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Abstract

Separation logic has proven an adequate formalism for the
analysis of programs that manipulate memory (in the form
of pointers, heaps, stacks, etc.). In this paper, we consider
the purely propositional fragment of separation logic, as well
as a number of closely related substructural logical systems.
We show that, surprisingly, all of these propositional logics
are undecidable. In particular, we solve an open problem by
establishing the undecidability of Boolean BI.

1 Introduction and Motivations

Separation logichas become well-established in the
last decade as an effective formalism for reasoning about
memory-manipulating programs [23]. Automated shape
analysis tools based upon separation logic are now capable
of verifying properties of large industrial programs [24, 5]
and have been adapted to a variety of paradigms such as
object-oriented programming [20, 9, 8] and concurrent pro-
gramming [10, 14].

Separation logic is usually based upon a first-order ex-
tension of the propositionalbunched logicBoolean BI
(BBI) [15]. Bunched logics, originating in thelogic of
bunched implicationsBI [19], are substructural logics that
combine a standard propositional logic with a multiplicative
linear logic, and admit a Kripke-style truth interpretation in
which “worlds” are understood asresources[15, 4]. In the
case of separation logic, this interpretation takes place with
respect to a model ofheapsequipped with a partial opera-
tor for composing heaps whose domains are disjoint. Thus,
in addition to the standard propositional connectives which
are read in the usual way, the most important feature of sep-
aration logic is its multiplicativeseparating conjunction∗,
which denotes disjoint heap composition:A1∗A2 denotes the
set of heaps which can be split into two disjoint heaps satisfy-
ing respectivelyA1 andA2. The multiplicative conjunction∗
comes along with a unit I, which denotes the empty heap, and
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an adjoint implication —∗, which denotes a property of heap
extension:A1 —∗ A2 denotes those heaps which satisfyA2

when extended with any heap satisfyingA1.
The originalBI, which combines the aforementioned mul-

tiplicative connectives∗, I and —∗ with the standard intu-
itionistic connectives→, ∧, etc., was showndecidableby
Galmiche et al [13]. In turn,BBI combines the same mul-
tiplicatives with the standard Boolean connectives. Sincethe
Boolean component ofBBI appears much simpler than the
intuitionistic component ofBI, it was expected for a long time
thatBBI might be decidable as well.

In this paper, we show that in factBBI is undecidable,
as are a number of related propositional systems that arise
naturally in developing towards axiomatisations of separation
logic. (Table 1 gives an extremely simple propositional sys-
tem which is undecidable.) In addition, we show that, for any
choice ofconcreteseparation model employing a heap mem-
ory concept (see Example 1.1 below), validity in that model
is undecidable as well. We also examine the relationship be-
tween our undecidability results and existing decidable frag-
ments of separation logic.

Example 1.1. Examples of commonly-used separation mod-
els which employ a heap memory concept (cf. [6]):

(a) Heap models(H, ◦, {e}), whereH = L ⇀fin RV is
the set ofheaps, which are finite partial functions fromL
to RV . L is supposed to be an infinite set. The unite is
the function with empty domain, andh1 ◦ h2 is the union of
h1 and h2 when their domains are disjoint (and undefined
otherwise). By choosing suitableL and RV we may ob-
tain a model ofhierarchical storage[1], a model ofheaps
of records[15] and theRAM model[23].

(b) Heap-with-permission models[3] given by(H, ◦, {e})
with an underlyingpermission algebra(P, •,1), i.e. a setP
equipped with a partial commutative, associative and can-
cellative operation•, and a distinguished element1 such that1 • π is undefined for allπ ∈ P . (An example of a permis-
sion algebra is the interval(0, 1], with • being addition but
undefined when permissions add up to more than1.) Then
H = L ⇀fin (RV × P ) is the set ofheaps-with-permissions,
andh1 ◦ h2 is again the union of disjointh1 andh2. However,
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some overlap is allowed: ifh1(ℓ) = 〈v, π1〉, h2(ℓ) = 〈v, π2〉
and π1 • π2 is defined thenh1 andh2 arecompatible atℓ.
When h1 and h2 are compatible at all commonℓ, then
(h1 ◦ h2)(ℓ) = 〈v, π1 • π2〉, rather than being undefined.

(c) Stack-and-heap models[21] given by (S × H, ◦, E),
whereH is a set ofheapsor heaps-with-permissionsas above
andS = Var ⇀fin Val is the set ofstacks, partially mapping
variablesVar to valuesVal. HereE consists of all pairs
〈s, e〉 in which e is the empty heap, and〈s1, h1〉 ◦ 〈s2, h2〉 =
〈s1, h1 ◦ h2〉 iff s1 = s2 andh1 ◦ h2 is defined in accordance
with the previous items, and is undefined otherwise.

A plan of the remainder of the paper is as follows. In
Section 2, we give the semantics of propositional separation
logic and a number of the closely related proof systems for
bunched logic. In Section 3, we present a proof-theoretic en-
coding of terminating computations of two-counter Minsky
machine such that, whenever machineM terminates from
configurationC, the corresponding sequentFM,C is prov-
able even in a minimal version ofBBI (in which negation
and falsum are disallowed). By soundness, the sequentFM,C

is then valid in all separation models, including any from Ex-
ample 1.1 above. Then, in Section 4, we show that whenever
FM,C is valid in the most complex stack-and-heap model in
Example 1.1 (where the heaps are heaps-with-permissions),
machineM terminates from configurationC. Thus it follows
that any property between provability ofFM,C in minimal
BBI and validity ofFM,C in a heap-like model is undecid-
able. We state our undecidability results in Section 5, and ex-
amine some consequences concerning finite approximations
in Section 6. We extend our undecidability result to a class of
“dualising” separation models and its axiomatisation, given
by ClassicalBI [4], in Section 7. Section 8 concludes.

2 Semantics and syntax of separation logic

Here we present the propositional language of separation
logic, its interpretation in separation models and a numberof
related bunched logic proof systems.

We abstract from the concrete separation logic models
found in the literature by the following definition (cf. [6, 15]):

Definition 2.1. A separation modelis a cancellative par-
tial commutative monoid(H, ◦, E). That is,◦ is a partial
binary operation onH which is associative and commuta-
tive, where equalities of expressionsα = β are understood
to mean that either bothα and β are undefined, orα and
β are defined and equal. Cancellativity of◦ means that if
z ◦ x is defined andz ◦ x = z ◦ y then x = y. We define
X · Y =def {x ◦ y | x ∈ X, y ∈ Y }. E ⊆ H is a set ofunits
such thatE · {h} = {h} for all h ∈ H .

Comment 2.1. In the above, for anye1, e2 ∈ E we neces-
sarily havee1 ◦ e1 = e1, ande1 ◦ e2 is defined iffe1 = e2. In
particular, if ◦ is total thenE is forced to be a singleton{e}.

Comment 2.2. Practical reasons for our Definition 2.1:

(1) Most interesting applications of separation logic are
based on “heap-like” separation models in which composi-
tion ◦ is not total (cf. Example 1.1).

(2) Although these models typically employ a single unit
elemente, we can consider more complexstacks-and-heaps
models (see Ex. 1.1(c)) by generalising to a set of unitsE.

Definition 2.2. A separation model(H, ◦, E) is said to have
indivisible unitsif h1 ◦ h2 ∈ E impliesh1 ∈ E andh2 ∈ E

for all h1, h2 ∈ H . (We remark that all of the separation
models(H, ◦, E) in Example 1.1 have indivisible units.)

Definition 2.3. Formulasare given by the following grammar
(wherep ranges over propositional variables):

A ::= p | ⊤ | ⊥ | A ∧ A | A ∨ A | A → A | ¬A |
I | A ∗ A | A —∗ A

For the sake of readability, we often write a formula of the
form (A → B) as the ‘sequent’A ⊢ B.

Definition 2.4. A valuationfor a separation model(H, ◦, E)
is a functionρ that assigns to each propositional variablep a
setρ(p) ⊆ H . Given anyh ∈ H and formulaA, we define
the forcing relationh |=ρ A by induction onA:

h |=ρ p ⇔ h ∈ ρ(p)
h |=ρ ⊤ ⇔ always
h |=ρ ⊥ ⇔ never

h |=ρ A1 ∧ A2 ⇔ h |=ρ A1 andh |=ρ A2

h |=ρ A1 ∨ A2 ⇔ h |=ρ A1 or h |=ρ A2

h |=ρ A1 → A2 ⇔ if h |=ρ A1 thenh |=ρ A2

h |=ρ ¬A ⇔ h 6|=ρ A

h |=ρ I ⇔ h ∈ E

h |=ρ A1 ∗ A2 ⇔ ∃h1, h2. h = h1 ◦ h2 andh1 |=ρ A1

andh2 |=ρ A2

h |=ρ A1 —∗ A2 ⇔ ∀h′. if h ◦ h′ defined andh′ |=ρ A1

thenh ◦ h′ |=ρ A2

The intended meaning of any formulaA underρ is given by
JAKρ =def {h | h |=ρ A}. In particular, we have:

JIKρ = E

JA ∧ BKρ = JAKρ ∩ JBKρ

JA ∗ BKρ = JAKρ · JBKρ

JA → BKρ = largestZ ⊆ H. JAKρ ∩ Z ⊆ JBKρ

JA —∗ BKρ = largestZ ⊆ H. JAKρ · Z ⊆ JBKρ

(1)

Definition 2.5. A formula A is valid in a separation model
(H, ◦, E) if for any valuationρ, we haveJAKρ = H . A se-
quentA ⊢ B is valid if JAKρ ⊆ JBKρ for any valuationρ.

By propositional separation logicwe mean the set of for-
mulas / sequents valid in the class of all separation models.
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Comment 2.3. Separation models with total and non-
total compositions behave differently. E.g., the sequent
(p ∧ ((p —∗ (p ∧ I))) ⊢ I is valid in any separation model in
which ◦ is total. But, let(H, ◦, E) be a separation model
in which h ◦ h is undefined for someh ∈ H (as is typical
in heap models), and a valuationρ with ρ(p) = {h}. Then
h |=ρ (p ∧ ((p —∗ (p ∧ I))) while h 6|=ρ I, so this sequent is
invalid in (H, ◦, E).

Core proof systems for propositional separation logic are
provided by variousbunched logics, a class of substructural
logics pioneered by O’Hearn and Pym [19].

Definition 2.6. We consider a chain of logics as follows:

• The logic of bunched implications, BI (cf. [19, 22, 13]) is
given by the following axioms and inference rules:

(a) all instances of intuitionistically valid propositional
formulas and intuitionistic inference rules;

(b) the axioms and inference rules for∗, —∗ and I given in
section (a) of Table 1.

• BooleanBI, or BBI (cf. [15, 12]) is obtained fromBI by
expanding (a) above to also include all instances ofclassically
valid propositional formulas.

• Since the presence of classical negation¬ increases the
general complexity ofBBI, we shall also consider a posi-
tive fragment ofBBI, which we callminimalBBI, in which
the formula connectives are restricted to∧, →, I, ∗ and —∗.
Minimal BBI is given by the rules of Table 1.

• As we shall see, therestricted ∗-contraction principle
(I ∧ A) ⊢ (A ∗ A) holds in (minimal)BBI, whereas the anal-
ogous restricted ∗-weakeningprinciple (I ∧ (A ∗ B)) ⊢ A

does not. Thus we consider the systemBBI+eW obtained
by enrichingBBI with the latter principle.

• Having considered restricted∗-weakening, it is also natu-
ral to considerBBI+W, obtained by enrichingBBI with the
unrestricted∗-weakeningprinciple(A ∗ B) ⊢ A.

Proposition 2.1(Soundness). If A is provable inBBI thenA

is valid in all separation models. Furthermore, ifA is prov-
able in BBI+eW thenA is valid in all separation models
with indivisible units.

Completeness ofBBI with respect to the class of partial
commutative monoids is still open. However,BBI is com-
plete for the class ofrelationalcommutative monoids [12].

Corollary 2.1. BI ⊂ BBI ⊂ BBI+eW ⊂ BBI+W, where
⊂ is interpreted as strict inclusion between the set of sequents
provable in each logic.

Proof. The nonstrict inclusions hold easily. The strict inclu-
sions hold because becauseBI is conservative over intuition-
istic logic [22], and (un)restricted∗-weakening is not valid in
all separation models (with indivisible units) and hence not
BBI(+eW)-provable by Proposition 2.1.

Comment 2.4. Both ends of the chain of logics in Corol-
lary 2.1 are in fact decidable. BI was shown decidable
in [13], andBBI+W is decidable because, as we shall see,
it collapses into ordinary classical logic (see Prop. 2.3).

Because of the observation in Comment 2.4 it is not ob-
vious,a priori, whether or not the intermediate systemsBBI
andBBI+eW ought to be decidable.

Proposition 2.2. The following forms of the deduction theo-
rem hold for minimalBBI:

(a) (A ∧ B) ⊢ C is provable iffA ⊢ (B → C) is provable;

(b) (A ∗ B) ⊢ C is provable iffA ⊢ (B —∗ C) is provable;

(c) B ⊢ C is provable iff I ⊢ (B —∗ C) is provable.

Lemma 2.1. The following are derivable in minimalBBI:

A ⊢ C B ⊢ C

A ∨ B ⊢ C

A ⊢ C A → B ⊢ C

⊢ C

whereA ∨ B is anabbreviationfor (B → A) → A.

Proof. With the help of Peirce’s law.

One of the important features of separation logic is that the
∗-contraction principle, A ⊢ (A ∗ A), is not generally valid,
and hence not provable inBBI by Prop. 2.1. Surprisingly,
however,BBI enjoys therestricted∗-contractionwhich holds
only at the multiplicative unit I. (From now on, we write
A ≡ B to mean that bothA ⊢ B andB ⊢ A are provable.)

Lemma 2.2. The following is provable in minimalBBI:

I ∧ A ⊢ A ∗ A

Proof. We can easily derive(I ∧ A) ∗ (I ∧ A) ⊢ (A ∗ A),
whence by parts (b) and (a) of Proposition 2.2 we obtain:

A ⊢ I → ((I ∧ A) —∗ (A ∗ A)) (2)

Now using weakening for∧ and the equivalence(A ∗ I) ≡ A

we can derive each of the following:

(I ∧ (A → (A ∗ A))) ∗ (I ∧ A) ⊢ A

(I ∧ (A → (A ∗ A))) ∗ (I ∧ A) ⊢ A → (A ∗ A)

Thus we can derive(I ∧ (A → (A ∗ A))) ∗ (I ∧ A) ⊢ (A ∗ A)
by modus ponens, whence by Prop. 2.2 (b) and (a) we obtain:

A → (A ∗ A) ⊢ I → ((I ∧ A) —∗ (A ∗ A)) (3)

By combining (2) and (3) the second derived rule of
Lemma 2.1 yields⊢ I → ((I ∧ A) —∗ (A ∗ A)), which is
equal to I⊢ (I ∧ A) —∗ (A ∗ A). From this we obtain
(I ∧ A) ⊢ (A ∗ A) by Prop. 2.2(c).

Restricted∗-contraction with restricted∗-weakening in-
duces a collapse of∧ and∗ at the multiplicative unit I:
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(A ∗ B) ⊢ (B ∗ A) (A ∗ I) ⊢ A

(A∗(B ∗ C)) ⊢ ((A ∗ B) ∗ C) A ⊢ (A ∗ I)
(A ∗ (A —∗ B)) ⊢ B

A ⊢ B

(A ∗ C) ⊢ (B ∗ C)
(A ∗ B) ⊢ C

A ⊢ (B —∗ C)
(a) Axioms and rules for∗, —∗ and I.

A ⊢ (B → A) A ⊢ (B → (A ∧ B))
(A → (B → C)) ⊢ ((A → B) → (A → C)) (A ∧ B) ⊢ A

((A → B) → A) ⊢ A (Peirce’s law) (A ∧ B) ⊢ B

A A ⊢ B

B

(A ∧ B) ⊢ C

A ⊢ (B → C)
(b) Axioms and rules for→ and∧.

Table 1. Minimal Boolean BI, which employs only ∧, →, ∗, —∗ and I.

Corollary 2.2. The following hold inBBI+eW:

(I ∧ (A ∗ B)) ≡ (I ∧ A ∧ B) ≡ ((I ∧ A) ∗ (I ∧ B))

Proof. By restricted∗-weakening and Lemma 2.2.

Proposition 2.3. BBI+W is ordinary classical logic.

Proof. Easily, A ≡ (A ∧ (A ∗ I)) ≡ (A ∧ I) in BBI+W.
Thus by Corollary 2.2, we have(A ∗ B) ≡ (A ∧ B).

3 From computations to minimal BBI proofs

In this section we encode terminating computations of
two-counter Minsky machines in minimalBBI.

Definition 3.1. A non-deterministic, two-counterMinsky ma-
chineM with countersc1, c2 is given by a finite set ofinstruc-
tions, which are each of one of the following labelled forms:

“incrementck by 1” Li: ck++;goto Lj ;
“decrementck by 1” Li: ck−−;goto Lj ;
“zero-testck” Li: if ck =0 goto Lj;
“goto” Li:goto Lj;

(4)

wherek ∈ {1, 2}, i ≥ 1 andj ≥ 0. The labelsL0 andL1 are
reserved for thefinal andinitial states ofM , respectively. For
technical reasons, we also add the special labelsL−1 andL−2

which come equipped with the following four instructions:

L−1: c2−−;goto L−1; L−1:goto L0;
L−2: c1−−;goto L−2; L−2:goto L0;

(5)

A configurationof M is given by 〈L, n1, n2〉, where
the label L is the current state ofM , and n1 and n2

are the current values of countersc1 and c2, respectively.
We write ;M for one instruction step ofM , and write
〈L, n1, n2〉 ;

∗
M 〈L′, n′

1, n
′
2〉 if M can go from the config-

uration〈L, n1, n2〉 to the configuration〈L′, n′
1, n

′
2〉 in a finite

number of steps. We say thatM terminates from〈L, n1, n2〉,
written 〈L, n1, n2〉⇓M , if 〈L, n1, n2〉 ;

∗
M 〈L0, 0, 0〉.

The specific role ofL−1 andL−2 is explained by:

Lemma 3.1. 〈L−k, n1, n2〉⇓M if and only ifnk = 0.

Proof. The only instructions applicable to the configuration
〈L−k, n1, n2〉 are those from the group (5).

Definition 3.2. In our encoding we use the following abbrevi-
ation. We fix a propositional variableb, and henceforth define
a “relative negation” by: A =def (A —∗ b).

Lemma 3.2. The following are derivable in minimalBBI:

(a) A ⊢ A and A ⊢ A

(b) A ∗ ( B —∗ A) ⊢ B

(c) A ∗ B ⊢ C

A ∗ B ⊢ C

(d) A ∗ B ⊢ D A ∗ C ⊢ D

A ∗ (B ∨ C) ⊢ D

Definition 3.3 (Machine encoding). We encode each instruc-
tion γ from (4) by the following formulaκ(I):

κ(Li: ck++;goto Lj;) =def ( (lj ∗ pk) —∗ li)
κ(Li: ck−−;goto Lj;) =def ( lj —∗ (li ∗ pk))

κ(Li: if ck =0 goto Lj;) =def ( (lj ∨ l−k) —∗ li)
κ(L−i:goto Lj;) =def ( lj —∗ l−i)

wherep1, p2, l−2, l−1, l0, l1, l2,. . . are distinct propositional
variables (p1 and p2 are used to represent the countersc1

and c2, respectively). Then for any Minsky machineM
given by instructionsγ1,γ2,. . . ,γt define its encoding formula
κ(M) by: κ(M) =def (I ∧

∧t

i=1 κ(γi)).

Lemma 3.3. For each instructionγ of a machineM , the se-
quentκ(M) ⊢ (κ(M) ∗ κ(γ)) is derivable in minimalBBI.

Proof. Follows from Lemma 2.2.

Theorem 3.1. Suppose that〈Li, n1, n2〉⇓M for someM .
Then the following sequent is derivable in minimalBBI:

κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ l0) ⊢ b

wherepn
k denotes the formula

n times︷ ︸︸ ︷
pk ∗ pk ∗ · · · ∗ pk, withp0

k = I.

Proof. Since A ∗ (I ∧ l0) ⊢ b is easily derivable from
A ⊢ l0 it suffices to prove the stronger sequent:

κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ⊢ l0
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We proceed by induction on the lengthm of the computation
of 〈L, n1, n2〉 ;

∗
M 〈L0, 0, 0〉. In the base casem = 0 we

haven1 = n2 = 0, and thus we require to derive:

κ(M) ∗ l0 ∗ I ∗ I ⊢ l0

Using weakening for∧ and I∗ A ≡ A, this reduces to
l0 ⊢ l0, which is provable by part (a) of Lemma 3.2.

Next, we assume that the result holds for all computations
of lengthm − 1, and show that it holds for any computation
of length m. We then proceed by case distinction on the
instructionγ which yields the first step of the computation.
We show the cases for an increment instruction and for a
zero-test instruction. The decrement and goto instructions
are treated similarly to increment instructions.

Caseγ = (Li: k++;goto Lj;). We show the subcasek = 1;
the subcasek = 2 is similar. By the case assumption we
have〈Li, n1, n2〉 ;M 〈Lj , n1 + 1, n2〉, and we are required
to show that the following is derivable:

κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ⊢ l0

This derivation is produced roughly by the following chain
of backward reasoning. First, sinceγ is an instruction ofM
andκ(γ) = (( (lj ∗ p1) —∗ li), we can apply Lemma 3.3 to
generate the obligation:

κ(M) ∗ (( (lj ∗ p1) —∗ li) ∗ li ∗ pn1

1 ∗ pn2

2 ⊢ l0

We can use part (b) of Lemma 3.2 to reduce this to:

κ(M) ∗ ( (lj ∗ p1)) ∗ pn1

1 ∗ pn2

2 ⊢ l0

Using part (a) of Lemma 3.2 this reduces again to:

κ(M) ∗ ( (lj ∗ p1)) ∗ pn1

1 ∗ pn2

2 ⊢ l0

which further reduces by part (c) of Lemma 3.2 to:

κ(M) ∗ lj ∗ pn1+1
1 ∗ pn2

2 ⊢ l0

which is provable by the induction hypothesis.

Caseγ = (Li: if ck =0 goto Lj ;). We show the subcase
k = 1; the subcasek = 2 is similar. By the case assumption
we have〈Li, 0, rj〉 ;M 〈Lj , 0, n2〉, and require to derive:

κ(M) ∗ li ∗ I ∗ pn2

2 ⊢ l0

By the equivalenceA ∗ I ≡ A and using Lemma 3.3 to dupli-
cateκ(γ) as in the previous case, it suffices to show:

κ(M) ∗ ( (lj ∨ l−1) —∗ li) ∗ li ∗ pn2

2 ⊢ l0

By employing part (b) of Lemma 3.2 we can reduce this to:

κ(M) ∗ (lj ∨ l−1) ∗ pn2

2 ⊢ l0

which further reduces by part (d) of the same lemma to the
pair of proof obligations:

κ(M) ∗ lj ∗ pn2

2 ⊢ l0
κ(M) ∗ l−1 ∗ pn2

2 ⊢ l0

The first of these is immediate by induction hypothesis and
A ∗ I ≡ A. For the second, we note that sinceL−1 is by def-
inition labelled only by decrement and goto instructions, it
follows by induction onn2 and the proofs of the decrement
and goto instruction cases that the present theorem already
holds whenLi = L−1. Thus, because〈L−1, 0, n2〉⇓M by
Lemma 3.1, we have that the second obligation above is also
provable. This completes the case, and the proof.

4 From validity to terminating computations

In this section, our goal is to show that for each of the con-
crete models in Example 1.1, we have〈Li, n1, n2〉⇓M when-
ever the following sequent is valid:

κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ l0) ⊢ b

For the sake of perspicuity we establish this property first for
the RAM-domain model, which can be seen as the simplest
heap model from Example 1.1(a), obtained by takingL = N

andRV a singleton set. Then, we extend our approach to the
most complex stack-and-heap models from Example 1.1(c),
of which all the other models can be seen as special instances.

Definition 4.1. The RAM-domain modelis (D, ◦, {e0})
whereD is the class of finite subsets ofN, andd1 ◦ d2 is the
union of the disjoint setsd1 andd2 (with d1 ◦ d2 undefined if
d1 andd2 are not disjoint). The unite0 is ∅.

Definition 4.2. We introduce the following valuationρ0 for
the RAM-domain model(D, ◦, {e0}):

ρ0(p1) = { {2}, {4}, {8}, . . . , {2m}, . . . }
ρ0(p2) = { {3}, {9}, {27}, . . . , {3m}, . . . }
ρ0(li) = { {δi}, {δ2

i , } {δ3
i }, . . . , {δm

i }, . . . }

whereδi is taken as a fresh prime number for each of the
propositional variablesl−2, l−1, l0, l1, l2,. . . , and:

ρ0(b) =
⋃
〈Li, n1, n2〉⇓M

Jli ∗ pn1

1 ∗ pn2

2 Kρ0

Lemma 4.1. Definition 4.2 guarantees that for anyn, a finite
setd belongs toJpn

kKρ0
if and only ifd consists of exactlyn

distinct powers of the corresponding prime. Thus any element
of Jpn

kKρ0
uniquely determines the numbern.

Proof. By induction onn. E.g., by definition,Jp1 ∗ p1Kρ0

consists of two-element sets of the form{2m1, 2m2}.
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Comment 4.1. Our choice ofρ0(p1) andρ0(p2) to havein-
finitely many disjoint elementsis dictated by peculiarities
of composition in the heap model. For anyfinite choice
of ρ0(pk), we must haveJpn

k Kρ0
= Jpm

k Kρ0
for sufficiently

large n andm, which obstructs us in uniquely representing
the contentsn of counterck by the formulapn

k . (We discuss
decidability consequences in Section 6.)

Lemma 4.2. e0 |=ρ0
κ(M) for any machineM .

Proof. Writing M = {γ1, . . . , γt}, we have by Defn. 2.4:

e0 |=ρ0
κ(M) ⇔ e0 |=ρ0

I ∧
∧t

i=1 κ(γi)
⇔ e0 ∈ {e0} and∀1 ≤ i ≤ t. e0 |=ρ0

κ(γi)

Thus it suffices to show thate0 |=ρ0
κ(γ) for any instruction

γ. We present the cases for an increment instruction and for
a zero-test instruction; the other cases are similar.

Case γ = (Li: ck++;goto Lj ;). We show the subcase
k = 1; the subcasek = 2 is similar. We haveκ(γ) =
( (lj ∗ p1) —∗ li). To showe0 |=ρ0

κ(I), we must show
thatx |=ρ0

(lj ∗ p1) impliesx |=ρ0
li for anyx ∈ D. First

note that we have for allx ∈ D:

x |=ρ0
(lj ∗ p1)

⇔ ∀x′. x ◦ x′ defined andx′ |=ρ0
lj ∗ p1 impliesx ◦ x′ |=ρ0

b

⇔ ∀x′. x ◦ x′ defined and(x′ = y ◦ z andy |=ρ0
lj and

z |=ρ0
p1) impliesx ◦ x′ |=ρ0

b

⇔ ∀y, z. x ◦ y ◦ z defined andy ∈ ρ0(lj) andz ∈ ρ0(p1)
impliesx ◦ y ◦ z |=ρ0

b

⇔ x ∈ Jpn1

1 ∗ pn2

2 Kρ0
and〈Lj, n1 + 1, n2〉⇓M

The last equivalence follows because, since the elements of
D are finite sets whereasρ0(lj) andρ0(p1) containinfinitely
many disjoint sets, x ◦ y ◦ z must be defined for somey ∈
ρ0(lj), z ∈ ρ0(p1), in which casex ◦ y ◦ z |=ρ0

b must hold.
By a similar argument, we also have for allx ∈ D:

x |=ρ0
li ⇔ x ∈ Jpn1

1 ∗ pn2

2 Kρ0
and〈Li, n1, n2〉⇓M

Since 〈Li, n1, n2〉 ;M 〈Lj , n1 + 1, n2〉 by applying the
increment instructionγ, we have that〈Lj , n1 + 1, n2〉⇓M

implies 〈Li, n1, n2〉⇓M , so that x |=ρ0
(lj ∗ p1) implies

x |=ρ0
li as required.

Caseγ = (Li: if ck =0 goto Lj ;). We show only the sub-
casek = 1. We haveκ(γ) = ( (lj ∨ l−1) —∗ li). To show
e0 |=ρ0

κ(I), we must show thatx |=ρ0
(lj ∨ l−1) implies

x |=ρ0
li for anyx ∈ D. As in the previous case, we have

for all x ∈ D:

x |= li ⇔ x ∈ Jpn1

1 ∗ pn2

2 Kρ0
and〈Li, n1, n2〉⇓M

We also have, for allx ∈ D:

x |= (lj ∨ l−1)
⇔ ∀x′. x ◦ x′ defined and(x′ |=ρ0

lj or x′ |=ρ0
l−1)

impliesx ◦ x′ |=ρ0
b

⇔ ∀x′. x ◦ x′ defined andx′ ∈ ρ0(lj) ∪ ρ0(l−1) implies
x ◦ x′ |=ρ0

b

⇔ x ∈ Jpn1

1 ∗ pn2

2 Kρ0
and〈Lj , n1, n2〉⇓M and〈L−1, n1, n2〉⇓M

⇔ x ∈ Jpn2

2 Kρ0
and〈Lj , 0, n2〉⇓M (by Lemma 3.1)

The penultimate equivalence above requires reasoning similar
to that employed in the previous case:x ◦ x′ must be defined
for somex′ ∈ ρ0(lj) and for somex′ ∈ ρ0(l−1).

Since 〈Li, 0, n2〉 ;M 〈Lj , 0, n2〉 by the operational
semantics of the zero-test instructionγ, we have:
〈Lj, 0, n2〉⇓M implies〈Li, 0, n2〉⇓M , i.e.x |=ρ0

(lj ∨ l−1)
impliesx |=ρ0

li as required.

Lemma 4.3. e0 |=ρ0
I ∧ l0.

Proof. We trivially havee0 |=ρ0
I. Since〈L0, 0, 0〉⇓M , we

haveρ0(l0) ⊆ ρ0(b) by construction ofρ0, which straightfor-
wardly entailse0 |=ρ0

l0 —∗ b.

Theorem 4.1. If (κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ l0)) ⊢ b is
valid in (D, ◦, {e0}) then〈Li, n1, n2〉⇓M .

Proof. By the definition of validity and using the equa-
tions (1) we have:

Jκ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ l0)Kρ0
⊆ ρ0(b)

i.e. Jκ(M)Kρ0
· Jli ∗ pn1

1 ∗ pn2

2 Kρ0
· JI ∧ l0Kρ0

⊆ ρ0(b)

Sincee0 ∈ Jκ(M)Kρ0
by Lemma 4.2 ande0 ∈ JI ∧ l0Kρ0

by
Lemma 4.3 we have in particular:

Jli ∗ pn1

1 ∗ pn2

2 Kρ0
⊆ ρ0(b)

By Lemma 4.1 and (1), the setJli ∗ pn1

1 ∗ pn2

2 Kρ0
uniquely

determines the numbersn1 andn2, whence our construction
of ρ0(b) yields〈Li, n1, n2〉⇓M .

Having established our Theorem 4.1 for the basic RAM-
domain model, we now extend it to the most sophisticated
stack-and-heapmodels from Example 1.1(c), in which the
heaps are heaps-with-permissions. All the models from Ex-
ample 1.1 can be seen as special instances of such models.

Definition 4.3. Let (S×H, ◦, E) be a stack-and-heap model
from Example 1.1(c), whereS is a set of stacks and
H = N ⇀fin (RV ×P ) is a set of heaps-with-permissions
and underlying permission algebra(P, •,1). (Recall that1 • π is undefined for allπ ∈ P .)

Based on our valuationρ0 for the RAM-domain model in
Definition 4.2, we introduce a valuationρ1 for (S×H, ◦, E)

6



as follows. First, we fix an arbitrary stacks0 ∈ S, and for
each finite setd⊆N we define the set[d] ⊆ S×H by:

[d] =def {〈s0, h〉 | domain(h) = d and∀ℓ∈d. h(ℓ) = 〈 ,1〉}
Then for any propositional variablep we define its valuation
by: ρ1(p) =

⋃
d∈ρ0(p) [d].

Lemma 4.4. For any propositional variablep andq:
Jp∗qKρ1

= JpKρ1
·JqKρ1

=
⋃

d∈Jp∗qKρ0

[d].

Proof. It suffices to show that[d1◦d2] = [d1] · [d2]. For dis-
joint d1 andd2 this is given by construction. For overlapping
d1 andd2, assume thatℓ∈d1∩d2, and〈s0, h1〉 ◦ 〈s0, h2〉 is
defined for some〈s0, h1〉 ∈ [d1] and〈s0, h2〉 ∈ [d2]. By con-
struction of[d1] and[d2], this implies h1(ℓ) = h2(ℓ) = 〈 ,1〉.
But then since〈s0, h1〉 ◦ 〈s0, h2〉 is defined, we must have1 • 1 defined, which is a contradiction. Thus[d1] · [d2] is
empty whend1 ◦ d2 is undefined.

Lemma 4.5. For any formulaA of the form l, (l∗p), or
(l∨l′), the setJAKρ1

·{〈s, h〉} is not empty, and we have
JAKρ1

·{〈s, h〉} ⊆ JbKρ1
if and only if JAKρ0

·{d} ⊆ JbKρ0

with 〈s, h〉∈ [d], whered = domain(h).

Lemma 4.6. 〈s0, e0〉 |=ρ1
κ(M) for any machineM .

Proof. As in Lemma 4.2, we show that〈s0, e0〉 |=ρ1
κ(γ)

for any γ in the group (4). Recalling that A = (A—∗b),
eachκ(γ) is of the form((A—∗b) —∗ (B —∗b)), so it suffices
to proveJA —∗ bKρ1

⊆ JB —∗ bKρ1
. Using the equations (1),

this amounts to showing, for any〈s, h〉:

JAKρ1
·{〈s, h〉} ⊆ JbKρ1

⇒ JBKρ1
·{〈s, h〉} ⊆ JbKρ1

(6)

AssumeJAKρ1
·{〈s, h〉}⊆JbKρ1

. Let d = domain(h). By
Lemma 4.5 we have〈s, h〉∈ [d], and JAKρ0

·{d} ⊆ JbKρ0
.

Lemma 4.2 shows that e0 |=ρ0
κ(γ) and thus

JA—∗bKρ0
⊆ JB —∗bKρ0

, so that JBKρ0
·{d} ⊆ JbKρ0

,
whence Lemma 4.5 yieldsJBKρ1

·{〈s, h〉} ⊆ JbKρ1
.

Lemma 4.7. 〈s0, e0〉 |=ρ1
(l0 —∗b).

Proof. Similar to Lemma 4.3.

Theorem 4.2. If a sequentFM,li,n1,n2
of the form

(κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I∧(l0 —∗b))) ⊢ b

is valid in some concrete model from Example 1.1 then
〈Li, n1, n2〉⇓M .

Proof. Without loss of generality, we may assume that
FM,li,n1,n2

is valid in a stack-and-heap model given in Defi-
nition 4.3. Thus we have by definition of validity:

Jκ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I∧(l0 —∗b))Kρ1
⊆ JbKρ1

Taking into account Lemmas 4.6 and 4.7, we get:

Jli ∗ pn1

1 ∗ pn2

2 Kρ1
⊆ ρ1(b).

According to Lemmas 4.4 and 4.1, the setJli ∗ pn1

1 ∗ pn2

2 Kρ1

uniquely determines the numbersn1 andn2, so that our con-
struction ofρ1(b) yields 〈Li, n1, n2〉⇓M .

5 Undecidability of separation logic

Now, based upon Figure 1, we may state the following:

Corollary 5.1. The following problems are undecidable:

• provability in minimalBBI;

• provability inBBI;

• provability inBBI+eW;

• validity in the class of all separation models;

• validity in the class of all separation models with indivisi-
ble units;

• validity in any of the concrete separation models in Ex. 1.1.

Proof. The termination of a Minsky machineM from con-
figurationC = 〈L1, n, 0〉 is undecidable [18], and reduces to
each of the problems above by the diagram in Figure 1.

Corollary 5.2. Neither minimalBBI nor BBI nor BBI+eW
has the finite model property.

Proof. A recursive enumeration of proofs and finite counter-
models for any of the logics above would yield a decision
procedure for provability, which is impossible.

6 Finite approximations

Our undecidability results for propositional separation
logic seem to be at odds with the decidability of the
quantifier-free fragment of a certain separation theory over
an infiniteheap model, due to Calcagno et al.[7]. The crucial
difference is that their decidability result is restrictedto finite
valuationsρ such thatρ(p) is finite for every atomic proposi-
tion p. Namely, in [7] eachp represents onecell, i.e. a heap
whose domain is a singleton. The reason why their decid-
ability is highly non-trivial is that their language contains —∗
and the underlying separation model employs a non-total◦,
so that, e.g., wheneverJAKρ is finite, JA —∗ BKρ becomes
infinite. In this section, we investigate this phenomenon.

Theorem 6.1. Let (H, ◦, {e0}) be a heap model. Then there
is an algorithm that, for any finite valuationρ, and any se-
quentFM,l1,n1,n2

of the form:

κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ (l0 —∗b)) ⊢ b

decides whether this sequent is valid under the valuationρ.

Proof. In principle, this can be deduced from [7]. Our direct
construction in Lemma 6.1 show subtleties of the problem.

Lemma 6.1. There is an algorithm that, for any finite valua-
tion ρ, decides whethere0 |=ρ κ(M).
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machineM terminates from config.C

FM,C provable in minimalBBI

FM,C provable inBBI

FM,C provable inBBI+eW

FM,C valid in any separation
model with indivisible units

FM,C valid in some model
from Example 1.1

FM,C provable inCBI

FM,C provable inCBI+eW

FM,C valid in anyCBI-model
with indivisible units

(Thm. 3.1)

(Defn. 2.6)

(Defn. 2.6)
(Prop 2.1)

(Ex. 1.1)

(Thm. 4.2)

(Defn. 7.2)
(Defn. 7.2)

(Prop. 7.1)

(Thm. 7.1)

Figure 1. Diagrammatic proof of undecidability. The arrows are implications, and FM,C is a formula /
sequent built from machine M and configuration C. The problems at each node are all undecidable.

Proof. As in Lemmas 4.2 and 4.6 (cf. (6)), we have to check
e0 |=ρ κ(γ) for any γ of the form ((A—∗b) —∗ (B —∗b)),
whence it suffices to show how to check the sentence:

∀z((JAKρ ·{z} ⊆ JbKρ) ⇒ (JBKρ ·{z} ⊆ JbKρ))

whereJAKρ, JBKρ andJbKρ are finite. We consider two cases
depending on the domain ofz:

(1) In the case that(JAKρ ·{z} 6= ∅), we can construct a
finite list of all z such that(JAKρ ·{z} ⊆ JbKρ). Then we may
check for thesez whether (JBKρ ·{z} ⊆ JbKρ).

(2) If (JAKρ ·{z} = ∅), then trivially (JAKρ ·{z} ⊆ JbKρ),
so it suffices to show how to check a sentence of the form:

∀z((JAKρ ·{z}=∅) ⇒ (JBKρ ·{z} ⊆ JbKρ)) (7)

Let JAKρ = {f1, f2, .., fm} and αi = domain(fi) for all i,
andJBKρ = {g1, .., gt} andβj = domain(gj) for all j.
For each choice ofℓ1, ℓ2,.., ℓm from α1, α2,.., αm, respec-
tively, we writedℓ1,ℓ2,..,ℓm

for the set{ℓ1, ℓ2, .., ℓm}. In the
following we rely on the fact that, althoughJAKρ ·{z}=∅ for
infinitely manyz, the domain of each of thesez must be a
superset of somedℓ1,..,ℓm

.

Case 1. Assumeβj∩dℓ1,..,ℓm
6= ∅ for all βj and dℓ1,..,ℓm

.
Since, for eachz in question,domain(z) is a superset of some
dℓ1,..,ℓm

, we haveJBKρ ·{z}=∅, and so (7) is true.

Case 2.Assumeβj∩dℓ1,..,ℓm
= ∅ for someβj anddℓ1,..,ℓm

.
Let ñ be a number greater than every number occurring
in βj , dℓ1,..,ℓm

, and JbKρ, and let z̃ be a heap such that
domain(z̃) = {ñ} ∪ dℓ1,..,ℓm

. Then gj◦z̃ is defined but
gj◦z̃ 6∈ JbKρ, and (7) is false.

We complete the proof for Theorem 6.1 as follows. Given
anFM,li,n1,n2

we first use Lemma 6.1 to computeJκ(M)Kρ

and JI∧(l0 —∗ b)Kρ (both are subsets of{e0}). If either of
these sets is empty then triviallyFM,li,n1,n2

is valid under

theρ. Otherwise,Jκ(M)Kρ = JI∧(l0 —∗ b)Kρ = JIKρ, and it
only remains to check if the finite setJli ∗ pn1

1 ∗ pn2

2 Kρ is a
subset ofJbKρ, which is straightforward.

Corollary 6.1. There is a sequentFM,l1,n0,0 of the form

(κ(M) ∗ l1 ∗ pn0

1 ∗ (I∧(l0 —∗b))) ⊢ b

such that, for each separation model from Example 1.1,
FM,l1,n0,0 is not valid in this model, butFM,l1,n0,0 is valid
in this model under all finite valuationsρ.

Proof. TakeM such thatKM = {n | 〈L1, n, 0〉⇓M} is un-
decidable. LetWM be the set of alln such thatFM,l1,n,0

is not valid in the model under some finite valuationρ.
By Theorem 6.1,WM is recursively enumerable. Accord-
ing to Theorem 3.1 and Proposition 2.1,KM andWM are
disjoint. Therefore, we can find a numbern0 such that
n0 6∈ KM∪WM . Sincen0 6∈ KM , Theorem 4.2 implies that
FM,l1,n0,0 is not valid in the model. However,n0 6∈ WM im-
plies thatFM,l1,n0,0 is valid under all finite valuationsρ.

7 Extension to ClassicalBI

In this section, we extend our undecidability results to
the class of “dualising separation models”, whose proof-
theoretical basis is given by ClassicalBI, or CBI [4].

Definition 7.1 (CBI-models). A CBI-model is given
by (H, ◦, e, ·−1), where 〈H, ◦, {e}〉 is a separation
model (with a single unite) and ·−1 : H → H satisfies
h ◦ h−1 = e ◦ e−1 = e−1 for all h ∈ H .

TheCBI-models we consider in this paper form a subclass
of the more generalrelationalCBI-models given in [4].

Example 7.1. Examples ofCBI-models (cf. [4]):
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(a) ([0, 1], ◦, 0, ·−1), wherex1 ◦ x2 is x1 + x2 but undefined
whenx1 + x2 > 1. The inversex−1 is 1 − x.

(b) (Σ, ◦, ε, · ) whereΣ is any class oflanguagescontaining
the empty languageε and closed under union∪ and com-
plement· . Hered1 ◦ d2 is the union of disjoint languages
d1 andd2 (in the overlapping case,d1 ◦ d2 is undefined).
E.g.,Σ may be the class of regular languages, orΣ may
be the class of finite and co-finite sets.

(c) Effect algebras[11], which arise in the foundations of
quantum mechanics, are preciselyCBI-models with in-
divisible units.

(d) Permission algebras(P, •,1) [3] enriched with a ‘formal
unit’ e and ‘formal equalities’e•h = h•e = e are exactly
non-degenerateCBI-models with indivisible units.

Definition 7.2. Following Definition 2.6, we introduce a sec-
ond chain of logics as follows:

• CBI [4] is obtained fromBBI by extending its language
with a constant̃I, and adding the axiomsA ⊢ ∼∼A and
∼∼A ⊢ A, where∼A is an abbreviation for(A —∗ Ĩ).

• CBI+eW is obtained by extendingCBI with the restricted
∗-weakening(I ∧ (A ∗ B)) ⊢ A;

• CBI+W is obtained by extendingCBI with the unre-
stricted∗-weakening(A ∗ B) ⊢ A.

Validity of CBI-formulas with respect toCBI-models
(H, ◦, e, ·−1) is defined as in Definition 2.5 once we extend
the forcing relationh |=ρ A given in Definition 2.4 with the
clauseh |=ρ Ĩ ⇔ h 6= e−1.

Proposition 7.1(Soundness). If A is provable inCBI thenA

is valid in all CBI-models, and ifA is provable inCBI+eW
thenA is valid in all CBI-models with indivisible units.

Corollary 7.1. Using Proposition 7.1 we have, similar to
Corollary 2.1: BBI ⊂ CBI ⊂ CBI+eW ⊂ CBI+W (the
inclusionBBI ⊂ CBI was established in[4]).

Proposition 7.2. CBI+W collapses into classical logic.

Proof. As in Prop. 2.3,A ∗ B ≡ A ∧ B and I≡ ⊤. Further-
more,̃I ≡ ∼I ≡ ∼⊤ ≡ ⊥, which forces∼A ≡ ¬A.

Since minimal BBI-provability implies CBI(+eW)-
provability, to establish undecidability forCBI it suffices (see
Fig. 1) to prove the analogue of Thm. 4.1 for aCBI-model.

Definition 7.3. We introduce the model(D+, ◦, e0, ·−1),
whereD+ is the class of finite and co-finite subsets ofN,
◦ is disjoint union, the unite0 is ∅ and·−1 is set complement.

Definition 7.4. We define a valuationρC for (D+, ◦, e0, ·−1)
by extending the valuationρ0 in Definition 4.2 as follows:

ρC(x) = ρ0(x) for all x ∈ {p1, p2} ∪ {li | i ≥ −2}
ρC(b) = ρ0(b) ∪ {d ∈ D+ | d is cofinite}

Lemma 7.1. e0 |=ρC
κ(M) for any machineM .

Proof. As in Lemma 4.2, we must showe0 |=ρC
κ(γ) for

any instructionγ. We only examine the increment instruc-
tion case,γ = (Li: ck++;goto Lj ;) for k = 1 here. As
in the corresponding case of Lemma 4.2, we must show that
J (lj ∗ p1)KρC

⊆ J liKρC
. Assuming thatx |=ρC

(lj ∗ p1)
we have:

∀y, z. ((x ◦ y ◦ z defined andy ∈ ρC(lj) andz ∈ ρC(p1))
impliesx ◦ y ◦ z ∈ ρC(b))

and need to showx |=ρC
li, for which we have two cases.

First, in the case thatx is finite then the reasoning from the
analogous case of Lemma 4.2 applies sinceρC coincides with
ρ0 on all variables exceptb. That is, for somey ∈ ρC(lj) and
z ∈ ρC(p1), x ◦ y ◦ z is defined and thusx ◦ y ◦ z ∈ ρC(b),
whencex ∈ Jpn1

1 ∗ pn2

2 KρC
and〈Lj , n1 + 1, n2〉⇓M . By ap-

plying the instructionγ, we have〈Li, n1, n2〉⇓M , which im-
plies thatx ◦ x′ ∈ ρC(b) wheneverx ◦ x′ is defined and
x′ ∈ ρC(li), i.e.x |=ρC

li as required. In the case thatx is
cofinite then, by the same token,x ◦ x′ is either undefined
or cofinite for anyx′ ∈ ρC(li), in which casex |=ρC

li as
required becauseρC(b) contains all cofinite sets.

Lemma 7.2. e0 |=ρC
I ∧ l0.

Proof. Similar to the proof of Lemma 4.3.

Theorem 7.1. If (κ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ) ∗ (I ∧ l0) ⊢ b is
valid in the RAM-codomain model, then〈Li, n1, n2〉⇓M .

Proof. By the definition of validity we have:

Jκ(M) ∗ li ∗ pn1

1 ∗ pn2

2 ∗ (I ∧ l0)KρC
⊆ ρC(b)

By Lemma 7.1 and Lemma 7.2 we have in particular:

Jli ∗ pn1

1 ∗ pn2

2 KρC
⊆ ρC(b)

SinceρC coincides withρ0 on all propositional variables ex-
ceptb, the setJli ∗ pn1

1 ∗ pn2

2 KρC
is finite, and uniquely de-

terminesn1 andn2 by Lemma 4.1 and equations (1). Our
construction ofρC(b) then yields〈Li, n1, n2〉⇓M .

Again, based on Figure 1, we can assert the following:

Corollary 7.2. The following problems are undecidable:

• provability inCBI;

• provability inCBI+eW;

• validity in the class of allCBI-models;

• validity in the class ofCBI-models with indivisible units;

• validity in the concrete model(D+, ◦, e0, ·−1).

Proof. Similar to Corollary 5.1.
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8 Concluding remarks

Our main contribution is that separation logic, the logic
of memory-manipulating programs, is undecidable even at
the propositional level. Oddly enough, it also turns out that
while BI (which combines intuitionistic multiplicatives with
intuitionistic additives) is decidable [13], its siblingBBI,
(which combines intuitionistic multiplicatives withBoolean
additives) is undecidable. In fact, to obtain an undecidable
system, one need add only Boolean conjunction and implica-
tion to the multiplicatives.

Our undecidability results shed also new light on correla-
tions between separation logic and linear logic.

From the point of view of logical principles, there are
clear differences between separation logic and linear logic:
e.g., distributivity of additive conjunction over disjunction,
A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ (A ∧ C), holds even inBI but
fails in linear logic. More specific toBBI, the restricted
∗-contraction(I ∧ A) ⊢ (A ∗ A) holds inBBI as shown by
our Lemma 2.2, but this too fails in linear logic. Finally, while
adding the unrestricted∗-weakening principle(A ∗ B) ⊢ A

to linear logic gives us the well-knownaffine logic, adding it
to BBI forces a collapse into classical logic (Prop. 2.3).

From a semantical perspective, thepreciseexpression of
properties of memory in separation logic is based on the fact
thatJA ∗ BKρ = JAKρ · JBKρ, i.e. the interpretation ofA ∗ B

is exactlythe product of the interpretations ofA andB. (This
fact is also of crucial importance to its undecidability.) Linear
logic interpretations deal only with sets that areclosedw.r.t.
a certain closure operatorCl, which, in particular, violates
the above exact equality. Indeed, the same is true ofBI in-
terpretations [19]. Not only is this less precise, it admitsno
possibility of finite valuationsin these logics since, e.g., in
linear logicCl(∅) is always infinite.

We also note that a direct adaptation of the encoding of
Minsky machines developed for full linear logic in [16] does
not work properly forBBI, so that we have had to develop
a new encoding. Roughly speaking, in the linear logic en-
coding, each step in the derivation corresponds to a single
forward step in the computation. In contrast, in our encod-
ing, each step in the derivation corresponds to a ‘move’ from
a class of terminating computations to a class of shorter ter-
minating computations. An additional twist to the problem is
that we require a much more complicated interpretation in the
heap-like models of Example 1.1, because of the waypartial
composition is defined in these models.

Finally, our undecidability results forconcreteheap-like
models give new insights into the nature of decidable frag-
ments of separation logic such as those given in [2, 7], as
well as imposing boundaries on decidability. E.g., we can
deduce that to obtain decidability in a heap-like model, one
should either give up infinite valuations (as in [7]) or restrict
the formula language (as in [2]).
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