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Abstract

Principal Component Analysis (PCA) is an example of a successful unsupervised statis-
tical dimensionality reduction method, especially in small sample size problems. Despite
the well-known attractive properties of PCA, the traditional approach does not incor-
porate prior information extracted from a specific domain knowledge. The development
of techniques that bring together dimensionality reduction and prior knowledge can be
performed in the framework of supervised learning methods, like Fisher Discriminant
Analysis. Semi-supervised methods can also be applied if only a small number of labeled
samples is available. In this paper, we propose a simple and efficient supervised method
that allows PCA to incorporate explicitly domain knowledge and generates an embedding
space that inherits its optimality properties for dimensionality reduction. The method
relies on discriminant weights given by separating hyperplanes to generate the spatially
weighted PCA. Several experiments using 2D frontal face images and different data sets
have been carried out to illustrate the usefulness of the method for dimensionality reduc-
tion, classification and interpretation of face images.

1 Introduction

The goal of dimensionality reduction is to define a compact representation of the original data by
embedding high-dimensional data samples into a lower dimensional space that preserves most



of the intrinsic information contained in the data [16, 13, 24]. The obtained representation can
be used for various succeeding tasks such as data visualization, understanding, classification
and mining [11, 30, 12, 6].

The Principal Component Analysis (PCA) [20, 15] is the most known multivariate statistical
linear method for dimensionality reduction and has been applied successfully in a number of
supervised problems, such as face recognition [22, 28, 26], as a pre-processing step to reduce
the computational costs, mitigate the curse of dimensionality [8] and improve the classification
performance. Despite the well-known attractive properties of PCA, it remains challenging the
issue of how to include prior information in the PCA formulation and not discard important
discriminant information related to the principal components with the smallest eigenvalues.

The development of techniques that bring together dimensionality reduction and prior
knowledge can be performed in the framework of supervised learning approaches, like the dis-
criminant feature extraction methods based on the Fisher’s criterion [5, 8]. However, a critical
limitation of such methods for dimensionality reduction is that the dimension of the resulting
embedding space should be less than the number of classes. Thus, for instance, when there are
two sample groups to separate, supervised learning approaches can identify only one meaningful
discriminant direction and consequently additional information important to characterize the
sample group differences may be lost [2, 33, 9].

In fact, when only a small number of labeled samples are available, multivariate supervised
dimensionality reduction methods tend to perform poorly due to overfitting [10]. In [25], such
question has been addressed by proposing a semi-supervised dimensionality reduction method
that smoothly bridges the gap between supervised and non-supervised approaches, controlling
the reliance on the global structure of unlabeled samples and the information brought by labeled
samples. Other works on semi-supervised dimensionality reduction methods have also been
proposed recently to incorporate the structure of original high-dimensional data and pairwise
constraints specified by users, using labeled and unlabeled data simultaneously [31, 1, 17].
However, a common issue to all semi-supervised learning techniques is how to optimize the
regularization parameters necessary to blend supervised and non-supervised information often
represented by local and global scatter matrices.

As stated recently by Skocaj et al. [23], a reliable and robust subspace representation of high-
dimensional data should essentially enable a selective treatment of the individual attributes that
compose the patterns of interest. For instance, in visual learning and image recognition, we can
understand the pixels of n-dimensional image vectors as attributes of the patterns of interest,
which are more (or less) informative depending on the corresponding spatial weights. This
requirement is not satisfactorily met by the standard PCA approach [23] that can be extended
to a weighted version by introducing a spatial weighting value for each pixel in the image [23].
Such approach can be used for time series analysis as well. In this case, we can define different
temporal weights for individual observations rather than individual attributes, determining, for
instance, that the most recent samples or data may have a larger influence on the estimation of
the principal subspace than others [3]. Therefore, in the last years, weighted PCA techniques
have been proposed in the context of eigenspace learning [23], motion data analysis [7], time-
series compression [3] and palmprint identification [32] in order to obtain a consistence subspace
representation of the original data in the presence of noise, outliers and missing data. Despite
of the success of these methods, a key remaining question for the weighted PCA methods
in general is how to automatically compute the corresponding spatial (or temporal) weights
that could take advantage of some labeled information available without jeopardizing the PCA
unsupervised nature and its inherent straightforward and simple calculation.



In this paper, we address this issue through supervised learning techniques. We propose
a supervised weighted PCA that incorporates domain knowledge and generates an embedding
space (with the same dimension of the original one) that preserves the optimality properties of
dimensionality reduction and interpretability of the standard PCA. As a supervised method,
we need a set of training samples with some labeled data as the input. Then, a separating hy-
perplane based on a discriminant criterion is computed and the obtained discriminant weights
are used to generate the spatially weighted PCA subspace. In this sense, the weights incorpo-
rate the prior knowledge extracted from the labeled data and can be systematically computed
through the hyperplane directions. The approach is in fact a simple and natural way of ad-
dressing the well-known trade-off between achieving best reconstruction (unsupervised goal)
and being most efficient for making predictions (supervised goal) [10] when performing data
feature extraction and dimensionality reduction whether some labeled data are available.

The paper is organized as follows. Next, in section 2, we briefly review the standard PCA, its
calculation and inherent limitation of providing distinct importance (or weight) to the original
variables when some labeled information are available. Then, in section 3, we explain our idea
of incorporating domain knowledge in a spatially weighted PCA, which allows an automatic
selective treatment of the variables that compose the patterns of interest. Then, section 4
describes all the experiments carried out in this study, as well as the three face databases used
to evaluate the effectiveness of the spatially weighted principal components. In section 5, we
discuss geometrically the main difference between the spatially weighted principal components
and discriminant principal components, recently proposed [?]. Finally, in section 6, we conclude
the paper, summarizing its main contributions and results.

2 Principal Component Analysis

Principal Component Analysis (PCA) [15], also called the Karhunen-Loeve transformation,
is a multivariate statistical non-supervised method for data interpretation and dimensionality
reduction concerned with explaining the covariance structure of a set of n original variables
through a small number of m linear and orthonormal combinations of these variables, where
m < n.

Let an N X n training set matrix X be composed of N input samples (or patterns of
interest, such as face images) with n variables (or attributes, such as pixels), that is, X =
{x1,%2,... ,XN}T. This means that each column of matrix X represents the values of a par-
ticular variable observed all over the N samples. Let this data matrix X have covariance
matrix

1 N
=1
where x; = [241, T, . . ., Tin]T and X is the grand mean vector of X given by
| N
i:Nin:(a’cl,fg,...jn). (2)
i=1

Let the covariance matrix S have respectively P and A eigenvector and eigenvalue matrices,
that is,



PTSP = A. (3)

It is a proven result that the set of m (m < n) eigenvectors of S, which corresponds to
the m largest eigenvalues, minimizes the mean square reconstruction error over all choices of
m orthonormal basis vectors [8]. Such a set of eigenvectors that defines a new uncorrelated
coordinate system for the training set matrix X is known as the principal components.

To note explicitly the spatial association between the j** and k' variables, we can rewrite
the sample covariance matrix S described in equation (1) in order to indicate the position of
each variable in the N samples. When n variables are observed on each sample, the sample
variation can be described by the following sample variance-covariance equation [14]

| N
S={s;} = {m ;(i&'j — ;) (i — fk)} , (4)
for j = 1,2,...,n and k = 1,2,...,n. The covariance s;; between the ;" and k™™ variables
reduces to the sample variance when j = k, s;, = s, for all j and k, and the covariance matrix
S contains n variances and $n(n — 1) potentially different covariances [14].

It is clear from equation (4) that the variable deviations from the mean have the same
importance in the standard sample covariance matrix S formulation. In other words, all the
n variables are equally weighted. However, there are situations where this should not be the
case, particularly in image recognition problems where some parts of the images might be
more informative for separating sample groups than others. Moreover, since the standard PCA
explains the covariance structure of all the data using only unsupervised information its most
expressive components [26], that is, the first principal components with the largest eigenvalues,
are not necessarily the most discriminant ones when some labeled information are available.

In the next section, we will define a weighted sample correlation equation that will mitigate
these well-known issues inherent to the standard PCA and will enable an automatic selective
treatment of the variables that compose the patterns of interest depending on their correspond-
ing spatial discriminant weights.

3 A Supervised Spatially Weighted PCA

In this section, we describe the supervised method proposed to incorporate domain knowledge
in a spatially weighted PCA, allowing an automatic selective treatment of the variables that
compose the patterns of interest.

3.1 Definition

Let us start by describing the well-known Pearson’s sample correlation coefficient between the
j™ and k™ variables, defined as follows [14]:

rjk = —Sjk (5>
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for j =1,2,...,nand k = 1,2,...,n. It is important to note that r;, = 7, for all j and k.
From equation (5), it is clear that the sample correlation coefficient is a normalized version of
the sample covariance, where the product of the square roots of the sample variances, known as
the sample standard deviations, provides the spatial normalization of the sum of the variable
deviations from the mean [14]. In other words, r;; is a measure of the linear association between
two variables that does not allow that variables with larger variance dominate the corresponding
deviations from the mean.

In our model, we want to give higher importance to the variables with higher discriminant
weights, but variables that vary most are not necessarily the ones that allow best separation
between the sample groups. Therefore, we need to define a measure of association between
variables, based on the Pearson’s sample correlation coefficient, which uses the notion of spatial
weights and is more or less dominant depending on the values of each spatial weight. Following
equation (5), we can define the weighted sample correlation 77, between the j th and k" variables
by

pr = WIS (6)
S VW (@ — T5) Wk (i, — T
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for j=1,2,...,nand k=1,2,...,n. The spatial weighting vector

w = [wy,wy, ..., w,]" (7)

is such that w; > 0 and Z?Zl w; = 1. So, when n variables are observed on N samples, the
weighted sample correlation matrix R* can be described by

S VW (i — T3) N/ Wk (T, — )
\/vazl(%j - i’jV\/ZfV:l(l’ik — p)?

for j=1,2,...,nand k =1,2,...,n. Analogously to equation (4), the sample correlation 77,

R = {Tjk} = (8)

between the j and k' variables is equal to w; when j = k, i = T, for all j and k, and the
weighted correlation matrix R* is a nxn symmetric matrix.

Let the weighted correlation matrix R* have respectively P* and A* eigenvector and eigen-
value matrices, that is,

PR P* = A*. (9)

The set of m (m < n) eigenvectors of R*, that is, P* = [p},ps,-..,P.,], which corresponds
to the m largest eigenvalues, defines a new orthonormal coordinate system for the training set
matrix X and is called here as the spatially weighted principal components.

The remaining question now is: how to define spatial weights w; that incorporate the prior
knowledge extracted from the labeled data and can be systematically computed through the
supervised information available? In this paper, we address this task through spatial weights
obtained as the output of a linear learning process for separating tasks, as described in the next
subsection.



3.2 The Spatial Discriminant Weights

We propose the idea of using the discriminant weights given by statistical separating hyper-
planes as the spatial weights of the weighted sample correlation matrix defined in equation (8).
Such approach is not restricted to any particular probability density function of the sample
groups because it can be based on either a parametric or non-parametric separating hyperplane
approach.

As supervised methods, the models need some labeled data of N pairs

(x1,91), (X2,92), - - -, (XN, Yn), (10)

where x; € R" denote the " training observations and y; are scalars that correspond to the
classification labels. For simplicity and without loss of generality, we concentrate on two-class
problems, that is, y; € {—1,1}.

Let us start with the parametric spatial weights given by Linear Discriminant Analysis
(LDA) based approaches [5, 8]. The standard LDA solution is a spectral matrix analysis of
the data and is based on the assumption that each class can be represented by its distribution
of data, that is, the corresponding mean vector (or class prototype) and covariance matrix (or
spread of the sample group) [12]. LDA depends on all of the data, even points far away from the
separating hyperplane and its main objective is to find a projection vector wy, that maximizes
the Fisher’s criterion [§]:

‘WTSbW‘
Wida = arg max

(11)

lwTS,w|

The S, and S, matrices are the between—class and within-class scatter matrices defined as

S, = ZNi(xi—x)@—x)T, (12)
Sw = Y _(Ni=1)S,; (13)

g
_ “\T
= E , (xij — X)) (Xij — %),

where x;; is the n-dimensional pattern (or observation) j from class i, N; is the number of
training patterns from class ¢, and g is the total number of classes or groups, that is, g = 2 in a
two-class problem. The vector X; and matrix S; are respectively the unbiased sample mean and
sample covariance matrix of class ¢ [8]. The Fisher’s criterion is maximized when the projection
vector wy, is the leading eigenvector of S 1Sy, assuming that S, is invertible.

However, in small sample size problems, S, is either singular or mathematically unstable
and the standard LDA cannot be used to the classification task. To avoid these critical issues,
we have calculated the leading eigenvector wyy, by using two different approaches. The first
approach, based on the Zhu and Martinez method [36, 34, 35], replaces S, with the nxn
identity matrix and wyy, becomes simply the leading eigenvector of S,. The other, based on the
Maximum uncertainty Linear Discriminant Analysis (MLDA) proposed by Thomaz et al. [27],
considers the issue of regularizing the S, estimate with a multiple of the identity matrix. In
both approaches, when g > 2, the number of leading discriminant eigenvectors with non-zero
eigenvalues is limited by the rank of S, and consequently is equal to min{n, g — 1}.
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To allow the investigation of spatial discriminant weights determined by separating hyper-
planes that do not make any assumption on the distribution of the data, we have used the
Support Vector Machine method [29] based on the risk-minimization approach. The primary
purpose of SVM is to maximize the width of the margin between two distinct sample classes
[29]. Given a training set as described in the formulation (10), the SVM method seeks to find
the hyperplane defined by

fx)=(x-w)+b=0, (14)

which separates positive and negative observations with the maximum margin. It can be
shown that the solution vector wy,,, is defined in terms of a linear combination of the training
observations, that is,

N
Woom = Z QY Xq, (15>
=1

where «; are non-negative coefficients obtained by solving a quadratic optimization problem
with linear inequality constraints. Those training observations x; with non-zero «; lie on the
boundary of the margin and are called support vectors [29]. Thus, the SVM separating hyper-
plane solution is based essentially on the observations that lie close to the opposite class, that
is, on the observations that most count for classification [12].

We have focused here on two parametric separating hyperplanes based on spectral matrix an-
alyzes and one non-parametric separating hyperplane based on the risk minimization criterion.
However, any other separating hyperplane could be used as long as the supervised information
provided by the labeled data is incorporated on the separating hyperplane calculation.

3.3 The Step-by-Step Algorithm

The main steps for calculating the spatially weighted principal components P* = [p7, ps, ..., p.]
of an N x n training set matrix X composed of N input samples with n variables can be de-
scribed as follows:

1. Calculate the spatial weighting vector w = [w1, ws, . .., w,|T using some labeled data and
a separating hyperplane method, as described in the previous sub-section;

[w; ]
Z?:1 [w;]”

2. Normalize w such that w; > 0 and Z?:1 w; = 1, that is replace w; with
3. Standardize all the n variables of the data matrix X such that the new variables have

Z; =0and s; = 5;; = 1, for j = 1,2,...,n. In other words, calculate the grand mean
vector

and the variance vector



and replace x;; with z;; given by

fori=1,2,...,Nand j =1,2,....,n;

4. Spatially weigh up all the standardized z;; variables using the normalized weighting vector
w calculated in step 2, that is

* — .. ..
Zij = Zij\/ Wy,

5. The spatially weighted principal components P* are then the eigenvectors corresponding
to the m largest eigenvalues of (Z*)7Z*, where Z* = {z*,z5,... 2%} .

In small sample size problems, where N < n, standard PCA can be used previously to the
first step of the algorithm for dimensionality reduction to alleviate the computational costs of
the further learning method used. In this case, the spatial weighting vector w in the original
n-dimensional space can be obtained by the expression w = P-w,,.,, where P is composed of all
the standard principal components with non-zero eigenvalues and w,, is the spatial weighting
vector calculated on this standard PCA transformed subspace.

4 Experimental results

We have divided our experimental results into three parts. Firstly, we have carried out some face
and facial expression image analyzes to understand and visualize the spatial weights found by
the separating hyper-planes. Then, in the second part, we have investigated the usefulness of the
weighted principal components on recognizing samples compared to the standard unsupervised
PCA. Finally, in the last part, we have analyzed the effectiveness of the weighted principal
components on reconstructing samples compared to the standard unsupervised PCA.

The following two-group separation tasks have been performed using frontal face images:
(a) Gender experiments (female versus male samples); (b) Facial expression experiments (non-
smiling versus smiling, anger versus disgust, happiness versus sadness and fear versus surprise
samples). The goal of the gender experiment is to evaluate the weighting method on a dis-
criminant task where the differences between the groups are evident. The facial expression
experiment poses an alternative analysis where there are subtle differences between the groups.

In all experiments, the total number of training examples N is limited and significantly less
than the dimension of the feature space, that is, N < n (small sample size problem) [8]. To
address this problem for the Fisher’s criterion, we have used a regularized version of the LDA
approach called MLDA [27], as describe in the subsection 3.2.

4.1 Understanding and visualizing the spatial weights

In these experiments, we have used frontal and pre-aligned images of a face database maintained
by the Department of Electrical Engineering of FEI', Sao Paulo, Brazil. In this data set
the number of subjects is equal to 200 (100 men and 100 women) and each subject has two
frontal images (one with a neutral or non-smiling expression and the other with a smiling facial
expression), a total of 400 images to perform the experiments. All faces are mainly represented
by subjects between 19 and 40 years old with distinct appearance, hairstyle and adorns.

IThis database is publicly available on http://www.fei.edu.br/~cet/facedatabase.html



As the average face image is an n-dimensional point that retains all common features from
the training sets, we could use this image to understand and visualize the spatial weights found
by the separating hyper-planes. Figure 1 illustrates the spatial distribution of the discriminant
weights extracted by each separating hyper-plane superimposed on the average face image.
Face regions contained within the colored areas and closer to the spectrum of yellow and white
show pixels of relatively larger discriminant weights (in absolute values).

We can see clearly that by exploring the discriminant information captured by the separating
hyper-planes we are able to identify features that most differ between the sample groups [9].
Also, such discriminant information varies depending on the separating hyper-plane used. For
instance, in these experiments where the images are well-framed, the discriminant weights
extracted by the Zhu and Martinez separating hyper-plane seem to be more informative and
less prone to overfitting for characterizing group-differences than the MLDA and SVM ones.

Figure 2 shows the histograms of the spatial weights illustrated on Figure 1 for all the sep-
arating hyper-planes on the gender and expression discriminant tasks. As we should expect,
since the sample group differences related to the facial expression discriminant task are subtler
and more localized than the gender one, the number of pixels of the expression task at the
2D positions (7,7) considered as non-discriminant, that is, w; ; ~ 0, is much higher than the
corresponding ones of the gender experiments. For instance, with the exception of the SVM
separating hyper-plane, both Zhu and Martinez and MLDA methods have more than 4000
pixels that would be considered non-discriminant ones in the expression experiments, which
represent approximately twice the corresponding number of non-discriminant pixels for the
gender experiments. In fact, based on this histogram information we could assess the discrimi-
nant significance of each pixel and select only the top ranking ones, increasing significantly the
reduction of the dimensionality of the original space performed by PCA for specific separating
tasks.

4.2 Recognition rates of the weighted components

In the second part of the experimental results, we have investigated the usefulness of the
weighted principal components on recognizing samples. Besides the FEI face database de-
scribed in the previous subsection, we have used two other data sets to evaluate the classifi-
cation performance of the spatially weighted principal components: the well-known FERET
[21] and Japanese Female Facial Expression (JAFFE) [18] databases. In the FERET database,
we have considered 200 subjects (107 men and 93 women) and each subject has two frontal
images (one with a neutral or non-smiling expression and the other with a smiling facial expres-
sion), providing a total of 400 images to perform the gender and expression experiments. The
JAFFE database is a facial expression data set composed of 193 images of expressions posed
by nine Japanese subjects, all women. Each person posed three or four examples of each of
six fundamental facial expression: anger, disgust, fear, happiness, sadness and surprise. This
database has at least 29 images for each fundamental facial expression and we have performed
the following two-group classification tasks: happiness versus sadness, fear versus surprise and
anger versus disgust.

We have adopted the 10-fold cross validation method to evaluate the classification perfor-
mance of the standard and weighted PCA methods. Throughout all the classification exper-
iments, we have assumed that the prior probabilities and misclassification costs are equal for
both groups. On the PCA subspace, the mean of each class ¢ has been calculated from the
corresponding training images and the Mahalanobis distance from each class mean 7; has been



Figure 1: Understanding and visualizing the spatial weights found by the following separating
hyper-planes (from top to bottom): Zhu and Martinez method, MLDA and SVM. On the
left and right columns, we can see the discriminant weights of the corresponding separating
hyper-planes related to the gender and facial expression experiments, respectively, using the
FEI database.
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Figure 2: Histogram of the spatial weights found by the following separating hyper-planes (from
top to bottom): Zhu and Martinez method, MLDA and SVM. On the left and right columns,
we can see the discriminant weights of the corresponding separating hyper-planes related to
the gender and facial expression experiments, respectively, using the FEI database.
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used to assign a test observation x; to either the male or female groups in the gender exper-
iment, or to either the different facial expressions in the expression experiment. That is, we
have assigned x; to class ¢ that minimizes:

1
Z)\_ Lej — xl] 27 (16>

Jj=1

.

where ); is the corresponding eigenvalue and k is the number of principal components retained.
In all recognition experiments, we have considered different number of principal components to
calculate the recognition rates of the methods implemented.

Figure 3 shows the average recognition rate of the 10-fold cross validation of the gender
experiments using the FEI and FERET databases and different number of principal compo-
nents selected by the corresponding largest eigenvalues. It is possible to see that even in such
experiments where the differences between the sample groups are not subtle, the use of prior
information given by labeled samples improves the discriminant power of the principal compo-
nents, allowing similar or higher average recognition rates with the same number of components.
For instance, in the gender experiments using the FEI database, all the spatially weighted PCA
methods consistently outperform the standard PCA when the number of principal components
retained has been higher than 10, that is, when k£ > 10. In the gender experiments using the
FERET database, which is composed of frontal face images not as well aligned as in the FEI
database, the superiority of the spatially weighted PCA is not so clear, but still it is possible
to see a better classification performance than the standard PCA when using few principal
components, that is, when 5 < k < 40.

The importance of allowing a discriminant treatment of individual pixels and, consequently,
minimizing the potential problem of discarding information related to subtle group differences
on the first components of the standard PCA can be seen in Figure 4. In both FEI and FERET
face databases, the average recognition rates of the spatially weighted principal components are
much higher than the standard ones when the original dimensionality of the data is considerably
reduced. For example, when using only k& = 5 spatially weighted principal components, it is
possible to achieve an average recognition rate of approximately 92% compared to 55% with
the standard PCA. A significant improvement in classification performance is illustrated as well
in the expression experiments using the FERET face database, where the spatially weighted
and the standard principal components have achieved respectively approximately 70% and 55%
with &k = 40 components, for instance.

An analogous improvement in the classification performance of the weighted principal com-
ponents compared to the standard ones can be seen in the JAFFE database experiments,
shown in Figures 5-7. In these pair-wisely facial expression results where differences between
the sample groups can be minor, we can see that the weighted principal components achieved
the highest recognition rates in all experiments, building a more efficient feature representa-
tion of the data not only in terms of making predictions but also in terms of reducing the
dimensionality of the original images.

4.3 Reconstruction based on the weighted components

Another important point of building a reduced feature representation of the original data, es-
pecially in the image domain, is related to the issue of achieving good reconstruction or data
compression on an unsupervised manner [10] without losing the discriminant information for
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Gender Experiment: FEI Face Database
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Figure 3: Gender recognition performance of the spatially weighted PCA (wPCA) compared
to the standard PCA using the FEI (top) and FERET (bottom) databases. All the principal
components retained have been selected by their corresponding largest eigenvalues.
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Expression Experiment: FEI Face Database
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Figure 4: Expression recognition performance of the spatially weighted PCA (wPCA) compared
to the standard PCA using the FEI (top) and FERET (bottom) databases. All the principal
components retained have been selected by their corresponding largest eigenvalues.
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Expression Experiment: JAFFE Database (happiness versus sagilgss)
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Figure 5: Happiness versus sadness facial expression recognition performance of the spatially
weighted PCA (wPCA) compared to the standard PCA using the JAFFE database. All the
principal components retained have been selected by their corresponding largest eigenvalues.
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Expression Experiment: JAFFE Database (anger versus disgust)
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Figure 6: Anger versus disgust facial expression recognition performance of the spatially
weighted PCA (wPCA) compared to the standard PCA using the JAFFE database. All the
principal components retained have been selected by their corresponding largest eigenvalues.
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Expression Experiment: JAFFE Database (fear versus surprise)
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Figure 7: Fear versus surprise facial expression recognition performance of the spatially weighted
PCA (wPCA) compared to the standard PCA using the JAFFE database. All the principal
components retained have been selected by their corresponding largest eigenvalues.
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making better predictions. Since the principal components in general, which correspond to the
largest eigenvalues, minimize the mean square reconstruction over all choice of orthonormal
basis vectors [8], we should expect a similar data compression of the weighted principal compo-
nents compared to the standard ones, despite the additional normalization of the original data
by inserting distinct spatial weights on individual pixels within the face images.

Figure 8 illustrates the first 7 principal components (from left to right), that is, the first
7 eigenvectors with the largest eigenvalues, of the FEI database using the following methods
(from top to bottom): standard PCA (line 1), weighted PCA normalized by Zhu and Mar-
tinez gender (line 2) and expression (line 3) hyperplanes, weighted PCA normalized by MLDA
gender (line 4) and expression (line 5) hyperplanes, and weighted PCA normalized by SVM
gender (line 6) and expression (line 7) hyperplanes. It is possible to observe that using the
weighted principal components the eigenvectors with the largest eigenvalues incorporate the
specific domain knowledge into the data representation, highlighting, unlike the standard prin-
cipal components (line 1 of Figure 8), the most important parts of the face images depending
on the differences that we would like to describe between male and female samples (gender
weighting hyperplanes, lines 2, 4 and 6 of Figure 8) or smiling and non-smiling samples (ex-
pression weighting hyperplanes, lines 3, 5 and 7 of Figure 8). Moreover, as shown in Figure 9,
the weighted principal components have the same characteristic exponential decay of the stan-
dard principal components, explaining similar amount of the total variance for each principal
component retained in both gender and expression experiments using the FEI database.

In fact, we should expect a reconstruction process based on the weighted principal com-
ponents similar to the standard ones, but more efficient for making predictions specially on
the first axes projection because of the spatial weights control on the individual pixels within
the face images, as illustrated in Figures 10 and 11. These figures show a male smiling (top
left image on Figure 10) and a female non-smiling (top left image on Figure 11) samples of
the FEI database projected on the principal components eigenspace and reconstructed using
5, 10, 20, 40, 80, 160, 320 and all principal components (from left to right) by the following
methods (from top to bottom): standard PCA (line 1), weighted PCA by Zhu and Martinez
gender (line 2) and expression (line 3) hyperplanes, weighted PCA by MLDA gender (line 4)
and expression (line 5) hyperplanes, and weighted PCA by SVM gender (line 6) and expression
(line 7) hyperplanes.

It is possible to see that the eigensubspace composed of the weighted principal components,
for all the hyperplanes considered, tends to reconstruct firstly, using as few components as pos-
sible, the most discriminant parts of the face images for predicting either gender or expression
differences. For example, in Figure 10, since the image to be reconstructed is of a smiling
sample, if we would like to predict solely the facial expression of this sample, no matter the
identity of the subject or its gender, we would need only 5 principal components weighted by
the Zhu and Martinez, MLDA or SVM expression hyperplanes (lines 3, 5 and 7 on Figure 10)
to incorporate such expression discriminant information in the reconstruction process, unlike
the standard PCA (line 1) that would need at least 20 components. An analogous behavior can
be observed in Figure 11, but now considering a non-smiling sample and mainly the Zhu and
Martinez and MLDA facial expression hyperplanes (lines 3 and 5 on Figure 11). Figure 12 sum-
marizes these visual results by plotting the squared reconstruction error of the n-dimensional
illustrated samples calculated as follows:

er(Xi, X,) = ij(%‘j - xrj)Qa (17)
j=1
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Figure 8: The first 7 principal components (from left to right) of the FEI database using the
following methods (from top to bottom): standard PCA (line 1), weighted PCA by Zhu and
Martinez gender (line 2) and expression (line 3) hyperplanes, weighted PCA by MLDA gender
(line 4) and expression (line 5) hyperplanes, and weighted PCA by SVM gender (line 6) and
expression (line 7) hyperplanes.
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Gender Experiment: Amount of total variance explained by the principal components
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Expression Experiment: Amount of total variance explained by the principal components
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Figure 9: Amount of total variance explained by the standard and weighted principal com-
ponents of the FEI database on the gender (top) and expression (bottom) experiments. It is
possible to see that the weighted principal components have the same characteristic exponential
decay of the standard principal components (only 10 principal components shown).

20



Figure 10: Reconstruction process of a male smiling sample (top left) using 5, 10, 20, 40,
80, 160, 320 and all principal components (from left to right) of the FEI database using the
following methods (from top to bottom): standard PCA (line 1), weighted PCA by Zhu and
Martinez gender (line 2) and expression (line 3) hyperplanes, weighted PCA by MLDA gender
(line 4) and expression (line 5) hyperplanes, and weighted PCA by SVM gender (line 6) and
expression (line 7) hyperplanes.
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Figure 11: Reconstruction process of a female non-smiling sample (top left) using 5, 10, 20, 40,
80, 160, 320 and all principal components (from left to right) of the FEI database using the
following methods (from top to bottom): standard PCA (line 1), weighted PCA by Zhu and
Martinez gender (line 2) and expression (line 3) hyperplanes, weighted PCA by MLDA gender
(line 4) and expression (line 5) hyperplanes, and weighted PCA by SVM gender (line 6) and
expression (line 7) hyperplanes.
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Gender Experiment: A male smiling sample Gender Experiment: A female non-smiling sample
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Figure 12: Squared reconstruction error e, of the male smiling and female non-smiling samples
using several principal components and the standard and weighted PCA projections.

where w; are the spatial weights corresponding to the separating hyperplanes on the gender
and expression discriminant tasks, x; the male smiling or female non-smiling samples and x,
the respective reconstructed n-dimensional image vector using 5, 10, 20, 40, 80, 160, 320 and all
principal components. For comparison, the reconstruction error of each pixel for the standard
PCA projection has been weighted equally, that is, w; = % for the standard PCA.

All these results indicate that the weighted principal components are not only more efficient
for making predictions but also achieve a reconstruction of the data as good as the standard
ones taking into account explicitly the specific domain knowledge about the pattern recognition
problem under investigation.

5 Discussion

Recently, we proposed a new ranking method for the principal components, called discriminant
principal components [?], which is also based on the discriminant weights given by separating
hyperplanes to determine among the standard principal components the most discriminant ones.
Such approach does not deal with the problem of calculating new principal components but
rather with the idea of selecting among the standard principal components the most discrimi-
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Figure 13: An hypothetical example that shows samples from two classes (depicted in two-
dimensional points represented by triangles and circles) and the standard principal components

[Pl; p2] .

nant ones determined by how well they align with the specific separating hyperplane used [?].
In Figures 13-16, we describe geometrically the main difference between the spatially weighted
and discriminant principal components.

Figures 13-16 illustrate an hypothetical example with samples from two classes (depicted
in triangles and circles) along with the optimal corresponding separating hyperplane (dashed
line in red). In Figure 13, we can see that the standard principal components [p,ps] are
obtained, as well-known, by rotating the original coordinate axes until they coincide with the
axes of the constant density ellipse described by all the samples, without taking into account
any discriminant information available to separate the triangles from circles. The criterion
of selecting the discriminant principal components [?] is based, however, on re-ranking the
standard principal components that most correlate to w = [wy, ws], so the first discriminant
principal component p;” should be equal to the second standard principal component ps, that
is, p; = p2 and, consequently, p; = p; because |w - ps| > |w - py|, as illustrated in Figure 14.
As described in the previous sections, the spatially weighted approach uses the discriminant
weight of each original variable for finding a new orthonormal basis that are not necessarily
composed of the standard principal components. That is, in this hypothetical example the
influence of the variable deviations on the x5 axis will be relatively magnified in comparison
with z1, because |wy| > |wy| and |w;| 4 |we| = 1. This is geometrically represented in Figure
15, where we indicate that the constant density ellipse will be expanded in the x, axis and
shrunk in the x; axis. Therefore, the first spatially weighted principal component p} would
be significantly different from the standard and discriminant principal components, and much
closer to the x5 direction than z;, as shown in Figure 16.
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Figure 14: An hypothetical example that shows samples from two classes (depicted in two-
dimensional points represented by triangles and circles) and the main geometric difference
between the standard principal components [p;, ps] and the discriminant ones [p},p;] that
use the information alignment provided by w to re-rank the standard principal components.
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Figure 15: An hypothetical example that shows samples from two classes (depicted in two-
dimensional points represented by triangles and circles) and the main geometric idea of the
spatially weighting process that magnifies or shrinks the deviation of each variable depending
on w.
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Figure 16: An hypothetical example that shows samples from two classes (depicted in two-
dimensional points represented by triangles and circles) and the main geometric difference of
standard [py, ps], discriminant [p}, p5]| and spatially weighted [p}, p3] principal components.

6 Conclusion

In this paper, we proposed a supervised weighted PCA that incorporates domain knowledge
and generates an embedding space that preserves the properties of dimensionality reduction
and interpretability of the standard PCA, without jeopardizing its inherent straightforward
and simple calculation. To evaluate the effectiveness of the weighted principal components
proposed, we carried out several experiments using 2D frontal face images and different data
sets. Our experimental results showed that the weighted principal components are not only
more efficient for making predictions but also achieve a reconstruction of the data as good as the
standard ones taking into account explicitly some labeled information available on the pattern
recognition problem under investigation. We believe that such approach is a step forward
towards the main objective of operating on high-dimensional and sparse input spaces where
the problems of feature selection for reconstruction and learning, seen sometimes as mutually
exclusive goals, are strongly connected.
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