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Abstract an adjoint implication »-which denotes a property of heap

extension:4; —« A, denotes those heaps which satigfy

Separation logic has proven an adequate formalism for théhen extended with any heap satisfyidg.
analysis of programs that manipulate memory (in the form The originalBI, which combines the aforementioned mul-
of pointers, heaps, stacks, etc.). In this paper, we considlicative connectives:, | and -« with the standard intu-
the purely propositional fragment of separation logic, adlw itionistic connectives—, A, etc., was showmlecidableby
as a number of closely related substructural logical systenGalmiche et al [13]. In turnBBI combines the same mul-
We show that, surprisingly, all of these propositional tisgi tiplicatives with the standard Boolean connectives. Sthee
are undecidable. In particular, we solve an open problem lBoolean component dBBI appears much simpler than the
establishing the undecidability of Boolean BI. intuitionistic component oBI, it was expected for along time
thatBBI might be decidable as well.

In this paper, we show that in fa&BI is undecidable
as are a number of related propositional systems that arise
naturally in developing towards axiomatisations of sepamna
logic. (Table 1 gives an extremely simple propositional sys

Separation logichas become well-established in thgem which is undecidable.) In addition, we show that, for any
last decade as an effective formalism for reasoning ab@pice ofconcreteseparation model employing a heap mem-
memory-manipulating programs [23].  Automated ShaQﬁP/ concept (see Example 1.1 below), validity in that model
analysis tools based upon separation logic are now capablgndecidable as well. We also examine the relationship be-

of verifying properties of large industrial programs [24, Stween our undecidability results and existing decidatde fr
and have been adapted to a variety of paradigms suchn@sts of separation logic.

object-oriented programming [20, 9, 8] and concurrent pro-

gramming [10, 14]. Example 1.1. Examples of commonly-used separation mod-
Separation logic is usually based upon a first-order eads which employ a heap memory concept (cf. [6]):

tension of the propositionabunched logic Boolean BI (a) Heap modelg H, o, {¢}), where H = L —g, RV is

(BBI) [15]. Bunched logics, originating in théogic of the set ofheaps which are finite partial functions fronk

bunched implication$31 [19], are substructural logics that, Ry, [ is supposed to be an infinite set. The uniis

combine a standard propositional logic with a multiplieati {he function with empty domain, arig o i is the union of

linear logic, and admit a Kripke-style truth interpretatim , and n, when their domains are disjoint (and undefined

which “worlds” are understood aesourceq15, 4]. Inthe otherwise). By choosing suitable and RV we may ob-

case of separation logic, this interpretation takes plaite Wi3in a model ofhierarchical storage[1], a model ofheaps

respect to a model dieapsequipped with a partial opera-of recordg[15] and theRAM mode[23].

tor for composing heaps whose domains are disjoint. Thus ) o )

in addition to the standard propositional connectives Whic _(b) Heap-with-permission modef8] given by (H, o, {¢})

are read in the usual way, the most important feature of s¥fith an underlyingpermission algebrar, e, 1), i.e. a setP

aration logic is its multiplicativeseparating conjunctios, €duipped with a partial commutative, associative and can-

which denotes disjoint heap compositiot; = A, denotes the celIaﬂ_ve operation, and a distinguished elemehsuch thgt

set of heaps which can be split into two disjoint heaps satisf. ® 7 IS undefined for alir € P. (An example of a permis-

ing respectivelyd; andA,. The multiplicative conjunction  SiOn algebra is the intervaD, 1], with e being addition but

comes along with a unit |, which denotes the empty heap, a#fedefined when permissions add up to more thanThen
H = L —4n (RV x P)isthe set oheaps-with-permissions

*Research supported by an EPSRC postdoctoral fellowship. andh; o ho is again the union of disjoirit; andhs. However,

1 Introduction and Motivations




some overlap is allowed: i (¢) = (v, m1), ha(f) = (v,m2) Comment 2.2. Practical reasons for our Definition 2.1:

and 7, e 7 is defined therh, andh, arecompatible a. (1) Most interesting applications of separation logic are
When h, and h, are compatible at all common, then pased on “heap-like” separation models in which composi-
(h1 o h2)(€) = (v,m1 e 72), rather than being undefined.  tion o is not total (cf. Example 1.1).

(c) Stack-and-heap mode[81] given by (S x H, o, E), (2 Although these models typically employ a single unit
whereH is a set oheapsor heaps-with-permissiors above glemente, we can consider more completacks-and-heaps

andS = Var —fjy Val is the set obtacks partially mapping mogels (see Ex. 1.1(c)) by generalising to a set of uits
variablesvar to valuesval. Here E consists of all pairs

(s,e) in whiche is the empty heap, an@, h1) o (s2, he) = Definition 2.2. A separation mod€lH, o, F) is said to have
(s1,h1 0 hg) iff s1 = so andh; o hs is defined in accordanceindivisible unitsif i1 o hy € E impliesh, € E andhy € E
with the previous items, and is undefined otherwise. for all hy,he € H. (We remark that all of the separation

A plan of the remainder of the paper is as follows. IWOdeIS(H’ o, ) in Example 1.1 have indivisible units.)

Section 2, we give the semantics of propositional separati§efinition 2.3. Formulasare given by the following grammar
logic and a number of the closely related proof systems f herep ranges over propositional variables):
bunched logic. In Section 3, we present a proof-theoretic en

coding of terminating computations of two-counter Minsky 4 .— | T|L|ANA|AVA|A— A|-A]
machine such that, whenever machihé terminates from | |AxA|A— A

configurationC', the corresponding sequefi, ¢ iS prov-

able even in a minimal version @BI (in which negation For the sake of readability, we often write a formula of the
and falsum are disallowed). By soundness, the seqtigir  form (A — B) as the ‘sequenti - B.

is then valid in all separation models, including any from Ex

ample 1.1 above. Then, in Section 4, we show that wheneR&finition 2.4. A valuationfor a separation modét, o, £)
Fr.c is valid in the most complex stack-and-heap model ifi @ functionp that assigns to each propositional variabie
Example 1.1 (where the heaps are heaps-with-permissiofi§}2(p) € H. Given anyh € H and formulaA, we define
machine) terminates from configuratiofi. Thus it follows the forcing relatior =, A by induction onA:

that any property between provability af»; ¢ in minimal

BBI and validity of F7.c in a heap-like model is undecid- hipp < hepp)
able. We state our undecidability results in Section 5, a@d e hi=, T < always
amine some consequences concerning finite approximations "t o L < never
in Section 6. We extend our undecidability result to a cldss o /* Fr A1 A A2 & b=, Ay andh =, A,
“dualising” separation models and its axiomatisationegiv /o A1V A2 & A=, Avorhi=, A
by ClassicalBI [4], in Section 7. Section 8 concludes. h=p 211):_’ Aj g Il: ;):2‘41 thenh |=, A
p A = p
, : . hi=,1 & hekE
2 Semantics and syntax of separation logic By Ais Ay < Ty ha.h = hy o hs andhy b, Ay
Here we present the propositional language of separati%nl_ A=Ay gz,dfl? hFophf}Qdefined andi’ =, A,
=p . P

logic, its interpretation in separation models and a nurober
related bunched logic proof systems.

We abstract from the concrete separation logic modgife intended meaning of any formuaundery is given by
found in the literature by the following definition (cf. [65]): [A], Ze {1 | h |=, A}. In particular, we have:

Definition 2.1. A separation models a cancellative par-
tial commutative monoid H, o, E). That is, o is a partial 0, = £

thenhoh' =, Ao

binary operation o/ which is associative and commuta- [AAB], = [A],N[B],

tive, where equalities of expressions= 3 are understood ~ [A*Bl, = [Al, [Bl, 1)
to mean that either both and 3 are undefined, on and ~ [A — Bl, = largestZ C H.[A],NZ C [B],

3 are defined and equal. Cancellativity ofmeans that if ~ [A—+B], = largestZ C H.[A], Z C [B],

z o x is defined andt o x = z oy thenx = y. We define _ _ L .
XY =u{zoy|zeX,yeY}). ECHis a set ofunits Definition 2.5. A formula A is valid in a separation model

suchthat? - {h} = {h} forall h € H. (H, o, E) if for any valuationp, we have[A], = H. A se-
quentA - Bisvalid if [A], C [B], for any valuatiorp.
Comment 2.1. In the above, for any,,e; € E we neces-

sarily havee; o e; = eg, ande; o ey is defined ife; = es. In By propositional separation logive mean the set of for-
particular, if o is total thenFE is forced to be a singletofe}. mulas/ sequents valid in the class of all separation models.



Comment 2.3. Separation models with total and nonComment 2.4. Both ends of the chain of logics in Corol-
total compositions behave differently. E.g., the sequdaty 2.1 are in fact decidable. BI was shown decidable
(pA((p—=(pAl)))FE lisvalid in any separation model inin [13], and BBI+W is decidable because, as we shall see,
which o is total. But, let(H,o, E') be a separation model it collapses into ordinary classical logic (see Prop. 2.3).

in which h o h is undefined for somé € H (as is typical
in heap models), and a valuatignwith p(p) = {h}. Then
hi=, (pA ((p—=(pAl))) while h [=, |, so this sequent is
invalidin (H,o, E).

Core proof systems for propositional separation logic af&oposition 2.2. The following forms of the deduction theo-
provided by varioudunched logicsa class of substructuralem hold for minimaBBI:
logics pioneered by O’Hearn and Pym [19]. (a) (AA B) - CisprovableiffA - (B — C) is provable;
Definition 2.6. We consider a chain of logics as follows: ~ (b) (A * B) - C'is provable iffA - (B —C) is provable;

e Thelogic of bunched implicationsBI (cf. [19, 22, 13])is  (c) B+ C'is provable iffl - (B = C) is provable.
given by the following axioms and inference rules:

Because of the observation in Comment 2.4 it is not ob-
vious,a priori, whether or not the intermediate systeBBI
andBBI+eW ought to be decidable.

Lemma 2.1. The following are derivable in minim&BI:
(a) all instances of intuitionistically valid propositional

formulas and intuitionistic inference rules; A-C BrEC A-FC A—-BrHC
(b) the axioms and inference rules far— and | given in AVBFEC =C

section (a) of Table 1.

e BooleanBl, or BBI (cf. [15, 12]) is obtained fronBI by
expanding (a) above to also include all instancedadsically
valid propositional formulas.

whereA Vv B is anabbreviatiorfor (B — A) — A.
Proof. With the help of Peirce’s law. O

One of the important features of separation logic is that the
e Since the presence of classical negatioiincreases the x-contraction principle A - (A % A), is not generally valid,
general complexity oBBI, we shall also consider a posi-and hence not provable iBBI by Prop. 2.1. Surprisingly,
tive fragment ofBBI, which we callminimal BBI, in which howeverBBI enjoys thaestricted«-contractionwhich holds

the formula connectives are restricted/tp—, |, x and -+ only at the multiplicative unit I. (From now on, we write
Minimal BBI is given by the rules of Table 1. A = Btomeanthat bothl - B andB + A are provable.)

e As we shall see, th_eestr_ic.ted x-contraction principle Lemma 2.2. The following is provable in minimaBI:
(A A) F (A% A)holds in (minimal)BBI, whereas the anal-

ogous restricted x-weakeningprinciple (I A (A« B)) - A INAFAxA
does not. Thus we consider the systBfal+eW obtained _ _
by enrichingBBI with the latter principle. Proof. We can easily derivg(l A A) x (1 A A) F (Ax A),

e Having considered restrictedweakening, it is also natu—Whence by parts (b) and (a) of Proposition 2.2 we obtain:

ral to consideBBI+ W, obtained by enrichin®BI with the AF 1= (1A A) = (A A)) )
unrestricted«-weakeningrinciple (A « B) - A.

Proposition 2.1(Soundness)If A is provable inBBI then4 NOW using weakening for and the gquivaleno(e4 )= A
is valid in all separation models. Furthermore, Afis prov- We can derive each of the following:
aﬁlﬁi:?di]?sliazvgn?genfl is valid in all separation models (IA(A— (AxA) + (I AA)F A
: (IA(A— (AxA))*(IAA)FA— (Ax A)
Completeness aBBI with respect to the class of partial

commutative monoids is still open. Howev@BI is com- Thuswecanderivll A (A — (A A))) « (I ANA)F (AxA)
plete for the class aklational commutative monoids [12]. PY modus ponens, whence by Prop. 2.2 (b) and (a) we obtain:

Corollary 2.1. BI ¢ BBI C BBI+eW C BBI+W, where A= (AxA)Fl— (INA) = (AxA)) (3)
C isinterpreted as strict inclusion between the set of setpuen
provable in each logic. By combining (2) and (3) the second derived rule of

_ . . .. Lemma 2.1 yields-1 — ((I A A) =+ (A% A)), which is
Proof. The nonstrict inclusions hold easily. The strlctlncluéqua| to I-(1AA) —(AxA). From this we obtain

;iqns h(_)ld because becaLBI_eis conservati_ve over intui_tio_n— (I'A A) - (A % A) by Prop. 2.2(c). 0
istic logic [22], and (un)restricteg-weakening is not valid in

all separation models (with indivisible units) and hencé no Restricted«-contraction with restrictec-weakening in-
BBI(+eW)-provable by Proposition 2.1. O duces a collapse af and* at the multiplicative unit I:



(A*B)F (B*A) AxDFA| [AF(B = A) AF (B= (AAD)
(Ax(B*C) F ((AxB)«C) At (Axl) (A-(B—-C)+F(A—-B)—(A—C)) (AANB)FA

(Ax(A—-B))+ B ((A—-B)— A+ A (Peirce’s law (ANB)F B
A+ B (AxB)+C A AFB (AANB)FC
(AxC)F (BxC) AF(B—C) B A+ (B—C)
(a) Axioms and rules fog, —« and I. (b) Axioms and rules for-» andA.

Table 1. Minimal Boolean BI, which employs only A, —, x, = and |.

Corollary 2.2. The following hold irBBI+eW: Proof. The only instructions applicable to the configuration
(L_k, n1,n9) are those from the group (5). O
(IN(AxB))=(INAANB)=((INA)« (I AB))
Definition 3.2. In our encoding we use the following abbrevi-
Proof. By restricted«-weakening and Lemma 2.2. O ation. We fix a propositional variable and henceforth define

- _ ) ) _ a “relative negation” by= A =, (A —« b).
Proposition 2.3. BBI+W is ordinary classical logic.
Lemma 3.2. The following are derivable in minim&BI:

(@ AF=--A and ---AF-A
(b) Ax (-B—-+—-A)F--B

Proof. Easily, A = (AA (Ax1)) = (AAl)in BBI+W.
Thus by Corollary 2.2, we haved « B) = (A A B).

3 From computations to minimal BBI proofs () __A*BFC
Ax——BF-—-C

In this section we encode terminating computations of(d) AxBFD AxC+D
two-counter Minsky machines in minimBBI. Ax==(BVC)F==-D

Definition 3.1. A non-deterministic, two-countddinsky ma- Definition 3.3 (Machine encoding)We encode each instruc-
chineM with counters:y, ¢, is given by a finite set dhstruc- tion ~ from (4) by the following formulas(I):
tions which are each of one of the following labelled forms:

K(L;: cx++;80t0 Lj;) Zaer (= (1 * pi) =+ =1;)
“incrementcy, by 17 L;: cj++; goto Lj; k(L cp——;80t0 Lj;) =ae (=1 =+ = (I * p.))
“decrementy, by 1”  L;:cy——;goto Lj; @ k(L if ¢y =0 goto L;;) =g (= (I; V I k) =1;)
“zero-teste;,” L;:if ¢, =0 goto L;; K(L—i:goto Lj;) =g (—=1; —=1_;)
“goto” L;:goto Ly;

wherepy, ps, l_2,1_1, lo, l1, l2,. .. are distinct propositional
wherek € {1,2},i > 1 andj > 0. The labeld., andL; are Variables ; andp, are used to represent the counteys
reserved for théinal andinitial states of\/, respectively. For and cz, respectively). Then for any Minsky maching
technical reasons, we also add the special labelsandL_, given by instructions; ,ys,. . . ;v define its encoding formula
which come equipped with the following four instructions: %(M) by: (M) =s (I A Ni_; (7))

Lemma 3.3. For each instructiony of a machine\/, the se-

L_1:co——;goto L_q; L_qi:goto Lg; i ) S
ve2m s ' Ve 0 (5) quents(M) F (k(M) * r()) is derivable in minimaBBI.

L_s:c1——;goto L_o; L_s:goto Lo;

A configurationof M is given by (L,n;,ns), where Proof. Follows from Lemma 2.2. =

the label L is the current state of\/, and n; and no Theorem 3.1. Suppose thatL;,ni,ns) |y for somel.
are the current values of counters and ¢z, respectively. Then the following sequent is derivable in minirBa1:
We write ~»j; for one instruction step of\/, and write
(L,n1,ng) ~4, (L', n},nb) if M can go from the config- K(M) s l; *ptt s py?x (I A=lp) = b
uration(L, n1, ns) to the configuratiodL’, n}, nj) in afinite n times
number of steps. We say thaf terminates from(L, n1,m2), wherep} denotes the formulfy, = pr * -~ pr) withp) = 1.
written <L,TL1,7L2>U«M, if (L,nl,n2> ’\ﬁ}kw <L(),0,0>. . . . .
Proof. Since A (I A=lp) Fb is easily derivable from

The specific role of._; andL_ is explained by: A+ ==, it suffices to prove the stronger sequent:

Lemma 3.1. (L_g,n1,n2){ s if and only ifn, = 0. (M) 5 1y % plt % ph2 b ==1y



We proceed by induction on the lengthof the computation which further reduces by part (d) of the same lemma to the
of (L,n1,n2) ~%; (Lo,0,0). Inthe base case: = 0 we pair of proof obligations:
haven; = ne = 0, and thus we require to derive:
K(M) %1 % p3? ===l
K(M)*lo*'*ll_——lo K(M)*l_l*p;lzl_——lo

Using weakening forA and I« A= A, this reduces to Tne first of these is immediate by induction hypothesis and

lo - ==1lo, which is provable by part (a) of Lemma3.2. 4, | = A. For the second, we note that sinke; is by def-
Next, we assume that the result holds for all computatiopgion labelled only by decrement and goto instructiors, i

of lengthm — 1, and show that it holds for any computatiofg|iows by induction om, and the proofs of the decrement

of lengthm. We then proceed by case distinction on thgng goto instruction cases that the present theorem already

instructiony which yields the first step of the computationy,g|qs whenL; = L_;. Thus, becauséL_1,0,n:){s by

We show the cases for an increment instruction and for @yyma 3.1, we have that the second obligation above is also

zero-test instruction. The decrement and goto instrustioroyaple. This completes the case, and the proof. [
are treated similarly to increment instructions.

Casey = (L k++:goto L;;). We showthe subcade— 1; 4 From validity to terminating computations

the subcasé = 2 is similar. By the case assumption we
have(L;,n1,n2) ~n (Lj,n1 + 1,n2), and we are required  In this section, our goal is to show that for each of the con-
to show that the following is derivable: crete models in Example 1.1, we ha\lg, n1, n2){ »s when-
, , ever the following sequent is valid:

K(M) * 1; % p'* * py? ==l
_ _ M) sl xpt s p22 s (I A=lo) b
This derivation is produced roughly by the following chain FM) s« bixpy s« py? (1A =lo)
of backward reasoning. First, singéis an instruction o/’ £ the sake of perspicuity we establish this property fast f
andr(y) = ((= (4 * p1) .—*‘li), we can apply Lemma 3.3 t0he RAM-domain modetwhich can be seen as the simplest
generate the obligation: heap model from Example 1.1(a), obtained by taking: N

M — (L —L) Lk p™ ol b =] andRV a singleton set. Then, we extend our approach to the
R(M) # ((= (L % p1) =+ =1i) % L Py +py 0 most complex stack-and-heap models from Example 1.1(c),
We can use part (b) of Lemma 3.2 to reduce this to: of which all the other models can be seen as special instances
k(M) (==(1; % p1)) * py* * ph* ===l Definition 4.1. The RAM-domain models (D, o, {eg})
_ . . whereD is the class of finite subsets bf andd; o ds is the
Using part (a) of Lemma 3.2 this reduces again to: union of the disjoint setg; andd, (with d; o d» undefined if

dy, anddsy are not disjoint). The unitg is 0.
/{(M)*(__(l]*p1>)*p1“ *p;m F__——l() 1 2 j ) 0 (Z)

Definition 4.2. We introduce the following valuatiop, for
the RAM-domain mode{D, o, {eg}):

p()(pl) = { {2}7 {4}a {S}a ceey {2m}a }
which is provable by the induction hypothesis. po(p2) = { {3}, {9}, {27}, ..., {3}, ... }

po(li) = { {é:}, {6¢25 } {6?}7 P (L S
Casey = (L;:if ¢ =0 goto Lj;). We show the subcase _ _
k = 1; the subcasé = 2 is similar. By the case assumptiorfVhered; is taken as a fresh prime number for each of the
we have(L;, 0, 7;) ~ s (L;,0,ns), and require to derive: propositional variables 5, [_1, lg, l1, l2,.. ., and:

which further reduces by part (c) of Lemma 3.2 to:

K(M) * 1+ pp s ph? b ==l

K(M) i x| *pgz F==lo po(b) = U<Li7n17n2>UM [Z: *pli“ *pg2]]90

By the equivalencel « | = A and using Lemma 3.3 to dupli-| emma 4.1. Definition 4.2 guarantees that for amy a finite
cater(7) as in the previous case, it suffices to show: setd belongs to[p}],, if and only ifd consists of exactly:
n distinct powers of the corresponding prime. Thus any elémen
—-(]. —-1. . 2 J—
R (= (1 V) = =li) L% pg® £ ==lo of [p}],, uniquely determines the number

B [ . is to: . : -
y employing part (b) of Lemma 3.2 we can reduce this to Proof. By induction onn. E.g., by definitionpy % pi],,

R(M) s==(1; V1_1) % pi2 F ==1I consists of two-element sets of the fofRi"*, 22}, O



Comment 4.1. Our choice ofpg(p1) and pg(p2) to havein- We also have, for alt: € D:

finitely many disjoint elementss dictated by peculiarities

of composition in the heap model. For afipite choice = == (l; VI-1)

of po(px), we must havdp?],, = [py"],, for sufficiently < Va'.z oz’ defined andz’ =, I; ora’ =5, 1-1)
large n and m, which obstructs us in uniquely representing impliesz oz’ |=,, b o
the contents: of counterc;, by the formulapy. (We discuss < Va'. x o 2’ defined and:’ € po(l;) U po(l-1) implies

decidability consequences in Section 6.) zox Fp b
& x € [py" *py?]pand(Ly, ny, no)bar and(L_1,n1, n2) b
Lemma 4.2. eq k=,, k(M) for any machine\/. & x € [py?],, and(L;,0,n2)n (by Lemma 3.1)

The penultimate equivalence above requires reasoninasimi
to that employed in the previous cases ' must be defined
for somex’ € py(l;) and for somer’ € po(l_1).

Since (L;,0,n2) ~ar (L;,0,n2) by the operational
semantics of the zero-test instruction, we have:

. . . . <Lj,07n2>lLM implieS(Li,O,ngﬂlM, i.e.x ':po —(lj\/l_l)
Thus it suffices to show that |=,, x(v) for any instruction . liesa =, ~1; as required. .

~. We present the cases for an increment instruction and ¥8Ip
a zero-test instruction; the other cases are similar.

Proof. Writing M = {v,...,%}, we have by Defn. 2.4:

€0 ):/)0 K(M) < €0 ):/)0 A /\Z:l K('W)
< e € {6()} andvl <i <t eg ':ﬂo Ii("}/z)

Lemma4.3. eg =5, | A=lo.

Casey = (Lickpt+;goto L;;). We show the subcaseProof. We trivially haveey =, I. Since(Lg,0,0){xs, we
k=1, the subcasé: =2 is similar. We haver(y) = havepy(ly) C po(b) by construction oy, which straightfor-
(=(lj * p1) = =1;). To showeg [=,, #(I), we must show wardly entailseg |=,, lo —* b. O
thatz |=,, = (I; *p1) impliesz =,, —{; foranyz € D. First

note that we have for alt € D: Theorem 4.1. If (k(M)*1; xp'* xp5? *« (I A=lp)) Fb is

valid in (D, o, {eo}) then(L;,n1, no)rs.
z ':Po _(lj *pl)
& Va'. z o2’ defined and’ |=,, ; * p; impliesz o 2’ |=,,b Proof. By the definition of validity and using the equa-

& Va'. z o2’ defined anda’ = y o z andy =, [; and tions (1) we have:
z F=py p1) impliesz o 2’ =, b

& Wy, 2.z oy o z defined and; € po(l;) andz € po(p:) o [R(M) s L py e py® o (L A=1o)]pg S pol(D)
implieszoyoz =, b i.e. [r(M)]p, - [li* Py * D51 po - I A=lo]py < po(b)

S e [pit *py2],, and{L;,ny + 1,n2) s )
L} 2l (Lgrm ?) Sinceeg € [k(M)],, by Lemma 4.2 and, € [I A=1o],, by
The last equivalence follows because, since the elementd-gfima 4.3 we have in particular:
D are finite sets whereag (1;) andpo(p1) containinfinitely
L J , [l = pY* % p5*]py S po(b)
many disjoint setsr o y o z must be defined for somg € e 2" lpo = PO
po(l;), z € po(p1), in which caser o y o z |=,, b must hold.

. n1 n2 H
By a similar argument, we also have for ale D: By Lemma 4.1 and (1), the s@t;  py" + p5°],, uniquely

determines the numbers andns, whence our construction
, , of po(b) yields(L;, nq, . O
T Fpo =li & € [p" *p5*]p, and(L;, n1, na)dar po()y Loy, ma)bas
Having established our Theorem 4.1 for the basic RAM-
domain model, we now extend it to the most sophisticated
stack-and-heapnodels from Example 1.1(c), in which the
heaps are heaps-with-permissions. All the models from Ex-
ample 1.1 can be seen as special instances of such models.

Since (L;,n1,n2) ~n (L, n1 + 1,n2) by applying the
increment instructiony, we have that(L;,n; + 1, n2){as
implies (L;, n1,n2)dar, SO thatz =,, —(1; *p1) implies
x =p, —1; as required.

Casey = (L;:if ¢, =0 goto L;;). We show only the sub- Definition 4.3. Let (S x H, o, F) be a stack-and-heap model
casek = 1. We havex(y) = (= (l; VI_1) = —1[;). To show from Example 1.1(c), whereS is a set of stacks and
eo =p, k(I), we must show that |=,, —(I; VI_1) implies H =N —g, (RV x P) is a set of heaps-with-permissions
x [=p, —l; foranyz € D. As in the previous case, we haveand underlying permission algeb(#®, e, 1). (Recall that

forall x € D: 1 e 7 is undefined for alir € P.)
Based on our valuatiopy for the RAM-domain model in
rE=l;, & x e [pl* *p5?], and(L;, n1,n2){m Definition 4.2, we introduce a valuatign for (Sx H, o, F)



as follows. First, we fix an arbitrary stack € S, and for 5 Undecidability of separation logic
each finite se CN we define the sdt]] C Sx H by:

[d] = { (50, h) | domain(h) = d andv/ed. h(¢) = (_, 1)} Now, based upon Figure 1, we may state the following:

Then for any propositional variabjewe define its valuation Corollary 5.1. The following problems are undecidable:
by: p1(p) = Uaepo(p) ld]- e provability in minimalBBI;
Lemma 4.4. For any propositional variable and ¢:

[[p*Q]]pl = [[-pﬂﬂl '[[qﬂﬂl = Ude[[l"q]]ﬂo [d].

Proof. It suffices to show thdid; ods] = [d4] - [d2]. For dis- o _

joint d; andds, this is given by construction. For overlapping Validity in the class of all separation models;

dy anddz, assume thate diNdz, and(so, k1) o (s0, h2) iS e validity in the class of all separation models with indivisi
defined for somésg, h1) € [di] and(sg, h2) € [d2]. By con- ple units;

struction of[d; ] and|ds], this implies hy (¢) = ha(£) = (., 1).
But then since(sp, h1) o {so, he) is defined, we must have
L o1 defined, which is a contradiction. Thi&] - [d2] IS proof. The termination of a Minsky machin&/ from con-
empty whent, o d is undefined. figurationC = (L, n,0) is undecidable [18], and reduces to
Lemma 4.5. For any formulaA of the forml, (Ixp), or each of the problems above by the diagram in Figure I
(Ivl'), the set[A],, -{(s,h)} is not empty, and we have

[Al,. -{(s,h)} C [b],, if and only if [A],,-{d} C [b],, Corollary5.2. Neither minimaBBI nor BBI nor BBI+eW
with (s, h) € [d], whered = domain(h). has the finite model property.

Lemma 4.6. (so, eo) =, k(M) for any machine\s.

e provability in BBI;
o provability in BBI+eW;

o validity in any of the concrete separation models in Ex. 1.1.

Proof. A recursive enumeration of proofs and finite counter-
Proof. As in Lemma 4.2, we show thdkg, eo) =,, k(y) models for any of the logics above would yield a decision
for any~ in the group (4). Recalling thatA = (A—b), procedure for provability, which is impossible. O
eachx () is of the form((A—«b) —« (B—+b)), so it suffices
to prove[A —b],, C [B—«b],,. Using the equations (1),

this amounts to showing, for anfy, h): 6 Finite approximations

[Alp, - {(s: )} S (Bl = [Blpy-{(s;M} S [blp, (6)  Our undecidability results for propositional separation
Assume[A],, -{(s,h)} C[b],,. Letd= domain(h). By logic seem to be at odds with the decidability of the
Lemma 4.5 we have(s, h)€[d], and [A],,-{d} C [b],,- quantifier-free fragment of a certain separation theoryr ove
Lemma 4.2 shows thate =, x(y) and thus aninfinite heap model, due to Calcagno et al.[7]. The crucial
[A—b],, C [B—*b],,, so that [B],,-{d} C [b]. difference is that their decidability result is restrictedinite
whence Lemma 4.5 yields3] ,, - {(s,h)} C [b],,- O valuationsp s:Jch trEa]to(p) :;finite for every atI(IJmic prohposi-

tion p. Namely, in [7] eaclp represents oneell, i.e. a heap
Lemma 4.7. (so, eo) =5, (lo—+b). whose domain is a singleton. The reason why their decid-
Proof. Similar to Lemma 4.3. U ability is highly non-trivial is that their language comtai—«
Theorem 4.2. If a sequentFa; 1, n, .n, Of the form and the underlying separation model employs a non-tgtal
S, so that, e.g., whenevgr], is finite, [A — B], becomes
(£(M) Ly # py* +po® * (1A (lo—+b))) = b infinite. In this section, we investigate this phenomenon.

is valid in some concrete model from Example 1.1 then
(Li;n1, na) o Theorem 6.1. Let (H, o, {ep}) be a heap model. Then there

is an algorithm that, for any finite valuation, and any se-

Proof. Without loss of generality, we may assume th eNtFari, n,.m, Of the form:

F,i;,ma .m0 1S Valid in a stack-and-heap model given in Defi-
nition 4.3. Thus we have by definition of validity: R(M) # L % p™ 5 i (I A (Ig—b)) F b

[ (M) s Li 5 pY* * py® s (IA(lo—+D))],p, € [b,,
Taking into account Lemmas 4.6 and 4.7, we get:

[l % P # p22] 0 S pr(b). Proof. In prin_ciple, this can be deduced from [7]. Our direct
construction in Lemma 6.1 show subtleties of the problem.

decides whether this sequent is valid under the valuation

According to Lemmas 4.4 and 4.1, the $kt« pi* * p5?],,
uniquely determines the numbers andn, so that our con- Lemma 6.1. There is an algorithm that, for any finite valua-
struction ofpy (b) yields (L;, n1,na){ - O tion p, decides whethety =, x(M).



(Thm. 4.2) machine) terminates from configC' (Thm. 7.1)
y (Thm. 3.1)

Fwm,c valid in some mode ]—‘M ¢ valid in anyCBI-model
[ from Example 1.1 ]:M o provable in m|n|maBBI with indivisible units

(Ex. 1.1)¢ \L (Defn. 2.6) ﬁ (Prop. 7.1)
Fu,c valid in any separation . :
[ model with indivisible units Fu,c provable inBBI . | Fu,c provable inCBI+eW
(Defn. 2.6) Defn. 7.2
[}" M,c provable inBBI+eW} []-‘ M,c provable inCBI}
Figure 1. Diagrammatic proof of undecidability. The arrows are implications, and  Fy ¢ is a formula /

sequent built from machine M and configuration C. The problems at each node are all undecidable.

Proof. As in Lemmas 4.2 and 4.6 (cf. (6)), we have to chedke p. Otherwise[x(M)], = [IA(lo—b)], = [I],, and it
eo =, k(7y) for any v of the form ((A—«b) — (B—+b)), only remains to check if the finite sefl; = pi"* = p5?], isa

whence it suffices to show how to check the sentence:  subset of[b],, which is straightforward. O
vz(([Al,-{z} € [b],) = ([Bl,-{z} < [0],)) Corollary 6.1. There is a sequerfay 1, .0 Of the form
where[A],, [B], and[b], are finite. We consider two cases (R(M) % 1y % pi° « (IN(log—b))) - b

depending on the domain of )

(1) In the case that([A],-{=} # ), we can construct asuch that,. for each s.epa.ratlon model from Ex.amplg 1.1,
finitelist of all = such that([A],-{z} C [b],). Thenwe may 7 M:ino.0 iS not valid in this model, bufyy 1, z,.0 is valid
check for these whether ([B],-{z} C [b],)- in this model under all finite valuations

(2) If ([A],-{z} = 0), then trivially ([A], -{z} C [b],), Proof. Take M such thatKy; = {n|(Li,n,0){a} is un-
so it suffices to show how to check a sentence of the form:decidable. Letl, be the set of alk such thatFu;, .0
is not valid in the model under some finite valuatipn
Vz(([Al,{z}=0) = ([Bl,-{z} € [b],))  (7) By Theorem 6.1 Wy, is recursively enumerable. Accord-
) ~ing to Theorem 3.1 and Proposition 2K, andW,, are
Let [Al, = {f1, fo, - fm} @nd o = flomaln(fi) for all 7, gisjoint. Therefore, we can find a numbey such that
and[B], = {g1, .. g:} and; = domain(g;) forall ;. no & KyyUW)y. Sinceng & Ky, Theorem 4.2 implies that
For each choice of;, ¢s,.., {,,, from oy, ag,.., ayy,, respec- Fat1y.me.0 i NOtvalid in the model. Howeveny ¢ W, im-

tively, we writedy, ¢,,...¢,, for the set{(y, lo, ... m}. INthe  pjiegtharr is valid under all finite valuations. O
following we rely on the fact that, althoudht],-{z} =0 for P Mhmo.0 -

infinitely manyz, the domain of each of thesemust be a
superset of soméy, . 4,..

Case 1. Assumeg;Ndy, .. ¢, # 0 for all g; anddy, . e,..
Since, for each in questiondomain(z) is a superset of some
de,...e,., we have[B]),-{z} =0, and so (7) is true.

Case 2.Assumes;Ndy, ,...¢,, = 0 for someg; anddy, .., -

Let 7 be a number greater than every number occurriRgfinition 7.1 (CBI-models) A CBI-model is given
in 6;, de, s, and[b],, and letZ be a heap such thatby (H.o,e,-~'), where (H,o,{e}) is a separation
domain(z) = {n} Udy, . Theng;oZ is defined but model (with a single unite) and - ~1:H — H satisfies
g;oz & [b],, and (7) is false. 00 hohl=coel=clforalheH.

We complete the proof for Theorem 6.1 as follows. Given 1o cp1-models we consider in this paper form a subclass

anFu i;,n1,n, We first use Lemma 6.1 to compuie(M)],  of the more generatlational CBI-models given in [4].
and [IA(lp —b)], (both are subsets dfeo}). If either of

these sets is empty then triviall§as i, », n, iS valid under Example 7.1. Examples o{CBI-models (cf. [4]):

7 Extension to ClassicaBI

In this section, we extend our undecidability results to
the class of “dualising separation models”, whose proof-
theoretical basis is given by Classidal, or CBI [4].



(@) ([0,1],0,0,-71), wherez; o x5 is z1 + 2 butundefined Lemma7.1. ey |=,. x(M) for any machinel/.

whenz; + z2 > 1. Theinverser=1is1 — z. .
Proof. As in Lemma 4.2, we must showy =,. () for

(b) (3,0,¢,™) whereXlis any class olanguagesontammg any instructiony. We only examine the increment instruc-
the empty Ianguagean_d °'°Sed.“”def9r."9”'a”d €M tion case,y = (L; cx++;goto L;;) for k = 1 here. As
plement. Hered, o d is the union of disjoint languages;, v, corresponding case of Lemma 4.2, we must show that
d, andd, (in the overlapping casé; o ds is undefined). =, * p) e € [=Li],e. Assuming thath ~(, % p1)
E.g., ¥ may be the class of regular languages¥anay o pave: pe W
be the class of finite and co-finite sets.

(c) Effect algebrag11], which arise in the foundations of ¥¥,z- ((z oy o z defined and; € pc(l;) andz € po(p1))

guantum mechanics, are precis€i3I-models with in- iIMpliesz oy oz € po(b))

divisible units. i
and need to show =, —I;, for which we have two cases.

(d) Pe.r,missior‘l algebragP e, 1) ,[3] enriched with a“formal ot in the case that is finite then the reasoning from the
unit’ e and ‘formal equalitiesteh = hec = care exactly gnajogous case of Lemma 4.2 applies sineeoincides with

non-degenerat€BI-models with indivisible units. po on all variables except That s, for some € pc(1;) and
Definition 7.2. Following Definition 2.6, we introduce a sec € pc(p1), @ oyozis defined and thug o y o z € pc(b),
ond chain of logics as follows: whencer € [py"* * py*[, and(L;,n1 + 1, n2)drr. By ap-

plying the instructiony, we have(L;, n1,n2){ o, which im-
plies thatz o 2’ € pc(b) wheneverz o 2’ is defined and
z' € pc(l), i.e.x |=,. =1; as required. In the case thais

] ] ) ) ] cofinitethen, by the same tokem, o 2’ is either undefined
e CBI+eW is obtained by extendingBI with the restricted ; ofinite for anyz’ € pc(l;), in which caser =, —1; as

e CBI [4] is obtained fromBBI by extending its language
with a constantl, and adding the axiomsi - ~~A4 and
~~AF A, where~A is an abbreviation fofA —« ).

+weakeningl A (A + B)) - A; required because- (b) contains all cofinite sets. O
e CBI+W is obtained by extendin@BI with the unre-
stricted«-weakening A  B) - A. Lemma 7.2. e =0 | A=lo.

Validity of CBI-formulas with respect tadCBI-models Proof. Similar to the proof of Lemma 4.3. O

(H,o,e,-~1) is defined as in Definition 2.5 once we extend

the forcing relatiort, |=, A given in Definition 2.4 with the Theorem 7.1 If (w(M) x Iy x pi" * py?) (I A=lo) = b is
clauseh =, T < h#£e . valid in the RAM-codomain model, théh;, n1, na){ -

Proposition 7.1(Soundness)If A is provable inCBI thenA Proof. By the definition of validity we have:
is valid in all CBI-models, and if4 is provable inCBI+eW e
thenA is valid in all CBI-models with indivisible units. [(M) L % p* + p5® * (L A=lo)]pe € po(b)

Corollary 7.1. Using Proposition 7.1 we have, similar toBy Lemma 7.1 and Lemma 7.2 we have in particular:
Corollary 2.1: BBI ¢ CBI C CBI+eW C CBI+W (the
inclusionBBI ¢ CBI was established if4]). [l * P * P52 pe € pc(b)

Proposition 7.2. CBI+W collapses into classical logic.  sjncep. coincides withp, on all propositional variables ex-
Proof. As in Prop. 234 B= AA Band|= T. Further- CePtb, the set[l; « ;" + py°[ . is finite, and uniquely de-
more,i = ~l = ~T = | which forcesvA = —A. O terminesn; andny by Lemma 4.1 and equations (1). Our
construction ofpc(b) then yields(L;, n1, n2){as- O
Since minimal BBI-provability implies CBI(+eW)-
provability, to establish undecidability f@BI it suffices (see ~ Agdain, based on Figure 1, we can assert the following:

Fig. 1) to prove the analogue of Thm. 4.1 foC&I-model. Corollary 7.2. The following problems are undecidable:

Definition 7.3. We introduce the mode{D*,o,ep,- "), o provability in CBI;
whereDT is the class of finite and co-finite subsetsNof bility in CBI+ e W
o is disjoint union, the unit, is () and-~! is set complement. * provabiiity in eV

o i . ¢ validity in the class of alCBI-models;

Definition 7.4. We define a valuatiopc for (D, 0, eg,-71) T o .
by extending the valuatiop, in Definition 4.2 as follows: ~ ® validity in the class o©BI-models with indivisible units;

o validity in the concrete modéDt, o, g, -~ 1).
po(x) = po(x) forallz € {p1,p2} U{l;|i> -2} y ¢ o)

pc(b) = po(b)U{de D" |dis cofinite} Proof. Similar to Corollary 5.1. O
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