
Safe Parallel Programming with Session Java

Olivier Pernet∗, Nicholas Ng∗, Raymond Hu∗

Nobuko Yoshida∗, and Yiannos Kryftis†

∗Imperial College London
†Department of Information Technology Services, Ministry of Finance, Cyprus

Abstract. The session-typed programming language Session Java (SJ) has proved
to be an effective tool for distributed programming, promoting productivity and
compile-time safety. This paper investigates the use of SJ for session-typed paral-
lel programming, and introduces new language primitives for chained iteration and
multi-channel communication. These primitives allow the efficient coordination of
parallel computation across multiple processes, thus enabling SJ to express the com-
plex communication topologies often used by parallel algorithms with static safety
guarantees. We demonstrate that the new primitives yield clearer and safer code for
pipeline, ring and mesh topologies, and through implementations of a parallel Ja-
cobi method and an n-Body simulation. We then present a semantics and session
typing system including the new primitives, and prove type soundness and deadlock-
freedom for our parallel algorithm implementations. Finally, we benchmark several
implementations of the n-Body simulation on a hybrid computing cluster, demon-
strating the performance gains due to the new primitives. The SJ implementation is
also substantially faster than an MPJ Express1 implementation used as reference.

1 Introduction
The current practice of parallel and distributed programming is fraught with errors that
go undetected until runtime, manifest themselves as deadlocks or communication er-
rors, and often find their root in mismatched communication protocols. The Session
Java programming language (SJ) [21] improves this status quo. SJ is an extension of
Java with session types, supporting statically safe distributed programming by message-
passing. Session types were introduced as a type system for the π-calculus [17, 39], and
have been shown to integrate cleanly with formal models of object-oriented program-
ming [11, 14]. The SJ compiler offers two strong static guarantees: (1) communication
safety, meaning a session-typed process can never cause or encounter a communica-
tion error by sending or receiving unexpected messages; and (2) deadlock-freedom —
a session-typed process will never block indefinitely on a message receive.

Parallel programs often make use of complex, high-level communication patterns
such as globally synchronised iteration over chained topologies like rings and meshes.
Yet modern implementations are still written using low-level languages and libraries,
commonly C and MPI [24]: implementations make the best use of hardware, but at the
cost of large, complicated programs where communication is entangled with computa-
tion. There is no global view of inter-process communication, and no formal guarantees
are given about communication correctness, which often leads to hard-to-find errors.

We investigate parallel programming in SJ as a solution to these issues. However, SJ
as presented in [21] only guarantees safety for each session in isolation: deadlocks can

1 MPJ Express [31] is a Java implementation of the MPI standard.

still arise from the interleaving of multiple sessions in a process. Moreover, implement-
ing chained communication topologies without additional language support requires
temporary sessions, opened and closed on every iteration — a source of non-trivial in-
efficiencies. We need new constructs, well-integrated with existing binary sessions, to
enable lightweight global communication safety and progress, and increase expressive-
ness to support productivity and performance.

Our new multi-channel session primitives fit these requirements, and make it possi-
ble to safely and efficiently express parallel algorithms in SJ. The combination of new
primitives and an additional static verification tool bring the benefits of type-safe, struc-
tured communications programming to HPC. The primitives can be chained, yielding
a simple mechanism for structuring global control flow. We formalise these primitives
as novel extensions of the session calculus, and the correctness condition on the shape
of programs enforced by our verification tool. This allows us to prove communication
safety and deadlock-freedom, and offers a new, lightweight alternative to multiparty
session types for global type-safety.

Contributions. This paper constitutes the first introduction to parallel programming in
SJ, in addition to presenting the following technical contributions:

(§ 2) We introduce SJ as a programming language for type-safe, efficient parallel pro-
gramming, including our implementation of multi-channel session primitives, and
a static topology verifier for SJ programs. We show that the new primitives enable
clearer, more readable code.

(§ 3) We discuss our implementations of the n-Body (§ 3.1) algorithm, and of the Ja-
cobi solution to the discrete Poisson equation (§ 3.2). Both algorithms use com-
munication topologies representative of a large class of parallel algorithms, and
demonstrate the practical use of our multi-channel primitives.

(§ 4) We formally define the multi-channel session calculus, its operational semantics,
and typing system. We prove that processes conforming to a well-formed commu-
nication topology (Definition 4.1) satisfy the subject reduction theorem (Theorem
4.1), which implies type and communication-safety (Theorem 4.2) and deadlock-
freedom (Theorem 4.3).

(§ 5) A performance evaluation of n-Body implementations, demonstrating the benefits
of the new primitives. The SJ implementation using the new primitives consistently
outperforms an MPJ Express2 [25] implementation.

Related and future work discussed in § 6. Detailed benchmark results, omitted proofs
and source code can be found at http://www.doc.ic.ac.uk/~omp08.

2 Session-Typed Programming in SJ
This section firstly reviews the key concepts of session-typed programming using Ses-
sion Java (SJ) [20, 21]. In (1), we outline the basic methodology, and (2) the protocol
structures supported by SJ. We then introduce the new session programming features
developed by this paper to provide greater expressiveness and performance gains for
session-typed parallel programming. In (3), we explain session iteration chaining, and
in (4), the generalisation of this concept to the multi-channel primitives. (5) describes

2 Extensive benchmarks comparing MPJ Express to other MPI implementations are presented
in [31]. The benchmarks show performance competitive with C-based MPICH2.

2

aliasing control in SJ for zero-copy messaging in shared memory sessions. Finally,
(6) describes the topology verifier for parallel algorithms, and (7) summarises the SJ
toolchain.

(1) Basic SJ programming. SJ is an extension of Java for type-safe concurrent and
distributed session programming. Session programming in SJ, as detailed in [21], starts
with the declaration of the intended communication protocols as session types; we shall
often use the terms session type and protocol interchangeably. A session is the inter-
action between two communicating parties, and its session type is written from the
viewpoint of one side of the session. The following declares a protocol named P:

protocol P !<int>.?(Data)

Protocol P specifies that, at this side of the session, we first send (!) a message of Java
type int, then receive (?) another message, an instance of the Java class Data, which
finishes the session.

After defining the protocol, the programmer implements the processes that will per-
form the specified communication actions using the SJ session primitives. The follow-
ing code example implements an Alice process conforming to the P protocol:

sess.send(42); Data d = (Data) sess.receive(); // !<int>.?(Data)

The sess variable refers to an object of class SJSocket, called a session socket, which
represents one endpoint of an active session. The session-typed primitives for imple-
menting session-typed communication behaviour, such as send and receive, are per-
formed on the session socket like method invocations. SJSocket declarations associate
a protocol to the socket variable, and the SJ compiler statically checks that the socket is
indeed used according to the protocol, ensuring the correct communication behaviour
of the process.

This simple session application also requires a counterpart Bob process to interact
with Alice. For safe session execution, the Alice and Bob processes need to perform
matching communication operations: when Alice sends an int, Bob receives an int,
and so on. Two processes performing matching operations have session types that are
dual to each other. The dual protocol to P is protocol PDual ?(int).!<Data>, and a
Bob process implementing protocol PDual can be written as:

int i = s.receiveInt(); s.send(new Data()); // ?(int).!<Data>

(2) More complex protocol structures. Session types are not limited to sequences
of basic message passing. Programmers can specify more complex protocols featuring
branching, iteration and recursion.

The protocols and processes in Figure 1 demonstrate session iteration and branch-
ing. Process P1 communicates with P2 according to protocol IntAndBoolStream; P2 and
P3 communicate following protocol IntStream. Like basic message passing, iteration
and branching are coordinated by active and passive actions at each side of the session.
Process P1 actively decides whether to continue the session iteration using outwhile

(condition), and if so, selects a branch using outbranch(label). The former action
implements the ![τ]* type given by IntAndBoolStream, where τ is the !{Label1: τ1,

Label2: τ2, . . .} type implemented by the latter. Processes P2 and P3 passively follow
the selected branch and the iteration decisions (received as internal control messages)

3

P1 P2 P3

protocol IntAndBoolStream ![!{Label1: !<int>, Label2: !<boolean>}]*

protocol IntAndBoolDual ?[?{Label1: ?<int>, Label2: ?<boolean>}]*

protocol IntStream ![!<int>]*

protocol IntStreamDual ?[?<int>]*

P1: s.outwhile(x < 10) { // s follows IntAndBoolStream

s.outbranch(Label1) {

s.send(42);

}}

P2: s2.outwhile(s1.inwhile()) { // s1 follows IntAndBoolDual

s1.inbranch() { // s2 follows IntStream

case Label1:

int i = s1.receiveInt();

s2.send(i);

case Label2:

boolean b = s1.receiveBoolean();

s2.send(42);

}}

P3: s.inwhile { // s follows IntStreamDual

int i = s.receiveInt();

}
Fig. 1: Simple chaining of session iterations across multiple pipeline process.

using inbranch and inwhile, and proceed accordingly; the two dual protocols show the
passive versions of the above iteration and branching types, denoted by ? in place of !.

So far, we have reviewed basic SJ programming features [21] derived from standard
session type theory [17, 39]; the following paragraphs discuss new features motivated
by the application of session types to parallel programming in practice.

(3) Expressiveness gains from iteration chaining. The three processes in Figure 1
additionally illustrate session iteration chaining, forming a linear pipeline as depicted
at the top of the Figure. The net effect is that P1 controls the iteration of both its ses-
sion with P2 and transitively the session between P2 and P3. This is achieved through
the chaining construct s2.outwhile(s1.inwhile()) at P2, which receives the iteration
decision from P1 and forwards it to P3. The flow of both sessions is thus controlled by
the same master decision from P1.

Iteration chaining offers greater expressiveness than the individual iteration primi-
tives supported in standard session types. Normally, session typing for ordinary inwhile

or outwhile loops [11] must forbid operations on any session other than the loop tar-
get, to preserve linear usage of session channels. This means that e.g. s1.inwhile(){
s1.send(v); } is allowed, whereas s1.inwhile(){ s2.send(v); } is not. With the

iteration chaining construct, we can now construct a process containing two interleaved
inwhile or outwhile loops on separate sessions. In fact, session iteration chaining can
be further generalised as we explain below. Section 4 shall formalise and prove the
correctness of this new feature.

(4) Multi-channel iteration primitives. Simple iteration chaining allows SJ program-
mers to combine multiple sessions into linear pipeline structures, a common pattern
in parallel processing. In particular, type-safe session iteration (and branching) along a

4

Master: <s1,s2>.outwhile(i < 42) {...}

Forwarder1: s3.outwhile(s1.inwhile()) {...}

Forwarder2: s4.outwhile(s2.inwhile()) {...}

End: <s3,s4>.inwhile() {...}

Master Forwarder
1

EndForwarder
2

Fig. 2: Multi-channel iteration in a simple grid topology.

pipeline is a powerful benefit over traditional stream-based dataflow [33]. More com-
plex topologies, however, such as rings and meshes, require iteration signals to be di-
rectly forwarded from a given process to more than one other, and for multiple signals
to be directed into a common sink; in SJ, this means we require the ability to send and
receive multiple iteration signals over a set of session sockets. For this purpose, SJ intro-
duces the generalised multi-channel primitives; the following focuses on multi-channel
iteration, which extends the chaining constructs from above.

Figure 2 demonstrates multi-channel iteration for a simple grid topology. Process
Master controls the iteration on both the s1 and s2 session sockets under a single it-
eration condition. Processes Forwarder1 and Forwarder2 iterate following the signal
from Master and forward the signal to End; thus, all four processes iterate in lockstep.
Multi-channel inwhile, as performed by End, is intended for situations where multiple
sessions are combined for iteration, but all are coordinated by an iteration signal from
a common source; this means all the signals received from each socket of the inwhile

will always agree — either to continue iterating, or to stop. In case this is not respected
at run-time, the inwhile will throw an exception, resulting in session termination.

Together, multi-channel primitives enable the type-safe implementation of paral-
lel programming patterns like scatter-gather, producer-consumer, and more complex
chained topologies. The basic session primitives express only disjoint behaviour within
individual sessions, whereas the multi-channel primitives implement interaction across
multiple sessions as a single, integrated structure.
(5) Aliasing control and session communication. The SJ language features the noalias
modifier for compile-time aliasing control. In summary, any object reference stored in

a noalias variable is guaranteed, through a combination of static typing restrictions
and adapted operational semantics, to be the sole reference to that object. For example,
typing disallows non-noalias (i.e. ordinary Java) variables as assignment expressions
to a noalias variable; and a method invocation with a noalias variable as an argument
expression causes the variable to become null (i.e. be consumed) at runtime. A detailed
account of aliasing control in SJ is available in [19, § 3.11]

Aliasing control is a crucial element of session typing in SJ, enabling the sequence
of primitives performed via a session socket variable (implicitly noalias) to be de-
termined, and hence checked against the protocol, at compile-time. However, noalias
can in turn be integrated with session communication to support zero-copy messag-
ing optimisation for shared memory sessions, as in the case of parallel programming
for multi-core machines. The basic idea is that any noalias object passed to the send

operation can effectively be passed by reference without copying the object. Unlike
[12, 33, 34], SJ noalias message passing supports more general Java objects; and a key
point is that transport-independent sessions promote this optimisation transparently in
shared memory environments while retaining consistent communication semantics in
distributed environments.

5

(6) Session topology verifier for parallel programs. In previous work, the static safety
guarantees offered by the SJ compiler were limited to scope of each independent bi-
nary (two-party) session. This means that, while any one session was e.g. guaranteed
to be internally deadlock-free, this property may not hold in the presence of interleaved
sessions in a process as a whole. The nodes in a parallel program typically make use
of many interleaved sessions — with each of their neighbours in the chosen network
topology. Furthermore, inwhile and outwhile in iteration chains need to be correctly
composed.

As a solution to this issue, we add a separate topology verifier to the SJ toolchain.
The verifier statically ensures that session processes are configured according to the
correct topology, and, in conjunction with the SJ compiler, precludes global deadlocks.
Section 4 characterises a notion of correct topology and proves its correctness for mesh
and ring topologies, used in the examples in § 3. The verifier takes as input a config-
uration file listing the physical nodes where each process class is to be deployed and
the runtime links between these processes. At deployment time, each process uses the
ConfigLoader utility class to load its parameters from the configuration file, ensuring
that the run-time topology follows the static specification.

(7) Running SJ parallel programs. Figure 3 summarises the steps involved in the
deployment of a type-safe SJ parallel program on a distributed computing cluster.

SJ program
source

SJ compiler

SJ
deployment
config. file

Topology verifier

Cluster node Cluster nodeCluster node

User program
classes

ConfigLoader
class

(A) (B)

(C)

Running SJ
program

Running SJ
program

Running SJ
program

Fig. 3: The SJ parallel programming
toolchain.

The program is written as a collection
of SJ classes, one for each type of pro-
cess in the program to be deployed. Pro-
cesses differ by their position in the net-
work topology, and their role in the coor-
dination of the overall parallel algorithm.
The user also writes a configuration file
describing how to connect the process
classes. When classes are ready, they are
(A) compiled into standard bytecode by
the SJ compiler, which checks the cor-
rect implementation of each binary ses-
sion. After compiling the SJ source, the
topology verifier is used to (B) check
the topology declared in the configura-
tion file. Finally, the verified, compiled
classes are (C) deployed on the cluster,
and make use of the ConfigLoader util-
ity class from the SJ libraries to establish
sessions with their assigned neighbours
in the configuration file, ensuring safe ex-
ecution of the parallel program.

3 Parallel Algorithms in SJ
This section demonstrates SJ session programming and the application of session types
for structured, safe parallel programming. We present the implementation of two ad-
vanced parallel algorithms, an n-Body simulation and a Jacobi method for the Discrete
Poisson Equation. These examples were chosen both as representative real-world paral-

6

lel programming applications, and because they exemplify two important communica-
tion topologies, the ring and the two-dimensional mesh. We compare implementations
with and without the new multi-channel primitives, and explain the benefits they bring
to parallel programming.

3.1 n-Body: Ring Topology
The parallel n-Body algorithm organises the constituent processes into a circular pipeline,
an example of the ring communication topology. The ring topology is used by many
other parallel algorithms, like matrix multiplication and LU matrix decomposition [5].

The n-Body problem involves finding the motion, according to classical mechanics,
of a system of particles given their masses and initial positions and velocities. Paral-
lelism in the simulation algorithm is achieved by dividing the particle set among a set
of m worker processes. The idea is that each simulation step involves a series of inner
steps, which perform a running computation while forwarding the data from each pro-
cess around the ring one hop at a time; after m−1 inner steps, each process has seen all
the data from every other, and the current simulation step is complete.

The following session type describes the communication protocol of our implemen-
tation. This is the session type for a Worker’s interaction with its left neighbour.

protocol WorkerToLeft

sbegin. // Accept session request from left neighbour

!<int>. // Forward init counter to determine number of processes

?[// Main loop (loop controlled by left neighbour)

?[// Pipeline stages within each simulation step

!<Particle[]> // Pass current particle state along the ring

]*]*

The interaction with the right neighbour follows the dual protocol. The WorkerLast and
Master nodes follow slightly different protocols, in order to close the ring structure and
bootstrap the pipeline interaction.

In the SJ implementation, each node establishes two sessions with the left and right
neighbours, and the iteration of every session in the pipeline is centrally controlled by
the Master node. Without the multi-channel iteration primitives, there is no adequate
way of closing the ring (sending data from the WorkerLast node to the Master); the
only option is to open and close a temporary session with each iteration (Figure 4)
[2], an inefficient and counter-intuitive solution, as depicted on the left in Figure 6 (the
loosely dashed line indicates the temporary connection).

By contrast, Figure 5 gives the implementation of the ring topology using a multi-
outwhile at the Master node, and a multi-inwhile at WorkerLast. Data is still passed
left-to-right, but the final iteration control link (the bold arrow on the right in Figure 6)
is reversed. This allows the Master to create the final link just once (at the start of the
algorithm) like the other links, and gives the Master full control over the whole pipeline.

3.2 Jacobi Solution of the Discrete Poisson Equation: Mesh Topology
Poisson’s equation is a partial differential equation widely used in physics and the nat-
ural sciences. Jacobi’s algorithm can be implemented using various partitioning strate-
gies. An early session-typed implementation [2] used a one-dimensional decomposi-
tion of the source matrix, resulting in a linear communication topology. The following
demonstrates how the new multi-channel primitives are required to increase parallelism

7

Master :
right.outwhile(condition) {

processData();

left = chanLast.accept();

newData = left.receive();

right.send(data);

}

Worker :
right.outwhile(left.inwhile) {

processData();

newData = left.receive();

right.send(data);

}

WorkerLast :
left.inwhile {

processData();

newData = left.receive();

right = chanLast.request();

right.send(data);

}

Fig. 4: Implementation of the ring topology,
single-channel primitives only.

Master :
<left,right>.outwhile(moreNodes)

{

newData = left.receive();

right.send(data);

}

Worker :
right.outwhile(left.inwhile) {

newData = left.receive();

right.send(data);

}

WorkerLast :
<left,right>.inwhile {

newData = left.receive();

right.send(data);

}

Fig. 5: Improved implementation of the ring
topology using multi-channel primitives.

Master

Worker

Worker
Last

Worker Master

Worker

Worker
Last

Worker

Repeated session open/close

Iteration control msg.

Data transfer

Iteration control msg.
(emphasis, difference between impl.)

Fig. 6: Communication patterns in n-Body implementations.

using a two-dimensional decomposition, i.e. using a 2D mesh communication topology.
The mesh topology is also used in a range of other parallel algorithms [5].

The discrete two-dimensional Poisson equation (∇2u)i j for a m×n grid reads:

ui j =
1
4 (ui−1, j +ui+1, j +ui, j−1 +ui, j+1−dx2gi, j)

where 2≤ i≤ m−1, 2≤ j ≤ n−1, and dx = 1/(n+1). Jacobi’s algorithm converges
on a solution by repeatedly replacing each element of the matrix u by an adjusted aver-
age of its four neighbouring values and dx2gi, j. For this example, we set each gi, j to 0.
Then, from the k-th approximation of u, the next iteration calculates:

uk+1
i j = 1

4 (u
k
i+1, j +uk

i−1, j +uk
i, j+1 +uk

i, j−1)

Termination may be on reaching a target convergence threshold or on completing a
certain number of iterations. Parallelisation of this algorithm exploits the fact that each
element can be independently updated within each iteration. The decomposition divides
the grid into subgrids, and each process will execute the algorithm for its assigned sub-

8

protocol MasterToWorker

cbegin. // Open a session with the Worker

!<int>.!<int>. // Send matrix dimensions

![// Main loop: checking convergence condition

!<double[]>. // Send our boundary values...

?(double[]). // ..and receive our neighbour’s

?(ConvergenceValues) // Convergence data for neigbouring subgrid

]* // (end of main loop)

Fig. 7: The session type between the Master and Worker processes for the parallel Jacobi
Poisson algorithm.

grid. To update the points along the boundaries of each subgrid, neighbouring processes
need to exchange their boundary values at the beginning of each iteration.

The session type for communication from the Master to either of the Workers under
it or at its right is given in Figure 7. The Worker’s protocol for interacting with the
Master is the dual of MasterToWorker; and the same protocol is used for interaction
with other Workers at their right and bottom (except for Workers at the edges of the
mesh).
Square grid decomposition and topology. As described above, we use a two-dimensional
decomposition of the Jacobi algorithm: a 2D mesh allows a greater degree of parallelism
to be exploited, giving improved performance in comparison to the one-dimensional de-
composition studied in previous work [2]. In the 2D mesh implementations, a master
node controls iteration from the top-left corner. Nodes in the centre of the mesh receive
iteration control signals from their top and left neighbours, and propagate them to the
bottom and right. Nodes at the edges only propagate iteration signals to the bottom
or the right, and the final node at the bottom right only receives signals and does not
propagate them further.
Implementing a 2D mesh using single-channel SJ primitives only. As listed in Fig-
ure 8, it is possible to express the complex 2D mesh using single-channel primitives
only. However, this implementation suffers from the same problem as the original ring
implementation: without the multi-channel primitives, costly extra sessions have to be
opened and closed in every iteration (Figure 10). This problem is exacerbated by the
large number of connections in the 2D mesh (p2, as opposed to p for n-Body, where p
is the number of processes).
Efficient 2D mesh implementation using multi-channel primitives. Having noted
the weakness of the above implementation, Figure 9 lists a revised implementation,
taking advantage of multi-channel inwhile and outwhile. The multi-channel inwhile
allows each worker to receive iteration signals from the two processes at its top and left.
Multi-channel outwhile lets a process control both processes at the right and bottom.
Together, these two primitives completely eliminate the need for repeated opening and
closing of intermediary sessions in the single-channel version. The resulting implemen-
tation is clearer and also much faster, as in the n-Body case. [22] presents benchmark
results for the parallel Jacobi implementation.

4 Multi-channel Session π-Calculus
This section starts by formalising the new nested iterations and multi-channel commu-
nication primitives, as an extension of the session π-calculus [10, 17]. The calculus is

9

Master :
right.outwhile(notConverged()) {

under = chanUnder.request();

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder

);

rcvConvergenceVal(right, under);

}

Worker :
right.outwhile(left.inwhile) {

over = chanOver.accept();

under = chanUnder.request();

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
left.inwhile {

over = chanOver.request();

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 8: Initial 2D mesh implementation with
single-channel primitives only.

Master :
<under,right>.outwhile(

notConverged()) {

sndBoundaryVal(right, under);

rcvBoundaryVal(right, under);

doComputation(rcvRight, rcvUnder

);

rcvConvergenceVal(right, under);

}

Worker :
<under,right>.outwhile

(<over,left>.inwhile) {

sndBoundaryVal(left,right,over,

under);

rcvBoundaryVal(left,right,over,

under);

doComputation(rcvLeft,rcvRight,

rcvOver,rcvUnder);

sndConvergenceVal(left,top);

}

WorkerSE :
<over,left>.inwhile {

sndBoundaryVal(left,over);

rcvBoundaryVal(left,over);

doComputation(rcvLeft,rcvOver);

sndConvergenceVal(left,top);

}

Fig. 9: Efficient 2D mesh implementation
using multi-outwhile and multi-inwhile.

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Repeated session open/close

Iteration control msg.

Data transfer

Iteration control msg.
(emphasis, difference between impl.)

Fig. 10: Initial and improved communication patterns in the 2D mesh implementation.

10

concise but accurately captures parallel programming idioms such as fork/join and syn-
chronisation, using sequencing, parallel composition, and the new iteration primitives.
We then prove that our n-Body and Jacobi algorithms are type-safe, communication-
safe and deadlock-free. Our proof method essentially follows the SJ toolchain of Fig-
ure 3, and consists of the following steps:

1. We first define programs (i.e. starting processes) including the new primitives, and
then define operational semantics with running processes modeling intermediate
session communications.

2. We define a typing system for programs and running processes.
3. We prove that if a group of running processes conforms to a well-formed topology,

then they satisfy the subject reduction theorem (Theorem 4.1) which implies type
and communication-safety (Theorem 4.2) and deadlock-freedom (Theorem 4.3).

4. Since programs for n-Body and Jacobi algorithms conform to a well-formed topol-
ogy, we conclude that they satisfy the above three properties.

4.1 Syntax

The session π-calculus we treat extends [10, 17]. Figure 11 defines its syntax. Chan-
nels (u,u′, ...) can be either of two sorts: shared channels (a,b,x,y) or session channels
(k,k′, ...). Shared channels are used to initiate sessions; session channels are only used
within open sessions. In accepting and requesting processes, the identifier a represents
the public interaction point over which a session may commence. The bound variable
k represents the actual channel over which the session communications will take place
when the session has been opened and the connection established. Constants (c,c′, ...)
and expressions (e,e′, ...) of ground types (booleans and integers) are also added to
model data. Selection chooses an available branch, and branching offers alternative
interaction patterns; channel send and channel receive enable session delegation, as
described in [17]. The first difference with [17] is the addition of sequencing, writ-
ten P;Q, meaning that P is executed before Q. This syntax allows for complex forms
of synchronisation, joining, and forking since P can include any parallel composition
of arbitrary processes. The second addition is that of multicast inwhile and outwhile,
following SJ syntax. Note that the definition of expressions includes multicast inwhile
〈k1 . . .kn〉.inwhile, in order to allow inwhile as an outwhile loop condition. The control
messages created by outwhile appear only at runtime.

The precedence of the process-building operators is (from the strongest) “/,.,{}”,
“.”, “;” and “|”. Moreover we convene that “.” associates to the right. The binders for
channels and variables are standard.

We formalise the operational semantics of the calculus by the reduction relation
−→, defined in Figure 11 up to the standard structural equivalence ≡ plus the rule
0 ;P≡ P. The reduction rules are based on those of the session π-calculus [17], taking
into account the behaviour of sequencing and of the new iteration primitives. Reduction
uses evaluation contexts defined as:

E ::= [] | E;P | E | P | (νu)E | def D in E
| if E then P else Q | 〈k1 . . . kn〉.outwhile(E){P} | E + e | · · ·

We use the notation Πi∈{1..n}Pi to denote the parallel composition of (P1 | · · · | Pn).
Rules [LINK] is a session initiation rule where a fresh channel k is created, then re-

stricted because the leading parts now share the channel k to start private interactions.

11

(Values) (Expressions)
v ::= a,b,x,y shared names

| true,false boolean
| n integer

e ::= v | e+ e | not(e) . . . value, sum, not
| 〈k1 . . .kn〉.inwhile inwhile
| Err error

(Processes) (Prefixed processes)

P ::= 0 inaction
| T prefixed
| P ; Q sequential
| P | Q parallel
| (νu)P hiding
| Err error

(Declaration)

D ::= X1(x1k1) = P1 and

X2(x2k2) = P2 and · · ·
Xn(xnkn) = Pn

T ::= a(k).P request
| a(k).P acceptance
| k〈e〉 sending
| k(x).P reception
| k� l selection
| k�{l1 : P1[] · · · []ln : Pn} branching
| k〈k′〉 session sending
| k(k′).P session reception
| if e then P else Q conditional
| X [ek] variables
| def D in P recursion
| 〈k1 . . . kn〉.inwhile{Q} multi-inwhile
| 〈k1 . . . kn〉.outwhile(e){P} multi-outwhile
| k † [b] messages

Fig. 11: Syntax.

a(k).P1 | a(k).P2 −→ (νk)(P1 | P2) (k is fresh) [LINK]

k〈c〉 | k(x).P2 −→ P2{c/x} [COM]

k / li | k�{l1 : P1[] · · · []ln : Pn} −→ Pi (1≤ i≤ n) [LBL]

k〈k′〉 | k(k′).P2 −→ P2 [PASS]

if true then P else Q−→ P if false then P else Q−→ Q [IF1], [IF2]

def X(xk) = P in X [ck] −→ def X(xk) = P in P{c/x} [DEF]

〈k1 . . . kn〉.inwhile{P} |Πi∈{1..n}ki † [true] −→ P;〈k1 . . . kn〉.inwhile{P} [IW1]

〈k1 . . . kn〉.inwhile{P} |Πi∈{1..n}ki † [false] −→ 0 [IW2]

〈k1 . . . kn〉.inwhile{P} |Πi∈{1..n}ki † [bi] −→ Err (otherwise) [IW3]

E[〈k1 . . .kn〉.inwhile] |Πi∈{1..n}ki † [true] −→ E[true] [IWE1]

E[〈k1 . . .kn〉.inwhile] |Πi∈{1..n}ki † [false] −→ E[false] [IWE2]

E[〈k1 . . .kn〉.inwhile] |Πi∈{1..n}ki † [bi] −→ E[Err] (otherwise) [IWE3]

E[e]−→∗ E ′[true] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[P;〈k1 . . . kn〉.outwhile(e){P}]

|Πi∈{1..n}ki † [true] [OW1]

E[e]−→∗ E ′[false] ⇒
E[〈k1 . . . kn〉.outwhile(e){P}] −→ E ′[0] |Πi∈{1..n}ki † [false] [OW2]

P≡ P′ and P′ −→ Q′ and Q′ ≡ Q ⇒ P −→ Q [STR]

e −→ e′⇒ E[e] −→ E[e′] P −→ P′⇒ E[P] −→ E[P′]

P | Q −→ P′ | Q′ ⇒ E[P] | Q −→ E[P′] | Q′ [EVAL]

In [IW2] and [OW2], we assume E = E ′ |Πi∈{1..n}ki † [bi]

Fig. 12: Reduction rules.

12

Rule [COM] sends data (e ↓ c means that the expression e evaluates to the value c). Rule
[LBL] selects the i-th branch, and rule [PASS] passes a session channel k for delegation.
The standard conditional and recursive agent rules [IF1], [IF2] and [DEF] originate in [17].

Rule [IW1] synchronises with n asynchronous messages if they all carry true. In this
case, it repeats again. Rule [IW2] is its dual and synchronises with n false messages. In
this case, it moves to the next command. On the other hand, if the results are mixed (i.e.
bi is true, while b j is false), then it reduces to the error state by rule [IW3], as explained in
§ 2 (4). The rules for expressions are defined similarly. The rules for outwhile generates
appropriate messages. Note that the assumption E[e] −→ E ′[b] is needed to handle the
case where e is an inwhile expression.

In order for our reduction rules to reflect SJ’s actual behaviour, inwhile rules should
have precedence over outwhile rules. Note that our algorithms do not cause an infinite
generation of k † [b] by outwhile: this is ensured by the well-formed topology criteria
described later, together with this priority rule.

4.2 Types, Typing System and Well-Formed Topologies
This subsection presents types and typing systems. The key point is an introduction
of types and typing systems for asynchronous runtime messages. We then formulate a
well-formed topology.
Types. The syntax of types, an extension of [17], follows:
Sort S ::= nat | bool | 〈α,α〉
Partial session τ ::= ε | τ; τ | ?[S] | ?[α] | &{l1 : τ1, . . . , ln : τn} | ![τ]∗ | x

| ![S] | ![α] | ⊕{l1 : τ1, . . . , ln : τn} | ?[τ]∗ | µx.τ
Completed session α ::= τ.end | ⊥ Runtime session β ::= α | α† | †
Sorts include a pair type for a shared channel and base types. Partial session type τ

represents intermediate sessions. ε represents inaction and τ;τ is a sequential compo-
sition. The rest is from [17]. The types with ! and ? express respectively the sending
and reception of a value S or session channel. The selection type⊕ represents the trans-
mission of the label li followed by the communications described by τi. The branching
type & represents the reception of a label li chosen in the set {l1, . . . , ln} followed by
the communications described by τi. Types ![τ]∗ and ?[τ]∗ are types for outwhile and
inwhile. The types are considered up to the equivalence: &{l1 : τ1, . . . , ln : τn}.end ≡
&{l1 : τ1.end, . . . , ln : τn.end}. This equivalence ensures all partial types τ1 . . .τn of se-
lection ends, and are compatible with each other in the completed session type (and
vice versa). ε is an empty type, and it is defined so that ε;τ ≡ τ and τ;ε ≡ τ .

Runtime session syntax represents partial composed runtime message types. α† rep-
resents the situation inwhile or outwhile are composed with messages; and † is a type
of messages. The meaning will be clearer when we define the parallel composition.
Duality. To ensure communication compatibility, each session type has its dual type. A
simple example is ![bool].end and ?[bool].end. The two types are dual so that sending of
a bool matches with receiving of a bool. If the receiver is changed to ?[bool]; ?[bool].end
then a communication mismatch happens. A typing defined next can ensure such in-
compatibilities between two communicating parties does not happen. It is defined as:
ε = ε , τ; τ = τ; τ , ![S] =?[S], ?[S] =![S], ⊕{l1 : τ1, . . . , ln : τn} = &{li : τi . . . , ln : τn},
&{l1 : τ1, . . . , ln : τn} = ⊕{li : τi . . . , ln : τn}, ![τ]∗ =?[τ]∗, ?[τ]∗ =![τ]∗, x = x, µx.τ =

µx.τ α† = α
†, † = †, and τ.end= τ.end.

13

Judgements and environments. The typing judgements for expressions and processes
are of the shape:

Γ ;∆ ` e.S and Γ ` P.∆

where we define the environments as Γ ::= /0 | Γ · x : S | Γ ·X : Sα and ∆ ::=
/0 | ∆ · k : β . Γ is the standard environment which associates shared channel names to
shared session types and process variable to process type. ∆ is the session environment
which associates session channels to running session types, which represents the open
communication protocols. We often omit ∆ or Γ from the judgement if it is empty.

Sequential and parallel compositions of environments are defined as:
∆ ;∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{k : ∆(k)\ end;∆ ′(k) | k ∈ dom(∆)∩dom(∆ ′)}

∆ ◦∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{k : ∆(k)◦∆ ′(k) | k ∈ dom(∆)∩dom(∆ ′)}
where ∆(k)\ end means we delete end from the tail of the types (e.g. τ.end\ end= τ).
Then the resulting sequential composition is always well-defined. The parallel compo-
sition of the environments must be extended with new running message types. Hence
β ◦β ′ is defined as either (1) α ◦α =⊥; (2) α ◦† = α† or (3) α ◦α

† =⊥†. Otherwise
undefined. (1) is the standard rule from session type algebra, which means once a pair of
dual types are composed, then we cannot compose any processes with the same channel
further. (2) means a composition of an iteration of type α and n-messages of type † be-
comes α†. This is further composed with the dual α by (3) to complete a composition.
Note that ⊥† is different from ⊥ since ⊥† represents a situation that messages are not
consumed with inwhile yet.

Typing rules. We explain the key typing rules. Other rules are similar with and left to
Appendix A (Figure 14).

∆ = k1 : ?[τ1]
∗.end, ...,kn : ?[τn]

∗.end

Γ ;∆ ` 〈k1 . . .kn〉.inwhile.bool

Γ ` b.bool

Γ ` k † [b]. k : †
[EINWHILE],[MESSAGE]

Γ ; ∆ ` e.bool Γ ` P.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P}.∆ · k1 : ![τ1]∗.end, ...,kn : ![τn]∗.end
[OUTWHILE]

Γ ` Q.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{Q}.∆ · k1 : ?[τ1]∗.end, ...,kn : ?[τn]∗.end
[INWHILE]

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P; Q.∆ ;∆ ′
Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ◦∆ ′
[SEQ],[CONC]

[EINWHILE] is a rule for inwhile-expression. The iteration session type of ki is recorded in
∆ . This information is used to type the nested iteration with outwhile in rule [OUTWHILE].
Rule [INWHILE] is dual to [OUTWHILE]. Rule [MESSAGE] types runtime messages as †. Sequen-
tial and parallel compositions use the above algebras to ensure the linearity of channels.

Well-formed topologies.

14

Definition 4.1 (Well-formed topology.). A group of N processes P1,1 | . . . | PR,N con-
forms to a well-formed topology if (we write Q[~k] if Q’s free session channels are~k):

P1,1 = 〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
Pr,i = 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k

′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

PR,i = 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]} when S < i≤ N

with 2 ≤ i ≤ N and 2 ≤ r ≤ R, and there exists a bijective function f such that (1)
(starter) f (k1, j) = kr′

i′ , j
′ or (2) (inductive case) f (kri, j) = k′r′

i′ , j
′ with r < r′, 1≤ j≤ nr,i

and 1≤ j′ ≤ nr′,i′

where Γ ` Q1 .{k1,1 : T1,1, . . . ,k1,n1,1 : T1,n1,1}
Γ ` Qi .{kri,1 : Tri,1, . . . ,kri,nr,i : Tri,nr,i ,k

′
r′i′ ,1

: Tr′i′ ,1
, . . . ,k′r′i′ ,nr′ ,i′

: Tr′i′ ,nr′ ,i′
} when i < S

Γ ` Qi .{kRi,1 : TRi,1, . . . ,kRi,nR,i : TRi,nR,i} when S < i≤ N

Γ ` Q1 | Q2 | . . . | Qn .{k̃ : ⊥̃}

with T1, j = Tr′
i′ , j
′ and Tri, j = Tr′

i′ , j
′ .

Subprocesses Pr,i are indexed by their rank r and their process index i. The pro-
cesses form a directed acyclic graph: they can only send outwhile control messages
to processes of a strictly higher rank (condition r < r′). This guarantees the absence
of cycles, necessary to prove deadlock-freedom. The DAG is only allowed one source
(process P1,1), but can have one to many sinks. Sinks have process indexes greater than
S. This also ensures control messages are always consistent as they flow from a single
source, and is essential in proving that well-formed processes never reduce to Err.

4.3 Subject Reduction, Communication Safety and Deadlock Freedom
We state here that process groups conforming to a well-formed topology satisfy the
main theorems.

Theorem 4.1 (Subject reduction) Assume P forms a well-formed topology and Γ `
P.∆ . Suppose P−→∗ P′. Then we have Γ ` P′ .∆ ′ with for all k (1) ∆(k) = α implies
∆ ′(k) = α†; (2) ∆(k) = α† implies ∆ ′(k) = α; or (3) ∆(k) = β implies ∆ ′(k) = β .

(1) and (2) state an intermediate stage where messages are floating; or (3) the type
is unchanged during the reduction. The proof requires to formulate the intermediate
processes with messages which are started from a well-formed topology, and prove
they satisfy the above theorem.

We say process has a type error if expressions in P do not contain either a type error
of values or constants in the standard sense (e.g. if 100 then P else Q).

To formalise communication safety, we need the following notions. Write inwhile(Q)
for either inwhile or inwhile{Q}. We say that a processes P is a head subprocess of
a process Q if Q ≡ E[P] for some evaluation context E. Then k-process is a head pro-
cess prefixed by subject k (such as k〈e〉). Next, a k-redex is the parallel composition of

15

a pair of k-processes. i.e. either of form of a pair such that (k〈e〉,k(x).Q), (k/ l,k�{l1 :
Q1[] · · · []ln : Qn}), (k〈k′〉,k(k′).P), (〈k1 . . . kn〉.outwhile(e){P},〈k′1 . . . k′m〉.inwhile(Q))
with k∈{k1, ..,kn}∩{k′1, ..,k′m} or (k† [b] | 〈k′1 . . . k′m〉.inwhile(Q)) with k∈{k1, ..,kn}.
Then P is a communication error if P≡ (ν ũ)(def D in (Q | R)) where Q is, for some
k, the parallel composition of two or more k-processes that do not form a k-redex. The
following theorem is direct from the subject reduction theorem [39, Theorem 2.11].

Theorem 4.2 (Type and communication safety) A typable process which forms a well-
formed topology never reduces to a type nor communication error.

Below we say P is deadlock-free if for all P′ such that P−→∗ P′, P′ −→ or P′ ≡ 0 .
The following theorem shows that a group of multiparty processes which form a single
well-formed topology whose bodies in inwhile and outwhile are inductively deadlock-
free can always move or become the null process.

Theorem 4.3 (Deadlock-freedom) Assume G forms a well-formed topology and Γ `
G .∆ . Suppose a parallel composition of subprocesses Πi∈{1,..,n}Qi (bodies inside in
and outwhile) in the definition of the well-formed topology do not contain in or outwhile
and are deadlock-free. Then P is deadlock-free.

Now we write an implementation of n-Body algorithm (omitting the tailing processes).

P1 ≡ 〈k12,k13〉.outwhile(e){k12〈Particle[]〉 | k13(y). 0 }
P2 ≡ k23.outwhile(k12.inwhile){k23〈Particle[]〉 | k12(y). 0 }
P3 ≡ 〈k13,k23〉.inwhile{k13〈Particle[]〉 | k23(y). 0 }

where the typing of the processes are (omitting end): Γ `P1.{k12 : ![![U]]∗, k13 : ![?[U]]∗},
Γ ` P2 . {k23 : ![![U]]∗, k12 : ?[?[U]]∗}, and Γ ` P3 . {k13 : ?[![U]]∗, k23 : ?[?[U]]∗}. Similarly
we can write an implementation of Jacobi algorithm. Then we have:

Proposition 4.4 (Correctness of n-Body and Jacobi) The n-Body and Jacobi algorithms
in Figures 5 and 9 are type-safe, communication-safe and deadlock-free.

For the proof, we first prove the above implementation conforms the well-formed ring
(mesh) topology and then shows the well-formed ring (mesh) topology is a well-formed
topology (see Appendix A.1). [27, § 4.7] lists the detailed proofs.

5 Performance Evaluation
This section presents performance results for several implementations of the n-Body
algorithm, as presented in § 3.1.

We evaluated our implementations on the Axel heterogeneous computing cluster
[35]. This cluster is composed of nodes including a multi-core CPU, a general-purpose
GPU, and an FPGA, and was built to investigate the combined use of these hetero-
geneous computing resources for compute-intensive applications. We used 11 nodes
for our benchmark. All nodes include an Alpha-Data ADM-XRC-5T2 FPGA. Nine of
them comprise an AMD PhenomX4 9650 2.30GHz CPU with 8GB RAM. The other
two nodes have two Intel Xeon E5420 2.50GHz CPUs each, and respectively 16 and
12GB of RAM. Nodes are interconnected via Gigabit Ethernet. Each of the 11 nodes
processed an equal share of particles.

16

The main objective of these benchmarks is to investigate the benefits of the new
multi-channel primitives. Consequently, we benchmarked implementations of the n-
Body algorithm both with and without the new primitives (Figure 13a). We also eval-
uated a hybrid implementation using the FPGA for numerical computation, and the
CPU to coordinate communication and control the FPGA. We compared our n-Body
implementations to another using MPJ Express for reference.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45

R
u
n
ti
m

e
 (

s
e
c
o

n
d
s
)

Number of particles (thousand)

[1] MPJExpress
[2] SJ, No Multi-channel

[3] SJ, Multi-channel

(a) 350 iterations

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

R
u

n
ti
m

e
 (

s
e

c
o
n

d
s
)

Number of particles (thousand)

[1] MPJExpress
[2] SJ, Multi-channel

[3] SJ with FPGA

(b) 20 iterations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

R
u
n

ti
m

e
 (

s
e
c
o

n
d

s
)

Number of iterations

[1] MPJExpress
[2] SJ, No Multi-channel

[3] SJ, Multi-channel

(c) Varying iterations

Figure (a) shows execution times
for our n-Body implementations, for in-
creasing numbers of particles (bodies)
in the n-Body simulation, and with 350
inner iterations of the algorithm, where
the original SJ version had to keep re-
opening a temporary session. Both SJ
implementations are consistently faster
than MPJ Express, up to 44% for multi-
channel SJ with 44000 particles. We ob-
serve a clear improvement when using
the new multi-channel primitives in the
SJ implementations.

Figure (b) uses a similar setup, but
this time with 20 inner iterations. This
is used to show the gains from FPGA
acceleration. The FPGA-accelerated SJ
implementation suffers from high over-
head at lower particle counts, but be-
comes the fastest after 11500 particles
and scales much better with larger data
volumes.

We ran another series of measure-
ments, this time keeping the number of
particles constant, but varying the num-
ber of inner iterations. The results (c)
demonstrate the growing impact of the
temporary session as we add inner iter-
ations. In percentage terms though, the
gains from multi-channel primitives are
quite stable, with an average of 12%
speed gain (standard deviation: 1.1%).
Similarly, the multi-channel SJ imple-
mentation is on average 31% faster than
MPJ (standard deviation: 2.6%).

We believe we have demonstrated
the benefits of SJ’s new multi-channel

primitives for parallel programming. SJ has become a viable alternative to MPI pro-
gramming in Java, consistently outperforming MPJ Express in this benchmark.

17

6 Related and Future Work
Implementations of session types. SJ was introduced in [21] as the first general-
purpose session-typed programming language. This work investigates SJ and session
types for parallel programming, and introduces new multi-channel primitives, allow-
ing programmers to efficiently express common and complex communication topolo-
gies. Another recent extension of SJ added session-typed primitives for event-based
programming [20]. These directions differ in their target application domain, and have
contributed complementary developments to session programming. The preliminary ex-
periments with parallel algorithms in SJ leading to the present work were reported in a
workshop paper [2]. This early work considered only simple iteration chaining, and not
the general multi-channel primitives required for efficient representation of the complex
topologies tackled here. The present paper also presents the formal semantics, type sys-
tem, and type soundness proofs for the new primitives; and comprehensive benchmark
results from high performance clusters and an advanced FPGA implementation.

Our current version of SJ implements binary session types, with full support for
multi-channel communications, multiple interleaved sessions, delegation, named re-
cursion, and n-ary branching. Other implementations have been presented for Haskell
[26, 29, 30]. These are all library-based implementations, offering only limited features
of binary session types. The Bica language [14] is an extension of Java also implement-
ing binary sessions, which focuses on allowing session channels to be used as fields in
classes. Bica does not support multi-channel primitives and does not guarantee progress
across multiple sessions. Session typecase [20] is an alternative mechanism for support-
ing sessions as object fields without requiring an additional typing layer controlling the
order of method calls such as that of [14].

Other implementations support multiparty session types (MPST). Early work [8]
applies them to security concerns, which includes a type-checker and code generator
for ML. A recent implementation extends SJ for MPST [32] and studies type-directed
optimisations for the extended language. The implemented multiparty sessions are less
expressive than that of the formal model originally presented in [18], as sessions can-
not be interleaved in the same process. Other session-based optimisations applied to
buffered communication are presented in [9] but have yet to be implemented.

Message-based parallel programming. MPI [24] is one of the most widely-used APIs
for parallel programming using message passing. Implementations supply concrete lan-
guage and transport bindings, such as C, C++, Fortran, and Java over one or more spe-
cific transports. This work focuses on language and typing support for communications
programming, rather than introducing a supplementary API. In comparison to the stan-
dard MPI libraries [15, §4], SJ offers productivity gains coming from natural abstraction
of communication actions by typed sessions and the associated static assurance of type
and protocol safety. Recent work [36] applies model-checking techniques to standard
MPI C source code to ensure correct matching of sends and receives using a pre-existing
test suite. Their verifier, ISP, exploits independence between thread actions to reduce the
state space of possible thread interleavings of an execution, and checks for deadlocks in
the remaining states. Some of the code verifications took over two days. In contrast, our
session type-based approach does not depend on external testing, and a valid, compiled
program is guaranteed communication-safe and deadlock-free in a matter of seconds. SJ
thus offers a performance edge even in the cases of complex interactions (cf. Appendix
B). The MPI API remains low-level, easily leading to synchronisation errors, message

18

type errors and deadlocks [15]. From our experiences, we found programming these and
other message-based parallel algorithms with SJ through typed sessions based on Java
much easier than programming based on the basic MPI functions, which, beside lack-
ing type checking for protocol and communication safety, often requires manipulating
numerical process identifiers and array indexes (e.g. for message lengths in the n-Body
program) in tricky ways. Additionally, SJ integrates objects and sessions to support e.g.
Java objects as high-level messages types through its remote class loading facility [21].
SJ leverages session types to overcome several MPI problems: our type-based approach
enables structured communications programming, and yields a clear definition of a class
of communication-safe and deadlock-free programs as proved in Theorems 4.2 and 4.3:
if multiple SJ parallel programs conform to a well-formed topology (Definition A.1),
their type and communication have been checked to be safe without having to explore
all execution states for all possible thread interleavings. Finally, benchmark results in
§5 demonstrate how SJ programs can deliver the above benefits and still outperform a
Java-based MPI implementation [25].

OpenMP and PGAS languages. OpenMP [28] is a combination of pragma-based pro-
gram transformation and libraries for extracting latent parallelism (shared memory mul-
tithreading) from sequential code. X10 [7, 23, 37], Chapel [6] and Fortress [13] are re-
cent PGAS (Partitioned Global Address Space) languages for HPC that share a notion
of partitioned globally accessible memory locations, with different access semantics for
local and remote partitions. The model applies both to non-uniform memory hierarchies
within a node, and to distributed memory locations on clusters. These languages focus
on reducing programming complexity for shared memory parallelism through a range
of annotations and high-level constructs for coordinating and synchronising thread be-
haviours. Even though PGAS languages offer a convenient model and primitives for
parallel programming, they lack the static safety offered by session programming. Their
programming model is also fundamentally different from that of SJ: rather than seeking
to hide communication under a distributed shared memory abstraction, SJ promotes the
encapsulation of an explicitly structured series of message exchanges as a session for
increased modularity.

Aliasing control. The noalias modifier in SJ is similar to the unique annotation of [1]
for unshared references. SJ demonstrates how the integration of object alias control and
message passing programming can have significant performance benefits whilst retain-
ing semantic transparency. SJ differs from [1] by directly capturing the semantics of
noalias assignment and argument passing operationally – setting a consumed reference
to null, rather than enforcing particular patterns for variable usage. This design choice
allows SJ, in contrast to [1], to dispense with manual synchronisation for field accesses
and leads to a different inference of noalias-compatible classes.

Kilim [34] is an actor framework for Java. Messages sent by actors are statically
guaranteed to have at most one owner at any time, allowing efficient zero-copy transfer.
However, message classes in Kilim must be made specifically for message-passing,
and cannot be regular Java API classes. Other earlier works on unique references are
surveyed in [16].

StreamFlex [33] is a real-time streaming API for Java. It makes use of a type-based
classification of heap objects ensuring single ownership of messages, and leading to
a high throughput. The typing disciplines in these two works only support ownership
tracking for specific message objects, and will not track ownership for general objects.

19

Both SJ with the noalias keyword, and an extension of Scala [16] support aliasing
control for standard, unchanged classes. Annotations are only required at the point of
use. The SJ noalias approach is more restricted than that of [16], as it does not allow
local aliases. In SJ, we chose the simplest possible approach that would cover both ses-
sion type checking needs, and efficient message passing. The capability-based approach
of [16] concentrates on zero-copy message passing, and can thus allow the extra flex-
ibility of local aliases. Further comparisons between SJ’s noalias modifier and other
works can be found in [19, § 3.11].

Future work. Although we believe our simple, novel method for guaranteeing deadlock-
freedom is very effective in practice, we also plan to implement multiparty session types
for increased expressiveness. Preliminary results from a manual SJ-to-C translation [27]
have shown large performance gains. Future implementation efforts will include a na-
tively compiled, C-like language focused on low overheads and efficiency for HPC and
systems programming. We also plan to incorporate recent, unimplemented theoretical
advances, including the fine-grained failure handling of [4], parameterised multiparty
sessions types [38] for more flexible topologies and integration with logical reasoning
[3] in order to prove the correctness of parallel algorithms.

References
1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program understanding.

In OOPSLA, pages 311–330, 2002.
2. A. Bejleri, R. Hu, and N. Yoshida. Session-Based Programming for Parallel Algorithms. In

A. R. Beresford and S. Gay, editors, PLACES, EPTCS, 2009.
3. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-

tributed multiparty interactions. In CONCUR’10, volume 6269 of LNCS, pages 162–176.
4. S. Capecchi, E. Giachino, and N. Yoshida. Global Escape in Multiparty Sessions. In FSTTCS

’10, 2010. To appear.
5. H. Casanova, A. Legrand, and Y. Robert. Parallel Algorithms. Chapman & Hall, 2008.
6. Chapel homepage. http://chapel.cs.washington.edu/.
7. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,

and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In
OOPSLA ’05, pages 519–538. ACM, 2005.

8. R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, and J. Leifer. A Secure Compiler for
Session Abstractions. Journal of Computer Security, 16(5):573–636, 2008.

9. P.-M. Deniélou and N. Yoshida. Buffered Communication Analysis in Distributed Multiparty
Sessions. In CONCUR’10, volume 6269 of LNCS, pages 343–357. Springer, 2010.

10. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Com-
munications. In TGC ’07, volume 4912 of LNCS, pages 257–275. Springer, 2008.

11. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types for
Object-Oriented Languages. In ECOOP ’06, volume 4067 of LNCS, pages 328–352, 2006.

12. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S. Levi.
Language Support for Fast and Reliable Message-based Communication in Singularity OS.
SIGOPS Operating Systems Review, 40(4):177–190, 2006.

13. Fortress homepage. http://projectfortress.sun.com/Projects/Community.
14. S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular Session

Types for Distributed Object-Oriented Programming. In M. V. Hermenegildo and J. Palsberg,
editors, POPL ’10, volume 45, pages 299–312. ACM, 2010.

15. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1999.

20

16. P. Haller and M. Odersky. Capabilities for Uniqueness and Borrowing. In Proceedings of the
24th European Conference on Object-Oriented Programming, Lecture Notes in Computer
Science. Springer, 2010.

17. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In ESOP ’98, volume 1381 of LNCS, pages
122–138. Springer, 1998.

18. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL,
pages 273–284. ACM, 2008.

19. R. Hu. Structured, Safe and High-level Communications Programming with Session Types.
PhD thesis, Imperial College London, 2010.

20. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-Safe Eventful Sessions in
Java. In T. D’Hondt, editor, ECOOP, volume 6183 of LNCS, pages 329–353, 2010.

21. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
J. Vitek, editor, ECOOP, volume 5142 of LNCS, pages 516–541. Springer, 2008.

22. Y. Kryftis. Session-based Programming for Message-Passing-based Parallel Algorithms.
Master’s thesis, Imperial College London, 2009. http://www.doc.ic.ac.uk/~yk208/.

23. J. K. Lee and J. Palsberg. Featherweight X10: A Core Calculus for Async-Finish Parallelism.
In R. Govindarajan, D. A. Padua, and M. W. Hall, editors, PPoPP, pages 25–36. ACM, 2010.

24. Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpi/.
25. MPJ Express homepage. http://mpj-express.org/.
26. M. Neubauer and P. Thiemann. An Implementation of Session Types. In PADL ’04, volume

3057 of LNCS, pages 56–70. Springer, 2004.
27. N. Ng. High Performance Parallel Design based on Session Programming. MEng thesis,

Department of Computing, Imperial College London, 2010. http://www.doc.ic.ac.uk/
~cn06/individual-project/.

28. OpenMP homepage. http://openmp.org/.
29. R. Pucella and J. A. Tov. Haskell Session Types with (Almost) No Class. In Haskell ’08,

pages 25–36. ACM, 2008.
30. M. Sackman and S. Eisenbach. Session Types in Haskell: Updating Message Passing for the

21st Century. Technical report, Imperial College London, July 2008.
31. A. Shafi, B. Carpenter, and M. Baker. Nested Parallelism for Multi-core HPC Systems using

Java. Journal of Parallel and Distributed Computing, 69(6):532 – 545, 2009.
32. K. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient Session Type Guided

Distributed Interaction. In D. Clarke and G. Agha, editors, Coordination Models and Lan-
guages, volume 6116 of LNCS, pages 152–167. Springer, 2010.

33. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-Throughput Stream
Programming in Java. In OOPSLA ’07, pages 211–228. ACM, 2007.

34. S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In ECOOP ’08,
volume 5142 of LNCS, pages 104–128. Springer, 2008.

35. K. H. Tsoi and W. Luk. Axel: A Heterogeneous Cluster with FPGAs and GPUs. In FPGA
’10, pages 115–124. ACM, 2010.

36. A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and R. Thakur. Formal
Verification of Practical MPI Programs. In PPoPP ’09, pages 261–270. ACM, 2009.

37. X10 homepage. http://x10.sf.net.
38. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised Multiparty Session Types.

In C.-H. L. Ong, editor, FOSSACS, volume 6014 of LNCS, pages 128–145. Springer, 2010.
39. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Discipline for Struc-

tured Communication-Based Programming Revisited: Two Systems for Higher-Order Ses-
sion Communication. ENTCS, 171(4):73–93, 2007.

21

A Appendix to Section 4

This section lists the omitted definitions from Section 4. Structural congruence rules are
defined in Figure 13; full typing rules can be found in Figure 14. In this context, fn(Q)
denotes a set of free shared and session channels, and fpv(D) stands for a set of free
process variables. In the typing system, ∆ is complete means that ∆ includes only end
or ⊥.

P≡ Q if P≡α Q P | 0 ≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(νu)P | Q≡ (νu)(P | Q) if u 6∈ fn(Q)

(νu) 0 ≡ 0 def D in 0 ≡ 0 0 ; P ≡ P

(νu)def D in P≡ def D in (νu)P if u 6∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if fpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if fpv(D)∩ fpv(D′) = /0.

Fig. 13: Structural congruence.

A.1 Well-Formed Ring and Mesh Topologies

We define well-formed ring and mesh topologies. We can check that they conform to
the general definition of well-formed topology (Definition 4.1). Figure 15 shows the
rank of each process for each topology, indicating how both rings and meshes map to
the general definition.

Definition A.1. A process conforms to a well-formed ring topology if:

P1 = 〈k1,2,k1,n〉.outwhile(e){Q1[k1,2,k1,n]}
Pi∈{2..n−1} = ki,i+1.outwhile(〈ki−1,i〉.inwhile){Qi[ki,i+1,ki−1,i]} 2≤ i≤ n−1

Pn = 〈k1,n,kn−1,n〉.inwhile{Qn[k1,n,kn−1,n]}
and

Γ ` Q1 .{k1,2 : T1,2, k1,n : T1,n}
Γ ` Qi .{ki,i+1 : Ti,i+1, ki−1,i : T ′i−1,i}
Γ ` Qn .{k1,n : T1,n

′, kn−1,n : Tn−1,n
′}

and

Γ ` Q1 | Q2 | . . . | Qn .{k̃ : ⊥̃}
with Ti, j = T ′i, j

Definition A.2. A process group

PNW | PNE | PSW | PSE | PN1 . . . | PNm | PS1 . . . | PSm

| PE1 . . . | PEn | PW1 . . . | PWn | PC22 . . . | PCn−1m−1

22

Γ ` 1.nat Γ ` true,false.bool

Γ ` ei .nat

Γ ` e1 + e2 .nat
[NAT],[BOOL],[SUM]

Γ ·a : S ` a.S
Γ ; ∆ ` e.S

Γ ; ∆ ,∆ ′ ` e.S
[NAME],[EVAL]

∆ = k1 : ?[τ1]
∗.end, ...,kn : ?[τn]

∗.end

Γ ;∆ ` 〈k1 . . .kn〉.inwhile.bool
[EINWHILE]

Γ ` P.∆ · k : ε.end

Γ ` P.⊥
∆ complete
Γ ` 0 .∆

[BOT],[INACT]

Γ ` a. 〈α,α〉 Γ ` P.∆ · k : α

Γ ` a(k).P.∆

Γ ` a. 〈α,α〉 Γ ` P.∆ · k : α

Γ ` a(k).P.∆
[REQ],[ACC]

Γ ` e.S
Γ ` k〈e〉.∆ · k : ![S].end

Γ · x : S ` P.∆ · k : α

Γ ` k(x).P.∆ · k : ?[S]; α
[SEND],[RCV]

Γ ` P1 .∆ · k : τ1.end · · · Γ ` Pn .∆ · k : τn.end

Γ ` k�{l1 : P1[] · · · []ln : Pn}.∆ · k : &{l1 : τ1, . . . , ln : τn}.end
[BR]

Γ ` P.∆ · k : τ j.end 1≤ j ≤ n
Γ ` k� l .∆ · k : ⊕{l1 : τ1, . . . , ln : τn}.end

[SEL]

Γ ` k〈k′〉.∆ · k : ![α].end · k′ : α

Γ ` P.∆ · k : β · k′ : α

Γ ` k(k′).P.∆ · k : ?[α]; β
[THR],[CAT]

Γ ` e.bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
[IF]

Γ ; ∆ ` e.bool Γ ` P.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.outwhile(e){P}.∆ · k1 : ![τ1]∗.end · · · · · kn : ![τn]∗.end
[OUTWHILE]

Γ ` Q.∆ · k1 : τ1.end · · · · · kn : τn.end

Γ ` 〈k1 . . . kn〉.inwhile{Q}.∆ · k1 : ?[τ1]∗.end · · · · · kn : ?[τn]∗.end
[INWHILE]

Γ ` bi .bool

Γ `Πi∈{1..n}ki † [bi]. k1 : †, ...,kn : †
Γ ·a : S ` P.∆

Γ ` (νa)P.∆

Γ ` P.∆ · k : ⊥
Γ ` (νk)P.∆

[MESSAGE],[NRES],[CRES]

Γ ; /0 ` e.S
Γ ·X :Sα ` X [ek].∆ · k : α

Γ ·X :Sα · x : S ` P. k : α Γ ·X :Sτ ` Q.∆

Γ ` def X(xk) = P in Q.∆
[VAR],[DEF]

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P; Q.∆ ;∆ ′
Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ◦∆ ′
[SEQ],[CONC]

Fig. 14: Typing rules.

23

Master

Worker

Worker
Last

Worker

Source
Rank 1

Rank 2

Rank 2

Sink
Rank 3

Worker
NorthEast

Worker
NorthMaster

Worker
EastWorkerWorker

West

Worker
SouthEast

Worker
South

Worker
SouthWest

Source
Rank 1 Rank 2 Rank 3

Rank 4

Sink
Rank 5

Rank 2

Rank 3

Rank 3

Rank 4

Worker
East

Worker
LastMaster

Worker
East
Last

Worker
Diagonal

Worker
West

Worker
East

Diagonal
WorkerWorker

SouthWest

Source
Rank 1

Rank 2

Rank 3

Rank 3

Rank 4

Rank 5

Rank 5

Rank 6

Sink
Rank 7

Fig. 15: Ring, mesh, and wraparound mesh topologies, with rank annotations.

conforms to a well-formed mesh topology if:

PNW =〈t1, l1〉.outwhile(e){QNW [t1, l1]}
PN j =〈t j+1,vc1 j〉.outwhile(t j.inwhile){QN j [t j+1,vc1 j, t j]}
PNE =r1.outwhile(tm.inwhile){QNE [r1, tm]}
PWi =〈hci1, li+1〉.outwhile(li.inwhile){QW [hci1, li+1, li]}
PCi j =〈vci+1 j,hci j+1〉.outwhile(〈hci j,vci j〉.inwhile){

QCi j [vci+1 j,hci j+1,hci j,vci j]}
PEi =ri+1.outwhile(〈hcim,ri〉.inwhile){

QEi [ri+1,hcim,ri]}
PSW =b1.outwhile(ln.inwhile){QSW [b1, ln]}
PS j =b j+1.outwhile(〈b j,vcn j〉.inwhile){

QS j [b j+1,b j,vcn j]}
PSE =〈bm,rn〉.inwhile{QSE [bm,rn]}

24

where 1≤ i≤ n,1≤ j ≤ m, and

Γ ` QNW .{t1 : Tt1 , l1 : Tl1}
Γ ` QN j .{t j+1 : Tt j+1 ,vc1 j : Tvc1 j , t j : T ′t j

}

Γ ` QNE .{r1 : Tr1 , tm : T ′tm}
Γ ` QW .{hci1 : Thci1 , li+1 : Tli+1 , li : T ′li}
Γ ` QCi j .{vci+1 j : Tvci+1 j ,hci j+1 : Thci j+1 ,hci j : T ′hci j

,vci j : T ′vci j
}

Γ ` QEi .{ri+1 : Tri+1 ,hcim : Thcim ,ri : T ′ri
}

Γ ` QSW .{b1 : Tb1 , ln : T ′ln}
Γ ` QS j .{b j+1 : Tb j+1 ,b j : T ′b j

,vcn j : T ′vcn j
}

Γ ` QSE .{bm : T ′bm
,rn : T ′rn}

with Ti = T ′i

B Appendix to Section 3
We present here an additional parallel algorithm implementation in SJ, which further
demonstrates the benefits of our multi-channel primitives.

B.1 Linear Equation Solver: Wraparound Mesh Topology

Linear equations are at the core of many engineering problems. Solving a system of
linear equations consists in finding x such that Ax = b, where A is an n×n matrix and x
and b are vectors of length n.

A whole range of methods for solving linear systems are available. One of the most
amenable to parallelization is the Jacobi method. It is based on the observation that the
matrix A can be decomposed into a diagonal component and a remainder: A = D+R.
The equation Ax = b is then equivalent to x = D−1(b−Rx), again equivalent to finding
the solution to the n equations ∑

n
j=1 αi jx j = bi for i = 1, ...,n. Solving the i-th equation

for xi yields: xi =
1

αii
(bi−∑ j 6=i αi jx j), which suggests the iterative method: x(k+1)

i =

1
aii
(bi−∑ j 6=i αi jx

(k)
j), where k ≥ 0 and x(0) is an initial guess at the solution vector. The

algorithm iterates until the normalized difference between successive iterations is less
than some predefined error.

Our parallel implementation of this algorithm uses p2 processors in a p× p wrap-
around mesh topology to solve an n× n system matrix. The matrix is partitioned into
submatrix blocks of size n

p ×
n
p , assigned to each of the processors (see Figure 16).

Each iteration of the algorithm requires multiplications (in the term αi jx j) and sum-
mation. Multiplications dominate execution time here, hence the parallelization concen-
trates on them. The horizontal part of the mesh acts as a collection of circular pipelines
for multiplications. Their results are collected by the diagonal nodes, which perform the
summation and the division by αii.

This gives the updated solution values for the iteration. These need to be communi-
cated to other nodes for the next iteration. The vertical mesh connections are used for
this purpose: the solution values are sent down by the diagonal node, and each worker
node picks up the locally required solution values, and passes on the rest. The transmis-

25

sion wraps around at the bottom of the mesh, and stops at the node immediately above
the diagonal, hence the lack of connectivity between the two in Figure 16.

Master (is also on the diagonal):

<under,right>.outwhile(

hasNotConverged()) {

prod = computeProducts();

// horizontal ring, pass results

to diagonal node

ringData = prod;

<left,right>.outwhile(count <

nodesOnRow) {

right.send(ringData);

ringData = left.receive();

computeSums(ringData);

count++;

}

newX = computeDivision();

under.send(newX);

}

Worker :
<under,right>.outwhile(<left,over

>.inwhile) {

prod = computeProducts();

ringData = prod;

right.outwhile(left.inwhile) {

right.send(ringData);

ringData = left.receive();

}

newX = over.receive();

under.send(newX);

}

WorkerDiagonal :
<under,right>.outwhile(left.

inwhile) {

prod = computeProducts();

ringData = prod;

right.outwhile(left.inwhile) {

right.send(ringData);

ringData = left.receive();

computeSums(ringData);

}

newX = computeDivision();

under.send(newX);

}

WorkerEast :
under.outwhile(<right,left,over>.

inwhile) {

prod = computeProducts();

ringData = prod;

<left,right>.inwhile {

right.send(ringData);

ringData = left.receive();

}

newX = over.receive();

under.send(newX);

}

Worker
East

Worker
LastMaster

Worker
East
Last

Worker
Diagonal

Worker
West

Worker
East

Diagonal
WorkerWorker

SouthWest

Fig. 16: Linear Equations Solver implementation using a wraparound mesh.

Note that contrary to the non-wraparound 2D-mesh of § 3.2, the sink of this well-
formed topology (§ 4.1) is not the last node on the diagonal, but instead the node just
above, called WorkerEastLast. This is because the diagonal nodes transmit updated val-
ues as explained above, and this transmission stops just before a complete wraparound.

26

Figure 15 shows node ranks for the wraparound mesh topology, along with the other
topologies presented in the paper.

C Appendix - Proofs
Definition C.1. Sequential composition of session type are defined as [10]:

τ; α =

{
τ.α if τ is a partial session type and α is a completed session type
⊥ otherwise

∆ ; ∆
′ = ∆ \ dom(∆ ′) ∪ ∆

′ \ dom(∆) ∪ {k : ∆(k) \ end; ∆
′(k) | k ∈ dom(∆)∩dom(∆ ′)}

The first rule concatenates a partial session type τ with a completed session type α

to form a new (completed) session type. The second rule can be decomposed to three
parts:

1. ∆ \ dom(∆ ′) extracts session types with sessions unique in ∆

2. ∆ ′ \ dom(∆) extracts session types with sessions unique in ∆ ′

3. {k : ∆(k) \ end; ∆ ′(k) | k ∈ dom(∆)∩ dom(∆ ′)} modifies session types with a
common session k in ∆ and ∆ ′ by removing end type from ∆(k) and concatenates
the modified ∆(k) (which is now a partial session type) with ∆ ′(k) as described in
the first rule.

Example C.1. Suppose ∆ = {k1 : ε.end, k2 : ![nat].end} and ∆ ′= {k2 : ?[bool].end, k3 : ![bool].end}
. Since k1 is unique in ∆ and k3 is unique in ∆ ′, we have

∆\dom(∆ ′) = {k1 : ε.end} and ∆
′\dom(∆) = {k3 : ![bool].end}

A new session type is constructed by removing end in ∆(k2), so the composed set of
mappings is

∆ ; ∆
′ = {k1 : ε.end, k2 : ![nat]; ?[bool].end, k3 : ![bool].end}

Definition C.2. Parallel composition of session and runtime type is defined as:

∆ ◦∆
′ =∆ \ dom(∆ ′)∪∆

′ \ dom(∆)∪ {k : β ◦β
′ | ∆(k) = β and ∆

′(k) = β
′}

where β ◦β
′ :

α ◦† = α†

α ◦α = ⊥
α ◦α

† = ⊥†

The parallel composition relation ◦ is commutative as the order of composition do not
impact the end result.

We now present some auxilary results for subject reduction, the following proofs
are modified from [39], and adapted to our updated typing system.

Lemma C.1 (Weakening Lemma). Let Γ ` P.∆ .

1. If X 6∈ dom(Γ), then Γ ·X :Sα ` P.∆ .
2. If a 6∈ dom(Γ), then Γ ·a :S ` P.∆ .

27

3. If k 6∈ dom(∆) and α =⊥ or α = ε.end, then Γ ` P.∆ · k :α .

Proof. A simple induction on the derivation tree of each sequent. For 3, we note that in
[INACT] and [VAR], ∆ contains only ε.end.

Lemma C.2 (Strengthening Lemma). Let Γ ` P.∆ .

1. If X 6∈ fpv(P), then Γ \X ` P.∆ .
2. If a 6∈ fn(P), then Γ \a ` P.∆ .
3. If k 6∈ fn(P), then Γ ` P.∆ \ k.

Proof. Standard.

Lemma C.3 (Channel Lemma).

1. If Γ ` P.∆ · k : α and k 6∈ fn(P), then α =⊥,ε.end.
2. If Γ ` P.∆ and k ∈ fn(P), then k ∈ dom(∆).

Proof. A simple induction on the derivation tree for each sequent.

We omit the standard renaming properties of variables and channels, but present the
Substitution Lemma for names. Note that we do not require a substitution lemma for
channels or process variables, for they are not communicated.

Lemma C.4 (Substitution Lemma). If Γ ·x :S ` P.∆ and Γ ` c:S, then Γ ` P{c/x}.
∆

Proof. Standard.

We write ∆ ≺ ∆ ′ if we obtain ∆ ′ from ∆ by replacing k1 :ε.end, ...,kn :ε.end (n≥ 0)
in ∆ by k1 :⊥, ...,kn :⊥. If ∆ ≺ ∆ ′, we can obtain ∆ ′ from ∆ by applying the [BOT]-rule
zero or more times.

Theorem C.1. Subject congruence is defined by

Γ ` P.∆ and P≡ P′ implies Γ ` P′ .∆

Proof. Case P | 0 ≡ P. We show that if Γ ` P | 0 .∆ , then Γ ` P.∆ . Suppose

Γ ` P.∆1 and Γ ` 0 .∆2.

with ∆1◦∆2 =∆ . Note that ∆2 only contains ε.end or⊥, hence we can set: ∆1 =∆ ′1◦{k:
ε.end} and ∆2 = ∆ ′2 · {k : ε.end} with ∆ ′1 ◦∆ ′2 = ∆ ′1 ·∆ ′2 and ∆ = ∆ ′1 ·∆ ′2 · {k :⊥}. Then
by the [BOT]-rule, we have:

Γ ` P.∆
′
1 · {k :⊥}

Notice that, given the form of ∆ above, we know that dom(∆ ′2)∩dom(∆ ′1) · {k : ⊥}) =
/0. Hence by applying Weakening, we have:

Γ ` P.∆
′
1 ·∆ ′2 · {k :⊥}

as required.
For the other direction, we set ∆ = /0 in [INACT].

28

Case P | Q≡ Q | P.◦ relation is commutative by the definition of ◦ (Definition C.2)
Case (P | Q) | R≡ P | (Q | R). To show (P | Q) | R≡ P | (Q | R), where

Γ ` P.∆1 Γ ` Q.∆2 Γ ` R.∆3

We assume (∆1 ◦∆2)◦∆3 is defined
Suppose k : β1 ∈ ∆1 and k : β2 ∈ ∆2, then we have

β1 = α β2 = †
β1 = α β2 = α

β1 = α β2 = α
†

β1 = † β2 =⊥

Now suppose k : β3 ∈ ∆3,
if β1 = α β2 = †, then β3 = α

(β1 ◦β2)◦β3 = ({k : α}◦{k : †})◦{k : α}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : †}◦{k : α}) = {k : ⊥†}

if β1 = α β2 = α , then β3 = †

(β1 ◦β2)◦β3 = ({k : α}◦{k : α})◦{k : †}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : α}◦{k : †}) = {k : ⊥†}

in all other cases, k /∈ dom(∆3) and therefore no parallel composition is possible.
Case (νu)P | Q ≡ (νu)(P | Q) if u 6∈ fn(Q). The case when u is a name is standard.
Suppose u is channel k and assume Γ ` (νk)(P | Q).∆ . We have

Γ ` P.∆ ′1 Γ ` Q.∆ ′2
Γ ` P | Q.∆ ′ · k :⊥

with ∆ ′ · k :⊥ = ∆ ′1 ◦∆ ′2 and ∆ ′ ≺ ∆ by [BOT]. First notice that k can be in either ∆ ′i or
in both. The interesting case is when it occurs in both; from Lemma C.3(1) and the
fact that k 6∈ fn(Q) we know that ∆ ′1 = ∆1 · k : ε.end and ∆ ′2 = ∆2 · k : ε.end. Then, by
applying the [BOT]-rule to k in P, we have Γ ` P .∆1 · k :⊥, and by applying [CRES] we
obtain Γ ` (νk)P.∆1. On the other hand, by Strengthening, we have Γ `Q.∆2. Then,
the application of [CONC] yields Γ ` (νk)P | Q.∆ ′. Then by applying the [BOT]-rule, we
obtain Γ ` (νk)P | Q.∆ , as required. The other direction is easy.
Case (νu) 0 ≡ 0 . Standard by Weakening and Strengthening.
Case def D in 0 ≡ 0 . Similar to the first case using Weakening and Strengthening.
Case (νu)def D in P ≡ def D in (νu)P if u 6∈ fn(D). Similar to the scope opening
case using Weakening and Strengthening.
Case (def D in P) | Q ≡ def D in (P | Q) if fpv(D)∩ fpv(Q) = /0. Similar with the
scope opening case using Weakening and Strengthening.
Case 0 ;P≡ P. We show that if Γ ` 0 ;P.∆ , then Γ ` P.∆ . Suppose

Γ ` 0 .∆1 and Γ ` P.∆2.

with ∆1;∆2 = ∆ . ∆2 only contains ε.end or ⊥, by definition of sequential composition
(Definition C.1), ∆(k) = ∆1(k).∆2(k) = ε.∆2(k) = ∆2(k) as required.

29

Theorem C.2. The following subject reduction rules hold for a well-formed topology.

Γ ` P.∆ and P −→ P′ implies Γ ` P′ .∆
′ such that

∆(k) = α ⇒
{

∆ ′(k) = α

∆ ′(k) = α†

∆(k) = α†⇒
{

∆ ′(k) = α

∆ ′(k) = α†

Under a well-formed intermediate topology

Γ ` P.∆ and P −→∗ P′ implies Γ ` P′ .∆
′ such that

∆(k) = α ⇒
{

∆ ′(k) = α

∆ ′(k) = α†

∆(k) = α†⇒
{

∆ ′(k) = α

∆ ′(k) = α†

Proof. We assume that

Γ ` e.S and e ↓ c implies Γ ` c.S (1)

and prove the result by induction on the last rule applied.

Case inwhile/outwhile for N processes (ν k̃)(P1,1 | . . . | PR,N). Assume well-formed
topology (4.1) Case E[e]−→ E[true]

By [OW1],

(ν k̃) (〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k

′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e
′){Q1[k1,1, . . . ,k1,n1,1]}

| k1,1 † [true] | . . . | k1,n1,1 † [true]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (Q1;P1,1 | k1,1 † [true] | . . . | k1,n1,1 † [true] | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : T1,1; ![T1,1]
∗ ◦ ?[T1′1′ ,1

]∗†, . . . ,k1,n1,1 : T1,n1,1 ; ![T1,n1,1]
∗ ◦ ?[T1′1′ ,n1′ ,1′

]∗†,

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′

i′ ,1
′]
∗}

30

By [IWE1],

(ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| k1,1 † [true] | . . . | k1,n1,1 † [true]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| 〈kri,1, . . . ,kri,nr,i〉.outwhile(true){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (Q1;P1,1 | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : T1,1; ![T1,1]
∗ ◦T1′1′ ,1

; ?[T1′1′ ,1
]∗, . . . ,k1,n1,1 : T1,n1,1 ; ![T1,n1,1]

∗ ◦T1′1′ ,n1′ ,1′
; ?[T1′1′ ,n1′ ,1′

]∗

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′ ,i′

]∗ where r = 2

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′ ,i′

]∗}

By [OW1],

(ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| 〈kri,1, . . . ,kri,nr,i〉.outwhile(true){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
];

〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| k2i,1 † [true] | . . . | k2i,n2i ,1
† [true]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

31

Γ ` (Q1;P1,1 | Qi;P2,i | k2i,1 † [true] | . . . | k2i,n2i ,1
† [true] | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : T1,1; ![T1,1]
∗ ◦T1′1′ ,1

; ?[T1′1′ ,1
]∗, . . . ,k1,n1,1 : T1,n1,1 ; ![T1,n1,1]

∗ ◦T1′1′ ,n1′ ,1′
; ?[T1′1′ ,n1′ ,1′

]∗,

kri,1 : Tri,1; ![Tri,1]
∗ ◦ ?[Tr′i′ ,1

′]∗†, . . . ,kri,nr,i : Tri,nr,i ; ![Tri,nr,i]
∗ ◦ ?[Tr′i′ ,nr′ ,i′

]∗† where r = 3,

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tri,nr′ ,i′]

∗}

By repeatedly apply [OW1] and [IWE1] for i = 3 to j, where r j = R - 1

(ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
];

〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| k2i,1 † [true] | . . . | k2i,n2i ,1
† [true]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗−→∗ (ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
];

〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| kR−1i,1 † [true] | . . . | kR−1i,nR−1i ,1
† [true]

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (Q1;P1,1 | Qi;Pr,i when i < S | kR−1i,1 † [true] | . . . | kR−1i,nR−1i ,1
† [true] | PR,i when S < i≤ N)

.{k1,1 : T1,1; ![T1,1]
∗ ◦T1′1′ ,1

; ?[T1′1′ ,1
]∗, . . . ,k1,n1,1 : T1,n1,1 ; ![T1,n1,1]

∗ ◦T1′1′ ,n1′ ,1′
; ?[T1′1′ ,n1′ ,1′

]∗,

kri,1 : Tri,1; ![Tri,1]
∗ ◦Tr′i′ ,1

′ ; ?[Tri′ ,1′]
∗, . . . ,kri,nr,i : Tri,nr,i ; ![Tri,nr,i]

∗ ◦Tr′i′ ,nr′ ,i′
; ?[Tr′i′ ,nr′ ,i′

]∗,

kR−1i,1 : ![TR−1i,1]
∗ ◦ ?[TR−1′i′ ,1

′]∗†, . . . ,kR−1i,nR−1,i : ![TR−1i,nR−1i ,1
]∗ ◦ ?[TR−1′i′ ,nR−1′ ,i′

]∗†}

32

Finally apply [IW1],

(ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
];

〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| kR−1i,1 † [true] | . . . | kR−1i,nR−1i ,1
† [true]

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (Q1[k1,1, . . . ,k1,n1,1];〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
];

〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| Qi[kRi,1, . . . ,kRi,nR,i];〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (Q1;P1,1 | Qi;Pr,i when i < S | Qi;PR,i when S < i≤ N)

.{k1,1 : T1,1; ![T1,1]
∗ ◦T1′1′ ,1

; ?[T1′1′ ,1
]∗, . . . ,k1,n1,1 : T1,n1,1 ; ![T1,n1,1]

∗ ◦T1′1′ ,n1′ ,1′
; ?[T1′1′ ,n1′ ,1′

]∗,

kri,1 : Tri,1; ![Tri,1]
∗ ◦Tr′i′ ,1

′ ; ?[Tr′i′ ,1
′]∗, . . . ,kri,nr,i : Tri,nr,i ; ![Tri,nr,i]

∗ ◦Tr′i′ ,nr′ ,i′
; ?[Tr′i′ ,nr′ ,i′

]∗}

Γ ` (Q1;P1,1 | Qi;Pr,i when i < S | Qi;PR,i when S < i≤ N)

.{k1,1 : ⊥, . . . ,k1,n1,1 : ⊥,kri,1 : ⊥, . . . ,kri,nr,i : ⊥}

Case E[e]−→ E[false]
By [OW2],

(ν k̃) (〈k1,1, . . . ,k1,n1,1〉.outwhile(e){Q1[k1,1, . . . ,k1,n1,1]}
| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k

′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (0 | k1,1 † [false] | . . . | k1,n1,1 † [false]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (0 | k1,1 † [false] | . . . | k1,n1,1 † [false] | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : τ.end◦ ?[T1′1′ ,1
]∗†, . . . ,k1,n1,1 : τ.end◦ ?[T1′1′ ,n1′ ,1′

]∗†,

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′ ,i′

]∗}

33

By [IWE2],

(ν k̃) (0 | k1,1 † [false] | . . . | k1,n1,1 † [false]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (0 | 〈kri,1, . . . ,kri,nr,i〉.outwhile(false){
Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (0 | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : τ.end◦ τ.end, . . . ,k1,n1,1 : τ.end◦ τ.end

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′ ,i′

]∗}

By [OW2],

(ν k̃) (0 | 〈kri,1, . . . ,kri,nr,i〉.outwhile(false){
Qi[kri,1, . . . ,kri,nr,i ,k

′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r = 2

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (0 | k2i,1 † [false] | . . . | k2i,n2i ,1
† [false]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S and r 6= 2

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (0 | k2i,1 † [false] | . . . | k2i,n2i ,1
† [false] | Pr,i when i < S | PR,i when S < i≤ N)

.{k1,1 : τ.end, . . . ,k1,n1,1 : τ.end

kri,1 : τ.end◦ ?[Tr′i′ ,1
′]∗†, . . . ,kri,nr,i : τ.end◦ ?[Tr′i′ ,nr′ ,i′

]∗† where r = 2,

kri,1 : ![Tri,1]
∗◦?[Tr′i′ ,1

′]∗, . . . ,kri,nr,i : ![Tri,nr,i]
∗◦?[Tr′i′ ,nr′ ,i′

]∗}

34

By repeatedly apply [OW2] and [IWE2] for i = 3 to j, where r j = R - 1

(ν k̃) (0 | k2i,1 † [false] | . . . | k2i,n2i ,1
† [false]

| 〈kri,1, . . . ,kri,nr,i〉.outwhile(〈k′r′i′ ,1, . . . ,k
′
r′i′ ,nr′ ,i′

〉.inwhile){

Qi[kri,1, . . . ,kri,nr,i ,k
′
r′i′ ,1

, . . . ,k′r′i′ ,nr′ ,i′
]} when i < S

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗−→∗ (ν k̃) (0 | 0 when i < S | kR−1i,1 † [false] | . . . | kR−1i,nR−1i ,1
† [false]

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

Γ ` (0 | 0 when i < S | kR−1i,1 † [false] | . . . | kR−1i,nR−1i ,1
† [false] | PR,i when S < i≤ N)

.{k1,1 : τ.end, . . . ,k1,n1,1 : τ.end,kri,1 : τ.end, . . . ,kri,nr,i : τ.end,

kR−1i,1 : τ.end◦ ?[TR−1i,1]
∗†, . . . ,kR−1i,nR−1,i : τ.end◦ ?[TR−1′i′ ,nR−1′ ,i′

]∗†}

Lastly apply [IW2],

(ν k̃) (0 | 0 when i < S

| kR−1i,1 † [false] | . . . | kR−1i,nR−1i ,1
† [false]

| 〈kRi,1, . . . ,kRi,nR,i〉.inwhile{Qi[kRi,1, . . . ,kRi,nR,i]}) when S < i≤ N

−→∗ (ν k̃) (0 | 0 when i < S | 0 when S < i≤ N)

Γ ` (0 | 0 when i < S | 0 when S < i≤ N)

.{k1,1 : τ.end, . . . ,k1,n1,1 : τ.end,kri,1 : τ.end, . . . ,kri,nr,i : τ.end}

Finally, apply [BOT].
For other cases, the proof is similar to [27, P. 56-60]

35

