
Secure Cross-Domain Data Sharing Architecture
for Crisis Management

Vaibhav Gowadia, Enrico Scalavino, Emil C. Lupu Dmitry Starostin, Alexey Orlov
Imperial College London European Microsoft Innovation Center, Aachen
{vgowadia, escala, e.c.lupu}@imperial.ac.uk {dmitrys, alexeyo}@microsoft.com

Abstract

Crisis management requires rapid sharing of data among organizations
responding to the crisis. Existing crisis management practices rely on ad
hoc or centralized data sharing based on agreements written in natural lan-
guage. The ambiguity of natural language specifications often leads to errors
and can hinder data availability. Therefore, it is desirable to develop auto-
matic data sharing systems. The need to share data during crises presents
additional challenges, such as evaluation of security constraints in different
administrative domains and in situations with intermittent network connec-
tivity. We compare two different architectural approaches to develop secure
data sharing solutions. The first approach assumes reliable network connec-
tivity, while the second approach works in ad hoc networks. We then suggest
a unified architecture that caters for both scenarios.

1 Introduction

Crisis management is the process of organizing response to incidents that seriously
threaten people’s lives or the environment. Examples of such incidents include
road accidents, fires, etc. These incidents may evolve rapidly and need a quick
and efficient response to limit the damages. Crisis management often requires ac-
cess to sensitive data from many organizations or different administrative domains.
For example, responders from different administrative domains may need to know
the number of casualties, or the imminent dangers for the surrounding area, and
medical records must be shared to provide care for the victims.

In the rest of this paper, we will indicate the organization where data originates
as the data provider and the recipient organization as the data consumer. Sensi-
tive data must be protected according to the security policies of the data provider

1



even after it has been disseminated to users in other organizations or different ad-
ministrative domains. This usually requires mutual trust between the data provider
and consumer. The data provider must ensure that its data will be protected after
dissemination, while the data consumer needs to know what data it will be able to
access. Organizations form Data Sharing Agreements (DSA) [26] to achieve these
goals. A DSA is a signed contract stating each partner’s obligations, which allows
the partners to seek remedy (e.g. through legal means) for breaches of the contract.
Establishment of a DSA allows the data provider to trust data consumers to enforce
the agreed policies in their administrative domain.

In practice, DSAs are expressed in natural language (e.g., see [13]) and include
the authorization policies for the shared data. Common practices of first-aid and
public-safety agencies indicate that the evaluation and enforcement of DSAs are
not automated and data is often shared informally [27]. Informal data sharing
requires manual decision making. However, a manual process can cause delays and
errors, which can in turn lead to deterioration of the crisis at hand. Effective and
scalable crisis management requires an automated and efficient DSA evaluation
and enforcement system.

Existing dissemination control architectures [18, 16, 2, 5, 10, 14, 15] are unable
to address the requirements of cross-domain data sharing during crisis situations.
First, they require recipients to contact the data provider or a pre-defined central
policy evaluation authority to obtain access rights. However, responders may not
be able to connect with the central authority while lending support in the crisis
area. If, for example, the incident happens in a tunnel. The incident response
command centers located in response vehicles may use long range communication
equipment to exchange data with the outside world, while responders with mobile
devices may have to depend on ad hoc links using short range communication of
their devices. Ad hoc networks provide intermittent connectivity as the network
nodes (responders) are always in motion. A remote policy evaluation authority
could be unreachable from the responder’s location if the network is temporarily
partitioned. This limitation can be fatal in crisis management scenarios. It is there-
fore necessary to cater for situations when data may be shared through an ad hoc
network among rescuers, or manually using portable media such as data sticks. To
effectively respond to crises, data must be protected in ways that do not require
communication with entities outside the responder’s reach.

Another limitation of the existing dissemination control architectures is that
policies are unilaterally defined by the data provider who may have poor or no
knowledge of user credentials and contextual information available in the data
consumer’s administrative domain. This severely restricts the expressiveness of
the policies that can be enforced in practice.

2



Example 1.1 Consider a crisis scenario where a leakage of a toxic chemical is
threatening a neighborhood and the Police coordinates the evacuation of people
living nearby. Responders collect sensitive personal and medical information of
the evacuees, and need to share it with employees of the Local Government to
coordinate medical support for the evacuees. It is responsibility of the Police to
protect the collected sensitive data. Following the need to know principle, the Po-
lice should give access to only those members of the Government staff that are
assigned to the incident at hand. To specify such an access policy the data provider
(Police) must know how to identify personnel assigned to the incident in the Lo-
cal Government’s administrative domain. The data consumer (Local Government)
must understand the conditions required by the data provider’s policy and be able
to provide matching credentials. In other words, the data sharing partners must
agree on a common/shared vocabulary as part of their DSA. 2

This paper presents a data sharing architecture based on the concept of DSAs
that caters for data access with intermittent connectivity. We identify a policy
evaluation and key distribution scheme suitable for ad hoc / opportunistic networks
[19, 28, 9] that allows users to obtain permissions without communicating with a
central policy evaluation authority. We discuss how the architecture enables usage
control [17]; i.e., continuous control over data access.

The remainder of this paper is organized as follows: Section 2 discusses related
works and their limitations. In Section 3 we introduce the concepts of DSA and
usage control policy. Section 4 discusses the design options for a cross-domain
data sharing architecture. We also propose a unified architecture that addresses the
requirements of data sharing in crisis scenarios. Section 5 describes the deployed
components and their behavior. We give an overview of our implementation in
Section 6. In Section 7, we discuss further design options and features. Finally,
we conclude in Section 8 where we also discuss how the proposed architecture
addresses the stated requirements.

2 Related Work

Dissemination control systems are also known as Digital Rights Management (DRM)
and Enterprise Rights Management (ERM) systems [5, 15, 25] and share many
common design principles and functionalities. The sensitive data is cryptograph-
ically protected and associated with access policies. These policies are evaluated
by a central trusted authority (TA), who is often the originator itself. The TA eval-
uates recipients rights and issues the decryption keys to them (see Figure 1). This
kind of architecture suffers from limitations that make its use inappropriate in cri-
sis management scenarios: 1) The TA is statically defined and any change requires

3



manual intervention; 2) if the TA is not available, the users cannot access the data;
3) cross-domain evaluation is hard to achieve due to the limited knowledge of the
data consumer’s domain.

Figure 1: Deployment of Centralized Rights Distribution Architectures

Park et al. [18] presented an analysis of possible dissemination control archi-
tectures based on three elements: virtual machine (enforcement layer), control set
(list of access rights and usage rules), and distribution scheme (push or pull). They
also identified three types of control sets: fixed, embedded, and external. A fixed
control set is hard coded into the virtual machine. An embedded control set is sent
with the protected data and an external control set resides at a remote location.
However, they do not explain how rights can be determined during cross-domain
evaluations.

Adam et al. [1] proposed a data sharing architecture that uses an intermediate
coordinator service in each organization. Data can be shared with other organi-
zations in push or pull mode. In push mode, data can be shared at inter-agency
level between the coordinator services, and at intra-agency level between a coordi-
nator service and recipients within its organization. Whereas in pull mode data is
shared only at inter-agency level. In their architecture, after the coordinators have
exchanged data the originator does not retain any control over it. Moreover, the
proposed solution is unusable when connectivity is absent.

Since it is not feasible to use a central policy evaluation authority in crisis
management, it is necessary to explore other rights distribution architectures that
do not require communication with a central server.

Access Hierarchy based Encryption (AHE) [4] defines a hierarchy of access-
levels. Each access-level is associated with a secret key and a public label. while
each edge is assigned a public value. The secret key of a node in the hierarchy can
be derived in an offline mode if the secret key of its parent node is known.

Attribute Based Encryption (ABE) [20] can be considered as an evolution of
Identity Based Encryption (IBE) [7], where documents are encrypted using an at-

4



tribute based policy and a TA’s public key. The TA generates a secret key for
each user based on the user’s attributes so that they are able to decrypt data only
if their attributes satisfy the attribute based policy used for the encryption. Again,
attribute-based keys must be disseminated before any access request.

The Policy-based Authority Evaluation Scheme (PAES) [22] allows a data orig-
inator to specify a hierarchy of authorities trusted to correctly evaluate its policies.
The set of authorities trusted to evaluate the usage control policies is not statically
defined, but designated by a trust policy evaluated by a higher level authority. The
set of higher level authorities is recursively defined by policies. The recursion ter-
minates by a set of statically defined authorities at the root-level of the hierarchy.
As a result this protocol allows recipients to choose a trusted authority in a more
flexible manner.

3 Definitions

The core ingredients of a DSA are 1) the scope of the agreement, 2) the attribute
vocabulary, 3) the security policies, and 4) the penalties for violating the agree-
ment.

Definition 3.1 (Data Sharing Agreement)
A Data Sharing Agreement dsa is a 6-tuple (id,A,S,T,P,V ) where id is a unique
identifier, A is an attribute vocabulary describing subject, data, and context at-
tributes, S is the scope of the agreement, T is a set of authorities trusted for provid-
ing user and context attributes, P is a set of usage policies that must be enforced,
and V is a set of violation procedures applicable whenever P is violated. The scope
of the agreement is defined as a 4-tuple (E,O, ts, te) where E is the set of entities
signing the DSA, O is a sets of conditions over data attributes that must be satisfied
by all data items to which this agreement is applicable, ts and te are the dates and
times at which the agreement becomes effective and expires respectively.

When an entity agrees to a DSA it promises to enforce policies equivalent
to P for the data provided by the partner entities. This ensures that the security
requirements of the data provider are satisfied.

DSAs may include additional specifications, such as procedures to resolve dis-
putes, to revise the agreement etc. Discussion of these components and violation
procedures are outside the scope of this paper.

Park et al. [17] described a formal model for usage control based on authoriza-
tions, obligations, and conditions. Conditions describe constraints over subject,
data, and contextual attributes. To provide continuity of control the usage control
policy must be reevaluated if any of the attributes change. This requires monitoring

5



of the attributes used in access conditions. However, monitoring all attributes for
a large set of documents can consume significant computing and energy resources.
We therefore observe that attributes may be either long-lived (persistent) or short-
lived (volatile). For example, a user’s id or group may be considered long-lived,
whereas a user’s location is short-lived as it may change frequently during an ac-
cess session. Thus, in our definition of usage control policy, we allow the policy
author to clearly separate the long and short lived access conditions so that only
the latter are monitored.

Definition 3.2 (Usage Control Policy)
A usage control policy p is a 5-tuple (s,o,a,c,cm) representing a permission given
to subject s to perform action a on object o, when the conditions c and cm are
satisfied. To allow access c must be satisfied at the moment of the access request,
whereas condition cm must hold for the entire duration of the usage. This means
cm must be monitored after access is granted and the usage must be interrupted as
soon as cm becomes false.

Although the DSA partners agree on a common vocabulary, the attributes used
in the DSA may still not match with the credentials issued by the organizations.
Thus, the architecture should either translate the usage policies of each DSA to
a domain-specific enforceable version, or translate the credentials for each access
request depending on the applicable DSA. We take the first approach because the
translation needs to be done only once for each DSA.

Example 3.1 Let us consider a DSA between the Police and a Local Government
that specifies that access to personal data of victims in an incident should be re-
stricted to responders assigned to that same incident. Moreover, access must be
allowed only while the responder is located in a danger area designated as level1.
Figure 2 gives an example of the DSA translated into an enforceable policy for the
Police administrative domain.

The first two statements of the example policy declare the persistent and volatile
attributes and specify their data types. Authority P is declared by specifying the
identifier of the service that issues credentials on its behalf. The credential types
used in the policy are declared by specifying their names and the lists of attributes
they can contain. Credentials are then defined as instances of credential types is-
sued by a trusted authority. User roles are declared by specifying a condition over
the credentials users may possess. Finally, a usage control policy specifies that a
subject with role ”responder” can read a data item of category ”personal”. The
monitored condition cm is expressed in the while clause of the policy, and other
access conditions are specified in the when clause. 2

6



Figure 2: Example of an Enforceable Policy

4 Architecture

One of the main threats for disseminated data is the possibility for an attacker
to bypass a genuine policy enforcement point (PEP) and access the data directly.
To mitigate such threat, the sensitive data must always be kept encrypted when
stored or transmitted. Only a genuine PEP should be able to obtain correct decryp-
tion keys when permitted by a trusted policy decision point (PDP). We categorize
DRM/ERM architectures based on whether users must interact with other entities
to receive decryption keys after or before receiving protected data. We first discuss
and compare these two approaches, and identify their advantages and limitations.
We then present a unified architecture combining the benefits of both approaches.

4.1 Interactive Data Sharing Architecture (IDSA)

In the IDSA architecture recipients interacts with their organization’s server to ob-
tain access after receiving the protected data. If the data provider wants to evalu-
ate access requests of recipients in other organizations, then additional infrastruc-
ture is needed to map the recipients’ credentials to the credentials it understands.
We observe that a DSA between the data provider and data consumer establishes
trust which allows the data consumer organization to evaluate access requests of
its users. Thus, mapping of credentials is not needed and architectures presented
in this paper take the approach of translating the DSA into policies enforceable by
the DSA partners.

IDSA is an extension of traditional DRM/ERM model and is described first to
illustrate how cross-domain operation can be achieved. It does not however cater
for the need to access protected data when connectivity is intermittent.

To evaluate the usage policies, a policy engine needs to identify the data for

7



which access has been requested. Content-based rules cannot be applied because
the PEP is not yet able to decrypt the protected content. To overcome this problem,
it is necessary to package metadata with the protected document. Also, the meta-
data must be protected against unauthorized modifications. We here assume the
metadata is specified as a list of attribute and value pairs. For example, metadata
for personal data sharing during a crisis incident may be represented as [(inciden-
tId,”123”),(dataCategory,”personal”)].

Let k denote a symmetric encryption key and {D}k the data D encrypted with
k. We also refer to k as the content key. PKe and PK−1

e denote the public and
private keys of an entity e. Certe denotes the public key certificate of e. Let the
user Bob working for organization B request dissemination of a data item under a
DSA DSAAB between organizations A and B. The data is described by the metadata
M. A protocol (see Figure 3(a)) for securely sharing D with a user Charles who
works for organization B can then be described as follows:

Bob requests to protect data for recipients in organization B:

1. Bob→ ServerA : {k,DSAAB,M}PKA ,CredentialsBob
2. ServerA→ Bob : {k,DSAAB,M}PKB

3. Bob→Charles : {D}k,{k,DSAAB,M}PKB

Charles requests access to the protected data:

1. Charles→ ServerB : {k,DSAAB,M}PKB ,CredentialsCharles,CertCharlesPEP
2. ServerB→Charles : {k, p,M}PKCharlesPEP

We assume that all messages are signed by their senders. The content key is
encrypted for CharlesPEP (PEP of the device used by Charles). Thus, the content
key is not directly accessible to the end-user. The PEP uses the content key to allow
access to the user when authorized according to the usage control policy p.

IDSA is an extension of ERM systems such as the Microsoft Rights Manage-
ment Services [15] for cross-domain operation. Moreover, IDSA allows specifica-
tion of more expressive policies. The key differences in the extension include the
use of metadata for policy-evaluation, the presence of a DSA, and the distribution
of policy evaluation authorities based on trust between the organizations.

4.2 Non-Interactive Data Sharing Architecture (NIDSA)

In the NIDSA architecture users obtain decryption keys before receiving protected
data. Thus, users are not required to interact with any entity after receiving data.
Also, the same key allows the users to access any document for which they have
permissions.

8



(a) (b)

Figure 3: Deployment of (a) Interactive and (b) Non-Interactive Secure Cross-
Domain Data Sharing Architectures.

To encrypt data for users in another organization, it must be possible to use a
public key kg such that members of a group g will already have the corresponding
private key k−1

g . It is desirable that users obtain the group’s private keys they are
authorized to possess before data is received. In addition, each user u has its own
public-private key pair PKu,PK−1

u . In this architecture, all users must know the
public keys of all groups in order to encrypt data for other users.

Let K−1
g(Bob) and K−1

g(Charles) be the set of private group keys that Bob and Charles
possess. A protocol for securely sharing data D using NIDSA is shown in Fig-
ure 3(b). It may be noted that in NIDSA the recipient obtains access keys in step
2 before dissemination step while in IDSA the recipient obtains the access keys in
step 5 after dissemination. The protocol can be described as follows:

1. Bob→ ServerA : CredentialsBob
Charles→ ServerB : CredentialCharles

2. ServerA→ Bob : {K−1
g(Bob), p}PKBobPEP

ServerB→Charles : {K−1
g(Charles), p}PKCharlesPEP

3. Bob→Charles : {D}k,{k, p}kg ,{iddsa,M}Signed

Charles is authorized to access data if kg ∈ K−1
g(Charles). Moreover, Charles does

not need to contact a server to access data. The usage control policy p still needs
to be enforced locally. For example, it is often desirable to restrict access using
additional context, e.g., responders may view the data of only those incidents they
are assigned to.

9



It is possible to build a NIDSA scheme based on Cipher-text Attribute Based
Encryption (CPABE) [6]. Possession of an attribute in ABE is comparable to hav-
ing a group private key in NIDSA. However, existing ABE schemes are not an ideal
solution for crisis management because they are computationally very intensive for
mobile devices that responders need to use.

The NIDSA architecture can also be used with symmetric key encryption schemes
such as AHE [4] by considering kg = k−1

g , and each access-level in AHE as a group
in NIDSA. To protect data using AHE, the data provider must encrypt data using a
key that the authorized recipients can derive. An implementation of NIDSA archi-
tecture using AHE will require generation of an access hierarchy which includes
members of multiple administrative domains.

Note that the NIDSA architecture does not cater for access revocation, while in
an IDSA revocation checks can be done at the organization’s servers as the recipi-
ents must request permissions for each protected item. In the NIDSA architecture,
revocation can be realized only by forcing a key renewal at regular intervals and
by not providing the fresh set of decryption keys to the revoked users. However,
during the interval of validity of a set of keys the user may still decrypt any new
document she receives. This is a trade-off that needs to be made to gain the abil-
ity of accessing data in offline mode. While NIDSA caters for crisis management
requirements, it is still desirable to use IDSA during normal operation. Therefore,
an architecture providing a comprehensive secure data sharing solution must unify
NIDSA and IDSA.

4.3 Unified cross-domain Data Sharing Architecture (UDSA)

To benefit from the diverse characteristics of IDSA and NIDSA, we build UDSA by
decentralizing IDSA and using some features of NIDSA. Similar to NIDSA, users
in UDSA are assigned to different groups and each group has a public-key and
a private-key. We here assume that each responder has a wireless device capable
of short-range wireless communication (e.g., a PDA or a smart phone). We also
assume that the persistent user credentials and the public keys of all organizations
that are part of DSAs are already stored on the user’s device.

Unlike NIDSA, the key pairs for groups are generated on a per-incident basis
in UDSA. We assume one of the incident response vehicles acts as an initial source
for creating and distributing keys to be used for that specific incident. The key
distribution source generates a public-private key pair for each group used in the
organization’s DSAs. The responders exchange data, keys, and certificates when
they come into communication range of each other. This communication together
with their mobility in the incident area, allows the responders to cope with inter-
mittent network connectivity.

10



The ad hoc distribution of rights in form of private-keys of groups is con-
trolled by policies, inspired by the Policy-based Authority Evaluation Scheme
(PAES) [22]. The private keys are always stored by the PEP securely and are
not directly accessible to end-users (discussed further in Section 7). The PEP uses
a group’s private key on behalf of a responder only if 1) she is a member of that
group, or 2) she is trusted to evaluate membership of other users to that group,
according to a PAES policy-hierarchy.

PAES allows definition of a hierarchy of authorities, where each authority is
trusted to evaluate and distribute rights. PAES can be implemented for crisis man-
agement by allowing responders to act as authorities. The implementation of PAES
for crisis management [23] can be adapted to work during normal operation by in-
cluding the organizational control center as an authority. A deployment of UDSA
in a crisis area is illustrated in Figure 4.

Figure 4: A Deployment of Unified Cross-Domain Data Sharing Architecture

5 UDSA Components

The goal of having a unified architecture is to provide secure access to data in di-
verse scenarios. In our architecture, the PEP comprises the application and a Data
Protection Object API (DPOAPI). The DPOAPI provides a common set of func-
tionalities including cryptographic functions and interactions with the PDP. The
application is responsible for intercepting access requests and shares the responsi-
bility to enforce access decisions with the DPOAPI.

Usage control over disseminated data requires distributed policy evaluation and
enforcement components. First, a user must contact a control center to obtain a use-

11



license. In UDSA, a control center can be the user’s organization server or a trusted
peer according to the PAES policy hierarchy. If the user obtains the use-license
using adhoc mode, the license contains a group key. However, if the user obtains
the use-license for a specific protected data item then the use-license contains the
content key. In addition, a use-license contains policies to be evaluated locally and
an expiration date after which a new use-license must be obtained. After a user
obtains a use-license, the usage control policies in it must be evaluated to check
the user’s authorization for each access session and monitor the access if required.
Note that the use-licenses are protected for the PEP on the user machine. We now
discuss these two steps in further detail.

5.1 Obtaining A Use-License

The difference between evaluating a use-license request in the IDSA and NIDSA
is that for the latter the process depends only on the user-attributes while in the for-
mer it also depends on the metadata of the protected data. Having recognized this
difference it is possible to design policy and enforcement components such that
they can seamlessly and automatically switch to ad hoc mode when network con-
nectivity is not available. Existing policy engines can be easily modified to operate
in ad hoc mode by distinguishing between conditions that depend on metadata and
conditions that do not.

Figure 5 shows the interactions for obtaining a use-license. The optional pa-
rameters are marked with (*) in the figure. Before requesting a use-license, the
PEP needs to collect the user credentials necessary for the evaluation. Collection
of all possible credentials can be time consuming. Thus, the PDP in USDA can be
queried for the credentials needed to evaluate a user’s request. The PDP returns a
list of credential requirements, i.e. of pairs (credential type, issuer). A credential
issuer is the authority trusted to specify values for a specific credential type. For
example, for the policy shown in Figure 2 the credential requirements are [(Au-
thentication, ”police”), (Location, ”police”), (MissionAssignment, ”police”)]. The
PEP then asks the Policy Information Point (PIP) to obtain the required credentials.
The PIP is configured with transport-level knowledge (e.g. URLs of credential ser-
vices) and certificates of trusted entities, so that it can securely obtain credentials. It
can also cache credentials for use in offline mode. The duration for which a cached
attribute value may be used depends on whether it is persistent or volatile. The
PDP of peer/server then evaluates specified DSA and user credentials to determine
whether a use-license can be given to the user.

12



Figure 5: Interactions to obtain a Use License

5.2 Usage Control

Figure 6 illustrates the interactions to evaluate access when a user has a valid use-
license. Implementation of usage control requires that the PDP, DPOAPI and the
controlled application implement listener interfaces to handle changes in the mon-
itored attributes. On access evaluation, if the policy granting access to the user
requires monitoring, the PDP subscribes to the PIP to receive notification about
changes in the monitored attributes. The PIP then subscribes to local or remote
attribute authorities. Note that in ad hoc mode we require remote authorities
for monitored attributes to be within the local network and communication with
them should be possible using opportunistic routing. When a monitored attribute
changes, the PIP sends an attribute changed event to the PDP. The PDP is session-
aware and keeps track of sessions that need to be re-evaluated when subscribed
attributes change. Thus, the PDP determines the sessions that must be reevaluated
and asks the DPOAPI to send the access evaluation requests for those sessions. The
DPOAPI obtains the cached copy of the user credentials from the PIP and sends the
evaluation requests to the PDP. If the permissions returned by the PDP are different
from the previous permissions, the DPOAPI sends a permission changed event to
the application. The application is trusted to terminate the ongoing accesses, while
the DPOAPI will stop providing decrypting data for the application if the user has
lost all permissions.

The monitored conditions may need to be reevaluated several times during an
access session. It is efficient to evaluate the monitored conditions because com-
munication between the PEP and PDP are local and no network communication is
needed after an attribute changed event is received.

13



Figure 6: Usage control (a) evaluation for new session and (b) revaluation in an
ongoing session.

6 Implementation

We have implemented the UDSA architecture and tested with development of two
UDSA-aware applications. The PDP components of the architecture were devel-
oped at Imperial College London, and the PEP and PIP components were devel-
oped at European Microsoft Innovation Center (EMIC). The PDP component for
end-user devices has been implemented as a Java library, and the server-side PDP
component is exposed as a Java web service. The DPOAPI and PIP components
are implemented using C#. Interoperability between Java and C# components is
achieved using JNBridge [12].

The two UDSA-aware applications demonstrate use of the architecture in dif-
ferent scenarios. The first application provides secure access to XML documents
containing information about an incident. The data-protection mechanism imple-
mented is flexible and allows us to restrict the access to selected parts of the docu-
ment. In addition, the access to the document can be restricted based on the user’s
location, role, and status of the incident. User’s location is determined by trian-
gulation of wifi tags (Aeroscout tags [3]) carried by the user. The user’s identity
and location credentials are issued by a security token service (STS) implemented
using the Geneva Framework [8]. The second application instead provides secure
access to sensitive scientific data in a typical enterprise scenario.

14



7 Discussion

A pragmatic data sharing architecture for crisis management should allow a re-
sponder to override the security policies to access data in high risk situations. Im-
plementation of such break-the-glass security mechanism should be accompanied
with the creation of an activity log that can be reviewed later.

In general, when users have complete privileges on their devices, it is neces-
sary to rely on the trusted computing (TC) technology [24, 11] to ensure secrecy
of the encryption keys (e.g. PEP’s private key) and the integrity of the policy and
enforcement infrastructure. TC provides hardware-based security and allows only
trusted software to access sealed data such as keys. Sandhu et. al [21] describe
several architectures based on TC to provide policy enforcement and implemen-
tation. However, in case of Government agencies responding to a crisis situation
or large corporations the user privileges are often restricted and well managed. In
such cases, it is not necessary to rely on TC. The safety of keys and integrity of the
policy and enforcement infrastructure can be provided by restricting user access
over them.

Our architecture also allows the end users to freely redistribute protected data to
others. However, to access the protected data each recipient needs to obtain a use-
license from one of the designated policy evaluating authorities after presenting her
credentials.

UDSA uses an access revocation similar to IDSA. On use license expiration the
PEP requires the user to renew the use-license to continue the access. This allows
the trusted policy evaluation authorities to check for revocations.

8 Conclusions

In this paper we presented an architecture for secure data sharing in crisis sce-
narios. The architecture uses a flexible policy evaluation scheme that provides
automated evaluation of data sharing requests. Automation allows the architecture
to provide faster and secure data sharing than manual data sharing practices. In
addition, usage control on disseminated data can be enforced without need to con-
nect with organizational infrastructures because users can be evaluated within their
local network. This allows the architecture to cater for data sharing among users
with intermittent connectivity.

We have also shown that it is possible to use the same architecture for scenarios
with and without reliable network connectivity. The UDSA architecture achieves
this goal by using distributed policy evaluation and establishing the required trust
relationships using the concept of DSAs.

15



References

[1] N. Adam, A. Kozanoglu, A. Paliwal, and B. Shafiq. Secure information shar-
ing in a virtual multi-agency team environment. Electron. Notes Theor. Com-
put. Sci., 179:97–109, 2007.

[2] Adobe. A primer on electronic document security, 2004. White Paper.
http://www.adobe.com/security/pdfs/acrobat live-cycle security wp.pdf Ac-
cessed 22-Sep-2009.

[3] Aeroscout. http://www.aeroscout.com/content/tags.

[4] M. J. Atallah, K. B. Frikken, and M. Blanton. Dynamic and efficient key
management for access hierarchies. In CCS ’05: Proceedings of the 12th
ACM conference on Computer and communications security, pages 190–202,
New York, NY, USA, 2005. ACM.

[5] Authentica. Enterprise rights management for document protection, 2005.
White Paper.

[6] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pages 321–334, Washington, DC, USA, 2007. IEEE Computer
Society.

[7] D. Boneh and M. Franklin. Identity based encryption from the Weil pair-
ing. In Proc. 21st Annual Int. Cryptology Conference, pages 213–229, Santa
Barbara, USA, 2001.

[8] M. L. Bustamante. A better approach for building claims-based wcf ser-
vices. MSDN magazine, December 2008. http://msdn.microsoft.com/en-
us/magazine/dd278426.aspx.

[9] M. Conti and S. Giordano. Multihop ad hoc networking: The reality. IEEE
Communications Magazine, 45(4):88–95, April 2007.

[10] EMC. Emc documentum information rights management: Overview of tech-
nical architecture, 2006. White Paper.

[11] E. W. Felten. Understanding trusted computing: Will its benefits outweigh its
drawbacks? IEEE Security and Privacy, 1(3):60–62, 2003.

[12] JNBridgePro. http://www.jnbridge.com/jnbpro.htm.

16



[13] Leeds Primary Care Trust. Appendix 3 - Example of an Information Shar-
ing Agreement. In Leeds Interagency Protocol for Sharing Information.,
2008. http://www.leedspct.nhs.uk/?pagepath=About Us/Information Shar-
ing/Protocol. Accessed 10-Dec-2009.

[14] Liquid Machines. Liquid Machines and Microsoft Windows Rights Man-
agement Services (RMS): End-to-end Rights Management for the Enterprise,
2006. White Paper.

[15] Microsoft. Technical overview of windows rights management
services for windows server 2003, 2005. White Paper. URL:
download.microsoft.com/download/8/d/9/8d9dbf4a-3b0d-4ea1-905b-
92c57086910b/RMSTechOver-view.doc.

[16] M.-C. Mont, S. Pearson, and P. Bramhall. Towards accountable management
of identity and privacy: Sticky policies and enforceable tracing services. In
DEXA Workshops, pages 377–382, 2003.

[17] J. Park and R. S. Sandhu. The UCONABC usage control model. ACM Trans.
Inf. Syst. Secur., 7(1):128–174, 2004.

[18] J. Park, R. S. Sandhu, and J. Schifalacqua. Security architectures for con-
trolled digital information dissemination. In 16th An. Computer Security
Applications Conf. (ACSAC), pages 224–, New Orleans, USA, 2000. IEEE
Computer Society.

[19] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan. Pri-
oritized epidemic routing for opportunistic networks. In Proc. of the 1st int.
MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp), pages
62–66, New York, USA, March 2007. ACM.

[20] A. Sahai and B. Waters. Fuzzy identity-based encryption. In 24th Int. Conf.
on the Theory and Applications of Cryptographic (EUROCRYPT), volume
3494 of LNCS, pages 457–473. Springer, 2005.

[21] R. S. Sandhu, K. Ranganathan, and X. Zhang. Secure information sharing
enabled by Trusted Computing and PEI models. In ASIA CCS, pages 2–12,
2006.

[22] E. Scalavino, V. Gowadia, and E. C. Lupu. PAES: Policy-based Authority
Evaluation Scheme. In Proceedings of the 23rd Annual IFIP WG 11.3 Work-
ing Conference on Data and Applications Security XXIII, pages 268–282,
Berlin, Heidelberg, 2009. Springer-Verlag.

17



[23] E. Scalavino, G. Russello, R. Ball, V. Gowadia, and E. C. Lupu. An Op-
portunistic Authority Evaluation Scheme for Data Security in Crisis Manage-
ment Scenarios. In Proceedings of Asia CCS, 2010.

[24] S. Schoen. Trusted Computing: Promise and Risk, 2003. URL:
http://www.eff.org/files/20031001 tc.pdf.

[25] A. Secure. Choosing an enterprise rights manage-
ment system: Architectural approach, 2007. URL:
www.windowsecurity.com/uplarticle/Authentication and Access Control/ERM-
architectural-approaches.pdf.

[26] V. Swarup, L. Seligman, and A. Rosenthal. A data sharing agreement frame-
work. In ICISS, pages 22–36, 2006.

[27] United Kingdom. Cabinet Office. Emergency preparedness -
guidance on part 1 of the civil contingencies act 2004, its as-
sociated regulations and non-statutory arrangements. URL:
http://www.cabinetoffice.gov.uk/media/131903/emergprepfinal.pdf.

[28] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc
networks. Technical Report CS-2000-06, Duke University, April 2000.

18


