E * TT(x—xnyem, (BX)}
{[PIL} [Bal {1PDE * Tlix—xyes, ()}
JIPIE* T ix—xnye g, (3% } [Bal { 1PV * T x—xyes, 5, (B¥) |
{IPL: # Tl xmxnye, (8%) | [Bal {IPL: * Tl x—xnyes, 5, (3%) |
{[P]%} [B1 = Ba]i {[P1E * 1 x=x)emi= 5, (BX)}

Then we show that for P = B:

FRAME

CoONSs

SEQ

([B1% * T x=xnes(bix=x) = LA [X=X"]"V bx=x) = 0N [X#X])) = [Bl2

from which the result follows directly. We do this by first putting B into disjunctive normal form
(which is easily shown not to affect the semantics of the translation). Then:

for B = false: [false]L = false

for B= N=N': [N = N']L= (N = N’)

for B=X=X" ([X = X'J%* (bx=xn =LA [X=XT"Vbx=x) = 0A[XAX])) = (bx=x)) =1)
for B=X#X": ([X # X']Lx (bx=x) =LA [X=XT"Vbx=xn = 0A[X#X']))) = (bx=x) =0)

30

Frame Rule
{3i,5.Cwin [PIEPID L [C] {33, 5 @0iwsn) « Q)9

(371,40 S 1) + [PIC70 Y [E] 437, 1,4 AT+ T1() + [QIT7]

{3fmod, i, 5. AGHSIT) S (-) * [[pﬂ(l-,i,uyjm)} IC] {Efmomi’j. AGHSIT) « TI(- - -) * [[Q]](lyiyu,jm)}

{

(Lyiu,g,1) (4yiu,g,1)

(VZ,] m(laiau7j7T)_)kE|i/’jI' rm(l/ai/7u/7j/ar/) * [[Kﬂ(ll".i,’u,fjl"w)) [[]] (VZ 5. @b iwdr) 3,7] m(l/i/ u’,5'r") * [[Kﬂ(l’,li,uij’,r')
(Imod, 9, J- mibewd) *H() *[P] liuiT)) E|xmodaZaJ mibed) #[C--) * [[Qﬂ(l’i’uJ’T))

H*TmodaZ .77 1.7 m(l g *H

Imod, 4, J, i 7] ﬁ(lzujr)*H()
(GRRTN) (1yiu,j,m) [[(C]] (GRS (L,d,u,5,m)
*[[Kﬂ(lzujr *[[Pﬂ *[[K]]lzujr) *[[Qﬂ
Elxmo(h a.] m(llu‘]T’)*H ﬂc]] 3I‘TnOd? a.] mlluj’f‘ *H()
*[[K Pﬂ(l’l’u’ 3’ *[[K Pﬂ(l’l g ")
{32 . m(lzugr')*[[K Pﬂ(lzujr)}[[(c]]{allj m(l’lu]r’)*[[K Q]]llu]’r')}
{Ez,].rml’z’“’ﬂ”)*[[K-Pﬂgmjr } [C] {32 G mbiwdr) « [K - Qﬂ(l“”r)}

* where Tpnoq = modyr, (C); see text.

Figure 5. Frame Rule derivation

for B = B N Bs: WI‘ltll’lg BX for (b(X:)(l) =1A [[X:X/]]I vV b(X:)(l) =0A [[X#X’]]I%
([Ba]% * [lix=xnen, 5. (BX)) = ([Ba]% * [Tix=xnep, (BX)) = [Bil2
([B:]f * [(x—xnep,,B,(BX) = ([Ba]k * [Tix—xnes, (BX)) = [Bi]2

([B: & A [Ballh) * Tl x=xr)epy.5,(BX)) = ([Bil2 A [Ba]2)
(IB1 A Balk # T 1 x=x1)ey 3, (BX)) = [B1 A Ba]

for B = Bl V Bg: ertlng BX for (b(X:)(l) =1A [[X:X/]]I vV b(szl) =0A [[X%X,HI),
([Bi]5 [ix—xnep,,5,(BX) = ([Ba]% * [ix=xnen, (BX)) = [Bi]-
([B105 * T (x=xnep, 5, (8%)) = ([Billz * [ix=xnep, (BX)) = [Bil

(([B:1Z V [Balf) * I T x—xnepyp, (BX)) = ([Bi]2 V [Be]-)
(IB1V Balk # T x=x1)epr .5, (BX)) = [B1 V Ba]

31

CoONS

FRAME

CoNs

CoONs

ELiMm

REN

Theorem 8.3 (Small Axiom translation). For every high-level Small Aziom {P} C {Q} in
Defn. 3.6, the following low-level Hoare Triple holds and is derivable:

(30,4, @t [PUIDY [C] (3, . 00) « [QI)
where T D freer, (C) U freer, (P).

Proof. These are all standard SL proofs.

Theorem 8.4 (Inference rule translation). For every inference rule in Defn. 77, there is a
corresponding, derivable low-level rule obtained by replacing all high-level Hoare Triples {P} C
{Q} with the low-level Triples {3i, j. MGivin) s [P]S"I7Y [C] {34, 5. abiwin) « [Q)L)1,
For example, the following translated Frame Rule holds for all tree update commands C, and CL
formule P and K, where mod(C) N free(K) = ():

{34, . @ Liudir) [[P]]g,i,u,j,r)} [C] {3, ;. ALiudr) [[Q]]g,i,mjm)}
{Hl,j m](l,i,u,j,r’) * [[K . P]]g,z,u,],r)} [[C]] {E"L,j rm(l,i,u,j,r) * [[K . Q]]g,z,u,],r)}

Proof sketch. Again, these are standard SL proofs. The cases for Consequence, Disjunction, Vari-
able Elimination, Sequencing, If-Then-Else and While-Do are given in Figure 7?7, with the trans-
lated high-level premises and conclusions marked in bold. The key derivation is that of the Frame
Rule, given in Figure 5. This is performed in two parts. The first, marked *, is a general result
regarding the auxiliary tree shape variables:

{32 [P] * [1,ez(3t- (t) = x Atree t &x)} [C] {32 [Q] = [T,-(3t.

) = x Atree t &)}
t.

{t
{3Zmoa- [P]" * [Lex(3t. (t) = Atree t &)} [C] {3Fmoa- [Q] * [Lcx(3t. (t) =z Atree t &2)}

where Zp,,q = modr,(C). In other words, the non-modified variables need not be existentially
quantified, since their value cannot change. Noting that x € modz, (C) < &z € mod([C]) (and
that = ¢ mod([C]) since it is a logical variable), the result follows by frame and consequence:

{32 [P] * [1,ez(3t-(t) = x Atree t &x)} [C] {32 [Q] * [[,ez(3t. () = x Atree t &x)}

x A tree t &)

(1
(It Hmexm(ﬂ <) =z Atree t &x) (It Hmexm(At) =
=1z Atree t &zx)) -

~ [Lez., (3t (t) = x Atree t &x)) - IC] = [lpes., (3t (t

t))
(32 [P]” % [L,e (3t (1) = & A tree t &a)) (37 [Q] * [Les (3t
{3Zmoa- [P]" * [1,ez(3t. (t) = x Atree t &)} [C] {FFmoa- [Q]F * [L3

where Z.yy = freer, (C) \ modyz, (C). The rest of the Frame Rule derivation, given in Figure 5, uses
the SL adjoint — to remove the crust around the heap representing P, and * to add to it the
context representing K, together with a fresh crust. The use of the Rule of Consequence relies on
Lemma A.4, given below.

(t) = x Atree t &x))
t.(t)y = x Atree t &)}

32

Lemma A.4 (Crust property). The crust has the following property:

VI, I'.@" « subcontext I I’ = true x @’

Proof. Follows by induction on contexts:

A % subcontext — I I' = @' * (I = I') = true * @'’

M3)« subcontext nfc] (1,4,u,j,r) I’

= 3d;, dj. WG54T % (7 = j =n) xn L u, 7, d; * subcontext c (nil,d;,n,d;nil) I’
= 3d;, d;. true x MOLdendinil) y subeontext ¢ (nil,d;,n,d;nil) I’

= true + M’ (by induction)

mbw3r) 5 subcontext c|t (1,4,u,j,r) I’

= 3k, k. ME0I7) x subcontext ¢ (1i,u,kyk,) I' * subtree t (ky,ky,u,j,r)

= Fky, k. @G5437) 5 subcontext ¢ (1,3,u,ky,k,) I’ * true * (k, = nil V 3rg, di. ky — Ky, w, 7, di)
= kg, k. @bPwRokD s subcontext ¢ (1,i,u,ky,k,) I % true

= true + M’ (by induction)

mw3m) % subcontext t|c (1,4,u,j,r) I’

= kg, k. @437 5 subtree t (1,i,u,k;,k,) * subcontext ¢ (ky,kp,u,j,r) I’

= kg, k. @G53k true * (b = nil V 3y, di. ky — Ly, u, ky, dy,) * subcontext ¢ (kp k. u,j,r) I’
= kg, k. @FCkrwIr) s true subcontext ¢ (kpk,,u,j,r) I’

= true M’ (by induction)

33

